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Abstract. Atomic Layer Epitaxy (ALE) is a chemical vapor phase thin film deposition method which is based 
on saturativo surface reactions. As the film is growing in a self-limiting manner ALE is a promising method 
to deposit thin, high-quality films for micro- and optoelectronics. In the present paper the deposition of 
different dielectric oxides, conducting oxides as well as nitrides is reviewed giving emphasis to precursors and 
their effect on growth mechanisms and film properties. 

1. INTRODUCTION 

The development in microelectronics is connected to the development of thin film technologies. For 
example in silicon technology the ULSI chips need nanoscale components. This size reduction 
requires improving process control, lower processing temperatures to prevent diffusion, better 
definition and quality of interfacial regions [1,2]. This means that there is a permanent need for 
better thin film deposition processes and new materials. 

In recent years there has been considerable activity on the deposition of metal oxide thin films 
on a variety of substrate materials. Oxides are known from their chemical inertness, good high 
temperature properties and resistance to oxidation. Characteristic for oxide thin films is their optical 
transparency, high electrical resistivity, low thermal conductivity, diamagnetism and chemical stability 
[3]. Exceptions exist, of course, and some oxides are conducting and even superconducting. Oxide 
thin films are interesting because of their many applications in microelectronic [4,5], optoelectronic 
[6-8] and superconducting [9,10] devices. The function of the oxide films in these devices may be 
insulating, conducting, superconducting or they may be used as buffer or protecting layers. 

Nitride films can be divided in two groups: transition metal nitrides and nitrides of the main 
group elements from which the most important are Si3N4, BN, AIN and GaN. The nitride films of 
the main group elements are used as passivation and dielectric layers [11] and GaN as a wide band 
gap (3.4 eV) semiconductor in optoelectronic devices [11,12]. The transition metal nitride films, 
especially TiN, are extensively used as wear resistant coatings on cutting tools and as diffusion 
barriers and nucleation layers in semiconductor devices [13,14]. Owing to the need of an improved 
conformality, the deposition of nitride films by chemical methods instead of a physical ones has 
gained growing attention. 

Atomic Layer Epitaxy (ALE) with its self-limiting growth process is a promising method to fulfil 
the requirements in controlled deposition of high-quality thin films and stacks of thin films with 
tailored interfaces. In the present paper the investigations on ALE deposition of different oxide (Ti, 
Zr, Hf, Al, Ta, In, Zn, Sn) and nitride (Nb, Ti, Al, Ga, In) thin films are reviewed. 
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2. ALE METHOD 

In ALE the reactant vapors are pulsed onto the substrate alternately one at a time and purged with 
an inert gas between the reactant pulses. With a proper adji,Istment of the experimental conditions 
it is possible to get an exact one monolayer of the reactant to chemisorb on the surface. The real 
growth rate is often lower than one monolayer/cycle because of the steric hindrances of the 
chemisorbed precursor molecules (15). For example in the growth of ZnS by the reaction (Fig. 1) 

ZnC!z(g) + IfiS(g) -> ZnS(s) + 2HCl(g) (1) 

2-3 cycles are needed for a complete monolayer (16), but the reaction 

Ca(thd)z(g) + H2S(g) -> CaS(s) + 2Hthd(g) (2) 

(thd = 2,2,6,6-tetramethyl-3,5-heptanedione) needs 5-6 cycles for the formation of a CaS mono layer 
(17). The special feature of the ALE method is, however, that the growth rate is self-controlled and 
stable in a certain temperature range, "ALE-window" [18). Thl)S the thickness of the film can be 
controlled by the number of reaction cycles. 

ZnCl2 

ZnS + HCI 

ZnS 

Figure 1. The principle of the ALE-process showing the growth of ZnS film from ZnC12 and JiiS. 
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2.1 Characteristic features of ALE 

The characteristic features of ALE and their implications to the process are summarized in Table 
1. The obvious advantages are listed as well. 

Disadvantages of the ALE method are slow growth rate and low precursor utilization efficiency. 
These disadvantages can he compensated by reactor and precursor design. The semiclosed travelling 
wave reactors allow the use of large substrate batches [19]. The precursors preferred in ALE, 
contradictory to CVD, are those reacting aggressively with each other. 

