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A Real-Time Video Tracking System
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Abstract-Object identification and tracking applications of pattern
recognition at video rates is a problem of wide interest, with previous
attempts limited to very simple threshold or correlation (restricted
window) methods. New high-speed algorithms together with fast
digital hardware have produced a system for missile and aircraft iden-
tification and tracking that possesses a degree of "intelligence" not
previously implemented in a real-time tracking system. Adaptive
statistical clustering and projection-based classification algorithms are
applied in real time to identify and track objects that change in ap-
pearance through complex and nonstationary background/foreground
situations. Fast estimation and prediction algorithms combine linear
and quadratic estimators to provide speed and sensitivity. Weights are
determined to provide a measure of confi'dence in the data and result-
ing decisions. Strategies based on maximizing the probability of main-
taining track are developed. This paper emphasizes the theoretical
aspects of the system and discusses the techniques used to achieve real-
time implementation.

Index Terms-Image processing, intensity histograms, object iden-
tification, optical tracking, projections, tracking system, video data
compression, video processing, video tracking.

INTRODUCTION
I MAGE PROCESSING methods constrained to operate on

sequential images at a high repetition rate are few. Pattern
recognition techniques are generally quite complex, requiring
a great deal of computation to yield an acceptable classifica-
tion. Many problems exist, however, where such a time-
consuming technique is unacceptable. Reasonably complex
operations can be performed on wide-band data in real time,
yielding solutions to difficult problems in object identification
and tracking.
The requirement to replace film as a recording medium to

obtain a real-time location of an object in the field-of-view
(FOV) of a long focal length theodolite gave rise to the de-
velopment of the real-time videotheodolite (RTV). U.S. Army
White Sands Missile Range began the development of the RTV
in 1974, and the system is being deployed at this time. Design
philosophy called for a system capable of discriminatory judg-
ment in identifying the object to be tracked with 60 indepen-
dent observations/s, capable of locating the center of mass of
the object projection on the image plane within about 2 per-
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cent of the FOV in rapidly changing background/foreground
situations (therefore adaptive), able to generate a predicted
observation angle for the next observation, and required to
output the angular displacements of the object within the
FOV within 20 ms after the observation was made. The sys-
tem would be required to acquire objects entering the FOV
that had been prespecified by shape description. In the RTV
these requirements have been met, resulting in a real-time ap-
plication of pattern recognition/image processing technology.
The RTV is made up of many subsystems, some of which

are generally not of interest to the intended audience of this
paper. These subsystems (see Fig. 1) are as follows:

1)
2)
3)
4)
5)
6)
7)
8)
9)

10)
11)

main optics;
optical mount;
interface optics and imaging subsystem;
control processor;
tracker processor;
projection processor;
video processor;
input/output (I/O) processor;
test subsystem;
archival storage subsystem;
communications interface.

The main optics is a high quality cinetheodolite used for ob-
taining extremely accurate (rms error - 3 arc-seconds) angular
data on the position of an object in the FOV. It is positioned
by the optical mount which responds to azimuthal and eleva-
tion drive commands, either manually or from an external
source. The interface optics and imaging subsystem provides
a capability to increase or decrease the imaged object size on
the face of the silicon target vidicon through a 10:1 range,
provides electronic rotation to establish a desired object
orientation, performs an autofocus function, and uses a gated
image intensifier to amplify the image and "freeze" the mo-
tion in the FOV. The camera output is statistically decom-
posed into background, foreground, target, and plume re-
gions by the video processor, with this operation carried on
at video rates for up to the full frame. The projection pro-
cessor then analyzes the structure of the target regions to
verify that the object selected as "target" meets the stored
(adaptive) description of the object being tracked. The tracker
processor determines a position in the FOV and a measured
orientation of the target, and decides what level of confidence
it has in the data and decision. The control processor then
generates commands to orient the mount, control the inter-
face optics, and provide real-time data output. An I/O pro-
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Fig. 1. RTV tracking system.

cessor allows the algorithms in the system to be changed, in-
terfaces with a human operator for tests and operation, and
provides data to and accepts data from the archival storage
subsystem where the live video is combined with status and
position data on a video tape. The test subsystem performs
standard maintenance checks on the system. The communica-
tions interface provides the necessary interaction with the ex-
ternal world for outputing or receiving data.
The video processor, projection processor, tracker processor,

and control processor are four microprogrammable bit-slice
microprocessors [1], which utilize Texas Instruments' (TIs')
new 74S481 Schottky processor, and are used to perform
the real-time tracking function.
The four tracking processors, in turn, separate the target

image from the background, locate and describe the target
image shape, establish an intelligent tracking strategy, and
generate the camera pointing signals to form a fully auto-
matic tracking system.
Various reports and papers discuss several of the develop-

mental steps and historical aspects of this project [2] - [7].
In this paper the video, projection, tracker, and control
processors are discussed at some length.

VIDEO PROCESSOR

The video processor receives the digitized video, statistically
analyzes the target and background intensity distributions,
and decides whether a given pixel is background or target
[8]. A real-time adaptive statistical clustering algorithm is
used to separate the target image from the background scene
at standard video rates. The scene in the FOV of the TV
camera is digitized to form an n X m matrix representation

P = (pi1) n, m

of the pixel intensities Pij. As the TV camera scans the scene,
the video signal is digitized at m equally spaced points across
each horizontal scan. During each video field, there are n
horizontal scans which generate an n X m discrete matrix
representation at 60 fields/s. A resolution of m = 512 pixels
per standard TV line results in a pixel rate of 96 ns per pixel.
Every 96 ns, a pixel intensity is digitized and quantized into

eight bits (256 gray levels), counted into one of six 256-level
histogram memories, and then converted by a decision mem-
ory to a 2-bit code indicating its classification (target, plume,
or background). There are many features that can be func-
tionally derived from relationships between pixels, e.g., tex-
ture, edge, and linearity measures. Throughout the following
discussion of the clustering algorithm, pixel intensity is used
to describe the pixel features chosen.
The basic assumption of the clustering algorithm is that

the target image has some video intensities not contained
in the immediate background. A tracking window is placed
about the target image, as shown in Fig. 2, to sample the
background intensities immediately adjacent to the target
image. The background sample should be taken relatively
close to the target image, and it must be of sufficient size to
accurately characterize the background intensity distribution
in the vicinity of the target. The tracking window also serves
as a spatial bandpass filter by restricting the target search re-
gion to the immediate vicinity of the target. Although one
tracking window is satisfactory for tracking missile targets
with plumes, two windows are used to provide additional
reliability and flexibility for independently tracking a target
and plume, or two targets. Having two independent windows
allows each to be optimally configured and provides reliable
tracking when either window can track.
The tracking window frame is partitioned into a background

region (BR) and a plume region (PR). The region inside the
frame is called the target region (TR) as shown in Fig. 2.
During each field, the feature histograms are accumulated
for the three regions of each tracking window.
The feature histogram of a region R is an integer-value, in-

teger argument function hR (x). The domain of hR (x) is
[O,d], where d corresponds to the dynamic range of the
analog-to-digital converter, and the range of hR (x) is [O, r],
where r is the number of pixels contained in the region R;
thus, there are r + 1 possible values of hR (x). Since the do-
main hR (x) is a subset of the integers, it is convenient to
define hR(x) as a one-dimensional array of integers

h(O), h(l), h(2), * * *, h(d)-
Letting xi denote the ith element in the domain of x (e.g.,
x25 = 24), and x(j) denote the jth sample in the region R
(taken in any order), hR (x) may be generated by the sum

r
hR (Xi) = xi,x (j)

j=1

where 6 is the Kronecker delta function

O i*j
= { :=j.

A more straightforward definition which corresponds to the
actual method used to obtain hR (x) uses Iverson's notation
[211 to express hR (x) as a one-dimensional vector of d + 1
integers which are set to zero prior to processing the region
R as

h +-(d+ 1)pO.
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Fig. 2. Tracking window.

As each pixel in the region is processed, one (and only one)
element ofH is incremented as

h[x(j)] -h [x(j)] + 1.

When the entire- region has been scanned, h contains the dis-
tributions of pixels over intensity and is referred to as the
feature histogram of the region R.

