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New Sequences of Linear Time Erasure Codes
Approaching the Channel Capacity

M. Amin Shokrollahi

Bell Labs, Room 2C-353, 700 Mountain Ave, Murray Hill, NJ 07974, USA
amin@research.bell-labs.com

Abstract. We will introduce a new class of erasure codes built from
irregular bipartite graphs that have linear time encoding and decoding
algorithms and can transmit over an erasure channel at rates arbitrarily
close to the channel capacity. We also show that these codes are close
to optimal with respect to the trade-off between the proximity to the
channel capacity and the running time of the recovery algorithm.

1 Introduction

A linear error-correcting code of block length n and dimension k over a finite field
IFq—an [n, k]q-code for short—is a k-dimensional linear subspace of the standard
vector space IFn

q . The elements of the code are called codewords. To the code C
there corresponds an encoding map Enc which is an isomorphism of the vector
spaces IFk

q and C . A sender, who wishes to transmit a vector of k elements in
IFq to a receiver uses the mapping Enc to encode that vector into a codeword.
The rate k/n of the code is a measure for the amount of real information in each
codeword. The minimum distance of the code is the minimum Hamming distance
between two distinct codewords. A linear code of block length n, dimension k,
and minimum distance d over IFq is called an [n, k, d]q-code.

Linear codes can be used to reliably transmit information over a noisy chan-
nel. Depending on the nature of the errors imposed on the codeword during
the transmission, the receiver then applies appropriate algorithms to decode the
received word. In this paper, we assume that the receiver knows the position of
each received symbol within the stream of all encoding symbols. We adopt as
our model of losses the erasure channel, introduced by Elias [3], in which each
encoding symbol is lost with a fixed constant probability p in transit indepen-
dent of all the other symbols. As was shown by Elias [3], the capacity of this
channel equals 1 − p.

It is easy to see that a code of minimum distance d is capable of recovering
d−1 or less erasures. In the best case, it can recover from any set of k coordinates
of the encoding which means that d − 1 = n − k. Such codes are called MDS-
codes. A standard class of MDS-codes is given by Reed-Solomon codes [10]. The
connection of these codes with polynomial arithmetic allows for encoding and
decoding in time O(n log2 n log log n). (See, [2, Chapter 11.7] and [10, p. 369]).
However, these codes do not reach the capacity of the erasure channel, since
there is no infinite sequence of such codes over a fixed field.

Marc Fossorier et al. (Eds.): AAECC-13, LNCS 1719, pp. 65–76, 1999.
c⃝ Springer-Verlag Berlin Heidelberg 1999
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66 M. Amin Shokrollahi

Elias [3] showed that a random linear code can be used to transmit over the
erasure channel at any rate R < 1 − p, and that encoding and decoding can be
accomplished with O(n2) and O(n3) arithmetic operations, respectively. Hence,
we have on the one hand codes that can be encoded and decoded faster than
general linear codes, but do not reach the capacity of the erasure channel; and
on the other hand we have random codes which reach the capacity but have
encoding and decoding algorithms of higher complexity.

The paper [1] was the first to design codes that could come arbitrarily close
to the channel capacity while having linear time encoding and decoding algo-
rithms. Improving these results, the authors of [8] took a different approach and
designed fast linear-time algorithms for transmitting just below channel capac-
ity. For all ϵ > 0 they were able to produce rate R = 1 − p(1 + ϵ) codes along
with decoding algorithms that could recover from the random loss of a p fraction
of the transmitted symbols in time proportional to n ln(1/ϵ) with high proba-
bility, where n is the block length. These codes could also be encoded in time
proportional to n ln(1/ϵ). They belong to the class of low-density parity check
codes of Gallager [4]. In contrast to Gallager codes, however, the graphs used to
construct the asymptotically good codes obtained in [8] are highly irregular.

The purpose of the present paper is twofold. First, we prove a general trade-off
theorem between the proximity of a given Gallager code to the channel capacity
in terms of the loss fraction and the running time of the recovery algorithm of [8].
We show that in this respect, the codes constructed in that paper are close to
optimal. Next, we exhibit a different sequence of asymptotically close to optimal
codes which have better parameters than the codes in [8]. An interesting feature
of these codes is that the underlying bipartite graphs are right regular, i.e., all
nodes on the right hand side of the graph have the same degree. Since they are
theoretically better than their peers, we expect them to also perform better in
practice.