The crysta!Jinity in the thin films depends on the substrate and film material. In ALE single 
crystalline, "epitaxial" films are obtained if single crystal substrates are employed. In large area 
applications, like electroluminescent (EL) devices, however, cheap amorphous glass substrates have 
to be used. The ALE films deposited on glass are amorphous or polycrystalline depending on the 
film composition. Since the word epitaxy is generally used only in connection to the growth of single 
crystal films, the use of term ALE in deposition of amorphous films has led to some 
misunderstandings. Therefore very different names have been adapted to the processes carried out 
according to the principles of ALE: atomic layer deposition, chemical vapor atomic layer deposition, 
atomic layer growth, successive layer-wise chemisorption, pulsed beam chemical vapor deposition, 
sequential surface chemical reaction growth, molecular layer epitaxy and digital layer epitaxy (18,20]. 
Especially atomic layer deposition is gaining more acceptance (21-24]. In this paper the term ALE 
is used in its original meaning: growth of thin films in a self-controlled manner using alternate 
dosing of the reactants. In this meaning ALE covers the deposition of amorphous, polycrystalline 
and single crystalline thin films. 

Table 1. Summary of the characteristic features of ALE. their implications on the film growth and the consequent 
practical advantages. 

Characteristic feature of Inherent implication on film deposition Practical advantage 
ALE 

Sett.limiting growth Film thickness Is dependent only on Accurate and simple thickness control 
process the number of deposition cycles 

Separate dosing of 
reactants 

Processing temperature 
windows are often wide 

No need of reactant flux hcmogeneity Large area capabihly 
Large batch capability 
Excellent confonmality 
No problems with inconstant vaporization 
rates of solid precursors 
Good reproducibility 
Straightforward scale-up 

Atomic level control of material Capability to produce sharp interfaces 
composition and supertattices 

No gas phase reactions 

Sufficient time is provided to complete 
each reaction step 

Processing conditions of different 
materials are readily matched 

Possibility to Interlace modification 

Favors precursors highly reactive 
towards each other, thus enabling 
effective material utilization 

High quality materials are obtained at low 
processing temperatures 

Capability to prepare multilayer structures 
in a continuous process 
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2.2 Equipments 

ALE growth bas been realized in different reactor types. In the growth of epitaxial III-V or II-VI 
semiconductors on single crystalline substrates low-pressure MBE reactors have been employed 
[25,26]. Several modifications, including MOVPE type sources for metalorganics and hydrides in a 
MBE reactor [27], small MOVPE type reactor [28] or moving and rotating substrates for the pulsing 
of the reactants [29-31 ], have been developed. The use of laser irradiation may enhance the surface 
reactions and film growth. For example in the reaction 

(3) 

one monolayer per cycle growth has been obtained when laser irradiation was used during the 
exposure of Ga(CH3h [32,33]. In the deposition of polycrystalline and amorphous films the flow 
type reactor is most often used [34,35]. The precursors having vapor pressure high enough at room 
temperature may be dosed into the reactor from external reservoirs by means of their own pressure 
while low vapor pressure reactants are vaporized from open boats inside the reactor. The pulsing 
of the latter is accomplished by inert gas valving [36]. The substrates may locate in the reactor face 
to face separated by a narrow channel or back to back leaving a more open reactor space. The 
experiments and results mainly reviewed in this paper have been carried out in a narrow channel 
reactor made by Microchemistry Ltd, Espoo, Finland [35]. In the narrow channel the precursor 
molecules undergo numerous collisions with the substrate surfaces which makes the adsorption more 
probable, fastens the growth and improves the precursor utilization. This all means that short pulse 
and purge times (< 0.5 s) are possible. 

2.3 ALE activities 

The ALE method was developed by Suntola et al. [37] about twenty years ago when they studied 
new deposition methods to fabricate thin film electroluminescent (TFEL) displays. These displays 
need a luminescent layer which is sandwiched between dielectric and conductive layers. This 
application is demanding since low process temperatures have to be used because of the soda lime 
glass substrates. In addition large substrate sizes are needed and no pinholes are accepted. Suntola 
et al. were able to grow polycrystalline luminescent ZnS:Mn films and amorphous AI20 3 films by 
dosing sequentially the precursors. The quality of the ALE grown lFEL devices is high [38] and the 
method is industrially used in the production of monochrome and multicolor lFEL devices [39,40]. 

