LIBRARY NOV 17 1960 UNIVERSITY OF MASHINGTON

Journal of The Chemical Society

540.5

LC

October 1960

PUBLICATION COMMITTEE

Chairman

H. J. Emeléus, C.B.E., M.A., D.Sc., F.R.S.

G. O. Aspinall, D.Sc., F.R.S.E., F.R.I.C. Wilson Baker, M.A., D.Sc., F.R.S. R. P. Bell, M.A., F.R.S. E. Boyland, D.Sc., Ph.D. D. M. Brown, Ph.D. G. M. Burnett, Ph.D., D.Sc. I. G. M. Campbell, B.Sc., Ph.D. N. Campbell, D.Sc., Ph.D. N. B. Chapman, M.A., Ph.D. J. Chatt, M.A., Sc.D., F.R.I.C. D. D. Eley, Sc.D., Ph.D. D. H. Everett, M.B.E., M.A., D.Phil. R. H. Hall, Ph.D., A.R.C.S., F.R.I.C. T. G. Halsall, Ph.D., M.A., A.R.I.C. D. H. Hey, D.Sc., F.R.I.C., F.R.S. D. J. G. Ives, D.Sc., A.R.C.S., F.R.I.C. A. W. Johnson, Sc.D., Ph.D., A.R.C.S.

C. Kemball, M.A., Ph.D., F.R.I.C. J. A. Kitchener, D.Sc., Ph.D. G. Kohnstam, Ph.D. H. C. Longuet-Higgins, M.A., D.Phil., F.R.S. B. Lythgoe, M.A., Ph.D., F.R.I.C., F.R.S. H. T. Openshaw, M.A., D.Phil. M. W. Perrin, C.B.E., M.A., F.R.I.C. R. A. Raphael, D.Sc., A.R.C.S., F.R.I.C. P. L. Robinson, D.Sc., F.R.I.C. K. Schofield, Ph.D., D.Sc., F.R.I.C. A. G. Sharpe, M.A., Ph.D., F.R.I.C. J. C. Speakman, M.Sc., Ph.D., D.Sc. K. W. Sykes, M.A., D.Phil. Sir Alexander Todd, M.A., D.Sc., F.R.S. B. C. L. Weedon, D.Sc., A.R.C.S., F.R.I.C. D. H. Whiffen, M.A., D.Phil. M. C. Whiting, M.A., Ph.D., A.R.C.S. G. Wilkinson, Ph.D., A.R.C.S.

Editor

R. S. Cahn, M.A., D.Phil.Nat., F.R.I.C.

Deputy Editor

L. C. Cross, Ph.D., A.R.C.S., F.R.I.C.

Assistant Editor

A. D. Mitchell, D.Sc., F.R.I.C.

Subscription rate to non-Fellows £20 os. od. (including Proceedings) per annum post free.

Journal of The Chemical Society 010

CONTENTS

General, physical, and inorganic

NO.		PAGE
740	The reaction of copper with suspensions of nitrosyl perchlorate By B. J. HATHAWAY and A. E. UNDERHILL	3705
741	Ultraviolet absorption studies of the bisulphite-pyrosulphite equilibrium By R. M. GOLDING	3711
744	Decay of fluorescence By W. S. METCALF	3726
745	Florescence and ionisation rate of an acid By W. S. METCALF	3729
747	The chemistry of quadrivalent germanium. Part VIII. Complexes of germanium with tartaric, lactic, and mucic acid By D. A. EVEREST and J. C. HARRISON	3752
759	Submicro-methods for the analysis of organic compounds. Part XII. Determination of carboxyl group By R. BELCHER, L. SERRANO-BERGES, and T. S. WEST	3830
762	A study of the NH stretching bands and the conformations of some amine com- plexes of platinum(II) By L. A. DUNCANSON and L. M. VENANZI	3841
764	The solubility behaviour of aromatic hydrocarbons. Part III. Solubilities in cyclohexane By E. McLAUGHLIN and H. A. ZAINAL	3854
765	Metallo-organic compounds containing metal-nitrogen bonds. Part I. Some dialkylamino-derivatives of titanium and zirconium By D. C. BRADLEY and I. M. THOMAS	3857
767	Photochemical decomposition of water by ferrous ions By E. HAYON and J. WEISS	3866
772	Alkyl- and aryl-thio-iron tricarbonyls By S. F. A. KETTLE and L. E. ORGEL	3890
777	The low-temperature polymerisation of isobutene. Part IV. Exploratory experiments By R. H. BIDDULPH and P. H. PLESCH	3913
779	Alkyl derivatives of Group I metals. Part I. Ethylsilver: kinetics of decomposition in solution	2020
780	By C. E. H. BAWN and R. JOHNSON	3923
785	By C. E. H. BAWN and F. J. WHITBY The molecular-weight distribution in some poly(methyl methacrylates)	3926
786	By T. J. R. WEAKLEY, R. J. P. WILLIAMS, and J. D. WILSON	3963
	of specific surface areas of solids By C. H. GILES, T. H. MACEWAN, S. N. NAKHWA, and D. SMITH	3973
789	Pure tin(II) sulphate By J. D. DONALDSON and W. MOSER	4000
793	Adsorption from hydrochloric acid, sulphuric acid, and potassium chloride solu- tions by gold By D. P. BENTON, G. A. H. ELTON, and J. T. HARRISON	4019
794	The rates of decomposition of free-radical polymerisation-catalysts: measurements of short half-lives by a thermal method	1000
	Бу №. П. КАУ	4023

