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The surface chemistry of thin film atomic layer
deposition (ALD) processes for electronic device
manufacturing
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Atomic layer deposition (ALD) is poised to become one of the dominant technologies for
growth of nanometer-thick conformal films in microelectronics processing. ALD is particul
suited for the deposition of isotropic films on complex topographies under mild conditio
and with monolayer control. However, many questions concerning the underlying surfac
chemistry need to be answered before this film deposition methodology can find widespr
use. Here we highlight some recent examples of surface-science studies of ALD processen 
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aimed to provide a basic understanding of that chemistry.
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Introduction

Conformal films, that is, thin fi

closely follow the shape of the un

structures they cover, are crucial

nents in a variety of modern tech

and are widely used as optical, o

tronic and magnetic storage

tribological, heat and corrosion

biocompatible prostheses, mem

and catalysts. They are parn 
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important in microelectronics, where

are used as conductor or insulator l

and as diffusion, adhesion, or prote

barriers; the growth of such thin fil

required to build capacitors, metal

connects, diodes, transistors, and

elements within integrated circuits. I

past film growth for these applica

has relied on the use of physical de

tion methods, but those, being int

cally directional, are ill suited fo

requirements of modern elect

devices, which are now routinely prep

with sub-100 nm individual structur

very high aspect ratios and many na
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and deep holes and trenches. Chemica

based processes, which are intrinsicall

isotropic, can better handle film depos

tion on rough surfaces.

One promisingmethod for the chemica

growth of thin films is atomic layer depo

sition (ALD).1,2 In ALD, two self-limitin

and complementary reactions are use

sequentially and in alternating fashion t

slowly build up solid films one monolaye

at the time.3–7 ALD was in fact develope

in the late 1970s under the name of atom

layer epitaxy (ALE) for themanufacturin

of flat-panel displays and the preparatio

of III–V compounds, but really took o

in the mid-1990s in connection with th

manufacturing of high aspect ratio inte

grated circuits. ALD offers many advan

tages over other film growth processe

including great control over film thicknes

and lax requirements in terms of reacto

design and deposition conditions, but als

presents some limitations, mostly assoc

ated with the incorporation of impuritie

and the limited control over film crysta

linity.4,8 These problems may be addres

sed by choosing appropriate chemica

precursors and deposition conditions

but that requires a good understanding o

the surface chemistry involved. Littl

work has been carried out to provide tha

basic knowledge to date, even if that

starting to change. Here we introduce

few examples of key ALD processes o

interest to themicroelectronics industry t

illustrate the need for more fundamenta

surface chemistry studies.
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Fig. 2 X-Ray photoelectron spectra (XPS)

data from bis[(N,N0-di-sec-butylacetamidi-

nate)-Cu] adsorbed on a nickel surface.21 Main

frame: C 1s XPS spectra as a function of

annealing temperature showing both the loss of

signal intensity above 200 K due to molecular

desorption and a shift in the remaining peak

because of further surface conversion. Inset:

estimated coverages of the new surface species

identified by XPS. Three things have become

apparent from the surface-science data: (1) the

amidine ligands already detach from the Cu

complex by 200 K; (2) they decompose at

�300 K to form sec-butyl groups, which later

dehydrogenate to produce butene; and (3)

hydrogen predosing leads to the inhibition of

these reactions, delaying them to higher

temperatures and lowering their yields.

View Article Online
Deposition of metal films

The deposition of thin transit

films is required at several

microelectronics manufacturin

as contact plugs, in ferroelectric

and dynamic (DRAM) rando

memories, and for dual-gat

oxide–semiconductor field effe

tors (MOSFETs), diffusion bar

interconnects.3,4,8,10,11 Examples

ALD processes well discusse

literature include those for the

tungsten films using WF6 and

and of other transition met

organometallic precursors and

oxidizing8 or a reducing3 agent.

