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Tailoring the dielectric properties of Hf02- Ta20 5 nanolaminates 
Kaupo Kukl i,al Jarkko lhanus, Mikko Ritala, and Markku Leskela 
Department of Chemistry, University of Helsinki, FIN-00014 Helsinki, Finland 

(Received 14 March 1996; accepted for publication 23 April 1996) 

Dielectric thin films applicable, for instance, as insulating layers in electroluminescent display 
devices have been studied. In order to improve dielectric characteristics Hf02- Ta20 5 nanolaminates 
were prepared by atomic layer epitaxy at 325 °C. The nanolaminates were evaluated in capacitance 
and current-voltage measurements. By optimizing the layer thicknesses in the nanolaminate 
structures the dielectric properties, especially leakage current densities, could be tailored 
remarkably. The best nanolaminates showed charge storage factors improved up to 8 times when 
compared with those of the single oxide films. The presence of nanosize crystallites of monoclinic 
and metastable tetragonal Hf02 was observed by x-ray diffraction analysis. © 1996 American 
Institute of Physics. [S0003-695 l (96)03526-7] 

The search for high permittivity and low leakage dielec
tric thin films is actual for the development of many micro
and optoelectronic devices . 1•2 In this study dielectric fi lms 
have been examined from the point of view of thin-film elec
troluminescent (TFEL) displays. 3•

4 High dielectric constant, 
breakdown resistance, mechanical stability, and chemical in
ertness are the intrinsic properties required from the insula
tors in contact with phosphor layers.4 Furthermore, the al
ready as-deposited insulators in an unannealed state must be 
of a high quality due to glass substrates. Here, we describe a 
remarkable improvement of Ta20 5 based high permittivity 
dielectrics by preparing Ta20 5-Hf02 nanolaminates. In 
memory capacitors, only very thin layers could be used in 
such layer structures,5 but in TFEL devices the insulators are 
thicker, typically a few hundred nanometers, thereby allow
ing a broader variation of the individual layer thicknesses in 
the nanolaminates.4

•
6

•
7 

Owing to its unique self-limiting growth process the 
atomic layer epitaxy (ALE) technique8

•
9 is capable of meet

ing the challenge to deposit films with accurately controlled 
layer thicknesses uniformly over large area substrates. Pure 
Ta20 5 and Hf02 films and their nanolaminates were grown 
onto patterned indium-tin-oxide (ITO) electrodes on 5 
X 5 cm2 glass substrates using a hot-wall flow-type Fl20 
ALE reactor, operated under a 10 mbar nitrogen pressure.8 

Ta(OC2H5) 5 and HfC14 were evaporated from open boats 
held at 105 and 140 °C, respectively, inside the reactor. Wa
ter vapor was exploited as an oxygen precursor. The films 
were grown at 325 °C, which is the highest temperature for 
self-controlled growth regime for Ta20 5. 

10 

Figure 1 depicts schematically the structure of the 
Hf02-Ta20 5 nanolaminates. The thicknesses of the Ta20 5 

interlayers were varied in a range of 1.2-18.8 nm. The thick
nesses of the Hf02 layers were varied in a way that the total 
thickness of one Hf02- Ta20 5 bilayer remained constant. 
Three main sample series with different bilayer thicknesses 
of 20, 10, and 5 nm were prepared. The total thickness of all 
multilayers was kept at about 170 nm. This was indepen
dently checked by fitting transmittance spectra measured 

•)Permanent address: Institute of Material Science, University of Tartu, 
EE2400 Tartu, Estonia. 

within a wavelength range of 370-1100 nm. 11 In most 
samples both under and top layers were Ta20 5. For compara
tive measurements some Hf02-Ta20 5 nanolaminates where 
both under and top layers consisted of Hf02 were prepared 
as well. Aluminum electrodes were evaporated onto the as
deposited nanolaminates. The area of a single electrode was 
29.4 mm2

. Capacitances were measured at 10 kHz fre
quency using an HP 4275A multifrequency LCR meter. The 
current- voltage characteristics were analyzed with an HP 
4140 B pA meter/de voltage source, or HP 4142B modular 
de source. All measurements were made at room tempera
ture. Film crystallinity was examined with x-ray diffraction 
(XRD) using a Philips MPD 1880 diffractometer with 
Cu K a radiation. 

To compare the properties of the different insulators for 
given capacitor structure, charge-storage factors (Q) as fig
ures of merit were evaluated: 12 

Q= Uc,· C/S, 

where C is the capacitance measured, S is the electrode area, 
and U er is the critical voltage inducing a certain, arbitrarily 
chosen value of leakage current density ( 1 µA/cm2

). The 
charge-storage factor provides information about the charge 
stored per surface area at a given leakage current density 
level. 

