
Graph-based Codes and Iterative Decoding

Thesis by

Aamod Khandekar

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2002

(Submitted June 10, 2002)

Apple 1118i

ii

c© 2002

Aamod Khandekar

All Rights Reserved

iii

Acknowledgements

I would like to begin by expressing my heartfelt gratitude to my advisor, Prof. Robert

McEliece, for his active guidance and support throughout my stay at Caltech. His

infectious enthusiasm and his many insights have been invaluable for the progress of

my research career.

I would like to thank Prof. Robert McEliece, Prof. P. P. Vaidyanathan, Prof.

Jehoshua (Shuki) Bruck, Prof. John Preskill, Prof. Babak Hassibi and Dr. Dariush

Divsalar for serving on my candidacy and defense committees, and for their advice

on this thesis.

I am grateful to all the current and former occupants of Moore 155, and to current

and former residents of Braun graduate house, for making my stay at Caltech a very

pleasant one.

iv

Abstract

The field of error correcting codes was revolutionized by the introduction of turbo

codes [7] in 1993. These codes demonstrated dramatic performance improvements

over any previously known codes, with significantly lower complexity. Since then,

much progress has been made towards understanding the performance of these codes,

as well as in using this understanding to design even better codes.

This thesis takes a few more steps in both these directions. We develop a new

technique, called the typical set bound, for analyzing the asymptotic performance

of code ensembles based on their weight enumerators. This technique yields very

tight bounds on the maximum-likelihood decoding threshold of code ensembles, and

is powerful enough to reproduce Shannon’s noisy coding theorem for the class of

binary-input symmetric channels.

We also introduce a new class of codes called irregular repeat-accumulate (IRA)

codes, which are adapted from the previously known class of repeat-accumulate (RA)

codes. These codes are competitive in terms of decoding performance with the class

of irregular low-density parity-check (LDPC) codes, which are arguably the best class

of codes known today, at least for long block lengths. In addition, IRA codes have a

significant advantage over irregular LDPC codes in terms of encoding complexity.

We also derive an analytical bound regarding iterative decoding thresholds of code

ensembles on general binary-input symmetric channels, an area in which theoretical

results are currently lacking.

v

Contents

Acknowledgements iii

Abstract iv

1 Introduction 1

1.1 Some Basic Concepts . 2

1.1.1 Channel Models . 2

1.1.2 Codes and Code Ensembles 6

1.1.3 Decoding Algorithms . 8

1.2 Some Graphical Code Ensembles . 9

1.2.1 Parallel Concatenation of Convolutional Codes (PCCC) 10

1.2.2 Serial Concatenation of Convolutional Codes (SCCC) 11

1.2.3 Codes Defined on Tanner Graphs 12

1.2.4 Decoding on Tanner Graphs 13

1.2.5 Low-Density Parity-Check (LDPC) Codes 15

1.2.6 Repeat Accumulate (RA) Codes 15

1.3 Density Evolution . 17

1.3.1 Density Evolution on the BEC 18

1.4 Thesis Outline . 19

2 The Typical Set Bound 21

2.1 The Union Bound . 22

2.2 The Typical Set Decoder . 24

2.3 The Typical Set Bound . 28

vi

2.3.1 Properties of K(δ) . 29

2.3.2 The Main Theorem . 30

2.4 The Typical Set Bound for Specific Channel Models 33

2.4.1 The Binary Symmetric Channel 33

2.4.2 The Binary Erasure Channel 34

2.5 The Typical Set Bound for Specific Code Ensembles 36

2.5.1 The Ensemble of Random Linear Codes 36

2.5.2 LDPC Codes . 38

2.5.3 Cycle Codes . 40

2.5.4 RA Codes . 42

2.6 Generalization to Arbitrary BISC’s 43

3 Irregular Repeat-Accumulate Codes 46

3.1 Irregular LDPC Codes: Definition . 47

3.2 Irregular LDPC Codes on the BEC 49

3.3 IRA Codes: Definition and Notation 51

3.4 IRA Codes on the BEC . 54

3.4.1 Fixed Point Analysis of Iterative Decoding 54

3.4.2 Capacity Achieving Sequences of Degree Distributions 56

3.4.3 Some Numerical Results . 59

3.5 IRA Codes on the BIAGN Channel 61

3.5.1 Gaussian Approximation . 61

3.5.2 Numerical Results . 64

3.6 Complexity Analysis . 67

3.7 Conclusions . 72

4 A Lower Bound on Iterative Decoding Thresholds for General

BISC’s 73

vii

4.1 Introduction . 73

4.1.1 The Consistency Condition 73

4.1.2 The Stability Condition . 74

4.2 The Main Result . 75

4.3 Conclusions . 80

5 IRA Codes on Non-Binary Channels 82

5.1 The 2-D Gaussian Channel . 82

5.2 The Binary Adder Channel . 86

5.3 Conclusions . 89

6 Conclusions 90

A Miscellaneous Derivations for Chapter 2 92

B Miscellaneous Derivations for Chapter 3 94

C Miscellaneous Derivations for Chapter 4 98

Bibliography 100

viii

List of Figures

1.1 A canonical communication system. 3

1.2 Parallel concatenation of two convolutional codes, connected through

a random interleaver. 10

1.3 Serial concatenation of two convolutional codes, connected through a

random interleaver. 12

1.4 A repeat-accumulate (RA) code. 12

1.5 A small Tanner graph. 13

1.6 The Tanner graph of an RA code. 16

2.1 The function Kp(δ) for the BSC. 33

2.2 The function Kp(δ) for the BEC. 34

2.3 The asymptotic spectral shape of the ensemble of rate 1/3 random

linear codes. 36

2.4 The asymptotic spectral shape of the ensemble of (4, 8) LDPC codes. 39

2.5 The asymptotic spectral shape of the ensemble of q = 5 RA codes. . . 42

3.1 The Tanner graph of an irregular LDPC code. 48

3.2 The Tanner graph of an IRA code. 51

3.3 Performance of rate 1/2 IRA codes on the BIAGN channel. 67

3.4 Variation of decoded BER with the number of iterations. 70

4.1 BIAGN channel thresholds of codes optimized for the BEC. 75

4.2 BSC thresholds of codes optimized for the BEC. 76

ix

5.1 Performance of an IRA code on the 2-D Gaussian channel with 8-PSK

modulation. 84

5.2 Performance of an IRA code on the 2-D Gaussian channel with 16-

QAM modulation. 85

5.3 Graphical representation of a BAC coding scheme. 87

x

List of Tables

2.1 BSC and BEC typical set thresholds for LDPC codes. 40

2.2 BSC and BEC typical set thresholds for RA codes. 43

2.3 Some BIAGN channel typical set thresholds. 44

3.1 BEC thresholds for some ensembles of IRA codes. 60

3.2 Some good degree sequences for rate 1/3 IRA codes on the BIAGN

channel. 65

3.3 Some good degree sequences for rate 1/2 IRA codes on the BIAGN

channel. 66

4.1 Comparison between capacity and threshold achieved by codes opti-

mized for the BEC. 81

1

Chapter 1 Introduction

In his seminal paper in 1948, Shannon [45] derived the fundamental limits on the rate

of communication on a noisy channel. Shannon’s “noisy coding theorem” states that

every channel has a capacity C, which is the highest rate (in bits per channel use)

at which reliable communication is possible. Shannon also showed that for a long

enough block length, almost any block code of rate R < C, with optimal decoding,

provides reliable communication over this channel. This scheme, however, is not a

practical one, since both encoding and decoding are prohibitively expensive.

Ever since Shannon proved his noisy coding theorem, the construction of practical

capacity-achieving schemes has been the supreme goal of coding theory. The classical

approaches to this problem included algebraic block codes and convolutional codes.

The field was, however, revolutionized by the introduction of turbo codes by Berrou,

Glavieux, and Thitimajshima [7]. The performance of turbo codes was much closer

to capacity than that of any previous codes, and with significantly lower complexity.

The power of turbo codes comes not only from the code construction, but also

from the iterative decoding algorithm used. The code construction consists of simple

blocks connected by a pseudorandom interleaver. The interleaver introduces enough

randomness into the code to ensure good performance, yet keeps enough structure

to allow simple encoding and decoding algorithms. The invention of turbo codes led

to an explosion of interest in the field of codes on graphs and iterative decoding,

which led among other things to the rediscovery of low-density parity-check (LDPC)

codes [17, 37], and the invention of repeat-accumulate (RA) codes [15].

While the turbo-decoding algorithm worked extremely well in practice, there was

very little theory available to explain its dramatic performance. It was soon discov-

2

ered that the turbo-decoding algorithm was an instance of Pearl’s belief propagation

algorithm over loopy graphs [39], and several frameworks were developed to formalize

this notion [39, 4, 31]. The belief propagation algorithm is known to terminate in

finite time in the case of non-loopy graphs (trees) and is optimal in this case. Its

behavior on general graphs was, however, not known. Some results in this direction

were presented in [2, 51, 52]. Luby et al. [33, 34], followed by Richardson and Ur-

banke [42], showed how LDPC codes could be approximated by the cycle-free case,

and were able to prove asymptotic results about their iterative decoding performance.

Luby et al. also introduced the concept of irregularity, which seems to provide hope

of operating arbitrarily close to channel capacity in a practical manner, on a wide

class of channel models. More recently, connections have been discovered between

coding theory and statistical physics [54, 55, 5], which show some hope of providing

insight into the general problem of decoding on loopy graphs.

All the codes mentioned in the preceding paragraph are so-called “graphical code

ensembles.” Most of this thesis deals with the analysis and design of such code

ensembles, and hence we devote the rest of this chapter to some basic background

material concerning them.

1.1 Some Basic Concepts

1.1.1 Channel Models

A canonical communication system is depicted in Figure 1.1. The objective is to

communicate an input string U across a “noisy”channel. The encoder converts this

string into another string X of symbols over the channel’s input alphabet. A string

Y is seen at the other end of the channel, which is a non-deterministic function of

the channel input X, and the decoder tries to reconstruct the input string U based

on the knowledge of Y. To analyze such a system, we need to have a model for the

3

DecoderEncoder Channel
ÛYU X

Figure 1.1: A canonical communication system.

channel. Typically, we assume that the output string Y of the channel has the same

length as the input string X, and depends on X via a conditional probability density

function (pdf) pY|X(y|x). This is still an extremely general model and we therefore

define several special cases.

Definition 1.1 A channel is called memoryless if the channel output at any time

instant depends only on the input at that time instant, i.e., if y = y1y2 . . . yn and

x = x1x2 . . . xn, then pY|X(y|x) =
∏n

i=1 pY |X(yi|xi). In this case, the channel is

completely described by its input and output alphabets, and the conditional pdf

pY |X(y|x) for one time instant.

Definition 1.2 (Capacity) Let the input to a memoryless channel be generated by

independent and identically distributed (iid) copies of a random variable X. Then

the output of the channel will be iid copies of some random variable Y whose pdf

can be computed. Clearly, I(X; Y), the information between random variables X

and Y (see [10] for a definition), is a function of the pdf of X. The capacity of the

memoryless channel is then defined as suppX(x) I(X; Y). The motivation behind this

definition will be clear in Section 1.1.2.

Example 1.1 A very commonly used channel model is the additive Gaussian noise

channel. This channel has R as its input and output alphabets, and is parametrized

by a non-negative real number σ. The channel output Y is given by X + N , where

X is the channel input and N is a Gaussian random variable (random variable) with

mean 0 and variance σ2. The conditional pdf pY |X(y|x) is therefore a Gaussian pdf

4

with mean x and variance σ2.

Definition 1.3 A binary input channel is merely a channel with a binary input alpha-

bet. We will interchangeably use the sets {0, 1} and {+1,−1} for the input alphabet

with 0 mapping to +1 and 1 to -1.

Example 1.2 (The Z-Channel) This is a binary input channel with a parameter

p and output alphabet {0, 1}, in which a 0 is always received as a 0, but a 1 could be

received as a 0 with probability p. That is, pY |X(0|0) = 1, pY |X(1|0) = 0, pY |X(0|1) =

p, and pY |X(1|1) = 1 − p.

Suppose we want to compute the input distribution of a binary-input channel

conditioned on the knowledge of the received value y, i.e., we want to compute the

a posteriori probabilities Pr(X = 0|Y = y) and Pr(X = 1|Y = y), which sum to 1.

This knowledge can be efficiently packaged into one number, for example their ratio.

By Bayes’ rule, we have

Pr(X = 0|Y = y)

Pr(X = 1|Y = y)
=

pY |X(y|0)

pY |X(y|1)

Pr(X = 0)

Pr(X = 1)
. (1.1)

Hence the quantity
pY |X(y|0)

pY |X(y|1)
is a sufficient statistic for estimating the input to the

channel. So, of course, is any invertible function of it. This leads us to the following

definition.

Definition 1.4 The quantity
pY |X(y|0)

pY |X(y|1)
corresponding to the output y of a binary-

input channel is called its likelihood ratio. Its logarithm log
pY |X(y|0)

pY |X(y|1))
is called the

log-likelihood ratio (LLR).

Notice that there does not have to be an explicit channel for a (log)-likelihood

ratio to be defined. It is well defined in the context of a noisy (probabilistic) estimate

of a binary random variable.

5

Definition 1.5 A binary input symmetric channel (BISC) is a memoryless binary

input channel with R as its output alphabet, satisfying pY |X(y|0) = pY |X(−y|1). Thus

a BISC is completely described by the conditional pdf pY |X(y|0).

In the BISC case, by symmetry, the optimizing pdf in Definition 1.2 is uniform,

i.e., (1/2, 1/2), and hence the capacity computation is much simplified.

The BISC assumption leads to many such simplifications in analysis and design,

and most of the work presented in this thesis will be for this case. Also, many natural

channel models do fall under this class. We present some of the most important ones

here.

Example 1.3 (The binary symmetric channel (BSC)) This is a binary-input,

binary-output channel with parameter p. To view it as a BISC, it is convenient to

let the input and output alphabets be {+1,−1}. Then the output is equal to the

input with probability 1− p, and is the negative of the input with probability p. p is

called the crossover probability of the channel. We will omit writing the conditional

pdf explicitly. The capacity of this channel is given by 1 − H(p), where H(·) is the

entropy function.

Example 1.4 (The binary erasure channel (BEC)) This channel, with param-

eter p, has input alphabet {+1,−1} and output alphabet {+1, 0,−1}. The output

symbol 0 is also called an erasure. The output is equal to the input with probability

1− p and is 0 with probability p. p is called the probability of erasure. This channel

is arguably the simplest nontrivial channel model, and will be one of the focal points

of this thesis. The capacity of this channel is 1 − p.

Example 1.5 (The binary input additive Gaussian noise (BIAGN) channel)

This is the additive Gaussian noise channel restricted to inputs +1 and -1. The ex-

pression for the capacity of a general BISC is derived in Chapter 2, and is given by

6

eq. (2.12). For the BIAGN channel, this expression simplifies to

C = 1 − 1√
2πσ2

∫
R

H

(
1

1 + e2x/σ2

)
e

(x−1)2

2σ2 dx, (1.2)

where H(·) is again the entropy function.

1.1.2 Codes and Code Ensembles

The basic idea in coding theory is to add redundancy to the transmitted information

in order to help combat channel errors. Thus, in Figure 1.1, we restrict the set of

strings X that can be used, so that no two legal strings are “close to” one another.

In this way, a channel error is unlikely to cause confusion between two legal strings.

Definition 1.6 A block code of length n over an alphabet A is a subset of An, the

set of n-length strings over A. The elements of this subset are called codewords.

We typically need to introduce more structure into our codes to aid in both analysis

and design. Most codes used in practice are so-called linear codes, which are defined

when the elements of the alphabet A form a field.

Definition 1.7 An (n, k) linear code over a field F is a k-dimensional vector subspace

of Fn. k is called the dimension of the code, r = n− k its redundancy, and R = k/n

its rate. A binary linear code is merely a linear code over the binary field.

Linear codes have several nice properties, for example, they look exactly the same

around any codeword. That is, if C is a linear code and c ∈ C is a codeword, then

the set C − c is identical to C. Also, in order to describe a linear code, we don’t have

to list all its elements, but merely a basis. Such a description is called a generator

matrix representation.

Definition 1.8 A generator matrix for an (n, k) linear code C is a k × n matrix G

7

whose rows form a basis for C. As u varies over the space Fk, uG varies over the set

of codewords. Thus, the matrix G provides an encoding mechanism for the code.

Another useful representation of a linear code is a parity-check matrix representa-

tion.

Definition 1.9 A parity-check matrix for an (n, k) linear code C is an (n − k) × n

matrix H whose rows form a basis for the space of vectors orthogonal to C. That is,

H is a full rank matrix s.t. Hc = 0 ⇐⇒ c ∈ C.

To formalize the notion of codewords being “close to” each other, we will make

use of the Hamming metric.

Definition 1.10 The Hamming distance between two vectors is the number of com-

ponents in which they differ. The minimum distance of a code is the smallest Ham-

ming distance between two distinct codewords. For a linear code, this is the same as

the least weight of any nonzero codeword.

Another useful notion is that of an ensemble of codes, which is used when we wish

to average some quantity over a set of codes.

Definition 1.11 An ensemble of codes is a set of codes of the same length, and

typically having approximately the same rates, with an associated pdf. We use the

same term for sequences of such sets, often with length going to infinity.

Example 1.6 (The ensemble of random codes) To construct this ensemble, fix

a length n and a rate R. Then the number of codewords should be 2nR. Also fix a pdf

pX(x) over the code alphabet, and pick each element of each codeword independently

according to this pdf. This ensemble is known as the ensemble of random codes.

For a memoryless channel, Shannon [45] showed that if pX(x) was chosen to be

the optimizing pdf in Definition 1.2, then for any rate R less than the capacity of the

8

channel, the average probability of error for the ensemble of random codes tends to

zero as n tends to infinity. He also showed that the probability of error for a code

whose rate exceeded the capacity was bounded away from zero.

If pX(x) is uniform over the input alphabet, then this ensemble is very similar to

the one in which we pick any code of the correct length and the correct rate with

equal probability, and we use the term “random codes” for this ensemble also.

Example 1.7 (The ensemble of random linear codes) This is the set of all lin-

ear codes of some fixed rate R (and length n), each selected with equal probability.

For a BISC, this ensemble is known to achieve capacity [18] (i.e., the average proba-

bility of error tends to zero as n tends to infinity for any rate less than the capacity

of the channel). This is another reason why the BISC assumption is so useful. One

proof of this fact will be given in Chapter 2.

This ensemble is sometimes defined by saying that every entry in the generator

(or parity check) matrix is picked independently with a uniform pdf. While the

ensembles so defined are not identical to the first definition, most properties for large

n (in particular the weight enumerator, to be defined in Chapter 2) are indeed the

same. We will use the term “random linear codes” for either description.

1.1.3 Decoding Algorithms

Given the output of a noisy channel, we need to form an estimate of the transmitted

codeword. We now define notions of “optimal” decoding algorithms.

Given a received vector y, the codeword most likely to have been transmitted

is the one that maximizes pX|Y(x|y). If the channel is memoryless and each of the

codewords is equally likely, then this reduces to the codeword x which maximizes

pY|X(y|x) (which factorizes if the channel is memoryless). This is known as the

maximum likelihood (ML) estimate of the transmitted codeword.

9

Definition 1.12 Given a code C and a received vector y, the maximum likelihood

decoder has as its output

x̂ = arg max
x∈C

pY|X(y|x). (1.3)

Clearly this decoder has the least possible (word) probability of error.

If, on the other hand, we wish to minimize the bit error probability, then we need

to maximize Pr(xi = x|y) over all x.

Definition 1.13 Given a received vector y, the MAP (maximum a posteriori) de-

coder has as its output in the ith position

x̂i = arg max
x∈A

Pr(xi = x|y), (1.4)

where the maximization is over the input alphabet of the channel.

In the case of a binary code, the maximization is over a binary alphabet. Taking

the maximum of two values is equivalent to comparing their ratio to 1, or the log of

the ratio to 0. This latter quantity is nothing but the LLR. Therefore, MAP decoding

in the case of a binary code is equivalent to taking the sign of the a posteriori LLR.