The organization of the paper is as follows. In the next section we will re-
view the construction of Gallager codes. Next, we prove upper bounds on the
maximum tolerable loss fraction in terms of the running time of the decoding al-
gorithm. The last two sections are concerned with the derivation of the sequence
of right regular erasure codes.

2 Codes from Bipartite Graphs

In this section, we will briefly review the class of codes we are interested in, and
the erasure recovery algorithm associated to them.

Our codes are similar to the Gallager codes [4] in that they are built from
sparse bipartite graphs. In contrast to Gallager codes, however, our codes will
be constructed from graphs that have a highly irregular degree pattern on the
left.

Let G be a bipartite graph with n nodes on the left and n − k nodes on the
right. G gives rise to a binary code of block-length n and dimension ≥ k in the

4



New Sequences of Erasure Codes 67

following way: let the adjacency matrix of the graph G be given as

A =
(

0 H⊤

H 0

)

,

where H is some (n−k)×n matrix describing the connections in the graph. The
code defined by the graph is the code with parity check matrix H. A different
way of describing the code is as follows: we index the coordinate positions of
the code with the n nodes on the left hand side of the graph. The code consists
of all binary vectors (c1, . . . , cn) such that for each right node in the graph the
sum of the coordinate places adjacent to it equals zero. The block-length of this
code equals n, and its dimension is at least k since we are imposing n− k linear
conditions on the coordinates of a codeword. Expressed in terms of the graph,
the fraction of redundant symbols in a codeword is at most aL/aR where aL and
aR are the average node degrees on the left and the right hand side of the graph,
respectively. In other words, the rate of the code is at least 1 − aL/aR. This
description of the rate will be useful in later analysis. In the following, we will
assume that the rate is in fact equal to this value. This is because the statements
we will prove below will become even stronger if the rate is larger.

The above construction needs asymptotically O(n2) arithmetic operations to
find the encoding of a message of length k, if the graph is sparse. One can apply
a trick to reduce the running time to O(n) by a modification of the construction.
Details can be found in [8].

Suppose now that a codeword (c1, . . . , cn) is sent and that certain erasures
have occurred. The erasure recovery algorithm works as follows. We first initialize
the contents of the right hand nodes of G with zero. Then we collect the non-
erased coordinate positions, add their value to the current value of their right
neighbors, and delete the left node and all edges emanating from it from the
graph. After this stage, the graph consists of the erased nodes on the left and
the edges emanating from these nodes. In the next step we look for a right node in
the graph of degree one, i.e., a node that has only one edge coming out of it. We
transport the value of this node to its unique left neighbor ℓ, thereby recovering
the value of cℓ. We add cℓ to the current value of all the right neighbors of ℓ,
delete the edges emanating from ℓ, and repeat the process until we cannot find a
node of degree one on the right, or until all nodes on the left have been recovered.

It is obvious that, on a RAM with unit cost measure, the amount of arithmetic
operations to finish the algorithm is at most proportional to the number of edges
in the graph, i.e., to naL, where aL is the average node degree on the left. The
aim is thus to find graphs with constant aL for which the recovery algorithm
finishes successfully.

The main contribution of [8] was to give an analytic condition on the maxi-
mum fraction of tolerable losses in terms of the degree distribution of the graph.
More precisely, define the left and the right degree of an edge in the graph as
the degree of the left, resp. right node it is emanating from. Further, denote
by λi and ρi the fraction of edges of left, resp. right degree i, and consider the
generating functions λ(x) :=

∑

i λixi−1 and ρ(x) :=
∑

i ρixi−1. In the following
we will call the pair (λ, ρ) a degree distribution.

5



68 M. Amin Shokrollahi

Table 1. Rate 1/2 codes built from heavy tail/Poisson distribution.

