ACM Syaposiua onngéﬁyr ’

: - Thé
JColputxng oot
vProceedlngs of the ..,
-annual ACM- Symposium

, on
Theory of Cauputxng

S&E ‘$Stacks

.UC San Dxego

PRESS

PROCEEDINGS OF THE TWENTY-NINTH
ANNUAL ACM SYMPOSIUM ON
THEORY OF COMPUTING

El Paso, Texas
May 4-6, 1997
SPONSORED BY
THE ACM SPECIAL INTEREST GROUP FOR
ALGORITHMS AND COMPUTATION THEORY

Apple 1111

The Association for Computing Machinery
1515 Broadway
New York New York 10036

Copyright 1997 by the Association for Computing Machincry. Inc.(ACM). Permission to
make digital or hard work for personal or classroom usc is granted without [ee provided that
the copies are not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish. to post on servers or to redistribute to lists requires prior
specific permission and/or a fee. Request permission to republish from: Publications Dept.
ACM, Inc. Fax +1 (212) 869-0481 or <permissionsiezacm.org> For other copying of articles
that carry a code at the bottom of the [irst or last page. copying is permitied provided that the
per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222
Rosewood Drive. Danvers. MA 01923,

ACM ISBN: 0-89791-888-6

Additional copies may be ordered prepaid frot:

ACM Order Department ACM European Service Center
PO Box 12114 108 Cowlcy Road

Church Street Station Oxford OX 4 1 JF

New York, NY 10257 . UK

Phone: 1-800-342-6626 Phone: +44-1-865-382338
(US and Canada) Fax: +41-1-865-381338
+1-212-626-0500 E-Mail: acm_europet@acim.org,
(all other countrics) URL:hitp://wwiw.acm.org

Fax: +1-212-944-1318
E-mail: acmpubs@acm.org

ACM Ovrder Number: 508970

Printed in the USA

Proceedings of the Twenty-Ninth Annual
ACM Symposium on Theory of Computing

May 4 — 6, 1997, El Paso, Texas

TABLE OF CONTENTS
Sunday, May 4

Session 1A

Some Optimal Inapproximability Results i
Johan Hdstad

A Complete Classification of the Approximability of Maximization Problems Derived from Boolean
Constraint Satisfactiont
Sanjeev Khanna, Madhu Sudan and David P. Williamson

When Hamming Meets Euclid: The Approximability of Geometric TSP and MST
Luca Trevisan .

Session 1B

Approximate Complex Polynomial Evaluation in Near Constant Work per Point
John H. Reif

Fast and Precise Computations of Discrete Fourier Transforms Using Cyclotomic Integers
Joe Buhler, M. Amin Shokrollahi and Volker Stemann

Quantum Computation of Fourier Transforms over Symmetric Groupsoooviiiiiiiine.
Robert Beals

Session 2A

General Techniques for Comparing Unrooted Evolutionary Treeso,
Ming-Yang Kao, Tak-Wah Lam, Teresa M. Przytycka, Wing-Kin Sung and Hing-Fung Ting

Tree Pattern Matching and Subset Matching in Randomized O(n log® m) Time
Richard Cole and Ramesh Hariharan

Session 2B

Randomized Q(n?) Lower Bound for Knapsack
Dima Grigoriev and Marek Karpinski

Exponential Lower Bounds for Depth 3 Boolean Circuits ...
Ramamohan Paturi, Michael E. Saks and Francis Zane

Invited Session I

Algorithmic Complexity in Coding Theory and the Minimum Distance Problem
Alexander Vardy

Session 3A

Approximating Total Flow Time on Parallel Machines
Stefano Leonardi and Danny Raz

..

Non-Clairvoyant Multiprocessor Scheduling of Jobs with Changing Execution Characteristics
Jeff Edmonds, Donald D. Chinn, Tim Brecht and Xiaotie Deng

Better Bounds for Online Scheduling e 130
Susanne Albers

Optimal Time-Critical Scheduling via Resource AUgmentationooooveeeeeeennn... 140
Cynthia A. Phillips, Cliff Stein, Eric Torng and Joel Wein

Session 3B

Practical Loss-Resilient Codesoo i 150
Michael G. Luby, Michael Mitzenmacher, M. Amin Shokrollahi, Daniel A. Spielman and
Volker Stemann

Spectral Techniques for Expander Codes i 160
John D. Lafferty and Daniel N. Rockmore

Faster Solution of the Key Equation for Decoding BCH Error-Correcting Codesoovivun, 168

Victor Y. Pan

Fault Tolerant Quantum Computation with ConstantError 176
Dorit Aharonov and Michael Ben-Or

Session 4A

On the Construction of Pseudo-Random Permutations: Luby-Rackoff Revisited 189
Moni Naor and Omer Reingold

Reducing Randomness via Irrational Numberso i i 200
Zhi-Zhong Chen and Ming-Yang Kao

Is There an Algebraic Proof for PANCT? 210
Ketan Mulmuley

P = BPP if E Requires Exponential Circuits: Derandomizing the XOR Lemma 220
Russell Impagliazzo and Avi Wigderson

S C L 230

Roy Armoni, Amnon Ta-Shma, Avi Wigderson and Shiyu Zhou

Session 4B

Using Random Sampling to Find Maximum Flows in Uncapacitated Undirected Graphs 240
David Karger

Combinatorial Complexity of the Central Curve ... 250

Peter A. Beling and Sushil Verma

Approximation of k-Set Cover by Semi-Local Optimization 256
Rong-chii Duh and Martin Fiirer

Approximation Algorithms fo’r Facility Location Problems il 265
David B. Shmoys, Eva Tardos and Karen Aardal

Covering Points in the Plane by k-Tours: Towards a Polynomial Time Approximation Scheme for
GEnNELaAl K o oottt e e e e e 275
Tetsuo Asano, Naoki Katoh, Hisao Tamaki and Takeshi Tokuyama

Monday, May 5

Session 5A

A Public-Key Cryptosystem with Worst-Case/Average-Case Equivalenceooooii 284
Miklos Ajtai and Cynthia Dwork :

Private Information StOrage e 294

Rafail Ostrovsky and Victor Shoup

vi

Computationally Private Information Retrievalooo i 304
Benny Chor and Niv Gilboa

Session 5B

Approximating Hyper-Rectangles: Learning and Pseudo-Random Setso, 314
Peter Auer, Philip M. Long and Aravind Srinivasan

A Composition Theorem for Learning Algorithms with Applications to Geometric Concept Classes 324
Shai Ben-David, Nader H. Bshouty and Eyal Kushilevitz

Using and Combining Predictors that Specializeol 334

Yoav Freund, Robert E. Schapire, Yoram Singer and Manfred K. Warmuth

Session 6A

On-Line Algorithms for Steiner Tree Problems 344
Piotr Berman and Chris Coulston

Online Algorithms for Selective Multicast and Maximal Dense Treesoooiiienn, 354
Baruch Awerbuch and Tripurari Singh

Session 6B

Direct Product Results and the GCD Problem, in Old and New Communication Models 363
Itzhak Parnafes, Ran Raz and Avi Wigderson

The Linear-Array Problem in Communication Complexity Resolvedo0nn, 373
Martin Dietzfelbinger