11	Contents.	
NO.		PAGE
796	Interaction of boron chlorides with dialkyl or diaryl hydrogen phosphites	
	By R. BEDELL, M. J. FRAZER, and W. GERRARD	4037
806	Some complex compounds of rhenium	
	By R. COLTON, R. LEVITUS, and G. WILKINSON	4121
807	Mixed halides of phosphorus(v). Part III. Tetrachlorophosphonium penta-	
	chlorofluorophosphate	
	By T. KENNEDY and D. S. PAYNE	4126
808	Organometallic compounds. Part I. The autoxidation of dialkylzincs	
	By M. H. ABRAHAM	4130
NOTE	By R. M. Guinnau	
011	Clow discharge electrolation (1' '1 - 1 1 - 1' '1 - 1 - 1' '1	
011	By C. H. CADY, H. J. EVERTICE and P. Trouve	4190

Physical organic

742	The interaction of N-chloro-N-methylbenzamides and of N-chloro-N-methylbenzenesulphonamides with p -nitrophenoxide ion By M. L. BURSTALL, M. S. GIBSON, J. S. GREIG, B. MCGHEE, and D. G. STEWART	3717
743	The kinetics of the oxidation of ethylene by nitrous oxide By A. B. TRENWITH	3722
750	Homolytic aromatic substitution. Part XVIII. Some reactions with <i>ortho</i> - substituted phenyl radicals By D. H. HEY, H. N. MOULDEN, and GARETH H. WILLIAMS	3769
751	Homolytic aromatic substitution. Part XIX. The arylation of nitrobenzene and chlorobenzene with <i>para</i> -substituted aryl radicals By J. K. HAMBLING, D. H. HEV, and GARETH H. WILLIAMS	3782
752	Homolytic aromatic substitution. Part XX. The phenylation of pyridine by electrolysis By P. J. BUNYAN and D. H. HEY	3787
753	Steric effects in di- and tri-arylmethanes. Part II. Electronic absorption spectra of derivatives of Michler's Hydrol Blue, Malachite Green, and Crystal Violet con- taining hindered dimethyl-amino-groups By C. C. BARKER, G. HALLAS, and A. STAMP	3790
755	The kinetics of the hydrolysis of triphenylmethyl fluoride in aqueous acetone By A. K. COVERDALE and G. KOHNSTAM	3806
757	The kinetics and mechanisms of addition to olefinic substances. Part VII. Some observations relating to linear free-energy relations in reactions of olefinic substances By P. B. D. DE LA MARE	3823
760	The decomposition of nitramide in nitrobenzene catalysed by aniline derivatives By D. D. CALLANDER, W. D. FERGUSON, G. C. FETTIS, and A. F. TROTMAN- DICKENSON	3834
763	Liquid-phase reactions at high pressure. Part XII. The polymerisation ceiling temperature of α -methylstyrene at high pressures By J. G. KILROE and K. E. WEALE	3849
778	Catalysis by hydrogen halides in the gas phase. Part IV. <i>t</i> -Pentyl alcohol and hydrogen bromide By V. R. STIMSON and E. J. WATSON	3920
781	Benzyloxyl radicals in benzyl nitrite pyrolyses By PETER GRAY, P. RATHBONE, and A. WILLIAMS	3932
782	The configuration of the transition state in methyl-radical additions By J. H. BINKS, J. GRESSER, and M. SZWARC	3944
795	Chemistry related to borazole. Part I. The boron trichloride and boron tri- fluoride complexes of primary aromatic amines	
	By W. GERRARD and E. F. MOONEY	4028