It follows from the above definition that h satisfies the
identity

r=hR(xi) or r-+/h.
i =0

Since h is also nonnegative and finite, it can be made to sat-
isfy the requirements of a probability assignment function
by the normalization

h-h *. +/h.

Hereafter, all feature histograms are assumed to be normalized
and are used as relative-frequency estimates of the probability
of occurrence of the pixel values x in the region over which
the histogram is defined.
For the ith field, these feature histograms are accumulated

for the background, plume, and target regions and written

hiR(x): BR(

x

hiR(x): Eh (x)R=X
x

hR (x): E hTR(X) 1

x

after they are normalized to the probability interval [0, 1].
These normalized histograms provide an estimate of the
probability of feature x occurring in the background, plume,
and target regions on a field-by-field basis. The histograms
are accumulated at video rates using high-speed LSI mem-

ories to realize a multiplexed array of counters, one for each
feature x.

The next problem in the formulation of a real-time cluster-
ing algorithm is to utilize the sampled histograms on a field-
by-field basis to obtain learned estimates of the probability
density functions for background, plume, and target points.
Knowing the relative sizes of the background in PR, the back-
ground in TR, and the plume in TR, allows the computation
of estimates for the probability density function for back-
ground, plume, and target features. This gives rise to a type
of nonparametric classification similar to mode estimation
as discussed by Andrews [91, but with an implementation
method that allows for real-time realization.

Letting

number of background points in PR
total number of points in PR

number of background points in TR
total number of points in TR

number of plume points in TR
y == total number of points in TR

and assuming that 1) the BR contains only background points,
2) the PR contains background and plume points, and 3) the
TR contains background, plume, and target points, one has

hPR (X) = hP(x)
hfR(x) = ah4(x) + (1 - ca) hr(x)

hTR (X) = PhB (x) + yhr(x) + (1 - i - T) hT(x).
By assuming there are one or more features x where hB(x)

is much larger than hf(x), one has

hpR(x) Ep
at =

I
BhrR(x)- hpR(X)

where c = (1 - a) hf(x) << hf?(x). Now for all features x
where h,f(x) = 0, one has the solution a = hPR(x)IhPR(x). For
all features x where hip(x)>0, the inequality hpR(x)IhPR(x)>a
is valid. Consequently, a good estimate for cx is given by

ax = min {h'R (x)IhPR (X)}
x

and this estimate will be exact if there exists one or more fea-
tures where hPR(x) 0 0 and hf(x) = 0. Having an estimate of
at and hO(x) allows the calculation of hf(x).

In a similar manner, estimates of,B and y are obtained,

x hfR(X)
3min hP(x

*hBR(x)
OY

hTR(X)=min '

hp(x)
Having field-by-field estimates of the background, plume,

and target density functions (h'(x), h/(x), hf(x)), a linear
recursive estimator and predictor [101 is utilized to establish
learned estimates of the density functions. Letting H(ilj)
represent the learned estimate of a density function for the
ith field using the sampled density functions hi(x) up to the
jth field, we have the linear estimator

H(ili)=w H(ili- 1)+(1 - w)hi(x)
and linear predictor

H(i + I li) = 2H(fli) - H(i - I ji - 1).
The above equations provide a linear recursive method for

compiling learned density functions. The weighting factor
can be used to vary the learning rate. When w = 0, the learn-
ing effect is disabled and the measured histograms are used
by the predictor. As w increases toward one, the leaming
effect increases and the measured density functions have a
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reduced effect. A small w should be used when the back-
ground is rapidly changing; however, when the background is
relatively stationary, w can be increased to obtain a more
stable estimate of the density functions.
The predictor provides several important features for the

tracking problem. First, the predictor provides a better esti-
mate of the density functions in a rapidly changing scene
which may be caused by background change or sunglare prob-
lems. Secondly, the predictor allows the camera to have an
automatic gain control to improve the target separation from
the background.
With the learned density functions for the background,

plume, and target features (Hf'(x), HP(x), H1T(x)), a Bayesian
classifier [11] can be used to decide whether a given feature
x is a background, plume, or target point. Assuming equal
a priori probabilities and equal misclassification costs, the
classification rule decides that a given pixel feature x is a
background pixel if

HB(x)>HfI(x) and HB(x)>HiH(x),
a target pixel if

HT(x) >>HB(x) and HT(x) >HrP(x),

or a plume pixel if

HP(x)>HB(x) and HfP(x)>HfT(x).
The results of this decision rule are stored in a high-speed
classification memory during the vertical retrace period.
With the pixel classification stored in the classification mem-
ory, the real-time pixel classification is performed by simply
letting the pixel intensity address the classification memory
location containing the desired classification. This process
can be performed at a very rapid rate with high-speed bipolar
memories.

PROJECTION PROCESSOR
The video processor described above separates the target

image from the background and generates a binary picture,
where target presence is represented by a "1" and target
absence by a "0." The target location, orientation, and
structure are characterized by the pattern of 1 entries in the
binary picture matrix, and the target activity is character-
ized by a sequence of picture matrices. In the projection
processor, these matrices are analyzed field-by-field at 60
fields/s using projection-based classification algorithms to
extract the structural and activity parameters needed to
identify and track the target.
The targets are structurally described and located by using

the theory of projections. A projection in the x-y plane of a
picture function f(x,y) along a certain direction w onto a
straight line z perpendicular to w is defined by

PW(Z) =f(x,y) dw

as shown in Fig. 3. In general, a projection integrates the in-
tensity levels of a picture along parallel lines through the pat-
tern, generating a function called the projection. For binary

F -o x

Fig. 3. Projections.

digitized patterns, the projection gives the number of object
points along parallel lines; hence, it is a distribution of the
target points for a given view angle.

It has been shown that for sufficiently large numbers of
projections a multigray level digitized pattern can be uniquely
reconstructed [12]. This means that structural features of a
pattern are contained in the projections. The binary input
simplifies the construction of projections and eliminates in-
terference of structural information by intensity variation
within the target pattern; consequently, fewer projections
are required to extract the structural information. In fact,
any convex, symmetric binary pattern can be reconstructed
by only two orthogonal projections, proving that the projec-
tions do contain structural information.
Much research in the projection area has been devoted to

the reconstruction of binary and multigray level pictures
from a set of projections, each with a different view angle.
In the real-time tracking problem, the horizontal and vertical
projections can be rapidly generated with specialized hard-
ware circuits that can be operated at high frame rates. Al-
though the vertical and horizontal projections characterize
the target structure and locate the centroid of the target
image, they do not provide sufficient information to pre-
cisely determine the orientation of the target. Consequently,
the target is dissected into two equal areas and two orthogonal
projections are generated for each area.
To precisely determine the target position and orientation,

the target center-of-area points are computed for the top sec-
tion (XCT, YcT) and bottom section (XcB, YcB) of the tracking
parallelogram using the projections. Having these points, the
target center-of-area (Xc, Yc) and its orientation can be easily
computed (Fig. 4):

XT + XB
Xc = c c

2

2

yT - yB
q=tanI XT X

C C

The top and bottom target center-of-area points are used,
rather than the target nose and tail points, since they are
much easier to locate, and more importantly, they are less
sensitive to noise perturbations.

It is necessary to transform the projection functions into

so
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P%(z)

xB
Xm

Fig. 4. Projection location technique.

a parametric model for structural analysis. Area quantiza-
tion offers the advantage of easy implementation and high
immunity to noise. This process transforms a projection
function Pw(z) into k rectangles of equal area (Fig. 5), such
that

Zi+l

Z-

1 Zk+1

Pw(z)dz=Jk7 Pw(z) dz

for i= 1,2,>-,k.

