HEMICAL APOR EPOSITION Chemical vapor deposition : 1/95

Chemical vapor deposition : CVD S&E Current Journals UC San Diego Received on: 10-21-98

Review of Metal Deposition Tin Oxide Thin Films Novel Aluminum Precursors Single Source GaAsP Precursors

S&E Current Journals TA 1 A242 v. 1 no. 1

ISSN 0948-1907 - Vol.1 (1995) - CVDEFX - July 1995

Chemical Vapor Deposition Volume 1 (1995) July

Chemical Vapor Deposition Prof. Michael L. Hitchman Dept. of Pure and Applied Chemistry University of Strathclyde 295 Cathedral Street Glasgow G1 1XL (UK) Tel.: +44 (0) 141 553 4189 Fax: +44 (0) 141 552 5664 e-mail: m.l.hitchman@strath.ac.uk Chemical Vapor Deposition Dr. Peter Gregory Advanced Materials VCH Pappelallee 3 D-69469 Weinheim (Germany) Tel.: +49 (0) 6201 606 235 Fax: +49 (0) 6201 606 328 e-mail:advmat@vchgroup.de

Contents

Essay: The first issue of *CVD* has arrived! The co-editor of the new section of *Advanced Materials*, Michael Hitchman of the University of Strathclyde, sets the scene with a description of the structure, organization, and aims of CVD, a historical account of the development of chemical vapor deposition technology, and his aims in providing a useful service for the materials science, chemistry, physics, and engineering communities.

CVD

M. L. Hitchman*

Chem. Vap. Deposition 1995, 1, 5...7

A Professional Forum for the Field of Chemical Vapor Deposition

Review: The chemical vapor deposition of metals is a rapidly developing area in which metal-containing compounds are being synthesized as new precursors. Precursor design, reaction pathways, reactor types and the influence of the reactor operating conditions on film growth are reviewed in the first part of a two-part article. The second installment will appear in the September issue of *Advanced Materials CVD*.

Communication: Thin films of aluminum have an important application in the metallization of silicon devices in very large scale integration technology. In this communication a new precursor, $NMe_2AlH(Nme_2Et)$, has been used for the CVD of high purity aluminum in the temperature range 250-350 °C. In contrast to currently available precursors it is a free flowing and non-pyrophoric liquid, making it less hazardous and more convenient for use in CVD.

M. J. Hampden-Smith,* T. T. Kodas*

Chem. Vap. Deposition 1995, 1, 8...23

Chemical Vapor Deposition of Metals: Part 1. An Overview of CVD Processes

A. C. Jones,* D. J. Houlton,S. A. Rushworth, J. A. Flanagan,J. R. Brown, G. W. Critchlow

Chem. Vap. Deposition 1995, 1, 24...26

The Deposition of Aluminum Thin Films by CVD Using a Novel Adduct of Dimethylaluminum Hydride

Communication: The metal oxide semiconductor SnO_2 has a range of important applications, such as in transparent and conducting coatings on glass, and in gas-sensing devices. CVD has a number of advantages as the technique of choice for the deposition of SnO_2 thin films but development has in the past been hampered by the high toxicity of the available precursors and the necessity of adding an oxidant such as O_2 or H_2O . Here, SnO_2 deposition from the relatively non-toxic tetra-*t*-butoxide tin in the absence of added oxidant is reported. Platinum doping of the material is also discussed.

D. J. Houlton, A. C. Jones,*P. W. Haycock, E. W. Williams, J. Bull,G. W. Critchlow

Chem. Vap. Deposition 1995, 1, 26...28

The Deposition of Platinum-Containing Tin Oxide Thin Films by Metal-Organic CVD

Communication: Stoichiometrically controlled, reproducible ternary 13-15 semiconductor materials such as GaAsP can now be produced from a single source precursor. Although these materials can be formulated using conventional multi-precursor CVD techniques, control over the stoichiometry, and thus the behavior of the semiconductors, is difficult. The synthesis and performance of the new single-source precursor are presented.

S. R. Aubuchon, M. S. Lube, R. L. Wells*

Chem. Vap. Deposition 1995, 1, 28...31

Preparation and Thermolysis of a Single-Source Precursor to Gallium Arsenide Phosphide

CVD Forum 34

Book Reviews 31

Chemical Vapor Deposition

Editors: Michael L. Hitchman Peter Gregory Assistant Editor: Deborah Hollis Production: Irene Schmitt Marketing: Deidre Hudson, Sabine Bischoff **Editorial Office:** Chemical Vapor Deposition Department of Pure and Applied Chemistry University of Strathclyde 295 Cathedral Street Glasgow G1 1XL, UK Tel.: (+44) 141 553 4189 Fax: (+44) 141 552 5664 e-mail: m.l.hitchman@strath.ac.uk or Advanced Materials CVD VCH P. O. Box 10 11 61, D-69451 Weinheim or Pappelallee 3, D-69469 Weinheim (parcels and courier services) Germany Tel.: (+49) 6201 60 62 35 Fax: (+49) 6201 60 63 28 e-mail: advmat@vchgroup.de

Registered names, trademarks, etc. used in this journal, even when not marked as such, are not to be sidered unprotected by law

Order through your bookseller or directly at the publisher, USA and Canada: see box right. Japan: VCH Shuppan K.K., Eikow Building, 10-9 Hongo 7-chome, Bunkyo-ku, Tokyo 113, Tel. (03) 38 16 31, Fax (03) 38 16 37 58. United Kingdom: VCH Publishers (UK) Ltd., 8 Wellington Court, Wellington Street, Cambridge CB1 1HZ, Tel. (01223) 31 11 11, Fax (01223) 31 32 21. Switzerland: VCH Verlags-AG, Hardstrasse10, Postfach, CH-4020 Basel, Tel.(061) 2 71 06 06, Fax (061) 2 71 06 18. Rest of the world: VCH, P.O. Box 10 11 61, D-69451 Weinheim, Germany, Fax (+49) 6201 606 550.

Editorial Advisory Boards

Editorial Advisory Board:	
S. E. Alexandrov, St. Petersburg	P. John, Heriot Watt
N. J. Archer, Archer Technicoat	B. Lux, Vienna
C. Bernard, Grenoble	T. Mäntylä, Tampere
W. G. Breiland, Sandia National Lab.	B. S. Meyerson, IBM
JO. Carlsson, Uppsala	R. L. Moon, Hewlett Packard
M. A. Chesters, Nottingham	S. Oda, Tokyo
K.H. Dahmen, Tallahassee	W. Richter, Berlin
J. G. Eden, Illinois	G. B. Stringfellow, Utah
M. Hammond, SI Diamond Inc.	G. Verspui, Philips
M. J. Hampden-Smith, New Mexico	G. Wahl, Braunschweig
H. E. Hintermann, Neuchâtel	J. O. Williams, N. E. Wales Insti

J. O. Williams, N. E. Wales Institute

Published six times per year by VCH Verlagsgesellschaft mbH (Managing Directors: H. D. Köhler, Dr. K. H. Köpfer, Publisher: Dr. E. E. Wille), D-69469 Weinheim (Germany)

© VCH Verlagsgesellschaft mbH, D-69469 Weinheim, 1995. - Printed in the Federal Republic of Germany by Konrad Triltsch Druck- und Verlagsanstalt, Würzburg. Printed on acid- and chlorine-free

paper. All rights reserved (including those of translation into foreign languages). No part of this issue may be reproduced in any form — by photoprint, microfilm, or any other means — nor transmitted or translated into a machine language without written permission from the publishers. Only single copies of contributions, or parts thereof, may be made for personal use. This journal was carefully produced in all its parts. Nevertheless, authors, editors and publisher do not guarantee the information contained therein to be free of errors. Readers are advised to keep in mind that statements, data. illustrations, procedural details or other items may inadvertently be inaccurate.

Valid for users in the USA: The appearance of the code at the bottom of the first page of an article (serial) indicates the copyright owner's consent that copies of the article may be made for personal or internal use, or for the personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per-copy fee through the Copyright Clearance Center, I (CCC), for copying beyond that permitted by Section 107 or 108 of the U.S. Copyright Law. This con-sent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. For copying from back volumes of this journal see 'Permissions to Photo-Copy: Publisher's Fee List' of the CCC.

For the USA and Canada: Chemical Vapor Deposition (ISSN 0948-1907) is published six times per year as part of Advanced Materials, by VCH Publishers, Inc., 303 N. W. 12th Avenue, Deerfield Beach, FL 33442-1788; Telefax (305) 428-8201; Telephone (305) 428-5566 or 1- (800) 367-8249. Printed in the Federal Republic of Germany.

Second Class postage paid at Deerfield Beach, FL 33441. POSTMASTER: Send address changes to Chemical Vapor Deposition, VCH Publishers, Inc.,

303 N.W. 12th Avenue, Deerfield Beach, FL 33442-1788.

0948-1907/95/0107-0004 \$ 5.00 + .25/0

Chemical Vapor Deposition of Metals: Part 1. An Overview of CVD Processes**

By Mark J. Hampden-Smith* and Toivo T. Kodas*

The chemical vapor deposition (CVD) of metals is a rapidly developing area in which metal-containing compounds are being synthesized as new precursors. This article reviews this area and discusses precursor design, reaction pathways, reactor types, and the influence of reactor operating conditions on film growth. We have gathered recent results for precursor design and CVD chemistry and show how analysis of results from CVD experiments can be used to assist in the development of new CVD precursors.

1. Introduction

The chemical vapor deposition (CVD) of metal films is of scientific and technological interest due to a variety of realized and potential applications, including interconnects in microelectronic devices,^[1, 2] optical tailoring of glass surfaces,^[3] and membrane reactors for gas separations.^[4-6] Chemical vapor deposition has a number of key advantages in depositing metal films compared to other thin film deposition techniques such as physical vapor deposition. These advantages include conformal coverage (the ability to coat a surface with complex topography with a layer of uniform thickness), selective deposition (the ability to deposit a coating on one surface, often referred to as the growth surface, and not on another, the non-growth surface), and low deposition temperatures (which can be a primary concern for thermally sensitive substrates).^[7, 8] However, CVD of metals has only been adopted into industrial processes in a relatively small number of specific applications, mainly because the film properties are often not adequate or the deposition process cannot be predictably controlled to achieve a reproducible and reliable process. An example of inadequate film properties is aluminum CVD, which has been studied extensively but by which it has so far proved impossible to deposit smooth films alloyed with copper of sufficient quality for

[*] Prof. M. J. Hampden-Smith Department of Chemistry, University of New Mexico Albuquerque, NM 87131 (USA)
Prof. T. T. Kodas
Department of Chemical and Nuclear Engineering University of New Mexico
Albuquerque, NM 87131 (USA) industrial applications.^[9] This phenomenon has prevented-CVD of Al from being used in microelectronic applications. An example of poor reliability/predictability is selective W CVD which has not been widely adopted by the microelectronics industry because of difficulties in reproducing deposit characteristics.^[10]

The CVD of an elemental material, such as a metal, is likely to be the simplest system in which to develop a detailed understanding of fundamental CVD processes, while still retaining technological relevance. As a result, there has been substantial scientific interest in CVD of metals over the past ten years and for some metals a good understanding of CVD processes exists, particularly for W, Al and Cu. However, a great deal of research is still necessary to understand specific aspects of the CVD of metals, ranging from the design requirements and thermal chemistry of metal-containing compounds to the surface reaction kinetics and mechanisms, which are both physical and chemical in nature. In addition, CVD reactor design and operation is an active area of research in which advances are required to allow reliable deposition of films.

Here, we present a review of the CVD of metals in two papers which summarize some of the information available in the book The Chemistry of Metal CVD.[11] This book describes the CVD of a variety of metals in detail, focusing on Al, W, Cu from Cu^I and Cu^{II} compounds, Ag, Au, Ni, Pd, Pt, and reviews the literature available for the CVD of many other metals, including those of Groups 4-9 of the periodic table. In these two review papers we provide an overview of CVD processes in general rather than discuss detailed aspects of the CVD of individual metals. The goal of these papers is to provide a general framework for classification and discussion of CVD processes. This first paper provides an overview of the basic principles of precursor design for CVD of metals, a classification of the precursors that have been used for CVD and a discussion of the attributes of different reactor types, such as hot- and cold-wall reactors and their mode of operation. In part 2,^[12] the selective CVD of metals is described according to the chemical and physical origin of the selective deposition rather than for individual metals. This article addresses the surface reaction chemistry

^[**] We thank the National Science Foundation (#CHE-9107035 and #CTS 9058538), the Office of Naval Research, Sandia National Laboratories, Spectrum CVD, Motorola and Sharp Microelectronic Technologies Inc. for funding various parts of our research in CVD. We are grateful for the contributions of the following post-doctoral associates and students: Professor Kai-Ming Chi, Dr. Janos Farkas, Dr. Hyun-Kook Shin, Mr. Tom Corbitt, Mr. Ajay Jain, Dr. Christophe Roger, Mr. Chong Ying Xu, Mr. Alec Bailey. We thank Nena Davis and Judith Binder for technical assistance. Mark Hampden-Smith also thanks Dr. Phil Harrison (University of Nottingham) and Dr. Carole Harrison (Nottingham Trent University) for their hospitality during a sabbatical stay and the University of Nottingham for a Kipping Fellowship.

involved in chemical vapor deposition on substrate surfaces. A separate article deals with CVD precursor delivery and particle formation during CVD.^[7]

2. Fundamental Aspects of CVD of Metals

Chemical vapor deposition is a method of depositing films of various materials which involves the thermally induced reaction of a metal-containing molecule on a heated surface. A schematic representation of the generalized key steps involved in a CVD process is presented in Figure 1.^[2] A

Fig. 1. Key steps involved in chemical vapor deposition

volatile precursor is transported (1) into the reactor and to the substrate, where it adsorbs (2) and reacts (3) to liberate the supporting ligands, which are subsequently desorbed (6) and transported out of the reactor (7). The metal atoms then diffuse (4) to form a stable nucleus, where subsequent growth occurs (5). Under certain circumstances gas-phase reactions (8) can also occur. The details of the surface reactions are likely to be peculiar to a particular metal-containing precursor, surface, temperature and other deposition conditions (i.e., presence of a reactive gas). Any of these steps (and some others) may be rate-limiting. Once a continuous film is formed, growth takes place on the metal being deposited. Step 1 is discussed in more detail in Section 5.

3. Precursor Design and Classification for CVD of Metals

The first step in CVD of any material is to consider which metal-containing molecules may be useful as precursors. The factors that affect the choice of a particular source molecule for CVD of a specific metal are complex and depend on the application being considered. High-purity, dense metal films with controlled crystallite size and smooth surfaces deposited at relatively low temperatures ($< 500 \,^{\circ}$ C), high deposition rates ($> 0.1 \,\mu$ m/min) and low pressures are required for microelectronic applications. Some of these constraints may be relaxed in other coating applications where, for example, high substrate temperatures can be tolerated or impurities

Mark J. Hampden-Smith is an Associate Professor and Regents Lecturer in Chemistry at the University of New Mexico. He received his Ph.D. from London University, Queen Mary/Westfield College, in 1984 and held postdoctoral fellowships at the University of Guelph, Ontario, Canada (1984–1986) and Indiana University (1986–1988), conducting research on problems in synthetic and mechanistic inorganic and organometallic chemistry. His current research interests are in nanostructured inorganic materials, chemical vapor deposition and etching, and liquidphase routes to metal oxides.

Toivo T. Kodas, an Associate Professor in the Chemical and Nuclear Engineering Department at the University of New Mexico at Albuquerque, received his Ph.D. in Chemical Engineering from the University of California, Los Angeles, in 1986. He has worked on CVD processes at the IBM Almaden Research Center and on generation of particles by gas-phase processes at the ALCOA Technical Center. He is the recipient of a Presidential Young Investigator Award from the National Science Foundation. His Research interests include gas-phase formation and processing of powders, laser deposition of materials and chemical vapor deposition and etching of metals and metal oxides.

Chem. Vap. Deposition 1995, 1, No. 1 © VCH Verlagsgesellschaft mbH, D-69469 Weinheim, 1995 0948-1907/95/0107-0009 \$ 5.00 + .25/0

are not detrimental. As an example, glass coating processes generally require higher rates than microelectronic processes, but are often carried out at temperatures of 500-600 °C and at atmospheric pressure.

Precursors for CVD of metals can be broadly classified into three types: inorganic precursors, which do not contain carbon; metal-organic precursors, which contain organic ligands, but do not possess metal-carbon bonds; and organometallic precursors, which possess organic ligands and metal-carbon bonds. Precursors that have been used for the CVD of metals are classified in Tables 1 and 2 according

Table 1. Precursors used for CVD of metals listed alphabetically by element.

				(hfacCu) ₂ cycloocta (hfac)Cu(1,3-butac
Molecular I	Precursor Compound	Reference		$(\eta^{5}-C_{5}H_{5})Cu(PR_{3})$
Ag ¹³				(t-BuO)Cu(PMe ₃)
	Ag(trifluoroacetate)	14		$(\eta^5 - C_5 H_5)Cu(CN -$
	Ag(acetate)	15		$[Cu(O-t-Bu)]_4$
	Ag(neodecanoate)	16		$Cu(O-t - Bu)(OR_F)$
	$Ag(C_4F_7)$	17 14	Fe ⁶⁹	
	Ag(acac)	14		FeF ₃
	(Alkene)Ag(acac)			Fe(CO) ₅
4 10	$(\eta^5-C_5H_5)Ag(PR_3)$	19		[η ⁵ -C ₅ H ₅]Fe(CO) ₂
Al ⁹		20.01		$Fe(C_5H_5)_2$
	AlMe ₃	20,21	XX 060	
	AlEt ₃	22-26 27,28	Hf ⁶⁹	
	Al(- <i>i</i> -Bu) ₃	27,28 22,24,29-33		HfI4
	AlEt ₂ Cl AlMe ₂ H	34-45	T (0)	
	-	46-51	Ir ⁶⁹	
	AlH ₃ •NMe ₃			IrF ₆
	AlH3•NEt3	52-54		IrCl ₃
	AlH3•NMe2Et	55,56		Ir(allyl) ₃
	AlH ₂ (BH4)•NMe ₃	57		(acac)Ir(1,5-COD)
	Al(BH)3•NMe3	57		[(MeO)Ir(1,5-COD
Au ¹³				Ir(acac) ₃ IrCl ₄
	Me ₂ Au(hfac)	58-64		IrBr ₃
	Me ₂ Au(tfac)	65		$(MeC_5H_4)Ir(1,5-C)$
	Me ₂ Au(acac)	65		$(C_5H_5)Ir(1,5-COD)$
	MeAuPMe ₃	66		[(1,5-COD)Ir(OAc
	Me ₃ AuPMe ₃	20,130		
	CF ₃ AuPMe ₃	67	Mn ⁶⁹	
	(CF ₃) ₃ AuPMe ₃	67	17411	Mr.(CO)
	$[(CF_3)_2Au(OSiMe_3)]_2$	68		$Mn_2(CO)_{10}$
~ (0	MeAu(CNMe)	66		$Mn(\eta^5-C_5H_5)_2$
C0 ⁶⁹			Mo ⁶⁹	
	CoCl ₂	70,71	TMO S	Mar
	$Co_2(CO)_8$	72-74		MoF ₆
	$Co_4(CO)_{12}$	75 76		MoCl ₅
	$Co(CO)_3(NO)$	76		Mo(CO) ₆
	$HCo(CO)_4$	73,74		$(Me_3C_6H_3)Mo(CO)$
	$CF_3Co(CO)_4$ $Co(acac)_2$	78,79		$(\eta^6 - C_6 H_6) Mo(CO)$
		77		Mo(allyl) ₄
	$Co(\eta^5-C_5H_5)_2$	77 77	Nb ⁶⁹	
	$(\eta^5 - C_5 H_5) Co(CO)_2$	11		NbCl ₅
C r ⁶⁹				NbBr5
	CrF ₂	80		2
	CrCl ₂	81	Ni^{181}	
	Cr(CO) ₆	82-85		Ni(CO) ₄
	$(\eta^{6}-C_{7}H_{8})Cr(CO)_{2}$	86		$Ni(\eta^{5}-C_{5}H_{5})_{2}$
	$Cr(C_6H_6)_2$	87,88		$Ni(\eta^5-C_5H_4Me)_2$
	$(\eta^5-C_5H_5)Cr(CO)_3H$	89		
	$Cr(N-i-Pr_2)_3$	89	Os ⁶⁹	
	Cr(CH ₂ CMe ₃) ₄	89	-	OsCl ₄
	Cr(cumene) ₂	87,88		Os(hfb)(CO) ₄

Table 1. (Continued)