1.2 Some Graphical Code Ensembles

In this section, we will introduce some important graphical code ensembles, which

is a generic term we will use to describe all “turbo-like” codes, or codes amenable

to iterative decoding. All of these codes can be viewed under a unified graphical

framework. Several such frameworks have been proposed, for example, see [4], [31],

and [16]. In all these cases, the iterative decoding algorithm reduces to an instance of

Pearl’s belief propagation algorithm [41] on loopy graphs. Such a general view will,

however, not be necessary for the purposes of this thesis, and we will describe each

10

π

Encoder 1 (IIR)
Convolutional

Encoder 2 (IIR)
Convolutional

Figure 1.2: Parallel concatenation of two convolutional codes, connected through a
random interleaver (denoted by π).

ensemble separately with its own decoding algorithm. The specific decoding algorithm

we will describe is called the sum-product algorithm, which aims to minimize the bit

error probability. The idea in every case is that we use “long, random-like codes”

as suggested by Shannon, which is possible through the existence of a simple though

suboptimal decoding algorithm.

1.2.1 Parallel Concatenation of Convolutional Codes

(PCCC)

These codes are also known as “parallel turbo codes.” The original turbo code intro-

duced by Berrou et al. [7] was a code of this type. The general structure is shown

in Figure 1.2. As mentioned earlier, it consists of two relatively simple constituent

codes, more specifically truncated binary IIR convolutional codes with a short con-

straint length. They are connected by an interleaver (labeled π in the figure), which

is merely a pseudo-random permutation of the information bits. In the figure, there is

also a systematic (information) bit stream, which could be absent. There could also

be more than two constituent codes, each with its own interleaver. Here, we briefly

11

describe the decoding algorithm in the case when there are two constituent encoders

and a systematic data stream.

The aim of the sum-product algorithm is to approximate MAP decoding, as de-

fined in Definition 1.13, or equivalently to compute the a posteriori log-likelihoods

of the individual transmitted bits given the received vector. The MAP decoding al-

gorithm for the constituent convolutional codes can be implemented with the well

known forward-backward or BCJR [6] algorithm, which is feasible in this case be-

cause these codes have a short constraint length. Given an a priori estimate (or LLR)

on each information bit and an LLR for each transmitted bit, the BCJR algorithm

outputs the correct a posteriori LLR for each information bit.

The turbo-decoding algorithm iterates between the MAP decoders corresponding

to the two constituent codes. The received values corresponding to the systematic bits

are used to initialize the a priori LLR’s for the information bits. One of the constituent

decoders then outputs the a posteriori LLR’s by running the BCJR algorithm, the

idea being to use these as a priori LLR’s for the other decoder. However, in order not

to form short loops in the so-called “computation tree,” the difference between the

a posteriori and the a priori LLR’s (this is known as extrinsic information) is fed to

the other decoder as a priori LLR’s, and the same operation is repeated over and over

again. Various stopping rules are used to decide on convergence and guard against

limit-cycles.

1.2.2 Serial Concatenation of Convolutional Codes (SCCC)

These codes are also known as “serial turbo-codes.” In this case each convolutional

encoder acts on the interleaved output of the previous one, instead of on the infor-

mation stream directly. The general structure is shown in Figure 1.3. In this case

also, the sum-product algorithm iterates between the decoders corresponding to the

constituent codes. Some slight modifications are needed from the PCCC case, but

12

πConvolutional
Encoder 2 (IIR)
Convolutional

 Encoder 1

Figure 1.3: Serial concatenation of two convolutional codes, connected through a
random interleaver (denoted by π).

the basic idea is the same, and we will omit giving a detailed description here.

One example of the SCCC case is the ensemble of repeat-accumulate (RA) codes

introduced in [15]. An RA code is shown in Figure 1.4. It is the concatenation of

two particularly simple constituent codes, an outer “repeat by q” code and an inner

“accumulate” code. This simple structure was intended to make analysis possible,

but their performance under iterative decoding is surprisingly good, especially consid-

ering that constituent decoders have extremely low complexity. These codes play an

important role in this thesis, particularly in Chapter 3, and we will give an alternative

description of them in Section 1.2.3.

πRepetition by q
 (Rate 1/q)

1/(1+D)
(Rate 1)

Figure 1.4: A repeat-accumulate (RA) code.

1.2.3 Codes Defined on Tanner Graphs

A Tanner graph is a general way of representing any linear code. An example is

shown in Figure 1.5. A Tanner graph has two kinds of nodes, called variable nodes,

represented by hollow circles in the figure, and check nodes, represented by filled

circles. The graph is bipartite between these two types of nodes, i.e., every edge has

13

Figure 1.5: A small Tanner graph.

a variable node at one end and a check node at the other end. The variable nodes

represent actual variables, for example, elements of the codeword. The check nodes

represent constraints among these variables. All the graphs we will look at will be for

binary linear codes, in which case the variable nodes represent binary variables, and a

check node says that the binary sum of all its neighbors is 0. Clearly, any linear code

may be represented in this manner, by directly transcribing its parity-check matrix.

In fact, it will have many possible representations, because it has many possible

parity-check matrices, and also because we can add dummy or state variables to the

graph, as we shall soon see in the case of RA codes.

1.2.4 Decoding on Tanner Graphs

The sum-product algorithm takes a particularly elegant form on a Tanner graph.

It was first described in this case by Gallager [17] in the context of LDPC codes.

It is a completely distributed algorithm, with each node acting as an independent

entity, communicating with other nodes through the edges. The message sent by a

variable node to a check node, say in LLR form, is its estimate of its own value. The

message sent by a check node to a variable node is its estimate of the variable node’s

14

value. The update rules at the nodes are essentially MAP estimators, given that the

incoming messages along the different edges are independent. Again, in order not to

form short cycles in the computation tree, the output along any edge is based only on

input from the other edges. At a variable node of degree j, if l1, l2, . . . , lj−1 denote

the incoming LLR’s along j − 1 edges, and l0 the LLR corresponding to the channel

evidence, then the outgoing LLR lout along the jth edge is merely the MAP estimate

of the underlying binary random variable given j independent estimates of it, and is

given by

lout = l0 +

j−1∑
i=1

li. (1.5)

At a check node, the situation is similar, though the update rule is more compli-

cated. If l1, l2, . . . , lk−1 denote the incoming LLR’s at a check node of degree k, then

the outgoing LLR lk along the kth edge corresponds to the pdf of the binary sum of

j − 1 independent random variables, and works out to be

tanh(lout/2) =
k−1∏
i=1

tanh(li/2). (1.6)

(For a derivation of eqs. (1.5) and (1.6), see [42, Section 3.2].)

Given these update rules, we only need a schedule for updating the various mes-

sages to complete the description of the decoding algorithm, but this schedule varies

from code to code, and sometimes there are many reasonable schedules even for a

single code. There is one canonical schedule, however, which is to update all variable

nodes together, followed by all check nodes, followed again by the variable nodes etc.

In practice, for this algorithm to work well, a Tanner graph should have few short

cycles. It is not hard to see that if it didn’t have any cycles at all, then the inde-

pendence assumption that we used to derive the message update rules actually holds,

which gives an indication why not having short cycles is important. In the next few

sections, we give some examples of codes that have natural (and useful) Tanner graph

15

representations.

1.2.5 Low-Density Parity-Check (LDPC) Codes

LDPC codes were invented by Gallager [17] in 1962, but did not receive much at-

tention until they were rediscovered independently by MacKay [37] following the

invention of turbo codes.

Definition 1.14 (LDPC Codes) The ensemble of (j, k) LDPC codes is defined by

the set of parity-check matrices with exactly j ones in each column and k ones in

each row, with each such matrix being picked with equal probability. Alternatively,

it is the set of Tanner graphs in which every variable node has degree j and every

check node has degree k, also with a uniform pdf.

The codes are so named because as the length of the code increases, for fixed j

and k, the parity-check matrix has very few ones, or equivalently, the Tanner graph

is very sparse. Counting edges coming out of variable nodes and check nodes in this

graph, we see that jn = kr, where n is the length of the code and r its redundancy.

Therefore the rate R of the ensemble is given by 1 − r/n = 1 − j/k. (Here we have

assumed that the parity-check matrix is full-rank, but this formula indeed holds for

large n, and in any case represents a lower bound on the rate.) For decoding, we

use the sum-product decoding algorithm described in the previous section, with the

canonical scheduling of messages.

1.2.6 Repeat Accumulate (RA) Codes

The ensemble of RA codes has already been defined as a special case of an SCCC. A

Tanner graph representation of this ensemble is shown in Figure 1.6. The nodes on

the top represent the information bits, and are not elements of the codeword. (They

are examples of the “dummy variables” mentioned in Section 1.2.3.) Each of these

16

RANDOM PERMUTATION

Information Nodes (degree q)

Check Nodes

Codeword Components

Figure 1.6: The Tanner graph of an RA code.

has q edges coming out of it, corresponding to the outer repeat code. The random

permutation corresponds to the interleaver, and the section below it corresponds

to the accumulate code. The nodes at the bottom are actually components of the

codeword, and it is clear that each element is the sum of the previous element with

an information bit, thus showing that the bottom code is actually an accumulator.

The graph shown in Figure 1.5 is an example of a small q = 3 RA code.

The decoding algorithm described earlier for RA codes can in fact be seen as an

instance of the sum-product algorithm on Tanner graphs with appropriate scheduling

of message updates. It is not hard to see that the BCJR algorithm for the accumulate

code corresponds to messages being passed all the way from left to right and then back

from right to left in the part of the graph below the permutation (also updating the

edges connecting the information and the check nodes), while the BCJR algorithm

on the repeat code is equivalent to the information nodes being updated in any order.

Another possible scheduling of the messages is the following: First pass all mes-

sages upwards, i.e., from the lowermost nodes to the check nodes and then form check

nodes to information nodes, and then pass all messages downwards, i.e., from infor-

mation nodes to check nodes followed by messages from check nodes to the nodes rep-

17

resenting the elements of the codeword. The algorithm given by the second scheduling

turns out to be more tractable to analysis, and is the one we will consider most of

the time. For most analytical purposes, it is equivalent to the canonical scheduling.

1.3 Density Evolution

In this section, we briefly describe density evolution, which is a method for analyzing

iterative decoding on many graphical code ensembles. It was first introduced by

Gallager [17] in a heuristic form for the analysis of LDPC codes. More recently, it

was re-introduced rigorously in the case of the BEC by Luby et al. [33, 34], and

was later elaborated on and presented in a more general setting by Richardson and

Urbanke [42].

Consider the ensemble of (j, k) LDPC codes of length n. Define the depth-l

neighborhood of a node as the set of nodes in the Tanner graph which are a distance

at most l from it (with the distance between two nodes being the length of the shortest

path between them). Notice that since all nodes in the graph have bounded degree,

this neighborhood has bounded size independent of n, and hence covers an arbitrarily

small fraction of nodes in the graph as n → ∞. Moreover, since the elements of this

neighborhood are picked essentially at random (because of the randomness in the

ensemble), with high probability there are no repetitions, and the neighborhood is

cycle free.

Definition 1.15 We say that an ensemble of codes satisfies the RU condition if

for any l, the probability of the depth-l neighborhood of a randomly selected edge

containing a cycle goes to 0 as n → ∞.

We just saw that LDPC codes satisfy this condition, and it is not hard to see that

so do RA codes. Now, if the depth-l neighborhood of an edge is indeed cycle-free,

then it is also not too hard to see that up to l iterations, the messages received at any

18

node will be independent. (This is true if the canonical message-update schedule is

used, but not, for instance, if the SCCC decoding algorithm is used in the case of RA

codes.) On a BISC, we can assume that the all-zeros codeword was transmitted (since

the code is linear, and the decoder is symmetric between codewords, the probability

of error is independent of which codeword was transmitted), which then tells us the

pdf of the received messages (since we know the channel). These are also equal to the

first set of transmitted messages. Thus we know the pdf’s of the received messages

at the next iteration, we know the update rule, and hence with the independence

assumption, we can compute the pdf’s of the transmitted messages. This process can

be continued till l iterations. The pdf of a message will also give the corresponding

probability of error, and Richardson and Urbanke [42] show that the number so

computed is accurate in the limit of large n, if the ensemble of codes satisfies the RU

condition.

An interesting thing to check is whether the probability of error so computed tends

to 0 as l increases. For any family of channels characterized by a single parameter

(we will sometimes call this a one-parameter family of channels), the worst parameter

for which this happens is called the iterative decoding threshold of the code over

that family of channels. This quantity is known to be well-defined for any family

of channels ordered by physical degradation [43], i.e., if the channel with the worse

parameter is a degraded version of the channel with the better parameter (i.e., that

channel concatenated with another channel). Most of the channels we have defined,

including the AGN channel, the BIAGN channel, the BSC, the BEC, and the Z-

channel, have this property.

1.3.1 Density Evolution on the BEC

In this section, we give one illustration of how the BEC is a particularly simple channel

to analyze. First, notice that on the BEC, with the sum-product decoding algorithm,

19

there are exactly three distinct possible values among the messages passed, namely 0,

+∞ and −∞. To see this, we first note that these are the three values corresponding

to the three channel outputs, with +∞ corresponding to a received 0 (in which case

we are completely sure that a 0 was transmitted), a -∞ corresponding to a received

1 (in which case we are sure that a 1 was transmitted), and a 0 corresponding to an

erasure. Also notice that none of the decoding steps ever causes an error, at most

erasures are removed. That is, we never receive both a +∞ and a −∞ at a variable

node. With this condition, the set {0, +∞,−∞} is preserved by the update rules,

and hence these are the only messages passed. This is already one indication of the

simplicity of the channel.

Under the further assumption that the all-zeros codeword is transmitted, the set

of transmitted messages is further reduced to {0, +∞}. Hence density evolution on

this channel does not involve updating whole pdf’s, but merely a single probability.

This is the reason why analytical results on the BEC with iterative decoding are

possible. Using this technique, Luby et al. [33, 34] demonstrated an ensemble of

codes that achieves capacity on the BEC, i.e., has a threshold arbitrarily close to

capacity. (Further details can be found in Section 3.2.)

1.4 Thesis Outline

In this chapter, we have outlined some of the developments in coding theory since

the invention of turbo codes, and have presented material that will be required in

the rest of the thesis. The next chapter deals with the typical set decoder, which

is a technique for getting lower bounds on the maximum-likelihood performance of

code ensembles on BISC’s. This method provides the best known bounds on the ML

decoding thresholds of many code ensembles on many standard channel models. Just

like the classical union bound, this method decouples the code ensemble from the

20

channel, but unlike the union bound, it is powerful enough to reproduce Shannon’s

theorem on general BISC’s.

In Chapter 3, we introduce a new class of codes which we call irregular repeat-

accumulate (IRA) codes. Like the class of irregular LDPC codes introduced by Luby

et al. [33, 34], these codes are able to achieve capacity on the BEC with iterative

decoding, and have thresholds extremely close to capacity on the BIAGN channel. In

addition, they have the advantage of having a natural linear-time encoding algorithm.

We also present some analysis on the near-capacity decoding complexity of these and

other codes in this chapter.

While irregular LDPC codes and IRA codes both demonstrate extremely good

near-capacity performance on a variety of channel models, this has to be checked

either by simulation (for particular codes) or by density evolution (for ensembles) on

a case by case basis. Except in the case of the BEC, there are few known analytical

results regarding thresholds for iterative decoding. We take a step in this direction

in Chapter 4 by deriving a lower bound on the iterative decoding threshold of a code

ensemble on any BISC based on its BEC threshold.

In Chapter 5, we consider the question of whether turbolike codes are effective on

channels that are not BISC’s. In particular, we investigate the performance of IRA

codes on some non-binary channel models, including the 2-D Gaussian channel and

a simple multi-access channel.

Finally, we present some conclusions and suggestions for future work in Chapter 6.

21

Chapter 2 The Typical Set Bound

In this chapter, we will try to analyze the performance of code ensembles under

optimal, or maximum likelihood (ML) decoding, on a general BISC. This allows us

to study the intrinsic “goodness” of the code independent of the decoding algorithm,

and thus also lets us measure the suboptimality of the particular decoding algorithm

used. We will be interested in the asymptotic performance of code ensembles in the

limit of large block length, and hence can define the ML decoding threshold of an

ensemble of codes in the same way we defined its iterative decoding threshold in the

previous chapter. The objective will be to find tight lower bounds on this threshold.

One easy way to bound the ML decoding performance of an ensemble is to use

the classical union bound, but this technique gives very loose bounds unless the

noise is very weak. Since it is, however, tight when the noise is low, it can be used

to prove the existence of (nonzero) thresholds for many code ensembles. This has

been done for the SCCC and PCCC cases in [14, 22]. Several techniques have been

proposed that improve on the union bound, such as the Viterbi-Viterbi bound [50]

and the Divsalar bound [13], but none of these techniques are powerful enough to

demonstrate the capacity-achieving nature of random codes. Gallager [17] also gave

a variational method for upper-bounding the ML decoded error probability for a code

ensemble, but his method is very complex and does not easily yield threshold values.

However, any decoding algorithm that we can define provides a lower bound on the

performance of ML decoding. Here, we define an auxiliary decoding algorithm called

the typical set decoder, which though suboptimal, is easier to provide tight bounds

for. This method is inspired by Shannon’s proof of the channel coding theorem, but

was used for the first time to analyze ensembles other than that of random codes by

22

MacKay [37], who used it to show that the ensemble of LDPC codes had a nonzero

ML decoding threshold. The general method was subsequently developed in [3, 23]. A

lot of the material presented in this chapter can be found in [20], but it also contains

some previously unpublished material, especially regarding typical set decoding on

the BEC and typical set decoding of cycle codes.

2.1 The Union Bound

In this section, we give a brief introduction to the classical union bound, primarily

in order to demonstrate techniques for bounding the performance of linear codes on

BISC’s in terms of their weight enumerators.

Definition 2.1 The weight enumerator of a linear code of length n is an n + 1-

length list {A0, A1, . . . , An}, where Ah is the number of codewords of weight h in

the code. The average weight enumerator of an ensemble of linear codes is a list

{Ā0, Ā1, . . . , Ān}, where Āh is the average number of codewords of weight h in a code

belonging to the ensemble.

Consider the performance of a binary linear code C on some BISC under ML de-

coding. Let C = (C1, C2, . . . , Cn) be a random variable representing the transmitted

codeword (think of the elements as 0s and 1s) and Y = (Y1, Y2, . . . , Yn) a random vari-

able representing the corresponding channel output. Suppose that every codeword

is a priori equiprobable. Then, because of the linearity of the code and the symme-

try of the channel, it is easy to see that the joint distribution pC,Y(c,y) is invariant

under translation by a codeword. That is, for any codeword c′ = (c′1, c
′
2, . . . , c

′
n), if

we define c∗ = c + c′ and y∗ = ((−1)c′1y1, (−1)c′2y2, . . . , (−1)c′nyn), then pC,Y(c,y) =

pC,Y(c∗,y∗). As a consequence, the ML error probability given that a particular code-

word was transmitted is the same as the overall probability of error, and hence, for

23

the purpose of computing the probability of error, we can assume that the all-zeros

codeword was transmitted.

Under this assumption, a decoding error occurs if some codeword c is more likely

than than the all-zeros codeword 0 given the channel output y. This probability

is upper bounded by the sum
∑

c∈C\{0} Pr(Pr(C = c|Y = y) ≥ Pr(C = 0|Y = y)),

which is the same as
∑

c∈C\{0} Pr(pY|C(y|c) ≥ pY|C(y|0)). Note that the only ran-

domness now remaining is in the channel output y, conditional on the transmitted

codeword being 0. By symmetry, the terms in the summation can only depend on the

Hamming weight of the codeword c, and hence we can bound the probability of error

Pe by Pe ≤
∑n

h=1 Ahph, where ph is the probability that a given codeword of weight

h is more likely than the all-zeros codeword given the output. It is well known that

ph ≤ γh (for a proof, see [38, Theorem 7.5]), where γ is the Bhattacharya parameter

of the channel defined by

γ =

∫
y

√
pY |X(y|0)pY |X(y|1)dy. (2.1)

We can now write the classical union bound in its final form

Pe ≤
n∑

h=1

Ahγ
h. (2.2)

In order to bound the probability of error of an ensemble of codes, we simply

replace Ah by Āh in eq. (2.2). To use this bound to compute asymptotic results,

we need a characterization of the weight enumerator as the length of the code ap-

proaches infinity. Notice that if we fix the rate, the number of codewords increases

exponentially in the length, which motivates the following definitions:

Definition 2.2 The spectral shape rn(δ) of an ensemble of length n linear codes is

24

defined as

rn(δ) =
1

n
log Ā�δn�, 0 < δ < 1. (2.3)

Here and subsequently in this chapter, all logarithms and entropy functions are as-

sumed to have base 2.

