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Abstract

We design sequences of low-densily parily check codes thal provably perform at rales ex-
tremely close to the Shannen capacity. The codes are built from highly irregnlar bipartite graphs
with carefully chosen degree patterns on both sides. Our theoretical analysis of the codes is based
on [1]. Additioually, based on the assumnplion that the wuderlying communication chaunel is
svmmetric, we prove that the probability densities at the message nodes of the graph satisfy
a certain symmelry, This enables us (o derive a succinet description of the densily evolution
tor the case of a belief propagation decoder. Furthermore, we prove a stability condition which
implies an upper bound on the fraction of errors that a belief propagation decader can correct
when applied to a code lnduced [rom a bipartite graph with a given degree distribution.

Our eodes are found by optimizing the degree structure of the underlving graphs. We develop
several strategies to perform this optimization. We also present some simulation results for fhe
codes found which show that the performance of the codes is very close to the asymptotic
theoretical bounds.

Inder Terms  Low densily parily check codes, beliel propagation, turbo codes, irregular
codes

1 Introduction

In this paper we present irrequfor low-density parity check codes (LDIPPCCs) which exhibit perfor-
mance exlremely close Lo the hest possible as delermined by the Shannon capacily [ormula. For
the additive white Gaussian noise channel {AWGXNC) the best code of rate one-half presented in
this paper has a threshold within (0.06dB from capacity, and simulation results show that our best
LDPCC of length 10% achieves a hit error probability of 107% less than 0.13dB away from capacity,
handily beating the hest (turbo) codes known so [ar.

LDPCCs possess several other distinet advantages over turbo-codes. First, the complexity of (heliel-
propagation) decoding is somewhat less than that of turbo-codes and, being fully parallelizable, can

potentially be performed at significantly greater speeds. Second, as indicated in a previous paper

(1], very low complexity decoders that closely approximate helief-propagation in performance may
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be (and have been) designed for these codes. Third, low-density parity check decoding is veriliable
in the sense that decoding to a correct codeword is a detectable event. One practical objection to
low-density parity-check codes has been that their encoding complexity is high. One way to get
around this problem is by slightly modifying the construction of codes from hipartite graphs to a
cascade of snch graphs, see [2, 3]. A dillerent solution [or practical purposes, which does not require

cascades, will be presented elsewhere [1].

Let us recall some basic notation. As is well known, low-density parity-check codes are well repre-
sented by bipartite graphs in which one set of nodes, the variable nodes, corresponds to elements
of the codeword and the other set of nodes, the check nodes, corresponds to the set of parity-check
constraints satislied by codewords of the code. Regular low-density parily-check codes are those [or
which all nodes of the same type have the same degree. Thus, a (3,6)-regular low-density parity-
check code has a graphical representation in which all variable nodes have degree 3 and all check

nodes have degree 6. T'he bipartite graph determining such a code is shown in lig. 1.

Figure 1: A (3,6)-regular code of length 10. There are 10 variable nodes and 5 check nodes. For
each check node ¢; the sum (over GF(2)) of all adjacent variable nodes is equal to zero.

For an irregular low-density parity-check code the degrees of each set of nodes are chosen accord-

ing to some distribution. Thus, an irregular low-density parity-check code might have a graphical



representation in which hall the varlable nodes have degree 5 and hall have degree 3, while hall

the constraint nodes have degree ¢ and half have degree 8. For a given length and a given de-

gree sequence (finite distribution) we define an ensemble of codes by choosing the edges. i.e., the

connections between variable and check nodes, randomly. Maore precisely, we enumerate the edges

eranating [rom Lhe variable nodes in some arbilrary order and proceed in the same way with the

edges emanating from the check nodes. Assume that the number of edges is £. Then a code (a par-

ticular instance of this ensemble) can be identified with a permutation on F letters. Note that all

elements in this ensemble are equiprobable. In practice the edges are not chosen entirely randomly

since cerlain potentially unlortunate events in the graph construction can be casily avoided.

In a recenl paper [1] we presented an asymplotic analysis of LDPCCs under message passing

decoding. Assume we have the following setup:

1.

We are given an ordered [amily of binary-input discrele memoryless channels paramelerized
by a real parameter & such that il & < &9 then the channel with parameter &, is a physically
degraded version of the channel with parameter 8;. Further, each channel in this family fulfills

the channel symmetry condition
plyle =1) = p(—yle = =1) . (1)

A sequence of code ensembles C,(A, p) 15 specified. where n is the length of the code and

DN dy il DN dy i1y o1, RTIRSCINE T DR B IR P,
Aa) = Y0 N (pla) = Y07 pse* ™) is the variable (check) node degree sequence.
More precisely, A; (p;) is the [raction of edges ecmanating [rom variable (check) nodes of

jul dn plx)

degree i. Note that the rate of the code is given in terms of A{z) and p(a) as 1 — e A(a)"
Jo dee M

A message passing decoder iy selecled. Dy definition, messages ouly contain exdvinsie iulor-
mation, i.e., the message emitted along an edge ¢ does not depend on the incoming message
along the same edge. lurther, the decoder fulfills the following symmetry conditions. I'lip-
ping the sign of all incoming messages at a variable node results in a flip of the sign of all
outgoing messages. The symmetry condition at a check node is slighlly more involved. Lot
¢ be an edge emanating from a check node ¢, Then flipping the sign of { incoming messages
arriving at node ¢, excluding the message along edge ¢, results in a change of the sign of the
autgoing message by (—1)°. In all these cases, only the sign is changed, but the reliability

remains unchanged.



Under the above assumptions there exists a threshold 6* with the following properties: l'or any
¢ » 0 and & < & ihere exisis an n(c, é) such that almost every code! in C(A, p), n = nl(c, ),
has probability of error smaller than € assuming that transmission takes place over a channel with
parameter ¢. Conversely, if the transmission takes place over a channel with parameter & > &%,

then almost any code in C,{A, p) has probability of error uniformly bounded away from zero.”

I'urther, for the important case of helief propagation decoders a procedure was introduced that
cnables the ellicient computation ol é* to any desired degree ol accaracy. In [1] threshold values
and simulation results were given for a variety of noise models, but the class of low-density parity-
check codes considered was largely restricted to regulur codes, In the present paper we present
results indicating the remarkable performance that can be achieved by properly chosen irregular

codes.

The idea nnderlying this paper is quite straightlorward. Assume we are interested in transimission
over a particular memoryless channel using a particular message passing decoder. Since for every
given pair of degree sequences (A, p) we can determine the resulting threshold value 6%, it is natural
to search for those pairs which maximize this threshold.® ‘This was done, with great success, in
the case of erasure chanuels [5, 6, 7]. In the case of most other channels ol interest the sitnation is
much more complicated and new methods must be brought to hear on the optimization prohlem.
Fig. 2 compares the performance of the (3, 6)-regular LDPCC (which is the best regular such code)
with the performance of the best irregular LIPCC we found in our search and the performance of
the standard parallel turbo code introdnced by Berrou, Galvienx, and Thitimajshima [8]. All three
codes have rale one-hall and their perlormance under beliel propagalion decoding over the AWGNC
is shown for a code word length 10°. Also shown is the Shannon limit and the threshold value of
our hest LDPCC (o = 0.9718). I'rom this figure it is clear how much benefit can he derived from
optimizing the degree sequences. I'or n = 10% and a hit error probability of 1079, our best LDPCC
is only 0.13dDB away [rom capacity. This handily beals the perlormance ol turbo-codes. Even more
impressive, the threshold, which indicates the performance for infinite lengths, is a mere 0.06dB

away from capacity.

' More precisely, the fraction of codes for which the ahove statement is true converges exponentially {in ») fast
to 1.