One metal ALD application

gained interest recently is for

interconnects. In the past those

made out of aluminium, b

recently copper has drawnmuch

because of its lower bulk resis

superior electromigration re

The deposition of thin copper s

could perhaps be best accomp

ALD,14 but, to date, there are

precursors available to prod

with acceptable adhesion pr

Even though several families o

copper organometallic compou

been advanced for this a

(Fig. 1),3,8,16–18 they all suffer fr

shortcomings. One main issue

with most organometallic prec

the need to avoid ligand deco

on the surface, because that usu

to the incorporation of impuri

growing film and destroys the A

growth and conformality. For in

the case of copper acetamidinate

which can be used alterna
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Fig. 1 Selected organocopper precurs

From left to right: copper amidinates

(1,1,1,5,5,5-hexafluoro-2,4-pentanedion

tives of that CupraSelect� compound.2

still unknown.

3522 | J. Mater. Chem., 2008, 18, 352
-metal

ges of

or use

RAM)

access

metal–

ransis-

s, and

metal

in the

wth of

i2H6,
12

using

her an

at has

ctrical

e been

more

ention

ty and

ance.13

layers

ed by

copper

films

rties.15

rgano-

s have

ication

severe

re, as

ors, is

osition

y leads

in the

-type

nce, in

ig. 1),

with

hydrogen to deposit Cu films of r

ably good quality,19,20 our initial

using temperature programmed d

tion (TPD) and X-ray photoe

spectroscopy (XPS) have suggeste

alkyl substituents with b hydrogen

be prone to dehydrogenation react

produce olefins and surface ace

moieties (Fig. 2).21This is undesirab

could potentially be avoided by bl

all b positions in the alkyl moieties

ligand, a hypothesis that remains

tested.

Another option for copper dep

is to use compounds based on th

established CupraSelect� Air Pr

copper CVD precursor 1,1,1,5,5,5

fluoro-2,4-pentanedionatocopper

methylvinylsilane, or Cu(hfac)(tm

short (Fig. 1).22The problem in this

that the original compound und

facile disproportionation, a re

highly desirable for regular

processes but which limits its use fo

applications. To address this limi

the Air Products team has r

developed new compounds whe

tmvs and hfac ligands are link

a small hydrocarbon chain (Fig. 1)

hope of preventing the easy t

release of the former moiety.23 Aga

surface chemistry of the new comp

has by and large been untested as

A more general issue related

surface chemistry of copper ALD

CVD) refers to the relative adva

and disadvantages of using Cu

Cu(II) complexes.24 Cu(I) comp

tend to disproportionate easily,

is why they have been chose

low-temperature CVD proces

However, that disproportionation
ten

rts,

er-

ess

le,

the

lex,

at-

lus

ros

nd

sic

nds

per

vy,

ons

ors for the atomic layer deposition (ALD) of copper fi

,19,78 Air Products’ CupraSelect� copper CVD precu

atocopper(I)-trimethylvinylsilane),22,30 and tethered der
3 The surface chemistry of these compounds is by and la

1–3526 Th 008
vs.

nds

ich

for
25,26

stes

half of the reactant, and can also lead

undesirable side reactions. More imp

tantly, it provides a channel for c

tinuous reactivity, thus forfeiting

self-limiting nature of ALD processes

terms of Cu(II) precursors, they are of

more stable than their Cu(I) counterpa

but, accordingly, require higher temp

atures for activation.27,28 High proc

temperatures are in general not desirab

but in this case may help inhibit

decomposition of the copper comp

thus requiring a separate hydrogen tre

ment for the removal of the ligands (a p

in ALD).29 A full assessment of the p

and cons of using the different Cu(I) a

Cu(II) precursors will require more ba

surface chemistry studies.

