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Pursuant to 37 C.F.R. § 42.104(c), Petitioner Apple Inc. respectfully
requests that the Patent Trial and Appeal Board (“Board”) grant leave to the
Petitioner to submit replacement Exhibits that address inadvérteht élerical errors
| made when ﬁling the following three exhibits in the IPR2017-00210, —0021 1, and -
00219 petitions: | |

* Frey, B. J. and MacKay, D. J. C., “Irregular Turbocodes,” Proc. 37th
Allerton Conf. on Comm., Céntrol and Computing, Monticello, Illinois,
1999 (the “Frey Reference”).

* D. Divsalar,- H. Jin, and R. J. McEliece, “Coding theorems for ‘tﬁfbo—
like’ codes,” Proé. 36th Allerton Conf. on Comm., Control and |
Computing, Allerton, Illinois, 1998 (the “Divsalar Reference”).

. Decléraﬁon of Paul H. Siegel (the “Siegel Declaration”).

Petitioner requested a telephonic hearing on this issué on February 21, 2017,
which the Board held on February 24, 2017. At the February 24 hearing, the
Board directed Petitioner to file this motion under\37 C.F.R. § 42.104(c) together
with the reblacement exhibits.

Accordingly, and for the reasdns set forth more fully below, Petitioner
respectfully requests that the Board: (1) replace the Frey Reference originally ﬁl‘edv

as ExhibAitvl 102 with the replacement copy attached as Appendix A to this motion;
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(2) replace the Divsalar Reference originally filed as Exhibit 1103 with the
replacement copy attached as Appendix B to this motion; and (3) replace the 'Siegel
Declaration originally filed as Exhibit 1120 with the replacement copy attached as

Appendix C to this motion. Patent Owner does not oppose this motion.

L APPLICABLE RULE

Pursuant to 37 C.F.R. § 42.104(c),‘ a parfy may ﬁle a motion “to correct a

clerical or typographical mistake in a petition.” The Board"ﬁas explained that _thié |

rule is remédial in nature and subject to liberal interpretation. ABB Inc. v. ROY-G-
BIV Corp., IPR2013-00063, Paper 21 at 7 (PTAB Jah. 16, 2013) (citing
Tcherepnin v. Knight, 389 U.S. 332, 336 (1967)). The Board has regularly granted
motions to correct inadvertent errors related to the filing of exhibits pursuant to §
42.104(c). See, e.g., O?vens Corning v. Certainteed Corp., IPR2014-01397, Paper
lQ at 2 (PTAB Dec. 17, 2014);> Syntroleum Corp. v. Neste Oil 0YJ, [PR2013- |
00178, Paper 21 at 5 (PTAB July 22, 2013). |
II.  FACTS RELEVAN"f TO THIS MOTION

On November 15, 2016, Petiﬁoner filed three inter partes review pétitions in

IPR2017-00210, -00211, and -00219 directed to U.S. Patent No. 7,116,710¢
- During the preparation and filing of these petitions, lead counsel Richard

Goldenberg directed that the copies of the Frey Reference, Divsalar Reference, and
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the Siegel Declaration (attaehed hereto as Appendices A, B, and C, respectively, to
distinguish them from originally—ﬁled'Exhibits 1 102, 1103, and 1120) were to be |
filed with the petitions. (Goldenberg Declaration, Ex. 1 125,_ﬂ6, 9,10.) Irt
carrying out these instructions, however, the associate assisting in uploading these
exhibits, Jonathan E. Barbee, mistakenly directed iegal staff to upload incorrect
copies of the Frey Reference, the Divsalar Reference, and the Siegel Declaratiotl.
(Barbee Declaration, Ex. 1126, 994-7.) As explained below, this occurred due to
clerical errors in the preparation of the exhibits to the petitions_.

A.  The Frey Reference

Counsel for Petitioner had several additional copies of the Frey Reference in
the firm’s document management database, tncluding the inadvertently-ﬁled |
exhibit, which lacks a table of contents and a date stamp. The associate assisting
-with uploading the exhibits, Mr. Barbee, unintentionally selected the wfeng copy
of the Frey Reference because the inadvertently-filed document had been
circulated for a different purpose. (Barbee Declaration, Ex. 1126, §5.) The text of
the replacement Frey Reference is identical to the text of the inadvertently-filed
exhibit and will not affect ttle substance of the IPR2017—OO210, -00211, and -

00219 petitions, but merely corrects a clerical error.

ActiveUS 161106059v.1



U.S. Patent 7,116,710
Apple vs. California Institute of Technology

The inadvertently-filed exhibit lacks page numbering corresponding to the
Table of Contents of the publication in which the Frey Reference was published.
The Table of Contents from that publicétion was filed as a separate exhibit with the
IPR2017-00210, -00211, and -00219 petitions as Ex. 1015, Ex. 1115, and Ex.
1215, respectively. The Table of Contents bears the same date stamp as the
replacement Frey Reference (i.e., March 20, 2000 from the Cornell University

Library) and indicafes that the first page is page 241. The pagination of the

“inadvertently-filed Frey exhibit does not match the pagination identified in the

Table of Contents in Ex. 1015, Ex. 1115, and Ex. .1215 because the inadvertently-
filed Frey exhibit begins at page 17 In the r_eplacement Frey Reference, the first
page of the exhibit is page 241, which matches the pagination indicated in the
Table of Contents of tne publication in which the Frey Reference was published, as
shqwn in Ex. 1015, Ex. 1115, and Ex. 1215.

