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Charge trapping in very thin high-permittivity gate dielectric layers 
M. Houssaal and A. Stesmans 
Department of Physics, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium 

M. Naili and M. M. Heyns 
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium 

(Received 31 January 2000; accepted for publication 5 July 2000) 

The trapping of charge carriers in very thin Si0x/Zr02 and Si0x/Ti02 gate dielectric stacks during 
con tant gate voltage stress of metal- oxide-semiconductor capacitors has been investigated. The 
increase of the gate current density observed during the gate voltage stress has been analyzed, taking 
into account both the buildup of charges in the layer as well as the stress-induced leakage current 
contribution. From data analysis, the cross section of traps generated during the electrical stress is 
estimated. It is sugge ted that these traps are probably ZrOH and TiOH neutral centers that are 
related to the breaking of bridging 0 bonds by mobile H+ protons followed by the trapping of these 
protons at ZrO or TiO si tes. © 2000 American Institute of Physics. [S0003-6951 (00)03235-6] 

The trapping of charge carriers and the subsequent di
electric breakdown of ultrathin gate dielectric layers is con
sidered as a major rebability issue in . very large scale inte
grated circuits. With respect to this issue, high permittivity 
dielectrics are currently widely investigated as alternative 
gate insu lating layers in advanced metal-oxide
semiconductor (MOS) devices. As a matter of fact, the scal
ing down of the Si02 layer thickness in such devices is 
reaching its limit, both from the point of view of gate leak
age current limitation 1 as well as intrinsic reliability 
concems.2•

3 

While the wearout and dielectric breakdown of thin Si02 

layers have been studied for quite a long time,4- 8 not much 
work has been devoted to the charge trapping in high per
mittivity gate dielectric layers. ln this letter, we have inves
tigated the trapping of charge carriers in very thin Si0x/Zr02 

and Si0x/Ti02 gate dielectric stacks deposited by atomic 
layer chemical vapor deposition during constant gate voltage 
stress of MOS capacitors. From the analysis of the increased 
gate current density observed during the electrical stress, the 
cros sections of electron traps generated in these gate stacks 
are found to be on the order of 10- 18-10- 19 cm2, suggesting 
that these traps are neutral centers . We propose that these 
traps are probably ZrOH and TiOH centers, which could be 
generated during the breaking of bridging oxygen bonds by 
mobile H+ protons and the subsequent trapping of these pro
tons at ZrO and TiO sites. 

Zirconium oxide and titanium oxide layers were depos
ited by atomic layer chemical vapor deposition (ALCVD)9

•
10 

on n-type Si wafers . The wafers had an ultrathin native SiOx 
layer on the order of 1-1.5 nm on top of the Si substrate 
prior to the deposition of the high permitti vity dielectric 
layer. These latter layers were deposited at a temperature of 
300 °C and a pressure of l Torr. The precursors used for the 
deposition of Zr02 and Ti02 were ZrC14 and H20 , and TiCl4 

and H20 , respectively. The layer thickness, as estimated by 

•)Author to whom correspond~nce should be addressed; al so at IMEC, 75 
Kapeldreef, B-3001 Leuven, Belgium; electronic mail: 
michel.houssa@ fys .ku leuven.ac.be 

0003-6951 /2000/77(9)/1381/3/$17.00 1381 

spectroscopic ellipsometry, is (7.4±0. l ) nm and (5.5 
± 0.1) nm for the Zr02 and Ti02 layer, respectively. MOS 
capacitors were defined on the gate dielectric stacks by 
evaporating gold dots (5 X 10- 3 cm2 area) through a shadow 
mask. Current-voltage (/- V) measurements of the capaci
tors as well as constant gate voltage stress experiments were 
performed using a HP 4156A semiconductor parameter ana
lyzer. 