Another important feature of the area quantization model
for a projection function of an object is that the ratio of line
segments li = Zi+1 Zi and L Zk - Z2,

1-
Si= ' for i=2,3, ,k- I

are object size invariant. Consequently, these parameters pro-

vide a measure of structure of the object which is independent
of size and location [13]. In general, these parameters change
continuously since the projections are one-dimensional repre-

sentations of a moving object. Some of the related problems
of these geometrical operations are discussed by Johnston and
Rosenfeld [14].
The structural parameter model has been implemented and

successfully used to recognize a class of basic patterns in a

noisy environment. The pattern class includes triangles,
crosses, circles, and rectangles with different rotation angles.
These patterns are chosen because a large class of more com-

plex target shapes can be approximated with them.
The architecture of the projection processor consists of a

projection accumulation module (PAM) for accumulating
the projections and a microprogrammable processor for
computing the structural parameters. The binary target
picture enters the PAM as a serial stream in synchronization

Zsi Z2 Z3 Z4 Z5 Zk-1 Zk

Fig. 5. Projection parameters.

with the pixel classifier of the video processor. The projec-
tions are formed by the PAM as the data are received in real
time. In the vertical retrace interval, the projection processor
assumes addressing control of the PAM and computes the
structural parameters before the first active line of the next
field. This allows the projections to be accumulated in real
time, while the structural parameters are computed during
the vertical retrace interval.

TRACKER PROCESSOR
In the tracking problem, the input environment is restricted

to the image in the FOV of the tracking optics. From this in-
formation, the tracking processor extracts the important in-
puts, classifies the current tracking situation, and establishes
an appropriate tracking strategy to control the tracking optics
for achieving the goals of the tracking system.
The state concept can be used to classify the tracking situa-

tions in terms of state variables as in control theory, or it can
be interpreted as a state in a finite state automaton [15], [16].
Some of the advantages of the finite state automaton ap-

proach are as follows.
1) A finite state automaton can be easily implemented with

a look-up table in a fast LSI memory.
2) A finite state automaton significantly reduces the amount

of information to be processed.
3) The tracking algorithm can be easily adjusted to differ-

ent tracking problems by changing the parameters in the
look-up table.
4) The finite state automaton can be given many character-

istics displayed by human operators.
The purpose of the tracker processor is to establish an intel-

ligent tracking strategy for adverse tracking conditions. These
conditions often result in losing the target image within or out
of the FOV. When the target image is lost within the FOV,
the cause can normally be traced back to rapid changes in the
background scene, rapid changes in the target image due to
sun glare problems, or cloud formations that obstruct the
target image. When the target image is lost by moving out of
the camera's FOV, the cause is normally the inability of the
tracking optics dynamics to follow a rapid motion of the
target image. It is important to recognize these situations
and to formulate an intelligent tracking strategy to continue
tracking while the target image is lost so that the target image
can be reacquired after the disturbance has passed.
To establish an intelligent tracking strategy, the tracker pro-

cessor evaluates the truthfulness and trackability of the track-

-4- Z/ II I
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ing data. The truthfulness of the tracking data relates to the
confidence that the measured tracking data truly define the
location of the target under track. The trackability of the
target image relates to the question of whether the target
image has desirable tracking properties.
The inputs to the tracker processor are derived from the

projection representation of the target image by the projec-
tion processor. Area quantization is used to transform each
projection function P(z) into K = 8 equal area intervals as
shown in Fig. 5.
These inputs are:

1)
2)
3)
4)
5)

target size (TSZ);
target location (TX, TY);
target orientation (TO);
target density (TDN);
target shape = {(SXi, SY1)Ii = 1, 2, * *, 6}.

Target size is simply the total number of target points. Target
location is given by the center-of-area points of the projec-
tions. Where Xi and Yi are the parameters of Fig. 5 when
projected on the x and y axes, respectively,

TX=X5 and TY=Y5.

The target orientation defines the orientation of the target
image with respect to vertical boresight. Target density is
derived from the target length (TL), width (TW), and size
(TSZ) by

TDN =
TL X TW

TSZ

The target shape is described by the ratio of the lengths of
the equal area rectangles and the total lengths

SXi = (Xi+ 2 - Xi+ 1)/(X8 - X2)

and

Syi = (yi+ 2 - Yi+ 1)/(Y8 - Y2)

for i= 1, 2, * * *, 6. Observe that the first and last equal area

subintervals are not used in the shape description, since they
are quite sensitive to noise.
The tracker processor establishes a confidence weight for

its inputs, computes boresight and zoom correction signals,
and controls the position and shape of the target tracking
window to implement an intelligent tracking strategy. The
outputs of the tracker processor are as follows.
Outputs to Control Processor: 1) Target X displacement

from boresight (DX), 2) target Y displacement from bore-
sight (DY), 3) desired change in zoom (DZ), 4) desired change
in image rotation (DO), and 5) confidence weight (W).
Outputs to Video Processor: 1) tracking window size,

2) tracking window shape, and 3) tracking window position.
The outputs to the control processor are used to control

the target location and size for the next frame. The bore-
sight correction signals are used to control the azimuth and
elevation pointing angles of the telescope. The desired zoom

is used to control the zoom lens, keeping the target visible
within the FOV. The desired image rotation controls the
image rotation element to keep the target image vertical. The

confidence weight is used by the control processor much like
a Kalman weight to combine the measured and predicted
values. When the confidence weight is low, the control pro-
cessor relies more heavily on the recent trajectory to predict
the location of the target on the next frame.
The outputs to the video processor define the size, shape,

and position of the tracking window. These are computed
on the basis of the size and shape of the target image and the
amount of jitter in the target image location. There is no
loss in resolution when the tracking window is made larger;
however, the tracking window acts like a bandpass filter and
rejects unwanted noise outside the tracking window.
A confidence weight is computed from the structural fea-

tures of the target image to measure the truthfulness of the
input data. The basic objective of the confidence weight is
to recognize false data caused by rapid changes in the back-
ground scene or cloud formations. When these situations are
detected, the confidence weight is reduced and the control
processor relies more heavily on the previous tracking data
to orientate the tracking optics toward the target image. This
allows the control processor to continue tracking the target
so that the target image can be reacquired after the perturba-
tion passes.
The confidence weight measures how well the structural fea-

tures of the located object fit the target image being tracked.
A linear recursive filter is used to continually update the
structural features to allow the algorithm to track the de-
sired target through different spatial perspectives. Experi-
mental studies have indicated that the structural parameters
S = {(SXi, SYi)li = 1, 2, * * *, 6} and the target density are
important features in detecting erratic data. Let TDN(k) and
(SXi (k), SYi (k)) for i = 1, 2, ... , 6 represent the measured
target density and shape parameters, respectively, for the kth
field, and let (SXi(k),SYi(k)) represent the filtered values
for the target shape parameters. The linear filter is defined
by

SXi(k + 1) = (k 1 ) SXi (k) + SXi (k)

SYi(k + 1) (k - 1)SYi(k) +SYi(k)

for i = 1, 2, , 6 and a positive integer K. The confidence
weight for the kth field is given by

W(k) = a,i max {l - C(k), O} + a2 min {l, TDN(k)}

where

6 6
C(k)= £ SXi(k) - SXi(k) + £ SYi(k) - SYi(k)

i=l i=l

and

O.< 1, t2<1, al+a2=l.

This formulation for the confidence weight has been experi-
mentally tested, and it has demonstrated the ability to mea-
sure the truthfulness of the tracking data in the tracking en-
vironment. The filtered shape parameters are not updated

52
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when the confidence weight falls below a given lower thresh-
old. This prevents the shape parameters from being updated
incorrectly during periods when the target image is lost or
badly perturbed by the background noise.
To formulate an intelligent tracking strategy, the tracking

algorithm needs the ability to respond to a current input
based upon the sequence of inputs that lead to the current
state (or situation). A finite state sequential machine pos-
sesses such a property because each state represents the
collection of all input sequences that take the machine from
the initial state to the present state (Nerode's tape equiva-
lence [17] ). By defining an equivalence relation R on the tape
set as

XRy if 5(so,X)=5(so,y) Vx, yEE*

the tape set 1* can be partitioned into equivalent classes

[x] =si= {yIxRy VyeZ*}.
Consequently, a state represents all input sequences that
produce a given tracking situation. This interpretation of
input sequences transforms the development of the track-
ing algorithm into a problem of defining a finite state se-
quential machine

TA = (S, I, Z, 6, W).