Pu(hfac) ₂ Pu(tfac) Pu(tfac) Pu(acac) ₂ Pu(dpm) ₂ Pu(dpm) ₂ Pu(tod) ₂ Pu(acain) ₂ Pu(92-105 106 107-110 98 98 94 111 111 112 113-120 115,120-124 125-132 133 115,120,134-136 4 4 137,138 137 3 139 5 140 141,142 143 77,144 145 146 146 146 147,148 149 150
Pu(ffac) Pu(acac) ₂ Pu(qbm) ₂ Pu(qbm) ₂ Pu(qbm) ₂ Pu(fod) ₂ Pu(acan) ₂ Pu(acan) ₂ Pu(acan) Pu(nona-F) ₂ B-diketonate)CuPR ₃ B-diketonate)Cu(1,5-COD) hfac)Cu(VTMS) hfac)Cu(CO) hfac)Cu(2N(N) hf	107-110 98 98 94 111 112 113-120 115,120-124 125-132 133 115,120,134-136 4 4 4 137,138 139 5 140 141,142 143 77,144 145 146 146 147,148 149 149
Cu(dpm) ₂ Cu(ppm) ₂ Cu(ppm) ₂ Cu(fod) ₂ Cu(acen) Cu(nona-F) ₂ B-diketonate)CuPR ₃ B-diketonate)CuPR ₃ B-diketonate)Cu(1,5-COD) hfac)Cu(VTMS) hfac)Cu(2CO	98 98 94 111 112 113-120 115,120-124 125-132 133 115,120,134-136 4 4 4 137,138 137 3 139 5 5 140 141,142 143 77,144 145 146 146 146 147,148 149 149
Cu(ppm) ₂ Cu(fod) ₂ Cu(acim) ₂ Cu(acim) ₂ Cu(acen) Cu(nona-F) ₂ B-diketonate)Cu(PR ₃ B-diketonate)Cu(1,5-COD) hfac)Cu(VTMS) hfac)Cu(20) hfac)Cu(20) hfac)Cu(20) hfac)Cu(20) hfac)Cu(20) hfac)Cu(PR ₃) hfac)Cu(PMe ₃) hf ⁵ -C ₅ H ₅)Cu(CN- <i>t</i> -Bu) Cu(O- <i>t</i> -Bu)] ₄ Cu(O- <i>t</i> -Bu)[4 Cu(O- <i>t</i> -Bu)] ₄ Cu(O- <i>t</i> -Bu)(OR _F) FF ₃ F(CO) ₅ h ⁵ -C ₅ H ₅]Fe(CO) ₂] ₂ e(C ₅ H ₅) ₂ Hfl ₄ Hf ₄ Hf ₆ h(Cl ₃ h(allyl) ₃ h(ac)Ir(1,5-COD) MeO]Ir(1,5-COD)] ₂	98 94 111 111 112 113-120 115,120-124 125-132 133 115,120,134-136 4 4 4 137,138 139 5 5 140 141,142 143 77,144 145 146 146 146 147,148 149 149
Cu(fod) ₂ Cu(acim) ₂ Cu(acim) ₂ Cu(acim) ₂ Cu(acim) ₂ Sediketonate)Cu(PR ₃ B-diketonate)Cu(1,5-COD) hfac)Cu(VTMS) hfac)Cu(QD) hfac)Cu(2N) hfac)Cu(2N) hfac)Cu(2N) hfac)Cu(2N) hfac)Cu(2N) hfac)Cu(2N-t-Bu) Cu(O-t-Bu)] ₄ Cu(O-t-Bu)] ₄ Cu(O-t-Bu)(OR _F) FF ₃ Fe(CO) ₅ $n^5-C_5H_5]Fe(CO)_2]_2$ e(C ₅ H ₅) ₂ Hfl ₄ Hf ₆ hfac)Cu(1,5-COD) MeO]Ir(1,5-COD) MeO]Ir(1,5-COD)] ₂	94 111 111 112 113-120 115,120-124 125-132 133 115,120,134-136 4 4 137,138 137 3 139 5 140 141,142 143 77,144 145 146 146 146 146 149 149
Cu(acim) ₂ Cu(acen) Cu(nona-F) ₂ 3-diketonate)Cu(1,5-COD) hfac)Cu(VTMS) hfac)Cu(CO) hfac)Cu(alkyne) hfacCu) ₂ cyclooctatetraene hfac)Cu(1,3-butadiene) $\eta^5-C_5H_5$)Cu(PR ₃) t-BuO)Cu(PMe ₃) $\eta^5-C_5H_5$)Cu(CN-t-Bu) Cu(O-t-Bu)] ₄ Cu(O-t-Bu)(OR _F) FF ₃ fe(CO) ₅ $\eta^5-C_5H_5$]Fe(CO) ₂] ₂ fe(C ₅ H ₅) ₂ Hfl ₄ Hf ₄ FF ₆ fCl ₃ (allyl) ₃ acac)Ir(1,5-COD) MeO)Ir(1,5-COD)] ₂	111 111 112 113-120 115,120-124 125-132 133 115,120,134-136 4 137,138 137 3 139 5 140 141,142 143 77,144 145 146 146 149 149
Cu(acen) Cu(nona-F) ₂ β -diketonate)CuPR ₃ β -diketonate)CuPR ₃ β -diketonate)Cu(1,5-COD) hfac)Cu(1,5-COD) hfac)Cu(2VTMS) hfac)Cu(2O) $hfacCu)_2cyclooctatetraene hfac)Cu(1,3-butadiene)\eta^5-C_5H_5)Cu(CN-t-Bu)Cu(0-t-Bu)]_4Cu(0-t-Bu)]_4Cu(0-t-Bu)[4Cu(CN-t-Bu)]_2e(C_5H_5)_2e(C_5H_5)_2e(C_5H_5)_2e(C_5H_5)_2e(C_3)_3e(C_3)_3e(C_3)_3e(C_3)_3e(C_3)_4e(C_3)_5e(C_3$	111 112 113-120 115,120-124 125-132 133 115,120,134-136 4 4 137,138 137 3 139 5 140 141,142 143 77,144 145 146 146 146 146 147,148 149 149
Cu(acen) Cu(nona-F) ₂ β -diketonate)CuPR ₃ β -diketonate)CuPR ₃ β -diketonate)Cu(1,5-COD) hfac)Cu(1,5-COD) hfac)Cu(2VTMS) hfac)Cu(2O) $hfacCu)_2cyclooctatetraene hfac)Cu(1,3-butadiene)\eta^5-C_5H_5)Cu(CN-t-Bu)Cu(0-t-Bu)]_4Cu(0-t-Bu)]_4Cu(0-t-Bu)[4Cu(CN-t-Bu)]_2e(C_5H_5)_2e(C_5H_5)_2e(C_5H_5)_2e(C_5H_5)_2e(C_3)_3e(C_3)_3e(C_3)_3e(C_3)_3e(C_3)_4e(C_3)_5e(C_3$	112 113-120 115,120-124 125-132 133 115,120,134-136 4 4 137,138 137 3 139 5 140 141,142 143 77,144 145 146 146 146 146 147,148 149 149
Cu(nona-F) ₂ B-diketonate)CuPR ₃ B-diketonate)Cu(1,5-COD) hfac)Cu(VTMS) hfac)Cu(VTMS) hfac)Cu(O) hfac)Cu(alkyne) hfacCu) ₂ cyclooctatetraene hfacCu) ₂ cyclooctatetraene hfacCu) ₂ cyclooctatetraene hfac)Cu(1,3-butadiene) $n^5-C_5H_5$)Cu(PR ₃) t-BuO)Cu(PMe ₃) $n^5-C_5H_5$)Cu(CN-t-Bu) Cu(O-t-Bu)] ₄ Cu(O-t-Bu)] ₄ Cu(O-t-Bu)(OR _F) ieF ₃ ie(CO) ₅ $n^5-C_5H_5$]Fe(CO) ₂] ₂ ie(C ₅ H ₅) ₂ HfI ₄ ifF ₆ icCl ₃ i(allyl) ₃ acac)Ir(1,5-COD) MeO)Ir(1,5-COD)] ₂	113-120 115,120-124 125-132 133 115,120,134-136 4 4 137,138 137 3 139 5 140 141,142 143 77,144 145 146 146 146 147,148 149 149
β-diketonate)Cu(1,5-COD) hfac)Cu(VTMS) hfac)Cu(2CO) hfac)Cu(alkyne) hfacCu ₂ cyclooctatetraene hfacCu ₁ ,3-butadiene) η ⁵ -C ₅ H ₅)Cu(PR ₃) t-BuO)Cu(PMe ₃) η ⁵ -C ₅ H ₅)Cu(CN-t-Bu) Cu(O-t-Bu)] ₄ Cu(O-t-Bu)] ₄ Cu(O-t-Bu)(OR _F) ieF ₃ ie(CO) ₅ η ⁵ -C ₅ H ₅]Fe(CO) ₂] ₂ ie(C ₅ H ₅) ₂ Hfl ₄ tF ₆ rCl ₃ :(allyl) ₃ icaca)Ir(1,5-COD) MeO)Ir(1,5-COD)] ₂	115,120-124 125-132 133 115,120,134-136 4 4 137,138 137 3 139 5 5 140 141,142 143 77,144 145 146 146 146 147,148 149 149
hfac)Cu(VTMS) hfac)Cu(CO) hfac)Cu(alkyne) hfacCu)_2cyclooctatetraene hfac)Cu(1,3-butadiene) $n^5-C_5H_5$ Cu(PR_3) t-BuO)Cu(PMe_3) $n^5-C_5H_5$ Cu(CN-t-Bu) Cu(O-t-Bu)]4 Cu(O-t-Bu)]4 Cu(O-t-Bu)(OR _F) NeF3 Se(CO)5 $n^5-C_5H_5$]Fe(CO)2]2 e(C_5H_5)2 lfI4 tF6 CCI3 (allyl)3 acac)Ir(1,5-COD) MeO)Ir(1,5-COD)]2	125-132 133 115,120,134-136 4 4 137,138 139 5 5 140 141,142 143 77,144 145 146 146 146 147,148 149 149
hfac)Cu(CO) hfac)Cu(alkyne) hfacCu) ₂ cyclooctatetraene hfacCu) ₂ cyclooctatetraene hfacCu) ₂ cyclooctatetraene hfacCu) ₂ cyclooctatetraene hfacCu) ₂ cyclooctatetraene hfacCu(3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 ,	133 115,120,134-136 4 4 137,138 137 3 139 5 140 141,142 143 77,144 145 146 146 147,148 149 149
hfac)Cu(alkyne) hfacCu)_2cyclooctatetraene hfac)Cu(1,3-butadiene) $\eta^5-C_5H_5$)Cu(PR_3) t-BuO)Cu(PMe3) $\eta^5-C_5H_5$)Cu(CN- t -Bu) Cu(O- t -Bu)]4 Cu(O- t -Bu)(OR _F) weF_3 we(CO)5 $\eta^5-C_5H_5$]Fe(CO)2]2 we(C_5H_5)2 Hfl4 HF6 iCl3 i(allyl)3 acac)Ir(1,5-COD) MeO)Ir(1,5-COD)]2	115,120,134-136 4 4 137,138 137 3 139 5 5 140 141,142 143 77,144 145 145 146 146 146 147,148 149 149
hfacCu) ₂ cyclooctatetraene hfac)Cu(1,3-butadiene) $\eta^{5}-C_{5}H_{5}$)Cu(PR ₃) <i>t</i> -BuO)Cu(PMe ₃) $\eta^{5}-C_{5}H_{5}$)Cu(CN- <i>t</i> -Bu) Cu(O- <i>t</i> -Bu)] ₄ Cu(O- <i>t</i> -Bu)(OR _F) VeF ₃ Ve(C0) ₅ $\eta^{5}-C_{5}H_{5}$]Fe(CO) ₂] ₂ $e(C_{5}H_{5})_{2}$ Hfl ₄ Hfl ₄ Hf ₆ rCl_3 $r(allyl)_3$ acac)Ir(1,5-COD) MeO)Ir(1,5-COD)] ₂	4 4 137,138 137 3 139 5 140 141,142 143 77,144 145 145 146 146 146 146 147,148 149 149
hfac)Cu(1,3-butadiene) $n^{5}-C_{5}H_{5}$)Cu(PR ₃) <i>t</i> -BuO)Cu(PMe ₃) $n^{5}-C_{5}H_{5}$)Cu(CN- <i>t</i> -Bu) Cu(O- <i>t</i> -Bu)] ₄ Cu(O- <i>t</i> -Bu)(OR _F) ieF ₃ ie(CO) ₅ $n^{5}-C_{5}H_{5}$]Fe(CO) ₂] ₂ ie(C ₅ H ₅) ₂ HfI ₄ ifF ₆ iCl ₃ i(allyl) ₃ acac)Ir(1,5-COD) MeO)Ir(1,5-COD)] ₂	4 137.138 137 3 139 5 140 141,142 143 77,144 145 145 146 146 146 146 147,148 149 149
$n^{5}-C_{5}H_{5})Cu(PR_{3})$ t-BuO)Cu(PMe ₃) $n^{5}-C_{5}H_{5})Cu(CN-t$ -Bu) Cu(O- t -Bu)] ₄ Cu(O- t -Bu)(OR _F) eF_{3} $e(CO)_{5}$ $n^{5}-C_{5}H_{5}]Fe(CO)_{2}]_{2}$ $e(C_{5}H_{5})_{2}$ IfI ₄ eF_{6} rCl_{3} $r(allyl)_{3}$ acac)Ir(1,5-COD) MeO)Ir(1,5-COD)]_{2}	137,138 137 3 139 5 140 141,142 143 77,144 145 146 146 146 147,148 149 149
$r-BuO)Cu(PMe_3)$ $n^5-C_5H_5)Cu(CN-t-Bu)$ $Cu(O-t-Bu)]_4$ $Cu(O-t-Bu)(OR_F)$ reF_3 $re(CO)_5$ $n^5-C_5H_5]Fe(CO)_2]_2$ $re(C_5H_5)_2$ IfI_4 reF_6 rcC_3 rcC	137 3 139 5 140 141,142 143 77,144 145 146 146 146 146 147,148 149 149
$\eta^{5}-C_{5}H_{5})Cu(CN-t-Bu)$ $Cu(O-t-Bu)]_{4}$ $Cu(O-t -Bu)(OR_{F})$ $i^{e}F_{3}$ $e(CO)_{5}$ $\eta^{5}-C_{5}H_{5}]Fe(CO)_{2}]_{2}$ $e(C_{5}H_{5})_{2}$ IfI ₄ $e(CI_{3})_{2}$ $e(allyl)_{3}$ acac)Ir(1,5-COD) $MeO)Ir(1,5-COD)]_{2}$	3 139 5 140 141,142 143 77,144 145 146 146 146 146 147,148 149 149
Cu(O- <i>t</i> -Bu)] ₄ Cu(O- <i>t</i> -Bu)(OR _F) eF_3 $e(CO)_5$ $n^5-C_5H_5]Fe(CO)_2]_2$ $e(C_5H_5)_2$ IfI ₄ $e(CI_3)$ $e(allyl)_3$ acac)Ir(1,5-COD) $MeO)Ir(1,5-COD)]_2$	139 5 140 141,142 143 77,144 145 146 146 146 147,148 149 149
Cu(O- t -Bu)(OR _F) eF_3 $e(CO)_5$ $n^5-C_5H_5]Fe(CO)_2]_2$ $e(C_5H_5)_2$ IfI ₄ $e(CI_3)$ $e(allyl)_3$ acac)Ir(1,5-COD) $MeO)Ir(1,5-COD)]_2$	5 140 141,142 143 77,144 145 146 146 146 147,148 149 149
$F_{3}^{e}(CO)_{5}^{e}$ $f_{5}^{5}-C_{5}H_{5}Fe(CO)_{2}]_{2}^{e}$ f_{4}^{e} f_{4}^{e} f_{6}^{e} f_{13	140 141,142 143 77,144 145 146 146 146 147,148 149 149
$F_{c}(CO)_{5}$ $n^{5}-C_{5}H_{5}F_{c}(CO)_{2}]_{2}$ $F_{c}(C_{5}H_{5})_{2}$ $F_{6}(CC)_{3}$ $F_{c}(allyl)_{3}$ $F_{c}(allyl)_{3}$ $F_{c}(ac)Ir(1,5-COD)$ $MeO)Ir(1,5-COD)]_{2}$	141,142 143 77,144 145
$F_{c}(CO)_{5}$ $n^{5}-C_{5}H_{5}F_{c}(CO)_{2}]_{2}$ $F_{c}(C_{5}H_{5})_{2}$ $F_{6}(CC)_{3}$ $F_{c}(allyl)_{3}$ $F_{c}(allyl)_{3}$ $F_{c}(ac)Ir(1,5-COD)$ $MeO)Ir(1,5-COD)]_{2}$	141,142 143 77,144 145
$h^{5}-C_{5}H_{5}Fe(CO)_{2}]_{2}$ e(C ₅ H ₅) ₂ lfI ₄ :(allyl) ₃ acac)Ir(1,5-COD) :MeO)Ir(1,5-COD)]_{2}	143 77,144 145
$h^{5}-C_{5}H_{5}Fe(CO)_{2}]_{2}$ e(C ₅ H ₅) ₂ lfI ₄ :(allyl) ₃ acac)Ir(1,5-COD) :MeO)Ir(1,5-COD)]_{2}	77,144 145 146 146 147,148 149 149
re(C ₅ H ₅) ₂ ffI ₄ rF ₆ rCl ₃ r(allyl) ₃ acac)Ir(1,5-COD) MeO)Ir(1,5-COD)] ₂	145 146 146 147,148 149 149
ff ₄ fF ₆ fCl ₃ f(allyl) ₃ acac)Ir(1,5-COD) MeO)Ir(1,5-COD)] ₂	145 - 146 146 147,148 149 149
rF ₆ rCl ₃ (allyl) ₃ acac)Ir(1,5-COD) MeO)Ir(1,5-COD)] ₂	146 146 147,148 149 149
rF ₆ rCl ₃ (allyl) ₃ acac)Ir(1,5-COD) MeO)Ir(1,5-COD)] ₂	146 146 147,148 149 149
rF ₆ rCl ₃ (allyl) ₃ acac)Ir(1,5-COD) MeO)Ir(1,5-COD)] ₂	146 147,148 149 149
rCl ₃ :(allyl) ₃ acac)Ir(1,5-COD) MeO)Ir(1,5-COD)] ₂	146 147,148 149 149
rCl ₃ :(allyl) ₃ acac)Ir(1,5-COD) MeO)Ir(1,5-COD)] ₂	146 147,148 149 149
rCl ₃ :(allyl) ₃ acac)Ir(1,5-COD) MeO)Ir(1,5-COD)] ₂	146 147,148 149 149
r(allyl) ₃ acac)Ir(1,5-COD) [MeO)Ir(1,5-COD)] ₂	147,148 149 149
acac)Ir(1,5-COD) [MeO)Ir(1,5-COD)] ₂	149 149
MeO $Ir(1,5-COD)]_2$	149
·Cl4	146
Br ₃	146
MeC_5H_4)Ir(1,5-COD)	151
C_5H_5)Ir(1,5-COD)	151
$[1,5-COD)Ir(OAc)]_2$	151
$In_2(CO)_{10}$	150 154
	152-154
$\ln(\eta^3 - C_5 H_5)_2$	155
	156
5	157-163
	82-85,157,164-16
$Me_3C_6H_3)Mo(CO)_3$	149
$1^{6}-C_{6}H_{6})Mo(CO)_{3}$	149
lo(allyl) ₄	169
-	168,170-180
bBr ₅	168,170-180
	94,182,183
$i(\eta^{5}-C_{5}H_{5})_{2}$	184
$(n^5 - C_e H_4 M_e)_2$	185
Ci Contanierz	
11 - 5114191672	
sCl4	186
	$ln_{2}(CO)_{10}$ $ln(\eta^{5}-C_{5}H_{5})_{2}$ loF_{6} $loCl_{5}$ $lo(CO)_{6}$ $Me_{3}C_{6}H_{3})Mo(CO)_{3}$ $lo(allyl)_{4}$ bCl_{5} bBr_{5} $i(CO)_{4}$ $i(\eta^{5}-C_{5}H_{5})_{2}$ $i(\eta^{5}-C_{5}H_{4}Me)_{2}$

