
US 20100180330A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2010/0180330 A1

Zhu et al. (43) Pub. Date: Jul. 15, 2010

(54) SECURING COMMUNICATIONS FOR WEB Publication Classi?cation

MASHUPS (51) Int. Cl.

(75) Inventors: Bin Zhu, Edina, MN (U S); Min 0 Feng, Chengdu (CN); Rui Guo, (')

Be1J1ng(CN) (52) us. Cl. 726/10

Correspondence Address:
LEE & HAYES, PLLC (57) ABSTRACT
601 W. RIVERSIDE AVENUE, SUITE 1400 ,

SPOKANE W A 99201 (Us) Techmques described herem provide secur1ty for commum
’ cations in Web mashups. Some implementations secure Web

(73) Assigneez Microsoft Corporation’ Redmond’ mashups by specifying and monitoring a lifecycle of one or
WA (Us) more Web applications that communicate With each other

through implementation of lifecycle declarations. Further
(21) App1_ NO; 12/351,198 more, some implementations herein may use access tickets to

provide access control between Web applications in a Web
(22) Filed: Jan. 9, 2009 mashup

Service Provider
f—'_

Web Component 310a

—O EXPLICITLY EXPOSED FUNCTIONALITIES

Q ACCESS REQUEST TO SERVICE PROVIDER FUNCTIONALITIES VIA TICKET

Service Consumers

34Gb
340b

3400

3406

Twitter, Inc. v. Youtoo Technologies, LLC
Ex. 1013 / Page 1 of 18

Ex. 1013 / Page 2 of 18

Patent Application Publication Jul. 15, 2010 Sheet 2 0f 6 US 2010/0180330 A1

am
0

NIK mOwwmOOmm mo: < mw>mmwL

Q mmw>>Omm
| Q

NN >105: mowwmoomm f a mmFDmEOO PZMIO;
NIK mOwwmOOmE 00:. O mw>mmwL

Ex. 1013 / Page 3 of 18

Patent Application Publication Jul. 15, 2010 Sheet 3 0f 6 US 2010/0180330 A1

AGGREGATE A FIRST APPLICATION ACTING As A SERVICE
PROVIDER AND A SECOND APPLICATION ACTING AS A SERVICE

CONSUMER INTO A WEB MASHUP

202

I
(RECEIVE A LIFECYCLE DECLARATION FROM ONE OR BOTH OF \

THE FIRST APPLICATION AND THE SECOND APPLICATION SETTING

FORTH A LIFECYCLE FOR ALLOWING COMMUNICATIONS BETWEEN

THE FIRST APPLICATION AND THE SECOND APPLICATION

\ as

I
MONITOR CONDITION OF APPLICATION THAT PROVIDED THE
LIFECYCLE DECLARATION WHILE COMMUNICATIONS BETWEEN -

THE APPLICATIONS ARE CARRIED OUT
204

I
r \

TERMINATE COMMUNICATIONS PRIVILEGE BETWEEN THE
APPLICATIONS WHEN CONDITIONS INDICATE END OF

LIFECYCLE OF ONE OF THE APPLICATIONS HAS BEEN REACHED

BASED ON THE CORRESPONDING LIFECYCLE DECLARATION

MADE BY THAT APPLICATION

ZQQ

‘Fig. 2B

Ex. 1013 / Page 4 of 18

Patent Application Publication Jul. 15, 2010 Sheet 4 0f 6 US 2010/0180330 A1

m .5
mhmEzwcou 8.2mm

.83 EwcoaEoo nm>> 623E 8.2mm
k

Ex. 1013 / Page 5 of 18

Patent Application Publication Jul. 15, 2010 Sheet 5 0f 6 US 2010/0180330 A1

RECEIVE REQUEST FOR ACCESS TICKET FROM SERVICE
CONSUMER AND PROVIDE LIFECYCLE DECLARATIONS

402

DENY +
_ VERIFY IDENTITY OF SERVICE CONSUMER

ACCESS 404
408 —

ACCESS TICKET TO THE SERVICE CONSUMER?
406

T YES
DETERMINE WHICH FUNCTIONALITIES

ARE TO BE GRANTED THROUGH THE ACCESS TICKET

410

I
(SEND THE GRANTED ACCESS TICKET SPECIFYING THE
FUNCTIONALITIES PERMITTED TO BE ACCESSED TO THE SERVICE

CONSUMER

\ 412

I

NO

\

(RECEIVE ACCESS TICKET FROM THE SERVICE CONSUMER N
ATTEMPTING TO ACCESS THE FUNCTIONALITIES

\ 414

K W
ALLOW ACCESS BY SERVICE CONSUMER TO FUNCTIONALITIES OF

SERVICE PROVIDER SPECIFIED BY THE ACCESS TICKET

416 I

I
r MONITOR CONDITIONS OF SERVICE CONSUMER AND SERVICE S

PROVIDER TO EXPIRE TICKET AT END OF
LIFECYCLE OF SERVICE PROVIDER OR SERVICE CONSUMER

141.6.

Fig. 4
Ex. 1013 / Page 6 of 18

Patent Application Publication Jul. 15, 2010 Sheet 6 0f 6 US 2010/0180330 A1

III" P 3.6930 @502 ;