The states of the machine S = {Si, S2, S3, , s,,} define the
different tracking situations that must be handled by the
tracking algorithm. The inputs to the finite state machine
are derived from the image parameters that characterize the
size, shape, and location of the present target image. The
output set Z defines a finite set of responses that the track-
ing algorithm employs for maintaining track and retaining
high resolution data. The next state mapping 8: S X I -S
defines the next state 8(si, ij) = Sk when an input ij is applied
to state si. The output mapping W: S -+ Z is a Moore out-
put that defines the proper tracking strategy (response) for
each state.
The inputs to the sequential machine are chosen to give the

sequential machine a discrete measure of the trackability of
the target image. These inputs are:

1)
2)
3)
4)
5)
6)
7)

target size (TSZ);

confidence weight (W);
image orientation (Tb);
image displacement from boresight (TX, TY);
image movement (A TX, ATY);
rate of change in target size (ATSZ);
rate of change in confidence weight (A W).

The image size is clearly an important measure of the track-
ability since the image is difficult to track when the image
is either too small or too large. The confidence weight pro-

vides a measure of whether the image is the target under
track. Image displacement from boresight gives a measure
of whether the image is leaving the FOV. Image movement
in the FOV measures the amount of jitter in the target image.
The rate of change in the target size and confidence weight
allows a prediction of what is likely to happen on subsequent

fields. These inputs are quantized into an 8-bit binary input
vector for the sequential machine.
The states of the sequential machine are chosen to define

the major tracking situations. These states are:

1) target acquisition = Sl;
2) normal tracking= S2;
3) abrupt change in FOV = S3;
4) leaving or out of FOV = S4.

S, corresponds to the situation where the tracker is trying
to acquire the target. This situation occurs during initial
acquisition and during periods of time when the target image
is lost. S2 corresponds to the situation where the target image
is under track with the normal tracking algorithm and no
special tracking strategy is required. S3 corresponds to the
situation where the target image undergoes erratic and abrupt
changes in its shape or size within the FOV and S4 corresponds
to the situation where the target image is leaving or has left
the FOV of the camera. These states only categorize the
major tracking situations. State parameters are used to further
refine the tracking situation by providing a parametric de-
scription of the tracking situation.
The tracking algorithm views the target structure and ac-

tivity within the tracking window on a field-by-field basis.
Based upon these observations, the tracking algorithm must
classify the present tracking situation and enter the appro-
priate state whose outputs best handle the situation. The
motivation of the next state mapping, 8: I X S -+S, is to
provide a tracking strategy to keep the tracker in the normal
tracking state. Much experimental effort has been devoted
to establish a next state mapping with desirable tracking char-
acteristics. A simplified state diagram is given in Fig. 6 which
defines the essential properties of the state transition behavior.
The output set Z defines a finite set of responses that the

tracking algorithm can make to maintain track while retain-
ing high resolution data. Several of these responses control
the tracking window, and they are performed at electronic
speed. However, the zoom lens and tracking optics opera-
tions are mechanical in nature and require more time to be
performed.
The output set Z contains the following responses:

1) location of tracking window;
2) shape and size of tracking window;
3) target location (boresight corrections);
4) confidence weight;
5) desired zoom;
6) control shape parameter update procedure.

These output responses give the tracking algorithm the ability
to respond to the tracking situations defined by tracking
states.
The motivation for the output mapping, W: I X S -+ Z, is to

associate with each state an intelligent strategy to maintain
track with high image resolution. The outputs to the image
decomposition algorithm control the size and position of the
tracking window. The outputs to the control processor con-
trol the zoom and pointing angle of the tracking optics. The
tracking algorithm must make many compromises between
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Fig. 6. Next-state mapping.

tracking ability and image resolution. For example, when the
target image is about to leave the FOV, the zoom can be re-

duced to keep the target in the FOV. Increasing the FOV,
however, decreases the target size and image resolution. These
compromises have been formulated and solved with standard
optimization techniques. The solutions are precomputed and
stored in a look-up table for the tracking algorithm.
By implementing the tracking algorithm as a finite state

machine where the outputs are obtained from the look-up
tables, it is possible to realize the tracking algorithm with a

standard microprogrammable processor.

CONTROL PROCESSOR
The purpose of the control processor is to generate the con-

trol signals that drive the tracking optics. The processor re-

ceives inputs from the tracker processor on the target location
(TX, TY), orientation (TO), and length (TL), measured rela-
tive to boresight and on a confidence weight (W) that measures
the reliability of the measured data. Using these inputs, the
control processor predicts the desired tracker azimuth and
elevation pointing angles (EA (k + 1), eE(k + 1)), the zoom

lens setting (Z(k + 1)) and the image rotation setting (Q(k + 1))

for the next field denoted by (k + 1).
The control processor provides the estimated and predicted

values of the variables necessary to orientate the tracking op-

tics toward the target. Using the confidence weight to com-

bine the predicted variables with current measurements, the
processor provides estimates of current target position vari-
ables. These estimates are combined with previous estimates
to predict the target position variables for the next control
interval.
Since the form of the estimator equations is similar for the

azimuth, elevation, zoom, and image rotation variables, the
following notation is used in the development:

VE3(k)

em (k)

e(k)

variable to be estimated or predicted (azimuth,
elevation, rotation, or zoom);
measured values of @(k);
estimated value of @(k) using measurements
through kth frame;

E1(k+ 1lk) predicted value of O(k + 1) using measure-
ments through kth frame and the j index type
predictor;

O(k + I k) predicted value of O(k + 1) using a combina-
tion of the set of predictors;

w(k) confidence weight.

Using the confidence weight in a manner similar to that of
a Kalman gain, the estimated value is obtained from the mea-
sured and predicted values by

6(k) = (1 - W(k)) 6(klk - 1) + W(k) Em(k)

where the confidence weight is normalized such that 06 W(k) <
1. Consequently, the predictors having the functional form

E)(k + I1Ik) = F(O(k), O(k - 1), * ,O(k - r))
rely more heavily on the estimated values when the weight is
low. This is very important for continuing track when the
target passes through clouds or noisy backgrounds such as
the mountain/sky interface.
A simple filter-predictor that has demonstrated the ability

to track highly maneuverable targets uses a linear convex
combination of a linear-two-point and a quadratic-five-point
polynomial filter-predictor. This scheme Qis based on the
reasoning that the linear-two-point polynomial can better
anticipate a rapid maneuver from the missile, while the quad-
ratic-five-point polynomial is used to reduce the variance
of error. The coefficients of the linear convex combination
are chosen to obtain an unbiased minimum variance of error
estimate.
In formulating the linear convex combination estimate of

the linear (r1) and quadratic (^q) predictors

e = o101 + at2eq,

it is assumed that the predictors E), and Eq are independent;
hence, the minimum variance error estimate [18] is given by
the coefficients

U2Qq)
°l=[1g2(@+ 02 (6q)]

a2(lGi)
2 - [a2(6 ) + u2(&q)]

and

E) ff(4q) 'i(tk+1 tk) + u2Q(i) bq(tk+1 Itk)
@(tk+ I tk) o2 ( + 2 (

is the desired prediction of the chosen parameter.
Simulation studies [19] were conducted to compare the

performance of this simple and somewhat primitive filter-
predictor with the more robust extended Kalman filter [20].
The results of these studies indicated the total performance
of the tracking system with the simple filter-predictor com-
pared favorably with the extended Kalman filter. In the light
of the real-time computational constraints, the simple filter-
predictor is suitable for more real-time tracking problems.
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SIMULATION AND HARDWARE
A computer simulation of the RTV tracking system, in-

corporating the algorithms used by the four processors de-
scribed in this paper, was developed and used to evaluate
the system under realistic tracking conditions. The simula-
tion model includes dynamic models for the target trajectory
and the tracking optics and mount in addition to the RTV
processor algorithms in order to verify the complete track-
ing system.
The simulation displays the target and plume points as they

are identified by the video processor. These points are super-
imposed on a cross hair which locates the boresight of the
tracking optics. In addition to the digitized images, the
simulation displays the target and plume tracking windows
and the projections accumulated for each video field. These
outputs provide a direct measure of the performance of the
four processors as well as an overall measure of the tracking
accuracy of the system.
Two types of input data are available to the simulation-

simulated digitized video fields and actual digitized video
fields from video tape recordings of typical tracking sequences.
Fig. 7 contains two representative simulation outputs selected
from the first 100 fields of simulated digitized video. The
RTV tracker performs well during this simulated tracking se-
quence. All processors function properly, and track is main-
tained throughout the tracking sequence.