Definition 2.3 The asymptotic spectral shape r(δ) of a sequence of ensembles with

length going to ∞ is defined as

r(δ) = lim
n→∞

rn(δ), 0 < δ < 1, (2.4)

when the limit exists.

When the asymptotic spectral shape is well defined, we have Āδn ∼ 2nr(δ). If we

substitute this into the union bound, the r.h.s. becomes a sum of exponentials. If all

of these have negative exponents, then Pe → 0 as n → ∞, while if any one exponent

is positive, the bound diverges to ∞ (clearly, Pe cannot). There is a sort of “phase

transition” between these two scenarios as we increase the noise, and this defines the

union bound threshold of the ensemble. We shall not be more explicit here, but the

idea will become clearer when we define a similar threshold for the typical set decoder

in the next section.

2.2 The Typical Set Decoder

As mentioned earlier, the typical set decoder is inspired by Shannon’s proof of the

noisy coding theorem. The basic idea is that the decoder declares an error if the

received vector is not jointly typical with any codeword (in particular with the trans-

mitted codeword). This event has negligible probability in the limit of large length, so

we do not expect any asymptotic performance degradation over the ML decoder be-

25

cause of this restriction. On the other hand, this restriction reduces double-counting

in the union bound dramatically, and thus gives very tight lower bounds on the ML

decoding threshold of various code ensembles.

The notion of typicality is usually defined only for finite (or countably infinite)

alphabets, and hence we will initially restrict our attention to BISC’s with finite

output alphabets. Also, the definition of typicality we will use is somewhat stricter

than the one encountered in most textbooks (eg., [10]).

Definition 2.4 Let x be a vector of length n with entries from some finite alphabet

A, and let X be a random variable over this alphabet with pa � Pr(X = a), a ∈
A. Let na be the number of positions in x having entry a, and fa = na/n the

corresponding fractional value. Then for any ε > 0, we say that the vector x is ε-

typical with respect to the pdf of X, or is a typical realization of X, if |fa − pa| < ε

for every a ∈ A.

The typical set decoder works by looking for codewords that are jointly typical

with the received vector. Here, we use a simplified notion of joint typicality that

works only for BISC’s. Basically, we think of the channel as multiplying the input

(thought of as ±1s) by a “noise” random variable, which is distributed according to

pY |X(y|0), and we check for the typicality of this noise vector.

Definition 2.5 On a BISC, a received vector y = (y1, y2, . . . , yn) is said to be ε-

jointly typical with a codeword c = (c1, c2, . . . , cn) if the “translated” received vector

((−1)c1y1, (−1)c2y2, . . . , (−1)cnyn) is ε-typical with respect to the conditional distri-

bution pY |X(y|0) of the channel output given input 0.

Definition 2.6 (The typical set decoder) Given a vector y received as the out-

put of a BISC, the typical set decoder (with parameter ε > 0) computes the set A

of codewords which are ε-jointly typical with the received vector. If A is empty, the

26

decoder declares an error. If A contains exactly one codeword, the decoder decodes

to that codeword. If A has more than one element, then the decoder decodes to the

codeword c in A that maximizes Pr(Y = y|X = c), where X and Y are random

variables representing the transmitted and received vectors respectively. (Often, we

will talk of using this decoder for an ensemble of codes containing codes of different

lengths. In such a case, we will allow a different value of ε for each length n, i.e., the

decoder will take a sequence εn as a parameter.)

By the weak law of large numbers applied to the noise vector, we know that for

fixed ε, an n → ∞, the probability that the received vector is ε-jointly typical with

the transmitted codeword tends to 1. By a straightforward extension of the weak

law, this statement still holds if ε is allowed to be a function of n, so long as ε decays

slower than 1/
√

n, i.e., if ε
√

n → ∞. Thus we have the following lemma:

Lemma 2.1 Let εn be a sequence of positive numbers such that εn

√
n → ∞ as n →

∞. Then for any code ensemble, for any BISC, as the length n of the ensemble tends

to ∞, the probability that there is no codeword εn-jointly typical with the received

vector tends to 0.

This lemma basically confirms our idea of the notion of typicality, and says that

in the limit of large n, the only errors that occur are the ones due to the noise vector

being jointly typical with multiple codewords.

Consider the event that the typical set decoder makes an error. In this case, at

least one of the following events must have occurred: 1) The received vector was not

jointly typical with respect to the transmitted codeword, or 2) There was another

codeword (in fact, another codeword jointly typical with the received vector) which

was more likely to cause the received vector. In the second case, the ML decoder also

makes an error, while the probability of the first event tends to zero with increasing

n if the εn’s do not decay too fast. This proves the following theorem:

27

Theorem 2.2 Fix a sequence εn satisfying limn→∞ εn

√
n → ∞. If the probability of

error of a code ensemble under ML decoding tends to 0 as n increases, then so does

the probability of error under typical set decoding (with parameter εn at length n).

The converse to this theorem is of course true because of the optimality of ML

decoding. Another way to state this theorem is that the typical set decoder has the

same threshold as the ML decoder. The notion of a threshold was first introduced

in Chapter 1 in the context of iterative decoding. Let us formally define this notion

here.

Definition 2.7 For a given decoding algorithm, a channel is said to be within the

decoding threshold of an ensemble of codes if the decoded probability of error of the

ensemble tends to 0 in the limit of increasing length. For a one-parameter family of

channels, if the probability of error is monotone in the channel parameter, we often

call the worst channel parameter for which the decoded probability of error tends to

0, the threshold of the code.

Although the typical set decoder is as good as the ML decoder in terms of threshold

values, the bounds we will derive will for the most part assume that an error happens

(or equivalently, is declared) whenever there is more than one codeword jointly typical

with the received vector, and it is not clear whether a decoder with this property still

has the same threshold as the ML decoder. In fact, Shannon’s original typical set

decoder did declare an error any time such an event occurred. The reason we need the

stronger definition is to take care of certain technical problems regarding low-weight

codewords (a problem not arising in the case of random codes).

28

2.3 The Typical Set Bound

By an argument that is entirely similar to the one in the union bound case, the typical

set probability of error for a linear code C is independent of the codeword transmitted.

Therefore assume that the all-zeros codeword is transmitted and consider again the

event that the typical set decoder makes an error. In this case, either the received

vector is not jointly typical with the all-zeros codeword, which happens with proba-

bility o(1) (i.e., with probability tending to 0 with increasing n), or there is another

codeword jointly typical with the received vector that is more likely than the trans-

mitted codeword. Just as in the union bound case, we can bound the probability of

this second event as a sum over all (nonzero) codewords, with each term being the

probability that a specific codeword is both jointly typical with the received vector

and more likely than the all-zeros codeword given the received vector. By symmetry,

each term clearly depends only on the weight h of the codeword. We have already

seen while deriving the union bound that the probability of being more likely than

the all-zeros codeword is bounded by γh. Let us denote by Ph the probability of being

jointly typical with the received vector. Then the probability of error Pe of the typical

set decoder satisfies

Pe ≤
n∑

h=1

Ah min(γh, Ph) + o(1). (2.5)

As in the union bound case, for an ensemble of codes, we need to replace Ah by

Āh. We saw earlier that when the asymptotic spectral shape r(δ) of a code was well

defined, Ah ∼ 2nr(δ). If we replace Ph by a similar exponential, then each term in

the summation over h becomes an exponential in n, and goes to 0 if the exponent is

negative. With this objective in mind, define the function K(δ) as

K(δ) = lim
n→∞

1

n
log P�δn� (2.6)

29

under the assumption that the sequence of εn’s that serves as a parameter to the

decoder tends to 0 with increasing n, but εn

√
n → ∞. It is not hard to show that

this limit exists and is uniform (i.e., Ph = 2−n(K(δ)+o(1))) for any BISC with a finite

output alphabet, and to derive an explicit expression for K(δ) in terms of the channel

transition probabilities. This has been done in [20] and the expression is reproduced

in eq. (2.7) in Section 2.3.1.

Having defined K(δ) in this manner, we now have AhPh ∼ 2−n(K(δ)−r(δ)). There-

fore, if K(δ) > r(δ) ∀δ ∈ (0, 1), then we would expect that Pe → 0 as n → ∞. This

is indeed true under some added technical conditions, and the formal statement is

given by Theorem 2.3 in Section 2.3.2.

2.3.1 Properties of K(δ)

In order to write down the expression for K(δ), we will need a concrete description

of our channel. Let the channel be a BISC taking outputs {yK , yK−1, . . . , y1, y0 =

0, y−1 = −y1, . . . , y−(K−1) = −yK−1, y−K = −yK} with corresponding probabilities

{pK , pK−1, . . . , p1, p0, p−1, . . . , p−(K−1), p−K}, given the channel input 0. For this chan-

nel, define δmax = p0 + 2
∑K

i=1 min(pi, p−i). Then K(δ) = 0 for δ > δmax (in fact, it is

not hard to see that Ph = 0 in this case), while for δ < δmax it is given by

K(δ) = H(δ) − sup∑K
i=0 δi=δ

[
p0H

(
δ0

p0

)
+

K∑
i=1

(
piH

(
δi

2pi

)
+ p−iH

(
δi

2p−i

))]
(2.7)

where the maximization is over all δi’s for which the expression makes sense, i.e.,

satisfying 0 ≤ δ0 ≤ p0 and 0 ≤ δi ≤ min(2pi, 2p−i) ∀1 ≤ i ≤ K. The optimum δi’s in

eq. (2.7) are also computed in [20] using Lagrange multipliers.

Theorem A.1 in Appendix A tells us that K(δ) is a convex function for any BISC

(in the interval (0, δmax)). It is therefore also continuous in this range, and has well

defined left and right derivatives at every point. Moreover, by eq. (2.7), it is bounded

30

above by H(δ), and hence tends to 0 as δ → 0. Using the explicit characterization of

the optimum δi’s in equ(2.7), it is shown in [20] that K ′(0) = limδ→0 K(δ)/δ = − log γ,

where γ is the Bhattacharya parameter of the channel. It is not hard to see that

− log γ = 0 iff the BISC has zero capacity (in which case K(δ) ≡ 0), and is positive

otherwise. Thus, K(δ) is a convex, increasing function on (0, δmax), and is strictly

increasing unless the channel has zero capacity.

Another interesting property of K(δ) is that it is monotone under physical degra-

dation of channels, i.e., if BISC 2 is a symmetrically degraded version of BISC 1

(by symmetrically degraded we mean that the degrading channel satisfies p(y|x) =

p(−y| − x)), then K2(δ) ≤ K1(δ) ∀ 0 < δ < 1. We will just indicate a proof of this

fact in a very simple case, viz., when two outputs of a channel are combined into a

single output. We will call this process “binning” a channel. Let BISC 1 have the

description we have been using thus far, with K(δ) being given by eq. (2.7), and let

δ∗i denote the optimizing value of δi for 0 ≤ i ≤ K. Suppose the outputs y1 and y2 are

combined into a single output with probability p1 + p2, with of course the same thing

happening to outputs y−1 and y−2. If we now use the value δ∗1 + δ∗2 for the combined

output and keep the other δ∗i ’s unchanged, it is not hard to see that the value of

the expression inside the supremum in eq. (2.7) increases. (This is a consequence of

the fact that conditioning reduces entropy.) Therefore, the value of the supremum

definitely increases and the value of K(δ) decreases.

2.3.2 The Main Theorem

We are now ready to state and prove the typical set bound.

Theorem 2.3 (The typical set bound) On any BISC, for an ensemble of codes

with spectral shape rn(δ) at length n and asymptotic spectral shape r(δ), suppose that

the following conditions hold.

31

1. K(δ) > r(δ) ∀ 0 < δ < 1. Moreover, for any α > 0, infδ>α(K(δ) − r(δ)) > 0,

i.e., K(δ) and r(δ) do not touch except at δ = 0.

2. lim supδ→0 r(δ)/δ < limδ→0 K(δ)/δ = − log γ. (Note that the previous condition

already implies that lim supδ→0 r(δ)/δ ≤ − log γ. This condition merely asks

that the inequality be strict.)

3. For some sequence dn of natural numbers tending to ∞ with increasing n,∑dn

h=1 Āh → 0. (This is in some sense saying that the code ensemble has mini-

mum distance ≥ dn.)

4. rn(δ) = r(δ) + o(dn/n), i.e., rn(δ) converges uniformly in δ to r(δ) at a fast

enough rate.

Then the channel lies within the typical set (and hence ML) decoding threshold of the

code.

Proof:

Beginning with eq. (2.5), we get

Pe ≤
n∑

h=1

Āh min(γh, Ph) + o(1)

≤
dn∑

h=1

Āh +
αn∑

h=dn+1

Āhγ
h +

n∑
h=αn

ĀhPh + o(1) for any α > 0

≤ o(1) +
αn∑

h=dn+1

2h(rn(δ)/δ+log γ) +
n∑

h=αn

2−n(K(δ)−r(δ)+o(1))

The last term in the above equation clearly goes to 0 for any α > 0 because of

condition 1. Let us look at the exponent in the second term. By condition 4, this

exponent is bounded above by h(log γ + r(δ)/δ + o(dn/h)). Since the summation has

only terms corresponding to h > dn, o(dn/h) ≤ o(1). Finally, by condition 2, for

small enough α, the exponent is negative and bounded away from 0, say by −θ0,

32

where θ0 > 0. Then

αn∑
h=dn+1

2h(rn(δ)/δ+log γ) ≤
αn∑

h=dn+1

2−hθ0 ≤ 2−dnθ0

1 − 2−θ0
,

which tends to 0 with increasing n because dn → ∞. Therefore Pe → 0, which is the

statement of the theorem. �

Condition 3 in Theorem 2.3 asked that the code ensemble should have minimum

distance going to ∞. If this condition is not satisfied, then it is not too hard to

see that the ensemble has no ML decoding threshold. However, we can replace this

condition by a slightly weaker one and ensure that the bit error probability (BER)

goes to zero.

Theorem 2.4 If, instead of condition 3 in Theorem 2.3, the ensemble has to satisfy

only
∑dn

h=1
h
n
Āh → 0 for some sequence dn → ∞, and all the other conditions in

Theorem 2.3 are satisfied, then the ensemble lies within the BER threshold of the

channel under ML decoding.

The proof of this theorem requires only a minor modification to the proof of Theo-

rem 2.3, and will be omitted.

Having proved the typical set bound in its general form, we will now try and see

what it tells us in the case of specific channel models and specific code ensembles.

33

0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

0.25

0.3

Figure 2.1: The function Kp(δ) for the BSC with p = 0.05, p = 0.1, p = 0.2, p = 0.3
and p = 0.4 (going from left to right).

2.4 The Typical Set Bound for Specific Channel

Models

2.4.1 The Binary Symmetric Channel

For a BSC with crossover probability p, the expression in eq. (2.7) simplifies to

Kp(δ) = H(δ) − pH

(
δ

2p

)
− (1 − p)H

(
δ

2(1 − p)

)
, 0 < δ < 2 min(p, 1 − p). (2.9)

Figure 2.1 shows the Kp(δ) curve for different values of p.

Since the BSC is a channel family ordered by physical degradation, by our previous

observations, K(δ) decreases monotonically with p for 0 ≤ p ≤ 1/2 for every δ. It

is easy to check directly that this decrease is strictly monotonic. Another important

property is that K ′
p(0) = − log γ is strictly monotone in p. Using these properties, we

can define the BSC threshold of an ensemble of codes as the largest p in [0, 1/2] for

which Kp(δ) ≥ r(δ) ∀ 0 < δ < 1, assuming that the ensemble satisfies conditions 3

and 4 in Theorem 2.3. Theorem 2.3 tells us that under these conditions, the ensemble

34

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

Figure 2.2: The function Kp(δ) for the BEC with p = 0.1, p = 0.3, p = 0.5 and
p = 0.8 (going from left to right).

of codes has a probability of error going to 0 on any BSC with crossover probability

strictly less than the threshold value.

2.4.2 The Binary Erasure Channel

On a BEC with erasure probability p, the expression for K(δ) takes the form

Kp(δ) = H(δ) − pH(δ/p), 0 < δ < p. (2.10)

Figure 2.2 shows the Kp(δ) curve for different values of p.

The BEC is also a family of channels ordered by physical degradation, so Kp(δ)

is monotonically decreasing in p for every δ. It can be checked by differentiation that

the increase is strictly monotonic in the region that Kp(δ) is finite. K ′
p(0) = − log γ =

− log p is clearly strictly monotone in p. Therefore, exactly as in the BSC case, we

can define the BEC threshold of a code ensemble to be the largest value of p for which

Kp(δ) − r(δ) ≥ 0 ∀ 0 < δ < 1. Assuming again that the ensemble of codes satisfies

conditions 3 and 4 in Theorem 2.3, its probability of error goes to 0 with increasing

35

n on any BEC with erasure probability smaller than the threshold value.

Recall Theorem 2.2, which said that the typical set decoder has the same threshold

as the ML decoder on any BISC with a finite output alphabet. However, according

to our definition, the typical set decoder is just an ML decoder restricted to jointly

typical codewords. We could also define a “reduced” typical set decoder, which de-

clares an error whenever there is more than one codeword jointly typical with a given

received vector. However, our proof of the typical set bound does not extend to

this decoder owing to technical difficulties regarding low-weight codewords. On the

BEC, however, the situation is somewhat simpler. Notice that if there are multiple

codewords consistent with the received vector (i.e., equal to it on the non-erased po-

sitions), their a posteriori probabilities given the received vector are equal, and the

ML decoder makes an error at least half the time in such a situation. Joint typicality

in this case reduces to the codeword being consistent with the received vector, which

in turn should have approximately np erasures. In this case, the reduced typical

set decoder, which declares an error if there is more than one codeword consistent

with the received vector, is at most twice as bad as the ML decoder (in the typical

situations) and hence has the same threshold.

Theorem 2.5 On the BEC, the reduced typical set decoder, which declares an error

unless there is a unique codeword jointly typical with the received vector, and decodes

to this unique jointly typical codeword in this case, has the same decoding threshold

as the ML decoder.

36

0.2 0.4 0.6 0.8 1

-0.6

-0.4

-0.2

0.2

Figure 2.3: The asymptotic spectral shape of the ensemble of rate 1/3 random linear
codes, together with the K(δ) curve for the BSC with crossover probability p = 0.174,
which is the BSC capacity at this rate.

2.5 The Typical Set Bound for Specific Code

Ensembles

2.5.1 The Ensemble of Random Linear Codes

It is well known that random linear codes achieve capacity on BISC’s [18]. In this

section we show that the typical set bound is strong enough to reproduce this result.

The asymptotic weight spectrum of the ensemble of random linear codes of rate R is

known to be the same as that of rate R random codes, and is given by

r(δ) = H(δ) − (1 − R). (2.11)

Let us now compute the capacity of the BISC described in Section 2.3.1. Let X

denote its input random variable and Y its output random variable. By symmetry,

the capacity achieving distribution on X is the uniform one. For this distribution,

H(X) = 1. With this input distribution, the output yi of the BISC occurs with

probability (pi +p−i)/2, and the a posteriori probabilities of 0 and 1 given the output

37

yi are pi/(pi + p−i) and p−i/(pi + p−i), respectively. Therefore the capacity C is given

by

C = 1 −
K∑

i=−K

pi + p−i

2
H

(
pi

pi + p−i

)
= 1 − p0 −

K∑
i=1

(pi + p−i)H

(
pi

pi + p−i

)
. (2.12)

Now look at the expression for K(δ) given in eq. (2.7). Clearly, we can give a

lower bound on K(δ) by replacing the constrained maximum by an unconstrained

maximum. This can be done separately for each term in the summation, and the

optimizing values of the δi’s are δ0 = p0/2 and δi = 2pip−i/(pi + p−i) for i > 0.

Substituting these values, we get

K(δ) ≥ H(δ) − p0 −
K∑

i=1

[
piH

(
pi

pi + p−i

)
+ p−iH

(
p−i

pi + p−i

)]

= H(δ) − p0 −
K∑

i=1

(pi + p−i)H

(
pi

pi + p−i

)

= H(δ) − (1 − C).