			XX 7016			
Pd ¹⁸¹	B K H D	188	W^{236}	WF ₆		237-251
	Pd(allyl)2 Pd(Meallyl)2	188		WCl6		252-257
		188		WBr ₆		258
	$(\eta^{s}-C_{5}H_{5})Pd(allyl)$			$W(PF_3)_6$		165,259,260
				W(CO) ₆		165,253,261-2
Pt ¹⁸¹				W(n6-C6H	5)2	170,265
-t	Pt(CO) ₂ Cl ₂	189		$W(\eta^4-C_4H_6)$		266
	$Pt(acac)_2$	189		$W(\eta^3-allyl)$		267
	$Pt(PF_3)_4$	189,190		$W(C_4H_6O)$,	268
	$PtMe_2(MeNC)_2$	191-193		$W(\eta^{5}-C_{5}H_{5})$		269
	$(1,5-COD)PtMe_2$	191-193				270
	$(1,5-COD)PtMe(n^1-C_5H_5)$	191-193		$W(\eta^5-C_5H_5)$		271,272
	(1,5-COD)PtMeCl	191-193		$(\eta 5 - C_5 H_5)_2$	WH ₂	
	(C_5H_5) PtMe(CO)	191-193		(η5-C5H4C		271
	$(C_5H_5)Pt(allyl)$	191-193		(1,5-COD)	W(CO) ₄	270
	(acac)PtMe ₃	191-193		$(\eta^{6}-C_{7}H_{8})V$	V(CO) ₃	270
	(C_5H_5) PtMe ₃	194-197				
	$(C_5H_4Me)PtMe_3$	194-197	Zr ⁶⁹			
	Pt(hfac) ₂	198-201	X _1	ZrI4		273
				ZrBr ₄		220
D 60				Zr(CH ₂ -t-B	u)4	228-231,274
Re ⁶⁹	5.5	202-205		21(0112 + 2)4	
	ReF ₆	203				
	ReCl ₅	206-208				
	$\frac{\text{Re}_2(\text{CO})_{10}}{\text{HRe}(\text{CO})_5}$	185				
	The (CO)					
Rh ⁶⁹						
XII	$[(\mathbf{PF}_3)_2\mathbf{RhCl}]_2$	209				
	$\mathbf{Rh}(\mathbf{n}^3 - \mathbf{allyl})_2$	147,148,210-213			- CVD of metals listed by	ligand type
	$Rh(\eta^3-allyl)_3$	147,148,210-213 147,211,214	Table 2. Pr	recursors used for	r CVD of metals listed by	ligand type.
	$(acac)Rh(CO)_2$				····	
	$(acac)Rh(CO)_2$ $(\eta^5-C_5H_5)Rh(C_2H_4)_2$	147,211,214		Precursors used for	r CVD of metals listed by Compound	ligand type.
	$(acac)Rh(CO)_2 (\eta^5-C_5H_5)Rh(C_2H_4)_2 Rh(tfac)_3$	147,211,214 215	Molecular	Precursor	····	
	(acac)Rh(CO) ₂ (η^{5} -C ₅ H ₅)Rh(C ₂ H ₄) ₂ Rh(tfac) ₃ Rh ₂ Cl ₂ (CO) ₄	147,211,214 215 216	Molecular	Precursor Precursors	Compound Til4	Reference 225
	(acac)Rh(CO) ₂ (η^{5} -C ₅ H ₅)Rh(C ₂ H ₄) ₂ Rh(tfac) ₃ Rh ₂ Cl ₂ (CO) ₄ Rh(η^{5} -C ₅ H ₅)(CO) ₂	147,211,214 215 216 213 213	Molecular Inorganic	Precursor Precursors	Compound Til4 TiBr4	Reference 225 275
	(acac)Rh(CO) ₂ (η^{5} -C ₅ H ₅)Rh(C ₂ H ₄) ₂ Rh(tfac) ₃ Rh ₂ Cl ₂ (CO) ₄ Rh(η^{5} -C ₅ H ₅)(CO) ₂ Rh(η^{5} -C ₅ H ₅)(1,5-COD)	147,211,214 215 216 213 213 213	Molecular Inorganic	Precursor Precursors	Compound Til4 TiBr4 Zrl4	Reference 225 275 273
	(acac)Rh(CO) ₂ (η^{5} -C ₅ H ₅)Rh(C ₂ H ₄) ₂ Rh(tfac) ₃ Rh ₂ Cl ₂ (CO) ₄ Rh(η^{5} -C ₅ H ₅)(CO) ₂	147,211,214 215 216 213 213	Molecular Inorganic	Precursor Precursors	Compound Til ₄ TiBr ₄ Zrl ₄ ZrBr ₄	Reference 225 275
	(acac)Rh(CO) ₂ (η^{5} -C ₅ H ₅)Rh(C ₂ H ₄) ₂ Rh(tfac) ₃ Rh ₂ Cl ₂ (CO) ₄ Rh(η^{5} -C ₅ H ₅)(CO) ₂ Rh(η^{5} -C ₅ H ₅)(1,5-COD)	147,211,214 215 216 213 213 213	Molecular Inorganic	Precursor Precursors	Compound Til ₄ TiBr ₄ ZrI ₄ ZrBr ₄ Hfl ₄	225 275 273 220 145 217
	(acac)Rh(CO) ₂ (η^{5} -C ₅ H ₅)Rh(C ₂ H ₄) ₂ Rh(tfac) ₃ Rh ₂ Cl ₂ (CO) ₄ Rh(η^{5} -C ₅ H ₅)(CO) ₂ Rh(η^{5} -C ₅ H ₅)(1,5-COD)	147,211,214 215 216 213 213 213	Molecular Inorganic	Precursor Precursors	Compound Til4 TiBr4 ZrI4 ZrBr4 Hf14 VI2 VC14	Reference 225 275 273 220 145 217 235
Ru ⁶⁹	$\begin{array}{l} (acac)Rh(CO)_{2} \\ (\eta^{5}-C_{5}H_{5})Rh(C_{2}H_{4})_{2} \\ Rh(tfac)_{3} \\ Rh_{2}Cl_{2}(CO)_{4} \\ Rh(\eta^{5}-C_{5}H_{5})(CO)_{2} \\ Rh(\eta^{5}-C_{3}H_{5})(1,5-COD) \\ Rh(\eta^{5}-allyl)(CO)_{2} \end{array}$	147,211,214 215 216 213 213 213 213 213	Molecular Inorganic	Precursor Precursors	Compound TiI ₄ TiBr ₄ ZrI ₄ ZrBr ₄ HfI ₄ VI ₂ VCI ₄ NbCl ₅	225 275 273 220 145 217 235 168,170-180
Ru ⁶⁹	(acac)Rh(CO) ₂ (η^{5} -C ₅ H ₅)Rh(C ₂ H ₄) ₂ Rh(tfac) ₃ Rh ₂ Cl ₂ (CO) ₄ Rh(η^{5} -C ₅ H ₅)(CO) ₂ Rh(η^{5} -C ₅ H ₅)(1,5-COD) Rh(η^{5} -allyl)(CO) ₂ Ru ₃ (CO) ₁₂	147,211,214 215 216 213 213 213 213 213	Molecular Inorganic	Precursor Precursors	Compound TiI ₄ TiBr ₄ ZrI ₄ ZrBr ₄ HfI ₄ VI ₂ VCl ₄ NbCl ₅ NbBr ₅	Reference 225 275 273 220 145 217 235
Ru ⁶⁹	(acac)Rh(CO) ₂ (η^{5} -C ₅ H ₅)Rh(C ₂ H ₄) ₂ Rh(tfac) ₃ Rh ₂ Cl ₂ (CO) ₄ Rh(η^{5} -C ₅ H ₅)(CO) ₂ Rh(η^{5} -C ₅ H ₅)(1,5-COD) Rh(η^{5} -allyl)(CO) ₂ Ru(η^{5} -allyl)(CO) ₂	147,211,214 215 216 213 213 213 213 213 213	Molecular Inorganic	Precursor Precursors	Compound Til ₄ TiBr ₄ ZrI ₄ ZrBr ₄ HfI ₄ VI ₂ VCl ₄ NbCl ₅ NbBr ₅ TaCl ₅	Reference 225 275 273 220 145 217 235 168,170-180 168,170-180 145,162,219- 224
Ru ⁶⁹	(acac)Rh(CO) ₂ (η^{5} -C ₅ H ₅)Rh(C ₂ H ₄) ₂ Rh(tfac) ₃ Rh ₂ Cl ₂ (CO) ₄ Rh(η^{5} -C ₅ H ₅)(CO) ₂ Rh(η^{5} -C ₅ H ₅)(1,5-COD) Rh(η^{5} -allyl)(CO) ₂ Ru(η^{5} -allyl)(CO) ₂ Ru(η^{5} -C ₅ H ₅) ₂	147,211,214 215 216 213 213 213 213 213 217 187 217,218	Molecular Inorganic	Precursor Precursors	Compound TiI ₄ TiBr ₄ ZrI ₄ ZrBr ₄ HfI ₄ VI ₂ VCI ₄ NbCl ₅ NbBr ₅ TaCl ₅ TaCl ₅ TaF ₅ CrF ₂	Reference 225 275 273 220 145 217 235 168,170-180 168,170-180 145,162,219- 224 80
Ru ⁶⁹	(acac)Rh(CO) ₂ (η^{5} -C ₅ H ₅)Rh(C ₂ H ₄) ₂ Rh(tfac) ₃ Rh ₂ Cl ₂ (CO) ₄ Rh(η^{5} -C ₅ H ₅)(CO) ₂ Rh(η^{5} -C ₅ H ₅)(1,5-COD) Rh(η^{5} -allyl)(CO) ₂ Ru(η^{5} -allyl)(CO) ₂	147,211,214 215 216 213 213 213 213 213 213	Molecular Inorganic	Precursor Precursors	Compound Til ₄ TiBr ₄ Zrl ₄ ZrBr ₄ Hfl ₄ VI ₂ VCl ₄ NbCl ₅ NbBr ₅ TaCl ₅ TaF ₅ CrF ₂ CrCl ₂	Reference 225 275 273 220 145 217 235 168,170-180 168,170-180 168,170-180 165,162,219- 224 80 81
Ru ⁶⁹	(acac)Rh(CO) ₂ (η^{5} -C ₅ H ₅)Rh(C ₂ H ₄) ₂ Rh(tfac) ₃ Rh ₂ Cl ₂ (CO) ₄ Rh(η^{5} -C ₅ H ₅)(CO) ₂ Rh(η^{5} -C ₅ H ₅)(1,5-COD) Rh(η^{5} -allyl)(CO) ₂ Ru(η^{5} -allyl)(CO) ₂ Ru(η^{5} -C ₅ H ₅) ₂	147,211,214 215 216 213 213 213 213 213 217 187 217,218	Molecular Inorganic	Precursor Precursors	Compound Til ₄ TiBr ₄ ZrI ₄ ZrBr ₄ HfI ₄ VI ₂ VCI ₄ NbCl ₅ NbBr ₅ TaCl ₅ TaCl ₅ TaF ₅ CrF ₂ CrCl ₂ MoF ₅	225 275 273 220 145 217 235 168,170-180 168,170-180 145,162,219- 224 80 81 156
	(acac)Rh(CO) ₂ (η^{5} -C ₅ H ₅)Rh(C ₂ H ₄) ₂ Rh(tfac) ₃ Rh ₂ Cl ₂ (CO) ₄ Rh(η^{5} -C ₅ H ₅)(CO) ₂ Rh(η^{5} -C ₅ H ₅)(1,5-COD) Rh(η^{5} -allyl)(CO) ₂ Ru(η^{5} -allyl)(CO) ₂ Ru(η^{5} -C ₅ H ₅) ₂	147,211,214 215 216 213 213 213 213 213 217 187 217,218	Molecular Inorganic	Precursor Precursors	Compound Til4 TiBr4 ZrI4 ZrBr4 HfI4 VI2 VCl4 NbCl5 NbBr5 TaCl5 TaF5 CrF2 CrC12 MoF5 MoCl5	Reference 225 275 273 220 145 217 235 168,170-180 168,170-180 168,170-180 165,162,219- 224 80 81
Ru ⁶⁹ Ta ⁶⁹	(acac)Rh(CO) ₂ ($\eta^{5}-C_{5}H_{5}$)Rh(C ₂ H ₄) ₂ Rh(tfac) ₃ Rh ₂ Cl ₂ (CO) ₄ Rh($\eta^{5}-C_{5}H_{5}$)(CO) ₂ Rh($\eta^{5}-C_{5}H_{5}$)(1,5-COD) Rh(η^{5} -allyl)(CO) ₂ Ru ₃ (CO) ₁₂ Ru ₄ (hfb)(CO) ₄ Ru($\eta^{5}-C_{5}H_{5}$) ₂ Ru(acac) ₂	147,211,214 215 216 213 213 213 213 213 217 187 217,218 217	Molecular Inorganic	Precursor Precursors	Compound TiI4 TiBr4 ZrI4 ZrBr4 HfI4 VI2 VCl4 NbCl5 NbBr5 TaCl5 TaF5 CrF2 CrCl2 MoF5 MoCl5 WF6	Reference 225 275 273 220 145 217 235 168,170-180 168,170-180 168,170-180 165,162,219- 224 80 81 156 157-163 237-251 252-257
	(acac)Rh(CO) ₂ ($\eta^{5}-C_{5}H_{5}$)Rh(C ₂ H ₄) ₂ Rh(tfac) ₃ Rh ₂ Cl ₂ (CO) ₄ Rh($\eta^{5}-C_{5}H_{5}$)(CO) ₂ Rh($\eta^{5}-C_{3}H_{5}$)(1,5-COD) Rh(η^{5} -allyl)(CO) ₂ Ru(η^{5} -allyl)(CO) ₂ Ru(hfb)(CO) ₄ Ru($\eta^{5}-C_{3}H_{5}$) ₂ Ru(acac) ₂ TaCl ₅	147,211,214 215 216 213 213 213 213 213 217 187 217,218 217 145,162,219-223	Molecular Inorganic	Precursor Precursors	Compound Til4 TiBr4 ZrI4 ZrBr4 HfI4 VI2 VCl4 NbCl5 NbBr5 TaCl5 TaF5 CrF2 CrC12 MoF5 MoCl5	Reference 225 275 273 220 145 217 235 168,170-180 175,150,180,180175,150,180,180,180,180,180,180,180150,180,180,180150,10
	(acac)Rh(CO) ₂ ($\eta^{5}-C_{5}H_{5}$)Rh(C ₂ H ₄) ₂ Rh(tfac) ₃ Rh ₂ Cl ₂ (CO) ₄ Rh($\eta^{5}-C_{5}H_{5}$)(CO) ₂ Rh($\eta^{5}-C_{3}H_{5}$)(1,5-COD) Rh(η^{5} -allyl)(CO) ₂ Ru($\eta^{5}-allyl$)(CO) ₂ Ru(hfb)(CO) ₄ Ru($\eta^{5}-C_{3}H_{5}$) ₂ Ru(acac) ₂ TaCl ₅ TaF ₅	147,211,214 215 216 213 213 213 213 213 217 187 217,218 217 145,162,219-223 224	Molecular Inorganic	Precursor Precursors	Compound Til ₄ TiBr ₄ Zrl ₄ ZrBr ₄ Hfl ₄ Vl ₂ VCl ₄ NbCl ₅ NbBr ₅ TaCl ₅ TaCl ₅ TaCl ₅ TaF ₅ CrF ₂ CrCf ₂ CrCf ₂ MoC ₅ WF ₆ WCl ₆ WBr ₆ ReF ₆	Reference 225 275 273 220 145 217 235 168,170-180 168,170-180 145,162,219- 224 80 81 156 157-163 237-251 252-257 258 202-205
	(acac)Rh(CO) ₂ (η^{5} -C ₅ H ₅)Rh(C ₂ H ₄) ₂ Rh(tfac) ₃ Rh ₂ Cl ₂ (CO) ₄ Rh(η^{5} -C ₅ H ₅)(CO) ₂ Rh(η^{5} -C ₃ H ₅)(1,5-COD) Rh(η^{5} -allyl)(CO) ₂ Ru(η^{5} -allyl)(CO) ₂ Ru(hfb)(CO) ₄ Ru(η^{5} -C ₃ H ₅) ₂ Ru(acac) ₂ TaCl ₅	147,211,214 215 216 213 213 213 213 213 217 187 217,218 217 145,162,219-223	Molecular Inorganic	Precursor Precursors	Compound TiI ₄ TiBr ₄ ZrI ₄ ZrBr ₄ HfI ₄ VI ₂ VCI ₄ NbCl ₅ NbBr ₅ TaCl ₅ TaCl ₅ TaF ₅ CrF ₂ CrCl ₂ MoF ₅ MoCl ₅ WF ₆ WCl ₆ WBr ₆ ReF ₆ ReCl ₅	Reference 225 275 273 220 145 217 235 168,170-180 100,180 100,
	(acac)Rh(CO) ₂ ($\eta^{5}-C_{5}H_{5}$)Rh(C ₂ H ₄) ₂ Rh(tfac) ₃ Rh ₂ Cl ₂ (CO) ₄ Rh($\eta^{5}-C_{5}H_{5}$)(CO) ₂ Rh($\eta^{5}-C_{3}H_{5}$)(1,5-COD) Rh(η^{5} -allyl)(CO) ₂ Ru($\eta^{5}-allyl$)(CO) ₂ Ru(hfb)(CO) ₄ Ru($\eta^{5}-C_{3}H_{5}$) ₂ Ru(acac) ₂ TaCl ₅ TaF ₅	147,211,214 215 216 213 213 213 213 213 217 187 217,218 217 145,162,219-223 224	Molecular Inorganic	Precursor Precursors	Compound Til ₄ TiBr ₄ Zrl ₄ ZrBr ₄ Hfl ₄ VI ₂ VCl ₄ NbCl ₅ NbBr ₅ TaCl ₅ TaCl ₅ TaF ₂ CrCl ₂ MoF ₅ MoCl ₅ WF ₆ WCl ₆ WBr ₆ ReF ₆ ReCl ₅ FeF ₃	Reference 225 275 273 220 145 217 235 168,170-180 168,170-180 145,162,219- 224 80 81 156 157-163 237-251 252-257 258 202-205
Ta ⁶⁹	(acac)Rh(CO) ₂ ($\eta^{5}-C_{5}H_{5}$)Rh(C ₂ H ₄) ₂ Rh(tfac) ₃ Rh ₂ Cl ₂ (CO) ₄ Rh($\eta^{5}-C_{5}H_{5}$)(CO) ₂ Rh($\eta^{5}-C_{3}H_{5}$)(1,5-COD) Rh(η^{5} -allyl)(CO) ₂ Ru($\eta^{5}-allyl$)(CO) ₂ Ru(hfb)(CO) ₄ Ru($\eta^{5}-C_{3}H_{5}$) ₂ Ru(acac) ₂ TaCl ₅ TaF ₅	147,211,214 215 216 213 213 213 213 213 217 187 217,218 217 145,162,219-223 224	Molecular Inorganic	Precursor Precursors	Compound TiI ₄ TiBr ₄ ZrI ₄ ZrBr ₄ HfI ₄ VI ₂ VCI ₄ NbCl ₅ NbBr ₅ TaCl ₅ TaCl ₅ TaF ₅ CrF ₂ CrCl ₂ MoF ₅ MoCl ₅ WF ₆ WCl ₆ WBr ₆ ReF ₆ ReCl ₅	Reference 225 275 273 220 145 217 235 168,170-180 168,170-180 145,162,219 224 80 81 156 157-163 237-251 252-257 258 202-205 203 140 186 70,71
	(acac)Rh(CO) ₂ ($\eta^{5}-C_{5}H_{5}$)Rh(C ₂ H ₄) ₂ Rh(tfac) ₃ Rh ₂ Cl ₂ (CO) ₄ Rh($\eta^{5}-C_{5}H_{5}$)(CO) ₂ Rh($\eta^{5}-C_{5}H_{5}$)(1,5-COD) Rh(η^{5} -allyl)(CO) ₂ Ru(η^{5} -allyl)(CO) ₂ Ru(htb)(CO) ₄ Ru($\eta^{5}-C_{5}H_{5}$) ₂ Ru(acac) ₂ TaCl ₅ TaF ₅ Ta(CO) ₅	147,211,214 215 216 213 213 213 213 217 187 217,218 217 145,162,219-223 224 149	Molecular Inorganic	Precursor Precursors	Compound TiI ₄ TiBr ₄ ZrI ₄ ZrBr ₄ HfI ₄ VI ₂ VCI ₄ NbCl ₅ NbBr ₅ TaCl ₅ TaCl ₅ TaF ₅ CrF ₂ CrCl ₂ MoF ₅ MoC ₅ WF ₆ WCI ₆ WBr ₆ ReF ₆ ReC ₁₅ FeF ₃ OsCl ₄ CoCl ₂ [(PF ₃) ₂ RhCl] ₂	Reference 225 275 273 220 145 217 235 168,170-180 168,170-180 168,170-180 165,162,219 224 80 81 156 157-163 237-251 252-257 258 202-205 203 140 186 70,71 209
Ta ⁶⁹	(acac)Rh(CO) ₂ ($\eta^{5}-C_{5}H_{5}$)Rh(C ₂ H ₄) ₂ Rh(tfac) ₃ Rh ₂ Cl ₂ (CO) ₄ Rh($\eta^{5}-C_{5}H_{5}$)(CO) ₂ Rh($\eta^{5}-C_{5}H_{5}$)(1,5-COD) Rh(η^{5} -allyl)(CO) ₂ Ru ₃ (CO) ₁₂ Ru ₄ (hfb)(CO) ₄ Ru($\eta^{5}-C_{5}H_{5}$) ₂ Ru(acac) ₂ TaCl ₅ TaF ₅ Ta(CO) ₅ TiI ₄	147,211,214 215 216 213 213 213 213 213 217 187 217,218 217 145,162,219-223 224	Molecular Inorganic	Precursor Precursors	Compound Til ₄ TiBr ₄ Zrl ₄ Zrl ₇ Hfl ₄ Vl ₂ VCl ₄ NbCl ₅ NbBr ₅ TaCl ₅ TaCl ₅ TaCs CrCl ₂ MoF ₅ MoCl ₅ WF ₆ WCl ₆ WBr ₆ ReF ₃ OsCl ₄ CoCl ₂ [(PF ₃) ₂ RhCl] ₂ IrCl ₄	Reference 225 275 273 220 145 217 235 168,170-180 145,162,219- 224 80 81 156 157-163 237-251 252-257 258 202-205 203 140 186 70,71
Ta ⁶⁹	$(acac)Rh(CO)_{2} (n^{5}-C_{3}H_{3})Rh(C_{2}H_{4})_{2} Rh(tfac)_{3} Rh_{2}Cl_{2}(CO)_{4} Rh(n^{5}-C_{3}H_{5})(CO)_{2} Rh(n^{5}-C_{3}H_{5})(1,5-COD) Rh(n^{5}-allyl)(CO)_{2} Ru_{3}(CO)_{12} Ru_{4}(hfb)(CO)_{4} Ru(nf^{5}-C_{3}H_{5})_{2} Ru(acac)_{2} TaCl_{5} TaF_{5} Ta(CO)_{5} TiI_{4} TiBr_{4} $	147,211,214 215 216 213 213 213 213 217 187 217,218 217 145,162,219-223 224 149	Molecular Inorganic	Precursor Precursors	Compound Til ₄ TiBr ₄ ZrI ₄ ZrBr ₄ HfI ₄ VI ₂ VCI ₄ NbCl ₅ NbBr ₅ TaCl ₅ TaCl ₅ TaF ₅ CrF ₂ CrCl ₂ MoF ₅ MoCl ₅ WF ₆ WCl ₆ WBr ₆ ReF ₆ ReC ₅ FeF ₃ OsCl ₄ CoCl ₂ [(PF ₃) ₂ RhCl] ₂ IrCl ₄ IrBr ₃	Reference 225 275 273 220 145 217 235 168,170-180 168,170-180 168,170-180 168,170-180 165,162,219- 224 80 81 156 157-163 237-251 252-257 258 202-205 203 140 186 70,71 209 146
Ta ⁶⁹	$(acac)Rh(CO)_{2}$ $(n^{5}-C_{5}H_{5})Rh(C_{2}H_{4})_{2}$ Rh(tfac)_{3} Rh_{2}Cl_{2}(CO)_{4} Rh(n^{5}-C_{5}H_{5})(CO)_{2} Rh(n^{5}-C_{3}H_{5})(1,5-COD) Rh(n^{5}-allyl)(CO)_{2} $Ru_{3}(CO)_{12}$ Ru(hfb)(CO)_{4} Ru(nfb)(CO)_{4} Ru(nf^{5}-C_{3}H_{5})_{2} Ru(acac)_{2} $TaCl_{5}$ TaF_{5} Ta(CO)_{5} TiI_{4} $TiBr_{4}$ TiCl_{4}	147,211,214 215 216 213 213 213 213 213 217 187 217,218 217 145,162,219-223 224 149 225 226	Molecular Inorganic	Precursor Precursors	Compound Til ₄ TiBr ₄ Zrl ₄ Zrl ₇ Hfl ₄ Vl ₂ VCl ₄ NbCl ₅ NbBr ₅ TaCl ₅ TaCl ₅ TaCs CrCl ₂ MoF ₅ MoCl ₅ WF ₆ WCl ₆ WBr ₆ ReF ₃ OsCl ₄ CoCl ₂ [(PF ₃) ₂ RhCl] ₂ IrCl ₄	Reference 225 275 273 220 145 217 235 168,170-180 168,170-180 168,170-180 168,170-180 145,162,219- 224 80 81 156 157-163 237-251 252-257 258 202-205 203 140 186 70,71 209 146 146
Ta ⁶⁹	$(acac)Rh(CO)_{2}$ $(n^{5}-C_{5}H_{5})Rh(C_{2}H_{4})_{2}$ Rh(tfac)_{3} Rh_{2}Cl_{2}(CO)_{4} Rh(n^{5}-C_{5}H_{5})(CO)_{2} Rh(n^{5}-C_{3}H_{5})(1,5-COD) Rh(n^{5}-allyl)(CO)_{2} $Ru_{3}(CO)_{12}$ Ru(hfb)(CO)_{4} Ru(n^{5}-C_{5}H_{5})_{2} Ru(acac)_{2} $TaCl_{5}$ TaF_{5} Ta(CO)_{5} TiI_{4} $TiBr_{4}$ TiCl_{4} (n^{5}-C_{5}H_{5})_{2}TiR_{2}	147,211,214 215 216 213 213 213 213 213 217 187 217,218 217 145,162,219-223 224 149 225 226 227 228-231	Molecular Inorganic	Precursor Precursors	Compound TiI ₄ TiBr ₄ ZrI ₄ ZrI ₄ ZrBr ₄ HfI ₄ VI ₂ VCl ₄ NbCl ₅ NbBr ₅ TaCl ₅ TaCl ₅ TaCl ₅ TaCl ₅ CrF ₂ CrCl ₂ MoF ₅ MoCl ₅ WF ₆ WCl ₆ WBr ₆ ReF ₆ ReF ₆ ReCl ₅ FeF ₃ OsCl ₄ CoCl ₂ [(PF ₃) ₂ RhCl] ₂ IrCl ₄ IrBr ₃ IrF ₆	Reference 225 275 273 220 145 217 235 168,170-180 169,170-180 169,170-180 175,163 237-251 252-257 258 202-205 203 140 186 70,711 209 146 146 146
Ta ⁶⁹	(acac)Rh(CO) ₂ ($\eta^{5}-C_{5}H_{5}$)Rh(C ₂ H ₄) ₂ Rh(tfac) ₃ Rh ₂ Cl ₂ (CO) ₄ Rh($\eta^{5}-C_{5}H_{5}$)(CO) ₂ Rh($\eta^{5}-C_{5}H_{5}$)(1,5-COD) Rh($\eta^{5}-allyl$)(CO) ₂ Ru ₃ (CO) ₁₂ Ru ₄ (hfb)(CO) ₄ Ru($\eta^{5}-C_{5}H_{5}$) ₂ Ru(acac) ₂ TaCl ₅ TaF ₅ Ta(CO) ₅ TiI ₄ TiBr ₄ TiCl ₄ ($\eta^{5}-C_{5}H_{5}$) ₂ TiR ₂ "($\eta^{5}-C_{5}H_{5}$) ₂ Ti"	147,211,214 215 216 213 213 213 213 213 217 187 217,218 217 145,162,219-223 224 149 225 226 227 228-231 232	Molecular Inorganic	Precursor Precursors	Compound TiI ₄ TiBr ₄ ZrI ₄ ZrI ₄ ZrBr ₄ HfI ₄ VI ₂ VCl ₄ NbCl ₅ NbBr ₅ TaCl ₅ TaCl ₅ TaCl ₅ TaCl ₅ CrF ₂ CrCl ₂ MoF ₅ MoCl ₅ WF ₆ WCl ₆ WBr ₆ ReF ₆ ReF ₆ ReCl ₅ FeF ₃ OsCl ₄ CoCl ₂ [(PF ₃) ₂ RhCl] ₂ IrCl ₄ IrBr ₃ IrF ₆	Reference 225 275 273 220 145 217 235 168,170-180 169,170-180 169,170-180 175,163 237-251 252-257 258 202-205 203 140 186 70,711 209 146 146 146
Ta ⁶⁹	$(acac)Rh(CO)_{2}$ $(n^{5}-C_{5}H_{5})Rh(C_{2}H_{4})_{2}$ Rh(tfac)_{3} Rh_{2}Cl_{2}(CO)_{4} Rh(n^{5}-C_{5}H_{5})(CO)_{2} Rh(n^{5}-C_{3}H_{5})(1,5-COD) Rh(n^{5}-allyl)(CO)_{2} $Ru_{3}(CO)_{12}$ Ru(hfb)(CO)_{4} Ru(n^{5}-C_{5}H_{5})_{2} Ru(acac)_{2} $TaCl_{5}$ TaF_{5} Ta(CO)_{5} TiI_{4} $TiBr_{4}$ TiCl_{4} (n^{5}-C_{5}H_{5})_{2}TiR_{2}	147,211,214 215 216 213 213 213 213 213 217 187 217,218 217 145,162,219-223 224 149 225 226 227 228-231	Molecular Inorganic Metal Hal	Precursor Precursors	Compound TiI ₄ TiBr ₄ ZrI ₄ ZrBr ₄ HfI ₄ VI ₂ VCI ₄ NbCl ₅ NbBr ₅ TaCl ₅ TaCl ₅ TaC ₅ CrF ₂ CrCl ₂ MoF ₅ MoC ₅ WF ₆ WCI ₆ WBr ₆ ReF ₆ ReC ₁₅ FeF ₃ OsCl ₄ CoCl ₂ [(PF ₃) ₂ RhCl] ₂ IrCl ₄ IrBr ₃ IrF ₆ IrCl ₃	Reference 225 275 273 220 145 217 235 168,170-180 169,170-180 169,170-180 175,163 237-251 252-257 258 202-205 203 140 186 70,711 209 146 146 146
Ta ⁶⁹	(acac)Rh(CO) ₂ ($\eta^{5}-C_{5}H_{5}$)Rh(C ₂ H ₄) ₂ Rh(tfac) ₃ Rh ₂ Cl ₂ (CO) ₄ Rh($\eta^{5}-C_{5}H_{5}$)(CO) ₂ Rh($\eta^{5}-C_{5}H_{5}$)(1,5-COD) Rh($\eta^{5}-allyl$)(CO) ₂ Ru ₃ (CO) ₁₂ Ru ₄ (hfb)(CO) ₄ Ru($\eta^{5}-C_{5}H_{5}$) ₂ Ru(acac) ₂ TaCl ₅ TaF ₅ Ta(CO) ₅ TiI ₄ TiBr ₄ TiCl ₄ ($\eta^{5}-C_{5}H_{5}$) ₂ TiR ₂ "($\eta^{5}-C_{5}H_{5}$) ₂ Ti"	147,211,214 215 216 213 213 213 213 213 217 187 217,218 217 145,162,219-223 224 149 225 226 227 228-231 232	Molecular Inorganic Metal Hal	Precursor Precursors lides	Compound Til ₄ TiBr ₄ Zrl ₄ Zrl ₄ ZrBr ₄ Hfl ₄ VI ₂ VCl ₄ NbCl ₅ NbBr ₅ TaCl ₅ TaF ₅ CrF ₂ CrCl ₂ MoF ₅ MoCl ₅ WF ₆ WCl ₆ WBr ₆ ReF ₆ ReCl ₅ FeF ₃ OsCl ₄ CoCl ₂ [(PF ₃) ₂ RhCl] ₂ IrCl ₃ IrF ₆ IrCl ₃	Reference 225 275 273 220 145 217 235 168,170-180 169,170-180 169,170-180 175,163 237-251 252-257 258 202-205 203 140 186 70,711 209 146 146 146
Ta ⁶⁹	(acac)Rh(CO) ₂ ($\eta^{5}-C_{5}H_{5}$)Rh(C ₂ H ₄) ₂ Rh(tfac) ₃ Rh ₂ Cl ₂ (CO) ₄ Rh($\eta^{5}-C_{5}H_{5}$)(CO) ₂ Rh($\eta^{5}-C_{5}H_{5}$)(1,5-COD) Rh($\eta^{5}-allyl$)(CO) ₂ Ru ₃ (CO) ₁₂ Ru ₄ (hfb)(CO) ₄ Ru($\eta^{5}-C_{5}H_{5}$) ₂ Ru(acac) ₂ TaCl ₅ TaF ₅ Ta(CO) ₅ TiI ₄ TiBr ₄ TiCl ₄ ($\eta^{5}-C_{5}H_{5}$) ₂ TiR ₂ "($\eta^{5}-C_{5}H_{5}$) ₂ Ti"	147,211,214 215 216 213 213 213 213 213 217 187 217,218 217 145,162,219-223 224 149 225 226 227 228-231 232 233,234	Molecular Inorganic Metal Hal	Precursor Precursors lides	Compound Til ₄ TiBr ₄ Zrl ₄ ZrBr ₄ Hfl ₄ VI ₂ VCl ₄ NbCl ₅ NbBr ₅ TaCl ₅ TaCl ₅ TaF ₅ CrF ₂ CrCl ₂ MoF ₅ MoCl ₅ WF ₆ WCl ₆ WBr ₆ ReF ₆ ReF ₆ ReCl ₅ FeF ₃ OsCl ₄ CoCl ₂ [(PF ₃) ₂ RhCl] ₂ IrCl ₄ IrBr ₃ IrF ₆ IrCl ₃ Ru(acac) ₂	Reference 225 275 273 220 145 217 235 168,170-180 145,162,219- 224 80 81 156 157-163 237-251 252-257 258 202-205 203 140 186 70,71 209 146 146 146
Ta ⁶⁹ Ti ⁶⁹	$(acac)Rh(CO)_{2}$ $(\eta^{5}-C_{5}H_{5})Rh(C_{2}H_{4})_{2}$ Rh(tfac)_{3} Rh_{2}Cl_{2}(CO)_{4} Rh(\eta^{5}-C_{5}H_{5})(CO)_{2} Rh($\eta^{5}-C_{5}H_{5}$)(1,5-COD) Rh($\eta^{5}-allyl$)(CO)_{2} Ru($\eta^{5}-c_{3}H_{5}$)_{2} Ru($\eta^{5}-C_{5}H_{5}$)_{2} Ru($acac$)_{2} TiI_{4} TiBr_{4} TiCl_{4} $(\eta^{5}-C_{5}H_{5})_{2}Ti^{*}$ $(\eta^{7}-C_{5}H_{5})_{2}Ti^{*}$ $(\eta^{7}-C_{5}H_{5})_{2}Ti^{*}$ $(\eta^{7}-C_{5}H_{5})_{2}Ti^{*}$	147,211,214 215 216 213 213 213 213 217 187 217,218 217 145,162,219-223 224 149 225 226 227 228-231 232 233,234	Molecular Inorganic Metal Hal	Precursor Precursors lides	Compound TiI ₄ TiBr ₄ ZrI ₄ ZrBr ₄ HfI ₄ VI ₂ VCI ₄ NbCl ₅ NbBr ₅ TaCl ₅ TaC ₅ TaF ₅ CrF ₂ CrCl ₂ MoF ₅ MoCl ₅ WF ₆ WCl ₆ WBr ₆ ReF ₆ ReCl ₅ FeF ₃ OsCl ₄ CoCl ₂ [(PF ₃) ₂ RhCl] ₂ IrCl ₄ IrBr ₃ IrF ₆ IrCl ₃ Ru(acac) ₂ Co(acac) ₂ Rh(tfac) ₃	Reference 225 275 273 220 145 217 235 168,170-180 168,170-180 168,170-180 168,170-180 165,162,219 224 80 81 156 157-163 237-251 252-257 258 202-205 203 140 186 70,71 209 146 146 146 146
Ta ⁶⁹ Ti ⁶⁹	(acac)Rh(CO) ₂ ($\eta^{5}-C_{5}H_{5}$)Rh(C ₂ H ₄) ₂ Rh(tfac) ₃ Rh ₂ Cl ₂ (CO) ₄ Rh($\eta^{5}-C_{5}H_{5}$)(CO) ₂ Rh($\eta^{5}-C_{3}H_{5}$)(1,5-COD) Rh($\eta^{5}-allyl$)(CO) ₂ Ru($\eta^{5}-C_{3}H_{5}$) ₂ Ru(hfb)(CO) ₄ Ru($\eta^{5}-C_{5}H_{5}$) ₂ Ru(acac) ₂ TaCl ₅ TaF ₅ Ta(CO) ₅ TiI ₄ TiBr ₄ TiCl ₄ ($\eta^{5}-C_{5}H_{5}$) ₂ TiR ₂ "($\eta^{5}-C_{5}H_{5}$) ₂ TiR ₂ "($\eta^{5}-C_{5}H_{5}$) ₂ Ti" ($\eta^{7}-C_{7}H_{7}$)Ti($\eta^{5}-C_{5}H_{5}$)	147,211,214 215 216 213 213 213 213 213 217 187 217,218 217 145,162,219-223 224 149 225 226 227 228-231 232 233,234	Molecular Inorganic Metal Hal	Precursor Precursors lides	Compound TiI ₄ TiBr ₄ ZrI ₄ ZrBr ₄ HfI ₄ VI ₂ VCI ₄ NbCl ₅ NbBr ₅ TaCl ₅ TaCl ₅ TaC ₅ CrF ₂ CrCI ₂ MoF ₅ MoC ₅ WF ₆ WCI ₆ WBr ₆ ReF ₆ ReC ₁₅ FeF ₃ OsCl ₄ CoCl ₂ [(PF ₃) ₂ RhCl] ₂ IrCl ₄ IrBr ₃ IrF ₆ IrCl ₃ Ru(acac) ₂ Co(acac) ₂	Reference 225 275 273 220 145 217 235 168,170-180 168,170-180 168,170-180 165,162,219 224 80 81 156 157-163 237-251 252-257 258 202-205 203 140 186 70,71 209 146 146 146