Fig. 8(a) is a halftone graphics display of a field of actual
digitized video which was injected into the RTV simulation.
The simulator repeatedly processed the same video field
superimposed on the simulated target trajectory in order to
test the static and dynamic responses of the RTV processors.
The result after six processing frames, shown in Fig. 8(b),
verifies the effectiveness of the processing algorithms used
in the RTV tracker. Since no plume is present, both windows
are tracking the target. Several important conclusions may be
deduced from this result: the video processor successfully
identifies most of the target pixels; the projection data is ac-
cumulated and used effectively by the projection and tracker
processors to obtain the target orientation and the displace-
ment of the target from boresight; and both windows are
tracking the target and closing down on it to reduce noise.
Subsequent to simulation, a hardware model was developed

and is being deployed at the present time. Bench tests of all
subsystems indicate that the projected performance of each
processor has been achieved.

CONCLUSIONS
These four subsystems form only a part of the RTV; many

of the other subsystems are of equal complexity. Changes
currently taking place in digital technology coupled with
aggressive research in real-time pattern recognition/image
processing algorithms are now making possible highly sophisti-
cated hardware for recognition and tracking purposes. While
RTV is an example of this type of a system, work at WSMR
and NMSU (and elsewhere) is continuing with the purpose of
finding faster and better ways of processing video intelligently.
A lot of work remains before a truly versatile video analysis

system exists. RTV is but a step in that direction. Research
directed toward the solution of this class of problems needs

L
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Fig. 7. Simulation outputs.
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(b)
Fig. 8. (a) Digitized video. (b) Simulation output.

to have two fundamental premises as a starting point. The
first is that algorithms should be general, not specifically
created for a particular scene. Too often pattern recognition
methods have depended upon extensive "tweaking" of param-
eters to yield good results. This approach is not allowable
for real-time processing. Secondly, the algorithms should not
require extensive data storage, since manipulation of the data
consumes resources that exceed those available for most
applications.
As is evidenced by RTV, progress can be made; the future

of video processing is bright. The applications in the non-
military community possibly exceed the military applications
in importance. RTV is a forerunner of a large class of intel-
ligent video processing machines that will perform a wide
variety of tasks of importance to the human family.
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COMPUTER ARCHITECTURE AND IMPLEMENTATION OF 
VISION-BASED REAL-TIME LANE SENSING 

0. D. Altan, H. K Patnaik, R P. Roesser 
General Motors Research Laboratories 
Vehicle Systems Research Department 

30500 Mound Road 
Warren, MI 48090-9055 

Phone: (313) 986-9100 

INTRODUCTION 
Lane sensing is the detection of lane boundaries from a 
video image of the roadway and the determination of the 
vehicle’s position and orientation with respect to the lane. 
The detection of lane boundaries involves the digital 
processing of a roadway image to bring out points 
comprising the lane edges and a search of the processed 
images to find those points. The determination of the 
vehicle-lane relationship consists of estimating vehicle offset, 
heading and lane curvature from the detected lanes and 
vehicle measurements. Lane sensing supports several other 
functions, including collision warning, collision avoidance, 
driving performance monitoring and lane control. 

An algorithm that was developed at G.M. Research 
Laboratories [ l ]  was specifically tailored for the purpose of 
demonstration on a vehicle in real-time. It involves 
generating two processed images that are separately searched 
for lane boundary points. The fmt processed image is 
generated by computing a local 5-by-5 pixel average of the 
intensity-normalized input image. The second processed 
image is generated by applying a Sobel edge operation [2] 
to the intensity-normalized image and then computing a local 
5-by-5 intensity average. The first processed image is 
intended to bring out points from well marked lane 
boundaries, while the second image is intended to bring out 
transitions at the lane boundaries when they are not well 
marked. 

This lane-detection algorithm was developed on a mainframe 
computer operating in non-real-time with images taken from 
a video tape of highway scenes. Numerous heuristic 
techniques have been incorporated to handle particular 
situations such as merging lanes, shadows, missing markers, 
and false targets. Limited attention was given to real-time 
implementation considerations. 

A second algorithm was developed to estimate lane 
curvature, vehicle offset with respect to the center of the 
lane and vehicle heading. The algorithm uses information 
obtained from lane detection and from measurements of 
vehicle speed and steering angle. The estimation algorithm 
is in the form of a Kalman filter using linear models of both 
the vehicle dynamics and the road, plus camera and vehicle 
geometry. This estimation algorithm was also developed on 
a mainframe computer. 

Fax: (313) 986-3003 

This paper describes the implementation of these two 
algorithms to achieve lane sensing in real-time on board a 
vehicle. This required developing the computer architecture, 
electronics and software to perform the processing steps in 
the algorithms. Attention was given to multi-tasking, multi- 
processing and interprocess communication. In particular, 
use of the W E  bus (31 provides an open architecture and 
the disc-based real-time operating system [4] provides 
multitasking and a flexible environment. 

The lane sensing system was installed in a vehicle and the 
real-time implementation was demonstrated on a test track 
and limited access highways. 

COMPUTATIONAL REQUIREMENTS 
The computational requirements of the real-time system are 
determined by the required processing time and latency. 
According to initial studies, the processing time or the time 
elapsed between the starting points of two successive process 
cycles should be no more than 0.2 seconds. Also, the 
latency or the time from the point an input image is sampled 
to the point that the processed results become available 
should be no more than 0.5 seconds. 

The camera produces an image frame in approximately 33 
milliseconds. Each image frame is digitized such that there 
are 512 lines with 512 pixels in each line. This is equivalent 
to over a quarter of a million pixels in a frame to be 
processed, each represented by 8 bits. A histogram 
measurement and several filtering operations are performed 
concurrently, as well as table look-ups and general arithmetic 
operations. The filtering operations involve manipulating 
pixels in the neighborhood of a given pixel. Most of the 
computation is in the form of simple integer arithmetic 
operations, but the amount of data to be processed is quite 
large. The total computation rate required is approximately 
900 million arithmetic operations per second. This rate is 
equal to the computation rate of several supercomputers, 
although it involves low-precision integer arithmetic. The 
images are processed by special-purpose boards optimized 
for specific image processing functions. These boards are 
capable of performing at this very high rate only for these 
given functions, and are in fact very limited in regard to 
other functions. That is, it is the application-specific nature 
of these boards, where the design is tailored for a given 
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function, that leads to such high performance. 

The computer system currently consists of several special- 
purpose boards, and is not suitable for a production vehicle 
at this time. However, with the continued rapid 
advancement in integrated circuit technology we believe that 
it will soon be possible to implement all of these functions 
in a small chip set or chip package with reasonable cost for 
production, sufficient performance, and low power 
consumption. 

SYSTEM ARCHlTECTURE 
The block diagram of the system is shown in Figure 1. The 
system consists of several boards on a VMEbus, housed in 
a standard full-height W E  rack. There are two sections to 
this system: the general-purpose computer and the real-time 
image processor. 

The main task of the general-purpose computer section is to 
function as the master controller for the real-time image 
processor. It consists of an M68030 processor running at a 
clock speed of 25 MHz, 4 Mbytes of dynamic random 
access memory (DRAM), a disk controller, a 20 Mbyte hard 
disk, and a floppy diskette drive. The M68030 processor 
communicates with all the peripherals through the VMEbus. 
The real-time image processing boards are interfaced to the 
VMEbus and to the video bus. The processor is capable of 
accessing any of these boards to send commands, to read 
status, or to access data. The processor periodically sends 
commands to the image processing boards at specific times 
so that they perform their intended functions in 
synchronization. 

The general-purpose computer NW under a real-time 
operating system [4]. This is a multi-tasking operating 
system with fast interrupt handling and system utilities. 
There is a screen oriented text editor for developing and 
modifying programs. An assembler enables the programs 
developed on the system to be assembled and loaded into the 
memory for execution. A debugger on the system is an aid 
for developing the software while it is running in real-time. 

The real-time image processor consists of a camera, a set of 
processing boards and a display. Each of the steps in 
processing the image is performed at video rate. After an 
image is acquired by the camera, pixels are passed from 
board to board in serial form. The boards are synchronized 
to the pixel times and operate concurrently with each other. 
Each board performs a particular process on the image by 
operating on the pixels sequentially as they arrive. Shortly 
after the last pixel from the input image to a process is 
encountered, the process reaches completion. 

