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Using di↵erential equations, we examine the greedy algorithm studied by Azar, Broder,

Karlin and Upfal for distributed load balancing [1]. This approach yields accurate estimates

of the actual load distribution, provides insight into the exponential improvement greedy

o↵ers over simple random selection, and allows one to prove tight concentration theorems

about the loads in a straightforward manner.

1. Introduction

Suppose that n balls are placed into n bins, with each ball being placed into a bin chosen

independently and uniformly at random. Let the load of a bin be the number of balls

in that bin after all balls have been thrown. It is well known that, with high probability,

the maximum load upon completion will be approximately log n
log log n [8]. (We use with high

probability to mean with probability at least 1 � O(1/n), where n is the number of balls.

Also, log will always mean the natural logarithm, unless otherwise noted.)

Azar, Broder, Karlin and Upfal considered how much more evenly distributed the load

would be if each ball had two (or more) choices [1]. Suppose that the balls are placed

sequentially, and each ball is placed into the less full of two bins chosen independently and

uniformly at random with replacement (breaking ties arbitrarily). In this case, they showed

that the maximum load drops to log log n
log 2 +O(1) with high probability. If each ball instead

† A preliminary version of this work appeared in the Proceedings of the 37th Annual IEEE Symposium on the

Foundations of Computer Science, October 1996.
§ Much of this work was done at U.C. Berkeley, supported by a fellowship from the O�ce of Naval Research

and by NSF grant CCR-9505448.
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474 M. Mitzenmacher

has d choices, then the maximum load will be log log n
log d +O(1) with high probability. Having

two choices hence yields a qualitatively di↵erent type of behaviour from the single choice

case, leading to an exponential improvement in the maximum load; having more than

two choices further improves the maximum load by only a constant factor. This result has

important implications for distributed load balancing, hashing, and PRAM simulation [1].

Following Azar, Broder, Karlin and Upfal, we refer to the algorithm in which each

ball has d random choices as greedy(d). In this paper, we develop an alternative method

of studying the performance of greedy(d) using di↵erential equations. The di↵erential

equations describe the limiting performance of greedy(d) as the number of balls and

bins tends to infinity. As we will demonstrate, the description of the limiting performance

proves highly accurate, even when n is relatively small. In particular, we note that from

our results one can determine the fraction of bins of any fixed load at the end of the

process for the limiting case as n goes to infinity. These limiting quantities provide accurate

estimates for the fraction of bins of each fixed load for su�ciently large systems. This

analysis therefore adds significantly more detail to the previous analysis of [1]. Moreover,

besides giving more insight into the actual performance of greedy, our methods provide

a great deal of intuition behind the behavioural di↵erence between one and two choices.

Our motivation in studying this problem is twofold. First, we wish to demonstrate and

highlight this methodology, and encourage its use for studying random processes. While

this methodology is by no means new, its uses have been surprisingly limited. The technical

results justifying the relationship between families of Markov processes and di↵erential

equations date back at least to Kurtz [13, 14]. Karp and Sipser provided an early use of

this technology to analyse an algorithm for finding maximum matchings in sparse random

graphs [11]. Other past applications in the analysis of algorithms include [9, 12], and more

recently many more have been found (see, for example, [2, 3, 15, 17, 21], to name a few).

Our second motivation is to demonstrate the power of using two choices. This idea dates

back at least as far as the work of Eager, Lazowska and Zahorjan [7], who examined a

dynamic load balancing model based on viewing processors as single server queues. In the

static setting, this idea was also studied by Hajek [9], who used the same approach we un-

dertake to determine the fraction of empty bins. The aforementioned exponential improve-

ment in behaviour was noted and proved first in a paper by Karp, Luby and Meyer auf der

Heide [10]. The work by Azar, Broder, Karlin and Upfal examined a simpler model that

clarified the argument and provided many new results. Related work by the author [16, 17],

as well as by others [20], examines the power of two choices in dynamic settings. Continued

work in the area includes recent work by Stemann [19] and Czumaj and Stemann [6].

