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A Real-Time Video Tracking System

ALTON L. GILBERT, MEMBER, IEEE, MICHAEL K. GILES, GERALD M. FLACHS, MEMBER, IEEE,
ROBERT B. ROGERS, MEMBER, IEEE, AND YEE HSUN U, MEMBER, I1EEE

Abstract—Object identification and tracking applications of pattern
recognition at video rates is a problem of wide interest, with previous
attempts limited to very simple threshold or correlation (restricted
window) methods. New high-speed algorithms together with fast
digital hardware have produced a system for missile and aircraft iden-
tification and tracking that possesses a degree of “intelligence” not
previously implemented in a real-time tracking system. Adaptive
statistical clustering and projection-based classification algorithms are
applied in real time to identify and track objects that change in ap-
pearance through complex and nonstationary background/foreground
situations. Fast estimation and prediction algorithms combine linear
and quadratic estimators to provide speed and sensitivity. Weights are
determined to provide a measure of confidence in the data and result-
ing decisions. Strategies based on maximizing the probability of main-
taining track are developed. This paper emphasizes the theoretical
aspects of the system and discusses the techniques used to achieve real-
time implementation.

Index Terms—Image processing, intensity histograms, object iden-
“tification, optical tracking, projections, tracking system, video data
compression, video processing, video tracking.

INTRODUCTION

MAGE PROCESSING methods constrained to operate on
Isequential images at a high repetition rate are few. Pattern
recognition techniques are generally quite complex, requiring
a great deal of computation to yield an acceptable classifica-
tion. Many problems exist, however, where such a time-
consuming technique is unacceptable. Reasonably complex
operations can be performed on wide-band data in real time,
yielding solutions to difficult problems in object identification
and tracking.

The requirement to replace film as a recording medium to
obtain a real-time location of an object in the field-of-view
(FOV) of a long focal length theodolite gave rise to the de-
velopment of the real-time videotheodolite (RTV). U.S. Army
White Sands Missile Range began the development of the RTV
in 1974, and the system is being deployed at this time. Design
philosophy called for a system capable of discriminatory judg-
ment in identifying the object to be tracked with 60 indepen-
dent observations/s, capable of locating the center of mass of
the object projection on the image plane within about 2 per-
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cent of the FOV in rapidly changing background/foreground
situations (therefore adaptive), able to generate a predicted
observation angle for the next observation, and required to
output the angular displacements of the object within the
FOV within 20 ms after the observation was made. The sys-
tem would be required to acquire objects entering the FOV
that had been prespecified by shape description. In the RTV
these requirements have been met, resulting in a real-time ap-
plication of pattern recognition/image processing technology.

The RTV is made up of many subsystems, some of which
are generally not of interest to the intended audience of this
paper. These subsystems (see Fig. 1) are as follows:

1) main optics;
2) optical mount;
3) interface optics and imaging subsystem;
4) control processor;
5) tracker processor;
6) projection processor;
7) video processor;
8) input/output (I/O) processor;
9) test subsystem;
10) archival storage subsystem;
11) communications interface.

The main optics is a high quality cinetheodolite used for ob-
taining extremely accurate (rms error =~ 3 arc-seconds) angular
data on the position of an object in the FOV. It is positioned
by the optical mount which responds to azimuthal and eleva-
tion drive commands, either manually or from an external
source. The interface optics and imaging subsystem provides
a capability to increase or decrease the imaged object size on
the face of the silicon target vidicon through a 10:1 range,
provides electronic rotation to establish a desired object
orientation, performs an autofocus function, and uses a gated
image intensifier to amplify the image and “freeze” the mo-
tion in the FOV. The camera output is statistically decom-
posed into background, foreground, target, and plume re-
gions by the video processor, with this operation carried on
at video rates for up to the full frame. The projection pro-
cessor then analyzes the structure of the target regions to
verify that the object selected as “target” meets the stored
(adaptive) description of the object being tracked. The tracker
processor determines a position in the FOV and a measured
orientation of the target, and decides what level of confidence
it has in the data and decision. The control processor then
generates commands to orient the mount, control the inter-
face optics, and provide real-time data output. An I/O pro-
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Fig. 1. RTV tracking system.

cessor allows the algorithms in the system to be changed, in-
terfaces with a human operator for tests and operation, and
provides data to and accepts data from the archival storage
subsystem where the live video is combined with status and
position data on a video tape. The ftest subsystem performs
standard maintenance checks on the system. The communica-
tions interface provides the necessary interaction with the ex-
ternal world for outputing or receiving data.