*We conjecture that this is actually true for every code in Co (2, o).

Wao may also oplimive degree sequences under varions constraints. For example, the larger the degrees used 1he
larger the code size needs 1o be in order Lo approach the predicled asymptote. Therelore, it is highly desirable to
look for the best degree sequences with some a priori hound on the size of the degrees.
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Figure 2: Comparison of (3,6)-regular LDPCC, turbo code, and optimized irregular LDPCC. All
codes are of length 10° and of rate one-half. The bit error rate for the AWGNC is shown as a
function of £, /Ng (in dB), the standard deviation o, as well as the raw input bit error probability
Py

The empirical evidence presented in Fig. 2 together with the results presented in Section 3 beg the
question of whether LDPCCs can achieve capacity on a given binary-input memoryless channel. The
only result in this direction is that of [5] which gives an explicit sequence of degree distributions such
that, in the limit, the codes induced by these degree distributions achieve capacity on an erasure
channel. The following Theorem, due to Gallager, imposes, at least for the BSC, a necessary
condition in order for LDPCCs to achieve capacity: their maximum right degree d, must tend to
infinity.? Although this result bounds the performance of LDPCCs away from capacity, the gap is
extremely small and the gap converges to zero exponentially fast in d,. Hence, although of great

theoretical interest, the following theorem does not impose a significant practical limitation.

Theorem 1. [Gallager 61] Let C € C(A,p) be a LDPCC of rate . Let C be used over a BSC

with crossover probability ¢ and assume that each codeword is used with equal probability. If

*We conjecture that a similar statement (and proof) could be given for continuous channels.



. _ag)dr
r > 1= h(8)/h(p"). where h(-) is the binary entropy function and p* = 1—H122—6) then the block

error probabilily is bonnded away [rom 0.

Proof. Note that the capacity of the BSC is equal to 1 — A(é). Since p* > 1/2 for any finite d,,
we have h(p*) < 1 and, hence, 1 = A(&)/h(p*) < | — h(&). Gallager stated the above Theorem
originally lor (j, &)-regular codes. A closer look, however, shows that the prool remains valid lor

[+(1—25)"

the case of irregular codes if the original expression p* = 7 is replaced hy the expression

= M Details of the proof can be found in [9, p. 39]. We note that a slightly sharper
bound can be given if we replace d,. with the average degree of the (1 — ri-fraction of highest degree

nodes. owever, since the improvement is usually only slight and since the exact size of the gap is

nol signilicant in practice, we leave the details Lo the reader. ]

The outline of this paper is as follows. In Section 2 we describe and study density evolution,
Under the assumption that the input distribution arises from a symmetric channel, we show that
the message distributions satisfy a certain consistency condition which is invariant under density
evolution. Many simplifications arise in this case which aflord us considerable inlormation on the
nalure of density evolution. In particular, we show thal density evolution always converges to a
fixed point. We also address the stability of the fixed point that corresponds to the correct solution.,
In Section 3 we give tahles of some very good degree sequences. Although we focus mostly on the
AWGNC and rates one-half, we also give a few examples for different channels and rates. In Section
3 we also present some simulation resulls that show thal the promised perlormance can be closely
achieved for reasonably long codes. Finally, in Section 1 we describe our numerical optimization

techniques which were used to generate the tahles in Section 3.

2 Density Evolution: Consistency, Stability, and Fixed Points

Density evolution, as described in [1], is general enough to enable the computation of message den-
sities regardless of the initial density. [n the case of most interest, the message distribution arises
from the observation of the input bit after passing it through a known symmetric channel. Since
the channel is known, the log-likelihood [or the inpul bil given the observalion is delermined and
this log-likelihood constitutes the received message. Message distributions (under the ubiquitous
all-one word assumption) which arise this way satisfy certain consistency conditions that are pre-

served under density evolution. In the following, we will examine these conditions. They will lead



Lo simplilications ol density evolulion. Furthermore, in this case, one can prove o monolonicily
property of density evolution which implies that density evolution converges to a fixed point. Fi-
nally, in this section, we study the asymptotics of correct decoding to arrive at a stability condition

for the fixed point corresponding to zero probability of error.

Let us livst brielly recall the orm and derivation ol density evolutlion lor beliel propagalion. In
general, cach message represents an estimnale ol a particular transmitted bit. Let & denote the value
of this bit and recall that & is an element of {+1}. At a variable node, we will represent messages

as log-likelihood ratios,

where y represents all the observations conveved to the variable node at that time. In the sequel
we will often refer to message distributions without further qualifications. Unless stated otherwise,
this will always reler 1o message distribulions al variable nodes under the all-one word asswnptlion
where the messages are represented as log-likelihood ratios. At a check node it is more convenient
to represent the message as a tuple (s.7) where s € W, := {+1} indicates the hard decision and

where r € BT is equal to
log |p(z = 1|y) — ple = =1]y)| | -

Here W, denotes the two-element group with elements {+1} and group operation equal to real
multiplication. Since we wish to admit the possibility of perfect knowledge of a bit (erasure channel),
we must admit the possibility that message distributions may have point masses al the endpoints.
E.g.. in the log-likelihood representation this means that we may have ‘point masses at infinity’ in
our message distributions, Thus, in general, message distributions are probability distributions on
the two-point compactification of R, which we denote by R. To simplify the presentation we shall
generally assume that distributions are absolulely continunous with respect to Lebesgue measure
and can therefore be represented by their densitios.®

Assume now that the received message and the incoming messages at a variable node are given in

log-likelihood form. The outgoing message along an edge ¢ is then simply the sum of the received

message plus all incoming messages, excluding the message incoming along edge e. 'Therefore,

A couple of exceptions will he made for certain discrete measures. In particular, we shall require the distribution
Ao, the ‘delta function at infinity.” We shall also require the distribution Ay the ‘delta function at zero,” corresponding

1o an crasurc.
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assuming independence (tree assumption), the density of the outgoing message is the convolution

of the densities of the messages participating in this sum.

An equivalent statement is true at the check nodes. Assume that the incoming messages to a
check node are all in the lorm (s, ). The oulgoing message (again in (&, r) representation) along
an edge ¢ is then simply the sum of all incoming messages, excluding the message incoming along
edge ¢ (here “addition” is performed componentwise, Le.. (s(.71) + (82.72) = (81 * s2.71 + 72),
where the first component is in Wy = {+1} and “addition”™ corresponds to real multiplication.
and the second component is an clemenl of R with regnlar addition.) Thus, as in the previous
case, the density of the oulgoing message, over Wy x BT, can be wriiien as the convolution of the
corresponding densities of the incoming messages. Here, BT refers to [0, o] the compactification of
R*. To complete the description we need only specify the change of variables necessary to convert

a densily lrom one representation Lo the other and to incorporate the degree sequences.

Suppose thal we have a graph with lelt and right edge degree distributions given hy Alz) =

fof Mo and plx) = Zf;l piai™", respectively. We follow [3] and use the following convention:

=

1

for a polynomial ¢(z) = >, g2t 1 with real coefficients ¢; we denote by ¢ f) the distribution

2 q; 201 where here and in the sequel @ denotes convolution.

[n the following, we assume that the channel satisfies the symmetry condition (1. lurther, we
assume that the allone codeword was transmitied. Let By be the distribution of the received
log-likelihoods and Py denote the distribution of log-likelihoods sent from the variable nodes to the
check nodes in the £th iteration. Let R; denote the distribution of log-likelihoods sent from the

check nodes to the variable nodes in the £th iteration. We may initialize with g = Ag.

The distribution ol messages passed [rom a message node 1o a check node in the £0h ileration is
given by the convolution Fy:= Fy & ARy 1).

