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3
Precursors for ALD Processes
Matti Putkonen

3.1
Introduction

Since atomic layer deposition (ALD) is a chemical gas-phase thin film deposition
method based on sequential, self-saturating surface reactions, the selection of the
suitable reactants, that is, precursors, is extremely critical. Typically, two or more
chemical precursors are needed, each containing different elements of the materials
being deposited. Precursors are adsorbed onto the substrate surface separately. Each
precursor saturates the surface forming a monolayer of material and purging
between reactants excludes gas-phase reactions. Process temperatures range from
room temperature to over 500 °C. The largest selection of ALD processes operates
around 300°C. ALD processes have been developed for oxides, nitrides, carbides,
Auorides, certain metals, 11-VI and I1I-V compounds, and recently also for the
organic materials [1].

Development of new ALD precursors and processes has been very active over the
past 35 years at several universities, R&D centers, and companies. ALD was first
demonstrated for the TFEL application by ZnS deposition using elemental zinc and
sulfur in mid 1970s, followed by the use of ZnCl, and H,S [1]. After the initial
period, several other precursor types have emerged. During the second half of
1980s, metal-organic precursors were also adapted for ALD [2, 3]. This opened
plenty of possibilities for new ALD chemistry and processes. A large number of
ALD processes have been demonstrated and published up to date, and the list is
growing all the time.

In this chapter, different precursors used in ALD are discussed in detail. Generally,
ALD processes can be divided according to ligand types used in the volatile
orecursors. The volatile metal-containing precursors typically fall into the following
cztegories: elemental precursors, inorganic precursors, and organometallic ALD
orecursors. These classes are discussed in detail and some examples of chemical
surface reactions are provided.

Asomsic Layer Deposition of Nanostructured Materials, First Edition. Edited by Nicola Pinna and Mato Knez.
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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3 Precursors for ALD Processes

3.2
General Requirements for ALD Precursors

Although ALD resembles chemical vapor deposition (CVD) quite closely, the
requirements for ALD precursors differ from other chemical gas-phase methods
since all gas-phase reactions should be excluded and reactions should occur only at
the surface. In the early history of ALD, CVD reactants were also used, but nowadays
specific tailor-made precursors often provide better results 4, 5]. For example, the use
of different exchange reactions at the surface makes it possible to create novel ways to
produce challenging thin film materials other than traditional oxides and nitrides.
ALD growth mode allows the use of significantly more reactive precursors than CVD.
In CVD methods, a constant flow of the precursor vapor is needed to obtain a
controlled process, but because ALD relies on self-limiting reactions, only a limited
amount of the precursor is required during one pulse to cover the adsorption sites on
the surface; the excess amount is removed during the inert gas purge or pumpdown.
This makes it possible to use, in some cases, in situ generation of the metal precursors
and thus have a fresh supply of otherwise instable precursor molecules onto the
substrate surface [6, 7]. This technique has been successfully applied to produce
[-diketonate compounds of alkaline earth metals (St, Ba) by pulsing ligand vapor over
heated metal or metal hydroxide [8].

In order to avoid uncontrolled reactions, sufficient thermal stability of the pre-
cursors is needed in the gas phase as well as on the substrate surface within the
deposition temperature range, which is typically 150-450 °C. Because ALD is a gas-
phase process, solid and liquid precursors must be volatile under the operating
temperature and pressure, and if heating is required to obtain sufficient vapor
pressure, thermal stability of the precursor over a prolonged time is necessary.
Stability is the key issue especially when coating porous materials or nanostructures
requiring long precursor diffusion times.

There are some general requirements for ALD precursors:

« sufficient volatility at the deposition temperature;

* no self-decomposition or reaction on itself at the deposition temperature;
 precursors must adsorb or react with the surface sites;

« sufficient reactivity toward the other precursors;

 no etching of the substrate or the growing film;

 availability at a reasonable price;

« safe handling and preferably nontoxicity.

Quite often, the ALD precursors do not fulfill all of these requirements. Moreover,
sensitive substrates may give additional limitations to precursor selection.