	Contents.	iii
ыо. 797	The kinetics and mechanisms of aromatic halogen substitution. Part VIII. Chlorine acetate in slightly aqueous acetic acid By P. B. D. DE LA MARE, I. C. HILTON, and C. A. VERNON	PAGE 4039
798	The kinetics and mechanisms of aromatic halogen substitution. Part IX. Mix- tures of acetic acid and aqueous hypochlorous acid	
700	By P. B. D. DE LA MARE, I. C. HILTON, and S. VARMA	4044
100	in bimolecular olefin elimination By D. V. BANTHORPE, E. D. HUGHES, and Sir CHRISTOPHER INGOLD	4054
800	Mechanism of elimination reactions. Part XXI. Anomalous elimination from $\alpha \alpha'$ -dichlorosuccinic acid	
801	By E. D. HUGHES and J. C. MAYNARD	4087
	the trimethylneomenthylammonium ion By E. D. HUGHES and J. WILBY	4094
Noti	B and a local statement of the statement of	
809	Characterisation of cyclic compounds by molecular refractivities By M. VAHRMAN	4135
	Organic	
738	The X-ray crystallographic determination of the structure of bromomirœstrol By NOEL E. TAYLOR, DOROTHY CROWFOOT HODGKIN, and J. S. ROLLETT	3685
739	Light-absorption and chemical properties of mirœstrol, the œstrogenic substance	

	of Pueraria mirifica By D. G. BOUNDS and G. S. POPE	3696
746	"Citrylidene-malonic acid ": cis-1(Me),3(H),4(H)-cis-3(H),α(H)-1,8-dihydroxy-3- p-menthylmalonic dilactone By C. E. BERKOFF and L. CROMBIE	3734
748	Phosphorylated sugars. Part I. The alkaline hydrolysis of methyl α -D-glucoside 4,6-(hydrogen phosphate) By (Mrs.) PATRICIA SZABÓ and L. SZABÓ	3758
749	Phosphorylated sugars. Part II. The synthesis of some methyl glycoside phosphates By (Mrs.) PATRICIA SZABÓ and L. SZABÓ	3762
754	Fluorocyclohexanes. Part VI. Some hexa- and penta-fluorocyclohexenes and their dehydrofluorination By E. NIELD, R. STEPHENS, and J. C. TATLOW	3800
756	Researches on polyenes. Part VII. The preparation and electronic absorption spectra of homologous series of simple cyanines, merocyanines, and oxonols By S. S. MALHOTRA and M. C. WHITING .	3812
758	West African timbers. Part III. Petroleum extracts from the genus Entandro- phragma By A. AKISANYA, C. W. L. BEVAN, J. HIRST, T. G. HALSALL, and D. A. H. TAYLOR	3827
761	Glycosylureas. Part I. Preparation and some reactions of D-glucosylureas and D-ribosylureas By M. H. BENN and A. S. IONES	3837
766	Steps towards the synthesis of the histidine ² -hypertensin analogue. Part I. Synthesis of an intermediate protected heptapeptide By D. THEODOROPOULOS and I. GAZOPOULOS	3861
768	Modified steroid hormones. Part XVIII. The microbiological hydroxylation of 4-methyltestosterone with <i>Rhizopus nigricans</i> By D. N. KIRK, V. PETROW, and (MRS.) M. H. WILLIAMSON	3872
769	The constitution of a xylan from Cocksfoot grass (Dactylis glomerata) By G. O. ASPINALL and I. M. CAIRNCROSS	3877
550		

770 A trisaccharide from the enzymic degradation of two arabinoxylans By G. O. Aspinall, I. M. Cairneross, R. J. Sturgeon, and K. C. B. Wilkie . 3881

1	-			1	-			1	12	
1 .	α	1	1.	Т	P	ı	T.	Т	\mathcal{S}	
0	v	1	v	v	V	,	v	v	0	٠

1V	Contents.	
^{NO.} 771	Ribose and its derivatives. Part IX. The use of carbonyl esters in synthesis of	PAGE
	α-derivatives By G. R. Barker, I. C. Gillam, (the late) P. A. LORD, THELMA DOUGLAS, and J. W. Spoors	3885
773	Conformationally fixed olefins. Part I. The epimeric 1-methyl-4-t-butylcyclo- hexanols and 1-methylene-4-t-butylcyclohexane By B. CROSS and G. H. WHITHAM	3892
774	Conformationally fixed olefins. Part II. The reaction of 1-methylene-4-t-butyl- cyclohexane with lead tetra-acetate By B. CROSS and G. H. WHITHAM	3895
775	Chromones and flavones. Part II. Kostanecki-Robinson acylation of some iodo-derivatives of 2,4- and 2,6-dihydroxyacetophenone By M. V. SHAH and SURESH SETHNA	3899
776	Amino-acids and peptides. Part XV. Racemisation during peptide synthesis By N. A. SMART, G. T. YOUNG, and (in part) M. W. WILLIAMS	3902
783	The chemistry and stereochemistry of trichothecin By J. FISHMAN, E. R. H. JONES, G. LOWE, and M. C. WHITING	3948
784	The biogenesis of trichothecin By E. R. H. Jones and G. Lowe	3959
787	The scope and mechanism of carbohydrate osotriazole formation. Part IV. Debromination and oxidation of substituted osazones and osotriazoles By H. EL KHADEM, ZAKI M. EL-SHAFEI, and Y. S. MOHAMMED	3993
788	The catalytic oxidation of rye-flour arabinoxylan By G. O. ASPINALL and I. M. CAIRNCROSS	3998
790	The synthesis of 4,5-bistrifluoromethylbenzimidazole By J. FERNANDEZ-BOLAÑOS, W. G. OVEREND, A. SYKES, J. C. TATLOW, and E. H. WISEMAN	4003
791	Picrotoxin. Part VIII. The structures of α - and β -picrotoxinones By P. I. BURKHILL and J. S. E. HOLKER	4011
792	By Shlomo Bien	4015
802	Quinolizines. Part IV. The synthesis of 1-aminoquinolizinium salts By A. R. COLLICUTT and GURNOS JONES	4101
803	Flavan derivatives. Part III. Melacacidin and isomelacacidin from Acacia species By I. W. CLARK-LEWIS and P. I. MORTIMER	4106
804	Amino-acids and peptides. Part III. The constitution of hypoglycin B By C. H. HASSENIJ, and D. L. LOUX	4119
805	The Reformatsky reaction on the tetralones and indanones By HAFEZ AHMED and NEIL CAMPBELL	4115
Nor	series and have a more series of the series of the here as rouge to be a series	
810	2 2'-Biphenylenehalonium salts	
010	By Douglas Lloyd and Ronald H. McDougall	4136
812	Oxidation products from codeine By Ivor Brown and M. MARTIN-SMITH	4139