The video processor, projection processor, tracker processor,
and control processor are four microprogrammable bit-slice
microprocessors [1], which utilize Texas Instruments’ (TIs”)
new 748481 Schottky processor, and are used to perform
the real-time tracking function.

The four tracking processors, in turn, separate the target
image from the background, locate and describe the target
image shape, establish an intelligent tracking strategy, and
generate the camera pointing signals to form a fully auto-
matic tracking system.

Various reports and papers discuss several of the develop-
mental steps and historical aspects of this project [2]-[7].
In this paper the video, projection, tracker, and control
processors are discussed at some length.

VIDEO PROCESSOR

The video processor receives the digitized video, statistically
analyzes the target and background intensity distributions,
and decides whether a given pixel is background or target
[8]. A real-time adaptive statistical clustering algorithm is
used to separate the target image from the background scene
at standard video rates. The scene in the FOV of the TV
camera is digitized to form an n X m matrix representation

P=(pj)n,m

of the pixel intensities p;;. As the TV camera scans the scene,
the video signal is digitized at m equally spaced points across
each horizontal scan. During each video field, there are n
horizontal scans which generate an n X m discrete matrix
representation at 60 fields/s. A resolution of m =512 pixels
per standard TV line results in a pixel rate of 96 ns per pixel.
Every 96 ns, a pixel intensity is digitized and quantized into

eight bits (256 gray levels), counted into one of six 256-level
histogram memories, and then converted by a decision mem-
ory to a 2-bit code indicating its classification (target, plume,
or background). There are many features that can be func-
tionally derived from relationships between pixels, e.g., tex-
ture, edge, and linearity measures. Throughout the following
discussion of the clustering algorithm, pixel intensity is used
to describe the pixel features chosen.

The basic assumption of the clustering algorithm is that
the target image has some video intensities not contained
in the immediate background. A tracking window is placed
about the target image, as shown in Fig. 2, to sample the
background intensities immediately adjacent to the target
image. The background sample should be taken relatively
close to the target image, and it must be of sufficient size to
accurately characterize the background intensity distribution
in the vicinity of the target. The tracking window also serves
as a spatial bandpass filter by restricting the target search re-
gion to the immediate vicinity of the target. Although one
tracking window is satisfactory for tracking missile targets
with plumes, two windows are used to provide additional
reliability and flexibility for independently tracking a target
and plume, or two targets. Having two independent windows
allows each to be optimally configured and provides reliable
tracking when either window can track.

The tracking window frame is partitioned into a background
region (BR) and a plume region (PR). The region inside the
frame is called the target region (TR) as shown in Fig. 2.
During each field, the feature histograms are accumulated
for the three regions of each tracking window.

The feature histogram of a region R is an integer-value, in-
teger argument function AR (x). The domain of AR (x) is
[0,d], where d corresponds to the dynamic range of the
analog-to-digital converter, and the range of A% (x) is [0, 7],
where r is the number of pixels contained in the region R;
thus, there are r + 1 possible values of A% (x). Since the do-
main A% (x) is a subset of the integers, it is convenient to
define 1B (x) as a one-dimensional array of integers

h(0),h(1),h(2), -, h(d).

Letting x; denote the ith element in the domain of x (e.g.,
X35 =24), and x(j) denote the jth sample in the region R
(taken in any order), 2% (x) may be generated by the sum

hR ()= 3 63, x(7)

j=1

where 6 is the Kronecker delta function

iy
i, 1

A more straightforward definition which corresponds to the
actual method used to obtain A% (x) uses Iverson’s notation
[21] to express AR (x) as a one-dimensional vector of d + 1
integers which are set to zero prior to processing the region
R as

i#j

i=j.

h<(d+1)p0.
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Fig. 2. Tracking window.

As each pixel in the region is processed, one (and only one)
element of H is incremented as

hlx (D] < hlx(7)] + 1.

When the entire region has been scanned, # contains the dis-
tributions of pixels over intensity and is referred to as the
feature histogram of the region R.

It follows from the above definition that h satisfies the
identity

d
r=3% hR(x;) or r=+/h.
i=o

Since & is also nonnegative and finite, it can be made to sat-
isfy the requirements of a probability assignment function
by the normalization

h<h++/h.

