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Abstract  This paper presents an overview of feature extraction methods for off-line recog-
nition of segmented (isolated) characters. Selection of a feature extraction method is proba-
bly the single most important factor in achieving high recognition performance in character
recognition systems. Different feature extraction methods are designed for different repre-
sentations of the characters, such as solid binary characters, character contours, skeletons
(thinned characters), or gray level subimages of each individual character. The feature
extraction methods are discussed in terms of invariance properties, reconstructability, and
expected distortions and variability of the characters. The problem of choosing the appropri-
ate feature extraction method for a given application is also discussed. When a few promising
feature extraction methods have been identified, they need to be evaluated experimentally
to find the best method for the given application.

Feature extraction
Reconstructability

1 Introduction

Optical character recognition (OCR) is one of the
most, successful applications of automatic pattern
recognition. Since the mid 1950’s, OCR has been
a very active field for research and development
[1]. Today, reasonably good OCR. packages can be
bought for as little as $100. However, these are
only able to recognize high quality printed text doc-
uments or neatly written hand-printed text. The
current, research in OCR 18 now addressing doc-
uments that are not well handled by the available
systems, including severely degraded, omnifont ma-
chine printed text, and (unconstrained) handwrit-
ten text. Also, efforts are being made to achieve
lower substitution error rates and reject rates even
on good quality machine printed text, since an ex-
perienced human typist still has a much lower error
rate, albeit at a slower speed.

Selection of a feature extraction method is prob-
ably the single most important factor in achieving
high recognition performance. Our own interest in
character recognition 1s to recognize hand-printed
digits in hydrographic maps (Fig. 1), but we have
tried not to emphasize this particular application
in the paper. Given the large number of feature ex-
traction methods reported in the literature, a new-
comer to the field is faced with the following ques-

*Author to whom correspondence should be ad-
dressed. This work was done while Trier was visiting
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tion: Which feature extraction method is the best
for a given application? This question led us to
characterize the available feature extraction meth-
ods, so that the most promising methods could be
sorted out. An experimental evaluation of these
few promising methods must still be performed to
select the best method for a specific application. In
this process, one might find that a specific feature
extraction method needs to be further developed.

A full performance evaluation of each method
in terms of classification accuracy and speed is not
within the scope of this review paper. In order to
study performance issues, we will have to imple-
ment, all the feature extraction methods, which is
In addition, the performance
also depends on the type of classifier used. Differ-
ent feature types may need different types of clas-
sifiers. Also, the classification results reported in
the literature are not comparable because they are
based on different, data sets.

an enormous task.

(Given the vast number of papers published on
OCR every year, it is impossible to include all the
available feature extraction methods in this survey.
Instead, we have tried to make a representative se-
lection to illustrate the different principles that can

be used.

Two-dimensional object classification has sev-
eral applications in addition to character recogni-
tion. These include airplane recognition [2], recog-
nition of mechanical parts and tools [3], and tissue
classification in medical imaging [4]. Several of the
feature extraction techniques described in this pa-
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Figure 1: A gray scale image of a part of a hand-
printed hydrographic map.

per for OCR have also been found to be useful in
such applications.

An OCR system typically consists of the follow-
ing processing steps (Fig. 2):

1. Gray level scanning at an appropriate resolu-
tion, typically 300 1000 dots per inch,

2. Preprocessing:

(a) Binarization (two-level thresholding),
using a global or a locally adaptive
method,

(b) Segmentation to isolate individual char-
acters,

(c) (Optional) conversion to another charac-
ter representation (e.g., skeleton or con-
tour curve),

3. Feature extraction
4. Recognition using one or more classifiers,
5. Contextual verification or postprocessing.

Survey papers [5 7], books [8 12], and evalua-
tion studies [13 16] cover most of these subtasks,
and several general surveys of OCR systems [1][17
22] also exist. However, to our knowledge, no thor-
ough, up to date survey of feature extraction meth-
ods for OCR is available.

Devijver and Kittler define feature extraction
(page 12 in [11]) as the problem of “extracting from
the raw data the information which is most rele-
vant for classification purposes, in the sense of min-
imizing the within-class pattern variability while
enhancing the between-class pattern variability.”
It should be clear that different feature extraction
methods fulfill this requirement to a varying degree,
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Figure 2: Steps in a character recognition system.

depending on the specific recognition problem and
available data.
proves to be successful in one application domain
may turn out not to be very useful in another do-
main.

A feature extraction method that

One could argue that there is only a limited
number of independent features that can be ex-
tracted from a character image, so that which set
of features is used is not so important.
the extracted features must be invariant to the
expected distortions and variations that the char-
acters may have in a specific application. Also,
the phenomenon called the curse of dimensional-
ity [9, 23] cautions us that with a limited training
set, the number of features must be kept reasonably
small if a statistical classifier is to be used. A rule
of thumb is to use five to ten times as many training
patterns of each class as the dimensionality of the
feature vector [23]. Tn practice, the requirements
of a good feature extraction method makes selec-
tion of the best method for a given application a
challenging task. One must also consider whether
the characters to be recognized have known ori-
entation and size, whether they are handwritten,
machine printed or typed, and to what degree they
are degraded. Also, more than one pattern class
may be necessary to characterize characters that
can be written in two or more distinct ways, as for
example ‘4’ and ‘4’, and ‘a’ and ‘a’

However,

Feature extraction is an important step in
achieving good performance of OCR systems. How-
ever, the other steps in the system (Fig. 2) also need
to be optimized to obtain the best possible perfor-
mance, and these steps are not independent. The
choice of feature extraction method limits or dic-
tates the nature and output of the preprocessing
step (Table 1).
work on gray level subimages of single characters
(Fig. 3), while others work on solid 4-connected
or 8-connected symbols segmented from the binary
raster image (Fig. 4), thinned symbols or skeletons
(Fig. 5), or symbol contours (Fig. 6). Further, the
type or format of the extracted features must match
the requirements of the chosen classifier. (Graph

Some feature extraction methods
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Table 1: Overview of feature extraction methods for the various representation forms (gray level, binary,

vector).

Gray scale

Rinary

Vector

subimage solid character

| outer contour (skeleton)

Template matching Template matching

Template matching

Deformable templates

Deformable templates

Unitary Transforms Unitary transforms

Graph description

Projection histograms

Contour profiles Discrete features

Zoning Zoning

Zoning Zoning

(Geometric moments (Geometric moments

Spline curve

Z.ernike moments Z.ernike moments

Fourier descriptors | Fourier descriptors

Figure 3: Gray scale subimages (= 30 x 30 pixels) of
segmented characters. These digits were extracted
from the top center portion of the map in Fig. 1.
Note that for some of the digits, parts of other print
objects are also present inside the character image.

descriptions or grammar-based descriptions of the
characters are well suited for structural or syntactic
classifiers. Discrete features that may assume only,
say, two or three distinct values are ideal for deci-
sion trees. Real-valued feature vectors are ideal for
statistical classifiers. However, multiple classifiers
may be used, either as a multi-stage classification
scheme [24, 25], or as parallel classifiers, where a
combination of the individual classification results
is used to decide the final classification [20, 26, 27].
In that case, features of more than one type or for-
mat may be extracted from the input characters.

1.1 Invariants

In order to recognize many variations of the same
character, features that are invariant to certain
transformations on the character need to be used.
Invariants are features which have approximately
the same values for samples of the same character
that are, for example, translated, scaled, rotated,
stretched, skewed, or mirrored (Fig. 7). However,
not all variations among characters from the same
character class (e.g., noise or degradation, and ab-
sence or presence of serifs) can be modelled by using

Figure 4: Digits from the hydrographic map in the

binary raster representation.

Figure 5: Skeletons of the digits in Fig. 4, thinned
with the method of Zhang and Suen [28]. Note
that junctions are displaced and a few short false
branches occur.

Figure 6: Contours of two of the digits in Fig. 4.
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5Hs8

(d)

.5'5%

Figure 7: Transformed versions of digit ‘5°. (a)
original, (b) rotated, (¢) scaled, (d) stretched, (e)
skewed, (f) de-skewed, (g) mirrored.

invariants.

easily
achieved. The segmentation of individual charac-
ters can itself provide estimates of size and loca-
tion, but the feature extraction method may often
provide more accurate estimates.