rlili lk ommqu

vwm Nvm

<@ .5 r 36030 252 g

Ex. 1013 / Page 7 of 18

US 2010/0180330 A1

SECURING COMMUNICATIONS FOR WEB
MASHUPS

BACKGROUND

[0001] There has recently been an explosive growth in the
use of Web mashup applications on the World Wide Web
(WWW or the Web). Typically, a Web mashup aggregates and
integrates content from multiple sources on the Web to create
a neW Web experience at a single Website. For instance, Web
2.0 applications may use the client-side broWser as a neW
platform and integrate multiple Web APIs (Application Pro
gram Interfaces) to create Web mashups.An example of a Web
mashup is a Website Which, for instance, overlays real estate
information provided by a ?rst Website on maps provided by
a second Website to alloW users to visually navigate and ?lter
real estate information for a given location. Other mashup
examples include personally customiZed portal pages such as
iGoogleTM and WindoWs LiveTM, Where Web components
from different sources can be aggregated, presented, and even
collaborate in a consistent vieW. It has been predicted that by
2010 Web mashups Will be dominant for the creation of neW
enterprise applications on the Web.
[0002] HoWever, the origin-based trust model adopted by
the current WWW standards Was not designed to handle
security for Web mashups, in Which secure communications
among applications and services from different domains are
necessary. The origin-based trust model Was adopted by the
current WWW standards de?ned in 1996, and is a binary trust
model Which de?nes that documents from different origins
are not trusted and cannot affect each other, While documents
from the same origin are trusted and alloWed to interact With
out constraints. This model is not able to support Web mash
ups since (1) Web components in a Web mashup have partial
trust relationships and need to be able to communicate With
each other in a controlled manner; and (2) origin is no longer
appropriate for use as a security boundary in today’s Web
applications. For example, it is possible that mutually
untrusted Web components might be placed in the same
domain, e.g., at a public Web hosting service site, While mutu
ally trusted, or even the same, Web applications may reside in
multiple domains. For example, the GmailTM service can
presently be accessed from both “gmail.com” and “google.
com/mail” domains.
[0003] NeWly proposed secure cross-domain communica
tion (SCDC) schemes require upgrading the existing WWW
standards to support a neW Way for performing cross-domain
communications. In particular, several neW SCDC schemes
have been proposed that alloW controlled cross-domain com
munications for Web mashups. Some such recently proposed
SCDC schemes include HTML5 (HyperText Markup Lan
guage 5), MashupOS, and CompoWeb. HTML5 is a neW
version of HTML being developed by, among others, the
W3C® HTML Working Group. MashupOS is a system devel
oped by Microsoft Corporation of Redmond, Wash., to isolate
mutually untrusting Web services Within a broWser, While
alloWing communications there betWeen. CompoWeb is a
component-oriented Web architecture also developed by
Microsoft Corporation of Redmond, Wash. These neWly pro
posed schemes are able to provide secure cross-domain com
munications for static Web mashups. A static Web mashup is
a mashup in Which child Web components do not load differ
ent Web applications at different times. HoWever, none of
these schemes has fully resolved the secure cross-domain
communication problem for Web mashups. For example,

Jul. 15,2010

While some of these proposals Work Well for static Web mash
ups, there are vulnerabilities When these proposals are applied
to a dynamic Web mashup Where a Web component loads
different Web applications at different times. Thus, the pro
posed schemes are still vulnerable to more complex attacks
such as cross-Web-component phishing (CWCP) attacks in
Which a malicious Web application attempts to acquire sensi
tive information by masquerading as a trustworthy Web appli
cation in a dynamic Web mashup.
[0004] Furthermore, access control is crucial to interac
tions betWeen tWo partially trusted peers. The inventors have
determined that Web infrastructure should enable each com
munication peer to decide Whether to provide services to
another peer based on the identity of the other peer and When
such services should be terminated. Several SCDC schemes
alloW a Web application to check the origin of a Web compo
nent that the application interacts With every time When an
interaction occurs. For example, in HTML5, the message
sender can assert the origin of the receiver by giving an
optional argument to the postMessage function. The posted
message Will be automatically abandoned if the origin of the
receiver does not match the optional argument. The message
receiver in HTML5 can also identify the origin of the message
sender by checking the argument of the receive message event
handler. Thus, to prevent a cross-Web component phishing
attack in HTML5 it is necessary to verify the sender’s domain
every time that a credential message is sent out. The short
comings in HTML5 in having to identify a communication
peer by checking the peer’s origin every time include: (1) In
HTML5 it is optional to verify the receiver’s domain, and in
many cases a Web developer Would omit this option for con
venience; (2) “origin”, as discussed above, is no longer suit
able to be considered as a security boundary in today’s Web
applications; and (3) to repeat the same identi?cation logic
every time that an interaction occurs is inef?cient and unnec

essary.

SUMMARY

[0005] This Summary is provided to introduce a selection
of concepts in a simpli?ed form that are further described
beloW in the Detailed Description. This Summary is not
intended to identify key or essential features of the claimed
subject matter; nor is it to be used for determining or limiting
the scope of the claimed subject matter.
[0006] Implementations disclosed herein may specify and
monitor a lifecycle of each Web application and may use
access tickets to offer a ?ne-grained and e?icient access con
trol to address vulnerabilities in communications betWeen
peer applications. Some implementations also describe hoW
to apply features to existing communication schemes to
thWart attacks that may take place during communications
betWeen tWo applications in a Web mashup.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The accompanying draWing ?gures, in conjunction
With the general description given above, and the detailed
description given beloW, serve to illustrate and explain the
principles of the best mode presently contemplated. In the
?gures, the left-mo st digit of a reference number identi?es the
?gure in Which the reference number ?rst appears. In the
draWings, like numerals describe substantially similar fea
tures and components throughout the several vieWs.

Ex. 1013 / Page 8 of 18

US 2010/0180330 A1

[0008] FIG. 1 depicts an illustrative architecture in which
some implementations may be applied.
[0009] FIG. 2A depicts a logical and hardware arrangement
in accordance with the architecture of FIG. 1.
[0010] FIG. 2B depicts a ?owchart of an exemplary process
according to some implementations.
[0011] FIG. 3 depicts a conceptual diagram of web appli
cation access according to some implementations.
[0012] FIG. 4 depicts a ?owchart representing an exem
plary process according to some implementations.
[0013] FIGS. 5A and 5B depict an exemplary implementa
tion applied in a CompoWeb environment.