The permittivities of the pure Ta20 5 and Hf02 films 
were 25 and 16, respectively. Due to the relatively high leak-

Al I I Al I 
Ta20 5 

} bilayer Hf02 

Ta20 s 
Hf02 

Ta20s ~ underlayer 
ITO I I ITO I 

Al20 3 

glass substrate 

FIG. I. Schematic representation of the nanolaminates prepared onto 
5 x 5 cm2 glass substrates. The Al20 3 layer serves as an ion barrier against 
sodium diffusion from soda lime glass. 

Appl. Phys. Lett. 68 (26), 24 June 1996 0003-6951196/68(26)/3737/3/$10.00 © 1996 American Institute of Physics 3737 
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LEAKAGE CURRENT DENSITY, log Alcm
2 

0 .5 t5 2 2.5 3 3 .5 

E, MV/cm 
4 .5 5 

FIG. 2. Dependence of leakage current density on applied electric field 
strength in single Ta20 5 and Hf02 films and Hf02- Ta20 5 nanolaminates. 
Labels describe the sample configuration N (dHro, + dT,,o

5
) where N is the 

number of bilayers, dHro, and dT,20 5 are thicknesses of single Hf02 and 

Ta20 5 layers, respectively, expressed in nanometers . 

age currents (Fig. 2) the charge-storage factor Q was as low 
as 8 nC/mm2 in both cases. XRD measurements indicated 
remarkable crystallization in the Hf02 films (Fig. 3) while 
the Ta20 5 films were amorphous. 

By preparing Hf02- Ta20 5 nanolaminates the leakage 
currents were dramatically reduced (Fig. 2). By varying the 
layer thicknesses within the multilayer structure the leakage 
current properties could be tailored markedly (Fig. 2). The 
leakage current for the configuration 33(2.5 + 2.5) is rather 
simi lar to that measured by Kattelus et al. 5 in their multilay
ers of 32(3 + 3) configuration grown by ALE from 
TaCl5, HfCl4, and H20 at 300 °C. However, a further reduc
tion in the leakage current density was achieved when the 
layer thicknesses were increased up to 15 nm (Fig. 2). An 
additional increment of the Hf02 interlayer thickness above 
15 nm was fo llowed by an apparent increase in breakdown 
probability. 

The permittivity of the multilayers decreased with in
creasing Hf02 content (Fig. 4) . The charge storage factor 
exhibited a rather broad maximum between 50% and 75 % 
relative Hf02 content (Fig. 5) . Q values up to 66 nC/mm2 

were achieved in these films. Reduction of the bilayer thick
ness and/or the increase of the Hf02 interlayer thickness gen
erally led to a decrease of the permittivity (Fig. 4) and in-

INTENSITY 

m Q-valucs 
' 8 

37 

54 
8• (15+5) 63 

10X(13.5+5) 65 
8x (J2.5+7.5) 62 
ll x(Io+S) 63 
16x(7.5+2.5) 64 
16x(S+S) 66 

30 40 so 60 1·201 70 

FIG. 3. XRD patterns of Hf02 thin films and Hf0 2- Ta20 5 nanolaminates. 
The labels m and t refer to the monoclinic and tetragonal Hf02 (Ref. 15). 
The intensity scale is linear. 
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PERMITTIVITY 

~ 
25 ~ 'r12.5·7.5)l 

11 Olio Ta20sl • 
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~/ · 
~ ;,- ·~ 

21 ~1·~ 
HoX(13.5•5> • 

19 
~ 

17 ~ 
~. 

15 L.<~-'-~-'---'-~-'---'-~~~~-'-~~~~ 

0 ~ ~ oo ~ ~ ~ ro ~ ~ ~ 

Hf02 RELATIVE THICKNESS, % 

FIG. 4. Permittivities of Hf02- Ta20 5 nanolaminates vs the relative thick
nesses of Hf02 layers. For labeling, see Fig. 2. For 33(2.5 + 2.5) configura
tion the results from the samples with Hf02 lower and top layer are both 
indicated. 

creased dielectric instability as compared with other samples 
having the same relative Hf02 contents. 

Polycrystalline ceramic films may exhibit increased con-
. . . b d . 2 13 14 l th I . duct1v1ty along the gram oun ar1es. · · n e nano arru-

nates the intermediate amorphous Ta20 5 layers inhibit the 
continuous crystal growth of Hf02 and, thereby, eliminate 
the grain boundary channels extending from one electrode to 
the other. The leakage current reduction in the nanolaminates 
can also be due to electron trapping at the interface states at 
the end of leakage channels extending.through single sublay
ers, thereby causing a decrease of the injecting electric field 
in the vicinity of these channels.2 

If the above two effects were the only mechanisms for 
the successfu l reduction of leakage currents, no differences 
should be observable between different configurations, pro
vided that the films are thick enough to form continuous 
well-defined interlayers with their characteristic dielectric 
properties. In practice it was observed that the dielectric 
properties, also including the leakage current density, can be 
optimized further by varying the thicknesses of the single 
layers constituting the nanolarninate film. To rationalize 
these observations the structural properties of the nanolami
nates were examined with XRD (Fig. 3). 

