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TOYO TANSO TECHNICAL NELWS

1) PERMA KOTE®

Silicon carbide was coated on the isotropic graphite by chemical vapor deposition(CVD)method.
This coating is called PERMA KOTE and its properties are summarized below.

OA thickness of the coating is ca.120 Lm

(in extreme case it is 1500 1m)
OOQut-gassing from graphite block can be prevented
OLow reactivity with corrosive reagent
OHigh resistivity for oxidation
OStrong for a thermal shock
OMain application is a susceptor of epitaxial growth for Si wafer

gy

2)SOLSIX®
Composite material composed of graphite and silicon carbide can be manufactured by the reaction between

gas phase silicon oxide or liquid phase silicon and graphite.
This composite material is named SOLSIX.

Characteristics of SOLSIX are as follows .

OC/SiC gradient material or fully SiC can be manufactured
OHigh purity

OHigh resistivity for oxidation

OStrong for a thermal shock

OSize or shape of the material is freely selected

3)PYROGRAPH ®
Pyrograph is manufactured by the pyrolysis of hydrocarbon on the surface of isotropic graphite.

Characteristics are summarized below.

OLow permeability for gas and liquid
Olncreasing surface hardness

Olsotropic coating on C/C composite is possible

TOYO TANSO CO.,LTD.

HERD OFFICE
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Chemical Vapor Deposition of ZrO2 Thin Films Using Zr(NEt2)4 as
Precursor

A. Bastianini, G.A. Battiston, R. Gerbasi, M. Porchia and S. Daolio*

CNR, Istituto di Chimica e Tecnologie Inorganiche e dei Materiali Avanzati, Corso Stati Uniti 4,
35127 Padova, Italy
* CNR, Istituto di Polarografia ed Elettrochimica Preparativa, Corso Stati Uniti 4, 35127 Padova, Italy

Abstract. By using tetrakis(diethy lamido) zirconum |Zr(NEt),|. excellent quality ZrO- thin films were
deposited with hugh growth rates on alumina and glass substrates by chemical vapor deposition. The
depositions were carried out 1n a hot wall reactor at reduced pressure (200 Pa) in the temperature range 500-
580-C and 1n the presence of oxygen. The as-grown films arc colourless. smooth and well-adherent to the
substrates. SIMS analysis evidenced pure ZrO- with a shight superficial contamination of hydrocarbons and
nitrogen  The films have a tapered polyerystalline columnar structure well visible in SEM micrographs.
From X-ray diffraction analysis. the monoclinic phase resulied as the major phase together with a small
variable amount of tetragonal zirconta. Under 550°C the as-grown films resulted highly textured and were
dominaied by the (020) onentaton. The films were annealed in the range 600-1000°C and the cffect of
annealing on the texture and on the phase and dimensions of the crystallites have been studied.

1. INTRODUCTION

Zirconia thin films are of considerable interest due to the variety of their applications. In fact, having
many peculiar properties such as low electrical conductivity, chemical inertness, permeability,
thermal shock resistance and biocompatibility, they can be extensively employed as thermal barrier
coatings, oxygen sensors, high-density dynamic memories, buffer layers for high Tc superconducting
films, biomedical devices. The precursors used in CVD processes at low temperature both for ZrO»
films and for zirconium based mixed oxides of technological importance, such as yttrium stabilised
zirconia (YSZ) and Pb(Zr.Ti;..)O: (PZT), had been mainly zirconium alkoxides [1], B-diketonates
[2.3] and fluorinated f-diketonates [3,4] Nevertheless the above precursors may present some
drawbacks: n particular alkoxides are very sensitive to hydrolysis, many diketonates are solid at
room temperature therefore needing high evaporation temperature and, if fluorinated, could give
fluorine contamunations. For this reason we performed depositions of zirconia thin films using a
known amido complex of zirconium, Zr(NEt,), as precursor which had already been successfully
employed in the CVD growth of Zr N, in the presence of NH; [5]. Amido complexes seem to be
promising, suitable and simple sources for CVD of ceramic coatings, other than nitrides, due to their
volatility, ease of preparation and handling and because of their ubiquity in the periodic table. In fact
amido complexes of almost all metals are known and the deposition of stabilised zirconia starting
from analogous amido complexes of zirconium and of the stabiliser metal (i.e. yttrium, lanthanides,
alkali metals) could be envisaged.