DETAILED DESCRIPTION

[0014] In the following detailed description, reference is
made to the accompanying drawings which form a part of the
disclosure, and in which are shown by way of illustration, and
not of limitation, exemplary implementations. Further, it
should be noted that while the description provides various
exemplary implementations, as described below and as illus
trated in the drawings, this disclosure is not limited to the
implementations described and illustrated herein, but can
extend to other implementations, as would be known or as
would become known to those skilled in the art. Reference in
the speci?cation to “implementations , this implementa
tion”, “these implementations” or “some implementations”
means that a particular feature, structure, or characteristic
described in connection with the implementations is included
in at least one implementation, and the appearances of these
phrases in various places in the speci?cation are not neces
sarily all referring to the same implementation. Additionally,
in the description, numerous speci?c details are set forth in
order to provide a thorough disclosure. However, it will be
apparent to one of ordinary skill in the art that these speci?c
details may not all be needed in all implementations. In other
circumstances, well-known structures, materials, circuits,
processes and interfaces have not been described in detail,
and/ or may be illustrated in block diagram form, so as to not
unnecessarily obscure the disclosure.
[0015] Terminology used in this document will next be
described and de?ned.
[0016] Web Application: A web application describes the
web content which provides some service and which is able to
be aggregated into one or multiple web mashups. A web
application typically manifests as an HTML document and is
represented by the Document Object Model (DOM). A web
application has its own origin properties, such as domain and
URL (Uniform Resource Locator).
[0017] Web Components: The Web component is used to
describe the container of a web application. A Web compo
nent is an HTML element which makes it possible to embed
a web application inside another web application. A web
component is commonly de?ned by <iframe> and <object>.
In some SCDC schemes, new HTML tags are also used to
de?ne web components, such as <friv> in MashupOS and
<gadget> in CompoWeb. A web application aggregated into
web mashups typically does not have its own name. In such a
case, the web application canbe referenced by the name of the
web component upon which the web application resides. A
web component may load sequentially different web applica
tions which provide different services in the mashup in a
dynamic manner.
[0018] Binary Trust Model: The binary trust model, either
no trust or full trust, is used by today’s WWW standards and

Jul. 15,2010

browsers, governed by the Same Origin Policy (SOP) which
provides that contents from different origins cannot interact
with each other, while contents from the same origin can read
and write each other’s full state without constraints. Two web
contents have the same origin if and only if their domain
names, protocols, and ports are all the same. Since most web
applications are built on the HTTP Protocol with default port
80, the origins of two web contents manifest mainly in their
domains. For easy discussion in this disclosure, origin and
domain are used interchangeably in the rest of this disclosure.
Each browser window, such as an <iframe>, contains a sepa
rate document, and the document is associated with an origin.
Note that scripts enclosed by <script> in a document are
treated as libraries that can be downloaded from different
origins, run as the document’s origin rather than the origins
from which they are downloaded, and therefore always have
full access to the host document. Conventional web mashups
are restricted by SOP, which makes it dif?cult to allow web
components from different origins to perform secure client
side communications. Several schemes have been proposed
to enable more secure cross-domain communications

(SCDC) without modifying the current WWW standards.
Some such schemes use fragment identi?ers to enable cross
domain communications under the current WWW standards.
Typically, a fragment identi?er refers to a resource that is
subordinate to a primary resource. For example, a fragment
identi?er may be appended to the URL of a hypertext docu
ment for identifying a particular portion of that document.
The proposed schemes use fragment identi?ers to verify the
source of a message. The shortcomings of the “fragment
identi?er” proposals include: (1) a web frame needs to
actively and periodically check its URL to receive a message;
(2) the message length is restricted by the maximum URL
length that a browser allows; and (3) the message receiver
cannot identify the message sender, which may be exploited
in an attack. Therefore the “fragment identi?er” proposals are
still far away from a perfect solution.

[0019] Partial Trust Model: Two web applications from
mutually unknown origins should maintain a partial trust
relationship when they interact with each other in a web
mashup. The inventors have determined that a desired envi
ronment for web mashups is: (l) the DOM tree and JavaS
cript® context of each application are isolated from others by
default; and (2) inter-component communications are
secureimalicious components (including a malicious
aggregator) can not affect the integrity and con?dentiality of
the communications between two other components,
although denial-of-service attacks resulting in aborted con
nections could be unavoidable. The partial trust model
demands an access control ?ner than that provided by the
binary trust model. Therefore the binary trust model cannot
support web mashups well, and the partial trust model accord
ing to implementations herein is better able to support web
mashups.
[0020] Secure Cross-Domain Communications (SCDC):
Several proposals have been suggested to enable secure
cross-domain communications. These proposals provide
various mechanisms to support controlled interactions
between web applications in a web mashup, where a con
trolled interaction means: (I) either only pure data is
exchanged by web applications, or only those functionalities
that are explicitly exposed by a web application can be
accessed by other applications; and (2) during an interaction
each communication peer runs its logic in its own context,