Worldwidely the studies on ALE are mainly focused on the growth of epitaxial III-V thin films 
giving emphasis on the self-limiting mechanisms in the growth of GaAs using trimethyl gallium 
[41,42]. The research activity in other areas bas been amazingly low despite the fact that the only 
industrial applications have been in display devices where polycrystalline II-VI compounds and 
amorphous oxides are utilized. During the last years some increase in the activity in this sector can 
be recognized. 

A new extension of the ALE method is its use in deposition on porous, high-surface-area 
substrates (silica, alumina) used as catalyst supports [43]. The basic work in this field includes the 
deposition of different transition metal oxides. 
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3. THERMODYNAMIC CONSIDERATIONS 

In studying the deposition of thin films using new precursor - film material combinations thermo· 
dynamic considerations of the reactions prior to experimental work are useful. By calculating AG 
it is possible to predict the most feasible reaction. Unlike in CVD, where reactions with negative 
but close to zero AG are preferred to avoid uncontrolled gas phase reactions, in ALE the reactions 
should possess as negative AG values as possible, Le. the precursors should react aggressively with 
each other. The high reactivity facilitates a use of short cycle times and a material efficient 
production of films with high purity. However, the final answer whether the film growth is taking 
place or not cannot be achieved only by the thermodynamic considerations for a few reasons. First 
the thermodynamic data available is limited to rather simple molecules and inorganic compounds. 
The HSC program by Outokumpu (44] we utilize contains data for 7708 species. The lack of data 
for organometallics and volatile metal complexes containing organic ligands is a serious limitation. 
Secondly, the thermodynamic study of reactions require that the reactants encounter each other in 
the gas phase but in the ALE method the precursors are not simultaneously present in the gas 
phase. The precursors chemisorb on the surface and possibly decompose partially, i.e. release one 
or two ligands. The film formation reaction occurs between these surface species. Thermodynamic 
data for these surface species are of course not known. Thirdly the thermodynamic considerations 
tell nothing about the kinetics. 

In spite of the limitations it is possible to exclude impossible reactions by the thermodynamic 
calculations and save time in experimental work. The calculations appeared to be very useful in 
choosing reactions for the deposition of metal nitride thin films from metal chlorides and ammonia 
at low temperatures (Fig. 2). In growth of transition metal nitrides (fiN, NbN) where reduction of 
the metal is necessary for the nitride formation thermodynamics assists in finding suitable reducer 
[45,46] which in this case is metallic zinc. Hydrogen does not assist in reducing these metal chlorides 

-250 NbN, with Zn 

-300'-~~~"'"-~~~..L..~~~-'-~~~-'-~~~-'-~-' 

100 300 500 700 900 1100 

Temperature/°C 

Figure 2: Gibbs energy vs. temperature for the growth reactions of TiN and NbN with and without Zn [44J. 
"TiN without Zn: Ti0,(g) + 2 NH,{g) = TiN(s) + 4 HCI(g) + H,(g) + 0.5 N2(g) 
TiN with Zn: TiO,(g) + NH3(g) + 0.5 Zn(g) = TiN(s) + 3 HCI(g) + 0.5 ZnClz(g) 
NbN without Zn: NhCI5(g) + 513 NH3(g) = NbN(s) + 5 HCI(g) + 1/3 N2(g) 
NhN with Zn: NbCI5(g) + NH3(g) + Zn(g) = NbN(s) + 3 HCI(g) + ZnClz(g) 
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from their higher oxidation states to +III; the direct reactions with NH3 are more feasible than 
those where also hydrogen is involved. 

Thermodynamic calculations may also help in understanding and interpreting poor and negative 
results obtained in deposition experiments. That was the case in our studies on the ALE deposition 
of Nb20 5 films from NbCl5 and water where the process was irreproducible and resulted in films 
with severe thickness non-uniformities [45]. On the basis of thermodynamic calculations the results 
could be rationalized by the formation of stable NbOCl3 and Nb02CI compounds. Especially the 
volatile NbOCl3 can lead to etching of Nb20 5. 