Hereafter, all feature histograms are assumed to be normalized
and are used as relative-frequency estimates of the probability
of occurrence of the pixel values x in the region over which
the histogram is defined.

For the ith field, these feature histograms are accumulated
for the background, plume, and target regions and written

hER(x): SRR () =1
R S rfRx) =1
hR@): S RN @)=1

after they are normalized to the probability interval [0, 1].
These normalized histograms provide an estimate of the
probability of feature x occurring in the background, plume,
and target regions on a field-by-field basis. The histograms
are accumulated at video rates using high-speed LSI mem-
ories to realize a multiplexed array of counters, one for each
feature x.

The next problem in the formulation of a real-time cluster-
ing algorithm is to utilize the sampled histograms on a field-
by-field basis to obtain learned estimates of the probability
density functions for background, plume, and target points.
Knowing the relative sizes of the background in PR, the back-
ground in TR, and the plume in TR, allows the computation
of estimates for the probability density function for back-
ground, plume, and target features. This gives rise to a type
of nonparametric classification similar to mode estimation
as discussed by Andrews [9], but with an implementation
method that allows for real-time realization.

49

Letting

_ number of background points in PR

total number of points in PR

_ number of background points in TR
total number of points in TR

number of plume points in TR
’y =

total number of points in TR

and assuming that 1) the BR contains only background points,
2) the PR contains background and plume points, and 3) the
TR contains background, plume, and target points, one has

hPR (x) = b (x)

hR(x) = ahf(x) + (1 - @) i (x)

iR () = BhP () + vh{ () + (1 - B~ 7) bf (x).

By assuming there are one or more features x where AP (x)
is much larger than i} (x), one has

a= W@ &
hPR(x) hPR(x)
where €, =(1 - @) K (x) << hP(x). Now for all features x
where hig (x) = 0, one has the solution & = AR (x)/hPR(x). For

all features x where #f(x) >0, the inequality AYR(e)/hBR(x) >«
is valid. Consequently, a good estimate for a is given by

a=min {AFR()/hPR ()}

and this estimate will be exact if there exists one or more fea-
tures where #PR(x) # 0 and hf(x) = 0. Having an estimate of
o and #B(x) allows the calculation of AF (x).

In a similar manner, estimates of § and vy are obtained,

B =min £ ()

x WPR()

oo HR®)
‘7—

R

Having field-by-field estimates of the background, plume,
and target density functions (k¥(x), hf(x), hf(x)), a linear
recursive estimator and predictor [10] is utilized to establish
learned estimates of the density functions. Letting H(ilj)
represent the learned estimate of a density function for the
ith field using the sampled density functions ;(x) up to the
jth field, we have the linear estimator

H@l)=w-H(@li- 1)+ (1 - w)h(x)
and linear predictor

H@+11i)=2H@@li)-HG- 1li- 1).

The above equations provide a linear recursive method for
compiling learned density functions. The weighting factor
can be used to vary the learning rate. When w = 0, the learn-
ing effect is disabled and the measured histograms are used

by the predictor. As w increases toward one, the learning
effect increases and the measured density functions have a
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reduced effect. A small w should be used when the back-
ground is rapidly changing; however, when the background is
relatively stationary, w can be increased to obtain a more
stable estimate of the density functions.

The predictor provides several important features for the
tracking problem. First, the predictor provides a better esti-
mate of the density functions in a rapidly changing scene
which may be caused by background change or sunglare prob-
lems. Secondly, the predictor allows the camera to have an
automatic gain control to improve the target separation from
the background.

With the learned density functions for the background,
plume, and target features (HZ(x), HF (x), H¥(x)), a Bayesian
classifier [11] can be used to decide whether a given feature
x is a background, plume, or target point. Assuming equal
a priori probabilities and equal misclassification costs, the
classification rule decides that a given pixel feature x is a
background pixel if

HP()>H{(x) and HP()>H] (x),
a target pixel if

HI()>HP () and H[()>H{ (x),
or a plume pixel if

HP(x)>HE(x) and HF(x)>H](x).

The results of this decision rule are stored in a high-speed
classification memory during the vertical retrace period.
With the pixel classification stored in the classification mem-
ory, the real-time pixel classification is performed by simply
letting the pixel intensity address the classification memory
location containing the desired classification. This process
can be performed at a very rapid rate with high-speed bipolar
memories.