N aR θ δ/(1 − R) δ δ̂ δ/δ̂
8 5.9266 5.9105 0.91968 0.45984 0.49085 0.93682
16 7.0788 7.0729 0.95592 0.47796 0.49609 0.96345
27 8.0054 8.0027 0.97256 0.48628 0.49799 0.97648
47 9.0256 9.0243 0.98354 0.49177 0.49902 0.98547
79 10.007 10.007 0.98990 0.49495 0.49951 0.99087
132 10.996 10.996 0.99378 0.49689 0.49975 0.99427
221 12.000 12.000 0.99626 0.49813 0.49988 0.99650

The main theorem of [8] states that if the graph is chosen at random with
degree distribution (λ, ρ) and if the erasures occur at random positions, then
the above erasure recovery algorithm can correct a δ-fraction of losses if ρ(1 −
δλ(x)) ≥ 1 − x for x ∈ [0, 1]. In a later paper [6], this condition was slightly
relaxed to

δλ (1 − ρ(1 − x)) < x for x ∈ (0, δ]. (1)

The paper [8] further exhibited for any ϵ > 0 and any rate R an infinite
sequence of degree distributions (λ, ρ) giving rise to codes of rate at least R such
that the above inequality is valid for δ = (1−R)(1−ϵ), and such that the average
left degree of the graph is O(log(1/ϵ)). In other words, δ can get arbitrarily close
to its optimal value (1 − R) with a “logarithmic” sacrifice in the running time
of the algorithm. Explicitly, for any given 0 < ϵ < 1, one chooses an integer N
close to 1/ϵ and considers the pair (λN , ρN) with

λN (x) =
1

H(N − 1)

N−1
∑

k=1

xk

k
, ρN(x) = eθN ·(x−1), (2)

where θN is chosen to make the fraction of the nodes on the left and the right
equal to 1 − R, and H(N − 1) is the harmonic sum

∑N−1
k=1 1/k. This sequence

is referred to as the heavy tail/Poisson sequence in the following. Table 1 gives
an example of the performance of this sequence for some codes of rate 1/2. In
that table, aR denotes the average right degree, δ is the maximum tolerable
loss fraction, and δ̂ is a theoretical upper bound on δ, see Remark 1 following
Corollary 1.

In the following we will show that this sort of relationship between the average
degree and the maximum tolerable loss fraction is the best possible. Furthermore,
we will exhibit a new sequence of degree distributions for which the same type of
relationship holds between the average degree and the maximum tolerable loss
fraction.

6



New Sequences of Erasure Codes 69

3 Upper Bounds for the Maximum Tolerable Loss
Fraction

In this section we will prove some upper bounds on the maximum tolerable loss
fraction δ for which the algorithm given in the previous section is successful when
applied to a random graph with a given degree distribution. Our main tool will
be the inequality (1). We will first need a preliminary result.

Lemma 1. Let G be a bipartite graph with edge degree distribution (λ, ρ). Then,
the average left, resp. right, node degree of G equal

1
∫ 1
0 λ(x)dx

,
1

∫ 1
0 ρ(x)dx

,

respectively. Let the polynomials Λ and R be defined by

Λ(x) :=
∫ x
0 λ(t)dt
∫ 1
0 λ(t)dt

, R(x) :=
∫ x
0 ρ(t)dt
∫ 1
0 ρ(t)dt

.

Then the coefficient of xi in Λ(x), resp. R(x) equals the fraction of nodes of
degree i on the LHS, resp. RHS of G.

Proof. Let L denote the number of nodes on the LHS of G. Then the number of
edges in G equals aLL, and the number of edges of degree i equals λiaLL. Hence,
the number of nodes of degree i on the LHS of the graph equals λiaLL/i, since
each such node contributes to exactly i edges of degree i. Hence, the fraction of
nodes of degree i equals λiaL/i. Since the sum of all these fractions equals 1, we
obtain a−1

L =
∑

i λi/i =
∫ 1
0 λ(x)dx and this yields both assertions for the LHS

of the graph. The assertions on the RHS follow similarly. ⊓&

The following theorem shows a rather strong upper bound on δ.

Theorem 1. Let λ and ρ denote the right and left edge degree distributions of
a bipartite graph. Let δ be a positive real number such that

δλ (1 − ρ(1 − x)) ≤ x

for 0 < x ≤ δ. Then we have

δ ≤ aL

aR
(1 − (1 − δ)aR) ,

where aL and aR are the average node degrees of the graph on the left, resp. right,
hand side.

Proof. As a real valued function the polynomial λ(x) is strictly increasing for
positive values of x. Hence it has a unique inverse λ−1 which is also strictly
increasing. The first of the above inequalities is thus equivalent to

1 − ρ(1 − x) ≤ λ−1 (x/δ)

7



70 M. Amin Shokrollahi

for 0 < x ≤ δ. Integrating both sides from 0 to δ and simplifying the expressions,
we obtain

∫ 1

0
ρ(x)dx −

∫ 1−δ

0
ρ(x)dx ≥ δ

∫ 1

0
λ(x)dx.