B. The Divsalar Reference

Counsel for Petitioner cited to the Divsalar Reference in the IPR2017-00210,
-00211, and -00219 petitions using sequential page numbering that designated the

first page as page 1, whereas the inadvertently-filed exhibit bears only sequential

. page numbering that begins with page 201. The associate assisting in uploading

the exhibits, Mr. Barbee, inadvertently directed legal staff to upload the Divsalar
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| Reference without adding sequenﬁal page numbers beginning with page 1 below
the original page numbers of the exhibit. (Barbee Declar\’ation, Ex. 1126, 96.) The
addition of the sequential page numbers was needed for the Divsalar Reference to

_ métch the citations in the IPR2017-00210, -00211, and -00219 pétitions. The

replacement Divsalar Reference is identical to the inadVertently-ﬁled‘exhibit-

except for the addition of the sequential page numbers and will not affect the

substance of the IPR2017-00210, -00211, z‘md‘ ~00219 peﬁtions, but merely corrects

a clerical error.

- C. The Siegel Declaration

Petitioner obtained from ProféSsor Paul. H. Siegel a declaration that includes
an attachment called “Exhibit 1.” “Exhibit 1” to the Siegel Declaration was
inadvertently omitted, however, when the associate assistirig with the exhibits, Mr.
Barbee, directed legal staff to upload this declaration. (Barbee Declaration, Ex.
1126, 97.).

Speciﬁcaily, the Siegel Declaration and “Exhibit 1” were sent by Professor
Siegel to counsel for Peti\tioﬁer in separate emails. Mr. Bar‘bee} inadvertently
overlooked the .email forwarding “Exhibit 17 in the process of pfeparing the Siegel'
Declaration for filing. A copy of the same presentation in “Exhibit 1'” was filed

with the IPR2017-00210, -00211, and -00219 petitions as Ex. 1005, Ex. 1105, and
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Ex. 1205, respectively. This is because the Siegel Declaration was submitted to
d.emonstrate that Ex. 1005, Ex. 1 105, and Ex. 1.205 were.frue and accurate copies
of the presentation. The replacement Siegel Declaration is identical to the
inadvertently-filed exhibit éxcept for the addition of “Exhibit 1, which is identical
to Ex. 1005, Ex. 1105, and Ex. 1205 in IPR2017-00210, -00211, and -00219,
respe;ctively (specifically, ali are copies of the presehtation entitled “The Serial
Concatenation éf Rate-1 Codes Through Uniform Random Interleavers,” which is
identified by name on p. 3 of the Siegel Declaration), and Wﬂl nét affect the
substance of the IPR2017-00210; -00211, aﬁd —00219 pétitions, but merely corrects
a clerical error. |

III. THIS MOTION IS UNOPPOSED

While Patent Owner (California Institute of Tevchnol’ogy,A or “Caltech”) does
not acquiesce fo any factual assertions made by the Petitioner in its motion or
'cor.responding suppotting docuﬁlents, Caltech does notvlop.pose the relief requested
in this motion in that replacement documents are accépted for the Frey '_Réference,
the Divsalar Reference, and the Siegel declaration. During the hearing on
‘February 24, '2017, the Boafd explained that, due to the filing of thé corrected
exhibits, and should Caltech not bppose the requested replacement of exhibits, the

- Patent Owner would receive a one-month extension of the deadline for filing its
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Preliminary Patent Owner Response, making that response due on April 3.

Petitioner does not oppose the one-month extension for filing of the Preliminary

Patent Owner Response.
IV. THE INADVERTENT ERRORS IN THE FREY REFERENCE, THE DIVSALAR

REFERENCE, AND THE SIEGEL DECLARATION ARE CLERICAL ERRORS THAT
SHOULD BE CORRECTED :

The inadvertent errors in the filing of the Frey Reference, the Divsalar
Reference, and the Siegel Declaration should be corrected because correcting these
clerical erfors will not prejudice Patent Owner and will not‘ affect the substancé of
the betitions ih IPR2017-00210, -00211, and -00219. The substance of the

replacement copies of the Frey Reference, the Divsalar Reference, and the Siegel

Declaration is identical to the inadvertently-filed exhibits. As explained above, the

differences between the replacement copies and the inadvertently-filed exhibits are
clerical in nature. |
V.  CONCLUSION

For the foregding reasons, Petitioner respectfully requests that Ex. 1102 (the
Frey Reference), Ex. 1103 (the Divsalar Reference), and Ex. 1120 (the Siegel
Declaration) to the petiﬁon in the above-captioﬁed inter partes reVieW proceeding

be replaced with the replacement copies attached to this motion as Appendices A,

- B, and C, respectively.

ActiveUS 161106059v.1



U.S. Patent 7,116,710
Apple vs. California Institute of Technology

Dated: February 28, 2017 Respectfully Submitted,

/Dominic E. Massa/

Dominic E. Massa

Registration No. 44,905
WILMER CUTLER PICKERING
HALE AND DORR LLP

60 State Street

Boston, MA 02109

Tel: (617) 526-6386

Fax: (617) 526-5000

Attorney for Petitioner
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CERTIFICATE OF SERVICE

I hereby certify that on February 28, 201&, a true and corréct copy of the
foregoing MOTION TO SUBMIT REPLACEMENT EXHIBITS PURSUANT TO
- 37CF.R.§42.104(c) and Petitioner’s Updated Exhibit List were served via
electronic mail upon the followihg attorneys of récord:

Michael Rosato (mrosato@wégr.com)

Matthew Argenti (margenti@wsgr.com)
Richard Torczon (rtorczon@wsgr.com)

/Dominic E. Massa/
Dominic E. Massa
Registration No. 44,905
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Irregular Turbocodes -