4. OXIDE THIN FILMS 

The deposition of oxides was one of the first experiments made by ALE in 70s [37]. These oxides 
were aimed for dielectric films in TFEL devices. During the last 15 years several oxide thin films 
including MgO, ZnO, Ti02, Zr02, Hf02, SnOz, Ce02, AI20 3, ln20 3, Ta20 5, Y20 3, BaTi03 and 
MgAl20 4 have been deposited by ALE as reviewed by Ritala [20]. 

4.1 Deposition chemistry 

Metal chlorides and water have most often been used as precursors in ALE deposition of oxide 
films. The chlorides are often good precursors because they are stable, volatile enough, reactive, 
cheap and not too <lifficult to handle [15]. The drawbacks of metal chlorides are that they in some 
cases (NbCl5, TaCI5) may etch the film Jea<ling to a very slow growth rate of the oxide [45,47] or 
the reaction from chloride to oxide is not thermodynamically favored (ZnC12, InC13). Alternative 
precursors are different organometallic compounds (methyl-, ethyl-, cyclopentadienyl 
compounds)[48-50], aikoxides [51-53] and /3-diketonates [54,55]. Water is suitable oxygen source if 
metal chlorides [36,56-58] or alkyl precursors are used [50,59,60] but water is not necessarily the best 
choice to be used in combination with /3-diketonates. Other possible oxygen sources are 0 2 [61], 
H20 2 [48], alcohols [51], 0 3 [54,55] and N20 [62]. 

The most intensively studied ALE oxides are AI20 3 and Ti02. These both oxides have been 
deposited from different precursors: chlorides, alkoxides and AI20 3 from aluminium alkyls. The net 
reactions between metal chlorides and water are simple but the mechanisms of the surface reactions 
lea<ling to the formation of oxide film may be complex [20,57]. The essential question in the 
interpretation of the mechanisms is if the surface is hydroxyl terminated or not after the water pulse. 
If the surface contains hydroxyl groups they are the places with which the metal chloride is reacting. 
In the case of TiCl4 we can write: 

n(-OH)(s) + TiC14(g) -> (-O-)nTiC14_.(s) + nHCl(g) (4) 

where n is 1-3 mostly depending on the temperature and spatial distribution of the hydroxyls. The 
successive water pulse changes the s11rface back to a hydroxylated one: 

(-O-)nTiCl4_
0
(s) + (4-n}HzO(g) -> (-0-)

0
Ti(OH)4_0 (s) + (4-n)HCl(g) (5) 

There is a possibility, however, that TiC14 reacts with the OH-groups in a way that volatile transient 
species Ti(OH)4.xClx are formed and this complicates the situation since Ti(OHkxClx may further 
react with the surface hydroxyls or decompose to Ti02 or Ti0Cl2 [63,64]. On the other hand, HCI 
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which is released in reactions 4 and 5 has a possibility to readsorb interacting either with the 
hydroxyl groups or oxygen bridges [20,65]. When readsorbed, HCl blocks the adsorption sites 
thereby lowering the growth rate. The growth mechanism (reactions 4 and 5) is supported by the 
mass spectrometric studies which showed both in the case of Al and Ti oxide that HCJ is released 
both after the metal chloride and water pulses [66]. Furthermore, the amount of HCl after the TiCJ4 
pulse was lower than expected suggesting that the readsorption of HCJ does play a role. The other 
possibility is that the surface becomes dehydroxylated after the water pulse. In that case TiCl4 would 
adsorb molecularly: 

(-O:)(s) + TiCJ4(g) -> (-O:)TiCJ4(s) (6) 

or dissociatively 

(-O:)(s) + -Ti(s) + TiC14(g) -> (-O:)TiCl3(s) + Ti-Cl(s) (7) 

The subsequent water pulse converts the surface to oxide and liberates HCJ. Also here during the 
water pulse the formation of volatile transient Ti(OH)4_xCJ. molecules is possible. Thus the weak 
HCJ signal after the TiCJ4 pulse in mass spectrometry may also indicate that at least partial 
debydroxylation takes place at the temperatures (around 500 °C) usually used in the ALE growth 
of oxides from chlorides and water. 