33
Metallic Precursors for ALD

In the ALD of inorganic materials, at least one metal-containing precursor is needed
(Scheme 3.1). Recently, the ALD process has also been applied to organic materials
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and fi-diketonates (c) are traditionally used as (i), and guanidinates (i, if R =NR;) have also
ALD precursors. Organometallic precursors been successfully applied to ALD. More recently,
such as metal alkyls (d) and homo- and alkylsilyl compounds (j) and pyrazolyl borate-
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44| 3 Precursors for ALD Processes

and inorganic/organic hybrid materials, and it is now referred to as molecular layer
deposition (MLD) and its features will be discussed in detail in Chapter 5.

3.3.1
Inorganic Precursors

Inorganic precursors offer low-cost alternatives for many ALD processes. In some
cases, they have suffered film contamination or etching but still their thermal stability
makes possible the use of relatively high deposition temperatures. Most common of
these are metal halides, but other inorganic precursors such as metal nitrates,
carboxylates, and isocyanates have also been tested [9-11].

3.3.1.1 Elemental Precursors

The early ALD processes utilized either volatile elements such as zinc and sulfur or
halides [1]. The low volatility of pure elements limits the number of applicable
processes or forces the use of very high deposition temperatures. However, deposition
rates are quite high since there are no sterical hindrances in the elemental precursor.

3.3.1.2 Halides

The most common inorganic precursors are metal halides. Several metal halide
precursors have been applied in ALD processes, together with water, ammonia, and
hydrogen sulfide as a second reactant. However, the suitability of a particular metal
halide for ALD depositions has been found to depend on the metal precursor
reactivity. Metal chlorides such as TiCl, [12-14], ZrCl, [15, 16], and HfCl, [17-19)
are commonly used as ALD precursors, but metal fluorides [20], bromides [21], and
iodides [22] have also been successfully applied. Generally, halide precursors are
quite thermally stable, so relatively high deposition temperatures can be applied.
However, halide contamination of the film may cause problems at low deposition
temperatures [23]. Liberation of HX (X =F, Cl, Br, I) during the deposition process
may also cause problems, such as corrosion and etching.

Oxyhalides are another type of volatile inorganic precursors, which have been used
in only a few studies. For instance, tungsten oxyfluoride (WO,F,) and H,0 have been
used as precursors in the deposition of WOj [7], while CrO,Cl, has been used in the
deposition of chromium oxide [24, 25].

3.3.1.3 Oxygen-Coordinated Compounds

[3-Diketonate-type compounds are perhaps the most common oxygen-coordinated
precursors for ALD. These metal chelates are known for their volatility and relative
stability and therefore they were originally synthesized for the separation of metals by
fractional sublimation [26] and gas chromatography [27]. In the 1970s, they were
utilized for the first time in CVD depositions [28]. f-Diketonates in ALD processes
were first utilized in the 1980s as dopant precursors (e.g., for Tb, Ce, Eu, and Th) for
Zn$ [29] and other sulfide thin films [30] since halides for these dopants suffered low
vapor pressures. Somewhat later, they were applied in metal oxide depositions [31],
but quite high deposition temperatures are required to obtain favorable reaction with

HARVARD Ex. 2127 p. 14
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3.3 Metallic Precursors for ALD | 45

water, hydrogen peroxide, or oxygen. Another approach is to use a strong oxidizing
agent, such as ozone.

Metal B-diketonates have also been studied for the deposition of metals [32-34],
metal nitrides [35], and metal sulfides [36]. However, since they have metal to oxygen
bond present, there might be some oxygen residues present in the deposited films.
Impurity levels depend a lot on the material itself; for example, Y(thd); + H,S
precursor combination leads to yttrium oxysulfide [37], whereas In(acac); + H,S
leads to In,S; [38].

Recently, metal p-diketonates have also been applied to the deposition of metal
fluorides (MgF,, CaF,, LaFs) using metal 3-diketonates as metal precursors and solid
TiF, or TaFs as a fluoride source [39]. This reaction proceeds through ligand exchange
reaction between the metal B-diketonate and the metal fluoride. This reaction
produces titanium or tantalum p-diketonates as volatile by-products. Another way
to deposit fluoride thin films is by using fluorinated metal -diketonates such as Ca
(hfac), or metal B-diketonates with separate fluorine source such as HF [40] or Hhfac
(1,1,1,5,5,5-haxafluoroacetylacetonate) [41].