Size- and translation invariance s

Rotation invariance is important if the charac-
ters to be recognized can occur in any orientation.
However, if all the characters are expected to have
the same rotation, then rotation-variant features
should be used to distinguish between such char-
Another al-
ternative is to use rotation-invariant features, aug-
mented with the detected rotation angle. If the ro-
tation angle is restricted, say, to lie between —45°
and 45°, characters that are, say 180° rotations of
each other can be differentiated. The same princi-
ple may be used for size-invariant features, if one
wants to recognize punctuation marks in addition
to characters, and wants to distinguish between,
say, ‘.", ‘0’, and ‘O’; and ‘" and ‘9’.

acters as ‘6’ and ‘9’, and ‘n’ and ‘u’.

Skew-invariance may be useful for hand-printed
text, where the characters may be more or less
slanted, and multifont machine printed text, where
some fonts are slanted and some are not.
ance to mirror images is not desirable in character
recognition, as the mirror image of a character may
produce an illegitimate symbol or a different, char-
acter.

Invari-

For features extracted from gray scale subim-
ages, Invariance to contrast between print and
background and to mean gray level may be needed,
in addition to the other
above. Invariance to mean gray level is easily ob-
tained by adding to each pixel the difference of the
desired and the actual mean gray levels of the im-
age [29].

invariants mentioned

If invariant features can not be found, an al-
ternative 1s to normalize the input images to have
standard size, rotation, contrast, and so on. How-
ever, one should keep in mind that this introduces
new discretization errors.

1.2 Reconstructability

For some feature extraction methods, the charac-
ters can be reconstructed from the extracted fea-
tures [30, 31]. This property ensures that complete
information about the character shape is present in
the extracted features. Although, for some meth-
ods, exact reconstruction may require an arbitrar-
ily large number of features, reasonable approxima-
tions of the original character shape can usually be
obtained by using only a small number of features
with the highest information content. The hope is
that these features also have high discrimination
power.

By reconstructing the character images from the
extracted features, one may visually check that a
sufficient number of features is used to capture the
essential structure of the characters.
tion may also be used to informally control that
the implementation is correct.

Reconstruc-

The rest of the paper is organized as follows.
Sections 2 5 give a detailed review of feature ex-
traction methods, grouped by the various repre-
sentation forms of the characters. A short sum-
mary on neural network classifiers is given in Sec-
tion 6. Section 7 gives guidelines for how one should
choose the appropriate feature extraction method
for a given application. Finally, a summary is given
in Section 7.

2 Features Extracted From Gray Scale Im-
ages

A major challenge in gray scale image-based meth-
ods is to locate candidate character locations. One
can use a locally adaptive binarization method to
obtain a good binary raster image, and use con-
nected components of the expected character size
to locate the candidate characters. However, a gray
scale-based method is typically used when recogni-
tion based on the binary raster representation fails,
so the localization problem remains unsolved for
difficult images. One may have to resort to the
brute force approach of trying all possible locations
in the image.
standard size for a character image, as the combi-
nation of all character sizes and locations is com-

However, one then has to assume a

putationally prohibitive. This approach can not be
used if the character size is expected to vary.

The desired result of the localization or segmen-
tation step is a subimage containing one character,
and, except for background pixels, no other objects.
However, when print objects appear very close to
each other in the input image, this goal can not al-
ways be achieved. Often, other characters or print
objects may accidentally occur inside the subim-
age (Fig. 3), possibly distorting the extracted fea-
tures. This is one of the reasons why every charac-
ter recognition system has a reject option.
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2.1 Template matching

We are not. aware of OCR systems using template
matching on gray scale character images. However,
since template matching is a fairly standard image
processing technique [32, 33], we have included this
section for completeness.

In template matching the feature extraction step
is left out altogether, and the character image it-
self is used as a “feature vector”. In the recogni-
tion stage, a similarity (or dissimilarity) measure
between each template T; and the character im-
age 7 is computed. The template Ty which has
the highest similarity measure is identified, and if
this similarity is above a specified threshold, then
the character is assigned the class label k. Flse,
the character remains unclassified. Tn the case of a
dissimilarity measure, the template Ty having the
lowest dissimilarity measure is identified, and if the
dissimilarity is below a specified threshold, the char-
acter is given the class label k.

A common dissimilarity measure is the mean
square distance 1) (Fq. 20.1-1 in Pratt [33]):

M

n; :Z(Z(mz,yv:)*ﬂ(mhyi))?v (M

=1

where it is assumed that the template and the input
character image are of the same size, and the sum
is taken over the M pixels in the image.

Fan. (1) can be rewritten as

n; = F,‘272Rz7“7v+F)7“7v7 (2)
where
M
Rro= 3 (7 (ram), )
i=1
Ror = Z(Z(T17U1)T7(T17U7))7 (4)

Ery = Z(T?(T“U'D (5)

=1

F 7 and ETv‘ are the total character image energy
and the total template energy, respectively. Rzr; is
the cross-correlation between the character and the
template, and could have been used as a similarity
measure, but. Pratt, [33] points out that Rz7, may
detect a false match if, say, 7 contains mostly high
values. In that case, F'z also has a high value, and
it could be used to normalize Rzﬂ by the expres-

sion 1?273 = RZTi/F/‘z. However, in Pratt’s formu-
lation of template matching, one wants to decide
whether the template is present in the image (and
get the locations of each occurrence). Our problem
is the opposite: find the template that matches the
character image best.
vant to normalize the cross-correlation by dividing
it with the total template energy:

Therefore, it is more rele-

. Rar,
Rar; = F)Tj. (6)

7

A Survey 5

FExperiments are needed to decide wether 1), or
1?273 should be used for OCR.

Although simple, template matching suffers
from some obvious limitations. One template is
only capable of recognizing characters of the same
size and rotation, is not illumination-invariant (in-
variant to contrast and to mean gray level), and is
very vulnerable to noise and small variations that
occur among characters from the same class. How-
ever, many templates may be used for each charac-
ter class, but at the cost of higher computational
time since every input character has to be com-
pared with every template. The character candi-
dates in the input image can be scaled to sut the
template sizes, thus making the recognizer scale-
independent.

2.2 Deformable Templates

Deformable templates have been used extensively
in several object recognition applications [34, 35].
Recently, Del Bimbo et al. [36] proposed to use
deformable templates for character recognition in
gray scale images of credit card slips with poor
print quality. The templates used were character
skeletons. Tt is not clear how the initial positions of
the templates were chosen. If all possible positions
in the image were to be tried, then the computa-
tional time would be prohibitive.

2.3 Unitary Image Transforms

In template matching, all the pixels in the gray
scale character image are used as features. An-
drews [37] applies a unitary transform to charac-
ter images, obtaining a reduction in the number
of features while preserving most of the informa-
tion about the character shape. In the transformed
space, the pixels are ordered by their variance, and
the pixels with the highest variance are used as
features. The unitary transform has to be ap-
plied to a training set to obtain estimates of the
variances of the pixels in the transformed space.
Andrews investigated the Karhunen-T.oeve (KT.),
Fourier, Hadamard (or Walsh), and Haar trans-
forms in 1971 [37]. He concluded that the KI.
transform was too computationally demanding, so
he recommended to use the Fourier or Hadamard
transforms. However, the KI. transform is the only
(mean-squared error) optimal unitary transform in
terms of information compression [38]. When the
KIT. transform is used, the same amount of informa-
tion about the input character image is contained
in fewer features compared to any other unitary
transform.

Other unitary transforms include the Cosine,
Sine, and Slant transforms [38]. Tt has been shown
that the Cosine transform is better in terms of in-
formation compression (e.g., see pp. 375 379 in
[38]) than the other non-optimal unitary trans-
forms. Tts computational cost is comparable to that
of the fast Fourier transform, so the Cosine trans-

form has been coined “the method of choice for
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(a) (b)

Figure 8: Zoning of gray level character images.
(a) A 4x4 grid superimposed on a character image.
(b) The average gray levels in each zone, which are
used as features.

image data compression” [38].

