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Kinetic and mechanistic study of the chemical vapor deposition of titanium
dioxide thin films using tetrakis-(isopropoxo)-titanium(IV)

Carl. P. Fictorie, John F. Evans, and Wayne L. Gladfelter
Center for Interfacial Engineering and Department of Chemistry, University of Minnesota,

Minneapolis, Minnesota 55455

(Received 4 October 1993; accepted 24 January 1994)

The mechanism of TiO, thin film deposition on single crystal TiO, by chemical vapor deposition
(CVD) using tetrakis(isopropoxo)titanium(IV) (TTIP) has been investigated. The structure of the
rutile(100) surface has been shown to form a 1X3 reconstruction using reflection high-energy
electron diffraction. Temperature programmed reaction spectroscopy and molecular beam scattering
have been employed to probe the kinetics of the reaction of TTIP and to identify reaction products.
The deposition mechanism involves two parallel pathways to form TiO,: at lower temperatures
(500-650 K) propene and isopropanol are formed as products; at higher temperatures (>650 K)
propene and water are formed as products in a second pathway that becomes dominant. An
activation energy of 578 kJ/mol has been measured for the first pathway. The results for the single
crystal surface are compared to earlier work on polycrystalline substrates.

I. INTRODUCTION

Titanium dioxide (TiO,) has been proposed as a material
for use as a dielectric insulator in metal oxide semiconduc-
tors (MOS) for a variety of applications including memory
devices, dielectric filter stacks,"2 and chemically resistant
antireflective coatings for optical devices™* because of its
high dielectric constant, its chemical stability, and its optical
transparency in the visible and near infrared regions.

Particularly in the fabrication of microelectronic devices,
the chemical vapor deposition (CVD) of TiO, is of interest to
accommodate the decreasing size of features and ease of
control over deposition conditions.>> However, the physical
and chemical properties of the CVD precursors are infre-
quently related to the resultant properties of the deposited
films such that full control over the deposition can be estab-
lished.

The CVD of TiO, has been studied using a variety of
precursors, focusing primarily on titanium tetrachloride
(TiCl,) plus water* or titanium alkoxides [Ti(OR),, where
R=ethyl or isopropyl]."‘*‘i6 Most widely reported are stud-
ies of the structure and properties of the deposited films,
rather than the mechanistic chemistry of the deposition reac-
tions.

In this paper, the relationship between the structure of the
deposited TiO, film and the chemistry of the deposition pro-
cess using tetrakis-(isopropoxo)-titanium(IV) (TTIP) as a
precursor has been investigated. We have focused on epitax-
ial growth because of the influence of this chemistry on the
formation of defects in the films which must be finely con-
trolled in the fabrication of devices used in technological
applications.”®

Il. EXPERIMENT

The temperature programmed desorption (TPD), molecu-
lar beam scattering (MBS), and reflection high-energy elec-
tron diffraction (RHEED) experiments were performed in the
two chamber ultrahigh vacuum (UHV) CVD/thin film char-
acterization system illustrated in Fig. 1. The main chamber
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(~60 L) was pumped by a 510 L/s (N,) Balzers turbomo-
lecular pump and a titanium sublimation pump. The chamber
was arranged in three levels. The lowest level was equipped
with a Physical Electronics Model 15-255G double pass cy-
lindrical mirror analyzer (CMA) which was used for Auger
electron spectroscopy (AES). The intermediate level was
used for sample transfer between the two chambers. The up-
per level was equipped with a differentially pumped Extrel
C50 quadrupole mass spectrometer (QMS) with a mass
range of 2—750 amu, which was used for the TPD and MBS
experiments. The QMS was separated from the main cham-
ber by a skimmer with a 3 mm orifice in front of which the
sample was placed for the TPD experiments. The QMS
chamber (~7 L) was pumped by a 170 L/s (N,) Balzers
turbomolecular pump. The upper level also includes a Physi-
cal Electronics 04-303A 5 kV ion gun which was differen-
tially pumped through the QMS chamber. Argon was used
for all the sputtering. The main chamber had a base pressure
of 2x10™'" Torr and an operating pressure of about 2X 107°
Torr. The QMS chamber had a base pressure of ~1X 1075
Torr.