To ohtain the distribution of messages from check nodes back to message nodes, we must perform

a change of measure. To this end we define the operator v which takes the space of distributions

on BT into itself. l'or densities on Rt we define v as

Yoyz0: ()= f(lncothy/2) eschiy). (2)
The operator + represents a change of variables y — Incoth ¢/2, e, flyidy = +(f)ly) dy, since
% Incothy/2 = —esch(y). (We can extend the definition of 4 to distributions on RY hy taking

0



limits.) This shows part (a) of the following lemma, while part (b) follows easily from the fact that
In coth (7111 601‘3211 y/z) =y

Lemma 1. The following facts hold:

(a) fo" 2Ny dy = ;7 fly) dy

(b) v(7(f))y) = fly).

For any distribution f on R let = denote T—oo,0) f and let Ft denote 1 (0,5 [» where 14 denotes

—

the characteristic function of A so thal f= f* 4 /=5

Given a distribution [ over R of log-likelihoods I, we can represent it as a distribution over Wy x Rt

by representing ! as the pair (s,r). We therefore define I', the change of variable operator, by
L(f)(s,r) = Lay(s)y(F 1))+ Logy (sv(RF (7).

where R f~ denotes the reflection of f about 0, 1le., Rf (2) = f (—2).

Now, let g be a distribution over W, x R, Let g and g~ be defined by g7{r) = 'I{|}('5- Jg(s,r)and

g7 (r) = 1y_qy(s)gis. 7). Then the inverse of I" is given by

=)D =~ (g TN+ Ry(g™ (D).

Using this notation, we obtain the following.

Theorem 2 (Density Evolution). Lel Fy denole the inilial message distribulion, under the as-
sumption that the all-one codeword was transmitted, of a low-density parity check code specificd by
edge degree distributions )~ Nt and > pirt TV I Ry denotes the density of the messages passed
from the check nodes Lo Lhe message nodes al round § of the belief-propagalion, wilh Ry == Ay, then
we have

Re=T'p(T(Py & A(Re_1))).
2.1 Consistency

[n the following, we call a distribution f on R consistent if it satisfies f(2) = f(—z)e® for all

# € RY. More [ormally, a probabilily measnre v is consistent il the [ollowing hold. First, v can

In the general case, where a point mass at 0 is allowed, the mass at 0 should be split equally between £~ and f1.

o



be written as ¥~ 4+ v~ where v~ is supported on [—oc,0] and ©T is supported on [0, +o¢]. Letting
R~ denote as belore the rellection of »~ about 0, we require that Re™ he absolulely continuous
with respect to #™ and that the Radon-Nikodyn derivative [10, p. 180] of R~ with respect v be
given by e *, If v has a density f then consistency of i is equivalent to consistency of f as defined

above. Note that A, and Ay are consistent measures.

We will first establish consistency of the initial message distribution of density evolution under

eenceral condilions.

Proposition 1. Suppose that a channel has symmetry property ply | x = 1) = pl—y | = = =1).
and lel Fy be the inilicl message distribulion in log-likelihood ralio form under the all-one word

assumption. Then Fy is consistent.

Proof. Let 1 denote the measure corresponding to Fy, i.e.. for any measurable subset 4, v(A) :=

jA Fo(2) dz. Note that Fy is equal to the distribution of the random variable
(yle=1 :

z(y) = log 7_2 y{l‘ ) (3)

Py

under the assumption that the all-one codeword was transmitted. For anv measurable set 4 we

have v(A) = | _ (1) plylr = 1) dy. Invoking channel symmetry and equation (3} we have

v(-4) = _[_l[A)p(ylw=l) dy

/ pl—yle=1) dy
21 (A)

/ plyle = —1) dy.
Sz (A)

= / e Wplyle = 1) dy.
77 (A)

Thus, we obtain that » is a consistent measure, i.e., setting 4 = (2,2 + dz) we obtain

v(—z — dz,—z) R

vz, 2+ dz)

=e
O

Example 1 (Erasure Channel). For the erasure channel the initial message distribution is €Ag+
(1—€)A.. Then I’(f = $Ag+ (1 —e)A. and Iy = 5Ap, which shows that the initial distribution

1s consislent.
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Example 2 (BSC). For the BSC the initial message distribution is Py(e) := A
&1A

log 152 +(1 -

AT , T+ e 5/ o EY - £ 3
g 122 We have Ff = (1 é)A]Oglb;{v and F, = 6Ah—.g%9 so consistency is apparent.

O
2 2 82 2
@ B i S
Example 3 (AWGNC). Here the initial message distribution is Ih(x) 1= 4/ g€ 8 . 'The
consistency condition is then
2 [.r——%y)“)o"‘) 2 (—z——%—]ici
: fo? T as _ z : :
Po(z) =14/ —e g = e 3 e” = Py(—x)e”.
8 R '
U

Example 4 (Laplace Channel). As a final example, the initial message distribution for the

Laplace channel is given by

. -z, | =%
Bole) = ghg+ 3¢ A2 4 3677 Mg
where
1, |=] %%
X|I|<; 0 |T| >%

Again, it is easy to check that the consistency condition is fulfilled.

We say thal two channels are eguivalent il they have the same initial message distribution. Tt is
often convenient to pick one representative for each equivalence class. How this can be done is

shown in

Lemma 2. Let Py(y) be a consistent distribution. Then the symmetric channel p(-|-) with p(y|z =
1) = Fo(y) (and hence by svmmetry p(y|z = —1) = Fy{—y)) has initial message distribution F(y).
Froof.

|ng — |OWM i |0g P(](y) . |0|:5‘ P(](y) _
"pyle=-1)" Cpl—yle=1)" " FR—y) - Fyly)ev

O

Our next goal is 1o show thal consistency is preserved under densily evolution. This leads 1o certain

simplifications of its representation.

Lemma 3. A dislribulion [ over R is consislent if and only if ~(R 7)) = tanh{y/2)v(/T)(y).

11



Proof. We have
Y(Rf )u)= f (=Incoth(y/2})esch(y)
and
~(fT)y) = fY{Incoth(y/2)) eschiy).
Note that from [(—z) = f(z)e ® il lollows that
YR y) = exp{—Incoth(y/2))f(In coth(y/2)) esch(y) = tanh(y/2)¥(fF)(y) .

and the lemma follows directly. L

Thus, we may extend the definition of consistency to densities over Wy x RT,

Lemma 4. Consisteney is invariant under convolution in B and convolution in W, x R,

Proof. Let [ and g be consistent densities over R, Then

/-f(d-'—y)y('y) dy = / oY [y — w)elal—y) dy

X —_%0

- / ey — a)g(—y) dy

— 20

e” / fl=r —y)gly) dy.

To show that consistency is invariant under convolution over W, x Rt is somewhat more elaborate.

lLet fand g he consistent densities over Wy x RT and let us express them as
flsir) = (s T+ 1) f ()
g(s,r) = Ly(8)gT(m) + Lpy(s)g~(r),

{where ft{r) = Tiiy(8) (s, 7), ete.) and let us similarly express f @ g. Then the convolution of f

and g is specilied by
(Foegt+(fea” = (FF+el +a)
o' —Usg) = (J'-1)a" —g).
Now, the consistency condition for a distribution [ over Wy x RT can be expressed as
(=) =¥ + 7))
Thus, it is easily verified that f & g is consistent. ]

12



In view ol the above it is convenient o introduce the “lold” operator F which takes distributions

on B to distributions on RT. We define it by
Ffle)= fT(2)+Rf(z) = fH{x)+ f(—=).

Allogether, we oblain the lollowing.