The KI. transform has been used for object
recognition in several application domains, for ex-
ample face recognition [39].
alternative for OCR on gray level images with to-
day’s fast computers.

It 1s also a realistic

The features extracted from unitary transforms
are not rotation-invariant, so the input character
images have to be rotated to a standard orientation
if rotated characters may occur. Further, the input
images have to be of exactly the same size, so a
scaling or re-sampling is necessary if the size can
vary. The unitary transforms are not illumination
invariant, but for the Fourier transformed image
the value at the origin is proportional to the average
pixel value of the input image, so this feature can
be deleted to obtain brightness invariance. For all
unitary transforms, an inverse transform exists, so
the original character image can be reconstructed.

2.4 Zoning

The commercial OCR system by CA1.ERA described
in Bokser [40] uses zoning on solid binary char-
acters. A straightforward generalization of this
method to gray level character images is given here.
An n xm grid is superimposed on the character im-
age (Fig. 8(a)), and for each of the n x m zones, the
average gray level is computed (Fig. 8(b)), giving
a feature vector of length n x m. However, these
features are not illumination invariant.

2.5 Geometric Moment Invariants

Hu [41] introduced the use of moment invariants
as features for pattern recognition.
orthogonal moment invariants (invariant to trans-
lation, scale and rotation) have been extensively
used (see, e.g., [29, 42, 43, 44, 45]). 1. [45] listed 52
Hu invariants, of orders 2 to 9, that are translation-
, scale- and rotation-invariant. Belkasim et al. [43]
listed 32 Hu invariants of orders 2 to 7. However,

Hu’s absolute

Belkasim et al. identified fewer invariants of orders
2 to 7 than Ta.

Hu also developed moment invariants that were
supposed to be invariant under general linear trans-
formations:

fl?l [ a1 a12 ] r b1
= 7
[ ,1// ] I a21 @22 ] Yy + b ’ ( )

[ a1 @12 ] b
A= b= . 8
a21 22 ’ [ bz ] ( )

Reiss [29] has recently shown that these Hu invari-
ants are in fact incorrect, and provided corrected
expressions for them.

(Given a gray scale subimage 7 containing a char-
acter candidate, the regular moments [29] of order
(p + q) are defined as

Mpg = ZZ(mz,yz)(W)p(?/vﬁ)qv (9)

=1

where the sum is taken over all the M pixels in the
subimage.
ments [29] of order (p + q) are obtained by placing
the origin at the center of gravity:

The translation-invariant central mo-

Hpg = ) Alwiy) (@~ 7 (g -9, (10)

=1

where

—_ mio moi
r =

(1)

moo

Hu [41] showed that™

u
Vpg = P;7+q , ptqg>2 (12)
p1+50)
are scale-invariant, where yu = poo = moo. From

the vpq’s, rotation-invariant features can be con-
structed. For example, the second-order invariants
are

o
b2

V20 + Vo2, (13)

(v20 — 1/02)2 + l/121 - (14

Invariants for general linear transformations are
computed via relative invariants [41, 29]. Relative
invariants satisfy

1= AT, (15)
where /; is a function of the moments in the origi-
nal (z,y) space, f; is the same function computed
from the moments in the transformed (', y') space,
w; is called the weight of the relative invariant, |.J|
is the absolute value of the Jacobian of the trans-
posed transformation matrix, A7, and k; is the or-
der of 7;. Note that the translation vector b does
not appear in Eq. (15) as the central moments are

*Note that Fiq. (12) is written with a typographical
error in Hu’s paper [41].

Appeared in Pattern Recognition, Vol. 29, No. 4, pp. 641 662, 1996

SAMSUNG EXHIBIT 1008
Page 6 of 24



Feature FExtraction Methods for Character Recognition

independent, of translation. To generate absolute

invariants, that is, invariants ¢; satisfying
1
b = v, (16)
Reiss [29] used, for linear transformations,

|AT] =7 and u' =|J|u,

where p = poo:

I = [T|™i 5T, for w; even, (18)
I = JLT[H 57N for wy odd. (19)

Then, it can be shown that

T

“71/7'+k7'

i = (20)

is an invariant if w; is even, and |1,;| is an invariant
if w; is odd.

For general linear transformations, Hu [41] and
Reiss [29, 42] gave the following relative invariants
that are functions of the second- and third-order
central moments:

I = poeopor — H?1 (21)
2
Io = (psopos — p21phi2)
—4(paopir2 — 1 ) (21 pos — H??) (22)
Is = p20(p21pos — H?Q)
—pr1(pa0pos — pz1pi2)
+itoz (pao s — H;) (23)
2 3 2
Ta = psopoz — Bpao 21 11 Moo

4630 112 tho2 (211?1 — H20p02)
+psoptos (620 11 o2 — Rt )
+9H§1 HongQ — 18u21 2 2o 411 o2
+6u21 Loz ti20 (211?1 — H20p02)

2 2
+9uia pio0 tho2

2 2 3
—G12 oa i1 tag + Hoatiao (24)

Reiss found the weights w; and orders k; to be

wr =2, w2 =06, ws=4, ws=6; (25)
ki =2 ky=4, ka=3, ki=5 (26)
Then the following features are invariant un-

der translation and general linear transformations
(given by Reiss [29] in 1991 and rediscovered by
Flusser and Suk [46, 47] in 1993):

Il I

U = “—14 , = —“1207 (27)
I: )

s = “—%7 ;e = “%- (28)

Hu [41] implicitly used & = 1, obtaining incor-
rect invariants.

Bamieh and de Figueiredo [48] have suggested
the following two relative invariants in addition to

A Survey 7

71 and Ty:t
Js = paoptos — dpaipas + 31132 (29)
Ja = paopiozpios — 231 oot
—Haoka — Hoalia) — Moo (30)

As above, these relative invariants must be di-
vided by u” = 4™ ** to obtain absolute invariants.
Regretfully, Bamieh and de Figueiredo divided .J;
by u" (implicitly using k = 0), so their invariants
are ncorrect, too.

Reiss [29, 42] also gave features that are invari-
ant under changes in contrast, in addition to be-
ing invariant under translation and general linear
transformations (including scale change, rotation
and skew). The three first features are

2
L S RS
[,l[g [,l[g ]4

(31)

Experiments with other feature extraction methods
indicate that at least 10-15 features are needed for
a successful OCR system. More moment invariants
(v;’s and 6;’s) based on higher order moments are
given by Reiss [42].

2.6 Zernike Moments

Zernike moments have been used by several au-
thors for character recognition of binary solid sym-
bols [49, 31, 43]. However, initial experiments sug-
gest, that they are well suited for gray-scale char-
acter subimages as well. Both rotation-variant and
rotation-invariant features can be extracted. Fea-
tures invariant to illumination need to be developed
for these features to be really useful for gray level
character images.

Khotanzad and Hong [49, 31] use the ampli-
tudes of the Zernike moments as features. A set of
complex orthogonal polynomials Vi, (%, y) is used
(Fgs. 32 33)*. The Zernike moments are projec-
tions of the input image onto the space spanned by
the orthogonal V-functions.

7777,m‘r|’1 A
Vnm(m, U) = an(m, y)e‘ o

where 1 =+/—1,n >0, |m| <n,n—|m|is even,
and

(32)

n—|m]|
2

(1) (" )5 (0 s)!
om(19) = 3 tta 3 (o=l oy

For a digital image, the Zernike moment of order

(33)

n and repetition m is given by

A = "ELSS T fw ) WVam ()], (39)

™

tAn incorrect version of T is given in Bamieh and
de Figueiredo’s paper [48].
tThere is an error in [49] in equation (33): Tn [49],
|

|m

the summation is taken from s = 0 to n — 5=, how-
ever, it must be taken from s = 0 to n%w to avoid
(%lml - s) becoming negative.
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Figure 9: Tmages derived from Zernike moments. Rows 1 2: Input image of digit ‘4’, and contributions
from the Zernike moments of order 1 13. The images are histogram equalized to highlight the details.

