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Introduction to Volume Two

During the second half of the last century, when the foundations of the
organometallic chemistry described in Volume I were being laid, it was
generally held that the transition elements were unable to form organic
derivatives. Early in the present century methyl platinum compounds
were made (Pope and Peachy [1]) and an extensive organic chemistry of
zold(IT1) was developed (Gibson [2]) mainly in the 1930’s. During the
1940’s the organic chemistry of the transition elements comprised little
more than the gold and platinum compounds, the olefin complexes of
platinum and palladium which were not understood, and Hein’s phenyl-
chromium compounds (1919-1931) — which were quite mysterious.

There was a dramatic change in the early 1950°s, following the now
famous discovery of ferrocene or biscyclopentadienyliron, (CsHs)zFe,
simultaneously by Miller, Tebboth and Tremaine [3] and by Kealy and
Pauson [4]. Ferrocene was quickly recognized as an entirely new type of
compound in which a metal atom is bound to aromatic rings in a pre-
viously unknown way (Wilkinson, Rosenblum, Whiting and Woodward
[5], 1952; Fischer and Pfab [6], 1952).

Since the early fifties there has been a great deal of work on the organic
derivatives of transition metals and many exciting new types of compounds
have been isolated and studied.

Classification

The compounds discussed in the following chapters are classified by the
organic ligands attached to the metal according to the number of electrons
which are formally considered to arise from the ligand and which take part
in the formation of the metal-ligand bond. This classification and a plan
of the following chapters are shown in the table and in the chart below.

A classification of organic groups which act as ligands to transition metals

Number of electrons Name of class Example of organic group

1 Yl Alkyl or aryl groups, compare
CI°, CN* and H".

2 Alkene Ethylene, compare carbon
monoxide

3 Enyl w-Allyl, compare nitric oxide

4 Diene Cyclobutadiene, butadiene

5 Dienyl m-Cyclopentadienyl

6 Triene Benzene, cycloheptatriene

7 Trienyl =-Cycloheptatrienyl

1
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2 ORGANOMETALLIC COMPOUNDS: II

The basis of the above classification is the 18-electron rule and it is
appropriate to discuss this rule here.
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The 18-electron rule

The large majority of the transition metal complexes with metal-carbon
organic, —carbonyl or ~hydride ligands isolable at room temperature can
be regarded as having 18 electrons in their valence shell. This is the
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INTRODUCTION TO VOLUME TWO 3

empirical basis of the rule ‘a valence shell containing 18 electrons gives
stable complexes’. It is argued in Chapter 7 that the greater stability
associated with the 18-electron valence shell may arise both from thermo-
dynamic and kinetic factors.

In order to test the application of the 18-electron rule to a compound it
is necessary to count the number of electrons which are formally in the
valence shell of the metal atom. This is most easily achieved in the follow-
ing manner:

(a) Take the number of electrons in the valence shell of the uncomplexed
metal atom and add or subtract electrons according to the total charge on
the metal complex. Thus iron in a unipositive cation has 8 —1 =7
electrons, in a neutral compound has 8 electrons and in a uninegative
anion has 9 electrons.

(b)) Sum the number of electrons which the ligands formally contri-
bute to the metal, according to the classification of ligands given above.
Add this sum to the metal electrons from (a).

To exemplify this procedure we consider first the complex cation
[7-CsHsFe(CO),C2H4]* which does not require further structural evi-
dence before the electrons can be counted. The electrons come from
Fet = 7; n-CsHs = 5; (CO), = 4; C,Hs = 2; the total is therefore 18
electrons. Another example is 7-CsHs(Me).Re(CsHsMe); in this case the
structure of the ReCsHsMe group must be known before we can un-
ambiguously countelectrons. The electrons arise from Re = 7; 2-CsHs = 5;
Me, = 2; and, since X-ray diffraction shows that the methylcycloperta-
diene ligand has all four diene carbons bonded to the metal, CsHsMe = 4;
again the total = 18 electrons. Contrast this complex with the cyclo-
pentadiene complex 7z-CsHsRe(CO),CsHg in which the cyclopentadiene
group is only bonded to the metal by one carbon-carbon double bond
(see p. 23).

Finally, consider the complex C;H;Co(CO); whose structure is un-
known but may be predicted using the 18-electron rule. At first sight the
complex appears to be a7 4 9 + 6 = 22 electron complex. It is therefore
proposed that the C;Hj ring only contributes three electrons to the cobalt,
rather than seven, and that instead of being the z-cycloheptatrienyl com-
plex, .1, it is the 7z-enyl complex 1.2:

co/ \co co// \co
do co
1 1.2
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4 ORGANOMETALLIC COMPOUNDS: II

A problem in the counting of electrons may arise with complexes con-
taining metal-metal bonds. In complexes for which X-ray diffraction
clearly shows there to be metal-metal bonding, e.g. (CO)sMn—Mn(CO)s,
the bond is represented by an unbroken line. In these complexes each metal
atom acts as a one-electron ligand to the other.