Large scatter data have been reported concerning the phases obtained in ZrO, thin films. However
the deposition processes [2.4], the grain size [6] and the thickness [7] seem to play a fundamental
role in the nature of the crystalline phases in ZrO, thin films. In this paper the effects of both the
deposition temperature and the post-deposition annealing on phase distribution, grain size and
texture of ZrO- films are widely discussed.
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2. EXPERIMENTAL

Tetrakis(diethylamido) zirconium was synthesized from ZrCly and freshly prepared LiNEt, (from
HNEL, and LiBu) as reported in the literature [8] and purified by distillation at 112°C/12 Pa. All the
operations were carried out in nitrogen filled dry-boxes with rigorous exclusion of oxygen and
moisture.

All the ZrO, depositions were achieved in a low pressure hot wall CVD reactor where the total
pressure, the flow rate, the gas phase composition and the substrate temperature could each be
adjusted independently. The depositions were performed on alumina (Morgan-Matroc, Deranox 995)
and glass (Corning, barium borosilicate 7059) substrates.

The morphology and thickness of zirconia films were analyzed by Scanning Electron Microscopy
(SEM, Philips). Composition analysis was obtained by Secondary Ion Mass Spectrometry (SIMS).
The analyses were performed using a custom-built instrument previously described [9]. A mass-
filtered duoplasmatron ion gun (VG Fisons, Mod. DP50B), generating a monochromatic (1-10 KeV)
O, or Ar ion beam, coupled to a quadrupole mass analyzer (Balzers A.G., Mod. QMA 400) was
used. The samples were bombarded with primary ions at different energy and current density in order
to limit surface damage and to perform ion yield optimisation.

X-ray diffraction (XRD) patterns were recorded by a Philips diffractometer PW3710 provided also
with a thin film attachment (collimator and flat monocromator) and using Cuy, radiation. The mean
grain size was calculated from the peak broadening at full width at half maximum (FWHM) by using
the Scherrer formula, where any contributions to broadening due to non uniform strain were ignored,

09-A

VFWHM’ - B -cos §

where D is the mean grain size, A is the X-ray wavelength (0.15405 for Cu k), B is the instrumental
broadening and $ is the Bragg angle.

D(nm) =

3. RESULTS AND DISCUSSION

3.1 Film growth

The use of the liquid Zr(NEt,), has permitted a constant and controllable evaporation rate with
respect to the solid Zr(dpm), or Zr(acac); and has allowed a lower bath temperature (90°C) with
respect to the above mentioned precursors i.e. Zr(dpm), (230-240°C [2]) and Zr(acac), (130-135°C
[3,10]), so reducing the experimental difficulties (lower heating of the gas line, less chance of
condensation, etc.). This results, together with the ease of preparation and purification of Zr(NEt,)s
(it can be also be found commercially) and with the purity of the obtained films, justify the choice of
an amide as oxide-precursor. On the other hand metal amides have been successfully exploited in
MOVPE of III-V semiconductor materials as precursors both for indium and for dopants and the
suitability of amides of tin, silicon and tantalum for the low temperature CVD of respective oxides
has been recently demonstrated [11].

Deposition of ZrO, thin films on ALO; and glass starting from Zr(NEt,), was achieved in the
temperature range 500-580°C. The growth conditions are summarised below:
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Deposition Temperature

Total pressure

O, gas flow rate

Carrier gas (N,) flow rate
Diluting gas (N,) flow rate
Bath temperature of precursor
Molar fraction of precursor

The as-grown ZrO, films are colourless,
smooth and well-adherent to the substrates.
The films show a typical columnar grain
structure well visible in Fig. 1.