deviation of the five molecules for which heat of fusion data are available, exhibits ⁴ two liquid phases in the binary system with isobutane. For cyclohexane solutions at 27.4° , w/kT is 1.96, which can be compared with the value 2 required for phase separation.

It was shown earlier 1,2 that the ideal solubilities of these series of hydrocarbons all lie on the same curve when log x is plotted against $T_{\rm f}/T$. This arises, as can be seen, when the solubility equation (1) is transformed into:

$$\ln 1/a = (\Delta S_{\rm f}/\mathbf{R})[(T_{\rm f}/T) - 1]$$

because the entropies of fusion for the members of this series are all about 13.0 cal. deg.⁻¹ mole⁻¹. This means that ideal solubilities are all the same at the same reduced temperature.

A plot of log *a* against T_f/T should likewise give a single curve. However, as no independent activity coefficient data are available this has not been tested. For benzene and carbon tetrachloride as solvents, plots of $(T/T_f) \log a$ show a smaller scatter compared with the data for cyclohexane given in Fig. 2. The large deviation in the case of cyclohexane may be due to the entropy contribution for each molecule rather than to the non-zero energy of mixing.

As an approximation for estimating the solubility in cyclohexane the data in Fig. 2 have been fitted to the equation

$$\log x = -\frac{24 \cdot 3}{2 \cdot 303 \mathbf{R}} \left[\frac{T_{\rm f}}{T} - 1 \right]$$

by the method of least squares, which enables the solubility to be estimated within about 20%, on an average, for any of the molecules, from its melting point alone.

One of us (H. A. Z.) thanks the Government of Iraq for a maintenance award.

Department of Chemical Engineering, Imperial College of Science and Technology, S. Kensington, London, S.W.7. [Received, March 9th, 1960.]

⁴ Roof and Crawford, J. Phys. Chem., 1958, 62, 1138.

765. Metallo-organic Compounds containing Metal–Nitrogen bonds. Part I. Some Dialkylamino-derivatives of Titanium and Zirconium.

By D. C. BRADLEY and I. M. THOMAS.

The compounds $M(NR_2)_4$, where M is either Ti or Zr, and R is Me, Et, Prⁿ, or Buⁱ, were prepared either by treating the metal chloride with the appropriate lithium dialkylamide or by aminolysis involving a tetrakisdialkylamino-metal compound and another dialkylamine. The latter method also gave mixed dialkylamino-derivatives of the type $M(NR_2)_x(NR'_2)_{4-x}$, where R' was Et, Prⁿ, Prⁱ, Buⁱ, or of the type $M(NR_2)_x(N-crganic)_{4-x}$, where N-organic was piperidino-, 2-methylpiperidino-, or 2,6-dimethylpiperidino-. These new compounds can all be distilled or sublimed *in vacuo*, and are soluble in common organic solvents, readily hydrolysed and converted by alcoholysis into metal alkoxides. The absence of appreciable metal-nitrogen intermolecular bonding is discussed.

ALTHOUGH the amino-derivatives of titanium and zirconium are well known and the reactions involving aliphatic amines and the tetrachlorides of these metals have been studied,¹ there were no authentic examples of metallo-organic compounds containing these metals exclusively bonded to alkylamino-groups. Such compounds occupy the position between the well-known metal alkoxides and the little known organometallic

¹ Trost, Canad. J. Chem., 1952, **30**, 835, 842; Antler and Laubengayer, J. Amer. Chem. Soc., 1955, **77**, 5250.