Rows 3 4: Input image of digit ‘4’, and images reconstructed from the Zernike moments of order up to
1 13, respectively.
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Figure 10: Tmages derived from Zernike moments. Rows 1 2: Input image of digit ‘5’°, and contributions
from the Zernike moments of order 1 13. The images are histogram equalized to highlight the details.

Rows 3 4: Input image of digit ‘5’, and images reconstructed from the Zernike moments of order up to
1 13, respectively.
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where 72 4+ % < 1, and the symbol * denotes the
complex conjugate operator. Note that the image
coordinates must be mapped to the range of the
it circle, 22 + > < 1. The part of the original
image inside the unit circle can be reconstructed
with an arbitrary precision using

N
Jim Z Z Apm Vo (7,y),

Flr.y) = Jim (35)

where the second sum is taken over all |m| < n,
such that n — |m| is even.

The magnitudes |Ay.,| are rotation invariant.
To show the contribution of the Zernike moment
of order n, we have computed

(36)

|]n(T,I/)|: ZAn,m,Vnm,(myy) )

where #° +4” <1, |m| <n , and n — |m|is even.

The images |In(z,y)|, n = 1,...,13, for the
characters ‘4’ and ‘5’ (Figs. 9 and 10) indicate
that the extracted features are very different for
the third and higher order moments.
and two seem to represent orientation, width, and
height. However, reconstructions of the same digits
(Figs. 9 and 10) using Eq. (35), N =1,...,13, indi-
cate that moments of orders up to 8 11 are needed

Orders one

to achieve a reasonable appearance.

Translation- and scale-invariance can be ob-
tained by shifting and scaling the image prior to
the computation of the Zernike moments [31]. The
first-order regular moments can be used to find the
image center and the zeroth order central moment,
gives a size estimate.

Belkasim et al. [43, 44] use the following addi-
tional features

Biopnt1r = [An_21||Ant|cos(dn—2,1 — @n1), (37)
[Anil[Anz|” cos(pdnr. — dm)  (38)

Bn,n+ I

where . = 3,5,...,n ,p=1/L, and ¢nm is the
phase angle component, of A,,, so that

Amn = | Amn| €08 @mn + 7| Amn| 5N Gmn.  (39)

3 Features Extracted From Binary Images

A binary raster image is obtained by a global or
locally adaptive binarization [13] of the gray scale
input image. In many cases, the segmentation of
characters is done simply by isolating connected
components. However, for difficult images, some
characters may touch or overlap each other or other
print objects. Another problem occurs when char-
acters are fragmented into two or more connected
components. This problem may be alleviated some-
what by choosing a better locally adaptive binariza-
tion method, but Trier and Taxt [13] have shown
that even the best locally adaptive binarization
method may still not result in perfectly isolated
characters.

A Survey 9

Methods for segmenting touching characters are
given by Westall and Narasimha [50], Fujisawa et
al. [51], and in surveys [5, 6]. However, these meth-
ods assume that the characters appear in the same
text string and have known orientation. In hydro-
graphic maps (Fig. 1), for example, some characters
touch or overlap lines, or touch characters from an-
other text line. Trier et al. [52] have developed a
method based on gray scale topographic analysis
[53, 54], which integrates binarization and segmen-
tation. This method gives a better performance,
since information gained in the topographic anal-
ysis step is used in segmenting the binary image.
The segmentation step also handles rotated char-
acters and touching characters from different text
strings.

The binary raster representation of a character
is a simplification of the gray scale representation.
The image function 7 (z, y) now takes on two values
(say, 0 and 1) instead of the, say, 256 gray level val-
ues. This means that all the methods developed for
the gray scale representation are applicable to the
solid binary raster representation as well. There-
fore, we will not repeat the full description of each
method, but only point out the simplification in the
computations involved for each feature extraction
method. Generally, invariance to illumination is no
longer relevant, but the other invariances are.

A solid binary character may be converted to
other representations, such as the outer contour of
the character, the contour profiles, or the charac-
ter skeleton, and features may be extracted from
each of these representations as well. For the pur-
pose of designing OCR systems, the goal of these
conversions is to preserve the relevant information
about the character shape, and discard some of the
unnecessary information.

Here, we only present the modifications of the
methods previously described for the gray scale rep-
resentation. No changes are needed for unitary im-
age transforms and Zernike moments, except that
gray level invariance is irrelevant.

3.1 Template Matching

In binary template matching, several similarity
measures other than mean square distance and
correlation have been suggested [55]. To detect
matches, let n;; be the number of pixel positions
where the template pixel # is ¢ and the image pixel
yis 7, with 7,7 € {0,1}:

Nyy = Z 5mr(i7.j)
m=1

(40)

where

(i, 1) —{ 0

1,7 € {0,1}, and y,, and &, are the m-th pixels of
the binary images Y and X which are being com-
pared. Tubbs evaluated eight distances, and found

it (xm =1)A(ym = 7)
otherwise,

(41)
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10 TRIER, JAIN, and TAXT

the Jaccard distance d; and the Yule distance dy

to be the best.
d;y =

1

n11 + nio + nos
n11Noo — Mono

(42)

dy = (43)

n11n00 + N10No1

However, the lack of robustness regarding shape
variations mentioned in Section 2 for the gray scale
case still applies. Tubbs [55] tries to overcome some
of these shortcomings by introducing weights for
the different pixel positions m. Fq. (40) is replaced
by

m=1

where pm (k|7) is the probability that the input im-
age Y matches template Xy, given that pixel num-
ber m in the template X is 1. pm(k|7) is approxi-
mated as the number of templates (including tem-
plate X) having the same pixel value at location
m as template X, divided by the total number of
templates.

However, we suspect that the extra flexibility
obtained by introducing p(k|i) is not enough to
cope with variabilities in character shapes that may
occur in hand-printed characters and multi-font
machine printed characters. A more promising ap-
proach is taken by Gader et al. [24] who use a set of
templates for each character class, and a procedure
for selecting templates based on a training set.

3.2 Unitary Image Transforms

The NIST form-based hand-print recognition sys-
tem [56] uses the Karhunen-T.oeve transform to ex-
tract features from the binary raster representa-
tion. Tts performance is claimed to be good, and
this OCR system is available in the public domain.

3.3 Projection histograms

Projection histograms were introduced in 1956 in
a hardware OCR system by Glauberman [57]. To-
day, this technique is mostly used for segmenting
characters, words, and text lines, or to detect if an
mput image of a scanned text page is rotated [58].
For a horizontal projection, y(=;) is the number of
pixels with » = z; (Fig. 11). The features can be
made scale independent, by using a fixed number
of bins on each axis (by merging neighboring bins)
and dividing by the total number of print pixels in
the character image. However, the projection his-
tograms are very sensitive to rotation, and to some
degree, variability in writing style. Also, important
information about the character shape seems to be
lost.

The vertical projection z(y) is slant invariant,
but the horizontal projection is not.
suring the dissimilarity between two histograms, it
is tempting to use

When mea-

d= Z ly1 (z:) — ya(x4)],

=1

(45)

Figure 11: Horizontal and vertical projection his-
tograms.

where n is the number of bins, and y1 and y. are
the two histograms to be compared. However, it
is more meaningful to compare the cumulative his-
tograms Y (z1), the sum of the k first bins,

E
V(rk) =Y y(n), (46)
i=1
using the dissimilarity measure
D= Vi(w:) = Ya(wi)l, (47)

=1

where Vi and Y2 denotes cumulative histograms.
The new dissimilarity measure 1) is not as sensitive
as d to a slight misalignment of dominant peaks in
the original histograms.

3.4 Zoning

Bokser [40] describes the commercial OCR system
CALERA that uses zoning on binary characters.
The system was designed to recognize machine
printed characters of almost any non-decorative
font, possibly severely degraded, by, for example
several generations of photocopying. Both con-
tour extraction and thinning proved to be unre-
liable for self-touching characters (Fig. 12). The
zoning method was used to compute the percent-
age of black pixels in each zone. Additional features
were needed to improve the performance, but the
details were not presented by Bokser [40]. Unfor-
tunately, not much explicit information is available
about the commercial systems.

