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Methods for Depositing Thin Films 

Method ALD MBE CVD Sputter Evapor PLD 

Thickness Uniformity good fair good good fair fair 

Film Density good good good good fair good 

Step Coverage good varies varies poor poor poor 

Interface Quality good good varies poor good varies 

Low Temp. Deposition good good varies good good good 

Deposition Rate fair fair good good good good 

Industrial Applicability varies varies good good good poor 
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What is ALD?  aka How does it work? 
• Originally called Atomic Layer Epitaxy 

– Has been around in one form or another for 
almost 50 years 

• A chemical vapor deposition method 
– However, the reaction is split into two parts 
– Each part is self-limiting and surface only 
– After completion of the two half-reactions the 

system is stable and a monolayer of film has been 
deposited 
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In air H2O vapor is adsorbed on most surfaces, forming a hydroxyl group.  
With silicon this forms: Si-O-H (s) 

After placing the substrate in the reactor, Trimethyl Aluminum (TMA) is pulsed into 
the reaction chamber. 
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Al(CH3)3 (g) + : Si-O-H (s)         :Si-O-Al(CH3)2 (s)  + CH4  

Trimethylaluminum (TMA) reacts with the adsorbed hydroxyl groups, 
producing methane as the reaction product 
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Trimethyl Aluminum (TMA) reacts with the adsorbed hydroxyl groups, 
until the surface is passivated. TMA does not react with itself, terminating the 

reaction to one layer. This causes the perfect uniformity of ALD. 
The excess TMA is pumped away with the methane reaction product. 
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After the TMA and methane reaction product is pumped away, 
water vapor (H2O) is pulsed into the reaction chamber. 
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  2 H2O (g) + :Si-O-Al(CH3)2 (s)          :Si-O-Al(OH)2 (s)  + 2 CH4  
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O 

H2O reacts with the dangling methyl groups on the new surface forming aluminum-
oxygen (Al-O) bridges and hydroxyl surface groups, waiting for a new TMA pulse. 

Again metane is the reaction product.  
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The reaction product methane is pumped away. Excess H2O vapor does not react with 
the hydroxyl surface groups, again causing perfect passivation to one atomic layer. 
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One TMA and one H2O vapor pulse form one cycle. Here three cycles are shown, with 
approximately 1 Angstrom per cycle. Each cycle including pulsing and pumping takes e.g. 3 sec. 
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Al(CH3)3 (g) + :Al-O-H (s)         :Al-O-Al(CH3)2 (s)  + CH4  

  2 H2O (g) + :O-Al(CH3)2 (s)          :Al-O-Al(OH)2 (s)  + 2 CH4  

Two reaction steps in each cycle: 
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Signature Qualities of ALD 

• Step One:  Linear growth rate 
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• Step Two:  Self-limiting deposition/cycle 

Signature Qualities of ALD? 

Saturation Curve at 250°C 
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ALD “Window” 

ALD 
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Temperature 
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Growth Rate 

    Å/cycle 

Saturation  

Level 

Each ALD process has an ideal process “window” in which growth is saturated at a 
monolayer of film.    
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ALD Window 
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Advantages of ALD 
• Unique Chemistry Driven Process 

– Self-saturating reactions with surface 
– Thermal decomposition of precursor not-allowed 
– Low temperature and low stress  
 (molecular self assembly) 
– Excellent adhesion 

 
• Conformal Coating 

– Perfect 3D conformality: no line of sight issues 
– Ultra high aspect ratio (>2,000:1) 
– Large area thickness uniformity and scalability 

 
• Challenging Substrates 

– Gentle deposition process for sensitive substrates 
(i.e. biomaterials, plastics) 

– Coats challenging substrates (teflon, graphene 
gold) 
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Disadvantages of ALD 
• Unique, Chemistry Driven Process 

– Not every material possible 
– Precursors can limit process due to reactivity / availability 
– Process limited by activation energy 
– No thermal decomposition of precursor allowed 

 
 

• Conformal Coating 
– Deposition can be comparably slow: cycles times of 1 second to >1 

minute depending on substrate and temperature 
– Removal of excess precursor and by-products is required 

 
• Challenging Substrates 

– Functionalization steps may be required 
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Let’s take an extra moment on conformality 
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Good ALD precursors need to have the following characteristics:  
 

1. Volatility  
Vapor pressure (> 0.1Torr at T < 200°C) 
Liquid at volatilization temperature without decomposition 

2. Reactivity 
Able to quickly react with substrate in a self-limiting fashion  
(most precursors are air-sensitive) 

3. Stability  
 Thermal decomposition in the reactor or on the substrate  is not allowed 

4. Byproducts  
Should not etch growing film and/or compete for surface sites 

5. Availability 
 
 
 