Theorem 3 (Density Evolution and Consistency). fef [ denote the initial message distri-
bution of a low-densily parily check code specified by edge degree distribulions Y, Nt and
Y. pia'™" and assume that Py is consistent. If Ry denotes the density of the messages passed

from the check nodes to the message nodes at round £ of the belicf-propagation then we have
Ry = (F~ o m)ol(y0 F)B & Al Ber)),
and Py is consistent for all £ > ().

Example 5 (Erasure Channel). Let [ be a density distribution of the lorm ¢Ap + (1 — ()AL,
Then F(f) = f. and v(f) = (1 — €)Ap + €A, Further, A(f) = Ale)Ap + (1 — AM(e))A,c. Hence,
starting with the initial message distribution eAg+ (1 —€)A,, corresponding to an erasure channel

with erasure probability €, the iteration is given by 1 = peAo + (1 — pr)AL,, where

pr=p(L— Al —pr_i))

This is the same formula as derived in [3, 6].

Let f(x) be a consistent distribution. We define the error probability operator as”
0

Py i= ) Slx) da .

=i

An easy but helpful consequence of the consistency condition is noted in the following

Corollary 1. Let f(x) be a consistent distribution. Il Pr.(f) = 0 then [ = A

Hence, requiring that the probability of error converges to zero is equivalent to requiring that the

message density converges to a delta function at infinity.

"If f has a point mass at 0 then exactly half of that mass is included in Prow( ).

13



2.2 Fixed Points of Density Evolution

In the case of the erasure channel and a beliefl propagation decoder the state of the system at
any iteration is described by the remaining numhber of erasures. Denote the remaining number of
erasures by = and let A(x) he the remaining number of erasures after a further iteration. T'hen the

threshold is given by the maximum number xg such that
Vo<az<zo: Ra)<ez. (1)

A similar statement is true for the BSC together with Gallager’s decoding algorithm AL In this case

@ signilies the remaining number ol errors.

An alternative description of the threshold can be given in terms of fixed points. The threshaold is

given by the maximum number 2 such that for no 2 € (0,2q)
flie) = 2 4 (5)

Assume now we are given a general discrete memoryless channel which fulfills the channel symmetry
conditions and we employ a helief propagation decoder. T'he state of the system is now described
by the message density. Let f denote such a density and let £( f) denote the corresponding density
alter a [urther iteration. Clearly, there is no characlerizatlion ol the threshold which corresponds
to (1) since there is, a priori, no given linear ordering of densities. The alternative formulation in
(3) involving fixed points looks more promising. Unfortunately, the non-existence of fixed-points
for iterated function systems in more than one dimension is in general not enough fo guarantee
convergence. So il is quile surprising thatl lor message distributlions ol beliel propagation decoders

lixed points sulliciently characterize the convergence ol the sequences, as we will show in this seclion.

Let F:(z) denote the distribution of the messages at the {-th iteration assuming that the all-one
word was transmitted. Assume that we were to decide on the transmitted bit according to the sign
of the message. [n this case the conditional error probability, conditioned on the transmission of
the all-one codeword, is equal to Pr..(F). But, because of the symmetry conditions, this is equal
to the unconditional error probability. Since the sign of the message is equal to the MAP estimate,

this error probability is clearly a non-increasing function of £.

This monotonicity property will play a key role in the sequel. 1t is not hard to see that there is

actually a whole family of such monotonicity conditions.



Theorem 4. Lel Py be the message dislribulion al the £-1h decoding step and lel g be a consislent

distribution on R. Then
Pr...(Peiag)
5 @ non-increasing function of £,

Proof. The message of which /% is the distribution represents a conditional probability of a par-
ticular it valne. Assume that an independent observation ol the same bit value is available 1o the
decoder and assume that this independent observation is obtained by passing the bit through a
channel p(:|-) which fulfills the symmetry condition and has p(ylz = 1) = g{y). By Lemma 2 and
under the assumption that the all-one codeword was transmitted, the conditional distribution of
the bit value log-likelihood, condilioned on all inlormation incorporated in Fy and the independend
ohservation, has distribution £ & ¢. Since the new distribution corresponds again to a MAP esti-
mate conditioned on information which is non-decreasing in £, the stated monotonicity condition

follows. O

It is convenient to use the following “basis™ for all these monotonicity conditions. Let

1 o
= AN AL
1 4+ e "+'l+e’°' -

g.le) : (6)

Clearly, g.(2) is a consistent distribution. I'or any consistent distribution f let P, f be defined as
’P‘.’f = Pl‘err[./. (<;\' g")

Written in an alternative way we have

1 i - —x - - =T 1 1 _ LA e g -
Pfr= T /u da fla)l4+e ¥)+ /: da flz)e ™ = e (l / (1L —e" ") f(x) (J.}..) :
(7)

Corollary 2. Let F; be the message distribution at the {-th decoding step. Then P.Fy is a non-

increasing function of £ for every 0 < 2 < co.

Lemma 5 (Basis Lemma). Let f and g be consistent distributions such that P.g = P, f.Vz > ().

Then f = g.
Proof. Write the conditions P.( f(a) — g(z)) =0, Vz > 0, in the equivalent form

¥z 2> 0: / ‘[f[:}:'] — gzl =& ") de = 0.



Dillerentiating bolh sides with respect 1o

Yz =0 /

or, cquivalently,

z we goel

X

i](f(l-') —g{x)e ™ de =0

V2> 0: /_(f(r) —g{r)yde =0.

Clearly, the last condition implies f{ir) = g(), for all 2 < 0. Since f and g are both distributions,

so that [7 (f(z)— g(@))de = 0, and since [ and g are both consistent it [ollows thal [ = g.

O

Theorem 5. Let f be a consistent distribution and assume that f has support over the whole

real axis. Let Fp (z) and P, (z) denote the message distributions at the £,-th and f,-th iteration

respectively, with f1 < f5. If

l)rerr( ‘P("-\ ':3-) f) - l)rerr( ‘P("-; ':3-) f)

then Fp{z)= Flz) for { > £, le. P (2)is a fixed point of density evolution.

Proof. We first establish the following ide
f(z) =

The identity is proved as Tollows.

o0
flz] = / flz)Ag(z — 2) da
o . "
= J Fflx) (1 m (_‘_J?A(;.(z —x) 4+ T Ag{—2 — ;r_)) dir
Fo
= Ffla)g.z) da.
Ao

ntity for any consistent distribution f.

+ou
/ Ffle)gdz) de
Jo

Now, let £ satisfy £, < £ < {5, Applying the identity above we have

P =

i}

from which it follows that

Pro. (B & J) =

oo
F I et Bl dy

a_I_:);‘
Ffla)yPaFp da .

0

Note that (8) together with Theorem 4 implies that
Prerr(f)ff '{:Q j) — Pl.err(P{:l '{:Q j) L
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Thus, we have
400
0= / Fllz) (Ppbe, =P ) da.
Jo

It is clear [rom (7) thal PyPr is a conlinumous [unction of @. Further, J has support on R by

assumption and since, by Corollary 2, P, Py is non-increasing in £ and, hence, the whole integrand

is a non-negative function, it follows that P, Py, = P.F for all 0 < 2 < . By the Basis Lemma
¥

this proves that /% = . In particular we have %, = 4 so Iy is a fixed point of density

evolution, O

We note thal the above theorem has some very strong implications. Although the message dis-
tributions for a belief propagation decoder live nominally on R, the above theorem implies that
the possible message distributions can be ordered by one real parameter {the projection). Hence
we are dealing with a one-dimensional manifold embedded in an infinite dimensional space. This
is very much equivalent Lo the simple one-dimensional case we encounter in the case ol an erasure

channel, or Gallager’s decoding algorithm A.
2.3 Stability

[n [11] it was observed that a necessary condition for successful termination of the decoding process
in case of an erasure channel with erasure probability ¢ is A(0)p'(1) < 1/e. This condition can
he interpreled as a stabilily condition [or the lixed point 0 of the iteration procedure given in
Example 3. In this section we will derive similar conditions for other types of channels.