3.5 Geometric Moment Invariants

A binary image can be considered a special case
of a gray level image with Z(z,y) = 1 for print
pixels, and 7 (z;,y;) = 0 for background pixels. By
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58
3 8

(c) (d)

Figure 12: Two of the characters in Bokser’s study
[40] that are easily confused when thinned (e.g.,
with Zhang and Suen’s method [28]). (a) ‘S’. (b)
‘8. (¢) Thinned ‘S’. (d) Thinned ‘8’.

summing over the N print pixels only, Fgs. (9) (10)
can be rewritten as

mpg =Y () ()

(48)

i=1

N
Upg = Z(T, -7 (yi — 9)7, (49)

i=1

where
F=00 g Mot (50)
mo .o mao.o0

)

Then, Egs. (12) (24) can be used as before. How-
ever, the contrast invariants (Fq. 31) are of no in-
terest, in the binary case.

For characters that are not too elongated, a fast
algorithm for computing the moments based on the

character contour exists [59], giving the same values
as Fq. (49).

3.6 Evaluation Studies

Belkasim et al. [43, 44] compared several moment
invariants applied to solid binary characters, in-
cluding regular, Hu, Bamieh, Zernike, Teague-
Zernike, and pseudo-Zernike moment invariants,
using a k nearest neighbor (kNN) classifier. They
concluded that normalized Zernike moment invari-
ants [43, 44] gave the best performance for char-
acter recognition in terms of recognition accuracy.
The normalization compensates for the variances of
the features, and since the kNN classifier uses the
Fuclidean distance to measure the dissimilarity of
the input feature vectors and the training samples,
this will improve the performance. However, by us-
ing a statistical classifier which explicitly accounts

A Survey 11

Figure 13: Digit ‘5’ with left profile z1.(y) and right
profile zr(y). For each y value, the left (right)
profile value is the leftmost (rightmost) = value on
the character contour.

for the variances, for example, a quadratic Bayesian
classifier using the Mahalanobis distance, no such
normalization is needed.

4 Features
Contour

Extracted From the Binary

The closed outer contour curve of a character is a
closed piecewise linear curve that passes through
the centers of all the pixels which are 4-connected
to the outside background, and no other pixels.
Following the curve, the pixels are visited in, say,
counter-clockwise order, and the curve may visit
an edge pixel twice at locations where the object
is one-pixel wide. Fach line segment is a straight
line between the pixel centers of two 8-connected
neighbors.

By approximating the contour curve by a para-
metric expression, the coefficients of the approxi-
mation can be used as features. By following the
closed contour successively, a periodic function re-
sults. Periodic functions are well-suited for Fourier
series expansion, and this is the foundation for the
Fourier-based methods discussed below.

4.1 Contour Profiles

The motivation for using contour profiles is that
each half of the contour (Fig. 13) can be approxi-
mated by a discrete function of one of the spatial
variables, = or y. Then, features can be extracted
from discrete functions. We may use vertical or
horizontal profiles, and they can be either outer
profiles or inner profiles.

To construct vertical profiles, first locate the up-
permost and lowermost pixels on the contour. The
contour is split at these two points. To get the
outer profiles, for each y value, select the outer-
most  value on each contour half (Fig. 13). To get
the inner profiles, for each y value, the innermost
x values are selected. Horizontal profiles can be
extracted in a similar fashion, starting by dividing
the contour in upper and lower halves.

The profiles are themselves dependent on rota-
tion (e.g., try to rotate the ‘5’ in Fig. 13, say, 45°
before computing the profiles). Therefore, all fea-
tures derived from the profiles will also be depen-
dent, on rotation.
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N

(X

v
(a) (b)

| orientation | count, |

0° 9
45° 1
920° 2
135° 4

(c)
Figure 14: Zoning of contour curve. (a) 4 x 4 grid
superimposed on character; (b) Close-up of the up-
per right corner zone; (¢) Histogram of orientations
for this zone.

Figure 15: Slice zones used by Takahashi [60)].

Kimura and Shridhar [27] extracted features
from the outer vertical profiles only (Fig. 13). The
profiles themselves can be used as features, as well
as the first differences of the profiles (e.g, 77 (y) =
zr.(y+1)—z(y)); the width w(y) = zr(y)—z1.(y);
the ratio of the vertical height of the character, n,
by the maximum of the width function, max, w(y);
location of maxima and minima in the profiles; and
locations of peaks in the first differences (which in-
dicate discontinuities).

A B c
=
£
D E wll F
Py
G H |

Figure 16: Zoning with fuzzy borders. Pixel P
has a membership value of 0.25 in each of the four
zones A, B, D, and F. P, has a 0.75 membership
of F/ and a 0.25 membership of F.

4.2 Zoning

Kimura and Shridhar [27] used zoning on contour
In each zone, the contour line segments
between neighboring pixels were grouped by ori-
entation: horizontal (0°), vertical (90°), and the
two diagonal orientations (45°,135°). The number
of line segments of each orientation was counted
(Fig. 14).

Takahashi [60] also used orientation histograms
from zones, but used vertical, horizontal, and di-
agonal slices as zones (Fig. 15). The orientations
were extracted from contours (if any) in addition
to the outer contour when making the histograms.

Further, Takahashi identified high curvature
points along both outer and inner contours. For
each of these points, the curvature value, the con-
tour tangent, and the point’s zonal position were
extracted. This time a regular grid was used as

curves.

zones.

Cao et al. [25] observed that when the contour
curve was close to zone borders, small variations in
the contour curve could lead to large variations in
the extracted features. They tried to compensate
for this by using fuzzy borders.
zone borders are given fuzzy membership values to
two or four zones, and the fuzzy membership values
sum to one (Fig. 16).

Points near the

4.3 Spline curve approximation

Sekita et al. [61] identify high-curvature points,
called breakpoints, on the outer character contour,
and approximate the curve between two break-
points with a spline function. Then, both the
breakpoints and the spline curve parameters are
used as features.

Taxt et al. [62] approximated the outer con-
tour curve with a spline curve, which was then
smoothed. The smoothed spline curve was divided
into M parts of equal curve length. For each part,
the average curvature was computed. In addition,
the distances from the arithmetic mean of the con-
tour curve points to N equally spaced points on the
contour were measured. By scaling the character’s
spline curve approximation to a standard size be-
fore the features were measured, the features will
become size invariant. The features are already
translation invariant by nature. However, the fea-
tures are dependent on rotation.

4.4 Elliptic Fourier descriptors

In Kuhl and Giardina’s approach [30], the closed
contour, (x(¢),y(t)),t = 1,...,m, is approximated
as

2nwt

=
—

~~
=

I

N
Ao + Z[an cos @ + b, sin ]1(51)

n=1

2nmt

) (52)

<>

—
~

=
\

N
2nwt
= Ch + Z[cn cos er + d,, sin

n=1
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where T is total contour length, and with () =
x(t) and §(t) = y(t) in the limit when N — oo.
The coefficients are

s
Ao = ?/0 x(t)dt (53)
s
Co = = t)dt 54
o= 5 (34)
T
an = z/ ,,(t)cosznﬂ.tdt (55)
T Jo
T
bn = z/ x(t) sin Znﬂ.tdt (56)
T Jo
T
Cn = z/ y(t)coqznﬂ.tdt (57)
T J,
T
2 vt
dy = —/ y(t)sin = dt.  (58)
T Jo

The functions z(t) and y(t) are piecewise linear,
and the coefficients can, therefore, be obtained by
summation instead of integration. Tt can be shown
[30] that the coefficients as,, by, ¢y and d,,, which
are the extracted features, can be expressed as

T = Am;
a, = i 2 A:, [cosg; — cospi—1] (59)
=1
T = Ami . .
b, = e ‘ AL [sing; — singi—1] (60)
=1
T <= Ay
Cn = oy ‘ Alf/, [cosg; — cospi—1] (61)
=1
T = Ay, .
dn, = oy ‘ Alf/, [sing; — sing;—1], (62)
=1
where ¢; = —2"'7’:""7
Ary =2 — w1, Ay =y —yi-1, (63)
Am:\/Am”+Af,tw:§:AQ7 (64)

g=1

T =t = Zm:m],

g=1

(65)

and m is the number of pixels along the bound-
ary. The starting point (z1,y1) can be arbitrarily
chosen, and it is clear from Fqs. (55 56) that the
coefficients are dependent on this choice. To ob-
tain features that are independent of the particular
starting point, we calculate the phase shift from the
first major aris as

1 2((11b1 —|— C1d1)
\/(1? fb?—kc?fd?