Comparing this with the expression for r(δ) that we had earlier, K(δ)−r(δ) is bounded

below by C−R for any R < C, thus satisfying condition 1 of Theorem 2.3. Condition 2

is true because r(δ) is negative near δ = 0. Moreover, the ensemble of random

linear codes is known to have minimum distance growing linearly with n, i.e., dn in

condition 3 can be chosen to be αn for some α > 0. We then require that θn = o(1),

i.e., that rn(δ) converges uniformly to r(δ), which is known to be true. Having thus

verified all the conditions in Theorem 2.3, we have

Theorem 2.6 On any BISC with a finite output alphabet, the ensemble of random

linear codes of any rate less than capacity has probability of error going to 0 with

increasing n, i.e., the ensemble of random linear codes achieves capacity on such a

channel.

38

Even though we have formulated our bound for ensembles of linear codes, it clearly

applies to the ensemble of random binary codes with a uniform distribution on 0 and

1, because the probability of error is independent of the transmitted codeword for

this ensemble as well. The above argument then shows that the ensemble of random

codes also achieves capacity on a BISC, which is a special case of Shannon’s celebrated

result.

Finally, as an aside, for the ensemble of random linear codes with R = C, the

curves K(δ) and r(δ) touch at the point where the unconstrained maximization and

the constrained maximization yield the same results, i.e., for δ = p0

2
+

∑K
i=1

2pip−i

pi+p−i
.

Figure 2.3 shows the asymptotic spectral shape of the ensemble of rate 1/3 random

linear codes, together with the K(δ) function for the BSC with crossover probability

p = 0.174, which is the BSC capacity at this rate.

2.5.2 LDPC Codes

The ensemble of (j, k) LDPC codes was defined in Example 1.14. In order to compute

typical set thresholds for this ensemble, we need to know its asymptotic spectral

shape. Gallager [17] derived the asymptotic spectral shape of a modified ensemble of

LDPC codes in parametric form, and it was shown in 2001 by Litsyn and Shevelev [32]

that the ensemble as we have defined it here also has the same r(δ) function. It is

given in parametric form by the following equations:

δj,k(s) =
u′

k(s)

k
(2.13)

rj,k(s) =
1

ln 2

j

k
[uk(s) − su′

k(s)] − (j − 1)H

(
u′

k(s)

k

)
, (2.14)

where the parameter s varies over R, H(·) is of course the entropy function, and uk(s)

is defined by

uk(s) = ln
(1 + es)k + (1 − es)k

2
. (2.15)

39

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

Figure 2.4: The asymptotic spectral shape of the ensemble of (4, 8) LDPC codes.

(In the case when k is odd, as s varies over R, δj,k(s) only takes values in (0, k−1
k

), and

r(δ) is −∞ outside this range). The resulting r(δ) function is plotted in Figure 2.4

for the ensemble of (4, 8) LDPC codes.

Furthermore, it is known that for j ≥ 3, LDPC codes have minimum distance

growing linearly with n, i.e., we can choose α > 0 s.t. condition 3 of Theorem 2.3 is

satisfied with dn = αn. This is reflected in the fact that the r(δ) function is negative

for small δ (see Figure 2.4). This also implies that lim supδ→0 r(δ)/δ ≤ 0, so that

condition 2 of Theorem 2.3 is satisfied. Moreover, for our choice of dn, as in the case

of random linear codes, condition 4 reduces to uniform convergence of the spectral

shape, which is also known to be true. Therefore, we only have to check condition 1

to verify that a BISC lies within the decoding threshold of an ensemble of LDPC

codes with j ≥ 3. Table 2.1 gives thresholds on the BSC and the BEC computed

in this manner for different values of j and k. For comparison, this table also lists

the iterative decoding (sum-product algorithm) thresholds (labeled RU thresholds in

Tables 2.1, 2.2 and 2.3) of these ensembles computed using density evolution in [42].

If we let j and k go to ∞ in such a manner that the rate of the ensemble 1− j/k

tends to some positive constant R, then it can be shown that the asymptotic spectral

40

(j, k) Rate BSC BEC
Cap. Typ. Set RU Cap. Typ. Set RU

Thresh. Thresh. Thresh. Thresh.
(3, 6) 1/2 0.109 0.0915 0.084 0.5 0.483 0.429
(3, 5) 2/5 0.145 0.129 0.113 0.6 0.587 0.517
(4, 6) 1/3 0.174 0.170 0.116 0.667 0.665 0.506
(3, 4) 1/4 0.214 0.205 0.167 0.75 0.744 0.647
(2, 3) 1/3 0.174 0.067 0.067 0.667 0.5 0.5
(2, 4) 1/2 0.109 0.0286 0.0286 0.5 0.333 0.333

Table 2.1: Comparison of capacity, typical set threshold and iterative decoding (RU)
threshold for different ensembles of LDPC codes on the BSC and the BEC.

shape rj,k(δ) converges to H(δ) − (1 − R) for 0 < δ < 1, which is the asymptotic

spectral shape for the ensemble of random linear codes of rate R. Moreover, this

convergence is uniform on any closed subinterval of (0, 1). Together with the fact

that the ensemble has minimum distance that grows linearly in n, this shows that

if a BISC lies within the ML decoding threshold of the ensemble of random linear

codes of rate R, then it also lies within the decoding threshold of the ensemble of

(j, k) LDPC codes for large enough j and k with rate 1 − j/k being arbitrarily close

to R. In other words, the ensemble of (j, k) LDPC codes under ML decoding achieves

capacity on any BISC as j and k tend to ∞.

2.5.3 Cycle Codes

In the previous section, we saw how the conditions in Theorem 2.3 were satisfied by

LDPC codes with j ≥ 3. The case j = 2 is somewhat trickier. These codes are called

cycle codes because their codewords can be viewed as the cycles of an undirected

graph. It is not hard to see that in this case, for any fixed h, as n → ∞, Āh tends to a

nonzero limit, so that condition 3 in Theorem 2.3 is not satisfied for any sequence dn

going to ∞. However, the conditions of Theorem 2.4 are satisfied, so that the BER

of the ensemble goes to 0 whenever conditions 1 and 2 of Theorem 2.3 are satisfied.

41

Moreover, it turns out that r(δ) is a concave function in the case of cycle codes,

with r(0) = 0 and r′(0) = log(k− 1). Since Theorem A.1 in Appendix A tells us that

that K(δ) is convex for any BISC, we see that K(δ)−r(δ) is a convex function. Since

we also have K(0)−r(0) = 0, we see that K(δ)−r(δ) > 0 ∀δ ⇐⇒ K ′(0)−r′(0) > 0,

i.e., condition 1 in Theorem 2.3 is equivalent to condition 2. Therefore, the typical

set bound for cycle codes says that a BISC lies within the decoding threshold of an

ensemble of cycle codes (in the BER sense), if − log γ > log(k − 1), i.e., if

γ <
1

k − 1
. (2.16)

Let us use this formula to explicitly compute the thresholds in the case of the

BSC and the BEC. The BEC threshold is simply given by

p∗ =
1

k − 1
, (2.17)

where p∗ is of course the threshold channel erasure probability. On the BSC, the

equation is 2
√

p∗(1 − p∗) = 1/(k − 1), i.e., 4p∗(1 − p∗) = 1/(k − 1)2, which is a

quadratic equation. Its solution is given by

p∗ =
1

2

(
1 −

√
1 − 1

(k − 1)2

)
, (2.18)

where p∗ is the threshold crossover probability.

The numerical values of these thresholds for some values of k are also shown in

Table 2.1. We can see from this table that the typical set bound seems to coincide

with the iterative decoding threshold. We will give a proof of this fact (i.e., that

a BISC lies within the iterative decoding threshold of an ensemble of cycle codes

iff it satisfies eq. (2.16)) in Chapter 4. Moreover, for the BSC, Decreusefond and

Zémor [11] have shown that the typical set bound, given by eq. (2.18), is also the

42

0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

Figure 2.5: The asymptotic spectral shape of the ensemble of q = 5 RA codes.

exact ML decoding threshold for an ensemble of expurgated cycle codes. Cycle codes

are thus among the most well-understood code ensembles, and it appears that in this

case, the typical set bound, the ML threshold and the iterative decoding threshold

coincide.

2.5.4 RA Codes

In this section, we apply the typical set bound to the ensemble of repeat-accumulate

codes defined in Section 1.2.6. The weight enumerator of this ensemble was derived

in [15], and the asymptotic spectral shape r(δ) can be found in [3]. It is given by

rq(δ) = sup
0≤x≤2 min(δ,1−δ)

[
−q − 1

q
H(x) + (1 − δ)H

(
x

2(1 − δ)

)
+ δH

(x

2δ

)]
. (2.19)

Figure 2.5 shows a plot of r(δ) for the case q = 5.

It can be shown that this ensemble satisfies conditions 3 and 4 of Theorem 2.3 with

dn = log2 n for q ≥ 3. Furthermore, r′(0) can be shown to be 0, so that condition 2

is automatically satisfied. Therefore, exactly as in the LDPC case, we only need

to check condition 1 to see whether a BISC lies within the decoding threshold of

43

q Rate BSC BEC
Cap. Typ. Set RU Cap. Typ. Set RU

Thresh. Thresh. Thresh. Thresh.
3 1/3 0.174 0.132 0.142 0.667 0.629 0.617
4 1/4 0.215 0.191 0.188 0.75 0.735 0.703
5 1/5 0.243 0.228 0.216 0.8 0.792 0.75
6 1/6 0.264 0.254 0.235 0.833 0.829 0.78

Table 2.2: Comparison of capacity, typical set threshold and iterative decoding (RU)
threshold for different ensembles of RA codes on the BSC and the BEC.

this ensemble. Numerical thresholds for the BSC and the BEC for some values of q

are shown in Table 2.2. The case q = 3 on the BSC is of special interest, because

in this case the iterative decoding threshold is actually greater than the typical set

bound. This is the only such example that we know of, and the only evidence that

the typical set bound is not tight. The same phenomenon is observed on the BIAGN

channel. (We will see in the next section how the typical set bound can be applied

to continuous output channels). As seen from the table, however, no such reversal is

observed on the BEC, and we are hopeful that the typical set bound actually turns

out to be tight on this channel.

The case q = 2 poses similar problems to the j = 2 LDPC case. q = 2 RA codes

also do not possess a word error rate threshold due to the presence of low-weight

codewords. However, in this case too we can show that the conditions of Theorem 2.4

are satisfied, thus allowing us to compute a lower bound on the BER threshold.

2.6 Generalization to Arbitrary BISC’s

In Section 2.3.1, we observed that the function K(δ) decreased pointwise under physi-

cal degradation of channels. In particular, it decreased under the process of “binning”

which consists of grouping a set of outputs into a single output. An arbitrary BISC

can be “binned” in many ways into a BISC with a finite number of outputs. We de-

44

Code Rate Capacity Typical Set RU
Ensemble Threshold Threshold

(3, 6) LDPC 1/2 0.187dB 0.673dB 1.11dB
(4, 6) LDPC 1/3 -0.495dB -0.423dB 1.674dB
(3, 4) LDPC 1/4 -0.794dB -0.510dB 1.003dB
q = 3 RA 1/3 -0.495dB 0.739dB 0.479dB
q = 4 RA 1/4 -0.794dB -0.078dB 0.106dB
q = 5 RA 1/5 -0.963dB -0.494dB 0.044dB
q = 6 RA 1/6 -1.071dB -0.742dB 0.085dB

Table 2.3: Comparison of capacity, typical set threshold and iterative decoding (RU)
threshold for different ensembles of LDPC and RA codes on the BIAGN channel.

fine K(δ) for an arbitrary BISC to be the supremum over all its binned finite-output

versions. An important point to observe is that K(δ) can be approximated uniformly

by a fine enough binning of the channel. Therefore, for a BISC with an arbitrary

output set, if K(δ) is separated from the r(δ) of some code ensemble away from 0,

then we can find a degraded finite-output BISC, whose K(δ) is also larger than the

r(δ) away from 0. Applying Theorem 2.3 to the new channel tells us that it lies within

the ML decoding threshold of the code ensemble under consideration, and hence so

does the original channel. Thus we have the following theorem:

Theorem 2.7 For an arbitrary BISC and an arbitrary code ensemble, if condi-

tions 1–4 of Theorem 2.3 are satisfied, then the BISC lies within the ML decoding

threshold of the code ensemble.

An exactly analogous statement is true regarding Theorem 2.4 and BER thresh-

olds. Theorem 2.6 also holds in the continuous output case. Notice that we don’t

define a typical set decoder in the continuous output case, but merely use it on a

suitably constructed finite-output channel.

For channels having a continuous density function for the output (given input 0),

it is easy to write down an explicit expression for K(δ) by replacing the summations

45

in eq. (2.7) by integrals, and the maximization inside the expression can again be

done explicitly using Lagrange multipliers. Table 2.3 has some numerical thresholds

computed using this method for the BIAGN channel. Note again that for q = 3

RA codes, the iterative decoding threshold is greater than the typical set bound,

demonstrating that the typical set bound is not tight at least in this case.

46

Chapter 3 Irregular Repeat-Accumulate

Codes

In the previous chapter, we looked at bounds on the performance of code ensembles

under ML decoding. We will now shift our attention to their iterative decoding

performance, and in particular, to finding ensembles with good iterative decoding

performance.

We described several graphical code ensembles in Chapter 1, which are known

to have extremely good iterative decoding performance. Several variants of these

have been introduced in the literature demonstrating improvements in performance,

complexity, error floor, or some other characteristic. A major breakthrough, however,

was the introduction of irregular LDPC codes by Luby et al. [33, 34], who showed

that in the limit of large length, these codes could achieve capacity on the BEC.

Richardson et al. [43] then generalized their techniques to general BISC’s, and found

irregular LDPC code ensembles with thresholds extremely close to capacity on several

channel models, including the BSC and the BIAGN channel. Ensembles with even

better threshold values were found later by Chung [8]. This suggests that irregular

LDPC codes might actually be able to achieve capacity on all BISC’s, though there

is no proof yet of this fact on any channel other than the BEC.

In spite of their impressive performance, irregular LDPC codes have certain dis-

advantages. As in the case of “regular” LDPC codes, these codes have a sparse

parity-check matrix and a generator matrix that is typically not sparse. Since encod-

ing is based on the generator matrix, both regular and irregular LDPC codes have a

natural quadratic-time encoding algorithm. Richardson and Urbanke [44] introduced

47

an encoding algorithm for these codes that is “almost” linear-time (i.e., there is a

quadratic term but with a small coefficient), and in fact exactly linear-time for some

ensembles. This improved algorithm, however, is still quite complicated, and poses

an obstacle to their implementation.

To get around this problem, we will apply the concept of irregularity to the ensem-

ble of RA codes described in Section 1.2.6, and show that this modified ensemble has

most of the desirable properties of irregular LDPC codes. In addition, these codes,

which we call irregular repeat-accumulate (IRA) codes, also have a straightforward

linear-time encoding algorithm.

In general, the analysis of IRA codes mirrors that of irregular LDPC codes, with

the individual steps being somewhat more complicated. Hence, for the sake of sim-

plicity, we will sometimes use irregular LDPC codes to illustrate properties of IRA

codes. We will therefore begin by defining the ensemble of irregular LDPC codes,

and then go on to define the ensemble of IRA codes. We will then show that they

achieve capacity on the BEC and review their performance on the BIAGN channel.

3.1 Irregular LDPC Codes: Definition

The ensemble of (j, k) LDPC codes was defined as the ensemble of all Tanner graphs,

where every variable node has degree j and every check node has degree k (see Defini-

tion 1.14). In the case of irregular LDPC codes, the variable and check node degrees

are no longer all the same. Instead, a fraction f1 of variable nodes have degree 1, a

fraction f2 have degree 2, and so on up to some maximum degree N . The check node

degrees have a similar variation with associated fractions. If we number the nodes and

fix the degree of each node, we can think of i sockets coming out of a variable node

of degree i, and similarly in the case of check nodes. Of course, the total number of

sockets coming out of variable and check nodes has to be the same, and the ensemble

48

2ff 3f J

RANDOM PERMUTATION

Figure 3.1: The Tanner graph of an irregular LDPC code.

is defined formally by connecting the two sets of sockets via a random permutation

in order to form edges. Figure 3.1 shows an irregular LDPC code with varying vari-

able node degrees and constant check node degree a. The code is not shown to have

any degree 1 variable nodes, since such codes turn out to have no iterative decoding

threshold.

Following [33, 34], let λi be the fraction of edges adjacent to a variable node

of degree i, and ρi the fraction of edges adjacent to a check node of degree i. For

purposes of analysis, it is more convenient to deal with these “edge-fractions” rather

than the corresponding node fractions, though it is easy to convert between the two

representations. (We will see the explicit conversion formulae in the case of IRA

codes.) The set of fractions λi and ρi are called a degree distribution. It is also

convenient to represent the degree distributions in polynomial form as

λ(x) =
∑

i

λix
i−1, ρ(x) =

∑
i

ρix
i−1. (3.1)

λ(x) is called the variable node degree polynomial, and ρ(x) is called the check node

49

degree polynomial. The ensemble given by this degree distribution is called the en-

semble of (λ, ρ) LDPC codes. Clearly, λ(1) = ρ(1) = 1, since the λi’s and the ρi’s

sum to 1. It is an easy exercise to see that the rate of this ensemble is given by

R = 1 −
∑

i ρi/i∑
i λi/i

= 1 −
∫ 1

0
ρ(x)dx∫ 1

0
λ(x)dx

. (3.2)

(For a proof of this formula, see [47].)

3.2 Irregular LDPC Codes on the BEC

In Section 1.3.1, we described how the sum-product algorithm and the technique of

density evolution simplify in the case of the BEC. In fact, the sum-product algorithm

has very intuitive update rules in this case. At a variable node, the outgoing message

is an erasure (i.e., has log-likelihood 0) only if all the incoming messages (including

the channel LLR) are erasures, else it is equal to the non-erasure incoming messages.

(This is well defined since there are never any clashes.) At a check node, the outgoing

message is an erasure if any one of the incoming messages is an erasure, else it

corresponds to the binary sum of the incoming messages (thinking of them as certain

0’s or certain 1’s instead of LLR’s). Therefore, if the xi’s are the probabilities of

erasure of the incoming messages at a variable node, and p is the channel probability

of erasure, then the probability of erasure of the outgoing message is p
∏

i xi. Similarly,

if the xi’s are the probabilities of erasure of the incoming messages at a check node,

then the probability of erasure of the outgoing message is 1 − ∏
i(1 − xi).

Now suppose that at some iteration, the probability of message erasure for mes-

sages coming out of variable nodes is x. Then, at a check node of degree i, the prob-

ability of erasure of the outgoing message is 1 − (1 − x)i−1. Because of the random

permutation, the probability of erasure of the incoming message at any variable node

is this quantity averaged over the check node degrees, i.e.,
∑

i ρi [1 − (1 − x)i−1] =

50

1 − ρ(1 − x). By the same argument, the probability of erasure of the incoming

message at a check node at the next iteration is pλ(1 − ρ(1 − x)). Therefore if we

have

pλ(1 − ρ(1 − x)) < x ∀x > 0, (3.3)

then the probability of message erasure goes to 0 in the number of iterations, and the

BEC with probability of erasure p lies within the decoding threshold of the ensemble

of (λ, ρ) LDPC codes.

Given this simple criterion, we would like to maximize the rate of the ensemble

while treating eq. (3.3) as a constraint. There are several known sequences of degree

distributions (also called degree sequences) whose rate in fact tends to capacity (i.e.,

1 − p) while satisfying this constraint. (For a comprehensive treatment of capacity-

achieving sequences, see [48].) Here, we will describe the one introduced in [47],

because it is similar to the approach we will take for IRA codes.

Firstly, we choose the sequence to be right-regular, i.e., we assume that every check

node has the same degree a. Therefore ρ(x) = xa−1, and eq. (3.3) can be transformed

to

λ(x) <
1

p

[
1 − (1 − x)1/(a−1)

]
. (3.4)

The r.h.s. can be expanded explicitly in a power series around x = 0, whose coefficients

turn out to be non-negative. (See Lemma B.1 in Appendix B.) We then choose λ(x)

simply by truncating this power series (with the number of terms to be kept given by

λ(1) = 1), which certainly satisfies the required constraint. Notice that substituting

the entire r.h.s. of the above equation for λ(x) (which would however not satisfy

λ(1) = 1) into eq. (3.2) would make the rate equal to 1 − p, which is the capacity of

the BEC. It is shown in [47] that the discarded terms contribute negligible rate loss

in the limit of large a. (In fact, [47] shows that the difference between the rate and

the capacity dies exponentially with a.)