In the rest of the paper, we explain the derivation of the di↵erential equations that

describe the greedy strategy of [1] and compare the results from the di↵erential equations

with simulations. We also demonstrate how the equations give more insight into the

behaviour of greedy and how the equations relate to the work in [1].
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Studying Balanced Allocations with Di↵erential Equations 475

2. The di↵erential equations

In this section, we demonstrate how to establish a family of di↵erential equations that

can be used to model the behaviour of the greedy strategy of [1]. We begin the process

with m balls and n bins. We shall require for our analysis that m = cn for some constant

c. Balls arrive sequentially, and, upon arrival, each ball chooses d bins independently and

uniformly at random (with replacement); the ball is then placed in the least loaded of

these bins (with ties broken arbitrarily).

We first ask how many bins remain empty after the protocol greedy(d) terminates.

This question has a natural interpretation in the task-processor model: how many of

our processors are not utilized? The question can also be seen as a matching problem

on random bipartite graphs: given a bipartite graph with n vertices on each side such

that each vertex on the left has d edges to vertices chosen independently and uniformly

at random on the right, what is the expected size of the greedy matching obtained by

sequentially matching vertices on the left to a random unmatched neighbour? Our attack,

again, is to consider this system as n ! 1. This question has been previously solved

by Hajek using entirely similar techniques [9]. We shall briefly repeat his argument with

some additional insights. Once we show how to answer the question of the number of

empty bins, we shall extend it to the more general load balancing problem.

2.1. The empty bins problem

We set up the problem of the number of empty bins by developing a Markov chain with

a simple state that describes the balls and bins process. We first establish a concept of

time. Let Y (T ) be the number of non-empty bins after T balls have been thrown. Then

{Y (i)}, i = 0 . . . m, is clearly a Markov chain. Moreover,

E[Y (T + 1) � Y (T )] = 1 �

✓
Y (T )

n

◆d

, (2.1)

since the probability that a ball finds all non-empty bins among its d choices is (Y (T )/n)d.

The notation becomes somewhat more convenient if we scale by a factor of n. We let t

be the time at which exactly nt balls have been thrown, and we let y(t) be the fraction of

non-empty bins. Then equation (2.1) becomes

E[y(t + 1/n) � y(t)]

1/n
= 1 � (y(t))d . (2.2)

We claim the random process described by equation (2.2) is well approximated by the

trajectory of the di↵erential equation

dy

dt
= 1 � yd, (2.3)

where this equation has been obtained from equation (2.2) by replacing the right-hand

side with the appropriate limiting value as n tends to infinity, dy/dt. That the random
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476 M. Mitzenmacher

process given by the Markov chain closely follows the trajectory given by the di↵erential

equation follows easily from known techniques, such as, for example, Kurtz’s theorem, or

the similar work on random graphs by Wormald [21]. (As previously mentioned, the balls

and bins process has a natural interpretation in terms of random bipartite graphs.)

To clarify this connection, here we state a form of Kurtz’s theorem, as given in [18,

Theorem 5.3]. We provide the necessary notation, and then relate the notation back to the

underlying balls and bins process. Suppose we are given a finite set of vectors {

~e1, . . . ,~ek}

in R

d. We consider an initial process ~x(t) with generator

Lf(~x) =
kX

i=1

�i(~x)(f(~x +~ei) � f(~x))

and a scaled process ~zn(t) with generator

Lnf(~x) =
kX

i=1

n�i(~x)

✓
f

✓
~x +

~ei

n

◆
� f(~x)

◆
.

The limiting operator L
1

satisfies

L
1

f(~x) =
kX

i=1

n�i(~x)hrf(~x),~eii,

and corresponds to the deterministic solution ~z
1

of the equation

d

dt
~z

1

(t) =
kX

i=1

�i(~z1

(t))~ei. (2.4)

We relate the above notation to the problem of keeping track of the fraction of non-

empty bins. For convenience, think of the times balls enter the system as being determined

by a Poisson arrival process at a rate of one per unit time. (This does not a↵ect the result;

it merely simplifies the discussion. See, for example, [13].) In the scaled process with n

balls and n bins, n balls arrive per unit time. The process is one-dimensional, and hence

~e1 = (1). The rate function �1 satisfies �1(~x) = 1 � xd1: this is just the probability that an

incoming ball lands in an empty bin. The limiting process is then given by the di↵erential

equation (2.4), which in this case is equivalent to equation (2.3); note that for convenience

we have dropped the vector notation and simply used the variable y.