Invited Session II

Paul Erd6s (1913-1996): His Influence on the Theory of Computing ...t 383
Ldszlé Babai

Session 7A

Permanents, Pfaffian Orientations, and Even Directed Circuitsc.oovvveiiiiiiiiiiiiii 402
William McCuaig, Neil Robertson, P. D. Seymour and Robin Thomas

Property Testing in Bounded Degree Graphsooviiiiiiiiiiiia i 406
Oded Goldreich and Dana Ron

Exploring Unknown ENVIFONIMENS vvvvttrtt ettt 416
Susanne Albers and Monika R. Henzinger

On Floorplans of Planar Graphsooouittiiiti i 426
Xin He

Session 7B

Linear Zero-Knowledge — A Note on Efficient Zero-Knowledge Proofs and Arguments 436
Ronald Cramer and Ivan Damgdrd

Commodity-Based Cryptography i 446
Donald Beaver

Oblivious Data Structures: Applications to Cryptographycoooiiiiiiii 456
Daniele Micciancio

Is Linear Hashing Good?in ot 465

Noga Alon, Martin Dietzfelbinger, Peter Bro Miltersen, Erez Petrank and Gdbor Tardos

vii

Session 8A
A Sub-Constant Error-Probability Low-Degree Test, and a Sub-Constant Error-Probability PCP

Characterization of NPo 475
Ran Raz and Shmuel Safra
Improved Low Degree Testing and its Applicationsooovee. e 485
Sanjeev Arora and Madhu Sudan
Probabilistically Checkable Proofs with Zero Knowledge 496
Joe Kilian, Erez Petrank and Gdbor Tardos
Making Games ShoIt i e 506

Uriel Feige and Joe Kilian

Session 8B

Improved Routing and Sorting on Multibutterflies 517
Bruce M. Maggs and Berthold Vicking

Static and Dynamic Path Selection on Expander Graphs: A Random Walk Approach 531
Andrei Z. Broder, Alan M. Frieze and Eli Upfal

On Sorting Strings in External MEmOry i i e 540

Lars Arge, Paolo Ferragina, Roberto Grossi and Jeffrey Scott Vitter

Pointer Jumping Requires ConcurrentRead i 549
Noam Nisan and Ziv Bar-Yossef

Tuesday, May 6

Session 9A
Lower Bounds for Distributed Coin-Flipping and Randomized Consensus 559
James Aspnes

Byzantine QUOrtm SYSEIMSttt e 569
Dahlia Malkhi and Michael Reiter

All of Us Are Smarter Than Any of Us: Wait-Free Hierarchies Are NotRobust 579
Wai-Kau Lo and Vassos Hadzilacos

The Decidability of Distributed Decision Tasks i i 589
Maurice Herlihy and Sergio Rajsbaum

Session 9B

Two Algorithms for Nearest-Neighbor Search in High Dimensions 599
Jon M. Kleinberg

Nearest Neighbor Queries in Metric SPacesottt it et iee iy 609
Kenneth L. Clarkson

Locality-Preserving Hashing in Multidimensional Spaces o i i, 618

Piotr Indyk, Rajeev Motwani, Prabhakar Raghavan and Santosh Vempala

Incremental Clustering and Dynamic Information Retrieval, 626
Moses Charikar, Chandra Chekuri, Tomds Feder and Rajeev Motwani

Session 10A

A Constant-Factor Approximation Algorithm for Packe-t Routing, and Balancing Local vs. Global
CIIBrIa . .o e 636
Aravind Srinivasan and Chung-Piaw Teo

viii

Universal O(congestion+dilation+log!*¢/N') Local Control Packet Switching Algorithms
Rafail Ostrovsky and Yuval Rabani
Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the
World Wide Web .o o

David Karger, Eric Lehman, Tom Leighton, Matthew Levine, Daniel Lewin and
Rina Panigrahy

Allocating Bandwidth for Bursty Connectionso.viiiiiiiiiiiii i,
Jon Kleinberg, Yuval Rabani and Eva Tardos

Session 10B

The Swendsen-Wang Process Does Not Always Mix Rapidly,
Vivek K. Gore and Mark R. Jerrum

Approximately Counting up to Fourc. i
Michael Luby and Eric Vigoda

An Interruptible Algorithm for Perfect Sampling via Markov Chainsooon
James Allen Fill

Sampling Lattice POINLSttt ettt
Ravi Kannan and Santosh Vempala

Session 11A

Page Replacement with Multi-Size Pages and Applications to Web Caching
Sandy Irani

A Polylog(n)-Competitive Algorithm for Metrical Task Systems ...,
Yair Bartal, Avrim Blum, Carl Burch and Andrew Tomkins

Session 11B

ON ACCO[P¥] FIEe PrOOES\ttt e ettt et e
Alexis Maciel and Toniann Pitassi

Reducing the Complexity of Reductionso
Manindra Agrawal, Eric Allender, Russell Impagliazzo, Toniann Pitassi and Steven Rudich

Read-Once Branching Programs, Rectangular Proofs of the Pigeonhole Principle and the Transversal
CalCUIUS .« v e ettt e e e e
Alexander Razborov, Avi Wigderson and Andrew Yao

Errata

Eigenvalues, Flows and Separators of Graphs
F R. K. Chung and S.-T. Yau

Retraction of “Probabilistic Computation and Linear Time” ...,
Lance Fortnow and Michael Sipser

AULHOE IO .. oo e e e e e e e

ix

Practical Loss-Resilient Codes

Michael G. Luby*

Daniel A. Spielman®

Abstract

We present randomized constructions of linear-time en-
codable and decodable codes that can transmit over lossy
channels at rates extremely close to capacity. The encod-
ing and decoding algorithms for these codes have fast and
simple software implementations. Partial implementations
of our algorithms are faster by orders of magnitude than the
best software implementations of any previous algorithm for
this problem. We expect these codes will be extremely useful
for applications such as real-time audio and video transmis-
sion over the Internet, where lossy channels are common and
fast decoding is a requirement.

Despite the simplicity of the algorithms, their design and
analysis are mathematically intricate. The design requires the
careful choice of a random irregular bipartite graph, where
the structure of the irregular graph is extremely important.
We model the progress of the decoding algorithm by a set
of differential equations. The solution to these equations can
then be expressed as polynomials in one variable with coef-

*Digital Equipment Corporation, Systems Research Center, Palo Alto,
CA, and Computer Science Division, University of California at Berkeley. A
substantial portion of this research done while at the International Computer
Science Institute. Research supported in part by National Science Founda-
tion operating grant NCR-9416101, and United States-Israel Binational Sci-
ence Foundation grant No. 92-00226.

t Digital Equipment Corporation, Systems Research Center, Palo Alto,
CA. A substantial portion of this research done while at the Computer Sci-
ence Department, UC Berkeley, under the National Science Foundation
grant No. CCR-9505448.

} International Computer Science Institute Berkeley, and Institut fiir In-
formatik der Universitiit Bonn, Germany. Research supported by a Habilita-
tionsstipendium of the Deutsche Forschungsgemeinschaft, Grant Sh 57/1-1.

§ Department of Mathematics, M.LT. Supported by an NSF mathematical
sciences postdoc. A substantial portion of this research done while visiting
U.C. Berkeley.