(Note that
∫ 1
0 λ−1(x)dx = 1−

∫ 1
0 λ(x)dx.) Invoking the previous lemma, we thus

have

δ ≤ aL

aR
− aL

∫ 1−δ

0
ρ(x)dx =

aL

aR

(

1 −
∫ 1−δ
0 ρ(x)dx
∫ 1
0 ρ(x)dx

)

=
aL

aR
(1 − R(1 − δ)) ,

where the polynomial R is defined as in the statement of Lemma 1. To finish
the proof we only need to show that R(1− δ) ≥ (1− δ)aR . To see this, first note
that if a1, . . . , aM are nonnegative real numbers adding up to 1 and µ is any
nonnegative real number, then

∑

i

aiµ
i ≥ µ

∑

i
iai . (3)

This follows from taking logarithms of both sides and noting that the log-function
is concave. Denoting by ai the coefficients of R(x) and setting µ := 1 − δ, this
gives our desired inequality: the ai are by the previous lemma the fractions of
nodes of degree i, and hence

∑

i iai is the average right degree aR. ⊓&

Corollary 1. With the same assumptions as in the previous theorem, we have

δ ≤ aL

aR
(1 − (1 − aL/aR)aR) .

Proof. Follows from δ ≤ aL/aR. ⊓&

Remark 1. A more refined upper bound for δ is given by the following. Let r
denote the quantity aL/aR, i.e., one minus the rate of the code. Suppose that
aR > 1/r—an assumption that is automatically satisfied if the average left degree
is larger than one—and consider the function f(x) = x−r(1−(1−x)aR ). We have
f(0) = 0, f(1) = 1 − r > 0, f ′(0) < 0, and f ′(x) has exactly one root. Hence, f
has exactly one nonzero root, denoted by δ̂aR,r and this root is between 0 and 1.
The previous theorem asserts that the maximum δ satisfying the inequality (1)
is smaller than δ̂aR,aL/aR

.

The following definition is inspired by Corollary 1.

Definition 1. A sequence (λm, ρm) of degree distributions giving rise to codes
of rate R ≥ R0 for a fixed R0 > 0 is called asymptotically quasi-optimal if there
exists a constant µ (possibly depending on R) and for each m there exists a
positive δm with δmλm(1 − ρm(1 − x)) ≤ x for x ∈ (0, δm] such that the average
right degree aR satisfies aR ≤ µ log(1 − δ/(1 −R)).

8



New Sequences of Erasure Codes 71

The significance of quasi-optimal is the following: we want to construct codes
that can recover as many erasures as possible in as little as possible time. The
running time of the erasure recovery algorithm is proportional to the block-
length of the code times aR, the average right degree. Hence, we are looking for
a trade-off between aR and δ. Corollary 1 shows that we cannot make aR too
small. In fact, it implies that aR ≥ log(1− δ/(1−R))/ log R. However, we might
hope that we can make aR smaller than log(1 − δ/(1 − R)) times a (negative)
constant µ. In this way, we have maintained a qualitative optimality of the code
sequence in the sense that the running time increases only logarithmically with
the relative increase of the erasure correction capability.

The heavy tail/Poisson sequence (2) is asymptotically quasi-optimal as is
shown in [8]. Starting in the next section, we will introduce another quasi-optimal
sequence which has certain advantages over the heavy tail/Poisson sequence.

We close this section by stating another useful upper bound on the maximum
possible value of δ.

Lemma 2. Suppose that λ and ρ are polynomials and δ is such that δλ(1−ρ(1−
x)) < x for x ∈ (0, δ]. Then δ ≤ ρ′(1)/λ′(0).

Proof. Let f(x) = δλ(1 − ρ(1 − x)) − x. By assumption, f(x) < 0 for x ∈ (0, δ].
This implies that f ′(0) ≤ 0, where f ′(x) is the derivative of f with respect to x.
But f ′(0) = δλ′(0)ρ′(1) − 1, which gives the assertion. ⊓&

4 Fractional Binomial Coefficients

As can be seen from their description (2), the heavy tail/Poisson sequence is
closely related to the Taylor series of − ln(1−x). The new sequence that we will
describe in the next section will be related to the Taylor expansion of (1 − x)α

where 1/α is an integer. The coefficients of this expansion are fractional binomial
coefficients. For this reason, we will recall some well-known facts about these
numbers.