Then, the coefficients can be rotated to achieve a
zero phase shift:

9 =

3 tan~ (66)

an by | | an by cosnf; —sinnbd;
cr dr | T en dn sin né, cos nf
(67)

A Survey 13

To obtain rotation invariant descriptors, the ro-
tation, ¥1, of the semi-major axis (Fig. 17(a)) can

be found by

Y1 = tan~! % (68)

a4
and the descriptors can then be rotated by —,
(Fig. 17(b)), so that the semi-major axis is parallel

an by
e dy |

with the x-axis:

ay* brr | cos Y1

eyt odyr | | —siny ,

(69)

This rotation gives b7 = ¢ = 0.0 (Fig. 17(b)),
so these coefficients should not be used as features.
Further, both these rotations are ambiguous, as 6
and 6 4+ « give the same axes, and so do ¢ and
Y+ .

To obtain size-invariant features, the coefficients

can be divided by the magnitude, F, of the semi-
major axis, given by

sin o

cos Y

E=y\/al>+c1? = ay”. (70)
Then ay™ should not be used as a feature as well. Tn
any case, the low-order coefficients that are avail-
able contain the most information (about the char-
acter shape), and should always be used.

In Figs. 18 19, the characters ‘4’ and ‘5’ of Fig. 6
has been reconstructed using the coefficients of or-
These fig-
ures suggest that using only the descriptors of the
first three orders (12 features in total) might not
be enough to obtain a classifier with sufficient dis-
crimination power.

Tin and Hwang [63] derived rotation-invariant
features based on Kuhl and Giardina’s [30] features:

der up to n for different values of n.

I = ay + by, + ci +di (71)
Jiy = apdy — brey (72)

Ki,; = (a? + b?)(a? + b?) + (r? + d?)(r? + d?
+ 2(“101 + b d1)(a‘,c‘, + b‘,d‘,) (73)

As above, a scaling factor may be used to obtain
size-invariant, features.

4.5 Other Fourier Descriptors

Prior to Kuhl and Giardina [30], and T.n and
Hwang [63], other Fourier descriptors were devel-
oped by Zahn and Roskies [64] and Granlund [65].

In Zahn and Roskies’ method [64], the angular
difference Ap between two successive line segments
on the contour is measured at every pixel center
along the contour. The contour is followed clock-
wise.

Then the following descriptors can be ex-
tracted:

1 — 27nt
ayp = — — Ay sin TRTk (74)

nmw T

k=1

1 2mnity
b, = — A -, 75
nm P COS T ( )
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hs

v

A
Y
dr a7
-a; i -~
b; a; .
-d 1 1
7d**
1 br* = crx =
1 1

—_
»
~—

Figure 17: The rotation of the first-order ellipse used in elliptic Fourier descriptors in order to obtain

rotation-independent. descriptors ai* and d7*. (a) Before rotation, (b) After rotation.

SRR

SR
NS
NN
SR
SR

Figure 18: Character ‘4’ reconstructed by elliptic Fourier descriptors of orders up to 1, 2, ...10; 15, 20,

30, 40, 50, and 100, respectively.

ORA
ONCA
Gy
R
Gy
SR

Figure 19: Character ‘5’ reconstructed by elliptic Fourier descriptors of orders up to 1, 2, ...10; 15, 20,

30, 40, 50, and 100, respectively.
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where T is the length of the boundary curve, con-
sisting of m line segments, f; is the accumulated
length of the boundary from the starting point p
to the k-th point px, and Ay is the angle between
the vectors [px_1, px] and [pk, pr+1]. an» and b,, are
size- and translation-invariant. Rotation invariance
can be obtained by transforming to polar coordi-
nates. Then the amplitudes

An =V (137, + b%

are independent, of rotation and mirroring, while
the phase angles a, = tan(a./b,) are not. How-
ever, mirroring can be detected via the a;’s. Tt can
be shown that

(76)

Frj = 7ok — k*”.h (77)

is independent of rotation, but dependent on mir-
roring. Here, 7* = j/ged(3,k), k* = k/ged(4, k),
and gcd(j,k) is the greatest common divisor of j
and k.

7Zahn and Roskies warn that o becomes unre-
liable as Ay — 0, and is totally undefined when
Ag = 0. Therefore, the Fj; terms may be unreli-
able.

Granlund [65] uses a complex number z(f) =
x(t) + y(¥) to denote the points on the contour.
Then the contour can be expressed as a Fourier
series:

A= Y e’ T (78)
where
T )
1 i2mnt
iy = T /0 z(t)e 7T dt (79)

are the compler coefficients. ao 1s the center of
gravity, and the other coefficients a,,n # 0 are
independent, of translation. Again, T is the total
contour length. The derived features

A14nd1—n

b, = —— 80

, - (50)
Ty m

Dpn = Y (81)

8

are independent of scale and rotation. Here, n #£ 1
and k = gcd(m, n) is the greatest common divisor
of m and n. Furthermore,

(12|(11|

by = o (82)
dr, = % (83)

4

are scale-independent, but depend on rotation, so
they can be useful when the orientation of the char-
acters is known.

Persoon and Fu [3] pointed out that

_ 2mno

ayp, = G_pe

(84)

for some a. Therefore, the set of a,’s 1s redundant.

A Survey 15

4.6 Evaluation Studies

Taxt et al. [62] evaluated 7Zahn and Roskies’
Fourier descriptors [64], Kuhl and Giardina’s el-
liptic Fourier descriptors [30], T.in and Hwang’s el-
liptic Fourier descriptors [63], and their own cu-
bic spline approximation [62]. For characters with
known rotation, the best performance was reported
using Kuhl and Giardina’s method.

Persoon and Fu [3] observed that Zahn and
Roskies’ descriptors ((1,,,7 bn) converge slowly to zero
as n — 0 relative to Granlund’s [65] descriptors
((1,,,) in the case of piecewise linear contour curves.
This suggests that Zahn and Roskies’ descriptors
are not so well suited for the character contours
obtained from binary raster objects nor character
skeletons.

5 Features Extracted From the Vector
Representation

Character skeletons (Fig. 5) are obtained by thin-
ning the binary raster representation of the char-
acters. An overwhelming number of thinning al-
gorithms exist, and some recent evaluation stud-
ies give clues to their merits and disadvantages
[15, 16, 66]. The task of choosing the right one often
involves a compromise; one wants one-pixel wide
8-connected skeletons without spurious branches
or displaced junctions, some kind of robustness to
rotation and noise, and at the same time a fast
and easy-to-implement algorithm. Kwok’s thinning
method [67] appears to be a good candidate, al-
though its implementation is complicated.

A character graph can be derived from the skele-
ton by approximating it with a number of straight
line segments and junction points. Arcs may be
used for curved parts of the skeleton.

Wang and Pavlidis have recently proposed a
method for obtaining character graphs directly
from the gray level image [53, 68]. They view the
gray level image as a 3D surface, with the gray lev-
els mapped along the z-coordinate, using z = 0
for white (background) and, for example, z = 255
for black. By using topographic analysis, ridge
lines and saddle points are identified, which are
then used to obtain character graphs consisting of
straight line segments, arcs, and junction points.
The saddle points are analyzed to determine if they
are points of unintentionally touching characters,
or unintentionally broken characters. This method
is useful when even the best available binarization
methods are unable to preserve the character shape
in the binarized image.

5.1 Template matching

Template matching in its pure form is not well
suited for character skeletons, since the chances
are small that the pixels of the branches in the
input skeleton will exactly coincide with the pix-
els of the correct template skeleton. T.ee and Park
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[69] reviewed several non-linear shape normaliza-
tion methods used to obtain uniform line or stroke
spacing both vertically and horizontally. The idea
is that such methods will compensate for shape dis-
tortions.
prove the performance for template matching [70],
but may also be used as a preprocessing step for

Such normalizations are claimed to im-

7oNIng.