Under the above conditions at 550°C the

growth rate is 4 pm/h, independently of

the substrates; a quite high value if

compared with other reported CVD

results [2]. The deposition rate increased

with an increase of reactor temperature

(Fig.2). It is reasonable to hypothesise

that the surface chemical reaction is the

rate  determining process in these

conditions. A diminution of the growth

rate along the reactor was observed

(Fig.2), due to a spatial depletion of the

precursor.

Use of different Zr/O ratios influences
mainly the uniformity of the deposition

-t
o]

-
w

-t

In(growth rate)

0.7
1.15 12 1.25 1.3

1000/T(°K)

Figure 2 Decposition rates of ZrO, versus
deposition temperatures at different positions in
the reactor: @ 7 cm from the entrance; A 9 cm
from the entrance

C5-527

500-580 °C
200 Pa

20 sccm
150 sccm
30 scem

90 °C

=33 % 107

Figure 1: Cross-scctional SEM micrograph of a ZrO; film

along the reactor. In fact using O, flow rate 50 or 100
sccm the deposition zone is limited to a few
centimeters near the entrance of the reactor giving
rise to extremely thick films; in the standard optimised
conditions, with O, gas flow 20 sccm, the deposition
zone is as long as the uniform temperature zone inside
the reactor.

3.2 SIMS analysis

SIMS was used initially to check the purity of alumina
substrates. The obtained results evidence a very
intense peak at m/z = 27 (Al') and, with very low
relative abundances, some peaks corresponding to
AlO", AL, ALO" ion species at m/z = 43, 54 and 70
respectively. Very small amounts of alkaline and earth
alkaline metals are evidenced. The high purity of

alumina substrates was tested also by in-depth analysis.
Positive ion mass spectra of as-grown ZrO, films deposited at the temperatures of 500, 550 and
580°C respectively, show typical isotopic patterns of Zr', ZrO', ZrO, and some other peaks with
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low intensity originated from organic precursor residuals or contaminants (the most intense isotope
of zirconium, “Zr, has been followed) Fig 3. referring to a sample grown at 580°C. shows the

1E+05 f

1E+04 Z0"

1E+02

1E+01

time (h)

Figure 3 : SIMS depth profile of a ZrO- thin film
deposited on alumina substrate at 580 °C.

typical in-depth profiles of ZrO (m/z = 106), Zr
(m/z = 90), Al (m/z = 27) and of m/z = 13 and
14 due to organic residuals. These last peaks are
well evident in the external regign, while the m/z
= 27 ion profile decreases drastically going from
surface to inner layers and increases to a very
high value after a long bombardment (= 8-9
hours) evidencing an interface region with high
ion vields of Al', Zr and ZrO species.
Interestingly, as the in-depth profiles of the
studied samples are very similar. the shapes of the
curves obtained in the surface region are quite
different for samples deposited at different
temperatures. Fig4 reports such curves for
samples grown at 550 and 580°C: the strong
differences in the ionic vields of Zr and ZrO on
varying the deposition temperature can be seen
clearly. This phenomenon can be due to migration
of contaminants in the outer layers and/or to
different oxide structures.