0948-1907/95/0107-0011 \$ 5.00 + .25/0 © VCH Verlagsgesellschaft mbH, D-69469 Weinheim, 1995 Chem. Vap. Deposition 1995, 1, No. 1

	(acac)Ir(1,5-COD)	149
	Pt(acac) ₂	198-201
	Pt(hfac) ₂	198-201 191-193
	(acac)PtMe ₃ Cu(tfac) ₂	106
	$Cu(acac)_2$	107-110
	Cu(dpm) ₂	98
	Cu(fod) ₂	98
	Cu(acim) ₂	111 111
	Cu(acen)	98
	Cu(ppm) ₂ (hfacCu) ₂ cyclooctatetraene	4
	Ag(acac)	14
	(alkene)Ag(acac)	18
	$Me_2Au(hfac)$	58-64
	$Me_2Au(tfac)$	65 65
	Me ₂ Au(acac)	113-120
	$(\beta$ -diketonate)CuPR ₃	115,120-132
	(β-diketonate)Cu(olefin)	
	$(\beta$ -diketonate)Cu(alkyne)	115,120,134-136
Metal β-Ketoiminates	Cu(nona-F) ₂	112
	(β-ketoiminate)CuL	119
Metal Hydrides	Trimethylamine alane	46-51
	(TMÅA)	
	Triethylamine alane (TEAA) Dimethylethylamine alane (DMEAA)	52-54 55,56
	Trimethylamine	57
	aluminaborane (TMAAB)	
Metal Alkoxides	(t-BuO)Cu(PMe ₃)	137
	$[Cu(O-t-Bu)]_4$	139
	$Cu(O-t - Bu)(OR_F)$	5
Metal Amides	$Cr(N-i-Pr_2)_3$	89
Metal Carboxylates	$(1,5-COD)Ir(OAc)_2$	151
litetui euroonyniteo	Ag(trifluoroacetate)	14
	Ag(acetate)	15
	Ag(neodecanoate)	16
Organometallic Precursors		
		276
Metal Alkyls	Zr(CH ₂ -t-Bu) ₄	276
Metal Alkyls	$Zr(CH_2-t-Bu)_4$ $Cr(CH_2CMe_3)_4$	276 89
Metal Alkyls	$Cr(CH_2CMe_3)_4$ Co(CO) ₄	89 73,74,77
Metal Alkyls	$Cr(CH_2CMe_3)_4$ $Co(CO)_4$ $CF_3Co(CO)_4$	89 73,74,77 77
Metal Alkyls	$Cr(CH_2CMe_3)_4$ $Co(CO)_4$ $CF_3Co(CO)_4$ $(1,5-COD)PtMe_2$	89 73,74,77 77 191-193
Metal Alkyls	$\begin{array}{l} Cr(CH_{2}CMe_{3})_{4}\\ Co(CO)_{4}\\ CF_{3}Co(CO)_{4}\\ (1,5\text{-}COD)PtMe_{2}\\ (1,5\text{-}COD)PtMe(\eta^{1}\text{-}C_{5}H_{5}) \end{array}$	89 73,74,77 77 191-193 191-193
Metal Alkyls	$\begin{array}{c} Cr(CH_2CMe_3)_4\\ Co(CO)_4\\ CF_3Co(CO)_4\\ (1,5\text{-}COD)PtMe_2\\ (1,5\text{-}COD)PtMe(\eta^1\text{-}C_5H_3)\\ CF_3AuPMe_3 \end{array}$	89 73,74,77 77 191-193 191-193 67
Metal Alkyls	$\begin{array}{c} Cr(CH_{2}CMe_{3})_{4}\\ Co(CO)_{4}\\ CF_{3}Co(CO)_{4}\\ (1,5\text{-}COD)PtMe_{2}\\ (1,5\text{-}COD)PtMe(\eta^{1}\text{-}C_{5}H_{5})\\ CF_{3}AuPMe_{3}\\ (CF_{3})_{3}AuPMe_{3}\\ \end{array}$	89 73,74,77 77 191-193 191-193
Metal Alkyls	$\begin{array}{c} Cr(CH_2CMe_3)_4\\ Co(CO)_4\\ CF_3Co(CO)_4\\ (1,5\text{-}COD)PtMe_2\\ (1,5\text{-}COD)PtMe(\eta^1\text{-}C_5H_5)\\ CF_3AuPMe_3\\ (CF_3)_3AuPMe_3\\ [(CH_3)_2Au(OSiMe_3)]_2 \end{array}$	89 73,74,77 77 191-193 191-193 67 67
Metal Alkyls	$\begin{array}{c} Cr(CH_{2}CMe_{3})_{4}\\ Co(CO)_{4}\\ CF_{3}Co(CO)_{4}\\ (1,5\text{-}COD)PtMe_{2}\\ (1,5\text{-}COD)PtMe(\eta^{1}\text{-}C_{5}H_{5})\\ CF_{3}AuPMe_{3}\\ (CF_{3})_{3}AuPMe_{3}\\ \end{array}$	89 73,74,77 77 191-193 191-193 67 67 68 68 66 66 66
Metal Alkyls	$\begin{array}{c} Cr(CH_2CMe_3)_4\\ Co(CO)_4\\ (1,5-COD)PtMe_2\\ (1,5-COD)PtMe(\eta^{1}-C_5H_5)\\ CF_3AuPMe_3\\ (CF_3)_3AuPMe_3\\ [(CH_3)_2Au(OSiMe_3)]_2\\ MeAuCNMe\\ MeAuPMe_3\\ Me_3AuPMe_3\\ \end{array}$	89 73,74,77 77 191-193 191-193 67 67 68 66 66 66 66 67
Metal Alkyis	$Cr(CH_2CMe_3)_4$ $Co(CO)_4$ $(1,5-COD)PtMe_2$ $(1,5-COD)PtMe(\eta^1-C_5H_5)$ CF_3AuPMe_3 $(CF_3)_3AuPMe_3$ $[(CH_3)_2Au(OSiMe_3)]_2$ $MeAuCNMe$ $MeAuPMe_3$ Me_3AuPMe_3 $Trimethylaluminum (TMA)$	89 73,74,77 77 191-193 191-193 67 67 67 68 66 66 67 20,21
Metal Alkyis	$Cr(CH_2CMe_3)_4$ $Co(CO)_4$ $CF_3Co(CO)_4$ $(1,5-COD)PtMe_2$ $(1,5-COD)PtMe_3$ $(CF_3)_3AuPMe_3$ $[(CH_3)_2Au(OSiMe_3)]_2$ $MeAuCNMe$ $MeAuPMe_3$ Me_3AuPMe_3 $Trimethylaluminum (TMA)$ $Trinethylaluminum (TEA)$	89 73,74,77 77 191-193 191-193 67 67 68 66 66 66 66 67 20,21 22-26
Metal Alkyls	$Cr(CH_2CMe_3)_4 \\Co(CO)_4 \\(1,5-COD)PtMe_2 \\(1,5-COD)PtMe_2 \\(1,5-COD)PtMe_3 \\(CF_3)_3AuPMe_3 \\(CF_3)_3AuPMe_3 \\[(CH_3)_2Au(OSiMe_3)]_2 \\MeAuCNMe \\MeAuPMe_3 \\Me_3AuPMe_3 \\Trimethylaluminum (TMA) \\Triethylaluminum (TEA) \\Triisobutylaluminum (TIBA) \\$	89 73,74,77 77 191-193 191-193 67 67 67 68 66 66 67 20,21
Metal Alkyls	$Cr(CH_2CMe_3)_4$ $Co(CO)_4$ $CF_3Co(CO)_4$ $(1,5-COD)PtMe_2$ $(1,5-COD)PtMe_3$ $(CF_3)_3AuPMe_3$ $[(CH_3)_2Au(OSiMe_3)]_2$ $MeAuCNMe$ $MeAuPMe_3$ Me_3AuPMe_3 $Trimethylaluminum (TMA)$ $Trinethylaluminum (TEA)$	89 73,74,77 77 191-193 191-193 67 67 68 66 66 66 66 67 20,21 22,26 27,28
Metal Alkyls	$Cr(CH_2CMe_3)_4 \\Co(CO)_4 \\(1,5-COD)PtMe_2 \\(1,5-COD)PtMe_0 \\(1,5-COD)PtMe_0 \\(1,5-COD)PtMe_3 \\(CF_3)_3AuPMe_3 \\[(CH_3)_2Au(OSiMe_3)]_2 \\MeAuCNMe \\MeAuPMe_3 \\Me_3AuPMe_3 \\Trimethylaluminum (TMA) \\Triethylaluminum (TEA) \\Triisobutylaluminum (TEA) \\Diethylaluminum (TIBA) \\Diethylaluminum (TIBA) \\$	89 73,74,77 77 191-193 191-193 67 67 68 66 66 66 66 67 20,21 22,26 27,28
	$Cr(CH_2CMe_3)_4$ $Co(CO)_4$ $CF_3Co(CO)_4$ $(1,5-COD)PtMe_2$ $(1,5-COD)PtMe_3$ $(CF_3)_3AuPMe_3$ $(CF_3)_3AuPMe_3$ $[(CH_3)_2Au(OSiMe_3)]_2$ $MeAuPMe_3$ Me_3AuPMe_3 Me_3AuPMe_3 $Trimethylaluminum (TMA)$ $Triethylaluminum (TEA)$ $Triisobutylaluminum (TIBA)$ $Diethylaluminum chloride$ $(DEACI)$ $Dimethylaluminum hydride$ $(DMAH)$ $(hfac)Cu(alkene)$	89 73,74,77 77 191-193 191-193 67 67 67 68 66 66 66 67 20,21 22-26 22,24,29-33 34-45
	$Cr(CH_2CMe_3)_4 \\Co(CO)_4 \\(1,5-COD)PtMe_2 \\(1,5-COD)PtMe_2 \\(1,5-COD)PtMe_3 \\(CF_3)_3AuPMe_3 \\(CF_3)_3AuPMe_3 \\[(CH_3)_2Au(OSiMe_3)]_2 \\MeAuCNMe \\MeAuPMe_3 \\Me_3AuPMe_3 \\Me_3AuPMe_3 \\Trimethylaluminum (TEA) \\Triisobutylaluminum (TEA) \\Triisobutylaluminum (TIBA) Diethylaluminum (TIBA) Diethylaluminum (TIBA) Diethylaluminum hydride (DEACl) \\Dimethylaluminum hydride (DMAH) \\(hfac)Cu(alkene) \\(1,5-COD)W(CO)_4$	89 73,74,77 77 191-193 191-193 67 67 67 68 66 66 66 67 20,21 22-26 27,28 22,24,29-33 34-45
Metal Alkenes	$Cr(CH_2CMe_3)_4 \\Co(CO)_4 \\(1,5-COD)PtMe_2 \\(1,5-COD)PtMe_3 \\(CF_3)_2AuPMe_3 \\(CF_3)_3AuPMe_3 \\[(CH_3)_2Au(OSiMe_3)]_2 \\MeAuCNMe \\MeAuPMe_3 \\Me_3AuPMe_3 \\Me_3AuPMe_3 \\Me_3AuPMe_3 \\Trimethylaluminum (TEA) \\Tritisobutylaluminum (TEA) \\Tritisobutylaluminum (TIBA) \\Diethylaluminum chloride \\(DEACl) \\Dimethylaluminum hydride \\(DMAH) \\(hfac)Cu(alkene) \\(1,5-COD)W(CO)_4 \\(\eta^5-C_5H_5)Rh(C_2H_4)_2 \\$	89 73,74,77 77 191-193 191-193 67 67 68 66 66 66 67 20,21 22,26 27,28 22,24,29-33 34-45 125-132 270 215
Metal Alkenes	$\begin{array}{c} Cr(CH_2CMe_3)_4\\ Co(CO)_4\\ (I,5-COD)PtMe_2\\ (1,5-COD)PtMe_2\\ (1,5-COD)PtMe_3\\ (CF_3)_3AuPMe_3\\ (CF_3)_3AuPMe_3\\ [(CH_3)_2Au(OSiMe_3)]_2\\ MeAuCNMe\\ MeAuPMe_3\\ Me_3AuPMe_3\\ Me_3AuPMe_3\\ Me_3AuPMe_3\\ Trimethylaluminum (TMA)\\ Triethylaluminum (TEA)\\ Triisobutylaluminum (TEA)\\ Triisobutylaluminum (TBA)\\ Diethylaluminum chloride\\ (DEACl)\\ Dimethylaluminum hydride\\ (DMAH)\\ (hfac)Cu(alkene)\\ (1,5-COD)W(CO)_4\\ (\eta^5-C_5H_5)Rh(C_2H_4)_2\\ Mo(\eta^3-allyl)_4\\ \end{array}$	89 73,74,77 77 191-193 191-193 67 67 68 66 66 67 20,21 22.26 27,28 22.24,29-33 34-45 125-132 270 215
Metal Alkenes	$Cr(CH_2CMe_3)_4 \\Co(CO)_4 \\(1,5-COD)PtMe_2 \\(1,5-COD)PtMe_3 \\(CF_3)_2AuPMe_3 \\(CF_3)_3AuPMe_3 \\[(CH_3)_2Au(OSiMe_3)]_2 \\MeAuCNMe \\MeAuPMe_3 \\Me_3AuPMe_3 \\Me_3AuPMe_3 \\Me_3AuPMe_3 \\Trimethylaluminum (TEA) \\Tritisobutylaluminum (TEA) \\Tritisobutylaluminum (TIBA) \\Diethylaluminum chloride \\(DEACl) \\Dimethylaluminum hydride \\(DMAH) \\(hfac)Cu(alkene) \\(1,5-COD)W(CO)_4 \\(\eta^5-C_5H_5)Rh(C_2H_4)_2 \\$	89 73,74,77 77 191-193 191-193 67 67 68 66 66 67 20,21 22,26 22,28 22,24,29-33 34-45 125-132 270 215 267 267
Metal Alkenes	$\begin{array}{c} Cr(CH_2CMe_3)_4\\ Co(CO)_4\\ (I,5-COD)PtMe_2\\ (1,5-COD)PtMe_2\\ (1,5-COD)PtMe_3\\ (CF_3)_3AuPMe_3\\ (CF_3)_3AuPMe_3\\ [(CH_3)_2Au(OSiMe_3)]_2\\ MeAuCNMe\\ MeAuPMe_3\\ Me_3AuPMe_3\\ Me_3AuPMe_3\\ Me_3AuPMe_3\\ Trimethylaluminum (TMA)\\ Triethylaluminum (TEA)\\ Triisobutylaluminum (TEA)\\ Triisobutylaluminum (TBA)\\ Diethylaluminum chloride\\ (DEACl)\\ Dimethylaluminum hydride\\ (DMAH)\\ (hfac)Cu(alkene)\\ (1,5-COD)W(CO)_4\\ (\eta^5-C_5H_5)Rh(C_2H_4)_2\\ Mo(\eta^3-allyl)_4\\ \end{array}$	89 73,74,77 77 191-193 191-193 67 67 67 68 66 66 67 20,21 22,26 22,7,28 22,24,29-33 34-45 125-132 270 215 267 267 267 267 267
Metal Alkenes	$\begin{array}{c} Cr(CH_2CMe_3)_4\\ Co(CO)_4\\ (I,5-COD)PtMe_2\\ (1,5-COD)PtMe_2\\ (1,5-COD)PtMe_3\\ (CF_3)_3AuPMe_3\\ (CF_3)_3AuPMe_3\\ (CF_3)_3AuPMe_3\\ [(CH_3)_2Au(OSiMe_3)]_2\\ MeAuCNMe\\ MeAuPMe_3\\ Me_3AuPMe_3\\ Me_3AuPMe_3\\ Trimethylaluminum (TMA)\\ Triethylaluminum (TEA)\\ Triisobutylaluminum (TEA)\\ Triisobutylaluminum (TBA)\\ Diethylaluminum (TBA)\\ Diethylaluminum hydride\\ (DEACl)\\ Dimethylaluminum hydride\\ (DMAH)\\ (hfac)Cu(alkene)\\ (1,5-COD)W(CO)_4\\ (\eta^5-C_5H_5)Rh(C_2H_4)_2\\ Mo(\eta^3-allyl)_4\\ W(\eta^3-allyl)_4\\ \end{array}$	89 73,74,77 77 191-193 191-193 67 67 68 66 66 67 20,21 22,26 22,28 22,24,29-33 34-45 125-132 270 215 267 267
Metal Alkyls Metal Alkenes Metal Allyls	$\begin{array}{c} Cr(CH_2CMe_3)_4\\ Co(CO)_4\\ CF_3Co(CO)_4\\ (1,5-COD)PtMe_2\\ (1,5-COD)PtMe_2\\ (1,5-COD)PtMe_3\\ (CF_3)_3AuPMe_3\\ (CF_3)_3AuPMe_3\\ (CF_3)_3AuPMe_3\\ [(CH_3)_2Au(OSiMe_3)]_2\\ MeAuCNMe\\ MeAuPMe_3\\ Me_3AuPMe_3\\ Me_3AuPMe_3\\ Trimethylaluminum (TMA)\\ Triethylaluminum (TEA)\\ Triisobutylaluminum (TEA)\\ Triisobutylaluminum (TEA)\\ Triisobutylaluminum (TBA)\\ Diethylaluminum chloride\\ (DEACl)\\ Dimethylaluminum hydride\\ (DMAH)\\ (hfac)Cu(alkene)\\ (1,5-COD)W(CO)_4\\ (\eta^5-C_5H_5)Rh(C_2H_4)_2\\ Mo(\eta^3-allyl)_4\\ W(\eta^3-allyl)_4\\ Rh(\eta^3-allyl)_3\\ \end{array}$	89 73,74,77 77 191-193 191-193 67 67 67 68 66 66 67 20,21 22,26 22,7,28 22,24,29-33 34-45 125-132 270 215 267 267 267 267 267