' Brendan J. Frey
: Computer Science, University of Waterloo
Electrical and Computer Engineering, University of Illinois at Urbana,
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David J. C. MacKay
Department of Physics, Cavendish Laboratories
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http: //wol.ra.phy.cam.ac.uk/mackay

Abstract

" Recently, several groups have increased the coding gain of iteratively decoded
Gallager codes (low density parity check codes) by varying the number of parity
check equations in which each codeword bit participates. In regular turbocodes,
each “systematic bit” participates in exactly 2 trellis sections. We construct ir-
regular turbocodes with systematic bits that participate in varying numbers of
trellis sections. These codes can be decoded by the iterative application of the
sum-product algorithm (a low-complexity, more general form of the turbodecoding
algorithm). By making the original rate 1/2 turbocode of Berrou ef al. slightly
irregular, we obtain a coding gain of 0.15 dB at a block length of N = 131,072,
bringing the irregular turbocode within 0.3 dB of capacity. Just like regular tur-
bocodes, irregular turbocodes are linear-time encodable.

1 Introduction

Recent work on irregular Gallager codes (low density parity check codes) has shown that.

by making the codeword bits participate in varying numbers of parity check equations,
significant coding gains can be achieved [1-3]. Although Gallager codes have been shown
to perform better than turbocodes at BERs below 107° [4]%, until recently Gallager codes
performed over 0.5 dB worse than turbocodes for BERs greater than 105, However,
in [3], Richardson et al. found irregular Gallager codes that perform 0.16 dB better than

the original turbocode at BERs greater than 10~ [5] for a block length of N = 131, 072.

1Gallager codes to not exhibit decoding errors, oniy decoding failures, at long block lengths with
"N > 5,000. ,
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In this paper, we show that by tweaking a turbocode so that it is irregular, we obtain a
coding gain of 0.15 dB for a block length of N = 131,072, For example, an N = 131, 072
irregular turbocode achieves By /Ny = 0.48 dB at BER = 1071, a. performance similar to
the best irregular Gallager code published to date [3]. By further optimizing the degree
- profile, the permuter and the trellis polynomials, we expect to find even better irregular
turbocodes. Like their regular cousins, irregular turbocodes exhibit a BER flattening
due to low-weight codewords. o

2 Irregular turbocodes

In Fig. 1, we show how to view a turbocode so that it can be made irregular. The first -
picture shows the set of systematic bits (middle row of discs) being fed directly into
one convolutional code (the chain at the top) and being permuted before being fed into

- another convolutional code (the chain at the bottom). For a rate 1/2 turbocode, each
constituent convolutional code should be rate 2/3 (which may, for example, be obtained
by puncturing a lower-rate convolutional code).

Since the order of the systematic bits is irrelevant, we may also introduce a permuter
before the upper convolutional code, as shown inthe second picture. In the third picture,
we have simply drawn the two permuters and convolutional codes side by side. :

For long turbocodes, the values of the initial state and the final state of the convo-
lutional chains do not significantly influence performance (e.g., see [6]). So, as shown in
~the fourth picture, we can view a turbocode as a code that copies the systematic bits,
permutes both sets of these bits, and then feeds them into a convolutional code. We refer
“to this turbocode as “regular”, since each systematic bit is copied exactly once.

The final picture illustrates one way the above turbocode can be made irregular.
Some of the systematic bits are “tied” together, in effect causing some systematic bits to
be replicated more than once. Notice that too keep the rate of the overall code fixed at
1/2, some extra parity bits must be punctured.

More generally, an irregular turbocode has the form shown in Fig. 2, which is a type of

- “trellis-constrained code” as described in [7]. We specify a degree profile, fg € [0,1],d €
{1.2,...,D}. f, is the fraction of codeword bits that have degree d and D is the
maximum degree. Each codeword bit with degree d is repeated d times before being fed
into the permuter. Several classes of permuter lead to linear-time encodable codes. In
particular, if the bits in the convolutional code are partitioned into “systematic bits”

and “parity bits”, then by connecting each parity bit to a degree 1 codeword bit, we can
encode in linear time. ‘ ‘ ‘

The average codeword bit degree is

D
d=3"d-f ' SN
d=1 '

The overall rate R of an irregular turbocode is related to the rate R’ of the convolutional
code and the average degree d by ' /
dl-R)=1-R 2)

So, if the average degree is increased, the rate of the convolutional code must also be
increased to keep the overall rate constant. This can be done by puncturing the convo-
lutional code or by designing a new, higher rate convolutional code.
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Fxgure 1: The first 4 pictures show that a turbocode can be viewed as a code that
copies the systematic bits, permutes both sets of these bits and then feeds them into
a convolutional code. The 5th picture shows how a turbocode can be made irregular
by “tying” some of the systematic bits together, i.e., by having some systematic bits
replicated more than once. Too keep the rate ﬁxed, some extra parity bits must be
punctured. Too keep the block length fixed, we must start with a longer turbocode.

3 Decoding irregular turbocodes

Fig. 2 can be interpreted as the gmphxcal model [6,8-10] for the irregular tulbocode
Decoding consists of the iterative application of the sum-product algorithm {a low-
complexity, more general form of turbodecoding) in this graph.
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Figure 2: A general irregular turbocode. For d = 1,..., D, fraction f; of the codeword

" bits are repeated d times, permutcd and connected to a convolutmnal code.