YResearch done while at the International Computer Science Institute

Penmission to make digitalZhard copies ol all or part of this material lor
personal or classroom use is granted without fee provided that the copies
are not made or distributed Tor profit or commereial advantage. the copy-
right notice. the title of the publication and its date appear. and notice is
given that copyright is by permission of the ACM. Inc. To copy otherwise,
to republish, to post on servers or to redistribute (o fists. requires specific
permission and-or fee

STOC 97 Bl Paso. Texas USA

Copyright 1997 ACM 0-89791-888-6:97:05 _$3.50

Michael Mitzenmacher!

M. Amin Shokrollahi

Volker Stemann’

ficients determined by the graph structure. Based on these
polynomials, we design a graph structure that guarantees suc-
cessful decoding with high probability.

1 Introduction

Studies show that the Internet exhibits packet loss, and
the measurements in [10] show that the situation has become
worse over the past few years. A standard solution to this
problem is to request retransmission of data that is not re-
ceived. When some of this retransmission is lost, another re-
quest is made, and so on. In some applications, this intro-
duces technical difficulties. For real-time transmission this
solution can lead to unacceptable delays caused by several
rounds of communication between sender and receiver. For
amulticast protocol with one sender and many receivers, dif-
ferent sets of receivers can lose different sets of packets, and
this solution can add significant overhead to the protocol.

An alternative solution, often called forward error-
correction in the networking literature, is sometimes
desirable. Consider an application that sends a real-time
stream of data symbols that is partitioned and transmitted in
logical units of blocks.! Suppose the network experiences
transient and unpredictable losses of at most a p fraction of
symbols out of each block. The following insurance policy
can be used to tradeoff the effects of such uncontrollable
losses on the receiver for controllable degradation in quality.
Let n be the block length. Instead of sending blocks of n
data symbols each, place (1 — p)n data symbols in each
block, by either selecting the most important parts from
the original data stream and omitting the remainder, or
by generating a slightly lower quality stream at a (1 — p)
fraction of the original rate. Fill out the block to its original
length of n with pn redundant (check) symbols. This scheme
provides optimal loss protection if the (1 — p)n symbols in
the message can all be recovered from any set of (1 — p)n

1 An example of this is an MPEG stream, where a group of pictures can
constitute such a block, and where each symbol corresponds to the contents
of one packet in the block. The latency incurred by the application is propor-
tional to the time it takes between when the first and last packet of the block
is sent, plus the one-way travel time through the network.

150

received symbols from the block. Such a scheme can be
used as the basic building block for the more robust and
general protection scheme described in [1].

To demonstrate the benefits of forward error-correction in
a simplified setting, consider the Internet loss measurements
performed by [14] involving a multicast by one sender to a
number of geographically distributed receivers. In one typi-
cal transmission to eleven receivers for a period of an hour,
the average packet loss rate per receiver was 9.3%, yet 46.5%
of the packets were lost by at least one of the receivers. To
simplify the example, suppose that the maximum loss rate
per block of 1000 packets for any receiver is 200.2 Then, the
sender could use forward error-correction by adding 200 re-
dundant packets to each 800 data packets to form blocks con-
sisting of 100 packets each. This approach sends 25% more
packets total than are in the original data stream, whereas
a naive scheme where the sender retransmits lost packets
would send about 50% more.

It is a challenge to design fast enough encoding and de-
coding algorithms to make forward error-correction feasible
in real-time for high bandwidth applications. In this paper,
we present codes that can be encoded and decoded in linear
time while providing near optimal loss protection. Moreover,
these linear time algorithms can be implemented to run very
quickly in software.

Our results hold whether each symbol is a single bit or a
packet of many bits. We assume that the receiver knows the
position of each received symbol within the stream of all en-
coding symbols. This is appropriate for the Internet, where
packets are indexed. We adopt as our model of losses the era-
sure channel, introduced by Elias [6], in which each encod-
ing symbol is lost with a fixed constant probability p in transit
independent of all the other symbols. This assumption is not
appropriate for the Internet, where losses can be highly cor-
related and bursty. However, losses on the Internet in general
are not sensitive to the actual contents of each packet, and
thus if we place the encoding into the packets in a random
order then the independent loss assumption is valid.

Elias [6] showed that the capacity of the erasure channel
is 1 — p and that a random linear code can be used to trans-
mit over the erasure channel at any rate R < 1 — p. Fur-
thermore, a standard linear MDS code can be used to con-
vert a message of length Rn into a transmission of length n
from which the message can be recovered from any portion of
length greater than Rn. Moreover, general linear codes have
quadratic time encoding algorithms and cubic time decoding
algorithms. One cannot hope for better information recovery,
but faster encoding and decoding times are desirable, espe-
cially for real-time applications.

Reed-Solomon codes can be used to transmit at the ca-
pacity of the erasure channel with nlogn encoding time
and quadratic decoding time. These codes have recently

2This is twice the average loss rate, but due to the bursty nature of losses
in the Internet it is still likely that the maximum loss rate per block exceeds
20%. One can use the results of [1] to simultaneously protect against various
levels of loss while still keeping the overall redundancy modest.

151

been customized to compensate for Internet packet loss in
real-time transmission of moderate-quality video [1]. Even
this optimized implementation required the use of dedicated
workstations. Transmission of significantly higher quality
video requires faster coding algorithms.

In theory, it is possible to decode Reed-Solomon codes
in time O(nlog® nloglogn) (see, [4, Chapter 11.7] and
[9, p. 369]). However, for small values of n, quadratic
time algorithms are faster than the fast algorithms for the
Reed-Solomon based codes, and for larger values of n the
O(log® nloglog n) multiplicative overhead in the running
time of the fast algorithms (with a moderate sized constant
hidden by the big-Oh notation) is large, i.e., in the hundreds
or larger.

We obtain very fast linear-time algorithms by transmitting
just below channel capacity. We producerate R = 1 —p(1+
€) codes along with decoding algorithms that recover from
the random loss of a p fraction of the transmitted symbols in
time proportional to nIn(1/¢) with high probability, where
n is the length of the encoding. They can also be encoded in
time proportional ton In(1/¢). In Section 7, we do this for all
€ > 0. The fastest previously known encoding and decoding
algorithms [2] with such a performance guarantee have run
times proportional to nln(1/¢)/e. (See also [3] for related
work.)

The overall structure of our codes are related to codes in-
troduced in [13] for error-correction. We explain the gen-
eral construction along with the encoding and decoding al-
gorithms in Section 2.

Our encoding and decoding algorithms are almost sym-
metrical. Both are extremely simple, computing exactly one
exclusive-or operation for each edge in a randomly chosen bi-
partite graph. As in many similar applications, the graph is
chosen to be sparse, which immediately implies that the en-
coding and decoding algorithms are fast. Unlike many sim-
ilar applications, the graph is not regular; instead it is quite
irregular with a carefully chosen degree sequence. We de-
scribe the decoding algorithm as a process on the graph in
Section 3. Our main tool is a model that characterizes almost
exactly the performance of the decoding algorithm as a func-
tion of the degree sequence of the graph. In Section 4, we use
this tool to model the progress of the decoding algorithm by
a set of differential equations. As shown in Lemma 1, the so-
lution to these equations can then be expressed as polynomi-
als in one variable with coefficients determined by the degree
sequence. The positivity of one of these polynomials on the
interval (0, 1] with respect to a parameter § guarantees that,
with high probability, the decoding algorithm can recover al-
most all the message symbols from a loss of up to a § frac-
tion of the encoding symbols. The complete success of the
decoding algorithm can then be demonstrated by combinato-
rial arguments such as Lemma 3.