Table 2. (Continued).

	CO)5	149
	CO) ₆	82-85
	CO) ₆	82-85,157,164-16 165,253,261-264
	CO) ₆ (CO) ₁₀	152-154
	CO)10	206-208
	(CO)5	185
	CO)5	141,142
	(CO) ₁₂	217
	nfb)(CO) ₄	187 72-74
	(CO) ₈	72-74
	(CO) ₁₂ o(CO) ₄	73,74
	$_{3}Co(CO)_{4}$	77
	CO) ₄	94,182,183
"T	n ⁵ -C5H5)2"	232
Fe	⁵ -C ₅ H ₅) ₂	77,144
	η ⁵ -C ₅ H ₅) ₂	217,218
	$n^{5}-C_{5}H_{5})_{2}$	77
		184
	$(^{5}-C_{5}H_{5})_{2}$	185
Ni	⁵ -C ₅ H ₄ Me) ₂	
(η [:]	C ₅ H ₅)V(CO) ₄	217
(η [:]	C5H5)Cr(CO)3H	89
(ŋ	$C_5H_5)W(CO)_3X$	269 277
••	$C_5H_5)_2WH_2$	271,272
	$C_5H_4CH_3)_2WH_2$	271
	$-C_5H_5)Fe(CO)_2]_2$	143
• •	$C_5H_5)Co(CO)_2$	77
		215
	C_5H_5)Rh(C_2H_4) ₂	215
••	C_5H_5)Rh(C_2H_4) ₂	151
	MeC_5H_4)Ir(1,5-COD)	151
(η ⁴	C_5H_5)Ir(1,5-COD)	
(η [:]	C ₅ H ₅)PtMe(CO)	191-193
(η	C ₅ H ₅)Pt(allyl)	191-193
	C ₅ H ₅)PtMe ₃	6,194-196
(n	C ₅ H ₄ Me)PtMe ₃	6,194-196
	C_5H_5)Cu(PMe ₃)	137,278
	$C_5H_5)Cu(CN-t-Bu)$	3
	C_5H_5)Cu(PR ₃)	137,138
•		19
(η·	$C_5H_5)Ag(PR_3)$	
Cr	⁶ -C ₆ H ₆) ₂	87,88
(η	$C_7H_8)Cr(CO)_3$	86
Cr	umene) ₂	87,88
	Me ₃ C ₆ H ₃)Mo(CO) ₃	149
••	$C_6H_6)M_0(CO)_3$	149
		170,265
		149
W	$1^{6}-C_{6}H_{6})_{2}$ eO)Ir(1,5-COD)] ₂	

to the identity of the central metal atom and the type of the supporting ligands, respectively. This list is not meant to be comprehensive but provides an indication of the types of compounds used, which metals have been studied, and some leading references for the reader to retrieve more information.^[13-278] A list of the abbreviations used in this article is given in Table 3.

There are a number of obvious precursor design requirements that ideally must all be satisfied for successful CVD of a metal film. The most important precursor attributes and consequences can be summarized as follows: high vapor

Tabl	e	3.	List	of	abbreviations.
------	---	----	------	----	----------------

1,5-COD	1,5-cyclooctadiene
BTMSA	bis(trimethylsilyl)acetylene
Ср	cyclopentadienyl
DEACI	diethylaluminum chloride
DIBAH	diisobutylaluminum hydride
DMAH	dimethylaluminum hydride
DMEAA	dimethylethylaminealane
Hdpm	dipivaloylmethane
Et	ethyl
acac	acetylacetonato
acim	4-imino-2-pentanato
dpm	2,2,6,6-tetramethyl-3,5-heptanedionato
fod	2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octanedionato
H(hfac)	1,1,1,5,5,5-hexafluoro-2,4-pentanedione or 1,1,1,5,5,5-
	hexafluoroacetylacetone
hfac	1,1,1,5,5,5-hexafluoroacetylacetonato
pentanone	
nona-F	1,1,1,5,5,5-hexafluoro-4-[(2,2,2-trifluoroethyl)imino]-2-
	pentadionato
ppm	6,6,7,7,7-pentafluoro-2,2-dimethyl-3,5-heptanedionato
tdf	1,1,1,2,2,3,3,7,7,8,8,9,9,9-tetradecafluoro-4,6-
	nonanedionato
tfac	trifluoroacetylacetonato
acen	4,4'-(1,2-ethanediyldinitrilo)bis(2-pentanedionato)
hfb	hexafluoro-2-butyne
HMDS	hexamethyldisilazane
<i>i-</i> Bu	iso-butyl
<i>i</i> -Pr	iso-propyl
Me	methyl
NBD	norbornadiene
Np	neopentyl
PTFE	poly(tetrafluoroethylene)
t-Bu	tertiary butyl
TEA	triethylaluminum
TEAA	triethylaminealane
TIBA	triisobutylaluminum
TMA	trimethylaluminum
TMAA	trimethylaminealane
tmhd	2,2,6,6-tetramethyl-3,5-heptanedionato
VTMS	vinyltrimethylsilane

pressures, to achieve high transport rates; careful precursor design, to control the surface reaction of the precursor to give high purity films; thermally inert precursors at the delivery temperature, to avoid premature decomposition; and liquid precursors, to ensure reproducible delivery rates if standard delivery methods are used.

3.1. Volatility

Traditional methods of precursor delivery to CVD reactors often rely on evaporation of the precursor at a given temperature to an extent limited by its equilibrium vapor pressure. Therefore, high vapor pressures are required to allow convenient delivery of precursors into CVD reactors and to achieve high deposition rates. High vapor pressures are favored by low molecular weight and a low degree of molecular aggregation, with monomeric species being the most desirable species. Inorganic complexes often exhibit low vapor pressures as a result of aggregation. This is exemplified by the vapor pressure data shown in Table 4 and Figure 2, which demonstrate that although the formula weight of SnCl₂ is lower than that of SnCl₄, the vapor pressure of SnCl₄ is higher because the tin center is more coordiTable 4. Temperatures at which vapor pressures [mmHg] are obtained for a variety of inorganic and metal-organic compounds.

Chemical

— Vapor— Deposition

Temperature in °C							
Compound	1 mm	10 mm	40 mm	100 mm	400 mm	760 mm	m.p.
MoF ₆	-65.5	-40.8	-22.1	-8.0	17.2	36.0	17.0
WF ₆	-71.4	-49.2	-33.0	-20.3	1.2	17.3	-0.5
TiCl ₄	·-13.9	21.3	48.4	71.0	112.7	136.0	-30.0
SnCl ₄	-22.7	10.0	35.2	54.7	92.1	113.0	-30.2
Ni(CO) ₄			-23.0	-6.0	25.8	42.5	-25.0
Fe(CO)5		4.6	30.3	50.3	86.1	105.1	-21.0
Cr(CO) ₆	36.0	68.3	91.2	108.0	137.2	151.0	
Co(CO) ₃ NO			11.0	29.0	62.0	80.0	-11.0
SnCl ₂	316.0	391.0	450.0	493.0	577.0	623.0	246.8

natively saturated and therefore exhibits a lower tendency towards aggregation compared to SnCl_2 . There are exceptions to this trend where the metal halides exist in high oxidation states (WF₆, TiCl₄, SnCl₄) which also leads to relatively high coordination numbers, thereby reducing the tendency for oligomerization. As an example, the vapor pressure of WF₆ at room temperature is 1000 torr, allowing the use of mass flow controllers for precursor delivery.

Fig. 2. Vapor pressure for compounds identified in Table 4.

Aggregation can also be a problem for metal-organic and organometallic complexes, although the use of multidentate chelating ligands such as β-diketonates can help alleviate such problems. For these compounds, the formula weights are often higher than for inorganic precursors as a result of the presence of the organic ligands, leading to relatively low volatility. However, these complexes are more easily derivatized to alter volatility and melting point than inorganic compounds. When comparing the volatility of metalcontaining compounds, it is important to define the molecular formula rather than the empirical formula. For example, it may appear surprising that "Al(i-Bu)₂H" is not more volatile than "Al(i-Bu)3". However, inspection of the molecular formulae reveals that [Al(i-Bu)₂H]₃ is trimeric and has a relatively high molecular weight while Al(i-Bu)₃ is monomeric and has a relatively low molecular weight.

In general, the low vapor pressures of many metal-organic compounds cause a serious limitation to the CVD of metal

M. J. Hampden-Smith, T. T. Kodas/CVD of Metals

films where traditional methods of precursor delivery, such as passing a gas through a bubbler containing the solid precursor, are employed, and make it difficult to interpret the data from feed-rate-limited CVD (see Section 5). Although vapor pressure can be increased by increasing the temperature, the precursor often begins to decompose, which also leads to irreproducible delivery rates and the transport of unknown species. This is a problem, for example, with Cu precursors, where vapor pressures are typically in the 10-100 mtorr range. However, this limitation can be avoided by using alternative delivery methods such as aerosol delivery and/or liquid delivery. These approaches rely on evaporation of the precursor from aerosol droplets in a carrier gas or from a solution sprayed onto a hot surface, therefore allowing the precursor to be kept at or even below room temperature until it is rapidly vaporized. While this approach has been used for a variety of materials,^[279-281] it has not been used extensively for CVD of metals.[282-284]

3.2. Reaction Pathways

The reaction pathway for a precursor determines the purity of the deposited film and the deposition rate. In some cases, the reaction pathway can be modified by changing the nature of the ligands to give a pathway that deposits higher purity material at higher rates and, if desired, at lower temperatures, as discussed below. It is important to note that rates are often limited by the precursor vapor pressure, which suggests that synthesis of precursors with higher vapor pressures is an important goal. This is particularly crucial for classes of CVD precursors that already decompose at low temperatures but which have relatively low vapor pressures. Examples include most of the precursors for Cu, Pt, Pd, Ru, Co, Au, Ag, and many of the other metals in Table 1.

Inorganic precursors such as metal halides typically do not produce pure metal films below approximately 600 °C and generally require the presence of a reducing agent such as H₂ or SiH₄ to avoid halide contamination. Furthermore, they are often solids at the source temperature (with several important exceptions, such as WF_6 , IrF_6 , $SnCl_4$, and $TiCl_4$), which makes delivery into the reactor more difficult to control compared to liquid precursors. However, given these drawbacks, high-purity films can be deposited at high rates, and the precursors are generally inexpensive, easily purified, and commercially available. Therefore, metal halides are often the optimum precursors within the constraints described above, as is currently the case for WF_6 (see Eq. 1). This is often the case for applications such as solar and wearresistant coatings, where low cost is often the highest priority and high deposition temperatures can be tolerated.

$$WF_6 + 3H_2 \longrightarrow W + 6HF$$
 (1)

In contrast, metal-organic and organometallic precursors have the advantages (over inorganic precursors) that they often thermally decompose at lower temperatures, usually have higher vapor pressures, and are more often liquids, which can simplify precursor delivery. They have the disadvantage that impurity incorporation (C, O, F, P) is common, and to obtain pure films, they often require a reducing agent such as H₂ or H₂O, or an oxidizing agent such as O₂. The problem of impurity incorporation is particularly difficult for reactive metals, such as Cr and Ti, for which no good organometallic or metal-organic precursors currently exist.^[285, 286] However, there are many examples where highpurity metal films have been deposited from these classes of precursors without any co-reactant (such as a reducing agent). This requires a decomposition mechanism where the organic ligands are removed from the reaction chamber intact or in which a reaction pathway exists to form volatile products which desorb easily from the surface. Cases where this occurs are the disproportionation of copper(I) compounds, [121, 127, 128, 135, 287, 288] the β -hydride elimination of Al(*i*-Bu)₃,^[27] homolysis of Au-C bonds in (CH₃)Au(PMe₃),^[289-292] and the use of precursors such as AlH₃ NR₃ which do not contain metal-carbon bonds.^[8] Examples of these reactions are given in Equations 2-5.

$$2(hfac)Cu^{I}L \longrightarrow Cu^{0} + Cu^{II}(hfac)_{2} + 2L$$
(2)

$$2\operatorname{Al}^{\operatorname{III}}(i\operatorname{-Bu})_{3} \longrightarrow 2\operatorname{Al}^{0} + 6\operatorname{CH}_{2} = \operatorname{C}(\operatorname{CH}_{3})_{2} + 3\operatorname{H}_{2}$$
(3)

$$2(CH_3)Au^{I}(PMe_3) \longrightarrow 2Au^0 + C_2H_6 + 2PMe_3$$
(4)

$$2\mathrm{Al}^{\mathrm{III}}\mathrm{H}_{3}\cdot\mathrm{NR}_{3} \longrightarrow 2\mathrm{Al}^{0} + 3\mathrm{H}_{2} + 2\mathrm{NR}_{3} \tag{5}$$

The well-known β -hydride elimination is an example of a mechanism which cleaves the metal–carbon bond. However, because this may involve liberation of organic radicals as reactive intermediates (for example, isobutyl radicals on an Al surface), alternative reactions can occur that lead to impurity incorporation (e.g., β -methyl group elimination in the case of Al CVD from Al(*i*-Bu)₃).¹²⁷¹ For this reason, alternative precursors for the CVD of Al have been sought, and the Lewis base adducts of AlH₃ provide a viable method to deposit high-purity Al films from precursors that are unlikely to produce C-contaminated films because the precursor does not contain Al–C bonds.

Overall, rough guidelines can be derived for choosing the organic portion of a organometallic precursor. As the metal-carbon bond order increases (metal alkene \approx metal alkyne \leq metal alkyl < metal(η^3 -allyl) < metal carbonyl < metal cyclopentadienyl < metal arene) in organometallic compounds, the chances for carbon incorporation are increased due to the increased strength of M-C bonding. For example, CVD of Fe using Fe(CO)₅ (see Eq. 6) gives rise to relatively pure films compared to Fe(η^5 -C₅H₅)₂ (in the absence of H₂).^[293]

 $Fe^{0}(CO)_{5} \longrightarrow Fe^{0} + 5CO$ (6)

0948-1907/95/0107-0014 \$ 5.00 + .25/0

In general, the more noble (later or further to the right) the metal and the lower it is in a given group in the periodic table, the more easily it is reduced, the less stable the M-X bonds, and the less the likelihood of C incorporation. For example, Ni(CO)₄ gives rise to purer metal films than transition metal carbonyl compounds earlier in the first row of the transition metal series in the periodic table. Furthermore, films derived from Pd, Pt, Cu, and Ag cyclopentadienyl complexes have lower C incorporation than films derived from cyclopentadienyl complexes of metals earlier in the periodic table. However, these trends can be modified by the details of the reaction mechanism, which varies depending on the metal and ligands involved.