Kurtz’s theorem states that the scaled processes approach the limiting process, with

error bounds similar to Cherno↵-like bounds.

Theorem 2.1 (Kurtz’s theorem [18], Theorem 5.3). Let �i(~x) : R

d
! R

+ be uniformly

bounded and Lipschitz continuous, and let ~z
1

be the unique solution of (2.4) with ~z
1

(0) =

~x(0). For each finite T there exist a positive constant C1 and a function C2 with

lim
✏#0

C2(✏)

✏2
2 (0,1) and lim

✏"1

C2(✏)

✏
= 1
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Studying Balanced Allocations with Di↵erential Equations 477

such that, for all n > 1 and ✏ > 0,

Pr

✓
sup

06t6T

|

~zn(t) �

~z
1

(t)| > ✏

◆
6 C1e

�nC2(✏).

Moreover, C1 and C2 can be chosen independently of ~x.

The connection between the balls and bins process and the di↵erential equation (2.3)

yields the following theorem.

Theorem 2.2. Suppose cn balls are thrown into n bins according to the greedy(d) protocol

for some constant c. Let Ycn be the number of non-empty bins when the process terminates.

Then limn!1

E[Ycn

n
] = yc, where yc < 1 satisfies

c =
1X

i=0

yid+1
c

(id + 1)
.

Proof. The preconditions for Kurtz’s theorem (the above or [14, Chapter 8]) are easily

checked for the one-dimensional system described by (2.3), so by Kurtz’s theorem we have

that this di↵erential equation is the correct limiting process.† Instead of solving (2.3) for

y in terms of t, we solve for t in terms of y: dt
dy

= 1
1�yd

=
P

1

i=0 y
id. We integrate up to

some time t, yielding

t =
1X

i=0

y(t)id+1

(id + 1)
. (2.5)

From equation (2.5), given d we can solve for y(t) for any value of t using, for example,

binary search. One can also attempt to find an equation for y in terms of d and t; standard

integral tables give such equations when d = 2, 3 and 4, for example. When t = c, all of

the balls have been thrown, and the process terminates. Plugging t = c into equation (2.5)

yields the theorem, with yc = y(c).

We may actually use Kurtz’s theorem to obtain a concentration result.

Theorem 2.3. In the notation of Theorem 2.2, |

Ycn

n
� yc| is, with high probability,

O

 r
log n

n

!
,

where the constant depends on c.

† Again, it appears that there might be a problem here since we consider events occurring at discrete time-steps,

instead of according to random times from a Poisson process. One can always adopt the convention that each

discrete time-step corresponds to an amount of time given by an exponentially distributed random variable.

In the limiting case, this distinction disappears.
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478 M. Mitzenmacher

One can also obtain entirely similar bounds for Ycn using more straightforward mar-

tingale arguments. In the following, we assume familiarity with basic martingale theory:

see, for example, [4, Chapter 7] for more information. We use the following form of the

martingale tail inequality due to Azuma [5]:

Lemma 2.1 (Azuma [5]). Let X0, X1, . . . Xm be a martingale sequence such that, for each

k,

|Xk � Xk�1| 6 1.

Then, for any ↵ > 0,

Pr(|Xm � X0| > ↵
p

m) < 2e�↵2/2.

Theorem 2.4. In the notation of Theorem 2.2, Pr(|Ycn � E[Ycn]| > ↵
p

cn) < 2e�↵2/2 for any

↵ > 0.

Proof. For 0 6 j 6 cn, let Fj be the �-field of events corresponding to the possible

states after j balls have been placed, and Zj = E[Ycn|Fj] be the associated conditional

expectation of Ycn. Then the random variables {Zj}
cn
j=0 form a Doob martingale, and it is

clear that |Zj � Zj�1| 6 1. The theorem now follows from Lemma 2.1.