51

RANDOM PERMUTATION

f 2f 3f J

Figure 3.2: The Tanner graph of an IRA code.

3.3 IRA Codes: Definition and Notation

Having reviewed the basic properties of irregular LDPC codes, let us now apply the

concept of irregularity to the ensemble of RA codes defined in Section 1.2.6 to get the

ensemble of irregular RA codes. The Tanner graph of an irregular RA code is shown

in Figure 3.2. IRA codes differ form RA codes in three ways (for comparison, look at

Figure 1.6):

1. The variable nodes on the top, which represent information bits and are called

information nodes, now have variable degrees. A fraction f2 of them have degree

2, a fraction f3 have degree 3, up to some maximum degree N . The degree of

an information node is the number of times it is repeated. (We neglect codes

having information nodes of degree 1 for the same reason as in the irregular

LDPC codes case, i.e., they have no iterative decoding threshold.)

2. The check nodes now have multiple edges adjacent from above. In the figure,

the number of such edges is a constant a, but these could be varied just as the

52

information node degrees.

3. IRA codes are systematic, i.e., the information nodes also represent elements of

the codeword.

Allowing multiple edges to be adjacent to a check node from above allows us to

construct IRA codes of arbitrary rates, as opposed to RA codes, which could only

have rates of the form 1/q for integer q. On the other hand, this forces us to make

the code systematic, because if every check node were to have more than one edge

adjacent to it from above and the code were non-systematic, it is not hard to see that

iterative decoding would stall at the first iteration.

Just as in the case of RA codes, we can still read out an encoding algorithm from

the Tanner graph. Each information bit is first repeated (the number of repetitions

being different for each bit) and the resulting bits are permuted randomly. They are

then “collated,” i.e., groups of bits are replaced by their binary sum. Finally, the

resulting sequence of bits is passed through an accumulator to get the parity bits.

(We will call the nodes at the bottom parity nodes.) This algorithm clearly has linear

complexity in the length of the code.

Let k be the number of information bits for the IRA code shown in Figure 3.2.

Then the number of information nodes of degree i is fik, and the total number of

edges connecting the information nodes to the check nodes is k
∑

i ifi. Since each

check node has degree a in the figure, the number of check nodes, which is equal to

the number of parity nodes, is (k
∑

i ifi)/a. The rate of the ensemble is therefore

given by

R =
k

k + (k
∑

i ifi)/a
=

a

a +
∑

i ifi

. (3.5)

As in the case of irregular LDPC codes, it is more convenient for the purposes of

analysis to deal with edge fractions rather than node fractions. Therefore, define λi to

be the fraction of edges (of the edges connecting information nodes and parity nodes)

53

adjacent to an information node of degree i. Also, to be general, define ρi to be the

fraction of edges (again, of the edges connecting information nods and parity nodes)

adjacent to a check node of degree i + 2 (i.e., connected to i information nodes and 2

parity nodes). Also define the variable node degree polynomial λ(x) =
∑

i λix
i−1 and

the check node degree polynomial ρ(x) =
∑

i ρix
i−1. Just as in the case of irregular

LDPC codes, we will refer to this ensemble as the ensemble of (λ, ρ) IRA codes. It

is easy to compute the fi’s from the λi’s and vice versa. For example, fi is given in

terms of the λi’s by

fi =
λi/i∑
j λj/j

. (3.6)

An identical equation holds for the check node degree fractions. From this equation

and our previous expression for the rate, it is easy to see that the rate is given in

terms of the λi’s and ρi’s by

R =

(
1 +

∑
i ρi/i∑
i λi/i

)−1

=

(
1 +

∫ 1

0
ρ(x)dx∫ 1

0
λ(x)dx

)−1

. (3.7)

We would like to study the performance of IRA codes under iterative decoding.

The decoding algorithm we will use is the sum-product algorithm for a Tanner graph

with canonical scheduling (see Section 1.2.4). It is easy to see that IRA codes satisfy

the RU condition stated in Definition 1.15, and we can therefore use density evolution

to analyze this ensemble. In practice, we can also use a “turbo-style” decoding

algorithm, which would only be a different scheduling of the messages. However, we

would no longer be able to use density evolution to rigorously analyze this algorithm.

54

3.4 IRA Codes on the BEC

3.4.1 Fixed Point Analysis of Iterative Decoding

We will now derive a sufficient condition similar to eq. (3.3) for the bit error probability

under iterative decoding on the BEC to go to 0 with the number of iterations. To this

end, we first assume that density evolution has reached a fixed point, and analyze

the various probabilities of message erasure under this assumption. (It is shown in

[43] that density evolution for the sum-product algorithm always converges to a fixed

point.)

At this fixed point, let x0 be the probability of message erasure along an edge from

an information node to a check node, x1 the probability of message erasure along an

edge from a check node to a parity node, x2 the probability of message erasure along

an edge from a parity node to a check node, and x3 the probability of message erasure

along an edge from a check node to an information node. Also, let p be the channel

probability of erasure, which is of course also the probability that the prior value at a

variable node is an erasure. By the same arguments used to derive eq. (3.3), we now

get the following equations relating these quantities:

x1 = 1 − (1 − x2)R(1 − x0), (3.8)

x2 = px1, (3.9)

x3 = 1 − (1 − x2)
2ρ(1 − x0), and (3.10)

x0 = pλ(x3), (3.11)

where the R(x) is the polynomial in which the coefficient of xi denotes the fraction

of check nodes of degree i. These coefficients are given by an equation similar to

55

eq. (3.6), and the polynomial R(x) can be written as

R(x) =

∫ x

0
ρ(t)dt∫ 1

0
ρ(t)dt

. (3.12)

We eliminate x1 from the eqs. (3.8) and (3.9) to get

x2 =
p(1 − R(1 − x0))

1 − pR(1 − x0)
. (3.13)

Substituting this into eq. (3.10), we get

x3 = 1 −
[

1 − p

1 − pR(1 − x0)

]2

ρ(1 − x0). (3.14)

Finally, substituting this into eq. (3.11), we get

x0 = pλ

(
1 −

[
1 − p

1 − pR(1 − x0)

]2

ρ(1 − x0)

)
. (3.15)

This equation contains only one variable, namely x0, and is necessarily satisfied

at a fixed point of density evolution. If we choose our degree polynomials such that

the above equation has no fixed points other than x0 = 0, then density evolution

necessarily converges to x0 = 0 (which also implies x1 = x2 = x3 = 0), and the BEC

with probability of erasure p lies within the decoding threshold of the corresponding

code ensemble. We can ensure this property by imposing the following constraint on

the degree polynomials:

pλ

(
1 −

[
1 − p

1 − pR(1 − x)

]2

ρ(1 − x)

)
< x ∀x > 0. (3.16)

56

3.4.2 Capacity Achieving Sequences of Degree Distributions

Having derived a sufficient condition for density evolution to converge to a decoded

erasure probability of 0, we now proceed to derive sequences of degree distributions

whose rate tends to the capacity of the BEC while satisfying this condition. First, we

restrict attention to the “right-regular” case, i.e., ρ(x) = xa−1 for some a ≥ 1, since it

turns out that we can achieve capacity with this restriction. In this case, R(x) = xa,

and the condition for convergence to zero erasure probability now becomes

pλ

(
1 −

[
1 − p

1 − p(1 − x)a

]2

(1 − x)a−1

)
< x, ∀x > 0 (3.17)

Let us denote by fp(x) the argument to λ(·) in the above equation, i.e.,

fp(x) � 1 −
[

1 − p

1 − p(1 − x)a

]2

(1 − x)a−1. (3.18)

Ideally, we would like to repeat the procedure we followed in the case of irregular

LDPC codes, i.e., we would like to expand f−1
p (x) in a power series and choose λ(x)

to be a suitably truncated version of this power series. In general, however, f−1
p (x)

does not have non-negative power series coefficients. We therefore define the auxiliary

function hp(x) as

hp(x) � 1 −
[

1 − p

1 − p(1 − x)a

]2

(1 − x)a. (3.19)

Notice that 1 − hp(x) = (1 − x)(1 − fp(x)) < 1 − fp(x) for x > 0, i.e., hp(x) >

fp(x) ∀x > 0. Theorem B.2 in Appendix B shows that gp(x) � h−1
p (x) has non-

negative power series coefficients, when expanded around x = 0. Let this expansion

be gp(x) =
∑∞

i=1 gp,ix
i. We now choose λ(x) as a truncated version of this power

series, i.e.,

λ(x) =
1

p

(
N−1∑
i=1

gp,ix
i + εxN

)
, (3.20)

57

where N and ε are fixed by 0 < ε < gp,N and
∑N−1

i=1 gp,i + ε = p. For this choice of

λ(x), we have

pλ(x) < gp(x) = h−1
p (x) < f−1

p (x) ∀x > 0, (3.21)

where the last inequality follows because fp(x) < hp(x) ∀x > 0. We can rewrite the

above inequality as

pλ(fp(x)) < x ∀x > 0, (3.22)

which is exactly the condition imposed by eq. (3.17), i.e., the ensemble defined by

this degree distribution has a BEC threshold of at least p.

Let us now evaluate the rate of this ensemble, which is given by eq. (3.7). In the

right-regular case, this expression simplifies to

R =

(
1 +

1

a
∑

i λi/i

)−1

. (3.23)

We wish to compute this rate in the limit a → ∞. In order to do so, we need to

evaluate lima→∞ a
∑

i λi/i, which is given by

lim
a→∞

a
∑

i

λi

i
= lim

a→∞
a

p

(
N−1∑
i=1

gp,i

i
+

ε

N

)
= lim

a→∞
a

p

∞∑
i=1

gp,i

i
− lim

a→∞
a

p

(∞∑
i=N

gp,i

i
− ε

N

)
.

(3.24)

The second term can be bounded as

0 ≤ lim
a→∞

a

p

(∞∑
i=N

gp,i

i
− ε

N

)
≤ lim

a→∞
a

pN

∞∑
i=N

gp,i ≤ 1

p
lim
a→∞

a

N
= 0, (3.25)

where the last equality is a property of the function gp(x) and follows from Theo-

rem B.3 in Appendix B. We now have

lim
a→∞

a
∑

i

λi

i
= lim

a→∞
a

p

∞∑
i=1

gp,i

i
= lim

a→∞
a

p

∫ 1

0

gp(x)dx. (3.26)

58

Now
∫ 1

0
gp(x)dx +

∫ 1

0
hp(1 − x)dx = 1. The easiest way to see this is to note that

the first term is the area below the graph of y = gp(x), while the second term is the

area above the graph. (Algebraically, this is a simple integration by parts exercise.)

Therefore,

a

∫ 1

0

gp(x)dx = a

(
1 −

∫ 1

0

hp(1 − x)dx

)
= a

∫ 1

0

(
1 − p

1 − pxa

)2

xadx. (3.27)

The integrand on the right can be expanded in a power series with non-negative

coefficients, with the first nonzero coefficient being that of xa. Keeping in mind that

we are integrating this power series, it is easy to see that

a

a + 1

∫ 1

0

(
1 − p

1 − pxa

)2

xa−1dx ≤
∫ 1

0

(
1 − p

1 − pxa

)2

xadx

≤
∫ 1

0

(
1 − p

1 − pxa

)2

xa−1dx. (3.28)

Therefore,

lim
a→∞

a

∫ 1

0

(
1 − p

1 − pxa

)2

xadx = lim
a→∞

a

∫ 1

0

(
1 − p

1 − pxa

)2

xa−1dx

=

∫ 1

0

(
1 − p

1 − py

)2

dy. (3.29)

The last integral is easy to evaluate and equals 1−p. Substituting this value backwards

through eqs. (3.27), (3.26), and (3.23), we find that the rate R tends to 1−p as a → ∞,

which is the capacity of the BEC. Thus we have

Theorem 3.1 (IRA codes achieve capacity on the BEC)

Given a BEC with probability of erasure p, we can find a sequence of degree distri-

butions (λi, ρi), such that the BEC threshold of the ensemble of (λi, ρi) IRA codes is

at least p for every i, and the rate of the ensemble tends to capacity, i.e., 1 − p, as

i → ∞.

59

3.4.3 Some Numerical Results

We have seen that the condition for the BEC threshold of an ensemble of IRA codes

being at least p is pλ(x) < f−1
p (x) ∀x > 0. We later enforced a stronger condi-

tion, namely, pλ(x) < h−1
p (x) = gp(x) ∀x > 0 and derived capacity-achieving degree

sequences satisfying this condition. The reason we needed to enforce the stronger

condition was that h−1
p (x) = gp(x) has non-negative power-series coefficients around

x = 0, while the same cannot be said for f−1
p (x). However, from eq. (3.28) we

see that enforcing this stronger condition costs us to the extent of a fraction of

1 − a/(a + 1) = 1/(a + 1) in the rate. This is an extremely slow rate of decay

(compare it to the degree-sequences for irregular LDPC codes in [47]), and therefore

the resulting codes are not very good.

If, however, f−1
p (x) were to have non-negative power series coefficients, then we

could use it to define a degree distribution and we would no longer lose this fraction of

1/(a+ 1). We found through direct numerical computation in all cases that we tried,

that enough terms in the beginning of this power series are non-negative to enable us

to define λ(x) by an equation analogous to eq. (3.20), replacing gp(x) by f−1
p (x). Of

course, the resulting code is not theoretically bound to have a BEC threshold ≥ p,

but again numerical computation showed that the threshold is either equal to or very

marginally less than p.

This design turns out to yield very powerful codes, in particular degree distribu-

tions whose performance is comparable to the irregular LDPC codes listed in [47] as

far as decoding threshold is concerned. The performance of some of these distribu-

tions is listed in Table 3.1. The threshold values δ are the same as those in [47] for

corresponding values of a (IRA codes with right degree a + 2 should be compared to

irregular LDPC codes with right degree a, so that the decoding complexity is about

the same), so as to make comparison easy. The degree distributions listed in [47] were

shown to have certain optimality properties w.r.t. the tradeoff between δ/(1−R) (dis-

60

a δ N 1 − R δ/(1 − R)
4 0.20000 1 0.333333 0.6000
5 0.23611 3 0.317101 0.7448
6 0.28994 6 0.329412 0.8802
7 0.31551 11 0.336876 0.9366
8 0.32024 16 0.333850 0.9592
9 0.32558 26 0.334074 0.9744
4 0.48090 13 0.502141 0.9577
5 0.49287 28 0.502225 0.9814

Table 3.1: Performance of some IRA code ensembles designed using the procedure
described in Section 3.4.3 at rates close to 2/3 and 1/2. δ is the code threshold
(maximum allowable value of p), N the degree of λ(x), and R the rate of the code.

tance from capacity) and a (decoding complexity), so it is very heartening to note

that the codes we have designed are comparable to these.

Let us now briefly discuss the case a = 1. In this case, it turns out that f−1
p (x) does

indeed have non-negative power-series coefficients. The resulting degree sequences

yield codes that are better than conventional RA codes at small rates. An entirely

similar exercise can be carried out for the case of non-systematic RA codes with

a = 1 and the codes resulting in this case are significantly better than conventional

RA codes for most rates. However, as we have mentioned earlier, non-systematic RA

codes turn out to be useless for higher values of a.

Finally, notice that the condition required of λ(x) for density evolution to converge

to 0 decoded erasure probability, given by eq. (3.17), is linear in the λi’s. Our aim

is to maximize the rate while satisfying this constraint. However, it is clear from

eq. (3.23) for the rate that this is equivalent to maximizing
∑

i λi/i, which is also a

linear function of the λi’s. We thus have a linear programming problem, making it

very easy to optimize the rate numerically. (Of course, since in practice we can only

enforce a finite number of constraints, we need to pick a finite number of values x for

which to impose eq. (3.17). However, the results do not seem to be very sensitive to

61

the choice of these points.) The degree distributions thus obtained seem to have very

similar performance in terms of decoding thresholds to those described in Table 3.1.

However, they seem to have far fewer nonzero terms (though the largest degrees are

about the same), which is a big advantage for constructing practical finite-length

codes.

3.5 IRA Codes on the BIAGN Channel

In this section, we will consider the behavior of IRA codes on the BIAGN channel,

which was defined in Example 1.5. Given a noise variance σ, our aim will be to

find degree distributions with rates as large as possible whose BIAGN thresholds

are at least σ. Unlike the BEC, where density evolution involved updating only a

single probability, here we must deal with probability densities. This complicates the

analysis, and forces us to resort to approximate design methods.

3.5.1 Gaussian Approximation

Wiberg [53] has shown that the LLR messages passed in iterative decoding on the

BIAGN channel can be well approximated by Gaussian random variables. In [9],

this approximation was used to design good irregular LDPC codes for the BIAGN

channel.

Here, we use this Gaussian approximation to design good IRA codes for the BI-

AGN channel. Specifically, we approximate the pdf’s of the messages from check

nodes to variable nodes (both information and parity) as Gaussian at every iteration

(under the assumption that the all-zeros codeword is transmitted). The channel evi-

dence (i.e., the quantity l0 in eq. (1.5)) does in fact have a Gaussian pdf. Therefore,

for a given variable node, because of the update rule given by eq. (1.5), if all the

incoming messages have Gaussian densities, then so do all the outgoing messages. If

62

we average over nodes of varying degrees, then the outgoing message densities are

mixtures of Gaussians.

A pdf f(x) is called consistent [43] if f(−x) = e−xf(x) ∀x. For a Gaussian density

with mean μ and variance σ, this condition reduces to σ2 = 2μ. Thus, a consistent

Gaussian density with mean μ is given by

Gμ(z) =
1√
4πμ

e−(z−μ)2/4μ. (3.30)

It has been shown in [43] that during density evolution for the sum-product algorithm,

all the densities encountered are in fact consistent. Thus if we assume Gaussian

message densities, and require consistency, we only need to keep track of the means

of the densities. Let us define φ(μ) to be the expected value of tanh(Z/2) for a

consistent Gaussian random variable Z with mean μ, i.e.,

φ(μ) � E[tanh(Z/2)] =

∫ +∞

−∞
Gμ(z) tanh

z

2
dz. (3.31)

It is easy to see that φ(u) is a monotone increasing function of u; we denote its inverse

function by φ−1(y). As we did in the case of the BEC, let us assume that density

evolution has reached a fixed point. At this fixed point, let μL and μR be the means

of the (consistent Gaussian) messages from check nodes to information nodes and

parity nodes respectively. A message from a degree-i information node to a check

node is therefore Gaussian with mean (i − 1)μL + μ0, where μ0 is the mean of the

channel evidence (i.e., the mean of the quantity l0 in eq. (1.5)). Hence if vL denotes

the message on a randomly selected edge from an information node to a check node,

then its pdf is given by
∑

i λiG(i−1)μL+μ0(z). Substituting this in eq. (3.31), we get

E[tanh
vL

2
] =

∑
i

λiφ((i − 1)μL + μ0). (3.32)

63

Similarly, if vR denotes the message on a randomly selected edge from a parity node

to a check node, we have

E[tanh
vR

2
] = φ(μR + μ0). (3.33)

Let uL and uR denote messages from a check node to an information node and a

parity node respectively. Then eqs. (3.32) and (3.33), together with the check node

update rule given by eq. (1.6), imply

E[tanh
uL

2
] = E[tanh

vl

2
]a−1E[tanh

vR

2
]2

=

[∑
i

λiφ((i − 1)μL + μ0)

]a−1

φ(μR + μ0)
2, and (3.34)

E[tanh
uR

2
] = E[tanh

vL

2
]aE[tanh

vR

2
]

=

[∑
i

λiφ((i − 1)μL + μ0)

]a

φ(μR + μ0). (3.35)

Since we have assumed that uL and vL have consistent Gaussian pdf’s, the left-hand

sides of these equations are nothing but φ(μL) and φ(μR), which gives us the following

implicit equations for μL and μR:

φ(μL) =

[∑
i

λiφ((i − 1)μL + μ0)

]a−1

φ(μR + μ0)
2, and (3.36)

φ(μR) =

[∑
i

λiφ((i − 1)μL + μ0)

]a

φ(μR + μ0). (3.37)

Let us denote
∑

i λiφ((i − 1)μL + μ0) by x. From the definition of φ(·), we can

see that 0 < x < 1 and x → 1 ⇐⇒ μL → ∞. Eq. (3.37) then becomes an implicit

equation for μR in terms of x, which can be solved numerically given a value of x. Let

us denote its solution by f , i.e., μR = f(x). Then, dividing eq. (3.36) by the square

64

of eq. (3.37) gives

φ(μL) =
φ(μR)2

xa+1
=

φ(f(x))2

xa+1
. (3.38)

Therefore we can replace μL by φ−1(φ(f(x))2/xa+1) into the definition of x, to obtain

the following implicit equation for x:

x =
∑

i

λiφ

(
μ0 + (i − 1)φ−1

(
φ(f(x))2

xa+1

))
. (3.39)

We would like the BER to go to 0 with the number of iterations, which is equivalent

to the condition μL → ∞, or x → 1. Just as in the BEC case, we enforce this condition

by not allowing fixed points of (the Gaussian approximation to) density evolution,

i.e., by not allowing any solution to eq. (3.39). Specifically, we require

F (x) �
J∑

i=1

λiφ

(
μ0 + (i − 1)φ−1

(
φ(f(x))2

xa+1

))
> x ∀x ∈ [0, 1). (3.40)

Notice that just as in the BEC case, the above equation is linear in the λi’s. We

would like to maximize the rate, which is given by eq. (3.23), subject to this constraint.