 
 

ALD Precursors 
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ALD Precursors 
The second precursor (Precursor B)  must react with adsorbed monolayer (A) in order to form 

bonds and prepare the surface for another dose of (A)  

 

 
 

Some common precursors include: 
 

�    Oxidants – for oxides 
 Water (H2O), ozone, O2 plasma, alcohols (ROH), metal alkoxides [M(OR)x] 
 

�   Reductants  

 
 Metals 
 Hydrogen gas (H2), ammonia (NH3),  
 Silanes (Si2H6) 
 
 Nitrides 
 Ammonia (NH3), N2 plasma,   
 hydrazine (NH2-NH2) 
 
 Sulfides 
 Hydrogen Sulfide (H2S) 
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Al2O3 From Beer 
Cambridge NanoTech Experiment: replacement of H2O with beer 

+ = 
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Al2O3 grown with beer/TMA 

Al2O3 From Beer 

Al2O3 grown with H2O/TMA 

Both 1000 cycles, 1000 Angstrom thick. The results are remarkably similar as the 
vapor draw allows the water/alcohol vapor to be distilled from the beer precursor 
cylinder, demonstrating the reduced requirement for high purity precursors if used in 
certain applications 
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Two deviations from  
the perfect ALD model 

• Films are typically 
amorphous 
– Poly or crystalline can be 

achieved in proper 
deposition condition or 
with anneal 
 

• Nucleation 
– Not every self-limiting 

half-reaction fully 
occupies every available 
sight every cycle 

– In fact, at some level this 
is true for every film 
deposited 

– Substrate dependence 
– Chemistry dependence 
– Film roughness 
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A little more about nucleation 
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ALD Processes 

Element included in at least one ALD material 
Element not included in any ALD material 

Cambridge NanoTech has several standard recipes available as starting points for customers.  
However, there are many processes which have not been attempted in our applications lab.  
 
Many ALD processes exist: 

ALD Periodic Table 

Prof. Roy Gordon – Harvard University 

Just because a “process” exists, it does not mean it is a “good process” 
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Oxides made by ALD 

HARVARD  Ex. 2115,  p.25



Pure Elements made by ALD 
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Nitrides made by ALD 
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Sulfides made by ALD 
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Carbides made by ALD 
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Fluorides made by ALD 
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Periodic table frequently updated at 
http://www.cambridgenanotech.com/periodic 
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The SNF ALD Websites 

https://snf.stanford.edu/SNF/equipment/chemical-vapor-deposition/ald/savannah 

https://snf.stanford.edu/SNF/equipment/chemical-vapor-deposition/ald 
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SNF ALD Websites 
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Background Summary 
• Atomic Layer Deposition can deliver thin films 

with 
– Very precise thickness control (~Angstroms) 
– Many materials (metals, dielectrics, magnetics…) 
– Highly conformal 
– Uniform over large areas 
– Engineerable into “meta-materials” with alternating 

layers 
• Downside: 

– Slow slow slow 
– Not all chemistries are created equal 
– Nucleation 
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Any Questions? 
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The Cambridge Nanotech Savannah 
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Main Components of an ALD System 

Chamber 

Precursor Cylinders ALD Pulse Valves 

Main Vacuum Valve 

Carrier Gas Line 
(Vapor Draw) 

ALD Manifold 

Process Vacuum in 100-
1000mT range 
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Writing a Recipe 

• A sequential list of 
commands 

• Basic recipe 
– Length of precursor 

pulse 
– Length of purge cycle 
– Temperature of reactor 

and other components 
– # of cycles 

Step command # Value units 

0 heater 8 200 C 

1 heater 9 200 C 

2 Flow 20 sccm 

3 Pulse 0 0.02 Sec 

4 wait 15 Sec 

5 pulse 1 0.015 sec 

6 Wait 15 Sec 

7 goto 3 100 Cycles 

8 flow 5 sccm 
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Other recipe variables 

• Stop-valve 
– Boolean command to 

control the gate valve to 
the pump 

– By temporarily valving 
off the pump you can 
leave the reactants in 
the chamber longer 

– This can enhance 
coverage of extreme 
aspect ratios (2000:1) 

• Stabilize 
– Select a heater and a 

temperature 
– The system waits to 

proceed until the heater 
maintains that value for 
a few seconds 

– Allows consistent 
processing 
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What you can tell from the pulse train 

Missing pulses 
indicate a problem 
Most likely the 
precursor is out 
(should last 1000s 
of pulses before 
refilling/replacing) 

Height above base pressure should be 
~100mTorr for chamber saturation 
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Plasma Enabled (PE)ALD 