PROJECTION PROCESSOR

The video processor described above separates the target
image from the background and generates a binary picture,
where target presence is represented by a “1” and target
absence by a “0.” The target location, orientation, and
structure are characterized by the pattern of 1 entries in the
binary picture matrix, and the target activity is character-
ized by a sequence of picture matrices. In the projection
processor, these matrices are analyzed field-by-field at 60
fields/s using projection-based classification algorithms to
extract the structural and activity parameters needed to
identify and track the target.

The targets are structurally described and located by using
the theory of projections. A projection in the x-y plane of a
picture function f(x,y) along a certain direction w onto a
straight line z perpendicular to w is defined by

Pu@= [ 166,) aw
as shown in Fig. 3. In general, a projection integrates the in-

tensity levels of a picture along parallel lines through the pat-
tern, generating a function called the projection. For binary

Fig. 3. Projections.

digitized patterns, the projection gives the number of object
points along parallel lines; hence, it is a distribution of the
target points for a given view angle.

It has been shown that for sufficiently large numbers of
projections a multigray level digitized pattern can be uniquely
reconstructed [12]. This means that structural features of a
pattern are contained in the projections. The binary input
simplifies the construction of projections and eliminates in-
terference of structural information by intensity variation
within the target pattern; consequently, fewer projections
are required to extract the structural information. In fact,
any convex, symmetric binary pattern can be reconstructed
by only two orthogonal projections, proving that the projec-
tions do contain structural information.

Much research in the projection area has been devoted to
the reconstruction of binary and multigray level pictures
from a set of projections, each with a different view angle.
In the real-time tracking problem, the horizontal and vertical
projections can be rapidly generated with specialized hard-
ware circuits that can be operated at high frame rates. Al-
though the vertical and horizontal projections characterize
the target structure and locate the centroid of the target
image, they do not provide sufficient information to pre-
cisely determine the orientation of the target. Consequently,
the target is dissected into two equal areas and two orthogonal
projections are generated for each area.

To precisely determine the target position and orientation,
the target center-of-area points are computed for the top sec-
tion (X7, ¥T) and bottom section (X2, Y2) of the tracking
parallelogram using the projections. Having these points, the
target center-of-area (X,, Y.) and its orientation can be easily
computed (Fig. 4):

_XZ+x¢
¢ 2
y = YI+v8
¢ 2
T B
¢ =tan"! Ye - Ye Yc.
X7 -XxB

The top and bottom target center-of-area points are used,
rather than the target nose and tail points, since they are
much easier to locate, and more importantly, they are less
sensitive to noise perturbations.

It is necessary to transform the projection functions into
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Fig. 4. Projection location technique.

a parametric model for structural analysis. Area quantiza-
tion offers the advantage of easy implementation and high
immunity to noise. This process transforms a projection
function P, (z) into k rectangles of equal area (Fig. 5), such
that

Zi+y 1 [Zk+1
j P,(2) dz=; f P, (z)dz

Z; z,
for i=1,2,---,k.

Another important feature of the area quantization model
for a projection function of an object is that the ratio of line
segments ;=Z;, -Z;andL =2, - Z,,

= Ii ] = oo

Si—z for i=2,3,---,k-1
are object size invariant. Consequently, these parameters pro-
vide a measure of structure of the object which is independent
of size and location [13]. In general, these parameters change
continuously since the projections are one-dimensional repre-
sentations of a moving object. Some of the related problems
of these geometrical operations are discussed by Johnston and
Rosenfeld [14].

The structural parameter model has been implemented and
successfully used to recognize a class of basic patterns in a
noisy environment. The pattern class includes triangles,
crosses, circles, and rectangles with different rotation angles.
These patterns are chosen because a large class of more com-
plex target shapes can be approximated with them.

The architecture of the projection processor consists of a
projection accumulation module (PAM) for accumulating
the projections and a microprogrammable processor for
computing the structural parameters. The binary target
picture enters the PAM as a serial stream in synchronization

51
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Fig. 5. Projection parameters.

with the pixel classifier of the video processor. The projec-
tions are formed by the PAM as the data are received in real
time. In the vertical retrace interval, the projection processor
assumes addressing control of the PAM and computes the
structural parameters before the first active line of the next
field. This allows the projections to be accumulated in real
time, while the structural parameters are computed during
the vertical retrace interval.

TRACKER PROCESSOR

In the tracking problem, the input environment is restricted
to the image in the FOV of the tracking optics. From this in-
formation, the tracking processor extracts the important in-
puts, classifies the current tracking situation, and establishes
an appropriate tracking strategy to control the tracking optics
for achieving the goals of the tracking system.