The growth rates observed in chloride processes carried out at 500 °C are 0.6 A/cycle for AJ2o3 
[51,56], around 0.5 A/cycle for Ti02 [57], Zr02 [58] and Hf02 [67], 0.43 A/cycle for Taz05 [24], 0.27 
A/cycle for In20 3 [68] and 0.34 A/cycle for Sn02 [69]. The results show that only a submonolayer 
is growing during one cycle. The obvious reason for the low growth rate is the steric hindrance 
caused by the chloro ligands. The other reasons maybe the dehydroxylation which limits the number 
of reaction sites available, the formation of volatile hydroxide chloride species and the readsorption 
of HCI. It is worth noticing that the growth rate seems to be higher (> 1 A/cycle) at lower 
temperatures (150-200 °C)[24,51,56] because of the larger amount of hydroxyl groups at the surface. 
At low temperatures, however, the contents of chloride and hydroxide residues in the films may be 
high weakening the film properties which can be seen in the refractive index values and etching 
properties. 

Also in the reaction between metal alkyls and water the hydroxyl groups evidently play an 
important role. The lack of chloride ions makes the reaction simpler and high growth rates (> 1 
A/cycle) and uniform, thickness profile-free oxide films have been obtained by employing metal alkyl 
precursors [50,59,60]. 

The effect of the source chemical on the growth reaction has been studied in the case of Al, Ti 
and Ta oxides using alkoxides as alternative precursors [51-53,70]. Water served also here as an 
oxygen source. The alkoxides are common precursors in CVD because they can decompose to 
oxides. In ALE process the competing decomposition process has to be taken into account and this 
limits the process temperatures below 400 °C. If the growth is taking place in an ALE mode, i.e. 
if not significant self-decomposition is happening, the growth mechanism is the same as in the case 
of chlorides. This means that the reaction proceeds via hydroxylated surfaces and alcohols are 
liberated in the reactions. The size of the precursor molecule was found to affect the growth rate, 
i.e. the larger the molecule the lower the growth rate: with Ti(OCH2CH3)4 0.35 A/cycle [53] and 
with Ti(OCH(CH3)z)4 0.30 A/cycle [52]. The exchange reaction with water was faster with the 
isopropoxide, saturating within 0.6 s at 250 °C, than with the ethoxide (1.5 s) indicating the 
difference in shielding of the metal ions in these alkoxides. 
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The crystalline outcome of the oxide films is dependent on several factors like the film material 
itself, substrate material, film thickness, growth temperature and precursors employed. When 
deposited on glass some of the ALE oxides (Al20 3 (51,56], Ta20 5 (70,71]) are completely 
amorphous to XRD while some others (e.g. Hf02 (67], ln20 3 (68]) possess highly oriented 
crystalline structures. On the other hand, the substrate material was found to have a significant 
effect on the crystallinity of the Ti02 films grown from TiC14 and water (57]. Films having their 
thicknesses below 200 nm were essentially amorphous when deposited on amorphous substrates 
whereas those on crystalline substrates were more crystalline. However, when the film thickness was 
increased further also those Ti02 films which were grown on glass exhibited increasing tendency 
towards crystallization (72]. This implies that an amorphous or poorly crystalline layer is first formed 
on the surface of the amorphous substrate and only subsequently the growth of crystalline material 
becomes favorable. In fact such a starting layer, though thinner than 40 nm, was found to precede 
also the deposition of the strongly oriented crystalline Hf02 (67]. Electron diffraction studies, in 
tum, have revealed that the crystallization of Ti02 and the formation of its different polymorphic 
phases are mainly dependent on substrate temperature (23]. The effect of the source material on 
the crystallinity of Ti02 films is illustrated in Fig. 3. By contrast to the essentially amorphous film 
obtained from na4 at 500 •c (57], the films deposited from the alkoxides are more crystalline 
despite the fact they were grown below 350 °C (52,53]. This difference is attributed to the 
oligomerization of the alkoxides. By bridging between Ti ions at the surface, the alkoxide groups 
may form a constructive intermediate between an irregular adsorption layer and a crystalline film. 
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Figure 3: XRD patterns or 120 nm thick Ti02 films grown on soda lime glass substrates from (a) titanium 
tetraisopropoxide at 325 °C, (b) titanium tetraethoxide at 250 °C and (c) TiC14 at 500 °C. In all the cases the other 
preairsor was water. 
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4.2 Dielectric oxides 

AI20 3 was the first dielectric oxide deposited by ALE and it was aimed for dielectric layers in TFEL 
devices [37]. The main purpose of the insulator is to protect the phosphor layer from a dielectric 
breakdown. Accordingly, insulators must have high resistivity, dielectric strength and capacitance. 
Other important properties of the insulator layer are of course good adhesion, chemical stability, 
small number of pinholes, high charge storage density and small dielectric loss [38, 73]. ALE 
deposited Al'f,03 films fulfil the demands of TFEL devices: dielectric constant = 8.3, breakdown 
voltage > 10 V/cm and they are pinhole free [71]. 