Information flow among the boards is accomplished through 
high-speed video data paths, as shown in Figure 1. Each 
data path conveys 8- or 16-bit data and shares common 
timing and control information with the other data paths. 
The separate data paths provide for concurrent data transfers 
among the processing modules. This increases the overall 

data transfer rate significantly compared to a conventional 
bus, in which only one transfer at a time can occur. The 
network of boards and data paths is said to act as a pipeline 
since information appears at various process stages 
throughout the network and the pieces of information flow 
through the network synchronously. 

The detailed block diagram of real-time image processor is 
shown in Figure 2. Each of the blocks in this diagram 
performs a specific function, and most of them reside on a 
single board. A charge-coupled device (CCD) camera is 
used to acquire the image. This is a monochrome image in 
RS-170 format [5]. The digitizer is an 8-bit flash analog-to- 
digital (AD) converter with a sampling rate of 10 MHz. 
The output of the digitizer is a 512x512 image. The 
digitized image is simultaneously fed into a framestore and 
the masking board. The masking board passes only a 
portion of the image whose location is chosen to be 
representative of the road intensity. The output of the 
masking board is the input to a histogram board, which 
generates the intensity histogram of the unmasked image 
portion. The M68030 processor uses this histogram to 
compute the mean intensity over this portion. 

Once the mean from the histogram is computed, the M68030 
processor generates a linear function for intensity 
normalization and updates a look-up table with this function. 
As the original image is passed through this look-up table, 
its intensity is modified according to this linear function so 
that the average intensity over the road region is nearly 
constant. This helps to remove undesired intensity variation 
in an image caused by, for example, an underpass, a bright 
or cloudy day, shadows from other vehicles, etc.. 

The output of the look-up table is presented to two paths in 
which the image is processed concurrently by different 
boards. In the f i t  path, the normalized image is passed 
through a convolver that computes a 5-by-5 local average of 
the pixels. The output of the convolver is stored in a 
framestore as a processed image for later analysis. 

The normalized image is concurrently fed into a Sobel edge 
detector. The edge detector consists of two convolvers and 
a look-up table. The convolvers operate on a 3x3 window. 
The look-up table combines the edges in the two 
perpendicular directions by adding their absolute values 
described by the formula: 

where the first absolute-value term corresponds to a vertical 
edge and the second to a horizontal edge. 

The output of the edge detector is the input to another 
convolver, which also computes a 5-by-5 local average. The 
output of this convolver is stored in a framestore as a second 
processed image for later analysis 

There are six framestores in the system. Each framestore is 
capable of holding one full image, and is accessible from the 
VMEbus and the video bus. The real-time image processor 
accesses the framestores through the video bus at video 

S(X,Y) = I H I + I v I 

T 

203 

IEEE000017SAMSUNG EXHIBIT 1010 
Page 19 of 25



rates. The CPU accesses them from the VMEbus at a 
slower rate because the framestore is implemented as a 
single-port memory, and the VMEbus has a lower priority. 

One framestore is allocated for the original image, shown as 
"raw" in Figure 2 The two processed images generated 
from the special processing boards are stored in two separate 
framestores. These are labeled "averaged raw" image and 
"averaged edge" image. The rest of the lane sensing 
algorithm is executed directly by the M68030 processor in 
software. The processor uses the two processed images as 
input and estimates the lane boundaries. Finally, the 
processor executes an algorithm which uses the lane 
boundaries and vehicle dynamics information as inputs to 
estimate the curvature of the road, offset of the vehicle from 
the center of the lane, and the heading of the vehicle. Once 
all of this information is computed, it is placed in a 
framestore called "graphics overlay". As the image for the 
next process cycle is being acquired and stored, the contents 
of the "raw" framestore and the "graphics overlay" 
framestore are transferred to two other framestores which 
function as display buffers. These two images are displayed 
on the monitor as processing begins on the newly acquired 
image. 

SYSTEM TIMING 
The timing diagram of the lane sensing function is shown in 
Figure 3. The timing signals are generated by the video 
digitizer. All of the operations are synchronized to the 
beginning of image frames which are indicated by markers 
in the figure. Each frame consists of two fields and the 
digitizer generates a program interrupt to the processor at the 
beginning of each field. The frame markers in the figure 
correspond to the program interrupts for just the even field. 
The lane sensing function digitizes and processes the road 
images once every six frames which yields a total processing 
time of 0.2 seconds. 

The timing diagram indicates the processing performed on 
each acquired image during different frame periods. The 
image which is acquired at frame number 0 is shown as 
image #n in the timing diagram. As soon as the even field 
interrupt is received, the processor instructs a framestore to 
accept the raw digitized image from the camera. 
Simultaneously, it instructs the other framestore to get the 
raw image of the previous processing cycle for display. The 
processor activates the histogram board so that the histogram 
of the pixel intensity of the image to be processed is 
generated. This process continues until the next even field 
interrupt arrives. At this time the processor freezes the raw 
image in a framestore and stops the histogram operation. 
During the second frame period the processor computes a 
linear transformation of the raw image for intensity 
normalization. The transformation function for this specific 
image is loaded into the look-up table by writing the 
computed values into 256 memory locations where each 
corresponds to a grey level of the image. The processor 
waits for the next even field intempt which arrives at the 

beginning of the third frame period. At this time the raw 
image is passed through the look-up table, then through two 
independent process chains, and finally the results are placed 
into two separate fiamestores which were instructed by the 
processor to accept this data at the beginning of this fiame 
period. At the beginning of the next even field intempt, the 
processor freezes the two processed images already stored in 
the framestores. No further processing is performed by the 
image processing boards until the beginning of the next 
process cycle, which is shown as frame #6 in the timing 
diagram. 

During the remaining three frame periods the M68030 
processor uses these two partially processed images that 
reside in the framestores. The program in the processor 
determines the lane boundaries, executes the Kalman filter 
algorithm, and places the graphics information related to this 
computation into the designated framestore. During this 
processing, program interrupts still arrive from the digitizer, 
but the processor uses this information only to keep track of 
time relative to the processing cycle. In some cases, it is 
possible that the total processing is completed earlier than 
six fiame periods. In such a case the program will wait 
before starting the next processing cycle in order to maintain 
the overall system timing, If processing is not completed in 
six frame periods, the current computation cycle is aborted, 
so that the next cycle can be started on time. The results of 
the previous cycle are used to substitute for those of the 
aborted cycle. In any case, the original image and the 
computed graphics information are transferred to the display 
buffers during the first frame period for the next 
computation cycle. 

REAL-TIME SOFTWARE 
The image processing section produces two images to be 
further processed by the real-time software. Real-time 
software is an assembly language program executing on the 
M68030 processor. This task is divided into five main tasks: 
Search, Line Fit, Decision Making, Estimation, and 
Graphics. A search is performed within the two processed 
images for points corresponding to lane markers or lane 
edges for each of the two lane boundaries. A list of such 
points is formed and is presented to the line fit procedure. 
The line fit procedure determines the slope and o%et of a 
line that best represents the points in the list. Decisions are 
made throughout the task, such as to search the edge 
processed image when insufficient points have been found 
in the non-edge processed image and to reject either or both 
lane boundaries if certain angle and width criteria are not 
met. Estimation uses a Kalman filter to compute values for 
road curvature, vehicle heading and vehicle offset based on 
sensed lane position, measured vehicle speed and measured 
steering angle. Finally, graphics procedures display the 
results in the form of lane boundaries and estimation values 
superimposed on the road scene. Various parts of the real- 
time software are described below. 
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Main Loop: 
This task initializes the image processing section, and 
various data and conditions. The software enters a 
continuous loop that is repeated every six frames. 
Depending on lane boundary candidates provided by 
processed image, one path of a four way branch is taken. If 
there is no candidate for ten successive cycles, then the 
default lane boundary is used with appropriate indication. 

Search: 
The search process produces a list of points from a 
processed image that correspond to a lane marker or lane 
edge. It establishes an area within the image over which the 
search is to be performed. The area is trapezoidal in shape 
and is centered around the previously found lane boundary. 
The search is carried out by scanning each horizontal line in 
the search area looking for at most one point that 
corresponds to a lane edge. This step is repeated for all 
horizontal lines in the search area. 