5.2 Deformable Templates

Neformable templates have been used by Burr [71]
and Wakahara [72, 73] for recognition of character
skeletons. In Wakahara’s approach, each template
is deformed in a number of small steps, called lo-
cal affine transforms (1.AT) to match the candidate
nput pattern (Fig. 20). The number and types of
transformations before a match is obtained can be
used as a dissimilarity measure between each tem-
plate and the input pattern.

N
Ly
LTI coee

Figure 20: The deformable template matching ap-

proach of Wakahara [72]. T.egend: ‘-’=original
template pixels not in transformed template;
‘o’=transformed template; ‘o’=input pattern;

‘@’=common pixels of transformed template and in-
put pattern. (a) Template and input pattern of a
Chinese character. (b) (d) after 1, 5, and 10 iter-
ations, respectively, of local affine transforms on a
copy of the template.

5.3 Graph Description

Pavlidis [74] extracts approximate strokes from
skeletons. Kahan et al. [75] augmented them with
additional features to obtain reasonable recognition
performance.

For Chinese character recognition, several au-
thors extract graph descriptions or representations
from skeletons as features [76, 77, 78]. T et al. [76]

Figure 21: Thinned letters ‘c’ and ‘d’. Vertical and
horizontal axes are placed at the center of gravity.
‘¢’ and ‘d’ both have one semicircle in the West
direction, but none in the other directions. ‘c’ has
one horizontal crossing and two vertical crossings.

(Adopted from Kundu et al. [82].)

derive hierarchical attributed graphs to deal with
variations in stroke lengths and connectedness due
to variable writing style of different writers. Cheng
et al. [79] use the Hough transform [80] on single-
character images to extract stroke lines from skele-
tons of Chinese characters.

5.4 Discrete features

From thinned characters, the following features
may be extracted [81, 82]: the number of loops;
the number of T-joints; the number of X-joints; the
number of bend points; width-to-height ratio of en-
closing rectangle; presence of an isolated dot; total
number of endpoints, and number of endpoints in
each of the four directions N, S, W, and E; num-
ber of semi-circles in each of these four directions;
and number of crossings with vertical and horizon-
tal axes, respectively, the axes placed on the center
of gravity. The last two features are explained in
Fig. 21.

One might use crossings with many superim-
posed lines as features, and in fact, this was done in
earlier OCR systems [1]. However, these features
alone do not lead to robust recognition systems;
as the number of superimposed lines is increased,
the resulting features are less robust to variations
in fonts (for machine printed characters) and vari-
ability in character shapes and writing styles (for
handwritten characters).

5.5 Zoning

Holbak-Hanssen et al. [83] measured the length of
the character graph in each zone (Fig. 22). These
features can be made size independent by dividing
the graph length in each zone by the total length of
the line segments in the graph. However, the fea-
tures can not, be made rotation independent. The
presence or absence of junctions or endpoints in
each zone can be used as additional features.
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Figure 22: Zoning of character skeletons.

5.6 Fourier Descriptors

The Fourier descriptor methods described in Sec-
tions 4.4 4.5 for character contours may also be
used for character skeletons or character graphs,
since the skeleton or graph can be traversed to
form a (degenerated) closed curve. Taxt and Bjerde
[84] studied Kuhl and Giardina’s elliptic Fourier
descriptors [30], and stressed that for character
graphs with two line endings, no junctions, and no
loops, some of the descriptors will be zero, while
for graphs with junctions or loops, all descriptors
will be non-zero. For the size- and rotation-variant
descriptors, Taxt and Bjerde stated that:
e For straight lines,
ay =cp=0,n=24,6,...
bt =dt =0,n=1,2,3,...
e For non-straight graphs with two line endings,
no junctions, and no loops,
bt =dt =0,n=1,2,3,...
e For graphs with junctions or loops,
ap #0, b5 #£0, ¢, 20,dy, 20, n=1,23, ...
The characteristics for rotation- and size-invariant
features were also found [84]. Taxt and Bjerde ob-
served that instances of the same character that
happen to be different with respect to the above
types will get very different feature vectors. The
solution was to pre-classify the character graphs in
to one of the three types, and then use a separate
classifier for each type.

5.7 Evaluation Studies

Holbaek-Hanssen et al. [83] compared the zon-
ing method described in Sec. 5.5 with Zahn and
Roskies” Fourier descriptor method on character
graphs. For characters with known orientation, the
zoning method was better, while Zahn and Roskies’
Fourier descriptors were better on characters with
unknown rotation.

6 Neural Network Classifiers

Multilayer feedforward neural networks [85] have
been used extensively in OCR, for example, by T.e
Cun et al. [86], Takahashi [60], and Cao et al. [25].
These networks may be viewed as a combined fea-
ture extractor and classifier.
each input character to a 16 x 16 grid, which are

T.e Cun et al. scale
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then fed into 256 input nodes of the neural net-
work (Fig. 23). The network has ten output nodes,
one for each of the ten digit classes ‘0 ‘9’ that
the network tries to recognize.
ate layers were used. Fach node in a layer has
connections from a number of nodes in the pre-
vious layer, and during the training phase, connec-
tion weights are learned. The output at a node
is a function (e.g., sigmoid) of the weighted sum
of the connected nodes at the previous layer. One
can think of a feedforward neural network as con-
structing decision boundaries in a feature space,
and as the number of layers and nodes increases,
the flexibility of the classifier increases by allow-
ing more and more complex decision boundaries.
However, it has been shown [85, 86] that this flex-
ibility must be restricted to obtain good recogni-
tion performance. This is parallel to the curse of
dimensionality effect observed in statistical classi-
fiers, mentioned earlier.

Three intermedi-

Another viewpoint can also be taken. T.e Cun et
al.’s neural network can be regarded as performing
hierarchical feature extraction.
a window in the previous layer and combines the
low-level features in this window into a higher level
feature. So, the higher the network layer, the more
abstract and more global features are extracted, the
final abstraction level being the features digit ‘07,
digit ‘1°, ..., digit ‘9. Note that the feature extrac-
tors are not hand-crafted or ad-hoc selected rules,
but are trained on a large set of training samples.

Fach node “sees”

Some neural networks are given extracted fea-
tures as input instead of a scaled or subsampled in-
put image (e.g., [60, 25]). Then the network can be
viewed as a pure classifier, constructing some com-
plicated decision boundaries, or it can be viewed as
extracting “superfeatures” in the combined process
of feature extraction and classification.

One problem with using neural networks in OCR
is that it 1s difficult to analyze and fully understand
the decision making process [87]. What are the im-
plicit features, and what are the decision bound-
aries? Also, an unbiased comparison between neu-
ral networks and statistical classifiers is difficult. If
the pixels themselves are used as inputs to a neural
network, and the neural network is compared with,
say, a k-nearest neighbor (kNN) classifier using the
same pixels as “features”, then the comparison is
not fair since a neural network has the opportunity
to derive more meaningful features in the hidden
layers. Rather, the best-performing statistical or
structural classifiers have to be compared with the
best neural network classifiers [88].

7 Discussion

Before

method,
acter recognition system in which it will oper-
ate. What kind of input characters is the sys-
tem designed for? Is the input single-font typed
or machine printed characters, multifont machine

selecting a specific feature extraction

one needs to consider the total char-
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10 output nodes

| O[1[2[3[4]5[6]7]8] 9]

3. hidden layer

30 units

2. hidden layer

12 feature detectors
4 x 4 matrices

1. hidden layer

12 feature detectors
8 x 8 matrices

16 x 16 input image

[ TTA
AT

Figure 23: The neural network classifier used by T.e
Cun et al. [36].

printed, mneatly hand-printed, or unconstrained
handwritten? What is the variability of the char-
acters belonging to the same class? Are gray-level
What is the
scanner resolution? Is a statistical or structural
classifier to be used? What are the throughput
requirements (characters per second) as opposed
to recognition requirements (reject vs. error rate)?

images or binary images available?