This is equivalent to maximizing
∑

i λi/i, which is also linear in the λi’s. The problem

of finding good degree sequences is thus converted into a linear programming problem

under the Gaussian approximation, which is easy to solve numerically.

3.5.2 Numerical Results

We used the linear programming technique described in the previous section to design

some good degree sequences for IRA codes. The results are presented in Tables 3.2

(code rate ≈ 1/3) and 3.3 (code rate ≈ 1/2). After using the heuristic Gaussian

approximation method to design the degree sequences, we used exact density evolution

to determine the actual noise threshold. (In every case, the true iterative decoding

threshold was better than the one predicted by the Gaussian approximation.)

65

a 2 3 4
λ2 0.139025 0.078194 0.054485
λ3 0.222155 0.128085 0.104315
λ5 0.160813
λ6 0.638820 0.036178 0.126755
λ10 0.229816
λ11 0.016484
λ12 0.108828
λ13 0.487902
λ14

λ16

λ27 0.450302
λ28 0.017842

rate 0.333364 0.333223 0.333218
σGA 1.1840 1.2415 1.2615
σ∗ 1.1981 1.2607 1.2780

(Eb

N0
)∗(dB) 0.190 -0.250 -0.371

S.L.(dB) -0.4953 -0.4958 -0.4958

Table 3.2: Good degree sequences yielding codes of rate approximately 1/3 for the
BIAGN channel and with a = 2, 3, 4. For each sequence, the Gaussian approxima-
tion noise threshold σGA, the actual sum-product decoding threshold σ∗, and the
corresponding (Eb

N0
)∗ in dB are given. Also listed is the Shannon limit (S.L.).

For example, consider the “a = 3” column in Table 3.2. We adjust the Gaus-

sian approximation noise threshold σGA to be 1.2415 so that the returned optimal

sequence has rate 0.333223. Then applying the exact density evolution algorithm to

this sequence, we obtain the actual sum-product decoding threshold σ∗ = 1.2607,

which corresponds to Eb/N0 = −0.250dB. This should be compared to the Shannon

limit for the ensemble of all linear codes of the same rate, which is −0.4958dB. As

we increase the parameter a, the ensemble improves. For a = 4, the best code we

have found has iterative decoding threshold Eb/N0 = −0.371dB, which is only 0.12dB

above the Shannon limit.

The above analysis is for BER’s. We have already seen in Chapter 2 that q = 2 RA

codes and j = 2 LDPC codes have no threshold in terms of word error probability,

66

a 8 8
λ2 0.0577128
λ3 0.252744 0.117057
λ7 0.2189922
λ8 0.0333844
λ11 0.081476
λ12 0.327162
λ18 0.2147221
λ20 0.0752259
λ46 0.184589
λ48 0.154029
λ55 0.0808676
λ58 0.202038

rate 0.50227 0.497946
σ∗ 0.9589 0.972

(Eb

N0
)∗(dB) 0.344 0.266

S.L.(dB) 0.197 0.178

Table 3.3: Two degree sequences yielding codes of rate ≈ 1/2 with a = 8. For each
sequence, the actual sum-product decoding threshold, and the corresponding (Eb

N0
)∗

in dB are given. Also listed is the Shannon limit.

even with ML decoding. The argument used there easily extends to the case of IRA

(or irregular LDPC) codes with a nonzero fraction of degree 2 nodes. Therefore it is

desirable to find degree sequences with λ2 = 0. In Table 3.3, we compare the noise

thresholds of codes with and without λ2 = 0.

We chose rate 1/2 because we wanted to compare our results with the best irregular

LDPC codes obtained in [43]. Our best IRA code has threshold 0.266 dB, while the

best rate 1/2 irregular LDPC code found in [43] has threshold 0.25 dB. These two

codes have roughly the same decoding complexity, but unlike LDPC codes, IRA codes

have a simple linear encoding algorithm.

We simulated the rate 1/2 code with λ2 = 0 from Table 3.3. Figure 3.3 shows

the performance of that particular code, with information block lengths 103, 104, and

105. For comparison, we also show the performance of the best known rate 1/2 turbo

67

0 0.5 1 1.5 2 2.5
10

−6

10
−5

10
−4

10
−3

10
−2

SNR (dB)

B
E

R

k=1000

k=10000

k=100000

IRA code
Turbo code

Figure 3.3: Comparison between turbo codes (dashed curves) and IRA codes (solid
curves) of lengths n = 103, 104, and 105 on the BIAGN channel. All codes are of rate
1/2. The asterisk denotes the threshold of the degree distribution for the IRA code.

code for the same block length.

3.6 Complexity Analysis

We have seen that both irregular LDPC codes and IRA codes achieve capacity on the

BEC, and are able to operate extremely close to capacity on the BIAGN channel. Let

us now try to study the growth in complexity as we get closer and closer to capacity.

We can hope to do this rigorously only on the BEC, since this is the only channel on

which these codes have been shown to achieve capacity.

Let us fix a target decoded BER π. For any code (together with a decoding

68

algorithm) that achieves this BER on a given channel, let ε be the fractional difference

between its rate R and the capacity C of the channel, i.e., ε = 1−R/C. Let χD(ε, π)

denote the decoding complexity per decoded bit for an ensemble of codes of rate

R = (1 − ε)C and decoded error probability π. Our measure of complexity will be

the number of messages passed during decoding.

The sum-product algorithm as we have defined it has decoding complexity pro-

portional to the density of the graph (i.e., the number of edges divided by the length

of the code) times the number of decoding iterations. On the BEC, however, this

algorithm has the property that once the message on an edge takes on a non-erasure

value, it never changes. Using this property, it is possible to reformulate this algo-

rithm in a form so that the decoding complexity is no longer dependent on the number

of iterations (and hence the decoded BER π), but is only proportional to the density

of the graph. (This modified algorithm can be found in [47].)

In the case of right-regular degree sequences, the density of the graph is asymp-

totically proportional to the constant check node degree a. It was shown by Shokrol-

lahi [47] that for irregular LDPC codes, ε went to 0 exponentially in a, which gives

us the following theorem:

Theorem 3.2 (Shokrollahi [47]) For the ensemble of irregular LDPC codes on the

BEC, we can find a sequence of degree distributions such that

lim
π→0

χD(ε, π) = O(log 1/ε). (3.41)

We would like to prove a similar result for the ensemble of IRA codes. In Sec-

tion 3.4.2, we derived a sequence of degree distributions with BEC threshold at least

p, and rate going to 1 − p, i.e., capacity. Let us examine how fast the difference

between the rate and the capacity decays. Recall that the rate is given by eq. (3.23),

and its computation essentially requires us to estimate the quantity a
∑

i λi/i, which

69

tends to (1 − p)/p as a → ∞. Let us look at the difference between a
∑

i λi/i and

(1 − p)/p, which is what contributes to the rate loss. One of the loss terms is given

by eq. (3.25), and Theorem B.3 in Appendix B shows that this term decays exponen-

tially with a. A term of this type is the dominant loss term in the case of irregular

LDPC codes, which is why Theorem 3.2 holds. In the case of IRA codes, however, the

dominant loss term is given by eq. (3.28), whose lower bound states that the quantity

we are interested in is at least a/(a + 1) times its limiting value. The fractional loss

here is 1/(a + 1), which by far dominates over the exponentially decaying loss term

given by eq. (3.25). Substituting this loss term into the expression for the rate tells

us that ε decays as 1/a, giving us the following theorem:

Theorem 3.3 For the ensemble of IRA codes on the BEC, we can find a sequence

of degree distributions such that

lim
π→0

χD(ε, π) = O(1/ε). (3.42)

This theorem validates our remarks in Section 3.4.3, where we said that the

capacity-achieving degree sequences are not very good in practice. The modified

degree sequences we introduced in that section get rid of the dominant loss term of

eq. (3.28) and should in principle reduce the rate loss back to O(log 1/ε). However,

we cannot prove that these sequences always exist, or that they have the required

threshold values. Our numerical results, however, indicate that they do have these

properties, leading us to make the following conjecture:

Conjecture 3.4 For the ensemble of IRA codes on the BEC, we can find a sequence

of degree distributions such that

lim
π→0

χD(ε, π) = O(log 1/ε). (3.43)

70

y=x

y=f(x)

x

y

Figure 3.4: Variation of decoded BER with the number of iterations. The function
f(x) represents pλ(1 − ρ(1 − x)) in the case of irregular LDPC codes and pλ(fp(x))
(defined in eq. (3.18)) in the case of IRA codes. The lines in between the two curves
represent the variation in the decoded BER with the number of iterations.

In the preceding analysis, we have ignored the number of iterations because they

do not play a role in decoding complexity on the BEC. This situation is, however,

not indicative of the general case. To get a feel for what happens on more general

channel models, let us analyze the number of iterations needed to achieve a decoded

BER of π on the BEC.

For a given degree distribution of irregular LDPC codes, the BEC threshold p is

given by the smallest value of the channel erasure probability for which eq. (3.3) is

not satisfied, i.e., when the curve given by the l.h.s. just touches the curve y = x. An

analogous statement is true for IRA codes with eq. (3.17) instead of eq. (3.3). The

variation of the decoded BER with the number of iterations is shown in Figure 3.4.

A point on the y = x line denotes (through both its coordinates) the message erasure

probability at the corresponding iteration. At every iteration, the message erasure

probability reduces by an amount corresponding to the vertical difference between

71

the two curves. Thus, one vertical step and one horizontal step together denote one

iteration.

Let us consider two cases, one in which the two curves touch at x = 0 at the

threshold value (i.e., the derivatives at 0 are equal), and the second in which they

touch at some other point. Also, suppose that we are operating at a channel erasure

probability of (1 − ε′)p. In the latter case, the vertical distance between the two

curves at the point where they touch is proportional to ε′ for small ε′. The number

of iterations needed to cross this gap is therefore proportional to 1/ε′. Near 0, on the

other hand, the message erasure probability decays exponentially with the number

of iterations. Therefore, the number of iterations needed to achieve a decoded error

probability of π grows as O(1/ε′ + log(1/π)).

On the other hand, if the two curves touch at x = 0 at the threshold value p, then

at an operating point (1 − ε′)p, the derivative of the difference at 0 is proportional

to ε′ for small ε′. Therefore the message erasure probability decays as e−cε′l for some

c, where l is the number of iterations. Therefore, the number of iterations needed to

reach a message erasure probability π grows as O(log(1/π)1/ε′). In either case, the

number of iterations grows inversely with ε′.

Theorem 3.5 Consider an ensemble of irregular LDPC or IRA codes with BEC

threshold p. The number of iterations of the sum-product algorithm needed to achieve

a fixed decoded BER of π on a BEC with erasure probability (1 − ε′)p grows as 1/ε′.

Consider now an ensemble of irregular LDPC codes of rate R with threshold

(1 − ε′′)(1 − R). It is a simple consequence of Theorem 3.2 that the density of the

graph grows as O(log 1/ε′′). Consider the performance of these codes on a BEC with

erasure probability (1 − ε)(1 − R), where ε = ε′ + ε′′. Assuming ε′ and ε′′ are small,

Theorem 3.5 implies that the number of iterations required to achieve a fixed decoded

BER grows as O(1/ε′). The naive measure of decoding complexity, i.e., graph density

72

times the number of iterations, therefore grows as O((1/ε′) log(1/ε′′)). Optimizing

for ε′ and ε′′ under the constraint ε′ + ε′′ = ε, we see that the naive measure of

decoding complexity grows as O((1/ε) log(1/ε)). Based on this evidence, and some

other numerical evidence on the BIAGN channel, we advance the following conjecture

regarding the complexity of the sum-product algorithm on general BISC’s:

Conjecture 3.6 On any BISC of capacity C, for the ensemble of irregular LDPC or

IRA codes, let ε = 1 − R/C, R being the rate of the code. Then

χD(ε, π) = O

(
1

ε
log

1

ε

)
. (3.44)

3.7 Conclusions

We have introduced a class of codes, the IRA codes, that combines many of the fa-

vorable attributes of turbo codes and LDPC codes. Like turbo codes (and unlike

LDPC codes), they can be encoded in linear time. Like LDPC codes (and unlike

turbo codes), they are amenable to an exact Richardson-Urbanke style analysis. In

simulated performance they appear to be slightly superior to turbo codes of com-

parable complexity, and just as good as the best known irregular LDPC codes. We

have also presented some analysis on the complexity of iterative decoding close to

capacity. In our opinion, the important open problem is to prove (or disprove) that

irregular LDPC codes or IRA codes can be decoded reliably in linear time at rates

arbitrarily close to channel capacity on channel models other than the BEC. A proof

of Conjecture 3.6 can be contemplated only after this problem has been solved.

73

Chapter 4 A Lower Bound on Iterative

Decoding Thresholds for General BISC’s

4.1 Introduction

We have seen in Chapter 3 that the technique of density evolution is extremely suc-

cessful in numerically optimizing ensembles of both irregular LDPC and IRA codes

on many BISC’s, including the BEC, the BSC and the BIAGN channel. On the BEC,

density evolution reduces to an extremely simple one-dimensional evolution, enabling

us to design capacity-achieving degree sequences analytically. The general situation

is, however, significantly more complicated, and not much is known analytically re-

garding thresholds of these codes on other channel models. In this chapter, we take

a step in this direction by deriving a general lower bound on the threshold of a code

ensemble on any BISC, given its BEC threshold.

4.1.1 The Consistency Condition

For any BISC, let Z be a random variable denoting a channel output in log-likelihood

form, given that the channel input was 0. For future convenience, let us also define

the random variable Z ′ = tanh(Z/2). It is shown in [43] that the pdf of Z satisfies

the consistency condition

pZ(−x) = e−xpZ(x). (4.1)

Moreover, [43] also shows that this condition is preserved during density evolution

by both the variable node and check node updates given by eqs. (1.5) and (1.6) (i.e.,

if all the input random variables are consistent and independent, then the output

74

random variable is also consistent). Also, it is clear that the consistency condition is

preserved under averaging. Therefore any pdf pX (corresponding to a random variable

X) passed at any stage of density evolution satisfies the consistency condition

pX(−x) = e−xpX(x). (4.2)

(We have already encountered this condition in Chapter 3 in the context of the BIAGN

channel.) As a simple consequence, the random variable X ′ = tanh(X/2) satisfies the

consistency condition

pX′(−x′) =
1 − x′

1 + x′ pX′(x′). (4.3)

4.1.2 The Stability Condition

The Bhattacharya parameter γ of a BISC was defined by eq. (2.1) in the context of

the union bound. It is also used in [43], where it is called the stability function of

the BISC, to derive a necessary condition for the BISC to lie within the decoding

threshold of an irregular LDPC code ensemble. In terms of the random variables Z

and Z ′ introduced in Section 4.1.1, γ is given by

γ = E[e−Z/2] = E

[√
1 − Z ′

1 + Z ′

]
. (4.4)

The first equality can be proved by expanding E[e−Z/2] into an integral over the chan-

nel output y, while the second holds because the expressions inside the expectation

are identical.

It is shown in [43] that if a BISC with Bhattacharya parameter γ lies within the

iterative decoding threshold of the ensemble of (λ, ρ) LDPC codes, then

λ′(0)ρ′(1) <
1

γ
. (4.5)

75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

BEC Erasure Probability

B
IA

G
N

 C
ha

nn
el

 N
oi

se
 V

ar
ia

nc
e

Equal Capacity Curve
Equal Stability Curve

Figure 4.1: BIAGN channel thresholds of codes optimized for the BEC.

The authors call this condition the stability condition. Moreover, they also show

that if the stability condition is satisfied, and density evolution is initialized with a

consistent density having a small enough probability of error (i.e., small enough mass

on the negative reals), then the probability of error converges to 0 under density

evolution.

4.2 The Main Result

The main result of this chapter is motivated by some observations made in [8]. These

observations are illustrated in Figures 4.1 and 4.2, which are adapted from Figures 6.4

and 6.5 in [8]. Figure 4.1 has the BEC (parametrized by the channel erasure proba-

76

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

BEC Erasure Probability

B
S

C
 C

ro
ss

ov
er

 P
ro

ba
bi

lit
y

Equal Capacity Curve
Equal Stability Curve

Figure 4.2: BSC thresholds of codes optimized for the BEC.

bility) as the x-axis, and the BIAGN channel (parametrized by the noise variance) as

the y-axis. The figure contains two curves, the equal-capacity curve and the equal-

stability curve. The equal-capacity curve is defined by the property that the channels

given by the two coordinates of any point lying on it have the same capacity. Simi-

larly, the equal-stability curve is defined by the property that the channels given by

the two coordinates of any point lying on it have equal Bhattacharya parameters.

Points in this graph can represent ensembles of codes, with their x-coordinate

being the BEC (iterative decoding) threshold of the ensemble, and the y-coordinate

being the BIAGN channel threshold. The asterisks in the figure, in particular, repre-

sent degree distributions of irregular LDPC codes optimized for the BEC, i.e., whose

BEC threshold is very close to the capacity of the channel. We can see that all the

77

degree distributions seem to lie exactly on the equal-stability curve. Figure 4.2 is very

similar to Figure 4.1, except that the BIAGN channel is replaced by the BSC. Again,

the degree distribution optimized for the BEC is seen to lie on the equal-stability

curve. We will prove this observation here by way of a general lower bound on the

threshold of a code ensemble on any BISC family in terms of its BEC threshold.

During the course of density evolution, let X1, X2, . . . , Xj−1 denote the incoming

messages along the first j − 1 edges adjacent to a variable node of degree j, and let

Z denote the channel evidence. By eq. (1.5), the outgoing message Xout along the

remaining edge is given by Z +
∑j−1

i=1 Xi. Since density evolution assumes that these

variables are independent, we have

E[e−Xout/2] = E

[
e−Z/2

j−1∏
i=1

e−Xi/2

]
= E[e−Z/2]

j−1∏
i=1

E[e−Xi/2]. (4.6)

Compare this equation to density evolution on the BEC, where the probability of

message erasure on the outgoing edge is the product of the corresponding probabilities

for the incoming messages and the channel erasure probability (see Section 3.2). The

two update equations are identical, with the quantity E[e−Z/2] performing the role of

the channel erasure probability, and the quantities E[e−Xi/2] performing the role of

the message erasure probabilities.

To complete the comparison, we would like to show a similar equation at the

check-node end. But that would be too optimistic since then density evolution on the

two channels would be completely equivalent. Instead, we prove an inequality that

serves our purpose equally well.