Our analytical tools allow us to almost exactly charac-
terize the performance of the decoding algorithm for any
given degree sequence. Using these tools, we analyze reg-

10

ular graphs in Section 6, and conclude that they cannot yield
codes that are close to optimal. Hence irregular graphs are a
necessary component of our design.

Not only do our tools allow us to analyze a given degree
sequence, but they also help us to design good irregular de-
gree sequences. In Section 7 we describe, given a parameter
¢ > 0, a degree sequence for which the decoding is success-
ful with high probability for a loss fraction 4 that is within € of
1 — R. Although these graphs are irregular, with some nodes
of degree 1/, the average node degree is only In(1/¢). This
is the main result of the paper, i.e., a code with encoding and
decoding times proportional to In(1/¢) that can recover from
a loss fraction that is within ¢ of optimal.

In Section 9, we show how linear programming tech-
niques can be used to find good degree sequences for the
nodes on the right given a degree sequence for the left nodes.
We demonstrate these techniques by finding the right degree
sequences that are close to optimal for a series of example left
degree sequences.

1.1 Terminology

The block length of a code is the number of symbols in
the transmission. In a systematic code, the transmitted sym-
bols can be divided into message symbols and check symbols.
We take the symbols to be bits, and write a @ b to denote the
exclusive-or of bits a and b. It is easy to extend our construc-
tions to work with symbols that are packets of bits: where we
would take the @ of two bits, just take the bit-wise @ of two
packets. The message symbols can be chosen freely, and the
check symbols are computed from the message symbols. The
rate of a code is the ratio of the number of message symbols
to the block length. In a code of block length n and rate R,
the encoder takes as input Rn message symbols and produces
n symbols to be transmitted. In all of our constructions, we
assume that the symbols are bits.

2 The Codes

In this section, we explain the overall construction, as well
as the encoding and decoding algorithms. We begin by defin-
ing a code C(B) with n message bits and 8n check bits, by as-
sociating these bits with a bipartite graph B. The graph B has
n left nodes and Bn right nodes, corresponding to the mes-
sage bits and the check bits, respectively. C(B) is encoded
by setting each check bit to be the @ of its neighboring mes-
sage bits in B (see Figure 1(a)). Thus, the encoding time is
proportional to the number of edges in B.

The main contribution of our work is the design and anal-
ysis of the bipartite graph B so that the repetition of the fol-
lowing simplistic decoding operation recovers all the missing
message bits.

152

computes the sum
modulo 2 of its
neighbors

O ~ 6, O ~
. 8/.:3?;1(g/
message

(b)

Figure 1: (a) A graph defines a mapping from message bits
to check bits.
() Bits z;, z3, and ¢; are used to solve for 3.

Decoding Operation

Given the value of a check bit and all but one of
the message bits on which it depends,

set the missing message bit to be the & of the
check bit and its known message bits.

See Figure 1{b) for an example of this operation. The ad-
vantage of relying solely on this recovery operation is that the
total decoding time is (at most) proportional to the number of
edges in the graph. Our main technical innovation is in the
design of sparse random graphs where repetition of this op-
eration is guaranteed to usually recover all the message bits
if at most (1 — €) n of the message bits have been lost from
C(B).

To produce codes that can recover from losses regardless
of their location, we cascade codes of the form C(B): we
first use C(B) to produce #n check bits for the original n
message bits, we then use a similar code to produce 5%n
check bits for the Bn check bits of C(B), and so on (see Fig-
ure 2). At the last level, we use a more conventional loss-
resilient code. Formally, we construct a sequence of codes
C(By),...,C(By,) from a sequence of graphs By, ..., By,
where B; has #'n left nodes and Bitin right nodes. We se-
lect m so that ™+1n is roughly \/n and we end the cascade
witha loss-resilientcode C of rate 1—3 with 3™ *1n message
bits for which we know how to recover from the random loss
of 3 fraction of its bits with high probability. We then define
the code C(Bo, B, . . ., Bm, C) to be a code with n message
bits and

m+1

> Bn+ g™ 2n/(1-) = np/(1 -)

i=1

check bits formed by using C(Bg) to produce An check bits
for the n message bits, using C(B;) to form 3*+1 n check bits

11

for the B'n bits produced by C(B;_,), and finally using C
to produce an additional n3™*?/(1 —) check bits for the
A™*1nbitsoutputby C(By,). AsC(Bo, B, ..., Bm,C)has
n message bits and ng3/(1 —) check bits, it is a code of rate

1- 4.

é’; conventional g
\? code ®
p ®

Figure 2: The code levels.

Assuming that the code C can be encoded and decoded in
quadratic time?, the code C(Bg, . . ., Bm, C) can be encoded
and decoded in time linear in n. We begin by using the de-
coding algorithm for C to recover losses that occur within its
corresponding bits. If C recovers all the losses, then the al-
gorithm now knows all the check bits produced by C(By,),
which it can then use to recover losses in the inputsto C(B,).
As the inputs to each C(B;) were the check bits of C(B;_1),
we can work our way back up the recursion until we use the
check bits produced by C{Bg) to recover losses in the origi-
nal n message bits. If we can show that C' can recover from
the random loss of a §(1 — ¢) fraction of its bits with high
probability, and that each C{ B;) can recover from the random
loss of a #(1 — €) fraction of its message bits with high prob-
ability, then we have shown that C(Bg, By, ..., Bn,C)isa
rate 1 — J code that can recover from the random loss of a
B(1 — €) fraction of its bits with high probability. Thus, for
the remainder of the paper, we only concern ourselves with
finding graphs B so that the decoding algorithm can recover
from a 3(1 —e¢) fraction of losses in the message bits of C(B),
given all of its check bits.

3 The Graph Process and Dégree Sequences

We now relate the decoding process of C(B) to a process
on a subgraph of B, so that hereafter we can use this sim-
pler terminology when describing the process. This subgraph

3 A good candidate for the code C is the low-density parity-check [7, 12]
version of these codes: only send the messages that cause all the check bits to
be zero. These codes can be decoded in linear time and encoded in quadratic
time with miniscule constants. In the final version of this paper, we show
how C' can be replaced with an even simpler code C” that can be encoded
and decoded in linear time but that has a worse decoding guarantee. Using
C', we can end the cascade with roughly en/ InInn nodes instead of \/n
for C.

153

consists of all nodes on the left that were lost but have not
been decoded thus far, all the nodes on the right, and all the
edges between these nodes. Recall that the decoding process
requires finding a check bit on the right such that only one
adjacent message bit is missing; this adjacent bit can then be
recovered. In terms of the subgraph, this is equivalent to find-
ing a node of degree one on the right, and removing it, its
neighbor, and all edges adjacent to its neighbor from the sub-
graph. We refer to this entire sequence of events hereafter as
one step of the decoding process. We repeat this step until
there are no nodes of degree one available on the right. The
entire process is successful if it does not halt until all nodes
on the left are removed, or equivalently, until all edges are
removed.