Ex. 1013 / Page 9 of 18

US 2010/0180330 A1

therefore its private states and data are protected. At least in a
static Web mashup, the controlled interaction schemes make
aggregated Web applications from different origins able to
collaborate in a secure Way. In HTML5 and MashupOS, each
Web application is able to verify the identity of its communi
cation peer by checking the peer’s origin. The name of the
Web component in Which a Web application resides is used to
reference the Web application in all these SCDC schemes.
[0021] Cross-Web Component Phishing: Phishing is a
common attack in today’s Web. Phishing attacks attempt to
acquire sensitive information such as usemames, passWords,
credit card numbers, or the like by masquerading as a trust
Worthy entity in an electronic communication. Traditional
phishing attacks usually happen betWeen a broWser user and
a malicious Web site. In Web mashups, hoWever, similar
attacks can occur betWeen tWo Web components interacting
With each other. For example, an attacker can try to make a
Web component silently unload a trustWorthy Web application
and then load a malicious one, With the con?dential informa
tion supposed to be received by the unloaded trustWorthy
application intercepted by the loaded malicious application.
In this example, suppose a malicious aggregator M loads a
pair of mutually trusted Web applications A and B, then inter
cepts the secret information supposed to be shared only
betWeenA and B by replacing A With a malicious Web appli
cation N. For instance, B might be a con?dential information
publisher that sends con?dential information periodically to
only the authenticated users. In this attack, A provides its
credentials to B, and after verifying A’s credentials, B peri
odically sends con?dential information to A. If A and B are
loaded by a malicious aggregator M, malicious aggregator M
could instruct A’s HTML frame to load the malicious Web
application N by directly setting A’s location property.
According to current standards and HTML5, B Will not be
noti?ed that A has been replaced by N. As a result, B contin
ues sending con?dential information to A, and the con?den
tial information is in fact received by N. These types of
phishing-like attacks that can take place betWeen Web com
ponents in a Web mashup are referred to as Cross-Web Com
ponent Phishing (CWCP) attacks.
[0022] Static and Dynamic Web Mashups: Web mashup
applications integrate content from multiple other sources on
the WWW to create neW Web experiences. In some imple
mentations, a mashup application accesses third party ser
vices and/ or data independently using anAPI, or the like, for
processing the services and/or data in some Way to add value,
although this disclosure is not limited to any particular type of
mashup application. A static Web mashup is a mashup in
Which child Web components do not load different Web appli
cations or resources at different times. In a dynamic Web
mashup, on the other hand, a Web component may load dif
ferent Web applications or resources at different times for
various reasons.

OvervieW

[0023] Implementations described herein enable each com
munication peer in a Web mashup to decide Whether to pro
vide services to another peer, and to further decide When such
services should be terminated. In some implementations, a
service-providing application in a Web mashup issues an
access ticket to a service-consuming application to specify
functionalities that may be accessed by the service-consum
ing application. Additionally, in some implementations, an
applicationparticipating in the mashup can specify a lifecycle

Jul. 15,2010

that is monitored by a broWser, and communication betWeen
the applications is terminated When the lifecycle of one or
more of the applications expires. In some implementations,
each Web application can explicitly declare its lifecycle to the
Web broWser. In some implementations, each Web application
can explicitly declare its lifecycle speci?cally for an interac
tion With another Web application, and this lifecycle can be
different for interactions With different Web applications. In
some con?gurations, a Web broWser guarantees that interac
tions betWeen tWo Web applications terminate When either
Web application’s lifecycle ends, and the Web broWser may
inform the other Web application that the lifecycle has
expired. In some implementations, an access ticket from the
Web application Which provides the service must be acquired
in order for a Web application to access the service-providing
Web application’s exposed functionalities. In some imple
mentations, a service-providing Web application can specify
its lifecycle for each access ticket it issues, and the lifecycles
for different access tickets can be different. In some imple
mentations, a Web broWser may guarantee that all access
tickets issued by a Web application Would expire When the
expiration condition is met. In some implementations, having
an access ticket alloWs a Web application to access the func
tionalities speci?ed by the access ticket Without any further
checking by the ticket-issuing Web application, resulting in
more e?icient access control than checking for every access,
such as in HTML5. In some implementations, an access ticket
is bound to the ticket requester, and only the requester is able
to use the ticket to access the Web application’s exposed
functionalities. The ticket can neither be transferred to
another Web application, nor generated by the requesting Web
application itself. In some implementations, When a Web
application responds to an access ticket request, the Web
application can select a subset of its oWn exposed function
alities for the requester to access through the acquired access
ticket. Accordingly, implementations are able to provide
access control based on a Web application’s lifecycle and
based on access tickets that identify particular functionalities
of a Web component that another Web component is able to
access using the access ticket, Which can effectively thWart
complex attacks that exploit the dynamic nature of Web com
ponents, such as cross-Web component phishing attacks.
Thus, implementations provide ?ne-grained and ef?cient
access control for Web components.

Exemplary Architecture

[0024] Implementations described herein include a life
cycle declaration and access tickets for e?icient and ?ne
grained access control. FIG. 1 depicts an illustrative architec
ture of a system 100 that may employ the described
techniques. The architecture of FIG. 1 includes one or more
servers 110, With servers 110a-110c being illustrated in this
exemplary implementation. Further, one or more client com
puters 120 may be included, and a netWork 180 may be
provided for enabling communication among servers 110a
1100 and client computers 120. NetWork 180 may be a local
area netWork (LAN), Wide area netWork (WAN), such as the
Internet, or other suitable netWork including Wired and Wire
less netWorks, or any combination thereof. In some imple
mentations, netWork 180 operates using HTTP (Hypertext
Transfer Protocol), although other implementations may use
alternative protocols.
[0025] FIG. 2A illustrates a logical and hardWare arrange
ment of a system 200 corresponding to the implementation of

Ex. 1013 / Page 10 of 18

US 2010/0180330 A1

FIG. 1. In FIG. 2A, each application server 110 includes a
processor 212, a memory 214 and an interface 216 for
enabling communication over network 180. Further, client
computers 120 include a processor 222, a memory 224 and an
interface 226 for enabling communication over network 180.
Memories 214, 224 may include volatile or nonvolatile ran
dom access memory, storage devices, such as disk drives,
solid-state drives, removable storage media, other processor
accessible storage media, or the like. Servers 110 and client
computers 120 may also include a number of additional com
ponents and softWare modules, as knoWn in the art, such as
operating systems, communication modules, displays, user
interfaces, peripherals, and the like, that are not illustrated for
clarity of explanation.
[0026] Each server 110 may include one or more applica
tions 218 stored in memory 214 and executable by processor
212. Further, each client computer 120 may include a Web
broWser 228. In some implementations, applications 218 may
be Web applications that provide a service that can be
accessed by client computers 120 and/or other servers 110.
For example, client computer 120 may use broWser 228 to
access an application C 2180 on server 1100, such as for
displaying a Web page at client computer 120.
[0027] In the illustrated example, application C 2180 on
server 1100 may be a mashup application that provides a
service C 1180 Which uses a service A 11811 provided by
application A 21811 on server 110a and Which also uses a
service B 1181) provided by application B 21819 on server
1101) to provide service C 1180 as a Web mashup 122 to
broWser 228 on client computer 120. During the mashup,
application A and/or application B may exchange informa
tion With each other, With application C, and/or With client
computer 120.
[0028] In this example, the mashup 122 may be considered
static if only applications A and B are used during the
mashup. HoWever, if one of the applications A or B changes
it’s URL, performs a refresh, or performs an action to retrieve
content dynamically from other locations, or if application D
218d, providing a service D 118d, is later included in the
mashup, as illustrated by service C 1180', either in place of
another application, such as application B 218b, or in addition
to another application, then the resulting mashup 122' may be
considered to be a dynamic mashup. For example, the mashup
service C 1180 might initially provide a mashup incorporat
ing servicesA, B and C to client computer 120 as mashup 122.
At a later point in time, the mashup service C 1180' might
provide a mashup 122' incorporating services D, A and C to
client computer 120. Thus, in this example, Application C on
server C 1100 can be considered as an aggregator or a con