The reactor chamber (~20 L) was pumped by a 170 L/s
Balzers turbomolecular pump and a titanium sublimation
pump. It was equipped with a Physical Electronics 06-190
electron gun (10 kV) used for RHEED experiments. The
diffraction patterns were displayed on a phosphor screen lo-
cated 20*1 cm from the sample. The electron beam was
focused onto the sample at an angle of 1.5°-2° from the
surface plane. Patterns were recorded using a Polaroid cam-
era. Lattice constants were determined using GaAs(100) as a
reference. The base pressure of this chamber was typically
1X107° Torr and could be operated as high as 1X 1073 Torr
for CVD experiments.

The reactor and main chambers were connected via a 4 in.
gate valve. The reactor was attached via a 23 in. gate valve t0
a six-way cross used for a load lock to allow for quick trans-
fer of samples in and out of the UHV system. Transfer of
samples into the reactor, and between the chambers, were
made using magnetically coupled transfer rods. The sample
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FiG. 1. Diagram of the CVD-TF system.

nanipulators used in the system were capable of x, y, and z
linear motions with z axis and azimuthal rotations.
Two types of sample mounts were used in the system.
RHEED experiments were done by mounting the sample
onto a molybdenum disk which was designed for use with
he transfer system. The sample was held in place with a
molybdenum clip using indium between the sample and disk
as a thermal contact. These samples were heated from the
back side of the disk via an electron beam heater. The sample
temperature was monitored using an optical pyrometer which
viewed the sample from outside the system. Temperatures in
the range of 273-1073 K were attainable using this arrange-
ment. However, increasing the temperature above 873 K re-
Sulted in the evaporation of indium from beneath the sample,
with the resultant loss of thermal contact.
A second sample mount was used for the temperature pro-
ammed reaction spectroscopy (TPRS) and MBS experi-
ments. It consisted of a U- -shaped tantalum foil (0.23 mm
thick) attached to a copper block which was in thermal con-
tact with a liquid nitrogen reservoir. The sample was
Clamped to the tantalum foil with molybdenum clips and the
emperature of the sample was measured using a chromel-
alumel (K-type) thermocouple clamped between the molyb-
denum clip and the surface of the sample. The sample was
Tadiatively heated from the back side using a tungsten fila-
‘ment powered by a manually controlled 120 V ac variable
transformer. In this configuration temperatures in the range
from 195 to 1073 K and heating rates of up to 20 K/s were
Possible. This mount was used only in the main chamber,
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and did not allow for sample transfer between the two cham-
bers. For TPD experiments, the sample was placed ~5 mm
from the end of the doser (described below) for adsorption of
the precursor onto the substrate. It was then moved to a
position ~1 mm in front of the orifice of the skimmer for the
temperature ramp. In the MBS experiments, the sample was
located at the point where the center axes of the doser and
QMS housing intersect; meanwhile, a constant flux of pre-
cursor was impinged on the substrate throughout the tem-
perature ramp.

TiO, (rutile) single crystals (12 mmX12 mmX1 mm) in
the (100) orientation (Commercial Crystal Laboratories)
were used for the TPD, MBS, and RHEED experiments. It
was found that reproducible TPD and MBS experiments on a
given crystal could be achieved only after the procedure re-
ported by Muryn ez al.” was performed. This involved sput-
tering the surface using 5 kV Ar™ for 20-30 min and then
annealing at ~1100 K for 20 min in vacuum. This treatment
changed the color of the crystal from a pale transparent yel-
low to an opaque metallic gray, consistent with the observa-
tions reported by Muryn ef al., in which they concluded that
the presence of surface defects in the form of the 3X1 re-
construction has negligible effects on the reactivity of H,O.
The gray color is also consistent with the formation of crys-
tallographic shear planes associated with the loss of small
amounts of oxygen from the bulk.'”

AES spectra were acquired using an electron energy of 3
kV in the counting mode [N(E)]. These spectra were then
differentiated mathematically using the Savitsky—Golay dif-
ferentiation algorithm. Mass spectra were taken using an
electron energy of 30 eV to minimize fragmentation of the
precursor. Both the CMA and the QMS were controlled by a
Zenith 386 microcomputer. The CMA was interfaced via a
Physical Electronics Model 137 adapter card and software
which controls the CMA and provides some data manipula-
tion capabilities. The QMS was interfaced using a Metrabyte
DAS-HRES data acquisition board which controls the mass
selection on the QMS and reads the analog output of the
QMS as well as the thermocouple output from the sample
using software written in house.