Those complexes which contain bridging ligands between two metal
atoms are assumed to contain a metal-metal bond when this is required by
the 18-electron rule and if it is suggested by experiment, for example by
magnetic data. Both dicobalt octacarbonyl, 1.3, and the binuclear complex
[n-CsHsFe(CO):]. have two bridging carbonyl groups and they are dia-
magnetic. It is therefore normally assumed that spin-pairing between the
metal atoms occurs via a metal-metal bond, otherwise the metal atoms
would have an odd, 17-electron environment. However, spin-pairing may
possibly occur by mechanisms other than direct metal-metal interaction;
for example via a bridging ligand. A metal-metal interaction which is
postulated solely on the basis of magnetic data or the 18-electron rule is
therefore represented by a dotted line in'this book (see 1.3).

\ /
oc i =N co
oc \co//--»\—}c::—/—co
oc co
1.3

(i) The basis of the 18-electron rule

The change in energy of the 4s, 4p and 3d orbitals with increasing atomic
number across the first long series of the transition elements is given in
Figure 1. This figure shows several points of interest:

Increase of
binding energy
VALENCE BAND

\ \,\\(\\‘\\\\: \\\\\\\ \\ ‘\>\ 4s
N \

N

3d\\\\

Cc;ScTiVCr Mn Fe Co Ni Cu Zn

Fig. 1. The change in energy of the 3d, 4s and 4p orbitals of the first transition series
(after Phillips and Williams [7])
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(a) For scandium and titanium the 3d orbitals are rather high in energy
and are unlikely to be very important in metal-ligand bonding.

(b) Across the series V, Cr, Mn, Fe, Co the 3d orbitals decrease in
energy more rapidly than the 4s and 4p orbitals, yet all three types of
orbitals are fairly close in energy and are of suitable energy to be import-
ant in metal-ligand bonding.

(¢) Across the series Ni, Cu, Zn the d orbitals continue to decrease in
energy and at €u and Zn they are best regarded as core electrons, that is
they are no longer ‘valence electrons’ and cannot be expected to make
significant contributions to the metal-ligand bonding.

It should also be noted that for all the transition metals the effect
of a positive charge on the metal is to lower the energy of all the orbitals.
More important, however, is the increase in the separation between the
3d orbitals and the 4s, 4p orbitals. From these observations we may, in a
very qualitative manner, understand the occurrence and limitations of the
18-electron rule, as follows.

When the energies of the 3d, 4s and 4p orbitals are fairly close together
and are suitable for metal-ligand bonding, i.e. when the orbitals are in the
valence band, then the maximum bonding occurs when they are all filled,
and this is of course the case when the metal atom has an 18-electron en-
vironment. It follows from () that the low (and negative) oxidation
states of the metals V, Cr, Fe and Co would be expected to obey an 18-
electron rule. In the case of Ni then, it makes little difference whether we
regard the 34 orbitals as valence or core orbitals since in both cases there
remain the valence 4s and 4p orbitals which, when filled, would give
tetrahedral nickel complexes, e.g. Ni(CO)s.

(ii) Exceptions to the 18-electron rule

It follows from (@) and (c¢) above, that the 18-electron rule would be ex-
pected to break down for transition metals in low oxidation states at both
ends of the transition series, either because the 3d orbitals are too high
(Ti) or too low (Cu) in energy. This is indeed the case and there are no
known 18-electron complexes of Ti and few of Cu.

It can be seen also that the 18-electron rule will tend to break down
when the first-row transition metals are in a high oxidation state. There
may also be steric limitations to the formation of 18-electron complexes
in high oxidation states — consider for example the hypothetical cation
[Cr(CO)o]s+. Steric limitations may also explain why vanadium forms the
monomeric, paramagnetic and 17-electron hexacarbonyl, V(CO)s, rather
than the dimeric complex [V(CO)s]> which would be diamagnetic and
would obey the 18-electron rule.

It is observed that nickel frequently forms complexes in which it has
a l6-electron environment, e.g. in square-planar complexes such as

HARVARD Ex. 2122 p. 14
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6 ORGANOMETALLIC COMPOUNDS II

(PR’;3):NiR,. Also, copper sometimes and gold frequently form 14-
electron complexes, of the type PR3sMR. These observations can be under-
stood in terms of Figure 1 as follows.

Across the series Co, Ni, Cu and Zn the 3d orbitals go into the metal
core and the energy separation between the 4s and 4p orbitals becomes
greater. As the difference of energy of the 45 and 4p orbitals increases, the
4s orbital becomes more important in bonding whilst the 4p orbitals
become less significant. The stepwise removal of two of the three 4p
orbitals may account for the occurrence of stable complexes of Co, Ni and
Cu in which the metals have 18-, 16- and 14-electron environments re-
spectively.

It should be noted that all the above arguments apply also to the second
and third d-block transition series and that differences between the relative
energies of the ns, np and (n — 1)d orbitals may also be significant. For
example there is an increase in the separation between the ns and np
orbitals in the series Cu, Ag and Au. This may account for the apparently
greater stability of the 14-electron gold complexes PR3;AuR compared to
that of the copper analogues.

Finally, it is emphasized that the 18-electron rule is unsophisticated and
provides no detailed insight into the chemistry of organometallic com-
plexes.
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