The graphs that we use are chosen at random from care-
fully chosen degree sequence on sparse bipartite graphs. In
contrast with many applications of random graphs in com-
puter science, our graphs are not regular. Indeed, the analysis
in Section 6 shows that it is not possible to approach channel
capacity with regular graphs.

We refer to edges that are adjacent to a node of degree
i on the left (right) as edges of degree i on the left (right).
Each of our degree sequences is specified by a pair of vectors
(M,...,Am)and{p1, ..., pm) where); is the initial fraction
of edges on the left of degree 7 and p; is the initial fraction of
edges on the right of degree j. Note that our graphs are spec-
ified in terms of fractions of edges, and not nodes, of each
degree; this form is more convenient for much of our work.
To choose an appropriate random bipartite graph B with £
edges, n nodes on the left, and #n nodes on the right, we be-
gin with a bipartite graph B’ with E nodes on both the left
and right hand sides, with each node of B’ representing an
edge slot. Each node on the left hand side of B’ is associated
with a node on the left side of B, so that the distribution of
degrees is given by (A1, ..., A), and similarly for the right.
We then choose a random matching (i.e., a random permuta-
tion) between the two sets of E nodes on B’. This induces
a random bipartite graph on B (perhaps with multi-edges) in
the obvious manner with the desired degree structure.

Note that, in the corresponding subgraph of B’ remain-
ing after each step, the matching remaining on B’ still corre-
sponds to a random permutation. Hence, conditioned on the
degree sequence of the remaining subgraph after each step,
the subgraph that remains is uniform over all subgraphs with
this degree sequence. The evolution of the degree sequence
is therefore a Markov process, a fact we make use of below.

In the next two sections, we develop techniques for the
analysis of the process for general degree sequences. After
using these techniques in Section 6 to analyze regular graphs,
we describe degree sequences that result in codes that ap-
proach the capacity of the erasure channel in Section 7.

4 Differential Equations Description

To analyze the behavior of the process on the subgraph
of B described in the previous section, we begin by estab-

12

lishing a set of differential equations that describes its behav-
ior in the limiting case, as the block length goes to infinity.
Alternatively, one may think of these equations as describ-
ing the expected behavior of the associated random variables.
Although these differential equations provide the key insight
into the behavior of the decoding process, additional work is
required to justify the relationship between the limiting and
finite cases.

We begin with the initial random graph B, with n left
nodes and An right nodes. Consider the two vectors ();) and
(pi), where A; and p; are the fractions of edges of degree i on
the left and right, with respect to the total number E of edges
in the original graph. The average node degree on the left a,
initially satisfies a; ' = 3", A; /4, and similarly the average
node degree on the right a,. initially satisfies a; ! = 5, p; /i.

We scale the passage of time so that each time unit of
length At % corresponds to one step of the decoding
process. Let & be the fraction of losses in the message. Ini-
tially, just prior to time 0, each node on the left is removed
with probability 1 — & (because the corresponding message
bit is successfully received), and thus the initial subgraph of
B contains §» nodes on the left. If the process terminates
successfully, it runs until time dn/E = &/a,. We let £;(t)
and r;(t) represent the fraction of edges (in terms of E) of
degree i on the left and right, respectively, at time ¢. We
denote by e(t} the fraction of the edges remaining, that is,
e(t) = 25 4i(t) = 35, milt).

Recall that at each step, a random node of degree one on
the right is chosen, and the corresponding node on the left and
all of its adjacent edges are deleted. (If there is no such node,
the process necessarily stops.) The probability that the edge
adjacent to the node of degree one on the right has degree ¢
on the left is £;(t)/e(t), and in this case we lose ¢ edges of
degree i. This gives rise to the difference equation

Li(t + At) — Li(t) = - :

for the expected change of the number of edges £;(t) of de-
gree i on the left. Noting that £;(t) = L;(t)/E = L;(t)At,
we see that in the limit as £ — oo the solution of this differ-
ence equation is described by that of the differential equation

d4i(t)

dt

)

When we remove a node of degree ¢ on the left, we re-
move the one edge of degree one from the right, along with
the ¢ — 1 other edges adjacent to this node. Hence the ex-
pected number of other edges deleted is a(tf) — 1, where
a(t) = 5 if;(t)/e(t). Therightendpointsof these i—1 other
edges on the right hand side are randomly distributed. If one
of these edges is of degree j on the right, we lose j edges of
degree j, and gain j — 1 edges of degree j — 1. The proba-
bility that an edge has degree j on the right is just ;(¢)/e(t).

154

For z > 1, then, the difference equation

i(a(t) = 1)
e(t)
describes the expected change of the number of edges R (t)

of degree i on the right. The corresponding differential equa-
tions for the 7;(t) are therefore

dr; (t)
dt

Ri(t + At) = Ri(t) = (rip1(t) — ri(2))

= (ria (t) - ri(t))

¢))

(We assume that r;(t) is defined for all positive ¢, and is 0 for
sufficiently large ¢.) The case i = 1 plays a special role, as
we must take into account that at each step an edge of degree
one on the right is removed. Hence, the differential equation
for r1(t) is given as

drl(t)
dt

(a(t) - 1)
e(t)

Our key interest is in the progression of r; (¢) at a function
of t. Aslongas r;(t) > 0, so that we have a node of degree
one on the right, the process continues; when r;(t) = 0 the
process stops. Hence we would like for »;(¢) > 0 until all
nodes on the left are deleted and the process terminates suc-
cessfully.

These differential equations are more easily solved by
defining z so thatdz/z = dt/e(t). The value of z in terms of
t is then z := exp(— f(; dr/e(r)). By substituting dz/z for
dt/e(t), equation (1) becomes d¥4;(z)/dz = —~if;(z)/z, and
integrating yields #; (z) = c;z'. Note thatz = 1 fort = 0,
and 4;(t = 0) = ;. Hence, ¢; = §); and

= (Tg(t) - 7" (t)) -1 (3)

E,(m) = JA;xi.

Since ¢;(z) goes to zero as ¢ goes to d/a,, = runs over the
interval [1,0).

Solving for the r;(z) is more involved. The main goal is
to show that ry (z) > 0 on (0, 1], so that the process does not
halt before completion. Details for solving for the r;(z), and
in particular for r,(z), are given in Appendix A; the propo-
sition below presents the solution for 71 (z). The result is ex-
pressed using the degree sequence functions

Az) = E Aizt?

i>1

and _
plx) =Y piz’ .
i>1
These degree sequence functions play an importantrole in the
remainder of our presentation.

Lemma 1 The solution ri(x) of the differential equation (3)
is given by

6XMz) [z — 1+ p(1 = 8A(z))]. 4)

T1($)

13

From (4), we find that this requires the condition
p(l=98Az))>1-=z, z€(0,1]. (5)

This condition shall play a central role for the remainder
of our work.

5 Using the Differential Equations to Build
Codes

Recall that the differential equations describe the limiting
behavior of the process on B, as the block length goes to in-
finity. From this one can derive that if (5) is violated, so that
p(1 = dX(z)) < 1 — z somewhere on (0, 1] then the process
fails for large block lengths with high probability.