In the absence of an appropriate reaction pathway, organometallic and metal-organic precursors often give rise to impurity incorporation, particularly C and O, as is apparent from a review of the CVD of many transition metals. Impurity incorporation can be avoided in certain cases by the addition of a reducing agent (e.g., H_2) or an oxidizing agent to remove the organic ligands. For example, the reduction of metal carbonyl compounds by H_2 produces pure metal films due to Fischer-Tropsch type catalysis chemistry.^[294] Metal β-diketonates are popular choices as precursors mainly because the fluorinated derivatives exhibit high vapor pressures and are generally capable of high transport rates. However, the presence of a reducing agent such as H₂ is generally required in order to avoid extensive contamination in the film; for example, the CVD of high-purity copper films has been achieved by reduction of $Cu(hfac)_2$ with H_2 (Eq. 7). For reactive metals such as Ti, however, even the use of a hydrogen plasma does not provide sufficiently reducing conditions to form pure metal films from organometallic precursors such as $Ti(\eta^5-C_5H_5)(\eta^7-C_7H_7)$.

$$\operatorname{Cu}^{\text{II}}(\operatorname{hfac})_2 + \operatorname{H}_2 \longrightarrow \operatorname{Cu}^0 + 2\operatorname{hfacH}$$
(7)

An example of the use of an oxidizing agent such as oxygen is CVD of Ir from $(\eta^5 - C_5 H_5)Ir(1,5-COD)$.^[295] The formation of pure metal films in the presence of O₂ is only likely to occur where the metal forms an oxide that is thermodynamically unstable with respect to formation of the metal at the deposition temperature such that only the carboncontaining ligands are oxidized to CO. Reactions catalyzed by the metal surface, such as Wacker-type processes, are likely under these conditions.^[294]

4. Hot- and Cold-Wall Reactors

Chemical vapor deposition of metals has been carried out in many types of reactors, primarily hot- and cold-wall reactors, and, in some cases, plasma reactors.^[296-298] An account of the characteristics of hot- and cold-wall reactors is relevant to this discussion for two reasons. First, the type of reactor and its operating conditions can have a profound affect on the deposition process and, second, the mode of reactor operation can be used to advantage to derive quantitative information if care is taken in interpretation of rate data as described below.

Hot-wall reactors have been used extensively for laboratory studies of metal CVD, even though most metal CVD in industry is carried out in single-wafer, cold-wall systems. The advantages of hot-wall systems are that they are simple to operate, can accommodate several substrates, can be operated under a range of pressures and temperatures, and allow different orientations of the substrate relative to the gas flow. The major problem with hot-wall systems is that deposition can occur not only on the substrate but also on the reactor walls. These deposits can eventually fall off the surface and contaminate the substrate. Also, the correspondingly large consumption of the precursor can result in feed-rate-limited deposition (discussed below) at relatively low temperatures compared to cold-wall reactors. Deposition only on the substrate can occur in special cases when deposition is selective and the reactant does not decompose on the reactor walls.^[113, 115] However, reactions usually occur on the walls, and in most cases the fraction of the surface area of the reactor covered with deposit can change with time during an experiment and from one experiment to another, leading to problems in reproducing deposition conditions. In addition, homogeneous gas-phase reactions in the heated gas can occur, which can lead to reduced deposition rates. For this reason, hot-wall reactors are used primarily at the laboratory scale to study the overall viability of using a given precursor for CVD. They are also often used to determine reactionproduct distributions because the large heated surface area can consume the precursor completely and provide high yields of the reaction products.^[113, 115] Although some exceptions exist, hot-wall reactors are generally not used in industry or for quantitative measurements of reaction kinetics for CVD of metals. They are, however, used extensively in industry for CVD of semiconductors and oxides, where precursors with much higher vapor pressures are available.

On the other hand, cold-wall reactors are used extensively at the laboratory scale and are also the industry workhorse for CVD of metals. Cold-wall reactors usually accommodate only a single wafer in various orientations to the flow, but pressure and temperature can be controlled, plasmas can be used, deposition does not occur on the reactor walls, homogeneous reactions can occur only over a smaller volume of the reactor above the heated substrate, and higher deposition rates can be obtained than with hot-wall reactors. Coldwall reactors are also more suitable for studies of selective deposition because deposition does not occur on the reactor walls. They are also used for measurements of kinetic parameters because surface-reaction-limited kinetics can be achieved easily.^[121, 127, 135] To obtain kinetic data, it is desirable to operate in the differential mode, where the conversion of the precursor is low enough to ensure surfacereaction-limited kinetics and to minimize the partial pressures of the reaction products.^[127] Because deposition occurs only on a single substrate so that the precursor con-

sumption rate is low, high deposition rates can be obtained. For manufacturing applications, single-wafer cold-wall reactors are preferred because they allow better control of deposition behavior.

5. Influence of Reactor Operating Conditions on Film Growth

It is important to understand the behavior of CVD reactors to interpret rate measurements obtained with new precursors and to determine how to design and operate CVD reactors for established precursors. A variety of measurements are typically made when studying new and existing precursors, but one of the simplest is the dependence of the deposition rate on the substrate temperature (even though this measurement is often not made). The temperature dependence of the deposition rate can reflect the kinetics of the surface reactions (but only under surface-reaction-limited deposition). A somewhat more sophisticated measurement is the dependence of the rate on the reactant partial pressure. However, this measurement is usually not done for new precursors and is difficult to carry out for precursors with low vapor pressures, where only a narrow range of low pressures can be utilized. Insight into the surface reaction mechanisms may allow synthesis of new precursors or modification of operating conditions to provide new reaction pathways for increased deposition rates. The deposition rate has been measured as a function of temperature for only a very small fraction of the precursors in Table 1. The rate as a function of precursor partial pressure has been measured only for an even smaller number of the precursors, usually for established precursors such as Al(i-Bu)₃, Cu(hfac)₂, MoCl₅, and WF₆

A problem with rate measurements is that they can give complex information which can be difficult to interpret. Even where kinetic data have been obtained it is often not clear whether this information can be attributed to an elementary step or a combination of elementary reactions. In addition, complex variations of the rate with changes in the temperature and reactant partial pressure are observed even under surface-reaction-limited conditions. An example is CVD of Cu from Cu^I and Cu^{II} precursors.^[90, 91, 127] A further complication is that these variations are not necessarily directly related to the reactions occurring on the substrate if the deposition is feed-rate limited or transport-rate limited. Another complication is that various types of reactors have been used for CVD of metals. Because of differences in geometry, reactant introduction, and other factors, different results are often obtained for the same precursor, making it difficult to compare results.

The following narrative discusses rate measurements from CVD reactors and attempts to show when measurements are made under conditions in which the actual kinetics attributable to the precursor are observed. The motivation for this is that measurements have been reported under a wide variety of conditions and it is usually not clear when the deposition is surface-reaction, feed-rate, or transport-rate limited. This distinction is critical if the data are to be used to assist in precursor design. It must be emphasized that the idea of different operating regimes is a simplification; reactors often operate under conditions that are intermediate to two regimes, or the operating regime changes as relatively small changes are made in the operating conditions.

For conventional precursor delivery, the deposition process involves a series of three steps: a) introduction of precursor vapor, b) transport of precursor to the surface of the substrate, and c) surface reaction of the precursor. Because these steps are in series, the slowest step will limit the overall rate, and three cases are possible. For precursors with low vapor pressures step a often limits the rate, while for precursors with high vapor pressures, such as WF_6 , the rate will often be limited by either step b or c. In terms of Figure 1, the feed rate and transport to the surface are contained in step 1 while step c corresponds to steps 2–6 in Figure 1.

The maximum deposition rate can be given by a simple expression from gas kinetic theory.

In Equation 8, rate [cm/s] is the deposition rate, α (dimensionless) the fraction of reactant molecules that react after striking the surface, $P_{\rm s}$ [dynes/cm²] the precursor partial pressure immediately above the surface, $v_{\rm m}$ [cm³] the volume of depositing metal atom, $m_{\rm r}$ [g] the molecular mass of precursor, $k_{\rm B}$ Boltzmann's constant [1.38 × 10⁻¹⁶ erg/ (molecule K)], T [K] the temperature of gas above the substrate, a_0 (dimensionless) a constant, $E_{\rm A}$ [erg/mol] the activation energy, and R [erg/(mol K)] the gas constant.

rate
$$= \frac{\alpha P_s v_m}{\sqrt{2\pi m_r k_B T}} = \frac{\alpha_0 P_s v_m \exp[-E_A/(RT)]}{\sqrt{2\pi m_r k_B T}}$$
(8)

The parameter α takes into account the details of the adsorption-desorption-reaction phenomena and depends exponentially on temperature. The maximum value of α is 1 and is achieved when every collision results in reaction. This equation predicts that approximately 1 monolayer (roughly 1 Å of metal) can be deposited every second at 10^{-6} torr if $\alpha = 1$. At 10^{-2} torr, 10000 monolayers per second and at 1 torr, 10^6 monolayers per second can be deposited. In most cases, $\alpha \ll 1$, and the actual deposition rate is much lower than the values mentioned above. The parameter α is also important because values of α near unity result in poor conformality.^[299] Conversely, values of α much less than unity provide conformal deposition.

The value of α can be controlled through precursor design. At a given temperature, precursors with lower decomposition temperatures will have higher values of α . Therefore, conformality can be improved by using precursors that are more thermally inert but at the expense of lowering the deposition rate.

For diffusion-limited and feed-rate-limited deposition, the precursor pressure at the surface, P_s , can be much lower than

the pressure of the precursor in the delivery system. For this case, the deposition rate is reduced below the maximum possible value as discussed below.

5.1. Feed-Rate-Limited CVD

The case of feed-rate-limited deposition is often encountered for precursors with low vapor pressures under conditions where the reactant conversion is high. In this case, with no diffusion limitation, the local deposition rate is given by Equation 8. This is usually observed with low-pressure hotwall reactors where diffusion is rapid but the surface area for reaction is large. This phenomenon can also occur in coldwall reactors. For a given system and operating conditions, it can be determined whether the deposition rate is feed-rate limited by estimating the fraction of the precursor consumed by the reaction. This is accomplished by measuring the growth rate and the deposition area to get the total rate of precursor consumption by reaction. It is then compared to the rate at which the precursor is delivered into the reactor. If the fraction (precursor reacted/precursor introduced) is near unity, and little precursor exits the reactor, feed-ratelimited deposition is occurring.

Assuming all of the reactant decomposes on the heated area and assuming only one metal atom is present in each precursor molecule, the deposition rate is given by Equation 9.

$$rate = FM_{\rm m}/(A\rho) \tag{9}$$

Here rate [cm/s] is the deposition rate, F [mol/s] the feed rate of reactant, M_m [g/mol] the atomic weight of depositing metal, A [cm²] the heated area over which deposition takes place, and ρ [g/cm³] the density of depositing metal.

This equation suggests that the deposition rate will decrease as the area A, over which deposition occurs, is increased, as long as all other parameters remain constant. This is a problem in hot-wall reactors where a large surface area exists that is heated to the same temperature as the substrate and is one reason why cold-wall reactors usually provide much higher deposition rates than hot-wall reactors. A key feature is that the deposition rate does not depend on the substrate temperature in this operating regime, as long as all other parameters remain constant. The (potential) rate of the surface reaction is much higher than the rate at which precursor is delivered to the reactor. As a result, the delivery rate limits the overall deposition rate.

Numerous examples of feed-rate-limited deposition are found in the literature. Feed-rate-limited deposition has been reported for LCVD of Au using Me₂Au(hfac)^[300] and for UHV CVD of Au from RAuPMe₃.^[289] It has also been reported for CVD of Cu from (hfac)CuL.^[121, 127, 135] In most other cases (except for primarily Ni, W, Al and Mo) insufficient data have been reported to determine the mode of reactor operation.

5.2. Diffusion- and Surface-Reaction-Limited CVD

Chemical

— Vapor — Deposition

The overall deposition rate may be limited by the rate of the surface reaction if the feed rate is sufficiently high that it does not limit the deposition rate and diffusion (transport) limitations do not occur. This situation is obtained with high precursor throughputs at low pressures and low substrate temperatures with small substrate areas. At high pressures and temperatures corresponding to high reaction rates and slow transport of the reactant to the surface, transport-limited (diffusion-limited) deposition can occur (Figs. 3 and 4).

Fig. 3. Critical states for deposition which may limit the overall rate. a) Deposition rate determined by three steps in series, the slowest of which limits the overall rate. b) For diffusion-limited operation a concentration (C_r) gradient exists for the reactant in the radial direction r. c) For surface-reaction-limited operation, reactant concentration is uniform in the radial direction r.

Fig. 4. Reactant concentration, velocity and temperature profiles for cold-wall reactor with inclined heated substrate.

The rate of deposition without limitations imposed by the feed-rate can be quantified.^[299] The description below is not adequate to describe CVD processes quantitatively, but it describes the overall qualitative dependence of the rate on the relevant parameters. The analysis assumes a first-order surface reaction written in terms of the gas-phase concentration of the reactant at the surface. It also assumes diffusion through a concentration boundary layer of known thickness. The overall process consists of two steps in series: diffusion to the surface and surface reaction. The deposition rate is given by Equations 10-12.^[299]

$$rate = \frac{C_r v_m}{1/k + L/D}$$
(10)

rate =
$$kC_r v_m = k_0 [P_r/(RT)] v_m \exp[-E_A/(RT)]$$
 for $k \ll D/L$

(11)

Chem. Vap. Deposition 1995, 1, No. 1 (C) VCH Verlagsgesellschaft mbH, D-69469 Weinheim, 1995 0948-1907/95/0107-0017 \$ 5.00 + .25/0

rate =
$$\frac{v_{\rm m}DC_{\rm r}}{L}$$

= $\left(\frac{v_{\rm m}D_0}{L}\right)\left(\frac{P_0}{P}\right)\left(\frac{T}{T_0}\right)^{3/2}\left(\frac{P_{\rm r}}{RT}\right)$ for $k \ll D/L$ (12)

$$D = D_0 \left(\frac{P_0}{P}\right) \left(\frac{T}{T_0}\right)^{3/2}$$
(13)

Here $D \ [\mathrm{cm}^2/\mathrm{s}]$ is the diffusion coefficient, $D_0 \ [\mathrm{cm}^2/\mathrm{s}]$ the diffusion coefficient at reference conditions, $L \ [\mathrm{cm}]$ the thickness of the concentration boundary layer, $k \ [\mathrm{cm}/\mathrm{s}]$ the surface reaction rate constant, $C_r \ [\mathrm{molecules/cm}^3]$ the reactant concentration outside the concentration boundary layer, $C_s \ [\mathrm{molecules/cm}^3]$ reactant concentration immediately above substrate, $k_0 \ [\mathrm{cm}/\mathrm{s}]$ pre-exponential constant, $T_0 \ [\mathrm{K}]$ the reference temperature for gas above the substrate, $P \ [\mathrm{dynes/cm}^2]$ the total pressure of $P_r \ [\mathrm{dynes/cm}^2]$ reactant partial pressure outside the concentration boundary.

For large k ($k \gg D/L$), the surface reaction is rapid and the rate is given by $v_m DC_r/L$, corresponding to a diffusionlimited process. This expression corresponds to the rate of diffusion of the reactant through the concentration boundary layer discussed above (see Fig. 4). For a slow reaction rate ($k \ll D/L$) or rapid diffusion in the gas phase (large D or small L), the rate is kC_rv_m , which is simply the rate of the surface reaction corresponding to surface-reaction-limited deposition.

Diffusion-limited LCVD of Au has been reported.^[300, 301] Photochemical LCVD can also exhibit a diffusion-limited rate.^[302] Examples of diffusion-limited CVD of Cu are also documented.^[303] Similarly, diffusion-limited deposition of W, Al and Mo is common.

Precursor design influences the overall rate through the surface-reaction rate constant, k, and the reactant concentration, C_r , which can be no higher than the value corresponding to the vapor pressure. Reactor operating conditions influence the overall rate through D and L, which depend on a variety of parameters, including the temperature of the gas, the total pressure, carrier gas flow rate and properties, and reactor geometry.

5.3. Reactant Partial Pressure Dependence of Rate

In most cases, as the reactant concentration is increased the deposition rate increases as shown in Figure 5. For feed-rate-limited deposition, the rate does not depend on the precursor partial pressure or total pressure at a constant feed rate (Eq. 9). Therefore, increasing the total pressure while keeping the precursor feed rate constant has little effect on the rate. A test for this limit is to increase the feed rate while keeping all other parameters (total pressure, precursor partial pressure, temperature, etc.) constant and at the same time avoiding diffusion-limited deposition

Fig. 5. Possible dependence of deposition rate on reactant concentration with gas-phase particle formation occurs.

(which can be influenced by changes in gas-flow rate). If the deposition rate increases, then the feed rate is the limiting factor.

For the case of diffusion-limited deposition, the rate is first order in reactant concentration, as shown by Equation 12 above. Doubling the pressure of the precursor doubles the rate of the reaction. This effect is sometimes mistakenly interpreted as a surface-reaction rate dependence on the precursor partial pressure to the first power (Eq. 11). A firstorder dependence can be observed for diffusion-limited deposition regardless of the pressure dependence of the surface reaction as long as the surface reaction is sufficiently rapid. An indicator of diffusion-limited deposition is that increasing the total pressure while keeping the partial pressure of the precursor constant decreases the rate because the diffusion coefficient is inversely proportional to the total pressure P. Another test for diffusion-limited deposition is to vary the gas flow rate while keeping reactant concentration constant $(C_r \text{ or } P_r)$. Varying the flow rate can result in variations in L, the thickness of the concentration boundary layer, which leads to changes in the deposition rate. Yet another test is to vary the carrier gas (He, N2, Ar), while keeping other conditions fixed (see Eq. 12),^[304] which varies the diffusion coefficient D through the influence on D_0 . However, one of the best and most conclusive tests is to vary the substrate temperature as discussed below.

The case of surface-reaction-limited deposition is the only case for which the kinetics of the surface reaction can be observed (Eq. 12). The details of the surface reaction then determine the precursor-pressure dependence of the rate. which can be first order in some cases or can be more complex than the first-order reaction used here as an example. For example, deposition of Cu from (hfac)Cu(VTMS) exhibits a pressure dependence which varies as a function of temperature and precursor partial pressure.^[127] The rate of tungsten deposition from WF₆ also has a complex pressure dependence and can even be negative order in WF₆ partial pressure.^[305] Because a first-order dependence on precursor partial pressure can be observed for both surface-reaction-limited and diffusion-limited deposition, the best test for surface-reaction-limited deposition is to vary the substrate temperature and look for an exponential dependence of the deposition rate on the temperature.

5.4. Temperature Dependence of Rate

Feed-rate-limited deposition usually provides a rate with a weak temperature dependence. Increasing the surface temperature does not result in an increase in the rate, which can be no faster than the rate of delivery of the precursor into the reactor.^[127, 289] A positive or negative order dependence of the rate on temperature can also occur if the reaction occurs in a hot-wall reactor and deposition occurs on the walls. In this case, increasing the temperature can result in deposition closer to the reactor inlet. Depending on the location of the substrate, this change may result in more deposition on the substrate if the region of highest deposition rate moves closer to the substrate or less deposition if this region moves away from the substrate.

For diffusion-limited deposition, the rate depends only weakly on the temperature primarily through the temperature dependence of the diffusion coefficient (see Eq. 12 above) which is roughly $T^{3/2}$.^[304] This dependence^[128] is far weaker than the exponential dependence of rate on temperature observed for surface-reaction-limited deposition and is nearly flat when plotted on a logarithmic scale. In addition, for diffusion-limited deposition, the precursor concentration at the surface is nearly zero and is not the same as the measured precursor partial pressure. This occurs because the potential rate of the surface reaction is rapid relative to the rate of transport to the surface.

Surface-reaction-limited deposition has a temperature dependence that varies with the details of the surface reaction. The deposition rate often increases as the substrate temperature is increased at low temperatures and low reactant concentrations, as shown in Figure 6. Because the rates of surface reactions are generally higher than those of

Fig. 6. Dependence of deposition rate on temperature.

homogeneous reactions, the slope of the line at low temperatures is usually related to the kinetics of the heterogeneous reactions, but in some cases may be related to homogeneous reaction kinetics. In the surface-reaction-limited regime, it is possible to measure the kinetics of the surface reaction and a rate increase as a function of temperature according to the Arrhenius relationship (Eq. 11). Also, the reactant concentrations at the substrate surface are often known because they are the same as the overall concentrations in the reactor if precursor conversion is low (Fig. 3). However, reactant Chemical —Vapor— Deposition

concentrations can be difficult to measure if the precursor has a low vapor pressure and a carrier gas is used.

Finally, as the substrate temperature is increased, gasphase particle formation may occur, which depletes the reactant concentration in the gas phase and reduces the rate.^[306] Alternatively, the reduction in the rate may be due to a thermodynamic limitation on reactant conversion or the rapid desorption of the precursor from the surface before reaction can occur. This behavior leads to the classical plateau in the deposition rate as a function of temperature, as shown in Figure 6.

6. Summary and Conclusions

We have summarized some general aspects of the CVD of metals. In spite of the large amount of work on CVD of metals, the behavior of many simple precursors has not been examined in detail. Even in the case of what appear to be simple precursors, the surface chemistry can be extremely complicated and difficult to interpret unambiguously. The CVD of W, Al, and Cu is the most studied; that of Mo, Pt, Pd, Ni, Ag, Rh, Ir and Au has been studied to a lesser extent. Most of the other metals have only been studied superficially. Several major conclusions can be drawn from the literature available on CVD of metals.

Precursor Design. Metal-containing precursors for the CVD of metal films must be volatile, low molecular weight species that contain substituents that can be completely eliminated during the surface reaction. It is difficult to provide specific precursor design rules for particular metals because there is a strong influence of the reactor geometry, deposition conditions and substrate interactions. It is clear that precursor design must be carefully matched to a given set of deposition conditions to achieve high-purity films.

The most commonly used precursors are metal halides, alkyls, carbonyls, cyclopentadienyls, and β -diketonates, but these are only suitable for some metals. Good precursors are available for CVD of W, Al, Cu, Mo, Rh, Pt, Pd, Ni, Ag, and Au. Many other metals do not have precursors which allow low-temperature deposition of high-purity films at high rates. This is true for Ti, which is important in the microelectronics industry.

More research is necessary in the area of precursor synthesis and characterization, including quantitative measurements of vapor pressures to allow estimates of transport rates. Improved methods of precursor delivery are necessary to enable the use of low-vapor-pressure precursors and to deliver precursors to substrates under controlled, reproducible conditions. Liquid delivery systems are promising in this regard and have been described elsewhere.

Surface Chemistry. Surface reaction mechanisms and reaction products are only known in a few cases, primarily for precursors to W, Cu, Au and Al films. The measurements of the surface reaction kinetics made for most systems are very limited, and the apparent activation energies for surface re-

actions are known for only a few precursors and surface compositions. Further work is needed to understand the reaction chemistry involved, which may lead to better strategies for blanket and selective CVD. This aspect is addressed in more detail under a discussion of selective CVD in Part 2.