The state concept can be used to classify the tracking situa-
tions in terms of state variables as in control theory, or it can
be interpreted as a state in a finite state automaton [15], [16].

Some of the advantages of the finite state automaton ap-
proach are as follows.

1) A finite state automaton can be easily implemented with
a look-up table in a fast LSI memory.

2) A finite state automaton significantly reduces the amount
of information to be processed.

3) The tracking algorithm can be easily adjusted to differ-
ent tracking problems by changing the parameters in the
look-up table.

4) The finite state automaton can be given many character-
istics displayed by human operators.

The purpose of the tracker processor is to establish an intel-
ligent tracking strategy for adverse tracking conditions. These
conditions often result in losing the target image within or out
of the FOV. When the target image is lost within the FOV,
the cause can normally be traced back to rapid changes in the
background scene, rapid changes in the target image due to
sun glare problems, or cloud formations that obstruct the
target image. When the target image is lost by moving out of
the camera’s FOV, the cause is normally the inability of the
tracking optics dynamics to follow a rapid motion of the
target image. It is important to recognize these situations
and to formulate an intelligent tracking strategy to continue
tracking while the target image is lost so that the target image
can be reacquired after the disturbance has passed.

To establish an intelligent tracking strategy, the tracker pro-
cessor evaluates the truthfulness and trackability of the track-
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ing data. The truthfulness of the tracking data relates to the
confidence that the measured tracking data truly define the
location of the target under track. The trackability of the
target image relates to the question of whether the target
image has desirable tracking properties.

The inputs to the tracker processor are derived from the
projection representation of the target image by the projec-
tion processor. Area quantization is used to transform each
projection function P(z) into K =8 equal area intervals as
shown in Fig. 5.

These inputs are:

1) target size (TSZ);

2) target location (TX, TY);

3) target orientation (T9);

4) target density (TDN);

5) target shape = {(SX;,SY;)li=1,2, -, 6}.

Target size is simply the total number of target points. Target
location is given by the center-of-area points of the projec-
tions. Where X; and Y; are the parameters of Fig. 5 when
projected on the x and y axes, respectively,

TX=Xs and TY=Ys;.

The target orientation defines the orientation of the target
image with respect to vertical boresight. Target density is
derived from the target length (TL), width (TW), and size
(TSZ) by

TLXTW

TDN = 7SZ

The target shape is described by the ratio of the lengths of
the equal area rectangles and the total lengths

SX; = (Xji2 - Xi))I(Xs - X3)
and
S§Y;i=(Yis2 - Yiu)I(Ys - Y2)

for i=1,2,:++,6. Observe that the first and last equal area
subintervals are not used in the shape description, since they
are quite sensitive to noise.

The tracker processor establishes a confidence weight for
its inputs, computes boresight and zoom correction signals,
and controls the position and shape of the target tracking
window to implement an intelligent tracking strategy. The
outputs of the tracker processor are as follows.

Outputs to Control Processor: 1) Target X displacement
from boresight (DX), 2) target Y displacement from bore-
sight (DY), 3) desired change in zoom (DZ), 4) desired change
in image rotation (D), and 5) confidence weight (W).

Outputs to Video Processor: 1) tracking window size,
2) tracking window shape, and 3) tracking window position.

The outputs to the control processor are used to control
the target location and size for the next frame. The bore-
sight correction signals are used to control the azimuth and
elevation pointing angles of the telescope. The desired zoom
is used to control the zoom lens, keeping the target visible
within the FOV. The desired image rotation controls the
image rotation element to keep the target image vertical. The

confidence weight is used by the control processor much like
a Kalman weight to combine the measured and predicted
values. When the confidence weight is low, the control pro-
cessor relies more heavily on the recent trajectory to predict
the location of the target on the next frame.

The outputs to the video processor define the size, shape,
and position of the tracking window. These are computed
on the basis of the size and shape of the target image and the
amount of jitter in the target image location. There is no
loss in resolution when the tracking window is made larger;
however, the tracking window acts like a bandpass filter and
rejects unwanted noise outside the tracking window.

A confidence weight is computed from the structural fea-
tures of the target image to measure the truthfulness of the
input data. The basic objective of the confidence weight is
to recognize false data caused by rapid changes in the back-
ground scene or cloud formations. When these situations are
detected, the confidence weight is reduced and the control
processor relies more heavily on the previous tracking data
to orientate the tracking optics toward the target image. This
allows the control processor to continue tracking the target
so that the target image can be reacquired after the perturba-
tion passes.