1E+05 - )
cps A i B
1E+04 Zg A zo" |
Y s N =
1E+03 CH' N’ | H' A y |
1ot s s S
ek L | (o e et
1E+02 BT f
Al |
1E+01 | 5. i BV e —

624" 8B '8
time (min)

10 12

ez 4. 678 10 12

time (min)

Figure 4 :SIMS depth profile of the superficial layers of ZrQ- films. (A) grown at 350°C. (B) grown at 580 °C

3.3 XRD studies

X-ray diffraction patterns of as deposited ZrO, thin films grown in the temperature range 500-580°C
show the reflections of polycrystalline zirconia baddeleyite [12]. Crystallites, random oriented at the
highest temperature of 580°C, become gradually oriented with the decreasing of temperature. up to
the obtaining of completely textured films at 500 °C (Fig. 5). The intense band at 34 4° in textured
films was assigned to the (020) plane as parallel to the substrate according to the following
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considerations. X-ray rocking curve (Q scan) of
(020) plane showed a symmetrical distribution with
FWHM of about 10° (Fig. 6), indicating a relatively
good alignment of the grains along the (020)
direction, and a maximum close to the 6 value of
17.2°. What's more, the crystallographic planes

C5-529

(020)

(002)
I oc

(031), (131), (131) have been taken into account, §-
being the resulting angles B with (020) plane, \/L52° o
calculated as 18 .88, 23.58 and 27.15° respectively, (111) (1) /
sufficiently low to make the. reflections visible m.the / d 550 °C
XRD patterns. It was possible to check these lines
through XRD asymmetric measurements, setting the |
fixed incident grazing angle as (20/2-B). L—/\——'/\ ol il
For the (031), (131) and (131) planes it results 25 30 35 40
(55.88°/2-18.88°) = 9.06°, (57.85°2-23.58°) = 20
5.34°,(59.77°/2-27.15°) = 2.73° respectively.
In Fig. 7 the 20 Figure 5: XRD patterns of as-grown ZrO- films
! Gitoeriuiia Wt on glass substrates carried out under different
FWHM=9.97 P s temperatures. Peaks of monocline baddeleyite are
fixed  incident o4
angles of 2.73°
e / and 9.06° are plotted The asymmetric geometry measurements
= / are not completely selective either for the closeness of the bands
Thid involved or for the spreading of the oriented planes, but the
trends confirm (020) plane to be the principal one, different from
| other depositions reported in literature [4] where the plane (002)

40 Was found to be parallel to the substrate. .

Q At deposition temperatures below 550°C besides the intense
P (020) reflection. the weaker (001). (002) and (003) reflections
can be observed, indicating the existence of two domains.
Keeping in mind that twin-
related grain boundaries are
commonly observed in highly oriented films [13], the (020) and
the (001) planes could be correlated by a (011) twinning
operation; in fact (011) forms with the planes (002) and (020)
angles of 44.27° and 45.73° respectively, and in that way the
twinned (001) plane is near to being parallel to the (020) plane.
XRD patterns of films deposited at 550 or 580 °C. evidence quite
random oriented baddeleyite, however the (111) tetragonal
domain was weakly observed, mainly for films located far from the
entrance of the precursor in the reactor.

The formation of both the metastable tetragonal phase as already
reported in literature [2,7] and random oriented monocline
baddeleyite may be related to the fine size of the crystallites. A
simple explanation is that tetragonal zirconia phase nucleates and
grows first, since it seems there is almost no monoclinic phase in
the thinnest films as can be seen in Fig. 8a, while the monoclinic

0 20

Figure 6: Q scan (rocking curve) of
the (020) plane

(031)

(131)

1

(131)

cps

54 56 58 60
20

62

Figure 7: asymmetric patterns with
grazing angle of 2.73° (full linc) and
9.06° (dotted line)
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M@I11) T MAa)
& b the zirconia thin films.
a become sharper and
stronger in intensity,
with a smooth change
27 29 31 33 in the relative peak
20 intensities. After
Figure. 8: XRD patterns of a very thin a_nnealmg, both grain
ZrO. film grown at 580°C as deposited ~ Sizé  and  texture

(a) and annealed at 1000°C (b) increased but to a
different extent.

In Fig9A the dependence of crystallite size on deposition
temperature and post-deposition annealing is reported. Whereas
the crystallite sizes monotonously decreased increasing the
growth temperature, the annealing procedure acted to increase
the crystallite sizes up to the same value of about 50 nm. In
Fig.9B the ratio between (020) and (002) or between (111) and
(111) integrated band areas is reported.