ͻ Remote Plasma as a reactant 
– Widens ALD window for materials by decreasing 

activation energy 
– Avoids precursor decomposition or damaging substrates 

with limited thermal budget 
– Remote ICP source prevents substrate damage from 

ions 
– Faster deposition cycle times 
– Fewer contaminates in films 
– Smaller nucleation delay 

 
ͻ Film Examples 

– Low temperature oxides 
– Metal nitrides 
– Metallic films 

 
• High-Aspect Ratio Structures 

– Radical recombination prevents greater than ~20:1 

Fiji PE-ALD chamber 
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Benefits of Plasma 

• Precursor temp 90°C 
 

• Nucleation is eliminated when 
using O2 plasma as reactant 
 

• Constant growth rate per cycle 
even at low process temp 
 
 

 

Decreased nucleation for metallic films 
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The Cambridge Nanotech Fiji 
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Main Components of an ALD System 

Chamber 

Precursor Cylinders ALD Pulse Valves Main Vacuum Valve 

Carrier Gas Line 
(Vapor Draw) ALD Manifold 

Process Vacuum in 100-
1000mT range 

Remote Plasma Line 
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Writing a Recipe 
• A sequential list of commands 
• Basic recipe 

– Length of precursor pulse 
– Length of purge cycle 
– Temperature of reactors etc 
– Process gas flows 

– Plasma power 

– # of cycles 
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Other recipe variables 

• Stop-valve 
– Boolean command to 

control the gate valve to 
the pump 

– By temporarily valving 
off the pump you can 
leave the reactants in 
the chamber longer 

– This can enhance 
coverage of extreme 
aspect ratios (2000:1) 

• Stabilize 
– Select a heater and a 

temperature 
– The system waits to 

proceed until the heater 
maintains that value for 
a few seconds 

– Allows consistent 
processing 

HARVARD  Ex. 2115,  p.46



What you can tell from the pulse train 

Missing pulses 
indicate a problem 
Most likely the 
precursor is out 
(should last 1000s 
of pulses before 
refilling/replacing) 

Height above base pressure should be 
~100mTorr for chamber saturation 
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Final thoughts 
• The field is rapidly changing 

– More precursors 
– More materials 
– More variations 
– More applications 

• Like most Nanofabrication… 
– Best chance for success is to get in the lab and push 

experiments 
• Some resources: 

– www.cambridgenanotech.com 
– snf.stanford.edu/SNF/equipment/chemical-vapor-

deposition/ald/ 
– https://snf.stanford.edu/SNF/equipment/chemical-vapor-

deposition/ald/fiji-l 
– jprovine@stanford.edu; mmrincon@stanford.edu  

 

HARVARD  Ex. 2115,  p.48

http://www.cambridgenanotech.com/
http://www.cambridgenanotech.com/
http://www.cambridgenanotech.com/
http://www.cambridgenanotech.com/
https://snf.stanford.edu/SNF/equipment/chemical-vapor-deposition/ald/
https://snf.stanford.edu/SNF/equipment/chemical-vapor-deposition/ald/
https://snf.stanford.edu/SNF/equipment/chemical-vapor-deposition/ald/
https://snf.stanford.edu/SNF/equipment/chemical-vapor-deposition/ald/
https://snf.stanford.edu/SNF/equipment/chemical-vapor-deposition/ald/
https://snf.stanford.edu/SNF/equipment/chemical-vapor-deposition/ald/
https://snf.stanford.edu/SNF/equipment/chemical-vapor-deposition/ald/
https://snf.stanford.edu/SNF/equipment/chemical-vapor-deposition/ald/
https://snf.stanford.edu/SNF/equipment/chemical-vapor-deposition/ald/fiji-l
https://snf.stanford.edu/SNF/equipment/chemical-vapor-deposition/ald/fiji-l
https://snf.stanford.edu/SNF/equipment/chemical-vapor-deposition/ald/fiji-l
https://snf.stanford.edu/SNF/equipment/chemical-vapor-deposition/ald/fiji-l
https://snf.stanford.edu/SNF/equipment/chemical-vapor-deposition/ald/fiji-l
https://snf.stanford.edu/SNF/equipment/chemical-vapor-deposition/ald/fiji-l
https://snf.stanford.edu/SNF/equipment/chemical-vapor-deposition/ald/fiji-l
https://snf.stanford.edu/SNF/equipment/chemical-vapor-deposition/ald/fiji-l
mailto:jprovine@stanford.edu
mailto:jprovine@stanford.edu
mailto:jprovine@stanford.edu
mailto:jprovine@stanford.edu
mailto:mmrincon@stanford.edu
mailto:mmrincon@stanford.edu
mailto:mmrincon@stanford.edu
mailto:mmrincon@stanford.edu


Thank you. 
 

Any Questions? 
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