It has been observed in CVD and ALD that coordinatively unsaturated f3-diketo-
nate-type compounds may oligomerize or react with the moisture and become less
volatile [6, 8]. This is observed especially with large and basic metal centers such as
strontium and barium. B-Diketonate-type chelates can be protected against oligo-
merization and hydrolysis by adducting them with a neutral molecule [42].

With adducted precursors, volatilization behavior during heating depends on the
choice of metal, ligand, and adduct and on the bond strengths between them.
Adducted precursors may sublime in a single-step process, or alternatively they may
dissociate during heating, releasing the neutral adduct, which leads to a two-stage
volatilization process where the second step corresponds to the sublimation of the
original unadducted compound [43]. ALD depositions of sulfide films have been
carried out using Ca(thd),(tetraen) or Ce(thd);(phen), where the growth process
appears to be similar to that of the unadducted precursor [44]. Similar results have
also been obtained in the case of deposition process for Y,0; films from
Y(thd)s(phen), Y(thd)s;(bipy), and O as precursors [45]. It seems that, even if
sublimation at one stage is observed, the adducted precursors dissociate at the
deposition temperatures, producing the unadducted precursor [44].

Another interesting group of oxygen-coordinated metal precursors includes the
metal alkoxides. They are usually more thermally unstable than f3-diketonate com-
pounds [46, 47], but offer lower evaporation temperatures. Titanium precursors such
as Ti(OCH3), [48], Ti(OCH3CH,)4 [49], and Ti-(O'Pr)4 [50, 51] have been shown to be
especially useful when depositing ternary strontium-containing materials to sup-
press the formation of strontium chloride impurities originating from the TiCly
precursor [52, 53].

Although simple alkoxide ligands can be used for some elements, metal alkoxides
also offer rather straightforward possibility to modify the ligands in order to tailor the
ALD process behavior and film properties [54]. For example, bulkier ligands such as
t-butoxide [55, 56], 1-methoxy-2-methylpropan-2-ol [57], 1-dimethylamino-2-methyl-
2-propanolate [58], and djmethylaminoethoxide [59] have been successfully applied
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for ALD deposition of metal oxides. Even SiO, can be deposited by using
H,N(CH,)3Si(OEt); or Si(OCH,CHs), as a silicon precursor [60, 61]. Recently,
copper bis(dimethylamino)-2-propoxide has been applied for deposition of metallic
copper films [62]. This reaction is based on the exchange reactions with diethylzinc
leading to volatile Zn(dmap), by-product and copper films.

3.3.1.4 Nitrogen-Coordinated Precursors

Another quite interesting class of ALD precursors includes nitrogen-coordinated
compounds such as metal alkylamides and metal amidinates. They have been applied
to ALD only recently and there are still emerging possibilities for these precursors.
The biggest drawback for some of these compounds is the limited thermal stability.

The most common metal alkylamides are the ones developed for zirconium and
hafnium. M(NMe,),, M(NMeEt),, and M(NEt,)4 (M = Zr, Hf) can be used for the
deposition of corresponding oxide and nitride films [63, 64]. Corresponding tantalum
alkylamides show stability comparable to zirconium and hafnium, but titanium
alkylamides seem to be too unstable to be used in ALD [65, 66]. Other alkylamides
studied in ALD include dimethylamides of aluminum, gallium, germanium, anti-
mony [67], and tungsten and alkylimidoalkylamides of tungsten and molybde-
num [68, 69], for example. Recently, different aminosilanes have been studied for
the deposition of silicon oxides and nitrides, such as bis(dimethylamino)silane [70],
tris(dimethylamino)silane [71], and tetraethylsilaneamine [72).

Metal silylamides provide new opportunities for the selection of ALD materials but
they are usually more thermally unstable compared to the corresponding metal
alkylamides. Ce[N(SiMe;),]; was applied for the first time in ALD for growing
electroluminescent SrS:Ce thin films [73]. More recently, M[N(SiMes),]; complexes
have been utilized in the ALD of LaO,, PrO,, and GdO, aswell as bismuth-containing
films [74, 75]. In addition, ZrCl,[N(SiMes),], has been used for Zr0, thin films at
relatively low temperatures [76]. In addition, the biggest drawback is that one possible
decomposition pathway can lead to silicon impurities in the films.