Line Fit: 
The search process supplies a list of points which are fitted 
in a line using the least mean square deviation process. This 
process is performed in combination of fixed- and floating- 
point format to compromise between speed, accuracy, and 
dynamic range. 

Lane Change: 
Each time new boundaries are determined, the condition for 
a possible lane change is checked. If one is detected the 
boundaries are replaced with those projected for the new 
lane. This process is repeated for both left and right lane 
change. 

Estimation: 
Three roadhehicle variables are estimated: road curvature, 
vehicle heading error and vehicle lateral offset from lane 
center. A vehiclehoad interaction model has been developed 
for the estimation of the above variables. This model is 
divided into the cascade of two submodels each represented 
in linear state-space form. The first submodel involves the 
dynamics of the vehicle including the interaction of steering 
angle, yaw rate, lateral acceleration, roll angle, vehicle 
speed, etc. The second submodel involves the interaction of 
the vehicle motion and the geometry of the roadway. A 
Kalman fiter is used with the second submodel to produce 
the three output variables. 

Computational Burden: 
The time allotted for the real-time software task is 0.1 
second. Table I summarizes the worst-case processing time 
for each of the tasks and shows that the requirement is met. 

SUMMARY AND CONCLUSION 
A computer architecture has been developed to implement 
lane sensing in real-time on a vehicle. This system has been 

Table I. Task Processing Times 

-~ ~ 

Task Processing Time 
(milliseconds) 

Search 

Line Fit 

11 Estimation I 2.10 II 

Miscellaneous 

Total 91.42 

evaluated in the laboratory and successfully operated on a 
vehicle. The system has a 0.200 second processing time 
with 0.233 second delay, which translates into five images 
processed per second. 

Inspection of the timing diagram provides information about 
the bottlenecks in the system. Updating the look-up table 
for intensity normalization takes one full frame period or 
two fields. This time could be reduced by generating a 
histogram only €or the first field of the image during the first 
frame period, then updating the look-up table during the 
second field of that frame period. This will eliminate one 
full fiame period from the total processing time. 

The M68030 microprocessor spends three fiame periods for 
processing the image. Most of the time is spent in searching 
the frame-stores for lane boundary information. This part of 
the algorithm can be made faster by developing custom 
electronics tailored for such searching. As a result, we can 
either run the same algorithm faster, or execute a more 
complex algorithm in the same time. 

REFERENCES 
Kenue, S. IC, "LANELOK. Detection of Lane 
Boundaries and Vehicle Tracking Using Image 
Processing Techniques - Part 11: Template-Matching 
Algorithms", Proceedings of SPIE Conference on 
Mobile Robots IV. Vol 1195, pp. 234245, 
Philadelphia, PA, November 1989. 
Duda, RO. and Hart, P.E., Pattern Classification and 
Scene Analysis, Wiley, New York, 1973. 
Motorola Inc., The VMEbus Specifications, Rev C.l, 
Oct 1985. 
Eyring Research Institute Inc., PDOS Real-Time 
Operating System, System and User's Reference 
Manual, Oct 1987. 
EIA Standard EIA-170, Electrical Performance 
Standards - Monochrome Television Studio Facilities, 
November 1957. 

205 

7 

IEEE000019SAMSUNG EXHIBIT 1010 
Page 21 of 25



11/15/2016 Computer architecture and implementation of vision­based real­time lane sensing ­ IEEE Xplore Document

http://ieeexplore.ieee.org/document/252257/ 1/3

         

 

 
Sign Out

Access provided by:
IEEE Publications Operations Staff  

IEEE.org IEEE Xplore Digital Library| IEEE­SA| IEEE Spectrum| More Sites|    Cart (0) Create Account| Personal Sign In|

Browse Conferences > Intelligent Vehicles '92 Symp...   Back to Results   |   Next > 

Computer architecture and implementation of vision­based
real­time lane sensing

View Document
2
Paper
Citations

8
Patent
Citations

68
Full
Text Views

 
Related Articles

A real­time computer vision system for
measuring traffic parameters

A massively parallel approach to real­time
vision­based road markings detection

A lane departure warning system based on a
linear­parabolic lane model

View All

3
Author(s)

 
 O.D. Altan ;   H.K. Patnaik ;   R.P. Roesser

 
View All Authors

Abstract:
Lane sensing is the detection of lane boundaries from a video image of the roadway and the determination of the vehicle's position and orientation with
respect to the lane. The detection of lane boundaries involves the digital processing of a roadway image to bring out points comprising the lane edge
and a search of the processed images to find those points. Lane sensing supports several other functions, including collision warning, collision
avoidance, driving performance monitoring and lane control. This paper describes the implementation of the two algorithms developed to achieve lane
sensing in real­time on board a vehicle. This required developing the computer architecture, electronics and software to perform the processing steps in
the algorithms. Attention was given to multitasking, multiprocessing and interprocess communication. In particular, use of the VME bus provides an
open architecture and the disc­based real­time operating system provides multitasking and a flexible environment. The lane sensing system was
installed in a vehicle and the real­time implementation was demonstrated on a test track and limited access highways.

Published in: Intelligent Vehicles '92 Symposium., Proceedings of the

Date of Conference: 29 June­1 July 1992

Date Added to IEEE Xplore: 06 August 2002

Print ISBN: 0­7803­0747­X

 INSPEC Accession Number: 4509307

DOI: 10.1109/IVS.1992.252257

Publisher: IEEE

 Download PDF

 Download Citations

View References

 Email

 Print

 Request Permissions

 Alerts

 

This article is only available in PDF.
Read document

Keywords

IEEE Keywords
Computer architecture, Image edge detection, Multitasking, Real time systems, Vehicle detection,
Road accidents, Collision avoidance, Computerized monitoring, Communication system control,
Vehicles

INSPEC: Controlled Indexing
road vehicles, computer vision, computerised navigation, edge detection, position control, real­time
systems

INSPEC: Non­Controlled Indexing

 
 

Abstract

Authors

Figures

References

Citations

Keywords

Back to Top
 Export to Collabratec

Abstract Authors Figures References Citations Keywords Metrics Media

BROWSE MY SETTINGS GET HELP WHAT CAN I ACCESS?

IEEE000020SAMSUNG EXHIBIT 1010 
Page 22 of 25

http://ieeexplore.ieee.org/Xplore/home.jsp
http://ieeexplore.ieee.org/servlet/Login?logout=/Xplore/guesthome.jsp
http://www.ieee.org/
http://standards.ieee.org/
http://spectrum.ieee.org/
http://www.ieee.org/sitemap.html
https://www.ieee.org/cart/public/myCart/page.html?refSite=http://ieeexplore.ieee.org&refSiteName=IEEE%20Xplore
http://ieeexplore.ieee.org/browse/conferences/title/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=673
http://ieeexplore.ieee.org/search/searchresult.jsp?queryText=Computer%20Architecture%20and%20Implementation%20of%20Vision-Base%20Real%20Time%20Lane%20Sensing
http://ieeexplore.ieee.org/document/7383584/?queryText=Computer%20Architecture%20and%20Implementation%20of%20Vision-Base%20Real%20Time%20Lane%20Sensing
http://ieeexplore.ieee.org/document/609371
http://ieeexplore.ieee.org/document/528262
http://ieeexplore.ieee.org/document/1336503
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.O.D.%20Altan.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.H.K.%20Patnaik.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.R.P.%20Roesser.QT.&newsearch=true
http://ieeexplore.ieee.org/document/252257/authors?ctx=authors
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=673
http://dx.doi.org/10.1109/IVS.1992.252257
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=252257
http://ieeexplore.ieee.org/xpl/dwnldReferences?arnumber=252257
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=252257
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Computer%20architecture.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Image%20edge%20detection.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Multitasking.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Real%20time%20systems.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Vehicle%20detection.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Road%20accidents.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Collision%20avoidance.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Computerized%20monitoring.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Communication%20system%20control.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Vehicles.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.road%20vehicles.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.computer%20vision.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.computerised%20navigation.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.edge%20detection.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.position%20control.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.real-time%20systems.QT.&newsearch=true
http://ieeexplore.ieee.org/document/252257/?section=abstract
http://ieeexplore.ieee.org/document/252257/authors
http://ieeexplore.ieee.org/document/252257/figures
http://ieeexplore.ieee.org/document/252257/references
http://ieeexplore.ieee.org/document/252257/citations
http://ieeexplore.ieee.org/document/252257/keywords
http://ieeexplore.ieee.org/Xplorehelp/#/ieee-xplore-training/working-with-documents#interactive-html
http://ieeexplore.ieee.org/document/252257/
http://ieeexplore.ieee.org/document/252257/authors
http://ieeexplore.ieee.org/document/252257/figures
http://ieeexplore.ieee.org/document/252257/references
http://ieeexplore.ieee.org/document/252257/citations
http://ieeexplore.ieee.org/document/252257/keywords
http://ieeexplore.ieee.org/document/252257/metrics
http://ieeexplore.ieee.org/document/252257/media
http://ieeexplore.ieee.org/Xplore/accessinfo.jsp