3858 Bradlev and Thomas: Metallo-organic Compounds

compounds containing these metals bonded to aliphatic carbon atoms. Also, it was difficult to predict the physicochemical properties of tetrakisdialkylamino-derivatives from a priori considerations because of the lack of precise knowledge of the steric and electronic effects of four dialkylamino-groups centred round the metal. From similar principles to those deduced from the structural chemistry of metal alkoxides.² it seemed that the lower dialkylamines (e.g., dimethylamine) might produce polymeric derivatives (especially with zirconium) owing to covalency expansion of the metal causing intermolecular metal-nitrogen bonding. With the higher dialkylamines it was expected that volatile monomeric derivatives would occur because of the pronounced steric factors involved. Moreover, the existence of a series of tetrakisdialkylamino-derivatives of the metals would facilitate the study of the nature of metal-nitrogen bonds in covalent neutral compounds. For these reasons we have made a detailed study of tetrakisdialkylaminotitanium and -zirconium compounds and have found them guite stable in the absence of water or other hydroxylic compounds.

Gilman et al.³ recently prepared tetrakisdiethylaminouranium(IV) by treating uranium tetrachloride with lithium diethylamide and we have applied this method to the preparation of the tetrakisdialkylamino-derivatives of titanium and zirconium from the metal chlorides: i.e.,

$$MCI_4 + 4LiNR_2 \longrightarrow M(NR_2)_4 + 4LiCI$$

In addition, we have prepared other tetrakisdialkylamino-derivatives by aminolysis in which the metal derivative of a lower secondary amine was treated with a higher secondary amine:

$$M(NR_2)_4 + 4R'_2NH \longrightarrow M(NR'_2)_4 + 4R_2NH$$

A preliminary notification of this work appeared elsewhere.⁴

The thermal stability of the metal-nitrogen bond can be judged by the fact that these compounds survived distillation, in some cases at a fairly high temperature. However, they were extremely readily hydrolysed with liberation of the amine. Also, the amine was liberated and a metal alkoxide formed when the dialkylamino-compound was treated with an alcohol:

$$M(NR_2)_4 + 4ROH \longrightarrow M(OR)_4 + 4R_2NH$$

This reaction does not appear to be reversible since attempts to prepare dialkylamino-compounds by treatment of metal alkoxides with secondary amines under forcing conditions were unsuccessful. This could imply that the metal-oxygen bond is stronger than the metal-nitrogen bond but the situation is complicated by steric effects. The boiling points of the corresponding titanium and zirconium compounds are fairly close except for the dimethylamino-derivatives in which the zirconium compound has a considerably lower volatility. Molecular-weight determinations in boiling benzene show that this is due to a significant degree of polymerisation (1.22) in the zirconium compound, undoubtedly caused by intermolecular metal-nitrogen bonding. The titanium compound is practically monomeric. Similarly the diethylamino-derivatives of titanium and zirconium and the piperidino-derivative of titanium were all monomeric and it follows that the n-propylaminoand isobutylamino-derivatives of both metals must also be monomeric. This lack of polymerisation is extremely interesting because under favourable conditions it would be expected that nitrogen would form a stronger intermolecular co-ordinate bond than oxygen (in the alkoxides). It is reasonable to suggest that the shielding effect of a dialkylamino-group is much greater than that of the corresponding secondary alkoxide group. For example, zirconium tetraisopropoxide is trimeric under conditions where the tetrakisdimethylamino-zirconium has the degree of polymerisation of 1.22. Evidently branching

 ² Bradley, Nature, 1958, 182, 1211.
³ Jones, Karmas, Martin, and Gilman, J. Amer. Chem. Soc., 1956, 78, 4285.
⁴ Bradley and Thomas, Proc. Chem. Soc., 1959, 225.

at the nitrogen atom in M(NR₂)₄ is more effective sterically than branching at the carbinol carbon atom in M(O·CHR₂)₄. However, electronic effects must not be ignored and it is possible that the lower degree of polymerisation in $M(NR_2)_4$ is partly due to significant

intramolecular co-ordination involving the π -bond M=NR₂ whereas in the alkoxides it is