After receiving the channel output, the decoder computes the ch-a._nnel output log-
likelihood ratios for the N codeword bits,

L(l)iLg)"-.va(I)\h o (3)

and then repeats each log-likelihood ratio appropriately. If codeword bit 4 has degree d,
we set '

L,’,l — L?, Li_g L L?, PN Li,d ¢ L? (4)

Next, the log-likelihood ratios are permuted and fed into the BCJR algorithm {11]
for the convolutional code. The BCJR algorithm assumes the inputs are o priori log-
probability ratios and uses the forward-backward algorithm [12] to compute a set of o
posteriori log-probability ratios. If codeword bit ¢ has degree d, the algorithm produces
d a posteriori log-probablhty ratxos : :

i Ligy ey Lig. (5)

I‘or a regular turbocode, there are just two g poste‘riori log-probability ratios, L}; and
i for each degree 2 bit and they correspond to the “extrinsic information” produced
by each constituent convolutional code.

The current estimate of the log-probability ratio for bit ¢ given the channel output is

g .
Ly L4 (Liy = Lig). (6)

k=1

To compute the inputs to the BCJR algorithm needed for the next iteration, we sub-
tract off the corresponding outputs from the BCJR algorithm produced by the previous -
iteration:

Lik*“ﬁi“L;k (7)

So, each iteration conslsts of computing the inputs to the BCJR algorithm, permuting
the inputs, applying the BCJR algorithm, permuting the outputs of the BCJR algorithm,
and taking the repetitions into account to combine the outputs to form estimates of the
log-probability ratios of the codeword bits given the channel output.

In our simulations, after each iteration, we check to see if the current decision gives a
codeword. If it does, the iterations terminate and otherwise, the decoder iterates further
until some maximum number of iterations is reached and a decoding failure is declared.
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Figure 3: (a) shows the effect of changing the fraction of elite bits on the BER, while

- keeping the degree of the elite bits fixed at 10. (b) shows the effect of changing the degree

of the elite bits on the BER, while keeping the fraction of elite bits fixed at 0.05. For
each fraction and degree, the performance of 4 randomly drawn permuters is shown,

4 Selecting the profile

Finding a good profile is not trivial, since the best profile will depend on the parameters

- of the convolutional code, the permuter and the distortion measure (bit error rate, block

exror rate, decoding failure rate, high-weight decoding failure rate, etc.)

The results we report in this paper were obtained by making small changes to a block
length N = 10,000 version of the original rate R = 1/2 turbocode proposed by Berrou et
al.. In this turbocode, fi = f; = 1/2 (see Fig. 2) and the convolutional code polynomials
are 37 and 21 (octal), The taps associated with polynomial 37 are connected to the
degree 2 codeword bits, 1/2 of the taps associated with polynomial 21 are connected to
the degree 1 bits, and the remaining 1/2 of the taps associated with polynomial 21 are
punctured, giving the required convolutional code rate of R’ = 2/3.

To simplify our search, we considered profiles where besides degrees 1 and 2, only one
other degree, ¢ for “clite”, had a nonzero fraction. So, for a code with overall rate R and
fraction f, of degree e elite bits, we have

f1 =] - R = 1/2,
fr=1=fi=fe=1/2-fe 8
In this restricted class of codes, irregularity is governed by two parameters, e and f,.

From (2) it is clear that when the average degree is increased, the rate of the convo-
lutional code must also be increased to keep the overall rate at 1/2. We increased the
rate of the punctured convolutional code by further puncturing the taps associated with

. polynomial 21 to obtain a, convolutional code with rate

) 1-R 1/2 . -
Rl =l s f v el ©)

So, in the codes we explored, the level of puncturing was quite high and some extra
low-weight codewords were introduced.

- To begin with, we made an irregular turbocode with e = 10 (chosen using intuition)
and varied f, from 0.02 to 0.08 while measuring the BER at Ey /Ny = 0.6 dB. In each
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Figure 4: Performance of the original block length N = 131, 072 turbocode (dashed line)
and one of its irregular cousins (solid line). These results are for irregular turbocodes
obtained by tweaking the original turbocode ~ we are currently searching for optimal
degree profiles, permuters and trellis polynomials.

experiment, we simulated enough blocks to obtain a relatively small confidence interval.

The results are shown in Fig. 3a, which indicates that for degree 10 elite bits, the best

fraction is roughly 0.05. Next, we kept the fraction of elite bits fixed at f, = 0.05 and

we varied the degree of the elite bits, The results are shown in Fig. 3b, which indicates
that for a fraction of 0.05, the best degree is roughly 10.

These results show that for e = 10, f, = 0.05 is a good fraction and that for fe = 0.05,
e = 10 is a good degree. However, values of e and f, that give good profiles are probably
‘correlated, so we are currently extending our search.

5 Results

Fig. 4 shows the simulated BER-E;/N, curves for the original block length NV = 131,072
regular turbocode (dashed line) and its irregular cousin (solid line), using profile ¢ = 10,
f, = 0.05.

The irregular turbocode clearly performs better than the regular turbocode for BER
> 10~4. At BER = 1074, the NV = 131,072 irregular turbocode is 0.3 dB from capacity,
a 0.15 dB improvement over the regular turbocode.

For high E,/N,, most of the errors for the irregular turbocode were due to low-weight
codewords. According to preliminary results, the distribution of error weights appears to
indicate that the flattening effect for the particular N = 131,072 irregular turbocode we
constructed occurs at a higher BER than it does for the regular turbocode. However, the
flattening effect is highly sensitive to the technique used to construct the permuter {we .
drew it at random) and the design of the convolutional code (we just further punctured
the convolutional code used in the original turbocode). We are currently experimenting
with techniques for lowering the level of the flattening effect (e.g., see [13]).