For real α and a positive integer N we define
(

α

N

)

:=
α(α − 1) · · · (α − N + 1)

N !

= (−1)N−1 α

N

(

1 − α

N − 1

)

· · ·
(

1 − α

2

)

(1 − α) .

For convenience, we also define
(α
0

)

:= 1. We have the Taylor expansion

1 − (1 − x)α =
∞
∑

k=1

(

α

k

)

(−1)k+1xk. (4)

Note that for 0 < α < 1 the coefficients of the right hand power series above are
all positive. Furthermore, we have

N−1
∑

k=1

(

α

k

)

(−1)k+1 = 1 − N

α

(

α

N

)

(−1)N+1, (5)

9



72 M. Amin Shokrollahi

and
N−1
∑

k=1

(

α

k

)

(−1)k+1

k + 1
=

α −
(α
N

)

(−1)N+1

α + 1
, (6)

as can easily be proved by induction.
In the following, we will derive some estimates on the size of the binomial

coefficients.

Proposition 1. Let α be a positive real number less than 1/2 and let N ≥ 2 be
an integer. There is a constant c independent of α and N such that

cα

Nα+1
≤
(

α

N

)

(−1)N+1 ≤ α

Nα+1
.

Proof. First note that
(α
N

)

(−1)N+1 is positive. Taking its logarithm and expand-
ing the series − ln(1 − x) =

∑

i xi/i, we obtain

ln
((

α

N

)

(−1)N+1

)

= ln(α/N) − α
N
∑

k=1

1
k
− α2

2

N
∑

k=1

1
k2

− · · · . (7)

(Note that the series involved are absolutely convergent, so that we can rearrange
the orders of the summations.) For an upper bound on this sum we replace
∑N

k=1 1/ks by 1 for s ≥ 2 and use the left hand side of the inequality

ln(N) + γ <
N
∑

k=1

1
k

< ln(N) + γ +
1

2N
,

where γ is Euler’s constant [5, pp. 480–481]. For the lower bound we use the
right hand side of the above inequality and replace

∑N
k=1 1/ks for s ≥ 2 by 2.

This gives, after exponentiation,

α

Nα+1
eα(2−γ−1/2N)(1 − α)2 ≤

(

α

N

)

(−1)N+1 ≤ α

Nα+1
eα(1−γ)(1 − α).

Noting that 0 < α ≤ 1/2, we obtain our assertion. ⊓&

5 Right Regular Sequences

A closer look at the proof of Theorem 1 reveals the following: one of the reasons
we might obtain a lower than optimal upper bound for the largest δ satisfying (1)
is that the inequality (3) is not sharp. In fact, that inequality is sharp iff all
the ai except for one are zero, i.e., iff ρ(x) has only one nonzero coefficient,
i.e., iff the graph has only one degree on the right hand side. We call such
graphs right regular in the following. We will study in this section right regular
degree distributions and design the left hand side in such a way as to obtain
asymptotically quasi-optimal sequences. We remark that right regular sequences

10



New Sequences of Erasure Codes 73

were previously studied in an unpublished manuscript [9]. Our approach differs
however from the one given in that paper.

From a theoretical point of view, codes obtained from these sequences should
perform better than the heavy tail/Poisson distribution, since they allow for a
larger loss-fraction for a given rate and a given average left degree. Furthermore,
the analysis given in [6] suggests that the actual performance of the code is
related to how accurately the neighborhood of a message node is described by a
tree given by the degree distributions. For instance, the performance of regular
graphs is much more sharply concentrated around the value predicted by the
theoretical analysis, than the performance of irregular graphs. Hence, if the graph
is right regular, one should expect a smaller variance in the actual performance
than for corresponding irregular codes.

For integers a ≥ 2 and N ≥ 2 we define

ρa(x) := xa−1, λα,N (x) := α

∑N−1
k=1

(α
k

)

(−1)k+1xk

α − N
(α
N

)

(−1)N+1
, (8)

where here and in the following we set α := 1/(a− 1). Note that ρa(1) = 1, that
λa,N(1) = 1 by (5), and that λa,N has positive coefficients. Hence, (ρa,λa,N )
indeed defines a degree distribution.

Let ν < 1 be a positive constant. The sequence we are interested in is given
by the following degree distributions:

ρa(x), λa,⌊ν−1/α⌋(x). (9)

First we consider the rate of the codes defined by these distributions.