Finally, the use of fluorinated liga

has been a common way to make cop

compounds, which tend to be quite hea

volatile enough for practical applicati

lms.

rsor
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in ALD.30 However, that s

opens new undesirable reaction

in particular surface etching. T

nature of the fluorinated groups

to such etching has not yet b

mined, though, and some fl

copper complexes appear t

minimal surface damage.24 Oth

non-fluorinated compounds h

designed recently for these appli

well.18 It would be useful to kn

the surface reactivity of

compounds in order to make

decisions on their potential for

on how to modify them to imp01
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Fig. 3 Schematic representation of some of the proposed key surface elementary steps during the

adsorption of hafnium alkylamide ALD precursors on hydroxyl-terminated surfaces. Based on

calculations for similar systems, adsorption is proposed to take place via two dative bonds, one from

the oxygen of the surface OH groups to the metal center and another from the nitrogen of one of the

ligands of the precursor to the surface. Also shown is the potential competition between the desirable

reductive elimination of one of the amine moieties with hydrogen versus an undesirable b-hydride

elimination side step. These are at present only hypotheses in need of corroboration; understanding

the underlying chemistry of ALD at this level may help design better precursors and choose better

operating conditions.
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Deposition of metal oxid

There is also renewed intere

growth of high-k dielectric t

by ALD to replace the silic

layers used nowadays in dev

as complementary metal–ox

conductor (CMOS) integrated

high-performance MOSFET

DRAMs.31–33 This is in fact th

major application ofALDnowa

semiconductor industry has

down the choices for this

metal oxides, most notably

hafnium.34,35 However, a nu

practical issues regarding the

growth of films of those mater

ALD remain unresolved.5 As i

of metal ALD, one of the main

here is the incorporation of

during deposition due to the d

tion of the precursor ligand

surface. Many types of precur

been tested for this application,

metal halides,36 alkylamides,

ides,38 and cyclopentadienyl co

but no clean chemistry, with

reactions involving the ligands

identified yet. The surface con

most of the precursors availa

present poorly understood.

Particular effort has been pla

use of metal alkylamides. Met

mides tend to have high vapor

require low film growth tem

produce non-corrosive byprod

sometimes deposit fewer impur

metal halides (carbon and

instead of halogen atoms).37,40

seem to produce smoother film

better growth rates, and be r

desirable ALD temperature w

This journal is ª The Royal Socie
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oxide

such
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and
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ptimal
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blems

urities

mposi-

However, those molecules tend

unstable at the temperatures need

deposition, and the final quality

films they produce depends critica

such process parameters as the leng

pressure of the pulses and the dep

temperature used.42,43 No compreh

molecular understanding is availa

present of the origin of these vari

but incomplete reaction betwee

adsorbed alkylamide species an

oxidant in the second half-cy

the ALD processes has been propo

be the likely reason for the inc

impurity content and deterioration

film properties observed at low tem

tures.44,45 Results from studies

secondary ion mass spectrometry (

suggest that thermal decomposition

precursor may be the main cul

higher temperatures.43

One limitation with the alky

precursors is the relatively low stren

their Hf–N bonds, which restric

ALD growth temperature to 2
�C.37 Quantum mechanics calcu

have suggested that activation o

compounds occurs via the format

rings involving one or two surface

the hafnium center, and either oxy

nitrogen atoms (Fig. 3),46 but no ev

is available yet to support this

Also, it is not clear what the subs

surface chemistry may be, and alte

mechanisms have been advanced

organometallic literature for the d

position of these alkylamide

precursors,47,48 even if those have n
be

for

the

on

nd

ion

ive

at

ns,

the

the

of

to

sed

the

ra-

ing

S)

the

at

ide

of

the

300

ons

ese

of

ms,

or

nce

im.

ent

tive

the

m-

etal

yet

been properly considered in ALD stud

Answering these questions should h

better address the design of pro

precursors for this application.