Observe that if Fx = A for some £ > 00 then Fry; = A, for any ¢ > 0, i.e., A, is a fixed point of
density evolution. Since we desire that the error probability associated with the density evolution
converges Lo zero, il is clear thatl the lixed point described above should, in some sense, be an
attractor {recall Corollary 1). To analyze local convergence 1o this lixed point we shall consider a
linearization of density evolution about the fixed point,

Consider a density ¢P + (1 — €)A. where P is any (consistent) density, P # A... After a complete

iteration of density evolution this density will evolve to
N0}/ (1)eP @ Py + (1= N(0)p (1)) As + O(?)

where M(2) and p'(x) denote the derivatives of A{x) and p(z). respectively. In other words, the

linearization of density evolution at the fixed point A, is given by 7 — M{0)p/(1) 17 % .
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One would expect thal a necessary condilion [or convergence Lo zero ol the probabilily ol crror he

that the probability of error associated with
(R TR P B P5
be decaving to zero as n grows. Under very general conditions (see Lemma. 7) the limit

1 -
ri=— lim —logPr.(£5") (10)

— =2 i

is well delined. In this case, since P # Ag., the quantity (N(0)p'(1))"Pr..(P % Py converges Lo
zero if and only if (A(0)p'(1))"Pr,,, ('Péi“') converges to zern. Before proving this fact we will prove

the following useful result.

Lemma 6. Lct p be a symmetric channel and let P be its associated message distribution. Then
the channcl p can be represented as the concatenation of an erasure channel with erasure probability

2Pr,,,{ and a symmetric channel q, 1.e., p 15 a physical degraded version of an erasure chonnel.
2 2 d t f { ! Id ded f {

Proof. Recall from Lemma 2 that without loss of generality we may assume that p(y|lz = 1) =
P’(y) and hence, by symmetry, p{ylr = —1) = P(—y). let ¢ denote an erasure and let 1,—1
denote bit values. let ¢ denote a channel whose input alphabet is {—1,2,1} with probabilities.
(1—2¢)/2,2¢,(1—2¢)/2 respectively, ie., the input to g is the output of the binary erasure chanuel
with erasure probability 2e. Let the channel ¢ have real output y and set ¢(ylz = ¢) = _|"|P(|y|

glyle = 1) = 2= (1 — ) PT{y), and g(y|le = —1) = 25-(1 — ¥ )PF(—y). It is easy to check that
these quantities are well defined distributions, e.g., integrate to one. Let § denote the concatenation

ol the erasure channel with the channel g. Then

glyle =1) = 262 “HP(yl) + (1~ 26) 75 AL =7 )PT(y) = Ply) = plyle = 1)

and

g(— yl’f—l)—){2 e"FLP(gl) + (1 - 2¢)- (l—c PT(—y)= P(—y) = plylz = —1).

Since P is consistent we have

P8 PE™) < Pr(£9).



Let € := Pr..( P). It follows from Lemma 6 that
Pr.(P & P§™) 2 Pra. (20 + (1 — 20)A.) ® PF™) = 2¢Pr,.(PF™) .

This shows that P effects the expression (X(0)p/(1))"Pr...( P & Péj'“) at most by a constant factor

2¢ and, hence, to decide on the limiting behavior we can look at (A(0)p'( 'l))""l’r,_,“[_l’g"”’] instead.

Theorem 6. If N{0)p'(1) > &, then the probability of error of density evolution is strictly bounded

away from ().

Proof. Let v denote N(0)p/(1) and assume that 4 > ¢”, Then, there exists an integer n such that

0
'y”’/ P e 1,
b S
Let densily evolution be initialized with a consistent message density P osatislving Pr...(P) = ¢ and
let P, denote the message distribution obtained after n iterations of density evolution. (Here Py
still denotes the received density while the message density is initialized to P.) Let P denote the
message distribution obtained after » iterations with the initial message distribution sef instead to

Lo 2¢Ay 4 (1 — 20)Ap.

Consider a random 1ree of deplth 2n + 1 wilth variable nodes al the leaves and a variable node at
the root. Let the leafl variahle nodes have observations from a channel corresponding to the initial
message distribution ¢ and let the other variable nodes have observations from a channel corre-
sponding to H. T'hen, 12, and > are the message distributions out of the root node corresponding
o @ = P and @ = 2¢Ag 4+ (1 — 2)A, respectively. Since the messages are conditional likelihoods

il now [ollows [rom Lemma 6 thatl
I)I‘e.u ( !)H) 2 I)I‘e.u ( [)H) .

It is casy to sce thal
0

Pr..(B,) = 2ey" / PE*(a) du O(e9) .

For ¢ sulliciently small it follows that Pr,.( f’n J. and hence Pr, (F,), exceeds 2¢.

Since the probability ol error associated to densily evolution (when the message distribution is

initialized to Fy) is non-increasing it follows that the probahility of error can never reach e, O



Note that the prool shows thal the lixed poinl A, is unstable. For any consistent inilial message

distribution the probability of error diverges away from () if the conditions of the theorem are met.

We note that in all cases of interest the exponent » can be computed using moment generating

functions as stated in the following

Lemma 7. Lel g(s) be the moment generaling funclion corresponding lo the distribution Py(w),
ie., g(s) = Epe*"], and assume that g(s) < oo for all s in some neighborhood of zero. Then

r = —log (inf,cng(s)). Further, if Fy is consistent then r = —log (2 jox P(]Jr(:c] g /2 dl)

Proof. A general large deviation principle (see, e.g., [12]) implies that v = inf,cpg(s). In case that

15 consistent we have

) = inf g{:

e inf 9(s)

= inl / Bylx) ™ da
S<0 —_—

oo
= inf/ Pfz) efw/z[e*“'(ﬁ%)—l— e“'(5+%)]dx

5<0 Jg

o v
= 2 / I’d"(';n)e_r’u da.
Jo

O
Example 6 (Erasure Channel). for the erasure channel (see Faample 1) we have
e c .
e = 2/ [;Ao F{l—eA e dr=e.
U =
Therefore, the stability condition reads
; 1
N(O)/(1) < .
as previously obtained in [11].
Example 7. [BSC] For the BSC (see Example 2} we have
£ B
B "=l / (1~ (L;I]Al“gﬂ e 52y = 2./8(1 = 6) .
Lot g L :
It follows that the stability condition for the BSC is given by
N0)p'(1) < L
2:/6(1 = 8)
O]



Example 8. [AWGC] For the AWGNC (sce Example 3) we have

o0 2 Lx—%)cQ
. fae _LTgie —1
o = 3 - R P
0 bakis

Thus, the stahility condition reduces to

1

MN{0)p'(1) < e27

U
Example 9. [Laplace channel] For the Laplace channel (see Example 1) we have
e 1 Al
A .
e "= 2/ [ e o + ZAz]e 2 dy = e 3 ;
Jo 4 2 % A
The stability condition [or the Laplace channel can therclore he written as
A
N(0)p'(1) < eF .
(0)p (1) <ex——
O

We conjecture that the converse of the condition above is suflicient Lo guarantee local convergence

of the probability of error to zero.

Conjecture 1. IfN(0)p'(1) < ¢, then there exists ¢ > 0 such thal if densily evolution is inilialized
with a consistent message distribution P satisfying Pr., (P) < e, then the probability of error will
converge to zero under density cvolution,

We remark thai it sullices Lo prove the conjecture for P = ¢.. 2 < ¢, where g, was delined in (6).