Proposition 2. The rate R = Ra,µ of the code defined by the distributions
in (9) satisfies

1 − ν

1 − cνν1/α
≤ 1 − R ≤ 1 − cν

1 − νν1/α
,

where c is the constant from Proposition 2.

Proof. In the following, we denote by N the quantity ⌊ν−1/α⌋ and by λ(x) the
function λa,N(x). We need to compute the integral of λ(x). We have

∫ 1

0
λ(x)dx =

α

α + 1
α −

(α
N

)

(−1)N+1

α − N
(

α
N

)

(−1)N+1
.

Further,
∫ 1
0 ρa(x)dx = 1/a = α/(α + 1). Hence, the rate of the code is

1 −
α − N

(

α
N

)

(−1)N+1

α −
(α
N

)

(−1)N+1
:= 1 − rα,N . (10)

Next, we estimate rα,N using Proposition 2 again:

1 − ν

1 − cνν1/α
≤ rα,N ≤ 1 − cν

1 − νν1/α
.

This gives the desired assertion on the rate. ⊓&
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74 M. Amin Shokrollahi

Theorem 2. The sequence of degree distributions given in (9) is asymptotically
quasi-optimal.

Proof. Let us compute the maximum value of δ such that δλ(1 − ρ(1 − x)) < x
for x ∈ (0, δ), where (λ, ρ) is the pair given in (9). We have

δλ(1 − ρ(1 − x)) <
δα

α − N
(α
N

)

(−1)N+1
(1 − ρ(1 − x)α)

=
δα

α − N
(

α
N

)

(−1)N+1
x.

So, for δλ(1 − ρ(1 − x)) < x we need

δ ≤
α − N

(α
N

)

(−1)N+1

α
. (11)

This is, by the way, the same upper bound as the one obtained from Lemma 2. In
the following we assume that δ is equal to the above upper bound, and compute
δ/(1 − R), R being the rate of code estimated in Proposition 2:

δ

1 − R
=

α −
(

α
N

)

(−1)N+1

α
≥ 1 − 1

Nα+1
.

Ignoring diophantine constraints, we assume in the following that N = ν−1/α.
This gives

δ

1 − R
≥ 1 − ν(α+1)/α = 1 − νaR ,

where aR = a = (α + 1)/α is the average right degree of the code. This proves
the assertion. ⊓&

In practical situations, one is interested in designing a code of a given fixed rate.
Since the parameter α in the definition of the sequence in (9) is the inverse
of an integer, the range of this parameter is discrete. Hence, we do not have
a continuous range of rates for these codes. However, we can come arbitrarily
close to our desired rate by making α smaller, i.e., by allowing high degrees
on the RHS of the graph. Some examples for different target rates are given in
Table 2. The value of N has been hand-optimized in these examples to come as
close to the desired rate as possible. The last column in that table corresponds
to the value δ̂ defined in Remark 1 following Corollary 1. It gives a theoretical
upper bound on the best value of δ. As can be observed from the table, the
maximum value of δ converges very quickly to the maximum possible value.
Also, a comparison between these codes and the heavy tail/Poisson distribution
in Table 1 reveals that the new codes are better in terms of the trade-off between
δ and aR. However, the new codes need larger degrees on the left than the heavy
tail/Poisson distribution.

To obtain codes that have a fixed rate, one can modify α slightly. Such ex-
amples are given in Table 3. Both parameters (α and N) of these codes are
hand-optimized to give the best results.
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Table 2. Right regular sequences for rates R close to 2/3, 1/2, and 1/3.

N aR 1 − R δ/(1 − R) δ δ̂ δ/δ̂
2 6 0.33333 0.60000 0.20000 0.29099 0.68731
3 7 0.31677 0.74537 0.23611 0.28714 0.82230
6 8 0.32886 0.88166 0.28994 0.31243 0.92801

11 9 0.33645 0.93777 0.31551 0.32690 0.96514
17 10 0.33357 0.96001 0.32024 0.32724 0.97860
27 11 0.33392 0.97502 0.32558 0.32984 0.98711
42 12 0.33381 0.98401 0.32847 0.33113 0.99197
64 13 0.33312 0.98953 0.32963 0.33134 0.99484