6
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6 Conclusions

We have shown that by making the original, regular turbocode irregular, a coding gain
of 0.15 dB is obtained, bringing the irregular turbocode within 0.3 dB of capacity at a
BER of 10~*. This irregular turbocode performs in the same regime as the best known
irregular Gallager code. : :

_ We emphasize that we obtained these results by tweaking the regular turbocode orig-
“inally introduced by Berrou et al.. We believe we will be able to improve these perfor-
mance curves significantly, both by exploring the polynomials used in the convolutional
code and by adjusting the degree profile and the permuter structure. (One way to speed
up the search is to extend the method of “density evolution” [3} to models with state.)
In particular, we are investigating ways to select the permuter and the polynomials to
eliminate low-weight codewords, thus reducing the flattening effect [13-15]). We are also
studying ways of constraining the degree 1 “parity” bits (é.e., increasing their degree) to -
eliminate low-weight codewords.
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Coding Theorenws for “Turbo-Like"” Codes®
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Abstract.

In this paper we discusy éi&é;‘ N coding theorems for ensembles of coding systems wl mz:
are bl from fived convolutional codes Interconnected with random interlesvers, We
call these gvstetns “turbo-ike” codes and they Include a8 special cases both the classical
errhier zm:f@ées {1,2,8] annd the serlsd convatentation of nterleaved convolitional vodes .
Wer offor 4 generad conjacture about the bebavior of the srsemble (maximon-likelihood
deroder) word srvar probubility as the word length spproches infinity. We prove this
conjecture for a simple class of rate Yy serially concatenated codes where the ower
vodde is 8 4-fold repetition code and she Inner code i & rabe 1 vonvolutional code with
eransfor function 101 + 8. We believe this feplosents the fisst vigorings proof of &
ehiding theoren for turbodike sodes.

1. Introduction.

The 1003 discovery of barbo codes by Berron, Glaviens, and Thitieajshima [1] has
sevelutivnied the feld eri' erTor-rting m«i@s In Twhf ‘émrbs; cmi& hxw eswugi
rasdonen to.ah ' -y 51
shriture bo alow g 1 _ thian i
b ihasniante the fiest of these beo sttributes, e, the "o Shitibs timie” mgah:h&m
of tathodike emim on the M%{}i@ g?ﬁmmi

,»g :mﬁ,g; witi& " {mif—s stmemw r:)f thd ay,gm mgh xed component m}dm am‘i um»r»
connuction topology, we altempt toshow thet as the block length spprosches infinity,
the ensemble {over all possible interleavers) maximum Hkelthood ervor probability ap-
proaches gero i Eyf N5 exeonds some threshold. - Our prool technigue is to deive an
: expression for the ensemble input-output weight enumerator (I0W B} and then
i uue this ex;m%mn. in combinstion with either the clasdieal wion bound, or the
recert “improved® undon bound of Viterbt and Viterbt 18], to'show that the maximum
likelibood word evror probability approaches zevg as ¥ ~ oo, Unbortunstely the diffl
eulty of the fust step, Le, the compotation of the enserable TOWE, has kept uws from
full sueress, exvept for some very slmple coding systems, which we call repent ond ac-
rumulate codes. Sull, we are optimistie that this techunlgue will vield eoding theorems
for & much wider dass of Interboaved concabapated codes. In any case, # ls sodisfying to
have rigorousty proved coding theorems for even o restricted class of Luxbo-like codes.

Here iy an outling of the paper. o Section 2 we quickly review the classioal undon
hound on meximuns-likelihond word ereor probebility for block cmdes on the AWON

* Plarhush Diveatar’s work, aiul o portion of Robert MeBliond's work, was performed
at JPL undey contract with NASA. The remainder of MeBleoe’s work, and Hul Jin's
work, wos performed st Oaltevh and supported by NEF grant ne.  NOR-9S05875,
AFOSR grant oo, SFAO620-97-1-0313, and grant fam Qualeomm,
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¥ shannel, which Is seen to depend on the ode's weight enumerator. In Section 3 we
define the clsss of "trboelike® codey, and give a formuls for the average input-tutpat
weight eswnerator for such a code. Jo Section 4 we state a conjecture (the interleaver
 gain axponent sonjecture) abowt the ML decoder performance of turbo-like codes. In
Section 5, we define a spocial elass of turbo-like codes, the repest-and-soeumulate codes,
angd prove the IGE conjecture for- them. Finadly, in Bection § we present performance
carves for somme BA codes, using an Rerative, twbpdike, decoding algorithin. This
performance is seen 1o be remarkably gond, despite the simplicity of the codes and the
subgptimality of the decoding algorithny

2. Uniob Bounds on the Performance of Block Codes.
In this section we will review the classical usion bound on the maximunelikelibood
ward error probabllity for blogk codes,

Consider » binary Hnear {n, So} block code € with code rate r = kfn Fhe foulpud)
weight enumerator {WE} for Cis the sequence of numbers Ao, ..., 4., where 4, do-
mwtes the number of codewords in € with {output) weight 4. 'ﬁ‘}w snput-oidpud weinhi
enumerator (JOWE) for € is the array of numbers Sup, w = 0.1,k h s 0, L.

A denotes the number of codewords In © with input weight w smd autput welght

“The union bound on the word error probability Pue of the code C over s mempryless

i‘:ﬁm{y«xz}}mt channel, using maxium lkelibood decoding, has the well-koown forme.

(21) Py 23 Ant
hawt
a Fk &Y
{23 m§: (S: A%&) ng
Bt Sawwed

Cin {(21) and {29, the hunction 2™ tepresents an upper bound o the pairwise error
probadility for two codewords separated by Hamwming {output) distance b, For AWG%
chantels, &= ¢~ B where B fNy s the signal-tosnoise ratio per bit.