To support the conjecture we have only been able to prove various partial results. Empirically,
all our numerically optimized degree sequences fulfill this condition. We conjecture that degree

sequences which approach capacity have to fulfill the said condition almost with equality.

3 Results

3.1 Good Degree Sequences

Using numerical optimization techniques described in more detail in Section 4, we searched for

good degree sequences of rate one-half for various upper bounds on the maximum left degree d,.

il



\ d | 1 5 6 7 8 9 10 11 12
A3 [ 0.38364 [ 034648 | 0.31013 [ 0.31480 | 0.30166 | 0.28321 [ 0.27165 | 0.26269 [ 0.25522
Az | 0.38334 [ 0.32660 | 0.33241 | 0.32395 | 0.30013 | 0.27684 | 0.25105 | 0.23882 [ 0.24426
As | 0.04237 [ 0.11960 | 0.21632 | 0.25091 | 0.28395 | 0.28312 | 0.30938 | 0.29515 | 0.25907
As | 0.57409 [ 0.18393 [ 0.11014 0.00104 | 0.03261 | 0.01054
As 0.36938 0.05510
As 0.31112
Az 0.42511
As 0.41592 0.01435
A9 0.13971
Ao 0.43853 0.01275
A1t 0.43342
Az 0.40373
ps | 0.24123
pe | 0.T5STT | 0.78555 | 0.76611 | 0.43141 | 0.22919 | 0.01568
pr 0.21115 [ 0.23389 [ 0.56859 [ 0.77081 | 0.85211 | 0.63676 | 0.13011 | 0.25175
ps 0.13188 | 0.36324 | 0.56989 | 0.73438
9 0.01087
o | 09114 | 09194 | 09304 | 09438 | 0.9497 | 0.9540 | 0.9558 | 0.9572 | 0.9580 |

(.3799 ‘ 0.3727

|
| (Fne | 07820 ] 07200 | 0.6266 | 05021 | 04483 | 04090 | 0.3927
| p* | 01369 | 01384 0.1412 [ 0.1447 [ 0.1462 | 0.1473 | 0.1477

0.1481 | 0.1483

Tahle 1: Good degree sequences of rate one-half for the AWGNC and with maximal left degrees
di=4,5,6,7,8,9,10,11 and 12. For cach sequence the threshold value o, the corresponding ( %)*
in dB and p* = Q(1/¢"), i.c., the input bit error probability of a hard-decision decoder are given.
Also listed is A%, the maximal stable value of A; for the given p/(1) and for o = &*.

The result of our search for the AWGNC is summarized in Tables | and 2. Table | contains
those sequences with d; = 1.---, 12, whereas Table 2 contains sequences with d; = 15, 20,30 and
50. In each table columns correspond to one particular degree sequence. lor each sequence the
cocllicients of A and p are given as well as the threshold o™, the corresponding parameter (E,/Ng)*
in dB, and linally the raw bil crror probability p* of the inputl il il were quantized to 1 bii, i.c.,
p* = Q(ljo*), where Q(z) := (1/v/27) j?"'e*y?/"zdy is (up to scaling) the complementary error
function of Gaussian statistics.® Also listed is the maximal stable coefficient A3 for the given p/(1)

and o = o", see Section 2.3. As can be seen, for every degree sequence Ay < AL, and the two values

are [airly close.

The results are quite encouraging. Compared to regular LDPCCs for which the highest achievable

threshold for the AWGNC is ¢ = 0.88, irregular LDPCCs have substantially higher thresholds.

SMore precisely, Qx) = %(:rft:(:r:/v@).
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d; 15 20 30 50
A5 | 0.24446 | 0.23261 | 0.21306 | 0.18379
Ao | 0.23802 | 0.21991 | 0.19606 | 0.17120
A3 | 0.20997 | 0.23328 | 0.24039 | 0.21053
Ag | 0.03492 | 0.02058 0.00273
As | 0.12015

Ao 0.08543 | 0.00228

Az | 0.01587 | 0.06540 | 0.05516 | 0.00009
As 0.01767 | 0.16602 | 0.15269
Ag 0.01912 | 0.04088 | 0.09227
Ao 0.01064 | 0.02802
A1 | 0.00180

Ais | 0.37627 0.01206
Aio 0.08061

Azg 0.2279%

Aos 0.00221

s 0.28636 | 0.07212
Aso 0.25830
ps | 0.98013 | 0.64854 [ 0.00749

po | 0.01987 [ 031717 [ 0.99101 | 0.33620
pio 0.00399 [ 0.00150 [ 0.08883
o1 0.57497
o' | 0.9622 | 0.9649 | 0.9690 | 0.9718 |

| 03347 | 0.3104] 0.2735

0.2485

|
‘ (%)EB
|

p* | 0.1493 | 0.1500 | 0.1510 | 0.1517 |

Table 2: Good degree sequences of rale one-hall Tor the AWGNC and with maximal lefl degrees

d; = 15,20,30 and 50. For cach scquence the threshold value o, the corresponding (%)* in di

and p* = Q(1/¢%). l.e.. the input bit error probability of a hard-decision decoder are given. Also
listed is A%, the maximal stable value of Ay for the given p/(1) and for o = o,



The threshold increases initially rapidly with d; and for the largest investigated degree, d; = 50,

the threshold value is only 0.06dDB away [rom capacity!

It is guite lempling to conjecture that the threshold will converge o the ultimate Shanuwon limit
(which is equal to oqpny = 0.9787 for rate one-half codes) as d; tends to infinity. Unfortunately, as

of this moment, we only have the presented empirical evidence to support this conjecture.

Although in this paper we focus mostly on the AWGNC and binary codes of rate one-half, the
[ollowing examples show thal the same technigues can be used to lind very good degree sequences
for other memoryless channels and different rates. We note that, for a particular rate, sequences
which were optimized for the AWGXNC are usually very good sequences for a large class of channels,
including the Laplace channel and the BSC. Nevertheless, optimizing a degree sequence for a

particular channel will generally give slightly belter results.

Example 10. [AWGNC] In this example we consider codes of rate r = £ for the AWGNC channel.
In this case, the Shannon bound for ¢ is Topt = 0.528936. Our optimizer produced the following
degree distribution which gives a theoretical threshold of o = 0.3183, A(2) := 0.15752 +0.342922 +

0.03632° +0.05902% +0.279025 +0.12532" and p(z) 1= 0.82662™ +0.13152% +0.00872 7" +0.030227".

[]

Example 11. [BSC; r = %} The ultimate threshold for the BSC and rate one-half is ‘S()pt =
0.110028. The best sequence we have found so far has ¢ = 0.106 and is given by A(2) := 01575810+
0.1649532% +0.02242912% 4 0.045541 2% + 0.01145432> +0.09990962° + 0.016066 7" +0.0025827 72 +
0.0045179727 + 0.0009287672'7 + 0.018836 12" + 0.06482772'2 + 0.02068672 "2 + 0.0007805 162 +
0.038360321% + 0.0411939821% + 0.002311721° + 0.0018115722° + 00111191222 + 0011663622 +
0.08501832724+0.01048:* +0.01693082:°% +0.02556442:°5+0.03640862 70+ 0.086935927 and p(2) 1=

0.25z% 4+ 0,759,

U
Example 12, [Laplace channel; r = %} The ultimate threshold l[or the binary-inpul Laplace
channel of rate % {(as given by the Shannon formula) is equal to /\opt = 0.752. We found
the following degree sequence which has a threshold above A" = 0.74, A(x) = 0.0869518x +