Lemma 4.1 At a check-node of degree k, if X1, X2, . . . , Xk−1 denote the incoming

messages along the first k − 1 edges at some stage of density evolution, and Xout the

78

outgoing message along the remaining edge, then we have

E[1 − e−Xout/2] ≥
k−1∏
i=1

E[1 − e−Xi/2]. (4.7)

Proof:

Define X ′
i = tanh(Xi/2) for 1 ≤ i ≤ k − 1 and X ′

out = tanh(Xout/2). By Lemma C.1

in Appendix C, and the fact that the Xi’s and Xout satisfy the consistency condition,

the above inequality can be written in the following equivalent form:

E
[
1 −

√
1 − X ′2

out

]
≥

k−1∏
i=1

E

[
1 −

√
1 − X ′2

i

]
. (4.8)

The check node update rule given by eq. (1.6) tells us that X ′
out =

∏k−1
i=1 X ′

i, which

implies X ′2
out =

∏k−1
i=1 X ′2

i . Therefore it suffices to prove that given arbitrary indepen-

dent random variables Y1, Y2, . . . , Yk−1 (to be thought of as X ′2
i ’s) taking values in

the interval [0, 1],

E[1 −
√

1 − Y1Y2 . . . Yk−1] ≥
k−1∏
i=1

E[1 −
√

1 − Yi]. (4.9)

By induction, it is enough to prove the above inequality in the case of two variables,

in which case it follows by taking expectations around Lemma C.2 in Appendix C. �

Eq. (4.7) says that the quantity E[e−Xout/2] is always less than what it would

be in the case of the BEC. Together with eq. (4.6), this implies that for any code

ensemble (on which density evolution works), if the message erasure probability given

by density evolution tends to zero on a BEC with channel erasure probability E[e−Z/2],

then so does the quantity E[e−X/2] = E[
√

1 − X ′2] on the channel under consideration

(represented by the distribution of Z). Of course, if the quantity E[
√

1 − X ′2] tends

to 0, then the distribution of X ′ tends to a delta function at 1, and the decoded

probability of error tends to 0 with the number of iterations. Thus, we have proved

79

the following:

Theorem 4.2 If a BEC with channel erasure probability p lies within the decoding

threshold of an ensemble of codes for which the probability of error can be deter-

mined by density evolution (in particular any ensemble of irregular LDPC or IRA

codes), then so does any other BISC with the same Bhattacharya parameter, i.e., s.t.

E[e−Z/2] = p.

In the case of capacity-achieving degree sequences of irregular LDPC codes for

the BEC, we can also prove the converse. Shokrollahi [46] has shown that such a

sequence has to be marginally stable, i.e., have λ′(0)ρ′(1) tending to 1/p, where p is

the channel erasure probability. Clearly, therefore, any channel within the decoding

threshold of this ensemble has to have stability function at most p, else the stability

condition will not be satisfied. On the other hand, we have shown that channels

with stability function p are within the decoding threshold. Therefore, on any family

of channels characterized by a single parameter and having a monotone increasing

value of γ, the threshold of this sequence is given by the parameter for which the

Bhattacharya parameter of the channel is p, which is exactly the observation that we

set out to prove.

Another example for which our bound is tight is the ensemble of cycle codes.

Recall that these are nothing but (2, k) LDPC codes for some k > 2. Using eq. (3.3),

we see that a BEC having erasure probability p lies within the decoding threshold of

this ensemble iff p(1 − (1 − x)k−1) − x < 0 ∀x > 0. Notice (by direct differentiation)

that the expression on the l.h.s. is concave, and therefore this inequality holds for all

x iff the derivative at 0 is negative. Therefore the given BEC lies within the decoding

threshold of the ensemble iff p(k−1)−1 < 0, i.e., p < 1/(k−1). Therefore Theorem 4.2

tells us that a BISC with Bhattacharya parameter γ lies within the decoding threshold

of the ensemble of (2, k) cycle codes if γ < 1/(k−1). On the other hand, the stability

80

criterion given by eq. (4.5) tells us that this is also a necessary condition. Thus, we

see that a BISC with Bhattacharya parameter γ lies within the decoding threshold

of this ensemble iff γ < 1/(k − 1).

Recall from Section 2.5.3 that this is exactly the lower bound on the ML decoding

threshold of cycle codes given by the typical set method. Here we have a more

powerful result, namely that the iterative decoding threshold is given by the same

expression. As we mentioned before, upper bounds on the ML decoding threshold of

expurgated cycle code ensembles shown in [11] lead us to believe that in this case,

the iterative decoding threshold is the same as the exact ML decoding threshold and

is given by γ < 1/(k − 1).

4.3 Conclusions

As a consequence of what we said in the previous section, we see that any channel

with the same stability function as a BEC with parameter p must have a higher

capacity, since this is just a way of saying that for a given rate R, the capacity of any

one-parameter family of channels is bigger than the threshold CBEC achieved by codes

optimized for the BEC. This is in fact proved from first principles in [8]. Unfortunately

this difference in capacities is rather significant, as illustrated in Table 4.1, and hence

optimizing codes on the BEC for use on other channels is not a very good idea. The

main significance of this result is that to the best of our knowledge, it is the first

theoretical result about iterative decoding thresholds on a class of general channels.

Another interesting fact is that the threshold achieved on a general BISC by

degree sequences optimized for the BEC, while not being close to capacity by current

standards, nevertheless beats the so-called computational cutoff rate R0 which was

conjectured to be a limit for “practical communication” before the advent of turbo

codes and iterative decoding. To see this, note that the computational cutoff rate

81

Rate BEC BSC BIAGN Channel
Cap. C CBEC C CBEC

1/3 0.67 0.174 0.127 -0.495dB 0.851dB
1/2 0.50 0.11 0.067 0.187dB 1.419dB
2/3 0.33 0.061 0.029 1.059dB 2.169dB

Table 4.1: Comparison between capacity C and threshold CBEC achieved by codes
optimized for the BEC at different rates, for the BSC (in terms of the crossover
probability) and the BIAGN channel (in terms of Eb/N0).

R0 of a channel is also defined in terms of its Bhattacharya parameter γ as R0 =

1 − log2(1 + γ). Because of the concavity of the log function, we can easily see

that R0 ≤ 1 − γ. But the r.h.s. of this equation is the capacity of the BEC with

Bhattacharya parameter equal to the channel under consideration, and we have just

shown that this channel will lie inside the decoding threshold of a capacity-achieving

sequence on this BEC. We thus conclude with the following theorem:

Theorem 4.3 For any BISC, there exists a degree distribution of irregular LDPC

codes with rate greater than the computational cutoff rate R0 of the channel, such

that the BISC lies within its iterative decoding threshold. In other words, rates above

R0 can be achieved in a practical manner on any channel.

82

Chapter 5 IRA Codes on Non-Binary

Channels

In the last two chapters, we have been concerned with the performance of irregular

LDPC codes and IRA codes on BISC’s. We have seen that these codes achieve capac-

ity on the BEC and have thresholds very close to capacity on the BIAGN channel.

Degree sequences of irregular LDPC codes optimized for various other BISC mod-

els, including the BSC and the Laplace channel, can be found in [43] and [8]. The

performance of IRA codes on the Rayleigh fading channel, with and without side

information, is considered in [24]. The thresholds obtained are very close to capacity

in all these cases, and the performance curves are also encouraging.

In this chapter, we will consider the performance of these codes on a couple of chan-

nel models that do not fit into the BISC framework. The first is the two-dimensional

additive Gaussian noise channel with different constellations, while the second is a

very simple multi-access channel called the binary adder channel. The results indicate

that turbo-like codes can be adapted to a variety of different channel models.

5.1 The 2-D Gaussian Channel

The BIAGN channel we considered in Chapter 3 is essentially an additive Gaussian

noise channel constrained to a BPSK (Binary Phase Shift Keying) constellation. An

interesting question to ask is whether IRA codes perform equally well on the Gaus-

sian channel with larger constellations. In many practical situations, the constellation

consists of points in a plane, and the additive noise is a two-dimensional circularly

symmetric Gaussian random variable characterized by its variance in either dimen-

83

sion.

Assume that the size of the constellation is 2M . To use binary codes on such

a channel, the elements of the codeword are collected into groups of M , and each

group is then mapped to an element of the constellation according to a fixed rule.

The resulting scheme is easily represented in a graphical format by adding a set

of “modulator” nodes to the graph of the binary code. Each modulator node is

connected to the set of codeword components which form its input. If we use IRA

codes, then we need to introduce a random permutation between the binary encoder

and the modulator in order to avoid too many short cycles in the resulting graph.

In order to extend the sum-product algorithm to this setup, we need to have

an update rule for the modulator nodes, which is easily accomplished by means of

an a posteriori probability calculation. The communication between nodes in the

graph is still in the form of LLR’s, but the modulator node update turns out to have

complexity proportional to the size of the constellation. This scheme is therefore in-

feasible for very large constellation sizes; in such cases, more sophisticated techniques

like multilevel coding [19] can be used. Many constellations used in practice, however,

have small values of M , and do not pose much of a problem.

Another problem that arises while using this scheme is the lack of available tech-

niques to optimize degree distributions over such a channel. For BISC’s, Chung [8]

observed that a degree distribution optimized for one BISC performs reasonably well

on another if the optimization is performed with the additional constraint that it

satisfy the stability condition of the latter. Recall that the IRA code we simulated

for the BIAGN channel (see Figure 3.3) had no information nodes of degree 2, i.e.,

has λ′(0) = 0, and hence satisfies the consistency condition for any BISC. In fact, the

same code was simulated in [24] for the Rayleigh fading channel with encouraging

results. Here, we show simulation results for IRA codes with no degree 2 information

nodes, designed either for the BEC or the BIAGN channel, on 2-D Gaussian channels.

84

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

IRA Code
Turbo Code

Shannon
 Limit

Figure 5.1: Performance of an IRA code vs. a turbo code on the 2-D Gaussian channel
with 8-PSK modulation. Both codes have rate 2/3 and 10000 information bits.

Figure 5.1 shows the performance of a rate 2/3 IRA code with 8920 information

bits on the 2-D Gaussian channel with 8-PSK modulation. The overall rate of the

scheme is 2 bits per channel use. The IRA code in question had a = 4, no degree

2 information nodes, and was designed for the BEC. The performance of a turbo

code with the same parameters and the capacity of 8-PSK modulation on the 2-D

Gaussian channel are also shown for comparison. We can see that the IRA code has

a similar advantage relative to the turbo code as it did in the case of the BIAGN

channel. The distance from capacity at a given BER is also similar to the BIAGN

case for comparable block lengths.

We previously mentioned that the sum-product algorithm has complexity propor-

85

1.5 2 2.5 3 3.5 4
10

−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

W
or

d
E

rr
or

 R
at

e

IRA Code, no fade
Turbo Code, no fade
IRA Code, with fade
Turbo Code, with fade

Figure 5.2: Performance of an IRA code vs. a turbo code on the 2-D Gaussian channel
with 16-QAM modulation, when bitwise LLR’s are marginalized out of the received
channel values. Both codes have rate 1/3 and 4096 information bits. Also shown is
their performance with an independent Rayleigh fade on each bit.

tional to the size of the constellation, and is hence infeasible for large constellation

lengths. One suboptimal option in such a case is to marginalize out the bitwise LLR’s

from the received channel values, and then use the decoder for the binary code. (Nat-

urally, this involves a loss in capacity.) Figure 5.2 shows the performance using this

scheme of a rate 1/3 IRA code having 4096 information bits over a 2-D Gaussian

channel with 16-QAM modulation, compared to a turbo code having the same pa-

rameters. The IRA code in question had no degree 2 information nodes, had a = 4,

and was designed for the BIAGN channel. The turbo code had two constituent 8 state

convolutional codes. The performance of both codes with an independent Rayleigh

86

fade on each bit is also shown. (This simulation is one of several done based on pa-

rameters taken from one of the 3G wireless protocols.) We see from the figure that

the IRA code again maintains a similar advantage over the turbo code as in the case

of the BIAGN channel. (The same trend is observed over a range of code rates and

constellations, at least for comparable block lengths.)

Further results regarding the performance of IRA codes on 2-D Gaussian channels

using multilevel coding can be found in [30]. The techniques described in this section

have been used for other channels with non-binary input alphabets, like the 16-ary

symmetric channel, in [27, 28].

5.2 The Binary Adder Channel

The binary adder channel (BAC) is a simple example of a multiple-access chan-

nel (MAC). It is a two-user channel, with both users having an input alphabet {0, 1}.
The channel output is the real (as opposed to binary) sum of the two inputs. This

channel is very closely related to the BEC, and hence permits theoretical analysis.

To see the relation with the BEC, notice that if the channel output is 0 (resp.

2), the receiver knows with perfect certainty that both users transmitted 0 (resp. 1).

These two cases correspond to a 0 or a 1 being received on the BEC. On the other

hand, if the channel output is 1, the receiver knows that one of the users transmitted a

0 and the other a 1, but cannot decide between the two possibilities. This is analogous

to the case in which an erasure is received on the BEC.

The capacity region of a general MAC is well known (see [10, Section 14.3]).

In the case of the BAC, the rates R1 and R2 of the two users have to satisfy the

conditions R1 < 1, R2 < 1 and R1 + R2 < 1.5. The corner points (R1, R2) = (1, 0.5)

and (R1, R2) = (0.5, 1) of this region are easy to achieve using capacity-achieving

BEC codes. Suppose that user 1 transmits uncoded information, i.e., R1 = 1. The

87

w x
y

1 1

1

w x
y2

2 2

w3 x3

y3

w4 x4

y4

w5 x5

y5

w6 x6

y6

User 2User 1

Figure 5.3: Graphical representation of a BAC coding scheme.

receiver can determine what symbol user 2 transmitted if both users transmit the

same symbol, i.e., user 2 sees a BEC with erasure probability 0.5. Therefore he

can achieve his optimal rate 0.5 using a code that achieves capacity on this channel.

Once both the corner points are attained, the remaining points on the boundary of

the capacity region can be attained by time-sharing between the two corner points.

In this section, we will see another way of attaining an arbitrary point within the

capacity region without using time-sharing.

Suppose that each user is encoding his information by means of a binary code rep-

resented by a Tanner graph. Then the entire scheme can be represented in a graphical

manner as shown in Figure 5.3. The wi’s and the xi’s represent the transmitted values

of each of the users, and yi represents the received value. The parities on the left and

right represent the codes used by users 1 and 2 respectively. On a general MAC, the

received channel value yi gives an a priori probability distribution on pairs (wi, xi),

and thus the node containing these two variables behaves exactly like a modulator

88

node in the case of the 2-D Gaussian channel in the previous section. Let us call this

node a modulator node in this case as well. Therefore, the version of the sum-product

algorithm used there can be used for a general MAC as well.

In the specific case of the BAC, the enforced a priori probability distribution con-

sists either of knowing wi and xi with certainty, or knowing that wi is the complement

of xi. As we saw earlier, the latter case corresponds to an erasure on the BEC, and

has probability 0.5. Now, if all the incoming messages coming in to the modulator

node are erasures and so is the channel prior, then the outgoing message is also an

erasure. On the other hand, if either one of these messages is not an erasure, then

neither is the outgoing message. (To see this, notice that if the wi is known, then so

is the xi.) Therefore, as far as the probability of message erasure is concerned, the

modulator node update is exactly analogous to the variable node update in the BEC

case. The behavior at the check nodes is of course identical to the BEC case.

Therefore, iterative decoding is successful using this code on the BAC, if a BEC

with probability of erasure 1/2 lies within the decoding threshold of the overall binary

code (after replacing the modulator nodes by variable nodes). Since the capacity

of this BEC is 0.5, therefore the overall binary code must have rate at most 0.5.

Therefore the sum of the rates of the two constituent codes (of each user) is at most

1.5. (On splitting the parities between the two users, the number of parities remains

the same but the number of variable nodes doubles, causing the rate to go up by 1.)

This is exactly the capacity of the BAC. To achieve this capacity, all we need to do

is start with a capacity-achieving code on a BEC with erasure probability 0.5, and

divide its parities among the two users to get an appropriate rate split. This can be

done starting with either an irregular LDPC code or an IRA code.

The time-sharing approach derived previously is a special case of this “graph-

splitting” approach. In this case, for the first few channel uses, all the parities go

to user 1 (achieving one corner point), and after that all the parities are assigned to

89

user 2 (achieving the other point). However, heuristically speaking, compared to the

graph-splitting approach, the time-sharing approach requires a higher block-length to

achieve the same probability of error.

The reason the above technique works is that the BAC is “noiseless” in the sense

that if you succeed in decoding one of the users, you decode the other automatically.

However, it has the property that some variable nodes are completely unprotected

either for user 1 or user 2, and therefore the probability of error is always positive if

we introduce some additive noise into the channel. [40] gives some coding techniques

for communicating effectively on a noisy version of the BAC using IRA codes.

5.3 Conclusions

We have seen that irregular LDPC and IRA codes can be adapted to many different

channel models. We have seen this for many different BISC models, as well as 2-D

Gaussian channels with different modulation schemes, with and without fading, as

well as some simple multiple-access channels. Several other channel models have also

been studied in the literature.

90

Chapter 6 Conclusions

In the preceding chapters, we have considered several problems regarding the analysis

and design of graphical code ensembles. In this chapter, we will present a brief

summary of the results obtained, together with a discussion of open problems.

The typical set bound was derived in Chapter 2, which is a lower bound on the

maximum-likelihood decoding threshold of a code ensemble based on its weight enu-

merator. We showed that this bound was powerful enough to reproduce Shannon’s

coding theorem in the case of BISC’s, i.e., that the ensemble of random linear codes

achieves capacity under maximum-likelihood decoding. We also saw some evidence

suggesting that the typical set bound threshold was equal to the actual ML decoding

threshold for the ensemble of cycle codes. Though this bound seems to be extremely

tight in many cases, we saw that for q = 3 RA codes on the BSC and the BIAGN

channel, the iterative decoding threshold obtained by density evolution is higher than

the threshold obtained by the typical set bound, thus proving that it is not tight in

general. In our opinion, the important open problem in this chapter is to determine if

there are general conditions under which the typical set bound threshold is the same

as the actual ML threshold.

An important contribution of this thesis was the introduction of IRA codes in

Chapter 3, which were shown to achieve capacity on the BEC, and have thresholds

extremely close to capacity on the BIAGN channel. These codes appear to match

irregular LDPC codes in performance, while having an edge over them in terms of

encoding complexity. We also analyzed the growth in decoding complexity while

approaching capacity on the BEC, and extrapolated these results to make a conjecture

for other channels. On the BEC, the provable complexity of approaching capacity (as

91

given by Theorem 3.3) is seen to be much higher than the observed one (as given by

Conjecture 3.4). A proof of the latter would be much appreciated.

In Chapter 4, we derived a general lower bound on the iterative decoding threshold

of an ensemble of codes on any BISC based on its BEC threshold. Using this bound,

we also showed that it was possible to beat the so-called computational cutoff rate

on any BISC using iterative decoding. An important open problem in this regard

would be to improve this bound, ideally to get a bound powerful enough to show that

irregular LDPC and/or IRA codes achieve capacity on some channel other than the

BEC. Only once a proof of this result is available can a resolution of Conjecture 3.6

be attempted.

Finally, we presented some results on the performance of IRA codes on some

non-binary channels in Chapter 5. We show IRA codes to be effective on the 2-D

Gaussian channel with different input constellations. Particularly interesting is the

analysis of the binary adder channel, which seems to be the multiple-access analogue

of the BEC, and on which we are able to construct explicit capacity-approaching

schemes. Though we have shown some simple techniques for using IRA codes on

non-binary channels, more work is required to construct efficient schemes for general

discrete channels, especially ones with large input alphabets.

92

Appendix A Miscellaneous Derivations

for Chapter 2

Theorem A.1 For any BISC, K(δ) is a convex function in the region where it is

finite, i.e., over the interval (0, δmax), (where δmax is as defined in Section 2.3.1).

Proof:

Consider the BISC described in Section 2.3.1, for which K(δ) is given by eq. (2.7).

Let us define the function L(δ0, δ1, . . . , δK) as

L(δ0, δ1, . . . , δK) � H(δ) −
[
p0H

(
δ0

p0

)
+

K∑
i=1

(
piH

(
δi

2pi

)
+ p−iH

(
δi

2p−i

))]
,

(A.1)

so that K(δ), when it is finite, is given by

K(δ) = inf∑K
i=0 δi=δ

L(δ0, δ1, . . . , δK), (A.2)

where the constraints 0 ≤ δ0 ≤ p0 and 0 ≤ δi ≤ min(2pi, 2p−i) are implicitly assumed.

We wish to prove that for any δ(1) and δ(2), and any λ between 0 and 1,

K(δ(0)) ≤ λK(δ(1)) + (1 − λ)K(δ(2)), (A.3)

where δ(0) = λδ(1) + (1− λ)δ(2). Let δ
(1)
i and δ

(2)
i , 0 ≤ i ≤ K be the optimizing δi’s in

eq. (A.2) at δ = δ(1) and δ = δ(2) respectively. Then eq. (A.3) holds iff there exists a

valid breakup δ(0) =
∑K

i=0 δ
(0)
i of δ(0) satisfying

L(δ
(0)
0 , δ

(0)
1 , . . . , δ

(0)
K) ≤ λL(δ

(1)
0 , δ

(1)
1 , . . . , δ

(1)
K) + (1 − λ)L(δ

(2)
0 , δ

(2)
1 , . . . , δ

(2)
K). (A.4)

93

(This follows directly from eq. (A.2).) We claim that eq. (A.4) is satisfied for the

choice δ
(0)
i = λδ

(1)
i + (1 − λ)δ

(2)
i . (It is easy to check that this choice satisfies the

necessary constraints.) This is equivalent to showing the convexity of the K + 1-

dimensional function L(δ0, δ1, . . . , δK).