The dosers and gas manifolds used on the system were
constructed of ; in. stainless steel VCR components. The
manifold was pumped by an Alcatel 2020A rotary vane
pump (26.9 m’/h) with a MDC molecular sieve trap. The
precursor vessel was a glass bulb made from a glass to stain-
less steel transition attached to a stainless steel tube which
connects to a Nupro valve which was used to isolate the
tube. The pressure in the manifold was measured using a
MKS Baratron capacitance manometer (Model 315B, 10
Torr range). The manifold was attached to the chamber via a
Varian leak valve. The doser was a  in. o.d. stainless steel
tube. The precursor was outgassed by three freeze—pump-—
thaw cycles using ice water as the coolant. During TPD and
MBS experiments the manifold (but not the precursor vessel)
was heated to ~80 °C to prevent condensation of the precur-
sor. The isolation valve was left open during dosing with the
pressure in the manifold controlled by partially closing the
valve between the manifold and the pump. The manifold
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FiG. 2. RHEED image of the annealed TiO,(100) surface along the [010]
azimuth.

pressure was maintained between 15 and 20 mTorr by this
method.

lll. RESULTS AND DISCUSSION
A. RHEED of TiO,(100)

RHEED photographs of the (100) surface are shown in
Figs. 2 and 3. Figure 2 is the pattern attributed to the [010]

Fic. 3. RHEED image of the annealed TiO,(100) surface along the [001]
azimuth.
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azimuth and Fig. 3 is attributed to the [001] azimuth based
on lattice constant determinations. Figure 4 shows the sur-
face structure of the TiO,(100) surface."' Using these photo-
graphs, the lattice constants were determined to be 14.5+0.5
Ax3.0+0.1 A, which is consistent with a 3X 1 surface struc-
ture relative to the known constants (4.49 Ax2.96 A)."

This 3X1 reconstruction has been interpreted as a loss of
every third row of oxygen atoms parallel to the [001]
direction.”' It does not appear to be the result of crystallo-
graphic shear because the direction of shear is parallel to the
(100) surface (the shift is 1/2(011)) and would not result in
the formation of steps on the (100) surface.

Following this treatment, the surface was heated to 873 K
in vacuum and then exposed to 1X 107 Torr of TTIP for 15
min to grow an epitaxial film of TiO,.” A RHEED photo
along the [010] direction is shown in Fig. 5. An image along
the [001] direction could not be observed. This suggests that
the growth resulted in the formation of steps parallel to the
[001] direction, but with varying terrace widths.” Upon an-
nealing the sample as before, the RHEED pattern returns to
the original image shown in Fig. 2, indicating that the sur-
face returns to the 3X1 reconstruction.

B. TPRS of TTIP on TiO,

TPRS experiments were performed on the single crystal
TiO,(100) surface using TTIP. In these experiments ~20 L
was adsorbed onto the TiO, surface at about 343 K.'* Then
the temperature of the sample was increased to about 973 K
at a constant rate of 5 K/s. The results of this experiment are
shown in Fig. 6.

The following ion fragments were monitored during the
TPRS and MBS experiments: TTIP, m/e=225; propene, m/e
=39; isopropanol, m/e=45; water, m/e=18; and acetone,
m/e=43. The ion fragments used were selected because of
minimal ovarlap of daughter ion masses which originate
from different molecular species. Isopropanol was corrected
for a contribution from TTIP and acetone was corrected for
contributions from both isopropanol and TTIP.

TiO,(100)
e BDe B0 Be Be o

@ ® Dason ® ® @
e e & ¢ e S e
& ® 8|® O ® @
e e @NJ:Z:I e e
® @ D1378A D@ @ ®
e & e e
(53]  |® ® ®
e S e
(=2 ® & ®

e B0 Be B0 BRe Qe
[001] e T

@ 0:0.99 A ABOVE Ti PLANE

[010] @ O:0.63 A ABOVE Ti PLANE

FIG. 4. Diagram of TiO,(100) surface showing [010] and [001] azimuthal
directions.
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FiG. 5. RHEED image of TiO,(100) surface along the [010] azimuth after
CVD.

The data shows that no TTIP is desorbed under these con-
ditions, indicating that the monolayer deposited at 343 K is
adsorbed irreversibly. Propene and isopropanol are the only
products observed in the TPRS experiment.