tainer application, While application A 21811, application B
21819 and application D 218d can be considered as children of
aggregator C. These applications can be service providers or
service consumers. Further, While FIGS. 1 and 2 describe an
example of a mashup in the context of a client-side architec
ture, it should be noted that other implementations are not
limited to these particular implementations, but also encom
pass other types of mashups and the provision of integrated
Web services. Mashups can themselves be incorporated into
other mashups or services.
[0029] A feature that can be exploited by a CWCP attack is
that a Web application is usually referred to by the name of the
Web component upon Which the Web application resides. This
method can typically provide security in the case of static Web
mashups Where a Web component is associated With only one

Jul. 15,2010

Web application. HoWever, in a dynamic Web mashup, a Web
component may be associated sequentially With several Web
applications. A Web component may load different Web appli
cations at different times for various reasons, such as page
navigation or script execution. When a Web application is
acting as an aggregator or even as a child Web application, the
Web application may unload an old Web application and then
load a neW Web application in the same Web component, and
if the communication peers of the old Web application fail to
be aWare of the change in the Web component of the old Web
application, then these peers may continue to send messages
to the same Web component Which is noW associated With the
neWly loaded Web application, and possibly be exploited by
malicious users to perform phishing or eavesdropping
attacks. Using the origin to identify a Web application may not
be suitable, as Was pointed out above.
[0030] Implementations described herein use a lifecycle
declaration and monitoring, and/ or access tickets for securing
dynamic mashups. Thus, each Web application may be able to
declare its oWn lifecycle, and the lifecycle of each Web appli
cation may be monitored by the broWser to notify the other
Web applications that are communication peers of the Web
application Whose lifecycle has expired. This lifecycle can be
global, i.e., all the services a Web application provides to other
Web applications terminate When the expiration condition is
met; or the lifecycle canbe individual, i.e., the lifecycle can be
speci?ed for a service to a speci?c Web application, and
services to different Web services may expire at different
times. When the expiration condition is met, the broWser
noti?es the affected Web applications. These applications Will
thereby be made aWare of the expiration of the interactions.
Also, mechanisms may be incorporated to ensure that the
interaction betWeen tWo Web applications is automatically
terminated if either of the tWo Web applications expires. Fur
ther, implementations herein provide for an ef?cient access
control scheme in Which access tickets must be acquired in
order to access a Web component’s exposed functionalities,
thereby enabling each peer to decide Whether to provide
services to another peer based on the identity of the peer, and
to also decide Which particular functionalities Will be pro
vided as the services. Only the exposed functionalities con
tained in the access ticket can be accessed by the ticket holder.
An expiration condition speci?c for the access ticket can be
speci?ed by the issuing Web application, and this expiration
condition can be different from that for another access ticket
the Web application issues.

Lifecycle Declaration

[0031] The lifecycle of a particular Web application, When
used in a Web mashup, may be de?ned as the time span during
Which the Web application provides a constant set of func
tionalities.A Web application is said to have expired When the
Web application’s lifecycle ends, e.g., the Web application is
no longer providing the constant set of functionalities. In
addition to this global lifecycle for a Web application, i.e., all
the services it provides to other Web applications terminate
When the service providing Web application’s lifecycle ends,
a Web application can also specify its lifecycle for the service
it provides for a speci?c Web application. In the latter case, a
Web application has different lifecycles for different services
it provides to different Web applications.
[0032] As discussed above, it is not reliable to determine
Whether a Web application’s lifecycle has expired by merely
checking Whether the origin of the Web application has

Ex. 1013 / Page 11 of 18

US 2010/0180330 A1

changed. Due to the dynamic nature of some mashups and the
WWW, a Web application may expire for many reasons.
There is no simple and universal rule that can be relied on to
automatically detect the expiration of a Web application.
However, the inventors have identi?ed that Web application
lifecycles can be classi?ed into a feW major lifecycle patterns,
and a Web application developer should be able to explicitly
declare the lifecycle pattern of a particular application, Which
Would tell a broWser hoW to decide if the particular Web
application has expired or not.
[0033] From the client-side point of vieW, the inventors
have identi?ed three instances or rules by Which it may be
determined that a Web application’s lifecycle is complete, as
folloWs:
[0034] (l) Page Location Rule (i.e., navigating to another
URL): In the WWW, the URL is used to globally identify a
resource. A complete URL can take the folloWing form:
[003 5] “protocol ://domain/path#fragment_identi?er?qu
ery_strings”,
Where “fragment_identi?er” represents or speci?es a frag
ment or particular portion of a Web page maintained at the
URL, and “query_strings” contain a set of parameters used to
express a query to the Web page. All these parts in a URL
except the fragment identi?er are able to affect a Web appli
cation’s lifecycle, i.e., modi?cation to any parts in a URL
other than the fragment identi?er can be used to conclude that
a lifecycle of a Web application has expired. Modi?cation of
just the fragment identi?er, hoWever, is not necessarily an
accurate indication that a lifecycle has expired because
another portion or fragment of the same Web page may be
referred to Without indicating expiration.
[0036] (2) Page Refresh Rule: A Web server may retrieve
different content When a Web page is refreshed. Therefore a
page refresh could result in expiration of a Web application,
and can be used as an indicator that a lifecycle has expired.