The / - V characteristics of the 7.4 nm Zr02 layer re
corded after different times of constant gate voltage stress 
(substrate injection) are shown in Fig. 1. One observes that 
the gate current in the low voltage region increases with 
increasing stress time. This behavior is similar to the stress
induced leakage current (SILC) observed in ultrathin Si02 

layers. 11
-

13 This SILC contribution has been attributed to 
trap-assisted tunneling through neutral electron traps gener
ated in the Si02 layer during the electrical stress of the 
capacitor. 11

•
14 

The increase of the current density 6.J(t)=J(t)-1(0) 
during constant voltage stress of the SiOx /Zr02 stack is 
shown in Fig. 2 for different values of the gate voltage stress. 

10-3 7.4 nm Zr0
2 

10-4 
VG=3.5 V 

N' 
E 10-s 

~ 
.,<!) 10-6 - t=Os 

- -t=50 s 

10-7 -----t=100 s 
·-·-····-t=200 s 

10-8 

1.5 2 2.5 3 
VG (V) 

FIG. I . Current- voltage characteri stics of a MOS capacitor with a 7.4 nm 
Zr02 layer recorded after different times of constant gate voltage stress at 
3.5 V. 

© 2000 American Institute of Physics 
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~ ---__ .. -
"' 2 4V 
b 
:s ...., 1.5 
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FIG. 2. Time dependence of the current density increase l!i.J observed dur
ing constant gate voltage stress of MOS capacitors with a 7.4 nm Zr02 layer. 
Solid lines and dashed lines are fits using Eq. (1). 

One observes that the current density increases with time, 
and that this relative increases is more important as the gate 
voltage stress is increased. 

The time-dependent gate current density can be modeled 
by the following expression: 15 

Lil(t)=A[ l-exp(-~)]+,B(Vc)t 8. (1) 

The first term of Eq. (I) accounts for the buildup of charges 
in the gate dielectric with a time constant r given by 16 

q 
r =--

a1c' 
(2) 

where q is the electron charge, u the trap cross section, and 
Jc the mean current density injected into the gate dielectric 
during the electrical stress. On the other hand, the second 
term of Eq. (1) takes into account the SILC contribution to 
the gate current which, increases with time according to a 
power law with an exponent 8 (on the order of 0.3- 0.5) and 
is characterized by a voltage-dependent trap generation rate 
,B.13,17 

The dashed lines in Fig. 2 are fits to the data considering 
only the buildup of charges in the Si0x/Zr02 layer, thus 
neglecting the SILC contribution. On the other hand, the 
solid lines in Fig. 2 are obtained by taking into account both 
the charge buildup and the SILC contributions. One can see 
that the experimental resuJts are quite well reproduced when 
the SILC contribution is included. From these fits , the time 
constant rand the power law exponent 8 can be extracted. It 

TABLE I. Values of different physical parameters in Si02, Si0x/Zr02, and 
SiOx /Ti02 layers. 8 is the power-law exponent for the Lime-dependent SILC 
contribution in Eq. (!), er the trap cross ection, a the polarizability of OH 
related centers8, and E the dielectric constant of the insulating layers ex
tracted from high frequency capacitance- voltage characteristics. 

er a 
Sample 8 (cm2) (AJ) e 

Si02 0.3 l.5 X 10- 16 3.13 3.9 

Si0x1Zr02 0.4 2.0 X 10- is 5.51 15 .3 

Si0x1Ti02 0.3 2.3 X 10- 19 5. 19 26.2 

' See Ref. 23 . 
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r::1 
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8 

~ 6 
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4 
cr=2.05x1ff18 cm2 

2 , .. 
·~ 

0 
0 20 40 60 80 100 120 140 

1/JG (cm2
/A) 

FIG. 3. Time constant r as a function of the inverse of the current density 
JG injected into the gate stack during constant voltage stress experiments 
performed on a 7.4 nm Zr02 layer. The solid line is a fit to the data obtained 
by using Eq. (2). 

should be remarked that the value of 8 ha been fixed for the 
different gate voltage stress conditions. The values found for 
the exponent 8 (see Table I) are lying between 0.3 and 0.4 
for the Si0x/Zr02 and Si0x/Ti02, respectively; the value of 
8 found for a reference thermal Si02 layer (2.7 nm thick) is 
also given in Table I. 