Proving the process progresses almost to completion if (5)
is satisfied is possible by relating the differential equations to
the underlying random process (see, e.g., [8, 11]). Proving
the process runs to completion can be handled with a sepa-
rate combinatorial argument. In some cases, however, this
requires small modifications in the graph construction.

Lemma 2 Let B be a bipartite graph chosen at random with
edge-degrees specified by A(z) and p(z). Let & be fixed so
that
p(1=8XMz))>1—=2, forz e (0,1}

For all n > 0, if the message bits of C{B) are lost indepen-
dently with probability é, then the decoding algorithm ter-
minates with more than nn message bits not recovered with
exponentially small probability, as the block length grows
large.

The following combinatorial tail argument is useful in
showing that the process terminates successfully when there
are no nodes on the left of degree one or two. (Such argu-
ments are often required in similar situations; see, for exam-

ple, [5].)

Lemma 3 Let B be a bipartite graph chosen at random with
edge-degrees specified by X(z) and p(z), such that A(z) has
A1 = Ae = 0. Then there is some > 0, such that with
probability 1 — o(1) (over the choice of B) if at most an'n
fraction of the nodes on the left in B remain, then the process
terminates successfully.

Proof: [Sketch] Let S be any set of nodes on the left of
size at most nn. Let a be the average degree of these nodes.
If the number of nodes on the right that are neighbors of S
is greater than a|S|/2, then one of these nodes has only one
neighbor in |S|, and so the process can continue. Thus, we
only need to show that the initial graph is a good expander
on small sets. Since the degree of each node on the left is at
least three, standard proofs (see [12]) suffice to show that the
expansion condition holds with high probability for all sets

155

containing at most an 5 fraction of the left nodes, for some
7> 0. o

Using Lemmas 2 and 3, we can show that the codes pre-
sented in Section 7 work with high probability. As our results
for asymptototically good general codes use graphs with de-
gree two nodes on the left, we extend the construction and use
more careful arguments to prove that the process completes,
as described in Section 7.

6 Analysis of Regular Graphs

We demonstrate the techniques developed in the previous
section in a simple setting: we analyze the behavior of the
process on random regular graphs. Because random regular
graphs have so often been used in similar situations, it is nat-
ural to consider if they give rise to codes that are close to opti-
mal. They do not. The following lemma proves a weak form
of this behavior. We have explicitly solved for the largest
value of § which satisfies condition (5) for codes based on
regular graphs for several rate values. In every case, there
is some small degree value that achieves a maximum value
of § far from optimal, and the maximal achievable value of §
decreases as the degree increases thereafter.

Lemma 4 Let B be a bipartite regular graph chosen at ran-
dom, with all edges having left degree d and right degree
d/B, for d > 3. Then condition (5) holds only if

s<af1o (L)

and hence as d — 0o, the maximum acceptable loss rate goes
to 0.

Proof: We have that A\(z) = z4-1, and p(z) = z(4/A)-1,
Hence our condition (5) on the acceptable loss rate § becomes

(1-629-)¥P7 Sy

forz € (0,1).
Wepluginz = 1 — ;5. Using the fact that (1 —
1

d—
77)4"1 > § ford > 3 yields the requirement

(d/B)-1
-2 >-L
4 —d-1

This simplifies to the inequality in the statement of the
lemma.

It is easy to check that as d — oo, the right hand side of
the above equation goes to 0, which concludes the lemma. o

Hence, for any fixed 5, there is some d which achieves the
maximum value of 4 possible using regular graphs, and this §
is far from optimal. For example, in the case where § = 1/2,
the best solution is to let the left nodes have degree three and

14

the right nodes have degree six. In this case the code can han-
dle any ¢ fraction of losses on the left with high probability
as long as

(1-62%)°>1-3

for z € (0,1]. The inequality fails for 6 > 0.43. When
this one layer code is cascaded as described in Section 2 to a
code withrate R = 1/2, simple calculations show that being
able to incur a loss fraction of at most § = .43 in each layer
implies that the message cannot be recovered from a portion
of the encoding that is smaller than 1.14 times the length of
the message, i.e., far from the optimal value of 1.00. Simula-
tion runs of the code turn out to match this theory accurately,
demonstrating that these techniques provide a sharp analysis
of the actual behavior of the process.

7 Asymptotically Optimal Codes

In this section, we construct codes that transmit at rates ar-
bitrarily close to the capacity of the erasure channel. We do
this by finding an infinite sequence of solutions to the differ-
ential equations of Section 4 in which é approaches p.

As the degree sequences we use have degree two nodes
on the left hand side, we cannot appeal to Lemma 3 to show
that they work with high probability. Hence our codes require
some additional structure.

Let B be a bipartite graph with n left nodes and fn right
nodes. We describe our choice for the left and right degree
sequences of B that satisfy condition (5). Let d be a positive
integer that is used to trade off the average degree with how
well the decoding process works, i.e., how close we can make
4 to S = 1 — R and still have the process finish successfully
most of the time.

The left degree sequence is described by the following
truncated heavy tail distribution. Let A (d) = Y&, 1/i be
the harmonic sum truncated at d, and thus H(d) ~ In(d).
Then, foralli = 2,...,d+ 1, the fraction of edges of degree
i on the left is given by A; = 1/(H(d)(i — 1)). The average
left degree a4 equals H(d)(d + 1)/d. Recall that we require
the average right degree, a,, to satisfy a, = a,/3. The right
degree sequence is defined by the Poisson distribution with
mean a,: forall ¢ > 1 the fraction of edges of degree ¢ on the
right equals

e~ ai -1
pi = (T—l—)!’

where « is chosen to guarantee that the average degree on the
right is a,. In other words, « satisfies ze®/(e® — 1) = a,.

Note that we allow p; > 0 forall 7 > 1, and hence p(z) is
not truly a polynomial, but a power series. However, truncat-
ing the power series p(z) at a sufficiently high term gives a fi-
nite distribution of the edge degrees for which the next lemma
is still valid.

We show that when § = 3/(1 + 1/d) in (5), the condi-
tion is satisfied, i.e., p(1 — dA(2)) > 1 — z on (0, 1], where
A(z) = 3, Miz'~tand p(z) = Y, piz*~}. Note that A(z)

156

is the expansion of — In(1 — x) truncated at the dth term, and
scaled so that A(1) = 1. Further, p(z) = e*(=-1),

Lemma 5 Withthe above choices for p(z) and A(x) we have
p(L=30A(z)) >1—xon(0,1]if6 <B/(1+1/d).