0.268312%+0.09283572°+0.02149182* +0.01204792° +0.0041628 7254+ 0.0106892 7 4+ 0.0027 165625 +
0.0047833627 + 0.0009768792'7 + 0.01981192"" + 0.06318392'% + 0.02207262'% + 0.078213%2' +
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0.003151612'5 + 0.00333452 "% +0.002517332 "7 + 0.002431452 "% + 0.002244132° + 0.0037234522" +
0.0120112%% + 0.007633232%" + 0.06159222% + 0012267822 + 0.001137512" 4+ 0.005653262°1 +
0.0178079:2%% + 0.02688872°° 4+ 0.00030581 727 + 0.00229811::5* 4 0.01443682™ + 0.126305:7* and
pla) = 025" + 0.752 1Y

3.2 Simulation Results

The concentration results proved in [1] guarantee that for sufficiently large block lengths almost
every code in the given ensemble will have vanishing probability ol crror lor channels with pa-
rameters below the calculated threshold. Nevertheless, the lengths required by the proofs are far
bevond any practical values and one might expect that medium sized codes will deviate significantly
from the predicted performance. Ior regular LDPCC’s, it was demonstrated in [1] that the actual
convergence is much laster and that already realistically sized block codes perlorm close to their

predicled value,

For irregular codes finite length effects not only include the deviation of the input variance from its
mean and a non-zero probability of small loops but also the deviation of a given support tree from
its average, i.e., for a given node the fraction of neighbors of this node with a given degree might
deviale [rom ils expecled value. This eflcct is expected to influence the linite length performance
more severely for larger o; and d.. Further, when operating very close to a degree sequence’s
threshaold it will require a large numher of iterations (one thousand or more) to reach rest error
probabilities of, say, 107°. (In the limit the number of iterations converges to oo. I'ypically. however,
a stall margin [rom a sequence’s threshold is enough to drastically reduce the required number of
iterations.) Given that the number of loop-[lree ilerations only grows logarithmically in the block
length it seems a priori doubtful that simulation results can closely match the predicted limit for

practical lengths.

l'ortunately, the actual convergence of the performance of finite length codes to the asymptotic
performance is much laster than predicted this way., Fig. 3 shows the performance of particular
LDPCCs. The chosen lengths start at one thousand and go until one million. More precisely,
the lengths presented are 107, 10%, 10%, and 10° The maximum degrees appearing on the left are
9,20, 50, and 30 respectively. l'or length 107 the error rates are given for systematic bits. (A

specilic encoder was constructed.) These graphs were not chosen entirely randomly. The degree
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Figure 3: Comparison between turbo codes (dashed curves) and LDPCCs (solid curves) of lengths
n = 102,10, 10° and 10°. All codes are of rate one-half. Observe that longer LDPCCs outperform
turbo codes and that the gap becomes the more significant with larger n. For short lengths it

appears that the structure in turbo-codes gives them an edge over LDPCC codes despite having a
lower threshold.

two nodes were put in loop free and all of them correspond to non-systematic bits. Some effort
was also made to reduce the number of small loops in these graphs. For length 10? and above
the error rate was given over all of the bits in the codeword. The length 10° graph is random
except that double edges and loops with two variable nodes were avoided. For length 10* and 10°
the degree two nodes were put in loop free and some small loop remaoval was performed. We note
that, particularly for small lengths, better performance can be achieved by using degree sequences
with smaller values of d; even though such sequences have a smaller threshold.” We see that for
one million bits the actual performance is quite close to the predicted performance and that also

for a length of 10° bits, this code handily beats the best known turbo code of the same length.

“The sequences presented here are those giving the highest threshold under a maximum degree constraint. For
small graphs it 1s not always best to pick the sequence with the highest threshold. When designing sequences for
small graphs, it may be advantageous to look for the highest possible threshold under an appropriate constraint on
the allowed number of iterations.
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Al one million bits the code is less than 0.13dDB away [rom capacily al bil error probabilitics of
10~%. Given that LDPC(s have slightly lower complexity, are fully parallelizable, and allow many
different decoding algorithms with a far ranging trade-off hetween performance and complexity,

LDPCCs can he considered serious competitors to turbo-codes.

Although we spenl a considerable amount ol compuling lime on the optimizalion il is clear that

any given sequence can be (slightly ) improved given enough paticnce,

4 Optimization

In this scciion we brielly describe the oplimization lechniques thatl we used Lo oblain degree se-

quences with large thresholds.

The following general remarks apply to any numerical optimization technique. First, formally, the
threshold is defined as the supremum of all channel parameters for which the probability of error
under density evolution converges to zero. By Corollary 1 this is equivalent to requiring that the
message distribution converge to A, In practice, at besl we can verily thal the probability ol
error reaches a value below a prescribed e. One may then wonder if, by choosing € small enough,

this automatically implies the convergence to zero probahility of error.

As discussed in more detail in Section 2.3, the stability condition is a first step in this direction.
Unfortunately, we have only been able to prove necessity of the stability condition. Conjecture
1 expresses our beliel thal the same conditions on the degree sequence are indeed sullicient Lo
guarantee convergence. In practice the issue of convergence is not of great concern since we always

allow a finite (but small) probability of error.

Secondly, in order to perform the computations we need to quantize the involved quantities. I'his
quantization leads 1o a quantization error and this error might accumulale over the course ol
many ilerations, rendering the computalions useless. This problem can be circumvented in the
Tollowing way. By carefully performing the guantization one can assure that the quantized density
evolution corresponds to the density evolution of a quantized message passing scheme. Since belief
propagation is optimal, such a quantized version is sub-optimal and, hence, the reported thresholds

can be thought ol as lower bounds on the aclual 1hresholds.
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4.1 Local Optimization

To find good degree sequences we started with the following simple hill climbing approach. I'ix a
small rest error probabilily ¢ and a maximum number ol iteralions e, Slart with a given degree
sequence and determine the maximuim adneissible channel parameter, i.c., the maximum channel
parameter such that the error probability after m iterations is below e. Now apply a small change
to the degree sequence and check if it has either a larger admissible channel parameter or at least a
smaller rest error prohahility after i iterations. If so, declare the new sequence to be your currently
hest sequence, olherwise keep the original sequence, The same basic step is then repeated a large

number of times.

The search for good sequence can be substantially accelerated by appropriately limiting the search
space. We found, for example, that very good sequences exist with only a few non-zero terms. In
particular, it sullices to allow two or three non-zero degrees on the right (and these degrees can be
chosen conseculively) and to limit the non-zero degrees on the left to the degrees 2, 3, the maximum

left degree d;, and, possibly, a few well-chosen degrees in-between.

A further substantial savings in running time can be achieved as follows. For a particular degree
sequence (A, p), I'ig. 4 shows the evolution of the bit error probability as a function of the iteration
number., An even clearer picture evolves il we plol the decrease of the bit error probabilily as a

[unction of the current bit error probability py. This is shown in Fig. 5.

As can be seen in these figures, after an initial swift decrease in the bit error probability the
procedure almost comes to a halt at p, = 0.111 with decreases in bit error probahility of only
2.6 1077 per iteration. The convergence then speeds up again until it hits another low at p, = 0.056
and then later again al py = 0.022. Al these three erilical poinis the outgoing message distribution is
almost a fixed point of the equation system corresponding to one iteration. Indeed, if the parameter
a were slightly increased then the iteration could not overcome any of those points and one can

verify that there arise corresponding fixed points of density evolution.