11/15/2016 Computer architecture and implementation of vision­based real­time lane sensing ­ IEEE Xplore Document

http://ieeexplore.ieee.org/document/252257/ 2/3

 Alerts
lane sensing system, lane boundary detection, computer vision, edge detection, navigation, road
vehicles, roadway image, collision avoidance, driving performance monitoring, lane control, computer
architecture, multiprocessing, interprocess communication, VME bus, open architecture, disc­based
real­time operating system

Authors

O.D. Altan
Dept. of Vehicle Syst. Res., Gen. Motors Res. Lab., Warren, MI, USA

H.K. Patnaik
Dept. of Vehicle Syst. Res., Gen. Motors Res. Lab., Warren, MI, USA

R.P. Roesser
Dept. of Vehicle Syst. Res., Gen. Motors Res. Lab., Warren, MI, USA

Related Articles

A real­time computer vision system for measuring traffic parameters
D. Beymer; P. McLauchlan; B. Coifman; J. Malik

A massively parallel approach to real­time vision­based road markings detection
A. Broggi

A lane departure warning system based on a linear­parabolic lane model
C.R. Jung; C.R. Kelber

Automatic car plate detection and recognition through intelligent vision engineering
L. Salgado; J.M. Menendez; E. Rendon; N. Garcia

A stereo vision system for real time obstacle avoidance in unknown environment
F. Ferrari; E. Grosso; G. Sandini; M. Magrassi

Real­time detection of moving vehicles
R. Cucchiara; M. Piccardi; A. Prati; N. Scarabottolo

Real­Time Vision­Based Stop Sign Detection System on FPGA
Tam Phuong Cao; Guang Deng

A robust lane detection using real­time voting processor
A. Takahashi; Y. Ninomiya; M. Ohta; K. Tange

Preliminary investigation of real­time monitoring of a driver in city traffic
M. Betke; W.J. Mullally

A fusion system for real­time forward collision warning in automobiles
N. Srinivasa; Yang Chen; C. Daniell

 Personal Sign In Create Account|

 

IEEE000021SAMSUNG EXHIBIT 1010 
Page 23 of 25

http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.lane%20sensing%20system.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.lane%20boundary%20detection.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.computer%20vision.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.edge%20detection.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.navigation.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.road%20vehicles.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.roadway%20image.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.collision%20avoidance.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.driving%20performance%20monitoring.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.lane%20control.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.computer%20architecture.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.multiprocessing.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.interprocess%20communication.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.VME%20bus.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.open%20architecture.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.disc-based%20real-time%20operating%20system.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.O.D.%20Altan.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.H.K.%20Patnaik.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.R.P.%20Roesser.QT.&newsearch=true
http://ieeexplore.ieee.org/document/609371
http://ieeexplore.ieee.org/document/528262
http://ieeexplore.ieee.org/document/1336503
http://ieeexplore.ieee.org/document/797895
http://ieeexplore.ieee.org/document/262486
http://ieeexplore.ieee.org/document/797665
http://ieeexplore.ieee.org/document/4700058
http://ieeexplore.ieee.org/document/821123
http://ieeexplore.ieee.org/document/898407
http://ieeexplore.ieee.org/document/1251996


11/15/2016 Computer architecture and implementation of vision­based real­time lane sensing ­ IEEE Xplore Document

http://ieeexplore.ieee.org/document/252257/ 3/3

IEEE Account

»Change Username/Password

»Update Address

 Purchase Details

» Payment Options

»Order History

» View Purchased Documents

 Profile Information

»Communications Preferences

» Profession and Education

» Technical Interests

 Need Help?

»US & Canada: +1 800 678 4333

»Worldwide: +1 732 981 0060 

» Contact & Support

           

A not­for­profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. 
© Copyright 2016 IEEE ­ All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

About IEEE Xplore Contact Us| Help| Terms of Use| Nondiscrimination Policy| Sitemap| Privacy & Opting Out of Cookies|

IEEE000022SAMSUNG EXHIBIT 1010 
Page 24 of 25

https://www.ieee.org/profile/changeusrpwd/showChangeUsrPwdPage.html?refSite=http://ieeexplore.ieee.org&refSiteName=IEEE%20Xplore
https://www.ieee.org/profile/address/getAddrInfoPage.html?refSite=http://ieeexplore.ieee.org&refSiteName=IEEE%20Xplore
https://www.ieee.org/profile/payment/showPaymentHome.html?refSite=http://ieeexplore.ieee.org&refSiteName=IEEE%20Xplore
https://www.ieee.org/profile/vieworder/showOrderHistory.html?refSite=http://ieeexplore.ieee.org&refSiteName=IEEE%20Xplore
http://ieeexplore.ieee.org/articleSale/purchaseHistory.jsp
https://www.ieee.org/profile/commprefs/showcommPrefpage.html?refSite=http://ieeexplore.ieee.org&refSiteName=IEEE%20Xplore
https://www.ieee.org/profile/profedu/getProfEduInformation.html?refSite=http://ieeexplore.ieee.org&refSiteName=IEEE%20Xplore
https://www.ieee.org/profile/tips/getTipsInfo.html?refSite=http://ieeexplore.ieee.org&refSiteName=IEEE%20Xplore
http://ieeexplore.ieee.org/xpl/techform.jsp
http://ieeexplore.ieee.org/xpl/aboutUs.jsp
http://ieeexplore.ieee.org/xpl/techform.jsp
http://ieeexplore.ieee.org/Xplorehelp/Help_start.html
http://ieeexplore.ieee.org/xpl/termsOfUse.jsp
http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html
http://ieeexplore.ieee.org/xpl/sitemap.jsp
http://www.ieee.org/about/help/security_privacy.html


MEMORY M*MI PROCESSOR 

Video Bus 
GENERAL-PURPOSE 

I REAL-TIME 
IMAGE Monitor COMPUTER I Camera 

PROCESSOR 

Video Bus 

I 
Monitor 

REAL-TIME 
GENERAL-PURPOSE 

I Camera IMAGE COMPUTER 

U PROCESSOR 
Figure 1. Block Diagram of the Lane Sensing System 

I I 
AVERAGED AVERAGED GRAPHICS I 

RAW EDGE OVERLAY I 

FRAME STORES I 
I - I  

RAW I I GRAPHICS DISPLAY 
IMAGE IMAGE I I 

L - - I  I ----.- - 1  

I 
I 

1 

BUFFER 

NORMALIZATION 

I 

DIGITIZER J CAMERA - 
I - - - - - - - - - - - 

- 1  I - - - - - - - - - -  
SOBEL EDQE I 

t 3 x 3  
CONVOLVER m c n w  I 

- I  
CONVOLVER ~ C LOOK-UP I 

I _  TABLE 5 x 5  

:coNVOLVERJ', I 
3 x 3  I 

Figure 2. Architecture of Real-Time Image Processing System 

Grab Image #n Grab Image #n+ 1 
Frame I I 
N u m b e r 0  1 2  3 4 5 6 7 8 

Grab Image #n+2 
I 

12 13 

9 a A A A F 
\ 

Look-up Transfer 
Image to 

Update Computation Display Buffer 

Digitization 
Histogram Table Local Boundary Average 

Display Image #n 

20omS - Display Image #n-1 

-33ms- 200ms 
Figure 3. Timing Diagram of the Real-Time Processing 

206 

IEEE000023SAMSUNG EXHIBIT 1010 
Page 25 of 25