Reactor Design and Operation. Better reporting and characterization of deposition conditions and substrate pretreatment are necessary to compare reports of blanket and selective CVD from different groups of investigators. Quantification of reactor by-product distributions from hot-wall CVD reactors and kinetic data from cold- or warm-wall CVD reactors is necessary. Insufficient information is given in most cases to determine the mode of reactor operation, i.e., surface-reaction-limited, feed-rate-limited, or transportlimited.

Film Characterization. The CVD of high-purity films of a variety of metals has been reported. Deposition rate, thickness, resistivity, and morphology are simple to determine and should be reported even when film purity cannot be determined for lack of equipment. In many cases it is not possible to evaluate the success of the CVD study because the resulting films are poorly characterized.

Received: July 28, 1994 Final version: October 21, 1994

- R. Jensen, in *Microelectronics Processing* (Eds: D. W. Hess, K. F. Jensen), American Chemical Society, Washington, DC 1989.
- [2] R. Jaraith, A. Jain, R. D. Tolles, M. J. Hampden-Smith, T. T. Kodas, in *The Chemistry of Metal CVD* (Eds: T. T. Kodas, M. J. Hampden-Smith), VCH, Weinheim **1994**, Ch. 1.
- [3] C. J. Brinker, G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, Boston 1990.
- [4] J. Shu, B. P. A. Grandjean, A. Van Neste, S. Kalaiguine, Can. J. Chem. Eng. 1991, 69, 1036.
- [5] D. Wu, R. A. Outlaw, R. L. Ash, J. Appl. Phys. 1993, 74, 4990.
- [6] Z. Y. Li, H. Maeda, K. Kusakabe, S. Morooka, H. Anzai, S. Akiyama, J. Membrane Sci. 1993, 78, 247.
- [7] T. T. Kodas, M. J. Hampden-Smith, in *The Chemistry of Metal CVD* (Eds: T. T. Kodas, M. J. Hampden-Smith) VCH, Weinheim, **1994**, Ch.9.
- [8] W. L. Gladfelter, Chem. Mater. 1993, 5, 1372.
- [9] M. G. Simmonds, W. L. Gladfelter, in *The Chemistry of Metal CVD* (Eds: T. T. Kodas, M. J. Hampden-Smith) VCH, Weinheim, **1994**, Ch.2.
- [10] J. R. Creighton, J. E. Parmeter, Crit. Rev. Solid State Mater. Sci. 1993, 18, 175.
- [11] The Chemistry of Metal CVD (Eds: T. T. Kodas, M. J. Hampden-Smith), VCH, Weinheim 1994.
- [12] M. J. Hampden-Smith, T. T. Kodas, Adv. Mater. 1995, No.9.
- [13] T. H. Baum, P. Comita, in *The Chemistry of Metal CVD* (Eds: T. T. Kodas, M. J. Hampden-Smith) VCH, Weinheim, **1994**, Ch.6.
- [14] M. J. Shapiro, in Chemical Vapor Deposition of Silver Films for Superconducting Wire Applications, UMI Diss. Information Service 1992, p.543.
- [15] S. Dutta, P. G. McMullin, P. Rai-Choudry, B. D. Gallagher, at Mater. Res. Soc. Mtg, 1984.
- [16] Y. Matsumoto, T. Abe, M. Tanaka, T. Tazawa, E. Sato, *Mater. Res. Bull.* 1988, 23, 1241.
- [17] A. D. Dubner, A. Wagner, J. Appl. Phys 1989, 65, 3636.
- [18] T. H. Baum, C. E. Larson, S. K. Reynolds, US Patent 5096737, 1992.
- [19] A. Erbil, US Patent 4880670, 1989.
- [20] D. R. Biswas, C. Ghosh, R. L. Layman, J. Electrochem. Soc. 1983, 130, 234.
- [21] T. R. Gow, L. A. Cadwell, F. Lee, A. L. Backman, R. I. Masel, Chem. Mater. 1989, 1, 406.
- [22] R. Bhat, M. A. Koza, C. C. Chang, S. A. Schwarz, J. Cryst. Growth 1986, 77, 7.
- [23] W. L. Smith, T. Wartik, J. Inorg. Nucl. Chem. 1967, 29, 629.
- [24] A. W. Laubengayer, W. F. Gilliam, J. Am. Chem. Soc. 1941, 63, 477.

- [25] N. Kobayashi, T. Fukui, Electron. Lett. 1984, 20, 887.
- [26] T. F. Keuch, E. Veuhoff, T. S. Kuan, V. Deline, R. Potemski, J. Cryst. Growth 1986, 77, 257.
- [27] B. E. Bent, R. G. Nuzzo, L. H. Dubois, J. Am. Chem. Soc. 1989, 111, 1634.
- [28] B. E. Bent, L. H. Dubois, R. G. Nuzzo, Mater. Res. Soc. Proc. 1989, 131, 327.
- [29] T. Beuermann, M. Stuke, Chemtronics 1989, 4, 189.
- [30] Y. Zhang, M. Stuke, J. Cryst. Growth 1988, 93, 143.
- [31] Y. Zhang, M. Stuke, Chemtronics 1989, 4, 71.
- [32] Y. Zhang, M. Stuke, Mater. Res. Soc. Symp. Proc. 1989, 131, 375.
- [33] E. I. Larikov, A. F. Zhigach, A. F. Popov, T. N. Kulikovskaya, N. V. Vladytskaya, *Khim. Prom.* 1964, 3, 171.
- [34] M. E. Bartram, T. A. Michaiske, J. W. Rogers, J. Phys. Chem. 1991, 95, 4453.
- [35] T. Cacouris, G. Scelsi, P. Shaw, R. Scarmozzino, R. M. Osgood, Jr., Appl. Phys. Lett. 1988, 52, 1865.
- [36] G. E. Coates, M. L. H. Green, K. Wade, *The Main Group Elements*, Vol.1, Barnes & Noble, *New York* 1967, p.573.
- [37] M. Hanabusa, K. Hayakawa, A. Oikawa, K. Maeda, Jpn. J. Appl. Phys. 1988, 27, L1392.
- [38] M. Hanabusa, A. Oikawa, P. Y. Cai, Mater. Res. Soc. Symp. Proc. 1990, 158, 135.
- [39] R. A. Levy, P. K. Gallagher, R. Contolini, F. Schrey, J. Electrochem. Soc. 1985, 132, 457.
- [40] C. Sasaoka, K. Mori, Y. Kato, A. Usui, Appl. Phys. Lett. 1989, 55, 741.
- [41] R. Scarmozzino, T. Cacouris, R. M. Osgood, Jr., Mater. Res. Soc. Symp. Proc. 1990, 158, 121.
- [42] T. Shinzawa, K. Sugai, S. Kishida, H. Okabayashi, in *Tungsten and Other Advanced Metals for VLSI/ULSI Applications* (Eds: S. S. Wong, S. Furukawa), Materials Research Society, Pittsburgh, PA 1990, p.377.
- [43] K. Shinzawa, K. Masu, J. Vac. Sci. Technol. A 1992, 10, 856.
- [44] K. Tsubouchi, K. Masu, N. Shigeeda, T. Matano, Y. Hiura, N. Mikoshiba, Appl. Phys. Lett. 1990, 57, 1221.
- [45] N. Zhu, T. Cacouris, R. Scarmozzino, R. M. Osgood, Jr., J. Vac. Sci. Technol. B 1992, 10, 1167.
- [46] D. L. Schmidt, R. Hellmann, US Patent 3462288, 1969.
- [47] T. H. Baum, in Laser/Optical Processing of Electronic Materials, SPIE— International Society for Optical Engineering, Santa Clara, CA, 1989.
- [48] L. H. Dubois, B. R. Zegarski, C. T. Kao, R. G. Nuzzo, Surf. Sci. 1990, 236, 77.
- [49] J. S. Foord, A. J. Murrell, D. O'Hare, N. K. Singh, A. T. S. Wee, T. J. Whitaker, *Chemtronics* 1989, 4, 262.
- [50] A. T. S. Wee, A. J. Murrell, N. K. Singh, D. O'Hare, J. S. Foord, J. Chem. Soc., Chem. Commun. 1990, 11.
- [51] G. N. Nechiporenko, L. B. Petukhova, A. S. Rozenberg, Bull. Acad. Sci. USSR 1975, 24, 1584.
- [52] M. E. Gross, C. G. Fleming, K. P. Cheung, L. A. Heimbrook, J. Appl. Phys. 1991, 69, 2589.
- [53] M. E. Gross, L. H. Dubois, R. G. Nuzzo, K. P. Cheung, in *Chemical Perspectives of Microelectronic Materials II* (Eds: L. V. Interrante, K. F. Jensen, L. H. Dubois, M. E. Gross), Materials Research Society, Pittsburgh, PA **1991**, p.383.
- [54] L. H. Dubois, B. R. Zegarski, M. E. Gross, R. G. Nuzzo, Surf. Sci. 1991, 244, 89.
- [55] M. G. Simmonds, W. L. Gladfelter, R. Nagaraja, W. W. Szymanski, K. H. Ahn, P. H. McMurry, J. Vac. Sci. Technol. A 1991, 9, 2782.
- [56] M. G. Simmonds, E. C. Phillips, J. W. Hwang, W. L. Gladfelter, *Chemtronics* 1991, 5, 155.
- [57] J. A. J. Glass, S. Kher, J. T. Spencer, Chem. Mater. 1992, 4, 530.
- [58] B. Metzger, A. Paredes, T. Kruck, H. Reichel, in *Microsystems Technology*, Springer, Berlin 1990, p.122.
- [59] E. Feurer, H. Suhr, Appl. Phys. A 1987, 44, 171.
- [60] H. Suhr, A. Etspuler, E. Feurer, S. Kraus, Plasma Chem. Plasma Process. 1989, 9, 217.
- [61] T. H. Baum, E. E. Marinero, C. R. Jones, Appl. Phys. Lett. 1986, 49, 1213.
- [62] C. Oehr, H. Suhr, Appl. Phys. A 1989, 49, 691.
- [63] A. D. Dubner, A. Wagner, J. Appl. Phys. 1989, 65, 3636.
- [64] G. M. Shedd, H. Lezec, A. D. Dubner, J. Melngailis, J. Appl. Phys. 1986, 49, 1584.
- [65] T. A. Wassick, SPIE Symp. 1991, 1598, 141.
- [66] R. J. Puddephatt, I. Treunnicht, J. Organomet. Chem. 1987, 319, 129.
- [67] R. D. Sanner, J. H. Satcher, M. W. Droege, Organometallics 1989, 8, 1498.
- [68] H. Schmidbaur, M. Bergfeld, Inorg. Chem. 1966, 5, 2069.

- [69] M. J. Hampden-Smith, T. T. Kodas, in *The Chemistry of Metal CVD* (Eds: T. T. Kodas, M. J. Hampden-Smith), VCH, Weinheim **1994**, Ch.8.
- [70] S. Motojima, S. Kuri, T. Hattori, J. Less-Common Met. 1986, 124, 193.
- [71] S. Motojima, Y. Ihama, J. Cryst. Growth 1986, 76, 373.
- [72] G. J. M. Dormans, J. Cryst. Growth 1991, 108, 806.
- [73] G. A. West, K. W. Belson, Appl. Phys. Lett. 1988, 53, 740.
- [74] G. A. West, K. W. Belson, *Mater. Res. Symp. Proc.* 1989, 131, 389.
 [75] R. Psaro, A. Fusi, R. Ugo, J. M. Basset, A. K. Smith, F. Hugues, *J. Mol.*
- Catal. 1980, 7, 511.
 [76] W. H. Cheng, J. Pooladdej, S. Y. Huang, K. D. Buehring, A. Applebaum,
 D. Wolf, D. Renner, K. L. Hess, S. W. Zehr, *Appl. Phys. Lett.* 1988, 53,
- 1257.
- [77] G. J. M. Dormans, J. Cryst. Growth 1991, 108, 806.
- [78] R. G. Charles, P. G. Haverlack, J. Inorg. Nucl. Chem. 1969, 31, 995.
- [79] E. J. Jablonowski, Cobalt 1962, 14, 28.
- [80] H. Mazille, S. Andisio, G. Monnier, Corros. Trait. Prot. Finition 1968, 16, 346.
- [81] H. M. J. Mazille, Thin Solid Films 1980, 65, 67.
- [82] J. J. Lander, L. H. Germer, Met. Ind. (London) 1947, 71, 459.
- [83] J. J. Lander, L. H. Germer, Met. Technol. 1947, 14, TP2259.
- [84] J. J. Lander, L. H. Germer, Trans. Met. Soc. AIME 1948, 175, 648.
- [85] J. J. Lander, US Patent 2690 980, 1954.
- [86] T. J. Truex, R. B. Saillant, F. M. Monroe, J. Electrochem. Soc. 1975, 122, 1396.
- [87] R. Tomono, E. Yagi, Y. Togashi, J. Met. Finishing Soc. Jpn. 1965, 16, 210.
- [88] B. D. Nash, T. T. Campbell, F. E. Block, Report of Investigation, Rep. no. 7112, US Bureau of Mines, Washington, DC 1968.
- [89] N. M. Rutherford, C. E. Larson, R. L. Jackson, Mater. Res. Soc. Symp. Proc. 1989, 131, 439.
- [90] M. J. Hampden-Smith, T. T. Kodas, in *The Chemistry of Metal CVD* (Eds: T. T. Kodas, M. J. Hampden-Smith), VCH, Weinheim 1994, Ch.5.
- [91] A. Maverick, G. L. Griffin, in *The Chemistry of Metal CVD* (Eds: T. T. Kodas, M. J. Hampden-Smith), VCH, Weinheim **1994**, Ch.4.
- [92] R. L. Van Hemert, L. B. Spendlove, R. E. Sievers, J. Electrochem. Soc. 1965, 112, 1123.
- [93] D. Temple, A. Reisman, J. Electrochem. Soc. 1989, 136, 3525.
- [94] A. E. Kaloyeros, A. Feng, J. Garhart, K. C. Brooks, S. K. Ghosh, A. N. Saxena, F. Luehers, J. Electron. Mater. 1990, 19, 271.
- [95] W. G. Lai, Y. Xie, G. L. Griffin, J. Electrochem. Soc. 1991, 138, 3499.
- [96] N. Awaya, Y. Arita, Digest of Technical Papers 1989, Section 12-4, p.103.
- [97] N. Awaya, Y. Arita, in Advanced Metallization for ULSI Applications (Eds: V. V. S. Rana, R. V. Joshi, I. Ohdomari), Materials Research Society, Pittsburgh, PA 1992, p.345.
- [98] Y. Hazuki, H. Yano, K. Horioka, N. Hayasaka, H. Okano, in *Tungsten and Other Advanced Metals for VLSI/ULSI Applications* (Eds: S. S. Wong, S. Furukawa), Materials Research Society, Pittsburgh, PA 1990, p.351.
- [99] R. Sekine, M. Kawai, Appl. Phys. Lett. 1990, 56, 1466.
- [100] R. Kumar, F. R. Fronczek, A. W. Maverick, W. G. Lai, G. L. Griffin, *Chem. Mater.* 1992, 4, 577.
- [101] G. S. Girolami, P. M. Jeffries, L. H. Dubois, J. Am. Chem Soc. 1993, 115, 1015.
- [102] L. H. Dubois, P. M. Jeffries, G. S. Girolami, in Advanced Metallization for ULSI Applications (Eds: V. V. S. Rana, R. V. Joshi, I. Ohdomari), Materials Research Society: Pittsburgh, PA 1992, p.375.
- [103] S. L. Cohen, M. Liehr, S. Kasi, Appl. Phys. Lett. 1992, 60, 50
- [104] M. E. Gross, V. M. Donnelly, in Advanced Metallization for ULSI Applications (Eds: V. V. S. Rana, R. V. Joshi, I. Ohdomari), Materials Research Society, Pittsburgh, PA 1992, p.355.
- [105] W. Rees, in Mater. Res. Soc. Symp. Proc. 1992, 250, 297.
- [106] C. Oehr, H. Suhr, Appl. Phys. A 1988, 45, 151.
- [107] N. Awaya, Y. Arita, Jpn. J. Appl. Phys. 1 1991, 30, 1813.
- [108] J. Pelletier, R. Pantel, J. C. Oberlin, Y. Pauleau, J. Appl. Phys. 1991, 70,
- 3862. [109] B. Wisniewski, J. Durand, L. Cot, J. de Phys. IV 1991, Collog. C2, 389.
- [110] Y. Pauleau, A. Y. Fasasi, Chem. Mater. 1991, 3, 45.
- [111] R. G. Charles, J. G. Cleary, US Patent 3594216, 1971.
- [112] S.M. Fine, P. N. Dyer, J. A. T. Norman, B. A. Muratore, R. L. Iampi-
- etro, in Mater. Res. Soc. Symp. Proc. 1990, 204, 415.
- [113] H. K. Shin, K. M. Chi, M. J. Hampden-Smith, T. T. Kodas, M. F. Paffett, J. D. Farr, Adv. Mater. 1991, 3, 246.
- [114] H. K. Shin, M. J. Hampden-Smith, T. T. Kodas, E. N. Duesler, Can. J. Chem. 1992, 70, 2954
- [115] H. K. Shin, K. M. Chi, M. J. Hampden-Smith, T. T. Kodas, M. F. Paffett, J. D. Farr, *Chem. Mater.* **1992**, *4*, 788.
- [116] H. K. Shin, K. M. Chi, J. Farkas, M. J. Hampden-Smith, T. T. Kodas, E. N. Duesler, *Inorg. Chem.* 1992, 31, 424.

[117] H. K. Shin, M. J. Hampden-Smith, T. T. Kodas, E. N. Duesler, *Polyhe-dron* 1990, 6, 645.

Chemical

- [118] H. K. Shin, M. J. Hampden-Smith, T. T. Kodas, M. Paffett, J. D. Farr, in Mater. Res. Soc. Symp. Proc. 1991, 204, 421.
- [119] H. K. Shin, M. J. Hampden-Smith, T. T. Kodas, E. N. Duesler, J. Chem. Soc., Chem. Commun. 1992, 217.
- [120] K. M. Chi, T. S. Corbitt, M. J. Hampden-Smith, T. T. Kodas, E. N. Duesler, J. Organomet. Chem. 1993, 499, 181.
- [121] A. Jain, K. M. Chi, M. J. Hampden-Smith, T. T. Kodas, M. F. Paffett, J. D. Farr, J. Mater. Res. 1992, 7, 261.
- [122] K. M. Chi, H. K. Shin, M. J. Hampden-Smith, T. T. Kodas, E. N. Duesler, *Polyhedron* 1991, 10, 2293.
- [123] S. L. Cohen, M. Liehr, S. Kasi, Appl. Phys. Lett. 1992, 60, 50.
- [124] S. K. Reynolds, C. J. Smart, E. F. Baran, T. H. Baum, C. E. Larson, P. J. Brock, at 4th Chemical Congress of North America, New York, August 25–30, 1991.
- [125] A. Jain, J. Farkas, M. J. Hampden-Smith, T. T. Kodas, Appl. Phys. Lett. 1992, 62, 2662.
- [126] A. Jain, R. Jaraith, Kodas, T. T.; Hampden-Smith, M. J.J. Vac. Sci. Technol. B 1993, 11, 2107.
- [127] A. Jain, K. M. Chi, M. J. Hampden-Smith, T. T. Kodas, M. F. Paffett, J. D. Farr, J. Electrochem. Soc. 1993, 140, 1434.
- [128] J.A. T. Norman, B.A. Muratore, P. N. Dyer, D.A. Roberts, A.K. Hochberg, J. de Phys. IV, 1992, 1, C2-271.
- [129] J.A.T. Norman, US Patent 4950790, 1990.
- [130] J. A. T. Norman, B. A. Muratore, P. N. Dyer, D. A. Roberts, A. K. Hochberg, *Mater. Sci. Eng. B* 1993, 17, 87.
- [131] J. A. T. Norman, P. N. Dyer, US Patent 5098516, 1992.
- [132] J. A. T. Norman, B. A. Muratore, US Patent 5035731, 1992
- [133] R. Kumar, A. W. Maverick, F. R. Fronczek, W. G. Lai, Griffin, at 200th American Chemical Society Meeting, Atlanta, GA 1991.
- [134] K. M. Chi, H. K. Shin, M. J. Hampden-Smith, T. T. Kodas, E. N. Duesler, *Inorg. Chem.* 1991, 30, 4293.
- [135] A. Jain, K. M. Chi, M. J. Hampden-Smith, T. T. Kodas, M. F. Paffett, J. D. Farr, *Chem. Mater.* 1991, 3, 995.
- [136] T. H. Baum, C. E. Larson, J. Electrochem. Soc. 1993, 140, 154.
- [137] M. J. Hampden-Smith, T. T. Kodas, M. F. Paffett, J. D. Farr, H. K. Shin, *Chem. Mater.* **1990**, *2*, 636.
- [138] D. B. Beach, F. K. LeGoues, C. K. Hu, Chem. Mater. 1990, 2, 216.
- [139] P. M. Jefferies, G. S. Girolami, Chem. Mater. 1989, 1, 8.
- [140] Y. Macheteau J. Cryst. Growth 1975, 28, 93.
- [141] R. Kaplan, N. Bottka, Appl. Phys. Lett. 1982, 41, 972.
- [142] P. J. Walsh, N. Bottka, J. Electrochem. Soc. 1984, 131, 444.
- [143] E. Feurer, S. Kraus, H. Suhr, J. Vac. Sci. Technol. A 1988, 47, 199.
- [144] G. T. Stauf, D. C. Driscoll, P. A. Dowben, S. Barfuss, M. Grade, *Thin Solid Films* **1987**, *153*, 421.
- [145] E. S. Vlakhov, K. A. Gesheva, V. T. Kovachev, Mater. Lett. 1987, 6, 58.
- [146] B. A. Macklin, J. C. Withers, in Proc. Conf. on CVD of Refractory Metals and Alloys (Ed: A. C. Shaffhauser), American Nuclear Society, Hinsdale, IL 1967, p.161.
- [147] P. B. Smith, Ph.D. Thesis, Princeton University, Princeton, NJ 1986.
- [148] H. D. Kaesz, R. S. Williams, R. F. Hicks, Y. J. Chen, Z. Xue, D. Xu, D. K. Shuh, H. Thridandam, *Mater. Res. Soc. Symp. Proc.* 1989, 131, 395.
- [149] J. A. Papke, R. D. Stevenson, in Proc. Conf. on CVD of Refractory Metals and Alloys (Ed: A. C. Shaffhauser), American Nuclear Society, Hinsdale, IL 1967, p.193.
- [150] J. T. Harding, V. R. Fry, R. H. Tuffias, R. B. Kaplan, AFRPL TR-86-099, 1987.
- [151] J. B. Hoke, E. W. Stern, H. H. Murray, J. Mater. Chem. 1991, 1, 551.
- [152] A. Freedman, R. Bersohn, J. Am. Chem. Soc. 1978, 100, 13.
- [153] T. A. Seder, S. P. Church, E. Weitz, J. Am. Chem. Soc. 1986, 108, 7518.
 [154] R. G. Bray, P. F. Seidler, J. S. Gethner, R. L. Woodin, J. Am. Chem. Soc.
- **1986**, 108, 1312.
- [155] L. M. Dyagileva, V. P. Mar'in, E. I. Tsyganova, G. A. Razavaev, J. Organomet. Chem. 1979, 175, 63.
- [156] N. Lifshitz, D. S. Williams, C. D. Capio, J. M. Brown, J. Electrochem. Soc. 1987, 134, 2061.
- [157] G. E. Carver, Thin Solid Films 1979, 63, 169.
- [158] W. J. Childs, J. E. Cline, W. M. Kisner, J. Wulf, Trans. ASM 1951, 43, 105.
- [159] T. Sugano, H. Chou, M. Yoshida, T. Nishi, Jpn. J. Appl. Phys. 1968, 7, 1028.
- [160] K. Yasuda, J. Murota, Jpn. J. Appl. Phys. 1983, 22, L615.
- [161] J. J. Casey, R. R. Verderber, R. R. Garnache, J. Electrochem. Soc. 1967, 114, 201.
- [162] K. Hieber, Thin Solid Films 1974, 24, 157.