What hardware is available? Can special-purpose
hardware be used, or must the system run on stan-
dard hardware? What is the expected price of the
system? Such questions need to be answered in or-
der to make a qualified selection of the appropriate
feature extraction method.

Often, a single feature extraction method alone
is not sufficient to obtain good discrimination
power. An obvious solution is to combine fea-
tures from different feature extraction methods. Tf
a statistical classifier is to be used, and a large
training set is available, discriminant analysis can
be used to select the features with highest dis-
criminative power. The statistical properties of
such combined feature vectors need to be explored.
Another approach is to use multiple classifiers
[20, 25, 26, 27, 89, 90]. Tn that case, one can even
combine statistical, structural, and neural network
classifiers to utilize their inherent differences.

The main disadvantage of using gray scale image

based approaches is the memory requirements. Al-
though Pavlidis [91] has shown that similar recog-
nition rates may be achieved at a lower resolution
for gray scale methods than for binary image based
methods, gray scale images can not be compressed
significantly without a loss of information. Binary
images are easily compressed using, for example,
run-length coding, and algorithms can be written
to work on this format. However, as the perfor-
mance and memory capacity of computers continue
to double every 18 months or so, gray-scale meth-
ods will eventually become feasible in more and
more applications.

To illustrate the process of identifying the best
feature extraction methods, let us consider the dig-
its in the hydrographic map (Fig. 1). The digits
are hand-printed by one writer, and have roughly
the same orientation, size, and slant (skew), al-
though some variations exist, and they vary over
the different portions of the whole map. These vari-
ations are probably large enough to affect the fea-
tures considerably, if rotation-variant, size-variant,
or skew-variant features are used. However, by us-
ing features invariant to scale, rotation, and skew,
a larger variability is allowed, and confusion among
characters such as ‘6” and ‘9’ may be expected. By
using a statistical classifier which assumes statisti-
cally dependent features (e.g., using the multivari-
ate Gaussian distribution), we can hope that these
variations will be properly accounted for. Tdeally, it
should then be possible to find the size, orientation,
and perhaps slant directions in the feature space
by principal component analysis (PCA), although
the actual PCA does not have to be implemented.
However, characters with unusual size, rotation, or
skew will probably not be correctly classified. An
appropriate solution may therefore be to use a mix
of variant and invariant features.

For many applications, robustness to variability
in character shape, to degradation, and to noise
is important.
merged. Other characters might be self-touching
or have a broken loop.

Characters may be fragmented or

For features extracted
from character contours or skeletons, we will ex-
pect very different features depending on whether
fragmented, self-touching, or broken loop charac-
Separate classes will normally
have to be used for these variants, but the training

ters occur or not.

set, may contain too few of each variant to make
reliable class descriptions.

Fourier descriptors cannot be applied to frag-
mented characters in a meaningful way since this
method extracts features from one single closed
contour or skeleton. Further, outer contour curve
based methods do not use information about the
interior of the characters, like holes in ‘8", ‘0°, etc.,
so one then has to consider if some classes will be
easily confused. A solution may be to use multi-
stage classifiers [25].

Zoning, moment, invariants, Zernike moments,

and the Karhunen-T.oeve transform may be good
alternatives, since they are not affected by the
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above degradations to the same extent. Zoning is
probably not a good choice, since the variations
present, in each digit class may cause a specific part
of a character to fall into different zones for different
mstances. Cao et al. [25] tried to compensate for
this by using fuzzy borders, but this method is only
capable of compensating for small variations of the
character shape. Moment invariants are invariant
to size and rotation, and some moment invariants
are also invariant to skew and mirror images [42].
Mirror image invariance is not desirable, so moment
invariants that are invariant, to skew but not mirror
images would be useful, and a few such invariants
do exist [42]. Moment invariants lack the recon-
structability property, which probably means that
a few more features are needed than for features for
which reconstruction is possible.

Zernike moments are complex numbers which
themselves are not rotation invariant, but their am-
plitudes are. Also, size invariance is obtained by
prescaling the image. In other words, we can ob-
tain size- and rotation-dependent features.
Zernike moments have the reconstructability prop-
erty, they appear to be very promising for our ap-
plication.

Since

Of the unitary image transforms, the Karhunen-
T.oeve transform has the best information compact-
ness in terms of mean square error. However, since
the features are only linear combinations of the pix-
els in the input character image, we can not expect
them to be able to extract high-level features the
way other methods do, so many more features are
needed, and thus a much larger training set than
for other methods. Also, since the features are tied
to pixel locations, we can not expect to get class
descriptions suitable for parametric statistical clas-
sifiers. Still, a non-parametric classifier like the k-
nearest neighbor classifier [9] may perform well on
the Karhunen-T.oeve transform features.

Discretization errors and other high frequency
noise are removed when using Fourier descriptors
(Figs. 18 19), moment invariants, or Zernike mo-
ments, since we never use very high order terms.
Zoning methods are also robust against high fre-
quency noise because of the implicit low pass filter-
ing in the method.

From the above analysis, it seems like Zernike
moments would be good features in our hydro-
graphic map application. However, one really needs
to perform an experimental evaluation of a few of
the most promising methods to decide which fea-
ture extraction method is the best in practice for
each application. The evaluation should be per-
formed on large data sets that are representative
for the particular application. Targe, standard data
sets are now available from NIST [56] (Gaithers-
burg, MD 20899, USA) and SUNY at Buffalo [92]
(CEDAR, SUNY, Buffalo, NY 14260, USA). If
these or other available data sets are not represen-
tative, then one might have to collect a large data
set. However, performance on the standard data
sets does give an indication of the usefulness of the
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features, and provides performance figures that can
be compared with other research groups’ results.

8 Summary

Optical character recognition (OCR) is one of the
most, successful applications of automatic pattern
recognition. Since the mid 1950’s, OCR has been
a very active field for research and development
[1]. Today, reasonably good OCR. packages can be
bought for as little as $100. However, these are
only able to recognize high quality printed text doc-
uments or neatly written hand-printed text. The
current, research in OCR is now addressing doc-
uments that are not well handled by the available
systems, including severely degraded, omnifont ma-
chine printed text, and (unconstrained) handwrit-
ten text. Also, efforts are being made to achieve
lower substitution error rates and reject rates even
on good quality machine printed text, since an ex-
perienced human typist still has a much lower error
rate, albeit at a slower speed.

Selection of feature extraction method is prob-
ably the single most important factor in achiev-
ing high recognition performance. Given the large
number of feature extraction methods reported in
the literature, a newcomer to the field is faced with
the following question:
method is the best for a given application? This

Which feature extraction

question led us to characterize the available fea-
ture extraction methods, so that the most promis-
ing methods could be sorted out. An experimental
evaluation of these few promising methods must
still be performed to select the best method for a
specific application.

Devijver and Kittler define feature extraction
(page 12in [11]) as the problem of “extracting from
the raw data the information which is most relevant
for classification purposes, in the sense of minimiz-
ing the within-class pattern variability while en-
hancing the between-class pattern variability.” In
this paper, we reviewed feature extraction methods
including:

1. Template matching,

2. Deformable templates,

3. Unitary image transforms,

4. Graph description,

5. Projection histograms,

6. Contour profiles,

7. Zoning,

8. (Geometric moment invariants,

9. Zernike moments,

10. Spline curve approximation,

11. Fourier descriptors.
Fach of these methods may be applied to one or
more of the following representation forms

1. Gray level character image.

2. Binary character image,

3. Character contour,

4. Character skeleton or character graph.
For each feature extraction method and each char-
acter representation form, we discussed the prop-
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erties of the extracted features.

Before selecting a specific feature extraction
method, one needs to consider the total character
recognition system in which it will operate. The
process of identifying the best feature extraction
method was illustrated by considering the digits in
the hydrographic map (Fig. 1) as an example. Tt
appears that Zernike moments would be good fea-
tures in this application. However, one really needs
to perform an experimental evaluation of a few of
the most promising methods to decide which fea-
ture extraction method is the best in practice for
each application. The evaluation should be per-
formed on large data sets that are representative
for the particular application.
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