[0037] (3) Script Running Rule: JavaScript® is poWerful
enough to de?ne neW logic and modify a page through the
HTML DOM API. In addition, many of today’s Web applica
tions use AJAX (Asynchronous J avaScript® and XML) tech
nology to retrieve content dynamically from remote servers
Without refreshing or navigating aWay from the Web page.
Accordingly, the running of script, such as JavaScript®,
AJAX, or the like can be used to indicate that a lifecycle has
expired.
[0038] In implementations described herein, a Web appli
cation developer can use one or more of the above three types
of rules to declare the lifecycle of a Web application. The page
location rule helps check Whether the page URL of a Web
application folloWs a speci?ed pattern or Whether any part of
the page URL has changed. The page refresh rule helps check
Whether the particular application page has been refreshed.
The script running rule helps check Whether a certain script
function has been executed in the application’s context.
[0039] In some implementations, by describing the life
cycle of a Web application using these three types of rules or
patterns, Web developers are able to specify the lifecycle of a
Web application Written With various server-side technolo
gies. In some implementations, the lifecycle can be speci?ed
in XML. For example, assume that service A 11811 is a static
page With URL “http://somesite/getapp?id:l00”, Where
“static page” means that the content of the page does not
change unless it is navigated to another URL. Then, A’s
author can use the folloWing to describe A’s lifecycle: The
page URL is http://somesite/getapp, and the value of the page

Jul. 15,2010

parameter named “id” does change. An example of corre
sponding XML for declaring the lifecycle might be as fol
loWs:

<lifecycle Declaration >
<condition type=“inUrl” arg=“http://somesite/getapp” />
<condition type="pagePararneterUnchanged” arg=“id” />
</lifecycle Declaration >

[0040] As another example, suppose that service B 11819 is
a Web page that can doWnload neW content using Ajax tech
nology and replaces the original content Without refreshing or
navigating from the page. In this situation, the page author
can de?ne a void script function, having a name such as

“onLoadNeWContent”, and call the function every time that
the page’s content has changed. Then B’s author can describe
B’s lifecycle as folloWs: the script function named “onLoad
NeWContent” is not executed, and an example of the corre
sponding XML might be as folloWs:

<lifecycleDeclaration >
<condition type=“u_ntilScript” arg=“onLoadNeWContent” />
</lifecycleDeclaration >

[0041] Similar script might be used to declare a lifecycle
that terminates When a page is refreshed. Thus, in comparison
With previous methods of declaring an application’s domain,
the implementations set forth herein provide for a lifecycle
declaration that may be provided by a Web application When
the Web application is engaged in a mashup. The lifecycle
declaration enables a broWser to monitor the lifecycles of Web
applications much more precisely, and terminate a particular
application’s access privileges When a life cycle has been
determined to have ended, as judged using the rules set forth
above. Further, While examples of lifecycle declarations have
been set forth in XML format, other suitable formats and
structures for lifecycle declarations may also be used in other
implementations.
[0042] In some implementations, as illustrated in FIGS. 1
and 2A, each Web application, such as Web applications A, B
and D, 21811, 21819 and 218d, respectively, may be coded to
provide a lifecycle declaration 132a, 1321) and 132d, respec
tively, that sets forth a lifecycle according to one or more of
the three rules discussed above during the initial identi?cation
process. These lifecycle declarations 132a, 132b, 132d may
be received by the broWser 228 at client computer 120 and
monitored by broWser 228. In some implementations,
broWser 228 can be con?gured to terminate a particular appli
cation’s access privileges When a lifecycle of the application
has been determined to have ended. Further, When a Web
application is dynamically added, such as When service D is
added to mashup 122', the lifecycle declaration 132d for the
corresponding application D 218d can also be monitored by
broWser 228.

[0043] A Web application can also declare its lifecycle for
an interaction With a speci?c Web application in a similar
manner at the time the interaction is established. This life
cycle can be different for interactions With different Web
applications. The broWser 228 Will monitor the lifecycle for

Ex. 1013 / Page 12 of 18

US 2010/0180330 A1

this speci?c interaction and noti?es the affected party When
the lifecycle of either one of the tWo parties in the interaction
ends.
[0044] FIG. 2B sets forth a ?owchart 201 of an exemplary
process that may be carried out in light of the implementa
tions of FIGS. 1 and 2A. In some implementations, the pro
cess is carried out by the broWser 228 receiving the Web
mashup 122. The process may involve the Web application
aggregating the Web mashup, e.g., application C 2180, and the
applications 218a, 218b, 218d aggregated into the Web
mashup.
[0045] Step 202: A ?rst application providing a service and
a second application consuming the service are aggregated
into a Web mashup in Which the ?rst application and the
second application should have secure communications
betWeen each other, such as for guarding against CWCP
attacks or other security concerns.
[0046] Step 203: One or both of the ?rst application and the
second application makes a lifecycle declaration setting forth
a lifecycle during Which communications betWeen the ?rst
application and the second application may be considered to
be secure. In some implementations, only one application
might make a lifecycle declaration, While in other implemen
tations, both applications may make a lifecycle declaration,
depending on the nature of the communications betWeen the
applications and Which of the applications might be disclos
ing con?dential information or otherWise be vulnerable to
attack.
[0047] Step 204: The condition of the application(s) that
provided the lifecycle declaration is monitored While com
munications betWeen the applications are carried out. In some
implementations, the broWser 228 on the client side may
monitor the lifecycle of each of the applications that made the
lifecycle declaration.
[0048] Step 205: When the lifecycle of an application that
made a lifecycle declaration is determined to have reached an
endpoint, the communications privilege betWeen the applica
tions may be terminated. Thus, When conditions indicate the
end of the lifecycle of one of the applications based on the
corresponding lifecycle declaration made by that application,
then the communications betWeen the applications are no
longer considered to be secure. In some implementations, the
broWser may notify the other application that lifecycle has
ended and the communications are no longer secure.