3. The Class of “Turbo-Like® Codes.
2:3 iixzs mzwn, % mm&ﬁﬁr 5 gtamxmii eizm‘s @f wmat&mawd wcim;k, agxmm {zf &iw )fg;«e

zﬁ; m {32 i 5 {ﬂg,?ﬁfg} hmar %a&mk wti&, atd the zth @nmdﬁr is prwedeé hry A
inveslonser {p@mm} B of slse Ny, wicspt Oy which is not preceded by su interléaver,
Lt Father i® contigcted 1o the Jupit, Th averall sbructure must have no loops; Le, it
must b a graph-theoretic tree. We call » oodé of this fype s “wrbe-like” code.
§3§§£§X§3 g = 142, p) andsubsets of s, by sy = {{ € 852 0} eonneeted o input},
s w8 8y 5 € conniectid to output 3, and its complement 3o, The overall sy&wm
depicted in Figure 1 is then an encoder for an {n, V) block code with nox e w
if we know the IOWE Af:} s for the cotstituent yodes O, we can caicz;im»
the average IOWE Ao for the ov&mii system {averaged over the set of ol possible
interleavers), using the wniform inferleaver techmique [2) (A uniform interleaver is
defined as 5 probabilistic device thal maps a given uput word of weight w into alf
distinet {7} permutations of it with equal probability p=1/ (%)) The result &s
@ 4&?
(313 Aea= 3 S0 AU, T
) - {w;}

By 3y %
‘223&,- ;23 ’l-f 1 3}3
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In (3.1} we have uy = w i € 57, and w; = Ay ¥ O is precesded by C; {see Figure 2.}
We do net give a proof of formula (3.1}, but it is intuitively plausible if we note that
the term AL | / (&%) is the probability that a random input word to C; of weight w
wilt produce an output word of welght Ay

For example, for the (ny4ngbng, N} encoder of Figure 1 the formvle (3.1) becommes

v 5@3 I‘iiﬁ) ﬁ%ﬁ'?

A . z i3 by Thaos Be Thurg By

Ak : wy A {f"iﬁz} {%} {7*?;5”
By Bk g 0% Wx
(hy Ry dhgmal

(B L
B R . S
&;.&m&;z&xg o {:ﬁ} €gz} {:i}

Thgpyhy Shgwb}

By

¥y

-
2 1 Oy g sl CHFEBUE
ﬂg 2 fiy ’

Pigure 1. A “turbolike” code with
sy = {L2hoso = {2,534} % = {1}

VO

Ty P ?j
u By .
{ng My {nj:&ﬁ}

Figure 2. O {an {ny, ¥} encoder) iy connected to €
{an ny, V) encoder) by an interleaver of sive Ny We
have the “boundary conditions” N = m and wy = A

4. The Interleaving Gain Exponent Conjecture.

T this section we will consider systems of the form depicted in Figure 1, io which
the dividual encoders are trancated convolutional eéncoders, and study the behavior
of the aversge ML decoder error probability as the lnput block leagth & approaches
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infinity. If AL, denotes the JOWE when the nput block has iength N, we nbroduce
the following notation for the unjon hound {1.2) for systems of tils ype:

a E
(4.1 pUBEEY (5_‘: AL )
Hew}
Neoxt we define, reach fixed w 2> land A 31

{42 afw, b} = imsuplogy A,

B oo
Tt follows from this definition that if w and & are fixed,
§M Wt & = {}{&(z{wﬁ}é*} 54 N o,
for any ¢ 2 0. Tl I we defing

{4.3} Ba = rgggfgi%;&{wﬁ}

it follows vhat for all woand &,
AN = OIN ) s N wer,

for any £ > 0. The parameter Hay, whivh we shall call the interlenving poin sxporient
(IGE), was frst tntroduced in {2 and {3 for parallel congatenation and later in [4] for
serial concatenation. Bidensive mumericsl f«:xmuiw«;ms anzi i&mreami wmw&mzix}m
that are not fully rigorous lewd to the follow
wition bousd for systems of the type shown
The IGE Conjecture. There sxists & positive. ailiabir vy, which depenids on the g
component vonvblutional vodes and the tree Btructure of the overall system, but not
on N, such that for sty fxed B/ Ve o %88 the bloek Jength N bevores large,

(4.4} , PR = QNP

B (4.4 bnplies thay i e < 0, then for o givey B/ > o the word ervor probe
ability of the concatenated code deorenses 1o zerg us the luput block siee Is increased.
This is summarized by suying that there is word sroor probability interleaving yaint

T 17], we discuss the ealoulation of olw, hyand By for a concatemated system of
the type depicted in Figure 1, using analytical tools tmrodueed in {3} and 4l For
example, for the pavallel coneatenation of g voddes, with ¢ ~ 1 interleavers, we hawe

Bu & ~g+ 2

with equality i and snly # each of the component sodes s recursive. For g “clusical”
turbe code with ¢ = 2, we have Say = 8, €0 there s 50 word ervor probability inters
leaving gain. This suggeats that the word error probability for classle turbo codes will
nt improve with input block size, which i In sgrevment with shimulations.