The electric properties, viz. losses and toleration of electric field, of AI20 3 films can be improved 
by doping it with Ti02. In commercial TFEL displays fabricated by ALE at least one of the 
dielectric layers is AI,TiyOz [74]. 

Tantalum oxide has also been used in the early stage ALE TFEL devices as a dielectric layer [75]. 
Ta20 5 has higher dielectric constant (23-25) than AI20 3 but when the dielectric constant increases 
the leakage current tends to increase simultaneously [71]. Dielectric losses in ALE grown Taz05 
films are in the order of 10-2 but the leakage current _is s.ignificant in oxides prepared from chloride 
and still 2.3-4.0 mA/cm2 at 1 MV/cm in those prepared from ethoxide [70,71]. The leakage current 
can be reduced by several orders of magnitude by introducing thin layers of another oxide to Taz05, 
Le. by composite films. So far the systems Taz05-AI20 3, Taz05-Hf02 and Taz05-Zr02 have been 
studied and they show how the ALE method enables, besides decreasing the leakage current, also 
tailoring of dielectric constant and refractive index with the aid of multilayer structures [71, 76, 77]. 

4.3 Conducting oxides 

Conducting oxides deposited by ALE include In20 3, In20 3:Sn (ITO), SnOz. Sn02:Sb, ZnO and 
ZnO:AI. 

Polycrystalline In20 3 films with low resistivity and high transparency were deposited from InC13 
and water at 500 °C [68]. This process suffered, however, from low growth rate (0.27 A/cycle) which 
was related to an etching tendency of InC13 and its decomposition products. The resistivities of the 
films were in the order of 3 x 10-3 !!cm. The doping of the In20 3 films by tin decreased further the 
growth rate to 0.20 A/cycle. Two different doping schemes were employed, viz. giving one SnC14 
pulse at a time, (In-0)49'(Sn-0)1/(ln-0)49 ... or giving several successive SnC14 pulses, (In-0)9sf(Sn­
O)z/(ln-0)98 ... The first puls.ing scheme resulted in a higher Sn content of the films. Resistivities 
in the best ITO films were 2 x 104 !lcm, while the carrier concentration was 6.3 x 1020 cm-3 and 
Hall mobility 45 crn2v-1s-1 [78, 79]. The applicability of ALE ITO thin films to a-Si:H solar cells has 
been demonstrated [80]. In aildition, the use of ALE grown ITO-Ti02 film pairs in galvanic cells 
containing AIOOH as a solid electrolyte has been studied [81]. 

Tetragonal rutJ1e-type Sn02 was growing in the reaction between SnC14 and water at 300-600 °c 
[69]. The films were nearly stoichiometric, transparent and highly uniform and the maximum growth 
rate was 0.34 Ncycle. The resistivity values (0.06-0.20 Ocm) increased with increasing film thickness. 
The values are somewhat higher than usual in Sn02 but typical to those prepared from chloride. 
Antimony doping of Sn02 did not disturb the growth rate but lowered the resistivity to 1 x 10-3 !!cm 
when one SbC15 pulse was given after each 75 SnC14 and water p:i-Jses [82]. Simultaneously the 
electron concentration increased from 1.9 x 1019 crn-3 to 7.2 x 10"' cm-3 and the maximum Hall 
mobility was 27.5 crn2v-1s-1. The adverse effect of the Sb doping was the decrease of transparency. 

ZnO and Al doped ZnO thin films have successfully been depos.ited with ALE from the 
corresponding methyl or ethyl compounds and water [50]. The effect of steric hindrance on the 
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growth rate can nicely be seen by comparing the rates obtained with dimethyl zinc (1.8 Ncycle at 
200 °C) and diethyl zinc (1.4 Ncycle). The resistivities were in the order of 8-9 x 104 flcm (sheet 
resistance 10 fl/D) in the films where 3 % of the Zn pulses were replaced by TMA pulses. 