To this end, consider the random variable X taking integer values between −K

and K. Let X take the value i with probability pi. Let Y be a binary random variable,

i.e., taking values 0 and 1. The joint distribution Pr(X = x, Y = y) is determined

by the conditional distribution Pr(Y = y|X = x). Let this conditional distribution

be defined by Pr(Y = 0|X = 0) = δ0
p0

and Pr(Y = 0|X = i) =
δ|i|
2pi

for i �= 0. Clearly,

Pr(Y = 0) =
∑K

i=0 δi = δ. Therefore, from eq. (A.1),

L(δ0, δ1, . . . , δK) = H(Y) − H(Y |X) = I(X; Y), (A.5)

the mutual information between X and Y . It is a well-known fact that this quantity

is a convex function of the vector of transition probabilities Pr(Y = y|X = x). (For a

proof, see [10, Theorem 2.7.4].) Since the δi’s are linear functions of this vector, the

function L(δ0, δ1, . . . , δK) is also convex, thus completing the proof. �

94

Appendix B Miscellaneous Derivations

for Chapter 3

Lemma B.1 Let x = f(y) be the solution to the equation y = 1 − (1 − x)a−1, where

both x and y lie in [0, 1], and a is an integer greater than 1. Then f(y) has a power

series expansion around y = 0 with non-negative coefficients.

Proof:

y = 1−(1−x)a−1 ⇐⇒ (1−x)a−1 = 1−y ⇐⇒ x = 1−(1−y)1/(a−1) = f(y). (B.1)

Let α = 1/(a − 1). Then 0 < α ≤ 1. We can expand the above expression for f(y)

by the binomial theorem as

f(y) = 1 −
∞∑
i=0

(−1)i

(
α

i

)
yi =

∞∑
i=1

(−1)i+1

(
α

i

)
yi. (B.2)

However, for 0 < α ≤ 1, it is easily seen from its definition that
(

α
i

)
is positive for

odd i and negative for even i (except for i = 0), which together with the (−1)i factor

ensures that each coefficient in the above power series expansion is positive. �

Theorem B.2 Let x = f(y) be the solution to the equation

y = 1 −
[

1 − p

1 − p(1 − x)a

]2

(1 − x)a, (B.3)

where both x and y lie in [0, 1], and a is a positive integer. Then f(y) has a power

series expansion around y = 0 with non-negative coefficients.

95

Proof:

We introduce the intermediate variable z = 1 − (1 − x)a. If x = g(z) is the solution

to this equation, then by Lemma B.1, g(z) has a power series expansion with non-

negative coefficients around z = 0. Eq. (B.3) can now be rewritten as

y = 1 −
[

1 − p

1 − p(1 − z)

]2

(1 − z). (B.4)

Let z = h(y) denote the solution to this equation. Since f(y) = x = g(z) =

g(h(y)), and we know that g(z) has a power series expansion with non-negative coef-

ficients around z = 0, it suffices to show that h(y) has a power series expansion with

non-negative coefficients around y = 0.

Now, multiplying both sides of eq. (B.4) by (1 − p(1 − z))2 and bringing all the

terms to one side, we get the following quadratic equation for z:

p2(1 − y)z2 + (1 − p)(1 + p − 2py)z − (1 − p)2y = 0. (B.5)

The non-negative root of this equation is given by

z =
−(1 − p)(1 + p − 2py) +

√
(1 − p)2(1 + p − 2py)2 + 4p2(1 − y)(1 − p)2y

2p2(1 − y)

=
(1 − p)

2p2(1 − y)

[
−(1 + p − 2py) +

√
(1 + p)2 − 4py

]

=
1 − p2

2p2

[
−1 +

2p

1 + p
y +

√
1 − 4p

(1 + p)2
y

]
(1 + y + y2 + . . .). (B.6)

The term inside the square-root can be expanded into a power series using the bino-

mial theorem. Let us define the function c(y) together with its power series expansion

as

c(y) �
∑

i

ciy
i � −1 +

2p

1 + p
y +

√
1 − 4p

(1 + p)2
y. (B.7)

Expanding the r.h.s. and comparing terms, we see that c0 = −1 + 1 = 0, while c1 is

96

given by

c1 =
2p

1 + p
− 2p

(1 + p)2
=

2p2

(1 + p)2
≥ 0. (B.8)

For i > 1, we have

ci = (−1)i

(
1/2

i

) (
4p

(1 + p)2

)i

≤ 0, (B.9)

because the binomial coefficient
(
1/2
i

)
is positive for odd i and negative for even i

(except i = 0). Now, if h(y) has a power series expansion h(y) =
∑

i hiy
i, then

eq. (B.6) tells us that hi is given by

hi =
1 − p2

2p2

i∑
j=0

cj. (B.10)

Therefore h0 = 0 and h1 = c1(1 − p2)/(2p2) = (1 − p2)/(1 + p)2 ≥ 0. Since ci ≤ 0

for i ≥ 2, the hi’s form a non-increasing sequence for i ≥ 1. Also limi→∞ hi =

1−p2

2p2

∑∞
i=0 ci = 1−p2

2p2 c(1) = 0, since c(1) = 0. This shows that the hi’s are all non-

negative, and completes the proof. �

Theorem B.3 Let hp(x) and gp(x) be defined as in Section 3.4.2, i.e.,

hp(x) � 1 −
[

1 − p

1 − p(1 − x)a

]2

(1 − x)a, (B.11)

and gp(x) �
∑∞

i=1 gp,ix
i � h−1

p (x). Let N be the smallest integer such that
∑N

i=1 gp,i ≥
p. Then, for fixed p > 0, and any c < 1/(1 − p), there exists a constant k such that

N > kca. In particular, N grows exponentially in a.

Proof: We begin by bounding gp(x) from below as follows:

gp(x) =
∞∑
i=1

gp,ix
i ≥

N∑
i=1

gp,ix
i ≥

(
N∑

i=1

gp,i

)
xN ≥ pxN . (B.12)

97

This gives us the following lower bound on N:

N ≥ ln(1/gp(x)) − ln(1/p)

ln(1/x)
. (B.13)

Substituting hp(x) for x in this equation, we get

N ≥ ln(1/x) − ln(1/p)

ln(1/hp(x))
. (B.14)

It is easy to see from eq. (B.11) that hp(x) ≥ 1 − (1 − x)a. Therefore ln(hp(x)) ≥
ln(1−(1−x)a) ≥ −(1−x)a, i.e., ln(1/hp(x)) ≤ (1−x)a. Substituting this in eq. (B.14)

gives

N ≥ ln(1/x) − ln(1/p)

(1 − x)a
. (B.15)

Therefore, as long as the numerator of the r.h.s. is positive, i.e., x < p, N grows faster

than a constant times (1/(1− x))a. This is exactly the statement of the theorem. �

98

Appendix C Miscellaneous Derivations

for Chapter 4

Lemma C.1 Given random variables X and X ′ = tanh(X/2) satisfying the consis-

tency conditions given by eqs. (4.2) and (4.3), respectively, we have

E
[
e−X/2

]
= E

[√
1 − X ′

1 + X ′

]
= E

[√
1 − X ′2

]
. (C.1)

Proof:

The first equality is true simply because the random variables on both sides are

identical. The second needs an application of eq. (4.3). Firstly, let us use eq. (4.3) to

find the pdf of |X ′|.

p|X′|(x) = pX′(x) + pX′(−x) =

(
1 +

1 − x

1 + x

)
pX′(x) =

2

1 + x
pX′(x) (C.2)

Therefore, for 0 ≤ x ≤ 1, we have

pX′(x) =
1 + x

2
p|X′|(x), and (C.3)

pX′(−x) =
1 − x

2
p|X′|(x). (C.4)

Now,

E

[√
1 − X ′

1 + X ′

]
=

∫ 1

−1

√
1 − x

1 + x
pX′(x)dx

=

∫ 1

0

√
1 − x

1 + x

1 + x

2
p|X′|(x)dx +

∫ 1

0

√
1 + x

1 − x

1 − x

2
p|X′|(x)dx

99

=

∫ 1

0

√
1 − x2p|X′|(x)dx

= E
[√

1 − X ′2
]
, (C.5)

which completes the proof. �

Lemma C.2 For any 0 ≤ y1, y2 ≤ 1, we have

1 −
√

1 − y1y2 ≥ (1 −
√

1 − y1)(1 −
√

1 − y2). (C.6)

Proof:

1 −
√

1 − y1y2 ≥ (1 −
√

1 − y1)(1 −
√

1 − y2)

⇐⇒
√

1 − y1y2 ≤
√

1 − y1 +
√

1 − y2 −
√

(1 − y1)(1 − y2)

⇐⇒ 1 − y1y2 ≤ (1 − y1) + (1 − y2) + (1 − y1 − y2 + y1y2)

− 2(1 − y1)
√

1 − y2 − 2(1 − y2)
√

1 − y1

+ 2
√

(1 − y1)(1 − y2)

⇐⇒ 0 ≤ (1 − y1)(1 − y2) − (1 − y1)
√

1 − y2

− (1 − y2)
√

1 − y1 +
√

(1 − y1)(1 − y2)

⇐⇒ 0 ≤
√

(1 − y1)(1 − y2) −
√

1 − y1 −
√

1 − y2 + 1

⇐⇒ 0 ≤ (1 −
√

1 − y1)(1 −
√

1 − y2),

which is true. This proves the lemma. �

100

Bibliography

[1] S. Aji, “Graphical models and iterative decoding,” Ph.D. Thesis, California In-

stitute of Technology, Pasadena, 2000.

[2] S. Aji, G. Horn and R. J. McEliece, “Iterative decoding on graphs with a single

cycle,” Proc. ISIT 1998 (Ulm, Germany, 1998).

[3] S. Aji, H. Jin, A. Khandekar, D. J. C. MacKay and R. J. McEliece, “BSC

thresholds for code ensembles based on ‘typical pairs’ decoding,” Proc. IMA

Workshop on Codes and Graphs, (August 1999), pp. 195–210.

[4] S. Aji and R. J. McEliece, “The generalized distributive law,” IEEE Trans. Info.

Theory, March 2000, vol. 32, no. 1, pp. 325–343.

[5] S. Aji and R. J. McEliece, “The generalized distributive law and free energy mini-

mization,” Proc. 39th Allerton Conf. on Communication, Control and Computing

(Allerton, Illinois, Oct. 2001), pp. 672–681.

[6] L. Bahl, J. Cocke, F. Jelenik and J. Raviv, “Optimal decoding of linear codes

for minimizing symbol error rate,” IEEE Trans. Info. Theory, March 1974, vol.

20, pp. 284–287.

[7] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon limit error-

correcting coding and decoding,” Proc. ICC 1993 (Geneva, Switzerland),

pp. 1064–1070.

[8] S.-Y. Chung, “On the construction of some capacity-approaching coding

schemes,” Ph.D. Thesis, Dept. of Elec. Engg. and Comp. Sc., MIT, 2000.

101

[9] S.-Y. Chung, R. Urbanke,, and T. J. Richardson, “Analysis of sum-product de-

coding of low-density parity-check codes using a Gaussian approximation,” IEEE

Trans. Info. Theory, Feb. 2001, vol. 47, pp. 657–670.

[10] T. Cover and J. Thomas, Elements of Information Theory. New York: Wiley,

1991.

[11] L. Decreusefond and G. Zémor, “On the error-correcting capabilities of cycle

codes on graphs,” Combinatorics, Probability and Computing, vol. 6, 1997, pp. 1–

35.

[12] D. Divsalar, S. Dolinar, and F. Pollara, “Iterative turbo decoder analysis based

on Gaussian density evolution,” submitted to IEEE J. Selected Areas in Comm.

[13] D. Divsalar, “A simple tight bound on error probability of block codes with

application to turbo codes,” JPL TMP Progress Report42-239, Nov. 1999, pp. 1–

35.

[14] D. Divsalar, S. Dolinar, H. Jin and R. J. McEliece, “AWGN coding theorems

from ensemble weight enumerators,” Proc. ISIT 2000, p. 458.

[15] D. Divsalar, H. Jin, and R. J. McEliece, “Coding theorems for ‘turbo-like’ codes,”

Proc. 36th Allerton Conf. on Communication, Control, and Computing (Allerton,

Illinois, Sept. 1998), pp. 201–210.

[16] G. D. Forney, Jr., “Codes on graphs: normal realizations,” IEEE Trans. Info.

Theory, Feb. 2001, vol. 47, pp. 520–548.

[17] R. Gallager, Low-Density Parity-Check Codes. Cambridge, Massachusetts: MIT

Press, 1963.

[18] R. Gallager, Information theory and reliable communication. New York: McGraw

Hill, 1968.

102

[19] H. Imai and S. Hirakawa, “A new multilevel coding method using error correcting

codes,” IEEE Trans. Info. Theory, May 1977, vol. 23, pp. 371–377.

[20] H. Jin, “Analysis and design of turbo-like codes,” Ph.D. Thesis, California In-

stitute of Technology, 2001.

[21] H. Jin, A. Khandekar and R. J. McEliece, “Irregular repeat-accumulate codes,”

Proc. 2nd International Symposium on Turbo Codes (Brest, France, September

2000), pp. 1–8.

[22] H. Jin and R. J. McEliece, “AWGN coding theorems for serial turbo codes,” Proc.

37th Allerton Conf. on Communication, Computation and Control (Allerton,

Illinois, Sept. 1999), pp. 893–894.

[23] H. Jin and R. J. McEliece, “Typical pairs decoding on the AWGN channel,”

Proc. 2000 International Symp. on Info. Theory and its Applications (Hawaii,

Nov. 2000), pp. 180–183.

[24] H. Jin and R. J. McEliece, “Performance of IRA codes on Rayleigh fading chan-

nels,” Proc. CISS 2001 (Baltimore, MD, Jan. 2001).

[25] H. Jin and R. J. McEliece, “Coding theorems for turbo code ensembles,” IEEE

Trans. Info. Theory, June 2002, vol. 48, pp. 1451–1461.

[26] A. Khandekar and R. J. McEliece, “On the complexity of reliable communication

on the erasure channel,” Proc. ISIT 2001 (Washington D.C.), p. 1.

[27] A. Khandekar and R. J. McEliece, “Are turbolike codes effective on nonstandard

channels?” Proc. 2001 International Symp. on Communication Theory and its

Applications (Ambleside, U.K., July 2001), pp. 293–298.

[28] A. Khandekar and R. J. McEliece, “Are turbolike codes effective on nonstandard

channels,” IEEE Info. Theory Society Newsletter, Dec. 2001, vol. 51, pp. 1–8.

103

[29] A. Khandekar and R. J. McEliece, “A lower bound on the iterative decoding

threshold of irregular LDPC code ensembles,” Proc. CISS 2002 (Princeton, NJ,

March 2002).

[30] A. Khandekar and R. Palanki, “Irregular repeat-accumulate codes for non-binary

modulation schemes,” Proc. ISIT 2002 (Lausanne, Switzerland, July 2002).

[31] F. R. Kschischang, B. J. Frey and H. Loeliger, “Factor graphs and the sum-

product algorithm,” IEEE Trans. Info. Theory, Feb. 2002, vol. 47, pp. 498–519.

[32] S. Litsyn and V. Shevelev, “On ensembles of low-density parity-check codes:

asymptotic distance distributions,” IEEE Trans. Info. Theory, April 2002, vol.

48, pp. 887–908.

[33] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann,

“Practical loss-resilient codes,” Proc. 29th ACM Symp. on the Theory of Com-

puting (1997), pp. 150–159.

[34] M. Luby, M. Mitzenmacher, A. Shokrollahi and D. Spielman, “Analysis of low-

density codes and improved designs using irregular graphs,” Proc. 30th ACM

Symp. on the Theory of Computing (1998), pp. 249–258.

[35] M. Luby, M. Mitzenmacher, A. Shokrollahi and D. Spielman, “Efficient erasure

correcting codes,” IEEE Trans. Info. Theory, Feb. 2001, vol. 47, pp. 569–584.

[36] M. Luby, M. Mitzenmacher, A. Shokrollahi and D. Spielman, “Improved low-

density parity-check codes using irregular graphs,” IEEE Trans. Info. Theory,

Feb. 2001, vol. 47, pp. 585–598.

[37] D. J. C. MacKay, “Good error correcting codes based on very sparse matrices,”

IEEE Trans. Info. Theory, March 1999, vol. 45, pp. 399–431.

104

[38] R. J. McEliece, The theory of information and coding. Cambridge, U.K.: Cam-

bridge University Press, 2002.

[39] R. J. McEliece, D. J. C. MacKay and J.-F. Cheng, “Turbo decoding as an

instance of Pearl’s ‘Belief Propagation’ algorithm,” IEEE J. Selected Areas in

Comm., Feb. 1998, vol. 16, no. 2, pp. 140–152.

[40] R. Palanki, A. Khandekar and R. J. McEliece, “Graph-based codes for syn-

chronous multiple access channels,” Proc. 39th Allerton Conf. on Communica-

tion, Control and Computing (Allerton, Illinois, Oct. 2001), pp. 1263–1271.

[41] J. Pearl, Probabilistic reasoning in intelligent systems. San Mateo, California:

Morgan Kauffman, 1988.

[42] T. J. Richardson and R. Urbanke, “The capacity of low-density parity check

codes under message passing decoding,” IEEE Trans. Info. Theory, Feb. 2001,

vol. 47, pp. 599–618.

[43] T. J. Richardson, A. Shokrollahi and R. Urbanke, “Design of provably good

low-density parity-check codes,” IEEE Trans. Info. Theory, Feb. 2001, vol. 47,

pp. 619–637.

[44] T. J. Richardson and R. Urbanke, “Efficient encoding of low-density parity-check

codes,” IEEE Trans. Info. Theory, Feb. 2001, vol. 47, pp. 638–656.

[45] C. E. Shannon, The Mathematical Theory of Communication . Urbana, Illinois:

University of Illinois Press, 1963, 1998.

[46] M. A. Shokrollahi, “Capacity-achieving sequences,” Proc. of the 1999 IMA work-

shop on Codes, Systems and Graphical Models, pp. 153–166.

105

[47] M. A. Shokrollahi, “New sequences of linear time erasure codes approaching

channel capacity,” Proc. 1999 AAECC (Honolulu, Hawaii, November 1999)

pp. 65–76.

[48] M. A. Shokrollahi, “Capacity-achieving sequences on the erasure channel,”

preprint, available at http://shokrollahi.com/amin/pub.html#ldpc, 2000.

[49] M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Info.

Theory, Sept. 1981, vol. 27, pp. 533–547.

[50] A. J. Viterbi and A. M. Viterbi, “Improved union bound on linear codes for

the binary-input AWGN channel, with applications to turbo decoding,” Proc.

Winter 1998 Info. Theory Workshop (San Diego, California, Feb. 1998), pp. 72.

[51] Y. Weiss and W. T. Freeman, “On the optimality of solutions of the max-product

belief-propagation algorithm in arbitrary graphs,” IEEE Trans. Info. Theory,

Feb. 2001, vol. 47, pp. 736–744.

[52] Y. Weiss and W. T. Freeman, “Correctness of belief-propagation in Gaussian

graphical models of arbitrary topology,” in Advances in Neural Information Pro-

cessing Systems 12, eds. S. Solla, T. K. Leen and K. R. Muller, 2000.

[53] N. Wiberg, Codes and decoding on general graphs. Linköping Studies in Science

and Technology, Dissertation no. 440. Linköping, Sweden, 1996.

[54] J. S. Yedidia, W. T. Freeman and Y. Weiss, “Generalized belief propagation,”

in Advances in Neural Information Processing Systems 13, eds. T. K. Leen, T.

G. Diettrich and V. Tresp, 2000.

[55] J. S. Yedidia, W. T. Freeman and Y. Weiss, “Bethe free energy,

Kikuchi approximations, and belief propagation algorithms,” available at

www.merl.com/papers/TR2001-16.