¥ There s & stnilar confeeturs for the bit error probabllity which we do not discoss in
this paper. Suffice it to say that the interleaving gain exponent for bit ervor probability
i fag - 1
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As snother exanple, cousider the serial concatenation of two convolutivnal codes,
§¥ the fnner code is recusive then,

. | 2 i
dar = - iw’m-%* j + 1,

where df,, Is the winimum distance of the outer code. Therefore, for serinl concate-
ntend codes, iifﬁ > & there i intesloaving gain for word wrvor probubility. (I the nper
code Is nonrseursive Gy 2 U and there is vo interleaving gain}

5. A& Class of Bimple Tarbo-Like Codes,

1u this section wo will ideoduee 2 class of turbis-like codes which are simple enough
o that we can prove the IGE conjecture. We call these codes repest and accumulate
{BA) codes. The gonere! idea ja shown I Figure 3. An Informantion block of length
N s repeated ¢ times, serambled by an interleaver of size oY, and then encoded by
8 rate 1 gecumudator. The scoumulator can be viewed as a truncated rate-1 seeursive
convolutions! enveder with transfer Ranction 1/{1 4+ D), but we profer 4o think of it as
& block code whose input block 5y, .. xa] snd output block I, ... ] sre related
by the frmula

o= By
b SR

5.1 , 3w Xy ok Ky b Ey

Bpu o Fy b Fy b Bgod oo b By

LENGTH o ravw lig b P Q’*‘z rave 1 [N
W rspevivisny L, » .. » 10148y ‘”“““;”"
TWEIeHT] {opwi fowd ikl
o o o -
parmutatin
manrix

Figure 3. Bncoder for a {gN. ) repeit and dornmulnie
code. The sumbers above the nput-outpur lines
inddieate the longth of the correspanding block, snd
thewe below the lues indicate the weight of the blode.

To apply the unlon bound from Section 2 to the olass of RA codes, we need the
input-output welglt enmnerators or both the {yn, n) reputition code, sud the {n.n)
secunmlator ende. The suter repetition code Is teiviah i the luput block bas length n,
we have - ’

P
o
e
f)

_ié‘e} ~ 4 ifh % G
e T %Y Hhsguw

g,
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The nner acoumulator code Is lows trivial, but i possible to show that {sgain assaming
the input block bas length n):

e gy . ' ‘{e; _fr-h\{ i‘:fw} _

(5.3) Aun = (im,{?i) fwfa] -1}

it follows then fom the general formuls (3.1 }, zi:mt for the {pN, N1 RA code represented
by Figure 3, the emsemble IOWE s

ﬁw E‘E "iw}‘z w}z
q&; # e w» i s

&y aefd }

WY £ 4l
(. }{f;wﬁ}{gwmms}
()

From {5.4) it i esgy 1o compute the ;}‘smﬂw%m afuw, b wod Suy i (4.2) and {4»}}
The result i

{5.4}

(5.5} L afw, &_}‘wm{ {a ;:‘z:;;zz}

{5.6) P Fq - 2}} ,

it follows from {5.6) that o RA code can have word wrror probability Interdesviog gain
only il g 2 3. ,

We are now prepared to use the union bound to prove the I0E conjecturs for RA
" eosdes. In order to shplify the exposition as much a8 M‘s}%kﬁ ‘we will atsume for the
rest of this seetion that g =+, the extonsion to atintm_} ¢ 3 being étnghtfsmam
but rather Jangthy.  For ¢ = 4, {5.8) becomes By = -1, %0 the JGE confecturs s
BES s OLN Y for B3/ Ny > w in this instanve.

The union bound {2.3} for the ensemble of =4 RA codin &, beosuse'of {5443,

BT gl g~ ,.
4N A ﬁ}gs &}{:«z

{5?} 3}3 e Z 2‘ Hogo 17 j;

|2 2508 {
Denote the fw, Alth term o the s (5.7 by ’?;x?{'ﬁ?;, aj
{ﬁ} {»ﬂ&’ &} {Qﬁw i} g;
bl
L

Uistng stondard technigues {ag. 18, Appendic A} B is pousible to show that for 2l
fw, A}, _

{53} lw, b £ 923\;23‘{3:,9}%%33 s:.})

T {'w, }g}%ﬁw,&. B

‘where D s 4/ I3 8 corstant, & = w/AN, y = BN,
~3Haldx) + (L~ )M {5) + gl (%)
g ¥

Fle.y)y=

e




and Hafx) = —xlogy{a) — {1 ~ 2}log,{l — 2} is the binary entropy function. The
maxitutn of the function Fla gyl e range 8 < Ze €y 5 1~ 2r accurs ab {2, 9} =
{0,100, 0.371) and s 0.8823RY, w0 that ¥ logy & < ~D.582881, the exponent in {5.8) will
be negative, - ; ’

Lot us therafore assune that lg, = < ~0.562281, which s @igmmﬁenz o By Ny =
wf iz = —dlng 2 o400 0562281 = 1650 = LO2RJE. H £ b defingd to be
E o= o, & 4 0562281, it follows from {5.8) for all w ald &, '

EX N . Tufw b w DIRE,

What {501 tells us s that if By /N > 1.928 48, wiost of the terms in the union bound
{577 %l fend 1o doro rapidly, ag N~ B The noxt step i the proof I 1 bresk the
sum b {5.7) Ly bwo parts, corresponding to those terms for which {3 ‘33 i helphud,
and thase for which 1 36 not. T this end, define

o et 3 -
ﬁ';‘gﬁ 2 %& i{)gz ;53’,

and write _
. AN MY -
PP =3 %" Tulwh)
B wd :
By BIE 4y it

s }: S rsteh) ¢ 33 Twtwh)
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For the swm 5, we bound each term Telwe, A by {588
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&’i& huive thevedore slonwy that for t%w spmesnble of ¢ » 4 RA codes, i ﬁ&{ N »

5,10} PYE = 8y 4 By = OIN Y 4 ol N ) = OIN Y,

whith as we saw dbove, 38 the HOE conjectine In this vase.