4.4 Ternary oxides 

The growth of ternary oxides by ALE is a challenge because the achievement of correct 
stoichiometry is much more difficult than in the binary compounds. Oxide superconductors as 
quaternary compounds represent even more difficult case and no layer-by-layer ALE growth of, for 
example, YBa2Cu30 7_x where the superconducting phase would have been formed in situ has been 
carried out [10]. 

Few reports on attempts towards an ALE growth of ternary oxide films exist, however. Huang and 
Kitai [49] grew polycrystalline MgO films from bis(cyclopentadienyl)magnesium and water at 400-
900 °C and amorphous Al20 3 from triethylaluminium and water. Ternary MgA120 4 compound was 
prepared by pulsing the precursors in a sequence corresponding to the stoichiometry. The resulting 
films were amorphous and the existence of Mg and Al in the films was confirmed by Auger 
measurements. 

BaTi03 thin films aimed for EL applications were grown from Baf3-diketonate, Ti iso-propoxide 
and N20 on ITO covered glass substrates at 450 °C [62]. The film obtained was amorphous and 
contained Ba, Ti and 0 as the main components as studied by Auger spectroscopy. The dielectric 
constant of the film was 19 and the charge storage capacity was 4.2 µ,C/cm2. 

S. NITRIDE THIN FILMS 

In CVD deposition of metal nitrides the most common precursors are metal chlorides with either 
N2 and H2 or with ammonia [3]. Temperatures below 500 °C are difficult to achieve with these 
reactions because of the high chlorine contamination which weakens the film properties [83-87]. Low 
temperature CVD processes are possible but they require different precursors like metalorganic 
compounds (alkylamides [88,89], metal alkyl or cyclopentadienyl componnds [86]) and 
methylhydrazine or tert-butylamine as nitrogen precursors [87] or the use of plasma [90] or hot 
filament activated [91] processes. In CVD the pyrolysis of complexes containing the metal-nitrogen 
bond have been used in low-temperature deposition of nitride films [92] but this process may also 
yield TiCN films [93]. 

Metal (Al, In, Ti, Nb, Ta, Mo) nitride films can be deposited by ALE from metal chlorides and 
ammonia at 500 °C [ 45,46,94-96]. The resulting films are pure and the chlorine content is low - not 
detectable with RBS and XRF in the case of transition metal nitrides and 3 at-% in the case of AIN. 
If the growth temperature in the case of TiN is lowered to 400 °C the chlorine content increases 
and the film properties change accordingly. The growth rate in the case of transition metal nitrides 
is low, around 0.2 Ncycle but with AIN it is 1 Ncycle. The reaction MC!x (x>3) + NH3 is not very 
favorable at these temperatures and additional reduction to Mm is needed. 

To obtain uniform transition metal nitrides with low resistivity a reducing Zn intermediate pulse 
can be used between the metal chloride and NH3 pulses [45,46,97]. The metallic zinc reduces the 
surface metal species and forms gaseous ZnC12 which is purged out. No zinc is remaining in the 
film. The use of zinc affects the visual appearance of the films, improves their conductivity but does 
not increase the growth rate. The lowest resistivity measured for TiN films grown with Zn at 500 
°C was 50 µ,flcm [ 46]. 
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The nitride films (AJN, TiN) may contain some oxygen and there can be an oxygen profile in the 
flow direction so that the maximum amount is obseived at the leading edge of the substrate. AIN 
seems to oxidize very easily and the origin of the oxygen may be the nitrogen carrier gas and/or 
ammonia [95]. The origin of oxygen in TiN was attributed to post depositional oxidation because 
the oxygen content was lowest in the thickest films. Oxygen is probably located at the surfaces of 
the grains thus explaining why its relative amount decreases in thicker films where the surface to 
bulk ratio is smaller. The intermediate Zn pulse reduced slightly the oxygen content [46]. 

NbC15 is still a special case because of its strong etclring tendency which further lowers the growth 
rate. By keeping the pulse time of NbCJs as short as 0.1 s and lengthening the NH3 pulse to 1.0 s 
a rate of 0.25 A/cycle could be obtained [ 45]. 