believed that the analogous π -bond structure M=O-CHR₂ contributes very little. Nevertheless, it is clear from the results of certain aminolyses that strong steric effects are operating in the alkylamino-compounds. Thus it was not possible to convert tetrakisdimethylaminotitanium into the diethylamino-derivative in spite of prolonged fractionation with excess of diethylamine. Instead, trisdiethylamino(mono)dimethylaminotitanium was isolated as a pale yellow liquid which could be distilled unchanged under reduced pressure. The results of a number of aminolyses which produced mixed dialkylamino-derivatives are included in Table 2. In reactions involving tetrakisdimethylaminotitanium and dialkylamines it is noteworthy that mixed dialkylamines of the general formula $Ti(NMe_2)B_3$ are obtained when $B = NEt_2$, NPr_2^n , or NBu_2^i , suggesting a similarity in steric effect of these groups in this type of molecule. Confirmation of the predominance of steric effects in these reactions is evident in the comparison of the behaviour of piperidine, 2-methylpiperidine, and 2,6-dimethylpiperidine. For example, piperidine, having a smaller steric effect than diethylamine, causes complete replacement of the dimethylamino-groups, whilst 2-methylpiperidine gives the same type of product as diethylamine or di-n-propylamine. Similarly, 2,6-dimethylpiperidine resembles di-isopropylamine in giving a product of the type $Ti(NMe_2)_3B$, where $B = NPr_2^i$, or NC_7H_{14} . Now if electronic effects were important we should expect the stronger base to be the more powerful substituting agent (assuming a nucleophilic reaction at the metal atom centre) and this is contrary to the behaviour of piperidine and its methyl derivatives. Another way in which electron effects might influence the degree of substitution is through partial

double bonding M=NR₂ resulting in a higher electron density on the metal with consequent resistance to nucleophilic attack. If this phenomenon were operative it would lead to a decrease in degree of substitution with increase in base strength of the substituting amine and its effect would thus be similar to that of the steric effect. The behaviour of tetrakisdiethylaminotitanium in resisting replacement by di-n-propylamine but allowing replacement by piperidine also supports the view that steric effects are very pronounced in these systems. Further support is evident from the behaviour of the zirconium compounds. For example, with tetrakisdimethylaminozirconium the degree of replacement of dimethylamino-groups by the other amines is noticeably greater than for the titanium compound. Another interesting feature is that the slight difference in behaviour between di-isopropylamine and 2,6-dimethylpiperidine in their reactions with $Ti(NMe_{2})_{4}$ is very much amplified in reactions with $Zr(NMe_2)_4$. Hence it appears that the steric effect of di-isopropylamine is greater than that of 2,6-dimethylpiperidine. The behaviour of tetrakisdiethylaminozirconium with these two amines also supports this view.

EXPERIMENTAL

Special precautions, e.g., carefully dried all-glass apparatus, were adopted to avoid hydrolysis, and all experiments were conducted under an atmosphere of dry oxygen-free nitrogen. amines and solvents were all dried over sodium and distilled immediately before use.

Analysis.—(a) For the metals. An accurately weighed sample of tetrakisdialkylaminocompound was hydrolysed in a platinum crucible and the hydrated oxide was then ignited to the dioxide. (b) For the dialkylamino-group (NR_2) . The sample was hydrolysed, and the liberated dialkylamine was steam distilled and titrated with standard acid in a modified Kjeldahl apparatus.

Preparation of Tetrakisdialkylamino-compounds from the Metal Chlorides.-Since the technique used was essentially the same in each experiment the details are given for the preparation of tetrakisdiethylaminotitanium alone, and the other results are summarised in

3860 Metallo-organic Compounds containing Metal-Nitrogen bonds. Part I.

Table 1. Butyl-lithium solution (300 c.c., 1.37N) was prepared in the usual manner ⁵ from n-butyl bromide (72 g.) and lithium (8.2 g.) in ether cooled to -20° . To this solution diethylamine (30 g.) was added slowly with stirring at -10° , stirring was continued for a further 30 min., and the products were allowed to attain room temperature. Titanium tetrachloride (16.2 g.) in benzene (100 c.c.) was next added during 30 min. with vigorous stirring and cooling to keep the temperature below about 10° . A brown intermediate product is precipitated in the initial stages of the reaction and the system, following completion of the addition of the tetrachloride, was refluxed (approx. 2 hr.) until the intermediate product disappeared and a pale yellow solution remained over a white precipitate of lithium salts. After removal of the ether by evaporation and its replacement by an equal volume of benzene, the solution was filtered, and the filtrate evaporated to dryness under reduced pressure. Distillation of the residue gave *tetrakisdiethylaminotitanium* as an orange liquid, b. p. 112°/0·1 mm. (19·2 g., 67%) [Found: Ti, 14·2; NEt₂, 85·3; Cl, 0·0. Ti(NEt₂)₄ requires Ti, 14·2; NEt₂, 85·8%].

In each of the preparations listed in Table 1, the yield is based on the distilled product. Each product was tested for the presence of chloride but it was invariably absent. In the preparation of the zirconium compounds, the zirconium tetrachloride was added to the lithium dialkylamide through a transfer tube under nitrogen.

TABLE 1.