The crystalline ITO electrode layer was found to have a 
strong effect on the crystallization of the Hf02 films depos-

Nx (dH102•dTa:P5 > H2";(8-;5)l 13.5•5 
80 8'<(12.5•7.5 6 7.5•2.5 
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Hf02 RELATIVE THICKNESS, % 

FIG. 5. Charge storage fac tors of HfOz-Ta20 5 nanolaminates vs the relati ve 
thicknesses of Hf02 layers. For labeling, see Fig. 2. For 8( 10+ IO) configu
ration the results from the samples with Hf02 lower and top layer are both 
indicated. 
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ited upon it. However, the effect of ITO was already elimi
nated after a deposition of lO nm amorphous Ta20 5 between 
the ITO and Hf02 films; the XRD patterns of these films 
were identical to those deposited on glass covered by an 
identical Ta20 5 underlayer. The XRD patterns shown in Fig. 
3 were measured from samples deposited on glass. 

The XRD pattern of the pure Hf02 film (Fig. 3) is domi
nated by reflections of the monoclinic Hf02 (m -Hf02) 

phase.15 In addition, the tetragonal (111 ) reflection is ob
served as well. 15 The tetragonal Hf02 ( t-Hf02) is known to 
be a metastable phase at room temperature16 but it may be 
stabilized by film stress and/or grain size effects. 16

•
17 

In the HfOz-Ta20 5 nanolaminates crystallization of the 
Hf02 is observed when the Hf02 layer thicknesses exceed lO 
nm (Fig. 3). With increasing Hf02 layer thickness the XRD 
reflections become more intense and the peak widths de
crease. The crystallite sizes calculated from the XRD peak 
widths for the t-Hf02 increase from 7.5 to 14.5 nm when the 
thicknesses of the Hf02 layers increase from 7 .5 to 20 nm. 
The crystallite sizes of the m-Hf02 are in a range of 9.0-
11.8 nm in samples having 10-20 nm Hf02 layer thick
nesses. 

The third effect of increasing layer thickness is a de
crease of the relative fraction of the t-Hf02 (Fig. 3). Never
theless, in the thicker films the relative content of the 
t-Hf02 is increased when a lO nm thick Ta20 5 layer is de
posited between glass and Hf02. Thus it is suggested that the 
Ta20 5 underlayer enhances nucleation and growth of the 
t-Hf02. 

Correlation of the XRD data with the dielectric proper
ties indicates that the nanolaminates with optimized charac
teristics contain a remarkable amount of t-Hf02. Apparently, 
to attain the optimum dielectric properties the thicknesses of 
the Hf02 layers should be high enough for crystallization 
and, on the other hand, low enough to prevent the formation 
of larger crystallites and leaky grain boundaries acting as 
weak points, and/or to keep the relative fraction of the 
t- Hf02 high. 

No differences in electrical properties were observed in 
the samples with otherwise similar configurations but with 
different under and topmost layers (Figs. 4 and 5). This en
ables to choose the oxide layer in TFEL structures in accord 
with interface properties and structural compatibility with 
phosphor material. For instance, Ta20 5 is known to have a 
positive effect on the structural and luminescent properties of 
the subsequently deposited phosphor layer,7 while Hf02 gen
erates a larger density of deep interface states.6 

In conclusion, it has been shown that by preparing 
Hf02- Ta20 5 nanolaminates, the lowest leakage currents 
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measured were about 3 X 10- 8 A/cm2 at 2 MY /cm which is 
a remarkably low value for unannealed samples. It seems 
that the tailoring of dielectric properties is related to the crys
tallization of Hf02, though the exact mechanism cannot yet 
be unambiguously identified. The highest storage factors for 
the Hf02-Ta20 5 nanolaminates exceeded that of single ox
ide films by about 8 times. 

Thus, in the nanolaminates where high storage factors 
are needed, a high permittivity material with high breakdown 
resistivity such as Ta20 5 is to be used. In order to suppress 
the leakage currents, interlayers of low leakage current den
sity material, e.g., Hf02, have to be added. In such 
multilayer structures the amorphous Ta20 5 layers interrupt 
the grain boundaries acting as leaky channels through the 
polycrystalline films. While preparing nanolaminates ALE is 
an advantageous technique since it allows an accurate film 
thickness control and uniformity over large areas. 
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