Metal amidinates have been studied for the deposition of several metals and metal
oxides [77]. Amidinates are structurally analogous to the carboxylates, except that the
ligand is coordinating through nitrogen, making these compounds more reactive
than the corresponding chelates coordinating through oxygen. For example, recently
bis(N,N'-di-tert-butylacetamidinato)ruthenium [78], lanthanum tris(N, N'-diisopro-
pylacetamidinate) [65], and tris(N, N-diisopropylformamidinato)lanthanum [66] have
been used as ALD precursors. A special group of n’-coordinated compounds includes
guanidinates. For example, Gd,0; films have been deposited by using
Gd(iPrN)ZCNMez) 3 as metal precursor [79]. In addition, heteroleptic guanidinate-
based precursors such as Hf(NEtMe),(EtMeNC(N'Pr),), have been used in ALD [80].

3.3.1.5 Precursors Coordinated through Other Inorganic Elements

Although most of the inorganic ALD precursors are halides and N- or O-coordinated
compounds, other precursor classes are also emerging. For example, boron-coordi-
nated precursors such as bis(tris(3,5-diethylpyrazolyl)borate)barium have been used
for growing barium borate thin films [81].
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Recently introduced silicon-coordinated compounds offer interesting route for
complex materials. Alkylsilyl tellurium and selenium precursors make it possible to
deposit Ge,Sb,Tes and CulnSe; [82].

332
Organometallic ALD Precursors

By IUPAC definition, organometallic compounds have bonding between at least one
carbon atom and the metal atom. The chemistry of organometallic compounds has
been studied for almost 200 years and the ALD relevant cyclopentadienyl compounds
have been known from the beginning of the 1950s. During the past few years, the
volatility and high reactivity of organometallics have been exploited in ALD. First,
ALD processes exploiting organometallic precursors were studied using metal alkyls
as precursors. Later on, various compounds containing cyclopentadienyl or other
bulkier ligands have been successfully utilized.

3.3.2.1 Metal Alkyls

ALD processes based on organometallic precursors were first developed for the GaAs
depositions by using either (CH3);Ga [83, 84] or (CH3CH,)3Ga [85] and AsHj as an
arsenic source. Analogous indium alkyls, mainly (CH3)3In, have been used to deposit
InAs [86], InP [87], and In,O; [88] thin films.

Aluminum alkyls, for example, (CHs);Al, (CH3),AlH, and (CH3CH,)3Al, have
been used for the deposition of several I1I-V materials, such as AlAs [89], AIP [90],
and AIN [91), using AsH3, PH, and NHj as second precursors, respectively. The
most common use of aluminum alkyls (e.g., (CHj;)sAl, (CH;),AICI [92],
(CHs),AlH [93], or (CH;CH,)3Al) is for the deposition of Al,O3 thin films. Al,O3
is probably the most frequently studied ALD-processed material since (CHj)3Al has
been used with H,0 [94], H,0, [95], NO,, [96] N, 0, [97], O, plasma [98], or O3 [99] as
an oxygen source.

Transparent conductive SnO, has been deposited using (CHs)sSn or
(CH3CH,)4Sn as a metal precursor and N,0, as an oxygen source [100]. In order
to dope SnO, films, BF; pulses were added to the processes resulting in almost two
orders of magnitude higher conductivity of the as-deposited material. In a similar
manner, zinc alkyls, for example, (CH3),Zn and (CH3CH,)4Zn, have been used as
ALD precursors for ZnS [101], ZnSe [102], and ZnTe [103] thin films with H,S, H,Se,
and H,Te as chalcogen sources, respectively. In addition, they have been utilized for
the deposition of ZnO thin films using H,0 as an oxygen source and have also been
doped with boron [104], gallium [105], or aluminum [106] from B,Hg, (CH;)3Ga, or
(CHs)3Al, respectively. Furthermore, (CH3CH,)4Pb has been utilized as an ALD
precursor for PbS thin films with H,S as the second precursor [107].

3.3.2.2 Cyclopentadienyl-Type Compounds

Chemistry of cyclopentadienyl compounds is studied for almost every element [108].
The main application is their use as catalysts, but they are also suitable for use as
precursors in MOCVD [109]. Although cyclopentadienyl compounds have attracted
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considerable interest as precursors in CVD depositions, they are sometimes too
reactive [110]. However, high reactivity and thermal stability make cyclopentadienyl
compounds very attractive precursors for ALD, where high reactivity can be con-
trolled by sequential pulsing of the precursors.