The confidence weight measures how well the structural fea-
tures of the located object fit the target image being tracked.
A linear recursive filter is used to continually update the
structural features to allow the algorithm to track the de-
sired target through different spatial perspectives. Experi-
mental studies have indicated that the structural parameters
S={(@X;,SY)li=1,2,---,6} and the target density are
important features in detecting erratic data. Let TDN (k) and
SX;(k), SY;(k)) for i=1,2,---,6 represent the measured
target density and shape parameters, respectively, for the kth
field, and let (SX;(k),SY;(k)) represent the filtered values
for the target shape parameters. The linear filter is defined
by

(k- 1) §X; (k) + SX; (k)

SX;(k+1)= X
N 1)SY,-§?)+SY,-(k)

“fori=1,2,---,6 and a positive integer K. The confidence

weight for the kth field is given by

W(k) = a; max {1 - C(k), 0} + &, min {1, TDN(k)}
where

6 _ 6 —
Ck)= Z SX;(k) - SX;(k) + Z SY;(k) - SY;(k)
i=1 i=1

and

0<a,, 423 < 1, ay ta, = 1.

This formulation for the confidence weight has been experi-
mentally tested, and it has demonstrated the ability to mea-
sure the truthfulness of the tracking data in the tracking en-
vironment. The filtered shape parameters are not updated
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when the confidence weight falls below a given lower thresh-
old. This prevents the shape parameters from being updated
incorrectly during periods when the target image is lost or
badly perturbed by the background noise.

To formulate an intelligent tracking strategy, the tracking
algorithm needs the ability to respond to a current input
based upon the sequence of inputs that lead to the current
state (or situation). A finite state sequential machine pos-
sesses such a property because each state represents the
collection of all input sequences that take the machine from
the inijtial state to the present state (Nerode’s tape equiva-
lence [17]). By defining an equivalence relation R on the tape
set as

XRy if 8(so,X)=8(s0,y) Vx, yE€Y *

the tape set Z# can be partitioned into equivalent classes

[x] =s;={yIxRy vy €3 }.

Consequently, a state represents all input sequences that
produce a given tracking situation. This interpretation of
input sequences transforms the development of the track-
ing algorithm into a problem of defining a finite state se-
quential machine

TA=(S,1,Z,5, W).

The states of the machine S = {s;,s,, 53, ,s,} define the
different tracking situations that must be handled by the
tracking algorithm. The inputs to the finite state machine
are derived from the image parameters that characterize the
size, shape, and location of the present target image. The
output set Z defines a finite set of responses that the track-
ing algorithm employs for maintaining track and retaining
high resolution data. The next state mapping §: S XIS
defines the next state 8(s;, ;) = s, when an input J; is applied
to state s;. The output mapping W: S —-Z is a Moore out-
put that defines the proper tracking strategy (response) for
each state.

The inputs to the sequential machine are chosen to give the
sequential machine a discrete measure of the trackability of
the target image. These inputs are:

1) target size (TSZ);

2) confidence weight (W);

3) image orientation (T'¢);

4) image displacement from boresight (7X, TY);
5) image movement (ATX, ATY);

6) rate of change in target size (ATSZ);

7) rate of change in confidence weight (AW).

The image size is clearly an important measure of the track-
ability since the image is difficult to track when the image
is either too small or too large. The confidence weight pro-
vides a measure of whether the image is the target under
track. Image displacement from boresight gives a measure
of whether the image is leaving the FOV. Image movement
in the FOV measures the amount of jitter in the target image.
The rate of change in the target size and confidence weight
allows a prediction of what is likely to happen on subsequent
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fields. These inputs are quantized into an 8-bit binary input
vector for the sequential machine.

The states of the sequential machine are chosen to define
the major tracking situations. These states are:

1) target acquisition =S,

2) normal tracking=S,;

3) abrupt change in FOV =S3;
4) leaving or out of FOV =§,.

S; corresponds to the situation where the tracker is trying
to acquire the target. This situation occurs during initial
acquisition and during periods of time when the target image
is lost. S, corresponds to the situation where the target image
is under track with the normal tracking algorithm and no
special tracking strategy is required. S5 corresponds to the
situation where the target image undergoes erratic and abrupt
changes in its shape or size within the FOV and S, corresponds
to the situation where the target image is leaving or has left
the FOV of the camera. These states only categorize the
major tracking situations. State parameters are used to further
refine the tracking situation by providing a parametric de-
scription of the tracking situation.