Proof: Recall that p(z) = e*(®~1), hence p(z) increases
monotonically in x. As a result, we have

p(1=8X(z)) > p(1+8In(1—z)/H(d)) = (1 —z)*/H),

Since ay = H(d)(1 + 1/d) and ¢ = a,/8, we obtain
ad/H(d)=(1—-e"*)(1+1/d)d/B < 8(1+1/d)/B < 1,
which shows that the right hand side of the above inequality
is larger than 1 — z on (0, 1]. o

A problem is that Lemma 3 does not apply to this system
because there are nodes of degree two on the left. Indeed,
simulations demonstrate that for these choices of A(z) and
p(z) a small number of nodes often do remain. To overcome
this problem, we make a small change in the structure of the
graph B. We split the #n right nodes of B into two distinct
sets, the first set consisting of (3 — v)n nodes and the sec-
ond set consisting of yn nodes, where = is a small constant
to be determined. The graph B is then formed by taking the
union of two graphs, B; and B,. B is formed as described
up to this point between the n left nodes and the first set of
(8 —~)n right nodes. Bj is formed between the n left nodes
and the second set of yn right nodes, where each of the n left
nodes has degree three and the 3n edges are connected ran-
domly to the yn right nodes.

Lemma 6 Let B be the bipartite graph just described. Then,
with high probability, the process terminates successfully
when started on a subgraph of B induced by én of the left
nodes and all fn of the right nodes, where § = 8/(1+1/d).

Proof: [Sketch] In the analysis of the process, we may
think of B; as being held in reserve to handle nodes not
already dealt with using B;. Combining Lemma 5 and
Lemma 2, we can show that, for any constant > 0, with
high probability at most nn nodes on the left remain after the
process runs on By. The induced graph in Bs between these
remaining #n left nodes and the yn right nodes is then a ran-
dom bipartite graph such that all nodes on the left have de-
gree three. We choose v to be larger than 7 by a small con-
stant factor so that with high probability the process termi-
nates successfully on this subgraph by Lemma 3; note that the
lemma applies since all nodes on the left have degree three.
By choosing 7 sufficiently small, we may make ~ arbitrar-
ily small, and hence the decrease in the value of § below that
stated in Lemma 5 can be made arbitrarily small. a]

Note that the degree of each left node in this modified con-
struction of B is at most three bigger than the average degree
of each left node in the construction of B described at the be-
ginning of this section. We can use this observation and the
lemma above to immediately prove our main theorem.

15

Theorem 1 Forany R, any positive ¢, and sufficiently large
block length n, there is a loss-resilient code that, with high
probability, is able to recover from the random loss of a (1 —
R){(1—e¢)-fractionof its bits in time proportionalton In(1/¢).

Proof: [Sketch] Set d = 1/¢ to get a one level code with
the properties described in Lemma 6. Cascade versions of
these codes as described in Section 2 to get the entire code.
The proof follows since each level of the cascade fails to re-
cover all its message bits, given all of its check bits, with
small probability. o

8 A Linear-Algebraic Interpretation

The 3n check bits of the code C(B) described in Section 2
can be computed by multiplying the vector of n message bits
by the Bn x n matrix, M(B), whose (z, j)-th entry is 1 if
there is an edge in B between left node ¢ and right node j
and is 0 otherwise (the multiplication is over the field of two
elements). We choose our graphs B to be sparse, so that the
resulting matrix M (B) is sparse and the multiplication can
be performed quickly.

The efficiency of the decoding algorithm is related to the
ease with which one can perform Gaussian elimination on
submatrices of M (B). If one knows all the check bits and all
but dn of the message bits, then it is possible to recover the
missing message bits if and only if the dn columns of M (B)
indexed by the message bits have full rank. These bits can be
recovered by Gaussian elimination. In Section 7, we present
a distribution on graphs B so that these bits can be recovered
by a very simple brute-force Gaussian elimination: for any
¢ > 0, we present a distribution of graphs B so that almost
all subsets of 3/(1+ ¢) columns of M (B) have full rank and
can be placed in lower-triangular form merely by permuting
the rows of the matrix. Moreover, the average number of 1s
per row in M(B) is nin(1/¢); so, the Gaussian elimination
can be performed in time O(n In(1/¢)).

To contrast this with other constructions of loss-resilient
codes, observe that most sets of fn — 1 columns of a random
Bn x n matrix have full rank. In fact, the probability that
some [n — c columns fail to have full rank is exponentiall
small in ¢. However, we do not know of an algorithm that
solves the resulting elimination problem in less than the time
it takes to do a general matrix multiplication.

Ideally, we would use matrices in which every set of fn
columns have full rank; but, such matrices do not exist over
any constant-size field. However, if we let our field size grow
to n, classical matrices solve this problem. For example, all
subsets of fn columns of a fn x n Vandermonde matrix are
linearly independent.

9 Finding Degree Sequences using Linear Pro-
gramming

In this section we describe a heuristic approach that has
proven effective in practice to find a good right degree se-

157

quence given a specific left degree sequence. The method
uses linear programming and the differential equation anal-
ysis of Section 4.

Recall that, from the differential equations, a necessary
condition for the process to complete is that p(1 — §A(z)) >
1 — z on (0,1]. We first describe a heuristic for determin-
ing for a given (finite) vector (A;) representing the left de-
gree sequence and a value for § whether there is an appropri-
ate (finite) vector {p;) representing the right degree sequence
satisfying this condition. We begin by choosing a set M of
positiveintegers which we want to contain the degrees on the
right hand side. To find appropriate p,,, m € M, we use
the condition given by Lemma 1 to generate linear constraints
that the p; must satisfy by considering different values of z.
For example, by examining the condition at z = 0.5, we ob-
tain the constraint p(1 — §A(0.5)) > 0.5, which is linear in
the p;.

We generate constraints by choosing for z multiples of
1/N for some integer N. We also include the constraints
pm > 0forallm € M. We then use linear programming
to determine if suitable py,, exist that satisfy our derived con-
straints. Note that we have a choice for the function we wish
to optimize; one choice that works well is to minimize the
sum of p(1 — dA(z)) + = — 1 on the values of z chosen to
generate the constraints. The best value for § for given N is
found by binary search.

Given the solution from the linear programming problem,
we can check whether the p; computed satisfy the condition
p{l=d8A(z)) >1—=zon(0,1].

Due to our discretization, there are usually some conflict
subintervals in which the solution does not satisfy this in-
equality. Choosing large values for the tradeoff parameter V
results in smaller conflict intervals, although it requires more
time to solve the linear program. For this reason we use small
values of NV during the binary search phase. Once a value for
d is found, we use larger values of N for that specific & to ob-
tain small conflict intervals. In the last step we get rid of the
conflict intervals by appropriately decreasing the value of 4.
This always works since p(1 — §A(z)) is a decreasing func-
tion of 4.

We ran the linear programming approach on left de-
gree sequences of the form 3,5,9,...,2° + 1 for codes
with rates 1/2,2/3,3/4,4/5,9/10 and average left degrees
5.70,6.82,8.01. Figure 3 shows for each code how much of
the encoding is sufficient to recover the entire message as a
fraction of the message length as the message length goes to
infinity. Since these graphs do not have nodes of degree two
on the left, Lemma 3 and Lemma 2 imply that with high prob-
ability the corresponding codes recover the entire message
from the portion of the encoding indicated in the table, pro-
vided the message length is large enough.