The time constant r extracted from Eq. (1) is shown in 
Fig. 3 as a function of the inverse of the injected gate current 
den ity Jc during the electrical stress of the Si Ox /Zr02 layer 
(Jc depends on the gate voltage stre s V c). One can see that 
r varies almost linearly with l/J G, as predicted by Eq. (2), 
and the trap cross section u can be extracted from these data; 
the e cross sections are given in Table I for the SiOx /Zr02 

and Si Ox /Ti02 stacks, as well as for the reference thermal 
Si02 layer. Quite small values for u are found in the high 
permittivity gate stacks (2.0 X 10- 18-2.3 X 10- 19 cm2

) as 
compared to 1.5 X 10- 16 cm2 in Si02. These small values for 
the capture cross section suggest that the traps generated dur
ing the electrical stress are neutral centers. 18 In the case of 
Si02, neutral trapping centers with cross section on the order 

10·16 
Si0

2 

cr-[a/i:2]2 

N..-.. 
10-17 

E 
~ 
b 

10-18 

FIG. 4. Trap cross section er as a function of the ratio (al e 2) on a log-log 
scale for Si02, Zr02, and Ti02 gate layers. The olid line is a fit of Eq. (4) 
to the data . 
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of 10- 16 cm2 (i.e., values comparable to the one found in this 
work, see Table I) have been recently attributed 19

•
20 to Si OH 

centers generated during the release of H+ by hot electron 
impact ionization at the anode, followed by the breaking of 
bridging 0 bonds by these H+ protons, which are subse
quently trapped by the resulting SiO sites. 

It is worthwhile to point out that the voltage across the 
SiOx layer during the electrical stress of the SiOx 1Zr02 and 
Si0x1Ti02 stacks was kept below about 1.5 V, such that trap 
generation in the interfacial SiOx layer is expected to be 
extremely small.21 Besides, the small values found for the 
trap cross sec.tions in the high permittivity gate stack suggest 
that these traps are most probably generated in the Zr02 or 
Ti02 layers. As a matter of fact, the attractive potential V of 
a neutral center with polarizability a in a medium of dielec
tric constant e on a charge carrier is given by1 8 

aq 2 l 
V(r)= - 2(47Te)2 r4. (3) 

Consequently, within the first order Born approximation22 

the trap cross section is expected to behave like 

(4) 

The trap cross section u extracted for the different layers 
is plotted in Fig. 4 as a function of the ratio ale 2 on a 
log- log scale. By analogy with Si02, we assumed that the 
neutral traps generated during the electrical stress of the 
Zr02 and Ti02 gate stacks are also induced by the trapping 
of mobile H+, i.e., the values of a used in Fig. 4 are those 
corresponding to SiOH, ZrOH, and TiOH trapping centers, 
respectively. 23 It should be pointed out that the presence of H 
in the gate stacks comes from the use of H20 as a source 
during ALCVD of the high permittivity dielectric layer. Be
sides, time of flight secondary ion mass spectroscopy profiles 
(not shown here due to the lack of space) revealed that H is 
uniformly distributed throughout the Zr02 and Ti02 layers. 

One can see from Fig. 4 that the trap cross section a 
varies like a power law of (ale 2), where the power law 
exponent is found to be 2.06± 0.01. The agreement between 
the experimental results and Eq. (4) is thus excellent. Con
sequently, we propose that the neutral traps generated during 
the electrical stress of the high permittivity gate stacks are 
ZrOH and TiOH centers resulting from the breaking of 
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bridging 0 bonds by mobile H+ and the subsequent trapping 
of these protons at ZrO or TiO sites. These results thus sug
gest that the reliability of the high permittivity gate stacks 
investigated in this work is related to the hydrogen content in 
these layers. 
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