Peak area ratios evidenced that samples grown at 520°C were
the more textured both as deposited and after annealing.

CONCLUSIONS

We have prepared high-quality ZrO, thin films from Zr(NEt,), and
oxygen with high growth rates in the temperature range 500-
580°C. The films, fine-grained and pure, grow polycrystalline
mainly in the monoclinic phase. Post-deposition annealing up to
1000°C, considerably changed the crystallite dimensions, which
for all samples reached the same value of 50 nm, indipendently of

JOURNAL DE PHYSIQUE IV

phase was evidenced after the sample was subjected to
high temperature (1000°C) treatment (Fig. 8b).

Post deposition annealing in air for three hours in the 600-
1000°C temperature range, has only a moderate effect on

Increasing the annealing temperature the diffraction peaks

60
sl f 4
E e
s o
.§ o Z

30 - AT
.g 55 g -
E 00 p
%10 48

o .

500 600 700 800 900 1000

12

w0l B
o 8 >
©
= 8 {020)/(002)
& 4 o

2] i

P (A1)(111)
0

500 600 700 800 900 1000

growing/annealing temperature °C

Figure 9: Grain size (A) and band
intensity ratios (B): evolution versus
anncaling temperatures for ZrO- thin
film deposited at different
temperatures, O 500°C, ¢ 520°C. A
550°C, © 580°C.

the deposition temperature. On the other hand such a thermal treatment had no influence on the
phase composition and modified only slightly the original texture of the films. Therefore the texture
can be considered like a fingerprint of a film grown at a particular temperature.

Acknowledgements

The authors wish to thank Dr. P. Guerriero for the SEM nieasurements.

MICRON Ex.1013 p.22



C5-531

References

[1]Z. Xue, B. A. Vaartstra, K. G. Caulton, M.H. Chisholm and D. L. Jones, Eur. J. Solid
State Inorg. Chem., 29, (1992), 213.

[2]J. Si, S.B. Desu and C.Y. Tsai, .J. Mater. Res., 9, (1994), 1721.

[3] M. Balog, M. Schieber, S. Patai and M. Michman, J. Crystal Growth, 17, (1972), 298.

[4] C.S. Hwang and H.J. Kim, J. Mater. Res., 8, (1993), 1361.

[5] R. Fix, R.G. Gordon and D.M. Hoffman, Chem. Mater., 3, (1991), 1138.

[6] R.C. Garvie, J. Phys.Chem., 82, (1978), 218.

[7] R.E. Klinger and C K. Carniglia, Appl. Optics, 24, (1985), 3184.

[8] D.C. Bradley and I M. Thomas, J. Chem. Soc., (1960), 3857.

[9] C. Pagura, S. Daolio, B. Facchin in Secondary Ion Mass Spectrometry SIMS VIII, A.
Benninghoven, K. T. F. Janssen, J. Tiimpuer, H. W. Werner Eds., J. Wiley & Sons Ltd.,
1992, p. 239-242.

[10] N.Dzjubenko, L. Martynenko, N. Zharkova, E. Gavrischuk and A. Gibin, Mater. Sci.
Eng., B18, (1993), 232.

[11] LM. Atagi, D.M. Hoffman, J.R. Liu, Z. Zheng, W.K. Chu, R R. Rubiano, R W. Springer
and D.C. Smith, Chem. Mater., 6, (1994), 360; T. Tabuchi, Y. Sawado, K. Uematsu and S.
Koshiba, Jpn. J. Appl.Phys., 30, (1991), 1974,

[12] JCPDS-ICDD PDF n.37-1484

[13] Y. Gao, K.L. Merkle, HL M. Chang, T.J. Zhang and D. J. Lam, J. Mater. Res., 6, (1991),
2417.

MICRON Ex.1013 p.23