	MCl ₄ *	Pr	oduct			Foun	d (%)	Calc.	(%)
Compound	(g.)	g.	yield (%)	B. p./mm.	Colour	M *	NR2	M *	NR2
Ti(NMe ₂) ₄	15.0	15.1	85	50°/0.05	Yellow	21.0	77.4	21.4	78.6
Ti(NPrn2)4	6.7	12.0	76	150/0.1	Red	10.8	89.5	10.7	89.3
Ti(NBu ⁱ ₂) ₄	8.5	12.1	48	170/0.1	Red	8.6	91.1	8.5	91.5
Ti(NC5H10)4	13.5	12.2	45	180/0.1	Red a	12.4	86.3	12.5	87.5
Zr(NMe ₂) ₄	34.0	$23 \cdot 1$	59	80/0.05	White b	33.7	66.5	34.1	65.9
Zr(NEt ₂) ₄	23.0	25.3	79	120/0.1	Green	24.1	76.0	24.0	76.0
		sk: 71	T Ti an 7	a M m	1000 5 11	n 70°			

Aminolysis of Tetrakisdialkylamino-derivatives of Titanium and Zirconium.—The following experiment is typical of all the others. Diethylamine (180 c.c.) was added to tetrakisdimethylaminotitanium (10.4 g.), and the solution refluxed under a fractionating column. Dimethylamine was immediately detected in the distillate and was fractionated off as it formed. The

TABLE 2.

			Duration			Found	1 (%)	Calc	(%)
		Yield	of				Total	Curci	Total
Reactants *	Product	(%)	reaction	B.p./mm.	Colour	M	NR.	M	NR.
$Ti(NMe_{a})_{4} + Pr^{n_{a}}NH$	Ti(NMe ₂)(NPr ⁿ ₂) ₂	89	3 days	95°/0.05	Yellow	12.1	86.7	12.2	87.8
Ti(NMe ₂) ₄ + Pr ⁱ ₂ NH	Ti(NMe ₂) ₂ (NPr ⁱ ₂) †	1	6 days	80/0.05	Orange a	19.3	-	17.1	82.9
$Ti(NMe_2)_4 + Bu_2^iNH$	Ti(NMe ₂)(NBu ⁱ ₂) ₃	80	3 days	170/0.1	Red	10.3	89.0	10.0	90.0
$,, + C_5 H_{10} NH$	Ti(NC5H10)4	85	24 hr.	108/0·1 e	Red	12.4	87.4	12.5	87.5
$H = C_6 H_{12} NH$	$Ti(NMe_2)(NC_6H_{12})_3$	78	5 days	160/0.1	Red	12.7	85.8	12.4	87.6
$,, + C_7 H_{14} NH$	$Ti(NMe_2)_3(NC_7H_{14})$	52	3 days	120/0.05	Red	16.0	81.5	16.4	83.6
$Ti(NEt_2)_4 + C_5H_{10}NH$	$Ti(NC_5H_{10})_4$	89	36 hr.	See a	bove	12.5	87.0	12.5	87.5
$,, + Pr_2^n NH$	No reaction	S	everal day	'S					
$Zr(NMe_2)_4 + Et_2NH$	$Zr(NEt_2)_4$	87	16 hr.	120/0.1	Green	24.4	76.0	24.0	76.0
$,, + Pr_2^nNH$	Zr(NPr ⁿ ₂) ₄	80	3 days	165/0.1	Green	18.8	80.6	18.5	81.5
$,, + Pr_2^iNH$	$Zr(NMe_2)_2(NPri_2)_2$	80	7 days	subl.	Green	$24 \cdot 1$	76.2	24.0	76.0
				100/0.05					
$,, + C_6 H_{12} NH$	$Zr(NC_6H_{12})_4$	56	2 days	190/0.1	Blue	19.1		18.9	81.1
$,, + C_7 H_{14} NH$	$Zr(NC_7H_{14})_4$	26	6 days	200/0.05	Red	17.3		16.9	83.1
$Zr(NEt_2)_4 + Pr_2^iNH$	$Zr(NEt_2)_3(NPr_2)$	84	2 days	112/0.05	Green ^b	22.6	77.3	22.4	77.6
$,, + Bu_2^iNH$	Zr(NBu ⁱ ₂) ₄	77	4 days	180/0·1 °	Green	15.3	84.5	15.1	84.9
$,, + C_{5}H_{10}NH$	$Zr(NC_5H_{10})_4$	62	6 hr.	190/0.2 d	Brown	21.3	78.0	21.3	78.7
* $NC_5H_{10} = piper$	ridino; $NC_6H_{12} = 2$	-methy	lpiperidin	o; and N	$C_{7}H_{14} =$	2,6-di	nethy	lpiper	idino.