10 Conclusion

We have demonstrated a novel technique for the design
and analysis of loss-resilient codes based on random bipar-

16

Average Rate

Degree 1/2 2/3 3/4 4/5 | 9/10
5.70 1.036 | 1.023 | 1.016 | 1.013 | 1.006
6.82 1.024 | 1.013 | 1.010 | 1.007 | 1.004
8.01 1.014 | 1.008 | 1.007 | 1.005 | 1.002

Figure 3: Close to optimal codes for different rates and aver-
age left degrees.

tite graphs. Using differential equations derived from the un-
derlying random process, we have obtained approximations
of the behavior of this process that very closely match ac-
tual simulations. With these tools, we have designed codes
with simple and fast linear-time encoding and decoding al-
gorithms that can transmit over lossy channels at rates ex-
tremely close to capacity. Specifically, for any constante > 0
and all sufficiently long block lengths n, we have constructed
codes of rate R with encoding and decoding algorithms that
run in time proportional to n In(1/¢) that can recover from
almost all patterns of at most (1 — R){1 — €)n losses.

We expect these codes to have many practical applica-
tions. Encoding and decoding speeds are several orders of
magnitude faster than previous software-based schemes, and
are fast enough to be suitable for high bandwidth real-time
applications such as high fidelity video. A preliminary im-
plementation running on an Alpha BRET EV-5 330MHz ma-
chine can sustain encoding and decoding speeds of more than
100 Mbits/second with packets of length 2Kbit bits each and
100K packets per message and block length 200K (and thus
the rate is 1/2).

We have also implemented error-correcting codes that use
our novel graph constructions and decode with belief pro-
pogation techniques. QOur experiments with these construc-
tions yield dramatic improvements in the error recovery rate.
We will report these results in a separate paper.

11 Acknowledgements

In the preliminary stages of this research, Johannes
Blomer helped to design and test some handcrafted degree
sequences that gave the first strong evidence that irregular
degree sequences are better than regular degree sequences.
Both Johannes and David Zuckerman worked on some of
the preliminary combinatorial analysis of the decoding algo-
rithm. We thank them for their contributions.

References

{1] A. Albanese, J. Blémer, J. Edmonds, M. Luby, M. Sudan,
“Priority Encoding Transmission”, IEEE Transactions on In-
formation Theory (special issue devoted to coding theory),
Vol. 42, No. 6, November 1996, pp. 1737-1744.

[2] N. Alon, J. Edmonds, M. Luby, “Linear Time Erasure Codes
With Nearly Optimal Recovery”, Proc. of the 36'" Annual

158

Symp. on Foundations of Computer Science, 1995, pp. 512-
519.

[3] N. Alon, M. Luby, “A Linear Time Erasure-Resilient Code
With Nearly Optimal Recovery”, IEEE Transactions on Infor-
mation Theory (special issue devoted to coding theory), Vol.
42, No. 6, November 1996, pp. 1732-1736.

{4] R.E. Blahut, Theory and Practice of Error Control Codes,
Addison Wesley, Reading, MA, 1983.

[5] A.Broder, A. Frieze, E. Upfal, ‘On the Satisfiability and Max-

imum Satisfiability of Random 3-CNF Formulas”, Proc. of the

4" ACM-SIAM Symp. on Discrete Algorithms, 1993, pp. 322-

330.

P. Elias, “Coding for Two Noisy Channels” Information The-

ory, Third London Symposium, September 1955, Butter-
sworth’s Scientific Publications, pp. 61-76.
{71 R. G. Gallager. Low Density Parity-Check Codes. MIT
Press, Cambridge, MA, 1963.
[8] T.G. Kurtz, Approximation of Population Processes,
CBMS-NSF Regional Conf. Series in Applied Math, SIAM,
1981.
[9] E J. Macwilliams and N. J. A. Sloane, The Theory of Error-
Correcting Codes, North Holland, Amsterdam, 1977.
[10] V. Paxson, “Measurements and Analysis of End-to-End Inter-
net Dynamics”, Ph.D. thesis, UC Berkeley, 1997.

[11] A. Shwartz, A. Weiss, Large Deviations for Performance
Analysis, Chapman & Hall, 1995.

[12] M. Sipser and D. Spielman, “Expander codes”, IEEE Trans-
actions on Information Theory (special issue devoted to cod-
ing theory), Vol. 42, No. 6, November 1996, pp. 1710-1722.

[13] D. Spielman, “Linear-Time Encodable and Decodable Error-
Correcting Codes” IEEE Transactions on Information The-
ory (special issue devoted to coding theory), Vol. 42, No. 6,
November 1996, pp. 1723-1731.

[14] M. Yajnik, J. Kurose, D. Towsley, “Packet Loss Correlation in
the MBone Multicast Network”, IEEE Global Internet Con-
ference, London, November, 1996.

[6

—

A Appendix

In this section we give an explicit solution to the sys-
tem of differential equations given by (2) and (3). We start
with the substitution dz/x = dt/e(t), which gives ¢ :=
exp(— [, dr/e(r)). This transforms for i > 1 Equation (2)
to

/

ri(z) = i(ri(z) — riqa(z)

))a(z)z—l

where prime stands for derivative with respect to the variable
z. Note that the average degree a(zx) equals 3 ¢4, (z)/e(z),
which in terms of the function A(z) can be written as 1 +
z) (z)/A(z). Hence, we obtain for i > 1

rie) = irs(e) = s () -

These equations can be solved recursively, starting with the
highest nonzero r;. (In the case where there is no highest
nonzero r;, that is r; > 0 for all ¢, the following equations
are still valid, although stronger analysis tools are required
to show that the solution is unique.)

17

The explicit solution is given by

ri(z) :A(x)‘(—i/x r,»+1(y)A(y)-")"(y)dx+c,~) (6)
y

=1 Aly)

for some constants ¢; to be determined from the initial con-
ditions for r;. It is straightforward to check that

i f7—1 .
ri(z) = Z(—l)“” (i B 1)cj(x(a;))f. (7

j2i

Further, one verifies directly that
(71,
G = Z (i— 1)1‘1(1).
jzi

(Note that z = 1 corresponds to the beginning of the pro-
cess.) We proceed with the determination of the expected
value of r;{1): because each node on the left is deleted ran-
domly just prior to time O with probability 1 — 4, and the
graph is a random graph over those with the given degree se-
quence, to the nodes on the right it is as though each edge
is deleted with probability 1 — J. Hence, an edge whose
right incident node had degree j before the deletion stage re-

mains in the graph and has degree ¢ afterwards with probabil-
ity (321)6*(1 -)7~*. Thus

me(') i(1 - g™,

m>j
Plugging in the last formula in that of ¢; we see that
-1
¢ = Z (i l>pm51
m>i

(Use the identity (77) ({Z}) = (77,)(77Z7).) Hence, we
obtain for: > 1 from (7)

ri(z) = mzzj:y(—l)"” (‘Z: ;) (T—_ 11) Pm (8A(2))7.
¥

To obtain the formula given for r;(z) in Lemma 1, we note
that 71 (z) = e(z) — ;5 i(z). The sum of the right hand
side of (8) over all ¢ > 1 equals

g(—w-l (’]”_‘ ll)pm(ax(x))f %(—1)"‘1 (J _ i)
= §A(z)

(The inner sum equals 1 if ; = 1, and is zero otherwise.)
Hence, we have

ri{z) = e(z)—-dX(z)

+ae) Con Y (- “(']"_1)(&\(2))

i<m
= zéA(z) — 6A(z) +A(z mel—J/\(x

SX(#) [z~ 1+ p(1- X z))].n

-1

159