[0049] A Web application can be a service provider as Well
as a service consumer. For example, the second application in
FIG. 2B can provide a second service for the ?rst Web appli
cation to consume While also consuming the ?rst service
provided by the ?rst Web application. In this case, the com
munication that the ?rst Web application provides the ?rst
service to the second Web application is considered separated
from the communication that the ?rst Web application con
sumes the second service provided by the second Web appli
cation.

Access Tickets

[0050] Implementations provide for the use of “access tick
ets” to describe the accessibility to functionalities exposed by
a Web application. An access ticket must be acquired from a
?rst Web application Which provides a service before a second
Web application can access the service provided by the ?rst
Web application. An access ticket may be granted by the ?rst
application to the second application to access all the func
tionalities exposed by the ?rst application, or the access ticket

Jul. 15,2010

granted to the second application may enable the second
application to access to only particularly speci?ed one or
more functionalities out of a total number of exposed func
tionalities of the ?rst application. In some implementations,
the access tickets are implemented in conjunction With the
lifecycle declarations discussed above. A Web application can
declare its lifecycle globally for all the access tickets that it
issues or speci?cally for a speci?c access ticket that it issues.
In the latter case, different access tickets that a service pro
viding Web application issues may have different conditions
by Which its lifecycle ends for different access tickets, i.e.,
different Web applications. In some implementations, the
ticket requester may not need to declare or use its lifecycle
since the requester can simply destroy or not use the ticket
When its lifecycle for a speci?c communication With a service
provider ends. As described further beloW, an access ticket
cannot be transferred from one Web application to another or
generated by a requesting Web application. An access ticket
can only be generated by a service providing Web application
for other Web applications to access its service. In other
implementations, the lifecycle declarations and the access
tickets are implemented independently of each other.
[0051] In an exemplary implementation, as illustrated in
FIG. 3, a Web mashup consists of a plurality of Web compo
nents 310. Each Web component 310 is capable of containing
one or more Web applications 318 having one or more func
tionalities 340 such as methods, properties, and/or events that
are exposed for access by other Web applications 318, With
each Web component 310 typically only containing one Web
application at a time, but possibly containing different Web
applications at different times. For example, as illustrated in
FIG. 3, Web component 310a includes a Web application 318a
having a plurality of functionalities 34011 that are explicitly
exposed for interaction With other Web components. Web
application 31811 is able to determine Which of these func
tionalities 340a may be accessed by Which other Web appli
cations 310b-310d by requiring the other Web applications
310b-310d Wishing to access the functionalities 34011 of Web
application 31811 to ?rst obtain an access ticket 350 and use
this access ticket 350 to access the functionalities 340. Simi
larly, some or all of the other Web applications 318b-318d
may also have exposed functionalities 340b-340d, respec
tively, that may be accessed by the other Web applications
318, and, in some implementations, may also serve as service
providers instead of or in addition to being service consum
ers.

[0052] In some implementations, an access ticket is a native
obj ect created by a broWser. A native object is an object Whose
internal logic and status are protected by a broWser from
being accessed by JavaScript® used in Web applications.
Modern broWsers provide mechanisms to alloW a native
object to expose some of its functionalities to JavaScript® to
access and manipulate. For example, Internet Explorer® sup
ports interoperations betWeen JavaScript® objects and COM
(Component Object Model) objects, and Mozilla@ provides
an XPConnect (Cross-Platform Connect) mechanism to
enable interoperations betWeen JavaScript® objects and
XPCOM (Cross-Platform Component Object Model)
objects. Some functionalities of a native object may not be
accessed or manipulated by JavaScript®. For example, Java
Script® cannot directly create a host object (for example by
using the “neW” keyWord to create an object). In implemen
tations herein, copying an access ticket by the service con
sumer holding the access ticket is disabled by the broWser.

Ex. 1013 / Page 13 of 18

US 2010/0180330 A1

Since JavaScript® cannot create a native object directly,
When a ?rst Web application issues an access ticket to a
service requester, the ?rst application passes parameters to
the broWser to create a native object as the access ticket for
other Web applications to access the exposed functionalities
of the ?rst Web application. The ?rst Web application can ask
the broWser to create access tickets for other applications to
access the exposed functionalities of the ?rst Web application.
HoWever, the ?rst Web application cannot let the broWser
create an access ticket to access other Web application’s
exposed functionalities. In creating an access ticket, a Web
application can optionally specify its lifecycle speci?cally for
the ticket and pass the information to the broWser via the API.
OtherWise, the global lifecycle declared by the Web applica
tion is also used for the access ticket.

[0053] When an exposed functionality is alloWed to be
accessed via an access ticket, the functionality is referenced
in the native object of the access ticket, and broWser supports
that this referenced functionality can be accessed and
manipulated by JavaScript®. The ticket holding Web appli
cation can invoke With JavaScript® the referenced function
ality via the native object of the access ticket. The access
ticket Will then delegate the invocation to the service provid
ing Web application. Only those functionalities referenced in
the access ticket can be accessed by the ticket holder. Those
functionalities not referenced in the access ticket cannot be
accessed by the ticket holder. In this Way, the ticket issuing
Web application can select Which exposed functionalities are
able to be accessed by a service consumer. If a ?rst Web
application, as a service consumer, has a valid access ticket
and that ticket references a functionality of a second Web
application that issued the access ticket as a service provider,
then the ?rst Web application can access that functionality of
the second Web application; otherWise if the ?rst Web appli
cation does not have a valid access ticket for accessing ser
vices of the second application, or if the ?rst application does
not have an access ticket that enables access to the particular
functionality, then the ?rst Web application cannot access the
particular functionality of the second application. In this Way,
the service providing Web application does not check Whether
or not a service consuming Web application has the right to
access its exposed functionalities When the exposed function
alities are accessed. This implementation is very different
from HTML5 in Which the origin has to be checked every
time a message is communicated. Thus, the implementations
herein providing access via an access ticket are much more
e?icient.