Provided that the fixed points are stable, the message distributions at these points are continuous
[unctions of the degree sequence. Tence, a small change in the degree sequence causes only small
changes in the associated fixed point distributions. Furthermore, if the fixed points are stable,
then this affords a certain memorylessness to the density evolution because they serve as local

attractors. Small perturbations to the path will not matter ance the domain of convergence of the
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l'igure 4: Evolution of the bit error probability as a function of the iteration number.

fixed point is entered and, once the fixed point is found, the path that leads to it is irrelevant. In
praclice we observe that the points al which the density evolution gels stuck are indeed stable lixed
points, The lixed point theorem in Seclion 2.2 shows that lixed points which are limils of density
evolution must be at least marginally stable. The above considerations suggests the following
scheme. Assume we determined the critical points (near fixed points, or likely fixed points for a
slightly worse initial distribution) for a particular degree sequence and we would like fo determine
the meril of a particular small change of the degree sequence. Rather than starting with the initial
distribution and then checking if (and how fast) this initial distribution converges to a delta at
infinity, one can memorize the distributions at the critical points of the original degree sequence
and then determine how the proposed change affects the speed of convergence locally at these points.
Omuce a promising change has been [ound, the merit of this change can be verilied by starting with
Lhe initial degree sequence, Typically only a low ilerationy are necessary al cach critical poinl Lo
determine if the change in degree sequence did improve the convergence or not. This has to be
compared to hundreds of iterations or even thousands of iterations which are necessary if one starts

with the initial distribution.

In the last scheme we made use of the distributions atl the “critical poinds”™ 1o lind promising changes

of the degree sequences. The following schemes extend this idea even further, and the resulting
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Figure 3: The decrease of the bit error probability as a [unction ol the current bit error probabilitly.

algorithing are reminiscent ol the algorithms used in the erasure channel case. For simplicity we
will only describe the optimization of the left degree sequence. The extension to the right degree

sequence and to joint optimization should be quite apparent.

Assume we are given a degree sequence (A, p), a particular channel parameter o, and a target
probability of error e. Let {p:}7*, be the sequence of error probabilities of the helief propagation
algorithm. More precisely, py is the initial error probability, pe is the probability ol error alter 1he
£-th iteration, and p,. < € < p,,—. Assume we want to find a new degree sequence A which achieves
the target probability of error in fewer iterations or achieves a lower target in the same number of

iterations.

Deline the matrix Ay ;, 1 <€ < m, 2 < j <d,. The entry Ag; is the error probability which resulls
il we run the beliel propagation decoder lor (¢ — 1) steps assuming thal the lelt degree sequence
is A followed by one step in which we assume that the left degree sequence is a singleton with all
its mass on the degree 7. Note that the actual error probability after the £-th iteration, pe, can be

expressed in terms of Ay, as

d
Pe = Z A £, }\J' .

i=2
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Let us define a function p(t) for ¢t € [0, m] by linearly interpolating the p. setting p(¢) = ps. Define

=] dp =il
LAY := ——(x) dz.
: di
Fm

We interpret L as the number of iterations required to take the initial probability of error pg down
to p,,. Using the expression above, we can write down the gradient of L(A) with respect to A. In

particular, lor a perturbalion k we can compute Dy L(A) = %L(A + k) |y=0 as

D L—/m )" by (L)) deo
B 7_,pm dt o f d? %) &

Returning to the discrete representation this is equivalent to
4 .

Dt =30 (Y Aej —
=2

1 — 1
lepL 1 — P

Thus, we observe that the gradient of L{A) is given by

d _ s Api—
d—,kjL(/\) =) =

Y_1 — P¢
=1 Pr-1 P

There are two ways we can exploit this expression. One is to use the {negative) gradient direction
to do hill climbing, and the other is to globally optimize the linearized approximation of L. In either

case we must incorporate the constraints on A.

Let A be an alternative degree sequence. Clearly, A has to be a probability mass function, i.e.,
4
dodi=1, (11)

J=z

and further it has to correspond to a code of equal rate, i.e.,

{l..,; 3 . {l..,; )
OEEDIE (12
=4 =

let /i be the negative gradient direction of L. If we set A = X+ nh (for positive 7) then the above
constraints may not be salislied. Tlowever, among sequences salislving the coustraints the one
closest to A + nh in Euclidean distance can be eagily computed by alternating projections. Two
projections are required: the first is orthogonal projection of A onto the subspace determined by
Zj h; = 0 (total probability constraint) and Zj :ljhj = 0 (rate constraint), and the second projec-
lion sels gl = —A; il prior lo the projection, nh; +A; < 0. Note that an alternative interpretation

is to project the gradient direction A onto the convex polytope of admissible directions. One can
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then computle the maximnrm step size » lor which the constrainls remain salislied and then recor-
pute the projection at that point. In this way one can easily walk along the projected gradient

direction to look for an improved degree sequence.

. . . . y v -
Let us now consider the second way to exploit the gradient expression for L. Let py 1= Z;’:) A

Then we have

T

De—1 — Do

LiA) o : :
=1 Picq — ps

(13)

This approximation is valid as long as A does not differ too much from A, i.e., assuming that the

message distributions corresponding to A and A are not too dillerent, il

max M < . (14)
£ Pr—1 — e

where & << 1, and if

Pe < pp_1. 154 < om. (15)

Recall that we want to minimize L{A). Since the right hand side of (13) is (up to a constant) a
lincar [unction in the degree sequence and sinee the constraints stated in (11), (12), (14) and (15)
are also linear, this can be (approximately) accomplished by means of a linear program. The same

procedure is then applied repeatedly in an attempt to converge to a good degree sequence,

Since both approaches are local optimizations it is appropriate to repeat the optimization with

various initial conditions.

4.2 Global Optimization: Differential Evolution

The code design problem as described above belongs to the cdass ol nonlinecar constraint satisfaction
problems with continuous space parameters, a problem class where Differential Evolution (DE) [13]
has proven to be very effective [14, 15]. T'his strategy has been successfully applied to the design

of good erasure codes obtained from bipartite graphs, as described in [7].

Dillerential evolution is a robust optimizer for multivariate nctions. Starting [rom an initial ran-
dom population of points (interpreted as vectors), the procedure iteratively updates the population
using two basic operations: mutation and rccombination. Under mutation differences of random
population vectors are formed, scaled, and added to certain population members. Scaling as well

as Lhe mechanism ol population memhber selection is controlled at run-time by inpul variables. The
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operation ol recombinatlion is a ‘genctic’ part ol the algorithm. ITere two population members are
chosen at random, split at some index according to a given probability distribution on the set of
indices, and the corresponding parts of these vectors are recombined. After these operations are
performed, the function is evaluated at the original population member and the new member, and
the one with the highest cost [unetion valne is chosen Lo belong 1o the new population. The proce-
dure is repeated for a prescribed number of generations and at each round the population member

with the highest cost function value is recorded.

We experimented with DE by using different cost functions and different population characteristics.

[n the following, we will only discuss the approaches that produced the best results.

Our cosl [unclion maximized the valne of the error-threshold: lor the BSC and the Gaussian
channel, the initial error distribution is a function of a single parameter. The goal of the opti-
mization was maximizing this parameter subject to the condition that the iteration process finishes

siuccessfully.

Since DK is a continuous optimizer, we found it convenient to let the parameter space he a continu-
ous space as well, For this, we introduced fraclional phantom distribulions: we let {he polynomials
A and p take on the general form 3, A;z'~' (similarly for p). where now both the N, and the
degree @ could take any positive real value. The real degree distribution is obtained from this phan-
tom distribution as Z_i[',\,il;;:m’l + }\ig:rm’l], where A and A are uniquely determined via the

equations

G T

This way we are guaranteed to obtain a degree distribution which respects the rate-constraints for

A+ A=A, and

the code.

By allowing fractional degrees. we could in effect force the program to choose (close to) optimal
degrees. This resulted in a major reduction ol the dimensionalily ol the parameier space, hence

the running time, and in the sparsity of the sequences obtained.,
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