The tracking algorithm views the target structure and ac-
tivity within the tracking window on a field-by-field basis.
Based upon these observations, the tracking algorithm must
classify the present tracking situation and enter the appro-
priate state whose outputs best handle the situation. The
motivation of the next state mapping, §: IX S—S, is to
provide a tracking strategy to keep the tracker in the normal
tracking state. Much experimental effort has been devoted
to establish a next state mapping with desirable tracking char-
acteristics. A simplified state diagram is given in Fig. 6 which
defines the essential properties of the state transition behavior.

The output set Z defines a finite set of responses that the
tracking algorithm can make to maintain track while retain-
ing high resolution data. Several of these responses control
the tracking window, and they are performed at electronic
speed. However, the zoom lens and tracking optics opera-
tions are mechanical in nature and require more time to be
performed.

The output set Z contains the following responses:

1) location of tracking window;

2) shape and size of tracking window;

3) target location (boresight corrections);

4) confidence weight;

5) desired zoom;

6) control shape parameter update procedure.

These output responses give the tracking algorithm the ability
to respond to the tracking situations defined by tracking
states.

The motivation for the output mapping, W: I X S =+ Z, is to
associate with each state an intelligent strategy to maintain
track with high image resolution. The outputs to the image
decomposition algorithm control the size and position of the
tracking window. The outputs to the control processor con-
trol the zoom and pointing angle of the tracking optics. The
tracking algorithm must make many compromises between
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Fig. 6. Next-state mapping.

tracking ability and image resolution. For example, when the
target image is about to leave the FOV, the zoom can be re-
duced to keep the target in the FOV. Increasing the FOV,
however, decreases the target size and image resolution. These
compromises have been formulated and solved with standard
optimization techniques. The solutions are precomputed and
stored in a look-up table for the tracking algorithm.

By implementing the tracking algorithm as a finite state
machine where the outputs are obtained from the look-up
tables, it is possible to realize the tracking algorithm with a
standard microprogrammable processor.

CoNTROL PROCESSOR

The purpose of the control processor is to generate the con-
trol signals that drive the tracking optics. The processor re-
ceives inputs from the tracker processor on the target location
(TX,TY), orientation (T'¢), and length (7L ), measured rela-
tive to boresight and on a confidence weight (W) that measures
the reliability of the measured data. Using these inputs, the
control processor predicts the desired tracker azimuth and
elevation pointing angles (@4 (k + 1), Og(k + 1)), the zoom
lens setting (Z(k + 1)) and the image rotation setting (¢(k + 1))
for the next field denoted by (k + 1).

The control processor provides the estimated and predicted
values of the variables necessary to orientate the tracking op-
tics toward the target. Using the confidence weight to com-
bine the predicted variables with current measurements, the
processor provides estimates of current target position vari-
ables. These estimates are combined with previous estimates
to predict the target position variables for the next control
interval.

Since the form of the estimator equations is similar for the
azimuth, elevation, zoom, and image rotation variables, the
following notation is used in the development:

(k) variable to be estimated or predicted (azimuth,
elevation, rotation, or zoom);

0,, k) measured values of ©(k);

O(k) estimated value of ©(k) using measurements

through kth frame;

@j(k+ 11k) predicted value of ©(k+ 1) using measure-
ments through kth frame and the j index type
predictor;

O(k+11k) predicted value of O(k + 1) using a combina-
tion of the set of predictors;
w(k) confidence weight.

Using the confidence weight in a manner similar to that of
a Kalman gain, the estimated value is obtained from the mea-
sured and predicted values by

O(k) = (1 - W(K)) 8(klk - 1) + W(k) ©,,,(K)

where the confidence weight is normalized such that 0 < W(k) <
1. Consequently, the predictors having the functional form

Ok +11k)=F@O %), 0k - 1), ,0(k - r))

rely more heavily on the estimated values when the weight is
low. This is very important for continuing track when the
target passes through clouds or noisy backgrounds such as
the mountain/sky interface.

A simple filter-predictor that has demonstrated the ability
to track highly maneuverable targets uses a linear convex
combination of a linear-two-point and a quadratic-five-point
polynomial filter-predictor. This scheme.js based on the
reasoning that the linear-two-point polynomial can better
anticipate a rapid maneuver from the missile, while the quad-
ratic-five-point polynomial is used to reduce the variance
of error. The coefficients of the linear convex combination
are chosen to obtain an unbiased minimum variance of error
estimate.