For group 2 (Be, Mg, Sr, Ba) elements, several different Cp precursors are utilized.
For example, (CsHs),Mg has been successfully used in the ALD deposition of MgO
thin films [111, 112]. Because of the larger size of the heavier alkaline earth metals,
simple (CsHs),Sr and (CsHs),Ba compounds are not suitable for ALD. Therefore,
deposition of strontium- and barium-containing films has been studied by using
bulkier ligands. For example, SrTiO3 and BaTiOs thin films have been deposited from
(C;’Pr;HZ)ZSr, (CsMes),Ba, and (Cs'BusH,),Ba as alkaline earth metal precursors and
Ti(OCH(CH3),)4 and H,0 as titanium and oxygen sources, respectively [113]. In
addition, SrS and BaS thin films have been deposited from (C;‘Pr;HZ)ZSr,
(CsMes),Sr, and (CsMes),Ba using H,S as the second reactant [114].

The smallest cyclopentadienyl compounds of the series can be utilized in ALD
rather straightforwardly for lanthanide elements [115], but thermal stability of the
corresponding lanthanum and cerium compounds needs more precursor tailoring.
Generally, bulkier ligands will protect the metal central better and decrease the
tendency of thermal decomposition. Recently, La('PrCp); has been successfully
utilized for La,05 deposition [116]. (CsMe4H);Ce has been successfully used for
the doping of ALD-grown Sr§ thin films (117]. More recently, mixed ligand-type Cp
compounds have also been applied [118].

Several volatile cyclopentadienyl-type compounds of group 4 elements have been
utilized in ALD. First organometallic ALD experiments to process ZrO, and HfO,
thin films were carried out using (CsHs),MCl, and (CsHs),M(CH3), [119, 120].
Additional heteroleptic compounds of Ti, Zr, and Hf containing alkoxy [121, 122] or
N-coordinated ligands [123, 124] have been successfully used as precursors.

Only few other transition metal cyclopentadienes have been studied in ALD. For
example, volatile (CsHs),Mn and (CsMeH4)Mn(CO); have been used as manganese
sources for doping Zn$ thin films to produce yellow-emitting thin film electrolu-
minescent devices as well as for the deposition of MnO [125]. In addition, ferrocene
has been utilized for the deposition of Fe, 05 thin films [126]and CplIn for In,05 [127].
A different approach has been utilized for processing metallic nickel thin films by
ALD [128]. During the first stage, NiO thin films were deposited by one ALD cycle of
(CsHs);Ni and H,0. The NiO layer formed was then reduced to metallic nickel by
pulsing hydrogen radicals into the reactor. Nickel and cobalt can also be deposited by
three-stage deposition using an oxidizer followed by hydrogen as a reducing
agent [129] or directly using a plasma-enhanced process [130].

Cyclopentadienyl precursors for noble metals have gained significant interest.
Typically, oxygen or air is used as a second reactant in these processes [131]. These
processes are based on the fact that O, does not oxidize the noble metal film, but only
decomposes the organic ligand. Adsorbed oxygen atoms react with the ligands of the
noble metal precursor during the metal precursor pulse [132]. For example, Ru films
have been deposited from (CsHs),Ru [132] or (CsEtH4)3Ru [133]. If longer oxidizer
pulses or additional energy is used, for example, in the form of plasma, noble metal

HARVARD Ex. 2127 p. 18
IPR2017-00664



3.4 Nonmetal Precursors for ALD | 49

oxides (e.g., RuO, and PtO,) can also be deposited [134, 135]. Deposition of platinum
metal films has been studied in a similar manner using (CsMeH4)PtMe; and O, as
precursors [136], but B-diketonate-type precursors can also be used [137], as shown in
Section 3.3.1.3.

3.3.2.3 Other Organometallic Precursors

In addition to metal alkyls and cyclopentadienyl compounds, other types of true
organometallic precursors have also been applied to ALD. For example,
(CeHs)3Bi [138, 139] and (C¢Hs)4Pb [139] have been used for the preparation of
bismuth- and lead-containing oxide thin films. These compounds are not extremely
reactive and therefore ozone is needed [138, 139]. Metallic bismuth was observed as
an impurity if H,0, was used as an oxygen source [138].