13 6 0.50090 0.96007 0.48090 0.49232 0.97679
29 7 0.50164 0.98251 0.49287 0.49759 0.99052
60 8 0.49965 0.99159 0.49545 0.49762 0.99563
12. 9 0.49985 0.99598 0.49784 0.49885 0.99797
257 10 0.50000 0.99805 0.49903 0.49951 0.99904
523 11 0.50002 0.99904 0.49954 0.49977 0.99953

1058 12 0.49999 0.99953 0.49975 0.49986 0.99977

111 6 0.66677 0.99698 0.66475 0.66584 0.99837
349 7 0.66667 0.99904 0.66603 0.66636 0.99950

1077 8 0.66663 0.99969 0.66642 0.66653 0.99984
3298 9 0.66669 0.99990 0.66662 0.66665 0.99995

6 Conclusions and Open Questions

In this paper we have analyzed the theoretical performance of a simple erasure
recovery algorithm applied to Gallager codes by deriving upper bounds on the
maximum fraction of tolerable losses given a parameter that describes the run-
ning time for encoding and decoding of the codes. We have shown that there is
a trade-off between proximity to the optimal value of tolerable losses, i.e., one
minus the rate of the code, and the average degree of nodes in the graph, in
the sense that multiplying the average degree by a constant factor implies an
exponential relative increase of the maximum tolerable loss fraction. Further,
we have introduced a new sequence of graphs which are asymptotically close to
optimal with respect to this criterion. These graphs are right regular and their
node degree distribution on the left hand side is closely related to the power
series expansion of (1 − x)α, where α is the inverse of an integer. Previously,
the only known such sequence was the heavy tail/Poisson sequence introduced
in [8]. We have included examples which show that the new codes tolerate a
higher fraction of losses if the average degree of the graph is fixed.

It would be very interesting to extend the analysis given in this paper to
other decoding algorithms, e.g., to the simple decoding algorithm of Gallager
for error correcting codes [4,7]. Such an analysis would probably give clues for
constructing infinite sequences of graphs that perform asymptotically optimally
with respect to the decoding algorithm in question.
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Table 3. Rate 1/2 codes, ρ(x) = xaR−1, λα,N(x) as defined in (8) for arbitrary α.

N α aR δ/(1 − R) δ δ̂ δ/δ̂
11 0.17662 6 0.95982 0.47991 0.49134 0.97673
27 0.16412 7 0.98190 0.49095 0.49586 0.99009
59 0.14225 8 0.99142 0.49571 0.49798 0.99543

124 0.12480 9 0.99596 0.49798 0.49901 0.99794
256 0.11112 10 0.99800 0.49900 0.49951 0.99898
521 0.09993 11 0.99896 0.49948 0.49975 0.99945

1057 0.09090 12 0.99950 0.49975 0.49988 0.99974

References

1. N. Alon and M. Luby. A linear time erasure-resilient code with nearly optimal
recovery. IEEE Trans. Inform. Theory, 42:1732–1736, 1996.

2. R.E. Blahut. Theory and Practice of Error Control Codes. Addison Wesley, Read-
ing, MA, 1983.

3. P. Elias. Coding for two noisy channels. In Information Theory, Third London
Symposium, pages 61–76, 1955.

4. R. G. Gallager. Low Density Parity-Check Codes. MIT Press, Cambridge, MA,
1963.

5. R.L. Graham, D.E. Knuth, and P. Patashnik. Concrete Mathematics. Addison-
Wesley, 1994.

6. M. Luby, M. Mitzenmacher, and M.A. Shokrollahi. Analysis of random processes
via and-or tree evaluation. In Proceedings of the 9th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 364–373, 1998.

7. M. Luby, M. Mitzenmacher, M.A. Shokrollahi, and D. Spielman. Analysis of low
density codes and improved designs using irregular graphs. In Proceedings of the
30th Annual ACM Symposium on Theory of Computing, pages 249–258, 1998.

8. M. Luby, M. Mitzenmacher, M.A. Shokrollahi, D. Spielman, and V. Stemann.
Practical loss-resilient codes. In Proceedings of the 29th annual ACM Symposium
on Theory of Computing, pages 150–159, 1997.

9. M. Luby and M.A. Shokrollahi. Right regular erasure codes. Unpublished, 1998.
10. F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes.

North-Holland, 1988.

14


	Introduction
	Codes from Bipartite Graphs
	Upper Bounds for the Maximum Tolerable Loss Fraction
	Fractional Binomial Coefficients
	Right Regular Sequences
	Conclusions and Open Questions