Metal alkyl compounds are alternative precursors also in the ALE deposition of nitrides as shown 
by Mayer et al. [98] who used trimethyl aluminium and ammonia and Asif Khan et al. [99-102] who 
used triethyl aluminium, triethyl gallium and ammonia in deposition of GaN and AIN thin films and 
their superlattices. Smooth, epitaxial nitride film could be deposited on a single crystal substrate 
already at 450 ° which is 250 °C lower than that used in a conventional low-pressure CVD. Plasma. 
enhanced ALE has been employed in depositing both single crystal and polycrystalline GaN films 
from trimethyl gallium and N + H plasma on sapplrire with different orientations [103]. The substrate 
surface treatment strongly affected the quality of the film grown. 

6. FILM MORPHOLOGY 

The oxide and nitride films deposited by ALE have been uniform, dense and free of any significant 
contamination. Their characterization by scanning electron microscopy (SEM) and atomic force 
microscopy (AFM) have revealed interesting results from the evolution of the surface morphology 
during the film growth. It was found that the materials grown on glass can be divided in two groups: 
amorphous with smooth surfaces and polycrystalline with roughened surfaces. Typical totally 
amorphous materials are Al and Ta oxides. The reason to this may be in the surface mobility or in 
the growth reaction. Both the SEM and AFM measurements show that these oxide films are 
extremely flat and homogeneous [70,104]. The surface roughness of a 800 nm tlrick AI20 3 films is 
only about 2 nm. 

In polycrystalline films the surface roughness increases with the film thickness wlrich is in an 
obvious contradiction with the ideal layer-by-layer growth mechanism. The agglomeration starts 
immediately at the beginning of the film growth [105]. Because the gas-phase reactions can be 
neglected, the obvious reasons for the agglomeration are the surface migration processes driven by 
the free-energy associated with the film-substrate interface. In metal chloride ·water processes the 
migration of hydroxyl groups and hydroxide chloride intermediate species may be responsible for 
the agglomeration and surface roughening. Support to this statement is obtained from the 
experiments made with TiQ4 and water to deposit TiOz on amorphous silica powder. In that case 
strong agglomeration and crystalline Ti02 was detected by XRD even after one reaction cycle and 
without the water pulse [64,106,107]. The apparent consequence of the surface roughening is that 
when the film becomes thicker and rougher light scattering from its surface becomes significant 
leading to a milky appearance and reduced specular transparency. In Ti02 films grown by ALE at 
500 °C, for example, the light scattering is already significant for films with thicknesses of the order 
of 400 nm. Besides film thickness also other factors like precursors used, growth temperature and 
substrate material may affect the surface roughening. 

Roughening ofTi02 films could be reduced by intermediate AI20 3 layers [72]. The AI20 3 layers 
prevented the growth of the Ti02 agglomerates and the Ti02 layers had to rebegin the nucleation I 

I 
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after each aluminium oxide layer. Films which consisted of20 pairs ofTi02-Al20 3 layers where each 
pair further consisted of 900 Ti-0 and 100 Al-0 cycles, were 850 nm thick, highly transparent and 
had surface roughness of 8.2 nm to be compared with a roughness of 25 nm measured for a pure 
Ti02 film with a comparable thickness. The cross-sectional SEM micrographs proved also that the 
particles in the films containing the intermediate Al20 3 layers are significantly smaller than those 
found in pure Ti02 films. 

7. CONCLUSIONS 

ALE is a competitive and versatile method to grow oxide and nitride thin films on large area 
substrates. The reviewed papers show that uniform dielectric and conductive oxide as well as nitride 
thin films have been deposited by ALE. The applicability of ALE to an industrial scale is evidenced 
by its use in fabrication of TFEL displays. 

The principle of the ALE method is simple: alternate reactions via saturated surfaces. However, 
the deeper study of the reaction mechanisms shows the complexity of the process. The full under­
standing of the growth of e.g. oxide films is not possible by analyzing only the resulting films and 
growth rates. AFMJSTM methods have revealed new information on the growth mechanisms but 
still in situ monitoring of the reactions is greatly needed to gain a detailed insight into the growth 
reactions and, thereby, to improve the process control and to assist in designing new ALE processes. 
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