In formulating the linear convex combination estimate of
the linear (8;) and quadratic (@q) predictors

n Py pay
®=a1®1+a2®q,

it is assumed that the predictors @, and @q are independent;
hence, the minimum variance error estimate [18] is given by
the coefficients

a; = AOZ(@q) =~
L [02(O) + 0%(8,)]
@ = A02(@1) _
[0%(©) + 0%(©,)]
and

0%(07) Oty +11tx) + 02(8)) Oy (tyr 1 113)
0%(©) + 0*(8,)

Otys1lty) =

is the desired prediction of the chosen parameter.

Simulation studies [19] were conducted to compare the
performance of this simple and somewhat primitive filter-
predictor with the more robust extended Kalman filter [20].
The results of these studies indicated the total performance
of the tracking system with the simple filter-predictor com-
pared favorably with the extended Kalman filter. In the light
of the real-time computational constraints, the simple filter-
predictor is suitable for more real-time tracking problems.
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SIMULATION AND HARDWARE

A computer simulation of the RTV tracking system, in-
corporating the algorithms used by the four processors de-
scribed in this paper, was developed and used to evaluate
the system under realistic tracking conditions. The simula-
tion model includes dynamic models for the target trajectory
and the tracking optics and mount in addition to the RTV
processor algorithms in order to verify the complete track-
ing system.

The simulation displays the target and plume points as they
are identified by the video processor. These points are super-
imposed on a cross hair which locates the boresight of the
tracking optics. In addition to the digitized images, the
simulation displays the target and plume tracking windows
and the projections accumulated for each video field. These
outputs provide a direct measure of the performance of the
four processors as well as an overall measure of the tracking
accuracy of the system.

Two types of input data are available to the simulation—
simulated digitized video fields and actual digitized video
fields from video tape recordings of typical tracking sequences.
Fig. 7 contains two representative simulation outputs selected
from the first 100 fields of simulated digitized video. The
RTV tracker performs well during this simulated tracking se-
quence. All processors function properly, and track is main-
tained throughout the tracking sequence.

Fig. 8(a) is a halftone graphics display of a field of actual
digitized video which was injected into the RTV simulation.
The simulator repeatedly processed the same video field
superimposed on the simulated target trajectory in order to
test the static and dynamic responses of the RTV processors.
The result after six processing frames, shown in Fig. 8(b),
verifies the effectiveness of the processing algorithms used
in the RTV tracker. Since no plume is present, both windows
are tracking the target. Several important conclusions may be
deduced from this result: the video processor successfully
identifies most of the target pixels; the projection data is ac-
cumulated and used effectively by the projection and tracker
processors to obtain the target orientation and the displace-
ment of the target from boresight; and both windows are
tracking the target and closing down on it to reduce noise.

Subsequent to simulation, a hardware model was developed
and is being deployed at the present time. Bench tests of all
subsystems indicate that the projected performance of each
processor has been achieved.

CONCLUSIONS

These four subsystems form only a part of the RTV; many
of the other subsystems are of equal complexity. Changes
currently taking place in digital technology coupled with
aggressive research in real-time pattern recognition/image
processing algorithms are now making possible highly sophisti-
cated hardware for recognition and tracking purposes. While
RTV is an example of this type of a system, work at WSMR
and NMSU (and elsewhere) is continuing with the purpose of
finding faster and better ways of processing video intelligently.

A lot of work remains before a truly versatile video analysis
system exists. RTV is but a step in that direction. Research
directed toward the solution of this class of problems needs
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Fig. 8. (a) Digitized video. (b) Simulation output.

to have two fundamental premises as a starting point. The
first is that algorithms should be general, not specifically
created for a particular scene. Too often pattern recognition
methods have depended upon extensive “tweaking’ of param-
eters to yield good results. This approach is not allowable
for real-time processing. Secondly, the algorithms should not
require extensive data storage, since manipulation of the data
consumes resources that exceed those available for most
applications.

As is evidenced by RTV, progress can be made; the future
of video processing is bright. The applications in the non-
military community possibly exceed the military applications
in importance. RTV is a forerunner of a large class of intel-
ligent video processing machines that will perform a wide
variety of tasks of importance to the human family.
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