Theorem 2.4 implies that Ycn is within O(
p

n log n) of its expected value with high

probability; however, the martingale approach does not immediately lead us to the value

to which Ycn/n converges. This is a standard limitation of the martingale approach: in

contrast, the di↵erential equations approach allows us to find the mean as well as prove

concentration around the mean.

2.2. Bins with fixed load

We can extend the previous analysis to find the fraction of bins with load at least (or

exactly) k for any constant k as n ! 1. We first establish the appropriate Markov chain.

Let si(t) be the fraction of bins with load at least i at time t, where again at time t exactly

nt balls have been thrown. Then the corresponding di↵erential equations regarding the

growth of the si (for i > 1) are easily determined:
8
<

:

dsi

dt
= (sdi�1 � sdi ) for i > 1 ;

s0 = 1.
(2.6)

The di↵erential equations have the following simple interpretation: for there to be an

increase in the number of bins with at least i balls, the d choices of a ball about to be

placed must all be bins with load at least i � 1, but not all bins with load at least i.

In the context of the notation established for Kurtz’s theorem, we let ~x be a k-

dimensional vector, with ~ei being a standard unit vector in the ith dimension. Then
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Studying Balanced Allocations with Di↵erential Equations 479

Table 1 Predicted behaviour for greedy(d) and average results from 100 simulations with 1 million balls.

d = 2 1 million d = 3 1 million

prediction simulation prediction simulation

s1 0.7616 0.7616 0.8231 0.8230

s2 0.2295 0.2295 0.1765 0.1765

s3 0.0089 0.0089 0.00051 0.00051

s4 0.000006 0.000007 < 10�11 0

s5 < 10�11 0 < 10�11 0

�1(~x) = 1 � xd1 and �i(~x) = xdi�1 � xdi for i > 1. The corresponding limiting solution given

by (2.4) is then equivalent to the system (2.6), where again we have removed the vector

notation for convenience.

In contrast to Section 2.1, where we could derive a formula for the fraction of empty bins,

we are not aware of how to determine explicit formulae for si(t) in general. These systems

of di↵erential equations can be solved numerically using standard methods, however;

for up to any fixed k and t, we can accurately determine sk(t). By applying Kurtz’s

theorem to the k-dimensional process (as in Theorem 2.3) or martingale arguments (as in

Theorem 2.4), one can show that these results will be accurate with high probability.

We also demonstrate that our technique accurately predicts the behaviour of the

greedy(d) algorithm by comparing with simulation results. The first and third columns

of Table 1 shows the values of si(1) for d = 2 and d = 3 as calculated from the di↵erential

equations. We use these values as predictions for the process where we throw n balls into

n bins. From the predictions with d = 2, one would not expect to see bins with load five

until billions of balls have been thrown. Similarly, choosing d = 3 one expects a maximum

load of three until billions of balls have been thrown. These results match our simulations

of several hundred runs with up to thirty-two million balls, the largest simulation we have

attempted. We also present the averages from one hundred simulations of one million

balls for d = 2 and d = 3, which demonstrate the accuracy of the technique in predicting

the behaviour of the system. Further simulations reveal that, in general, the solution given

by the limiting system of di↵erential equations becomes more accurate as n grows, and

the deviation from this solution is small, as one would expect. This accuracy is a marked

advantage of this approach: previous techniques have not provided ways of concretely

predicting actual performance.

2.3. Relationship to O(log log n) bounds

We can also use the di↵erential equations to provide an alternative derivation of a key idea

from the proof of the upper bounds on the maximum load of greedy(d). The approach of

looking at the underlying di↵erential equations provides insight into how the sk decrease,

which is essential to determining the O(log log n) bounds.
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480 M. Mitzenmacher

We begin by focusing on the case where the number of balls n equals the number of

bins n, and consider the limiting description given by the di↵erential equations as n ! 1.

Lemma 2.2. For the family of di↵erential equations given by (2.6), si(1) 6 [si�1(1)]d.

Proof. We wish to know the values of si(1). Because the si are all non-decreasing over

time and nonnegative, from (2.6),

dsi

dt
= sdi�1 � sdi 6 [si�1(1)d]

for all t 6 1 and hence by integrating

si(1) 6 [si�1(1)]d. (2.7)

One can calculate s1(1) directly from Theorem 2.2, and it follows from a simple induction

on (2.7) that

si(1) 6 [s1(1)]d
i�1

.