Chem. Vap. Deposition 1995, 1, No. 1 © VCH Verlagsgesellschaft mbH, D-69469 Weinheim, 1995 0948-1907/95/0107-0021 \$ 5.00 + .25/0

- [163] S. S. Simeonov, E. I. Kafedjiiska, A. L. Guerassimov, *Thin Solid Films* 1984, 115, 291.
- [164] A. I. DeRosa, D. B. Dove, R. E. Loehman, J. Vac. Sci. Technol. 1974, 11, 455.
- [165] L. H. Kaplan, F. M. d'Heurle, J. Electrochem. Soc. 1970, 117, 693.
- [166] N. J. Ianno, J. A. Plaster, Thin Solid Films 1987, 147, 193.
- [167] J. A. Sheward, W. J. Young, Vacuum 1986, 36, 37.
- [168] M. Miyake, Y. Hirooka, R. Imoto, T. Sano, Thin Solid Films 1981, 79, 75.
- [169] M. E. Gross, K. S. Krang, D. Brasen, H. Luftman, J. Vac. Sci. Technol. B 1988, 6, 1548.
- [170] W. Hafner, E. O. Fischer, Br. Patent 976 573, 1964.
- [171] M. Miyake, Y. Hirooka, R. Imoto, T. Sano, *Thin Solid Films* 1979, 63, 303.
- [172] V. F. Korzo, G. A. Lyashchenko, B. I. Kozyrkin, V. P. Rumyentseva, *Inorg. Mater.* **1971**, *7*, 1649.
- [173] G. W. Roland, A. I Braginski, Adv. Cryog. Eng. 1977, 22, 347.
- [174] F. Weiss, R. Madar, J. P. Senateur, D. Boursier, C. Bernard, R. Fruchart, J. Cryst. Growth 1982, 56, 423.
- [175] R. Madar, F. Weiss, R. Fruchart, C. Bernard, J. Cryst. Growth 1978, 45, 37.
- [176] G. E. Pike, H. O. Pierson, A. W. Mullendore, J. E. Schirber, *Appl. Polym. Symp.* 1976, 29, 71.
- [177] S. R. Kurtz, R. G. Gordon, Thin Solid Films 1987, 147, 167.
- [178] A. I. Braginski, G. W. Roland, Appl. Phys. Lett. 1974, 25, 762.
- [179] D. E. R. Kehr, High Temp.-High Pressures 1978, 10, 477.
- [180] H. Kawamura, K. Tachikawa, Phys. Lett. A 1974, 50, 29.
- [181] A. A. Zinn, L. Brandt, H. D. Kaesz, R. F. Hicks, in *The Chemistry of Metal CVD* (Eds: T. T. Kodas, M. J. Hampden-Smith), VCH, Weinhiem 1994, Ch.7.
- [182] H. E. Carlton, J. H. Oxley, AIChE J. 1967, 13, 86.
- [183] R. Mond, Chem. Ind. 1930, 49T, 371.
- [184] C. H. J. van den Brekel, L. J. M. Bollen, J. Cryst. Growth 1981, 54, 310.
- [185] H. D. Kaesz, R. S. Williams, R. F. Hicks, Y. J. Chen, Z. Xue, D. Xu, D. K. Shuh, H. Thridandam, *Mater. Res. Soc. Symp. Proc.* 1989, 131, 395.
- [186] S. Lehwald, H. Wagner, Thin Solid Films 1974, 21, S23.
- [187] Y. Senzaki, F. B. McCormick, W. L. Gladfelter, Chem. Mater. 1992, 4, 747.
- [188] J. E. Gozum, D. M. Pollina, J. A. Jensen, G. S. Girolami, J. Am. Chem. Soc. 1988, 110, 2688.
- [189] M. J. Rand, J. Electrochem. Soc. 1973, 120, 686.
- [190] G. Doyle, K. A. Eriksen, D. Van Engen, Organometallics 1985, 4, 830.
- [191] R. Kumar, S. Roy, M. Rashidi, R. J. Puddephatt, Polyhedron 1989, 8, 551.
- [192] B. Nixon, P. R. Norton, E. C. Ou, R. J. Puddephatt, S. Roy, P. A. Young, *Chem. Mater.* **1991**, *3*, 222.
- [193] N. H. Dryden, R. Kumar, E. C. Ou, M. Rashidi, R. Sujit, P. R. Norton, R. J. Puddephatt, J. D. Scott, *Chem. Mater.* **1991**, *3*, 677.
- [194] Z. Xue, H. Thridandam, H. D. Kaesz, R. F. Hicks, Chem. Mater. 1992, 4, 162.
- [195] Z. Xue, M. J. Strouse, D. K. Shuh, C. B. Knobler, H. D. Kaesz, R. F. Hicks, R. S. Williams, J. Am. Chem. Soc. 1989, 111, 8779.
- [196] Y. J. Chen, H. D. Kaesz, H. Thridandam, R. F. Hicks, *Appl. Phys. Lett.* 1988, 53, 1591.
- [197] J. E. Gozum, J. A. Jensen, D. M. Pollina, G. S. Girolami, J. Am. Chem. Soc. 1988, 110, 2688.
- [198] N. C. Baenziger, H. L. Haight, R. Alexander, J. R. Doyle, *Inorg. Chem.* 1966, 5, 1399.
- [199] D. Braichotte, H. van den Bergh, Appl. Phys. A 1987, 44, 353.
- [200] D. Braichotte, H. van den Bergh, Appl. Phys. A 1988, 45, 337.
- [201] D. Braichotte, H. van den Bergh, Appl. Phys. A 1989, 49, 189.
- [202] W. R. Holman, F. J. Huegel, in (Ed: A. C. Schaffhauser), American Nuclear Society, Hinsdale, IL 1967, p.127.
- [203] W. R. Holman, F. J. Huegel, J. Vac. Sci. Technol. 1974, 11, 701.
- [204] J. I. Federer, J. E. Spruiell, in Proc. Conf. on CVD of Refractory Metals and Alloys (Ed: A. C. Schaffhauser), American Nuclear Society, Hinsdale, JL 1967, p.443.
- [205] J. G. Donaldson, F. W. Hoertel, A. A. Cochran, J. Less-Common Met. 1968, 14, 93.
- [206] H. J. Anderson, A. Brenner, in *Proc. 2nd Int. Conf. on CVD* (Eds: J. M. Blocher, J. C. Withers), ECS, New York **1971**, p.355.
- [207] B. J. Aylett, L. G. Earwaker, J. M. Keen, J. Mater. Res. Soc. Symp. Proc. 1993, 282, 281.
- [208] V. F. Syrkin, V. N. Prokhorov, L. N. Romanov, J. Appl. Chem. USSR 1976, 49, 1330.
- [209] P. Doppelt, L. Ricard, V. Weigel, V. Inorg. Chem. 1993, 32, 1039.
- 22

© VCH Verlagsgesellschaft mbH, D-69469 Weinheim, 1995

- [210] D. C. Smith, S. G. Pattillo, N. E. Elliott, T. G. Zocco, C. J. Burns, J. R. Laia, A. P. Sattelberger, *Mater. Res. Soc. Symp. Proc.* 1990, 168, 369.
- [211] J. P. Lu, P. W. Chu, R. Raj, H. Gysling, Thin Solid Films 1992, 208, 172.
- [212] T. Chang, S. L. Bernasek, J. Schwartz, Langmuir 1991, 7, 1413.
- [213] R. Kumar, R. J. Puddephatt, Can. J. Chem. 1991, 69, 108.
- [214] A. Etspuler, H. Suhr, Appl. Phys. A 1989, 49, 1.
- [215] J. S. Cohan, H. Yuan, R. S. Williams, J. I. Zink, Appl. Phys. Lett. 1992, 60, 1402.
- [216] R. L. Van Herment, L. B. Spendlove, R. E. Sievers, J. Electrochem. Soc. 1965, 112, 1123.
- [217] M. L. Green, R. A. Levy, J. Met. 1985, 37, 63.
- [218] D. E. Trent, B. Paris, H. H. Krause, Inorg. Chem. 1964, 3, 1057.
- [219] K. V. Salazar, K. C. Ott, R. C. Rye, K. M. Hubbard, E. J. Peterson, J. Y. Coulter, T. T. Kodas, *Physica C* 1992, 198, 303.
- [220] M. Stolz, K. Hieber, C. Wieczorek, Thin Solid Films 1983, 100, 209.
- [221] K. Hieber, M. Stolz, in *Proc. 5th Int. Conf. CVD* (Eds: J. J. M. Blocher, H. E. Hintermann, L. H. Hall), Electrochemical Society, Princeton, NJ 1975, p.436.
- [222] C. Beguin, E. Horvath, A. J. Perry, Thin Solid Films 1977, 46, 209.
- [223] C. E. Powell, I. E. Campbell, B. W. Gonser, J. Electrochem. Soc. 1948, 85, 258.
- [224] D. Ugolini, S. P. Kowalczyk, F. R. McFeely, J. Appl. Phys. 1991, 70, 3899.
- [225] I. E. Campbell, R. I. Jaffee, J. M. Blocher, Jr., J. Gurland, B. W. Gonser, J. Electrochem. Soc. 1948, 93, 271.
- [226] W. B. Chou, M. N. Azer, J. Mazumder, J. Appl. Phys. 1989, 66, 191.
- [227] R. Izquierdo, C. Lavoie, M. Meunier, Mater. Res. Soc. Symp. Proc. 1990, 158, 141.
- [228] C. P. Boekel, J. H. Teuber, M. J. de Liefde Meijer, J. Organomet. Chem. 1974, 81, 371.
- [229] C. P. Boekel, A. Jelsma, J. H. Teuber, M. J. de Liefde Meijer, J. Organomet. Chem. 1977, 136, 211.
- [230] V. N. Latyaeva, L. I. Vishinskaya, V. P. Mar'in, Zh. Obshch. Khim. 1976, 46, 628.
- [231] G. A. Razuvaev, V. P. Mar'in, C. P. Kosneva, L. I. Vishinskaya, V. K. Cherkasov, O. N. Druzhkov, Dokl. Akad. Nauk SSSR 1976, 231, 626.
- [232] H. J. Homer, US Patent 2887406, 1959.
- [233] C. Wyetznes, S. Komarov, C. Freel, M. Jones, A. F. Hepp, M. A. Fury, A. E. Kaloyeros, at Fall Mater. Res. Soc. Mtg., Boston, MA 1993.
- [234] R. M. Charatan, M. E. Gross, at Fall Mater. Res. Soc. Mtg., Boston, MA 1993.
- [235] K. J. Miller, M. J. Grieco, S. M. Sze, J. Electrochem. Soc. 1966, 113, 902.
- [236] A. A. Zinn, in *The Chemistry of Metal CVD* (Eds: T. T. Kodas, M. J. Hampden-Smith), VCH, Weinheim **1994**, Ch.3.
- [237] C. A. van der Jeugd, G. J. Leusink, G. C. A. M. Janssen, S. Radelaar, *Appl. Phys. Lett.* **1990**, 57, 354.
- [238] C. A. van der Jeugd, G. C. A. M. Janssen, S. Radelaar, J. Appl. Phys. 1992, 72, 1583.
- [239] E. K. Broadbent, C. L. Ramiller, J. Electrochem. Soc. 1984, 131, 1427.
- [240] M. L. Yu, B. N. Eldridge, R. V. Joshi, in Proc. of the Workshop on Tungsten and Other Refractory Metals for VLSI Applications III (Eds: R. S. Blewer, C. M. McConica), MRS, Pittsburgh, PA 1988.
- [241] M. L. Yu, B. N. Eldridge, J. Vac. Sci. Technol. A 1989, 7, 1441.
- [242] A. E. T. Kuiper, M. F. C. Willemsen, J. E. J. Schmitz, *Appl. Surf. Sci.* 1989, 38, 338.
- [243] R. S. Rosler, M. J. Rice, J. Mendonca, J. Vac. Sci. Technol. B 1988, 6, 1721.
- [244] R. F. Foster, S. Tseng, L. Lane, K. Y. Ahn, in Proc. of the Workshop on Tungsten and Other Refractory Metals for VLSI Applications III, (Eds: R. S. Blewer, C. M. McConica), MRS, Pittsburgh, PA 1988.
- [245] Y. Kusumoto, K. Takakuwa, H. Hashinokuchi, T. Ikuta, I. Nakayama, in Proc. of the Workshop on Tungsten and Other Refractory Metals for VLSI Applications III (Eds: R. S. Blewer, C. M. McConica), MRS, Pittsburgh, PA 1988.
- [246] Y. W. Park, C. O. Park, J. S. Chun, Thin Solid Films 1991, 201, 167.
- [247] C. A. van der Jeugd, G. J. Leusink, T. G. M. Oosterlaken, P. F. A. Alkmade, L. K. Nanver, E. J. G. Goudena, G. C. A. M. Janssen, S. Radelaar, J. Electrochem. Soc. 1992, 139, 3615.
- [248] M. L. Yu, K. Y. Ahn, R. V. Joshi, J. Appl. Phys. 1990, 67, 1055.
- [249] J. K. J. Schmitz, in CVD of Tungsten and Tungsten Silicides, Noyes, Park Ridge, NJ 1991, p.59.
- [250] W. A. Bryant, J. Electrochem. Soc. 1978, 125, 1534.
- [251] Y. Pauleau, P. Lami, J. Electrochem. Soc. 1985, 132, 2779.
- [252] J. N. Pring, W. Fielding, J. Chem. Soc. 1909, 95, 1502.
- [253] C. F. Powell, J. H. Oxley, J. M. Blocher, Vapor Deposition, Wiley, New York 1966, p.322.

0948-1907/95/0107-0022 \$ 5.00 + .25/0

- [254] C. F. Powell, I. E. Campell, B. W. Gonser, J. Electrochem. Soc. 1948, 93, 258.
- [255] E. J. Mehalchick, M. B. MacInnis, Electrochem. Technol. 1968, 6, 66.
- [256] A. Harsta, J. O. Carlsson, in Proc. of the Workshop on Tungsten and Other Refractory Metals for VLSI Applications IV, MRS, Pittsburgh, PA 1989,
- p.245.
 [257] A. M. Ammerlaan, D. R. M. Boogaard, P. J. van der Putte, J. Schoonman, *Appl. Surf. Sci.* 1991, 53, 24.
- [258] R. M. Caves, Trans. Met. Soc. AIME 1962, 224, 267.
- [259] E. Sirtl, US Patent 3619288, 1971.
- [260] K. Hieber, J. Von Tomkewitsch, H. Treichel, T. Kruck, O. Spindler, Euro. Patent 338 206, 1989.
- [261] M. Diem, M. Fisk, J. Goldman, Thin Solid Films 1983, 107, 39.
- [262] E. D. Boyes, J. Less-Common Met. 1971, 26, 207.
- [263] G. J. Vogt, J. Vac. Sci. Technol. 1982, 20, 1336.
- [264] F. Zaera, J. Phys. Chem. 1992, 96, 4609.
- [265] T. P. Whaley, V. Norman, US Patent 3252 824, 1966.
- [266] H. D. Kaesz, B. Niemer, unpublished.
- [267] R. U. Kirss, J. Chen, R. B. Hallock, Mater. Res. Soc. Symp. Proc. 1992, 250, 303.
- [268] R. U. Kirss, D. Gordon, P. S. Kirlin, Mater. Res. Soc. Symp. Proc. 1993, 282, 275.
- [269] B. Niemer, A. A. Zinn, W. K. Stovall, P. E. Gee, R. F. Hicks, H. D. Kaesz, Appl. Phys. Lett. 1992, 61, 1793.
- [270] K. K. Lai, H. H. Lamb, unpublished.
- [271] A. A. Zinn, W. K. Stovall, H. D. Kaesz, B. Niemer, Adv. Mater. 1992, 4, 375.
- [272] C. I. M. A. Spee, F. Verbeek, J. G. Kraaijkamp, J. L. Linden, T. Rutten, H. Delhaye, E. A. van der Zouwen, H. A. McInema, *Mater. Sci. Eng. B* 1993, 17, 108.
- [273] R. B. Holden, B. Kopelman, J. Electrochem. Soc. 1953, 100, 120.
- [274] R. Morancho, J. Petil, F. Dabosi, G. Constant, in Proc. 7th Int. Conf. on CVD (Eds: H. Lydtin, T. O. Sedgwick), ECS, Princeton, NJ 1979, p.593.
- [275] W. B. Chou, M. N. Azer, J. Mazumder, J. Appl. Phys. 1989, 66, 191.
- [276] G. W. Roland, A. I. Braginski, Adv. Cryog. Eng. 1977, 22, 347.
- [277] W. G. Lai, Y. Xie, G. L. Griffin, J. Electrochem. Soc. 1991, 138, 3499.
- [278] D. B. Beach, S. E. Blum, F. K. LeGoues, J. Sci. Technol. A 1989, 7, 3117.
- [279] R. D. Pike, H. Cui, R. Kershaw, K. Dwight, A. Wold, T. N. Blanton, A. A. Wernberg, H. J. Gysling, *Thin Solid Films* 1993, 224, 221.
- [280] A. A. Wernberg, H. J. Gysling, Chem. Mater. 1993, 5, 1056.
- [281] H. J. Gysling, A. A. Wernberg, Chem. Mater. 1992, 4, 900.
- [282] C. Y. Xu, M. J. Hampden-Smith, T. T. Kodas, Adv. Mater. 1994, 6, 745.

[283] C. Roger, T. S. Corbitt, M. J. Hampden-Smith, T. T. Kodas, Appl. Phys. Lett. 1994, 65, 1021.

Chemical

-Vapor-Deposition

- [284] G. Blandenet, M. Court, Y. Legard, Thin Solid Films 1981, 77, 81.
- [285] R. M. Charatan, M. E. Gross, at Fall Mater. Res. Soc. Mtg., Boston, MA 1993.
- [286] C. Wyetzner, S. Komarov, C. Freel, M. Jones, A. F. Hepp, M. A. Fury, A. E. Kaloyeros, at Fall Mater. Res. Soc. Mtg., Boston, MA 1993.
- [287] T. H. Baum, C. E. Larson, Chem. Mater. 1992, 4, 365.
- [288] S. K. Reynolds, C. J. Smart, E. F. Baran, T. H. Baum, C. E. Larson, P. J. Brock, Appl. Phys. Lett. 1991, 59, 2332.
- [289] P. F. Seidler, S. P. Kowalczyk, M. M. Banaszak, J. J. Yurkas, M. H. Norcott, F. R. McFeely, *Mater. Res. Soc. Symp. Proc.* **1993**, 282, 359.
- [290] M. M. Banaszek Holl, P. F. Seidler, S. P. Kowalczyk, F. R. McFeely, *Inorg. Chem.* 1994, 33, 510.
- [291] A. Paul, B. E. Bent, P. F. Seidler, unpublished.
- [292] M. M. Banaszak Holl, P. F. Seidler, S. P. Kowalczyk, F. R. McFreely, *Appl. Phys. Lett.* **1993**, 62, 1475.
- [293] R. Kaplan, N. Bottka, Appl. Phys. Lett. 1982, 41, 972.
- [294] J. P. Collman, L. S. Hegedus, J. R. Norton, R. G. Finke, *Principles and Applications of Organotransition Metal Chemistry*, University Science Books, Mill Valley, CA 1987.
- [295] J. B. Hoke, E. W. Stern, H. H. Murray, J. Mater. Chem. 1991, 1, 551.
- [296] H. O. Pierson, Handbook of Chemical Vapor Deposition, Noyes, Park Ridge, NJ 1992.
- [297] A. Sherman, Chemical Vapor Deposition for Microelectronics, Noyes, Park Ridge, NJ 1987.
- [298] M. L. Hitchman, K. F. Jensen, Chemical Vapor Deposition: Principles and Applications, Academic, San Diego, CA 1993.
- [299] H. H. Lee, Fundamentals of Microelectronics Processing, McGraw-Hill, New York 1990.
- [300] T. T. Kodas, T. H. Baum, P. B. Comita, J. Appl. Phys. 1987, 62, 281.
- [301] T. T. Kodas, T. H. Baum, P. B. Comita, J. Cryst. Growth 1988, 87, 378.
- [302] T. Ward, T. T. Kodas, R. L. Jackson, J. Appl. Phys. 1991, 69, 1000.
- [303] D. H. Kim, R. H. Wentorf, W. N. Gill, in Advanced Metallization and Processing for Semiconductor Devices and Circuits II (Eds: A. Katz, S. Murarka, Y. I. Nissim, J. M. E. Harper), MRS, Pittsburgh, PA 1992, p.107.
- [304] R. B. Bird, W. E. Stewart, E. N. Lightfoot, *Transport Phenomena*, Wiley, New York 1960.
- [305] C. M. McConica, K. Krishnamani, J. Electrochem. Soc. 1986, 133, 2542.
- [306] A. Gurav, T. Kodas, T. Pluym, Y. Xiong, Aerosol Sci. Technol. 1993, 19, 441.