† This product was a mixture with Ti(NMe₂)₄. ^a M. p. 40°. ^b M. p. 40°. ^c Sublimes. ^d M. p. 80°. ^e M. p. 100°

reaction was continued (about 5 days) until gas-liquid chromatography of the distillate proved that dimethylamine was absent. Removal of the diethylamine under reduced pressure followed by distillation of the residue afforded the pale yellow *trisdiethylamino(mono)dimethylamino-titanium* (13.45 g., 94%), b. p. 95°/0.05 mm. [Found: Ti, 15.8; Total base, 85.2.

⁵ Gilman, Beel, Brannen, Dunn, and Miller, J. Amer. Chem. Soc., 1949, 71, 1499.

3861

 $Ti(NMe_2)(NEt_2)_3$ requires Ti, 15.5; Total base, 84.5%]. The presence of both dimethylaminoand diethylamino-groups in the product was proved by gas-liquid chromatography of the volatile products of alcoholysis of a sample. This technique of checking the presence of different dialkylamino-groups and the general method outlined above were adopted for all other reactions, the results of which are summarised in Table 2.

Molecular-weight Determinations.—Some measurements were carried out in benzene by using the previously described ⁶ all-glass ebulliometer and the method of internal calibration ⁷ using fluorene. The results are given in Table 3.

		0
- A	DITE	
- I A	BIR	
	222	0.

	Range in wt.		Fluorene:		M	Sydel
Compound	of cpd. (g.)	$\Delta T/m$	range in wt. (g.)	$\Delta T/m$	Found	Calc.
Ti(NMe ₂) ₄	0.0575 - 0.2094	131°	0.0092 - 0.0813	194·4°	247	224.2
Ti(NEt ₂) ₄	0.0880 - 0.2391	50.0	0.0341 - 0.0896	98.2	327	336.4
Ti(NC ₅ H ₁₀) ₄	0.0152 - 0.1720	78.5	0.0118 - 0.0897	172.0	362	384.5
Zr(NMe ₂) ₄	0.0720 - 0.2485	88.9	0.0116 - 0.0710	173.9	325	267.5
Zr(NEt ₂) ₄	0.0730 - 0.2707	88.4	0.0185 - 0.0904	190.0	358	379.7

The high value found for tetrakisdimethylaminotitanium suggested a small degree of polymerisation in this compound. However, subsequent work has shown that this compound is appreciably volatile in benzene and hence the molecular-weight determination is suspect. The volatility of this compound suggests that it is monomeric.

Alcoholysis of Dialkylamino-metal Compounds.—Qualitative experiments showed that alcohols reacted vigorously with these titanium and zirconium compounds to release the amine and form the metal alkoxide. The quantitative aspect of this reaction was demonstrated by the following reaction. n-Butanol (60 c.c.) was added to tetrakisdi-n-propylaminotitanium (5·30 g.) dissolved in benzene (10 c.c.) and caused an exothermic reaction. Di-n-propylamine was separated by fractional distillation and the excess of butanol was evaporated off under reduced pressure. Distillation of the residue gave titanium tetra-n-butoxide (3·85 g., 95%) [Found: Ti, 13·9; NPrⁿ₂, ca. 1%. Calc. for Ti(OBu)₄: Ti, 14·1%].

The authors thank the Wright Air Development Centre of the Air Research and Development Command, U.S. Air Force, who supported this work through their European Office.

BIRKBECK COLLEGE, MALET STREET, LONDON, W.C.I. [Present addresses: The University of Western Ontario, London, Ontario, Canada]. [Received, ...

[Received, March 18th, 1960.]

⁶ Bradley, Gaze, and Wardlaw, J., 1955, 3977.

⁷ Bradley, Wardlaw, and Whitley, J., 1956, 5.

766. Steps towards the Synthesis of the Histidine²-hypertensin* Analogue. Part I. Synthesis of an Intermediate Protected Heptapeptide.

By D. THEODOROPOULOS and J. GAZOPOULOS.

Histidine, protected in the glyoxaline ring, has been used in the synthesis of the blocked heptapeptides, benzyloxycarbonyl-1(or 3)-benzyl-L-histidyl-L-valyl-L-tyrosyl-L-isoleucyl-1(or 3)-benzyl-L-histidyl-L-prolyl-Lphenylalanine methyl and benzyl ester. The intermediate tetrapeptide, Lisoleucyl-1(or 3)-benzyl-L-histidyl-L-prolyl-L-phenylalanine methyl ester dihydrobromide has been synthesised by two routes, and the products compared by optical rotation.

A FEW years ago we applied I(or 3)-benzyl-L-histidine¹ to the synthesis of histidylpeptides,² finding that protection of the glyoxaline ring facilitated the incorporation of histidine into the chain and usually led to pure crystalline end products in high yield. Moreover protection of the glyoxaline ring decreases the polar character of the resulting

¹ du Vigneaud and Behrens, J. Biol. Chem., 1937, 117, 27.

² Theodoropoulos, J. Org. Chem., 1956, 21, 1550. * See footnote, p. 3862.