In control experiments using isopropanol as the adsorbate
it was observed that isopropanol desorbs molecularly below

PROPENE

ISOPROPANOL,

INTENSITY (ARB. UNITS)

WATER

% N g
i o

ACETONE
.M-fm‘w——wm

TTIP

300 400 500 600 700 800 900 1000
TEMPERATURE (K)

FIG. 6. TPRS spectrum of TTIP after a dose of 20 L and using a 5.3 K/s
heating rate.
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423 K. Propene would not adsorb onto the TiO, substrate at
the lowest temperatures attempted here (193 K). Malet and
Munuera'* performed TPD experiments with water on rutile
powders and found that water will dissociatively adsorb to
form surface hydroxyl groups, which desorb as water with a
peak temperature of 590 K. In the TPRS experiment with
TTIP, the desorption of propene and isopropanol are not the
rate limiting steps, suggesting that one of the reaction steps is
rate limiting. Also, propene and isopropanol peaks track each
other closely, indicating that the rate limiting step forms both
species simultaneously.

Using the first order kinetic model of Redhead,15 with an
assumed preexponential value of 10'*> and an experimental
heating rate of 5.3 K/s, the activation energy is 134+2 kJ/
mol. This value is similar to that of Wu er al..'® (130-135
kJ/mol) and suggests that the rate limiting chemistry is simi-
lar in both cases.

C. MBS of TTIP on TiO,(100)

MBS experiments were performed using TTIP on the
single crystal TiO,(100) surface. The experiment is per-
formed by increasing the temperature of the sample from
~70 to ~600 °C at a constant rate of 2 K/s and then allow-
ing the sample to cool with the radiative heater off, while
maintaining a constant flux of precursor and monitoring the
precursor and reaction products using the QMS.

The data for a flux of 1X 107 Torr TTIP is shown in Fig.
7, showing signal for the precursor TTIP and the primary

PROPENE

L :
T T

ISOPROPANOL

:

WATER

INTENSITY (ARB. UNITS)

i
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AL TTIP

4 I 1 i 1
T T T T T

400 500 600 700 800 900 1000
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FiG. 7. MBS data for TTIP. The following fragments were monitored to give
the resultant data: TTIP, m/e=225; propene, m/e=39; isopropanol, m/e
=45 (corrected for contribution from TTIP); water, m/e=18; and acetone,
m/e=43 (corrected for contributions from isopropanol and TTIP). These
were chosen for the minimal mutual overlap. The data are shown for a TTIP
pressure of 1X107° Torr.
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products propene, isopropanol, water, and acetone. The rate
of the reaction becomes significant above 530 K and all of
the precursor is consumed by 640 K. The most striking fea-
ture is observed in the product profile for isopropanol. Here
the signal intensity increases above 570 K, similar to pro-
pene, but reaches a maximum near 660 K, and then decreases
at higher temperatures. In the profile for water, the signal
intensity does not start to increase until the temperature rises
above 610 K. Because these temperatures do not coincide,
and because the TPRS data shows that water is not formed
when isopropanol is generated, we conclude that there are
different, parallel reaction pathways which generate isopro-
panol and propene separately from water and propene.

Kanai et al.'” reported a reaction stoichiometry for the
formation of particles of TiO, in the gas phase using TTIP.
They determined that the only products in addition to TiO,
were propene and water from which they identified the fol-
lowing reaction:

Ti(OC;H,),—TiO,+4C;Hg+2H,0. (1)

This stoichiometry is consistent with our results in the higher
temperature regime where little isopropanol is formed. It
does not account for the production of isopropanol. The cor-
responding stoichiometry for the reaction of TTIP to form
propene and isopropanol is

TI(OC3H7)4—VT102+2C3H6+2HOC3H7 (2)

The conclusion of parallel reaction pathways requires the
consideration of both of these reactions to form the observed
products. These reactions must act independently because the
dehydration of isopropanol is not possible under the UHV
conditions employed. However, in the data of Kanai where
the pressures are in the range of 760 Torr, dehydration is
possible, and may result from isopropanol that is formed via
reaction (2) to form propene and water, based on the known
reactivity of TiO, as a catalyst for the dehydration of
alcohols.'®"

Figure 8 shows plausible mechanisms for the above reac-
tions. Scheme A [corresponding to Eq. (1)] is more complex
in that it involves a two step reaction to form a surface hy-
droxyl group. The adsorbed isopropoxide ligand loses a hy-
drogen atom to an adjacent surface oxygen to produce pro-
pene. This hydroxyl group may then react with another
isopropoxide ligand to form another propene molecule along
with a molecule of water. This is consistent with literature
reporting the dehydration of isopropanol in which the tita-
nium acts as a Lewis acid and the surface oxygen acts as a
Lewis base.'® 2" Scheme B [corresponding to Eq. (2)] shows
a possible transition state consisting of a six-membered ring,
in which a basic oxygen on one isopropoxide ligand abstracts
a terminal hydrogen on another isopropoxide ligand.?' This
can occur for either a molecularly adsorbed precursor or a
partially reacted surface intermediate. Reaction (1) com-
mences at a higher temperature than reaction (2) because the
abstraction of hydrogen to the surface is less facile than the
formation of the six-membered intermediate.