New and novel non-amide precurs

have also been introduced in recent ye

to address the limitations of the alky

mides. Some of those have displa

excellent self-limiting deposition behav

at high temperatures with neglig

incorporation of impurities,39,49 but t

still have the potential of depositing low

quality films if the deposition conditi

are changed; the mechanism by wh

they decompose on the surface and le

the metal behind is still not known. T

availability of new families of precurs

certainly widens the options for hig

dielectrics film growth, but also adds

the complexity of the problem. Und

standing the surface chemistry of all th

hafnium precursors (and those of ot

metals) could help decide on their relat

promise in ALD applications.

Another aspect of the ALD of me

oxides to which fundamental surf

chemistry studies could contribute is t

of the initial nucleation of the films on

surface of the substrate.33,50 One po

that has been briefly discussed in

literature in connection with this issu

that of the role of hydroxyl surface gro

in facilitating the initial activation of

metal precursor.46,51 In general

enhanced reactivity has been observed

OH-terminated surfaces with a variety

precursors,41,52 even if the opposite tre

has also been reported on occasion.53
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fact, based on in situ infrared

scopy studies, it has been prop

on hydrogen-terminated silicon

the observed induction perio

initial stages of deposition may

a slow replacement of Si–H

species by Si–OH groups.54 T

reaction of the precursor with t

may take place by interactio

sort illustrated in Fig. 3, b

confirmation of ideas like this

the future. Resolution of this

lead to new proposals on precon

of the surface prior to A

growth. Finally, deposition

oxides, as recently proposed

a further understanding of the

of the sets of precursors to

That increases the complexit

chemistry involved, but also a

flexibility to the design U
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Fig. 4 Summary of the XPS data obtained in studies of the ALD of titanium nitride films using

TiCl4 and ammonia. The data correspond to theW (the substrate), N, and Ti average atomic surface

concentrations and the N/Ti atomic ratio measured as a function of the number of ALD cycles

during film growth (left) and the sputtering time once a thick film had been grown (right).68 N/Ti

ratios higher than unity were always observed during growth but not after light sputtering, indi-

cating the formation of a thin Ti3N4 layer on top of the growing TiN film. The results suggest that the

reduction of the titanium ions occurs via disproportionation of the TiCl4 precursor, not by reaction

with ammonia as commonly thought. Reprinted with permission from Elsevier.
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to
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Deposition of metal nitrid

A third area of active research in

microelectronics applications

deposition of metal nitride

Specifically, titanium and

nitride layers are used as b

prevent the diffusion of coppe

silicon substrate.15,57,58 The ALD

films has been studied in gr

already by using a wide variet

niques, including quartz cryst

balances (QCM), Fourier

infrared spectroscopy (FTIR),

spectrometry (MS), but some

have not yet been resolved. In t

TaN, perhaps the most promisi

material so far, the remaining d

include the need to deposit a

prior to the TaN film growth to

adhesion, the required use of

reducing agent, and the dif

controlling the stoichiometry

tallinity of the growing mater

particularly important issue he

do with the possible growth

different TaN vs. Ta3N5

phases, something that can

assessed by X-ray diffracti

niques.60,61 Moreover, as with m

ALD processes, there is the

impurities incorporation, whic

case leads to films with unaccep

resistivities.59,60,62

The growth of titanium nit

TiCl4 and NH3, arguably one o

3524 | J. Mater. Chem., 2008, 18,
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much

ALD

D for
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lms.4,8

talum

ers to

to the

f those

detail

f tech-

studied ALD processes of all,63–

serve to illustrate how far we are sti

understanding the surface chemis

ALD systems. The most importan

tical limitations in this case are the m

reactivity of the ammonia used

second reactant, which leads to

deposition rates, and the 1–2% r

chlorine that is always incorporated

growing films. Many processes a

inadvertently designed to run in

ALD mode, perhaps because of

cient precursor exposure, insu

purging or pumping between half

and/or too low or too high dep

temperatures. All those problems

be better addressed if a more co

understanding of the underlying

istry were available. For instanc

surprising that the identities of bo

reducing agent and the oxi

byproducts of the overall proces

not yet been established.4,67 In conn

with this, our recent work using X
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