Althovgh thi tndes Bound ghves 4 prodlof the IGE conjectare Tor B4 vades, &i«*
resulitig valiw of %e B by 5o mwwans the best possible. DIndesd, I we use the vachive
Viter b Viverhl iuprovesd sndon bound 9]t bound the st 8 owe caat lower the valon
oskderably, e fordg =4 fiom 1 *?*’8 48 1o 0313 4B, InPigure $and Table Lwe
s twitoerical vesulls ot BA vodes Thers we ompare the m@i{ shrsshokd”
HACoodes with 'y o the range 3 £ ¢ X & wing bar ssical nndon bound
; Viterbi-Viterhi improved union bound to the ool thiest mid fosr the ensenhle
of alf e«:wim {iw, “randomn ¥ of o Bixed rate. We beliove that these values of
s tatit he vedued still further, for exomple by using the bownd of 8] Instesd of the

VitarbbViterd} bougd.

: 3 4 5 & v &
fta Qodes {Tni 2200 192 LY LT LET0 LEBL
R*mfi{}m Codes {Union Bound} AT LBRY O LYY Lem4 168 Le

RA Codes {Viterbi Bound}) 12 o33 028 ~0.4027 0862 -0
Randon Codes {Viterbd Bound} 0214 -023 ~0.4586 0862 ~0.780 ~0.885
Binary Shanpon Limit ~{.495 ~0.7% ~D563 1071 ~L150 1210

Fable 1. Mumerical data gleaned Bom Finre 4

6. Performance of BRA Codes with Hearative Decoding.
The vesultx of this paper show that the performance of HA codes with marimern.
Gketihood decoding 8 wory goed. However, the complexity of ML decoding of RA

HE
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wibpdd bound  random Cooes
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Figure 4. Comparing the RA code “cutofll threshold™ to
he cutoflf rate of randow codes weing both the timzmi
union bownd and the Vitertd- Vivebi improved union bound.

coddes, like thet of all turbo-Bke codes, is prohibitively lotge, Buban hmportant fature
of nrbedike vodes s the availability of 2 shople Borative, mesage pessiag devoding
slgorithm that approximates ML decoding. We wrote & computer program o Tmple
ment this “mrbodike”™ decoding for B4 amiex with g = 3 {rate 19} and g = 4 {rate
174}, and the vesults are shown in Figure 5. We see in Figure 4, Tor example, that
the empirical eutoff threshold for RA codes for ¢ = 3 appoars to be les than § (28
compared to the upper bound of 1,112 dB found fn Table 1
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1, Paul H. Siegel, declare as follows:

1. Iamoverthe age of 18 and am legally competent to make this
declaration. 1 make this declaration haséé upon my own personal kﬁﬁ%i@ég&

2. | Tam currently a iﬁﬁfé@ﬁﬁr at the University of California, San
Diego, in the Department of Electrical and Computer Engineering, iﬁé Jacobs
School of Engineering, md the Center ‘fér Meimry and Remrding Research,

3.  1have been asked to provide a statement of certain facts r@%aieé to
work I did together with Henry D. Pfister w’iatiﬁg to the serial concatenation gf

 rate-1 codes through uniform random: imaﬁéawm

4.  Beginning in early 1999, I eollsborated with Dr. Pfister, thena
Ph.D student of mine, to show that improved error-correcting codes can be
constructed from simple components, ﬁ;g,, by serially concatenating an
arbitrary outer code of rate 7 < 1 and m identical rate-1 inner codes.

| 5. Thémsxz&mf that collaboration was a presentation at the 1999
Allerton Conference on Cemmmiﬁaﬁeﬂs} Control ami Campnﬁag,, in Allerton,
Ii}imié (“1999 Allerton Conference™) in September 1999, This simf&rizm_ﬂ was
‘heici September 22-24, 1999, and was open vm the public for attendance. Any
g}érsan who wanted to attend and was able to ?ay the attendance fee could
5
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attend. The 1999 Allerton (;‘axzfereiice was considered one of two primary
conferences én the topic of iterative decoding during the time. The 1999
Allerton conference itself, as well as the proceedings that took place there,
were guéiiciz&d and geﬂ:m}iy known to those who were iniérmi@é in ie;;;ies
relating to error-correcting codes and itar#ﬁ:ve éésbdiﬁgi

6 At the 1999 Allerton Conference, 1 ymaﬁ&é a ﬁérias of slides
relating to my work with Dr. Pister on a -{:iassgf codes based mz serial

concatenation of a rate-r code with m > 1, uniformly interleaved rate-1 codes.

In these slides, I discussed an example of these codes, called a “Repeat-

&emmﬂiaia%&aﬁmzﬁaiﬁ# {or “Mﬁ?’}i code. An RAA code is is similar to an
RA code {i}wsa}ar, et al., Allerton ""93'?} to which an additional accunulator has
%wanaé&ed I compared RAA mééﬁ-m RA codes and concluded that the RAA
codes were able to achieve a lower w&r&&mra—pmbébﬁity than the RA codes,
demonstrating ﬁ:ifa’tihe performance of RA codes could be improved by
iﬁeiu‘:iiﬁg an additional accumulator, This presentation was %ntiﬁeﬁ “The

Serial Concatenation of Raﬁe«v«l Codes Through Uniform Random Interleavers,”
and I presented it in the I1A: Coding Theory: Terative i}ecééixég and Turbo
Codes Session on September 22, 1999, the first day of the conference. A true
and accurate copy of the slides that T presented at the 1999 Allerton Conference

is attached as Exhibit 1.
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I hereby declare that all statements made herein of my own knm?i@dgﬁ are
true and that all statements made on information or belief are believed to be
true; and Rurther that these statements were made with the kﬁewkdge that
wiliful fa%se staternents and the like so made are punishable by fine or
imprisonment, or both, under Section 1001 of Title 18 of the United States

Dated: ! 5/ ?/'}{‘-’ .
| Paul H. Siegel
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