Wu et al.'® have done MBS experiments similar to those
described above. They used a polycrystalline TiO, substrate
prepared by CVD and observed the formation of acetone,
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FIG. 8. Mechanistic schemes for reactions (1) and (2) in the CVD of TiO,
using TTIP.

isopropanol, propene, and water over the temperature range.
of 500-800 K. They also noted the decrease of isopropanol
and acetone signals above 650 K, while the rates of propene
and water production increased as the temperature increased.

The primary difference between the results presented here
and those of Wu et al.'® is the difference in the temperature
at which the production of acetone is observed. Acetone may
be formed preferentially on the polycrystalline surface,
which would be expected to have many more defect sites
than the single crystal. The polycrystalline surface is likely to
contain other crystal faces, edges, etc. It may also contain
microcrystals of different crystalline phases (rutile or ana-
tase). However, both rutile and anatase act as dehydration
catalysts,'®?* suggesting that defect sites contribute more to
acetone formation than differences in phases or crystal faces.

Another difference between the current study and that of
Wu et al.'® is the effective activation energy calculated for
the reaction using the data from the TTIP signal. Wu et al.
calculated a value of ~85 kJ/mol for the activation energy
over the temperature range of 500—-600 K, where the depo-
sition is in the reaction rate limited regime. In addition,
Rauche and Burte determined a value of 87 kJ/mol in the
formation of polycrystalline anatase films." In the results pre-
sented here, a value of 57£8 kJ/mol was calculated over the
same temperature range as that of Wu ez al.'® (500-610 K)
by the method they described using a first order fit. This
difference in activation energies is be due to the differences
in surface structure, either from the defects of the polycrys-
talline surface or from the difference in surface structure be-
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rutile and anatase. An analysis of the data using a
second order equation gives a poorer fit to the data.
" This value for the activation energy (57+8 kJ/mol) is sig-
ificantly different than the value determined from the TPRS
jata (134=2 kJ/mol). If the TPRS data are analyzed using
7 =57+8 kJ/mol, the preexponential factor is found to
,u from 4% 10% to 2X10° s, For comparison, Carrizosa
ind Munuera'® have performed TPRS experiments with iso-
propanol on anatase and measured an activation energy of
)22 kJ/mol and a preexponential factor of 4.7x10°s™! for
he formation of propene. The two schemes shown in Fig. 8
yre consistent with a low activation barrier deriving from the
:,latively stable six-membered ring and with the low preex-
yonential factor associated with the proposed rearrangement
of the same (a result of multiple bond rupture and forma-
tion). The reactant molecule infrequently accesses this geom-
try via the random motion of the ligands on the TTIP. Hence
the preexponential factor, which is a measure of the fre-
gency at which the low energy activated complex is ac-
cessed, is small relative to the typical frequencies associated
with molecular vibrations (~10" s™!).

IV. CONCLUSIONS

~ The CVD of TiO, using TTIP has been investigated in a
new UHV CVD/thin film characterization facility in order to
‘determine the reaction mechanism and understand the effect
of surface structure on the mechanism. The results show that
on a single crystal rutile(100) surface there are parallel reac-
ons to deposit TiO,: reaction (1) forming propene and wa-
ter as gas phase products and reaction (2) forming propene
- and isopropanol. Reaction (1) is favored at higher tempera-

tures (650—-800 K) where lower surface coverages of ad-
sorbed isopropoxide ligands favor dehydration, whereas at
lower temperatures (550-650 K) the proximity of isopro-
- poxide ligands on the adsorbed TTIP favor a concerted elimi-
“nation to form propene and isopropanol. At high tempera-
tures (>800 K), the rapid reaction rate forms surface defects
- which aid in the dehydrogenation of the isopropoxide ligands
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to form acetone, a process which is more facile on defected
polycrystalline surfaces.'® Thus the single crystal influences
which reactions are facile.
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