In other words, the si(1), which represent the limiting fraction of bins with load at least

i after all balls have been thrown, decrease doubly exponentially, as the i is in the second

level of the exponent. Using Kurtz’s theorem one obtains a high probability result for the

case of a finite number of balls n.

Theorem 2.5. Let wn
i be the fraction of bins with load at least i when n balls are thrown

into n bins using greedy(d). Then, for any ✏ > 0 and fixed i, wn
i 6 (1 + ✏)[s1(1)]d

i�1
with

probability at least 1 � ec(log i)n✏2
for some suitable constant c.

Proof. The proof is a direct application of Kurtz’s theorem, using the appropriate error

bounds.

This doubly exponential decrease in the si(1) (or, equivalently, of the wn
i ) is a key step of

the proof of Azar, Broder, Karlin and Upfal in [1], where it is proved via an inductive use

of Cherno↵ bounds. Theorem 2.5 shows that this induction can be replaced by applying

Kurtz’s theorem to the di↵erential equations, at least up to any fixed constant value of i.

This approach has some advantages. Most importantly, Lemma 2.2 and the corresponding

inductive bound for si(1) seem quite natural and make transparent how the si decrease.

Additionally, using this approach can improve the additive O(1) term in Theorem 4 of

[1].

Intuitively, this doubly exponential decrease suggests that, if we look at bins with load
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at least i⇤ = d

log log n
log d + �e, where � = (log 2 � log log(1/s1(1)))/ log d, then

si⇤+1 6 [s1(1)]d
log log n/ log d+�

6
1

n2
,

and hence with high probability there will be no bins with load at least i⇤ + 1.

Note, however, that as stated in Theorem 2.5 the high probability bounds only hold

up to any fixed i, and not for values of i up to ⌦(log log n). This weakness in the result

stems from directly applying the di↵erential equations approach and Kurtz’s theorem,

which requires the underlying state space to be finite-dimensional, and hence loads up to

only some fixed constant can be considered. By reverting back to the explicit martingale

argument that underlies Kurtz’s theorem, we can circumvent this restriction somewhat (up

until the point where si is 1/n1/2+� for any � > 0), but at some point when si is su�ciently

small it seems we have to explicitly handle this case directly, as is done in Theorem 4 of

[1]. We omit details of these more extensive arguments, since their form would be almost

entirely a restatement of Theorem 4 of [1], replacing their use of Cherno↵ bounds with

an equivalent martingale argument. A general framework that would allow us to apply

the di↵erential equations in this instance in a more straightforward manner would clearly

be appealing, since the di↵erential equations do make clear the behaviour of the si.

In the case of m balls and n bins, a similar argument to Lemma 2.2 and Theorem 2.5

holds when m = cn for some constant c. As in Section 2.1, when m = cn, the infinite

process runs until time c; if m is not a linear function of n, the time until the process

terminates is dependent on n, and Kurtz’s theorem cannot be applied. For Lemma 2.2,

the appropriate result becomes

si(c) 6 c[si�1(c)]
d.

By noting that sc2+c(c) 6 1/(c + 1) (the fraction of bins with load at least x cannot be

more than c/x), one may again inductively show as before that the tails of the loads are

doubly exponentially decreasing. Improvements can be made in the constants by using

the di↵erential equations to find better starting points than sc2+c(c) 6 1/(c + 1) for the

induction.

3. Conclusion

There are significant advantages to using di↵erential equations to study randomized load

balancing problems. The insight one gains about the problem and the numerical accuracy

one obtains are quite convincing. Moreover, when the corresponding state spaces are finite-

dimensional, applying Kurtz’s theorem can yield simple proofs of the limiting behaviour.

A general framework for dealing with spaces that are not necessarily finite-dimensional

would greatly simplify using this approach in developing bounds such as the O(log log n)

bounds of [1]. We expect this approach will find a great deal of further use in the analysis

of load balancing schemes, as well as other algorithmic areas.
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