3.4
Nonmetal Precursors for ALD

Because reactants are separated in the ALD process, it is possible to control the
reactivity and the reactions between the precursors by using different precursor
combinations. In addition to traditional ALD deposition mechanism that is based on
metal and nonmetal precursors, more innovative reaction mechanisms have also
been developed. For example, metal alkoxides have been used as oxygen sources [140].
No separate oxygen source is needed in this type of special process because the metal
alkoxide serves as both metal and oxygen sources. Other reactions such as ALD
mechanism based on the catalytic precursors[61, 141], ligand exchange reactions [39],
or replacement reactions at the surface [142] have also been developed.

3.4.1
Reducing Agents

Sometimes a reducing precursor is needed although in many ALD processes no redox
reactions occur and the oxidation state of the metal does not change. Hydrogen is
perhaps the most widely used reducing agent, but metallic zinc vapor [143], different
silanes [144], TMA [145], and B,H, [146] have also been successfully applied.
Molecular hydrogen is quite inert toward typical metal precursors and therefore
either high deposition temperatures or plasma is needed to maintain ALD reactions.

342
Oxygen Sources

Typically in the case of ALD-processed oxide films, precursors attached to the surface
can be transformed to the respective oxide with H,0, H,0, [147], N,O4 [100],
N,0[96], 0, [126], or O; [148], the choice depending on the metal precursor reactivity
or desired properties. Water has frequently been used as an oxygen source and indeed
it readily reacts with many metal precursors. Alcohols have also been successfully
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applied as oxygen sources in processes involving inorganic precursors and alkoxides.
For example, deposition of Al,O; has been carried out with an AICl; and ROH
precursor combination, where R is H, CH;, CH,OHCH,OH, t-C4HoOH, or n-
C4HoOH [149].

The high thermal stability of the B-diketonate-type complexes or low reactivity of
cyclopentadienyl-based precursors usually does not allow their use in ALD with mild
oxygen sources. The use of H,0, H,0,, N,0, CH;COOH, and O, has been explored
for B-diketonate-type compounds [150, 151], but the reactivities are usually insuffi-
cient, producing either no film growth or films with a high impurity content. The use
of a strong oxidizer, such as O; or oxygen plasma, guarantees that only a small
amount of carbon is left in the film as residues and can also improve the film
properties [152, 153].

343
Nitrogen Sources

Deposition of nitride thin films by ALD requires both a nitrogen source and a
reducing agent in order to obtain clean surface reactions [154]. In many cases, one
compound, for example, NH3, serves as both a nitrogen source and a reducing agent.
In addition, other nitrogen-containing compounds such as N,H,, (CH3)NNH,,
‘BuNH,, and CH,CHCH,NH have also been studied as nitrogen sources
(155, 156]. Ammonia has been used for depositing several nitride materials such
as TiN, Ta;Ns, W,N, NbN, and WCN thin films by ALD [157]. Quite often, plasma
processes are utilized due to low reactivity of ammonia as well as need for lower
resistivity films [158, 159].

344
Sulfur and Other Chalcogenide Precursors

For chalcogenide thin films, it is possible to use elemental S, Se, and Te as precursors
provided that the other source is volatile and reactive enough [160]. ZnS deposition
using elemental zinc and sulfur was the first ALD process developed. For other than
elemental metal precursors, the reactivity of elemental chalcogens is often not
sufficient. For halides, p-diketonates, and organometallics, simple hydrides such
as H,S, H,Se, and H,Te have been typically used as a second precursor [161, 162].
Due to the toxicity of these materials, in situ generation of H,S has been studied by
using thioacetamide decomposition [163]. Recently, different alkylsilylamines with
lower toxicity have also been developed for Se and Te [82).

35
Conclusions

Since atomic layer deposition is a chemical gas-phase method, its success relies on
the development of well-behaving ALD precursors. Although a number of good ALD
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processes are available, there is still room for improvement. Conventional inorganic
precursors have been used since the beginning of the ALD era over some 35 years
ago. To replace the classical precursors, for example, volatile halides and inorganic
complexes, organometallics and nitrogen-coordinated precursors are widening the
ALD process selection at the moment. Recent developments of metal processes and
other “difficult” materials confirm that novel processes are constantly emerging.
Nevertheless, additional research is still needed to develop special precursors and
further improve process and thin film quality. In the future, more precursors and
processes relying on smart reaction mechanisms are expected to appear.
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