[0054] For example, Web components 310a-310d may be
servers in some implementations, such as servers 110 con

nected via netWork 180, as discussed above With respect to
FIGS. 1 and 2A. For example, in some implementations of the
architecture of FIGS. 1 and 2A, application A 21811 may
correspond to service provider Web application 318a and
application B 2181) may correspond to service consumer Web
application 3181). Thus, When mashup 122 is initialiZed, com
munication may be established and secured betWeen applica
tionA 218a and application B 2181) according the techniques
described With reference to FIGS. 3-4. Further, in some
implementations, some of Web components 310 may be on
the same servers, computers, access devices, or the like, or
some or all of Web components 310 may be on different such
devices.

[0055] In implementations of the ticket-based communica
tion technique described herein, Web applications 318 are not

Jul. 15,2010

alloWed to directly access each other’s exposed functional
ities 340. Instead, as illustrated in FIG. 4, interaction ?oW
betWeen tWo Web applications 318 may use the exemplary
steps set forth beloW and as depicted in ?owchart 401. Fur
thermore, FIG. 4 also includes implementations Which com
prise the lifecycle declarations discussed above.
[0056] Step 402: A service provider, e.g., Web application
318a, receives a request for an access ticket from a service
consumer, e.g., Web application 318b, and the service pro
vider and/ or service consumer provide lifecycle declarations
to the broWser, as discussed above.
[0057] Step 404: The service provider, e.g., Web applica
tion 318a, veri?es the identity of service consumer 31819. This
is carried out by verifying the origin, the GUID (Globally
Unique Identi?er), the URL of the service consumer 31819 or
the authentication credentials provided by the service con
sumer 318b.

[0058] Step 406: The service provider, Web application
318a, then decides Whether to grant an access ticket or not.
Access control rules may be consulted by Web application
31811 for determining Whether a particular service consumer
318b-318d should have access to particular functionalities
340a. These access control rules may be tailored for each
service provider and for speci?c service consumers.
[0059] Step 408: If the identity of the service consumer
cannot be suf?ciently veri?ed, or if the service provider deter
mines not to grant the access request for some other reason,
then the access request is denied.
[0060] Step 410: If a ticket is granted, the service provider
can determine and specify in the ticket Which of its supported
functionalities Will be able to be accessed by the service
consumer using the access ticket. When the service provider
application issues an access ticket to a service consumer/
requester, the service provider passes parameters to the
broWser to create a native object as the access ticket for
enabling the service consumer to access the exposed func
tionalities of the service provider. Thus, in these implemen
tations, the access ticket is created by the broWser, and acts in
proxy betWeen the service consumer and service provider for
alloWing the service consumer to access the particular func
tionalities of the service provider granted by the service pro
vider.
[0061] Step 412: The access ticket specifying the particular
functionalities on the service provider that are permitted to be
accessed is sent to the service consumer that requested the
ticket. In some implementations, an access ticket is a native
object in the broWser’s execution context on the client com
puter. The exposed functionalities that are alloWed to be
accessed by the service consumer are speci?ed in the access
ticket, Which can, for example, be accessed by JavaScript®
With support of the broWser of the client computer.
[0062] Step 414: Through a granted ticket, the service con
sumer is able to access the speci?ed accessible functionalities
provided by the service provider. In some implementations,
the speci?ed access functionalities are referenced function
alities in the access ticket. In this case, the service consumer
accesses a speci?ed accessible functionality in the access
ticket by invoking the access ticket’s referenced functionality,
and the access ticket then delegates the invocation to the
service providing Web application. Only the speci?ed func
tionalities canbe accessed. Those exposed functionalities that
are not speci?ed in the access ticket cannot be invoked, i.e.,
accessed. Since an access ticket is a native object that cannot
be created directly or copied by JavaScript®, a Web applica

Ex. 1013 / Page 14 of 18

US 2010/0180330 A1

tion cannot pass its access ticket to another Web application,
or create a valid access ticket to access another Web applica
tion’s exposed functionalities.
[0063] Step 416: In general, When the service provider
receives a request for access to one or more exposed func

tionalities, the service provider checks that such an access is
alloWed as speci?ed in a valid access ticket included in the
request. In some implementations, such a checking and trans
ferring of an access ticket When accessing to one or more
exposed functionalities are not needed, resulting in more
ef?cient access. This is done by using a native object as an
access ticket, and the alloWed exposed functionalities are
referenced in the tickets that can be invoked by JavaScript®.
When an exposed functionality in the access ticket is invoked
by the service consumer, the access ticket delegates the invo
cation to the access-ticket-issuing service provider, Which
then executes its corresponding logic in the service provider’s
context to provide a service to the invoker (i.e., the service
consumer). The execution result is then delegated back to the
service consumer via the access ticket. Note that an access
ticket is a native object and only those functionalities refer
enced in the access ticket can be invoked, i.e., accessed. Those
exposed functionalities that are not referenced in the access
ticket cannot be invoked, i.e., accessed. This invoking
approach does not require a service provider to check if a Web
application has the right to access its exposed functionality or
functionalities. If the requested one or more functionalities
are speci?ed, i.e., referenced, in the access ticket included
With the request, then the service provider alloWs the service
consumer access to the one or more functionalities.

[0064] Step 418: The conditions of the service provider
and/or the service consumer may be monitored by the
broWser. The access ticket may be automatically expired
When any one of the associated communication pair (i.e., the
service provider and/or the service consumer) reaches the end
of its lifecycle. In implementations including the lifecycle
declarations 132, the access ticket expires When the lifecycle
of the service provider expires or When the lifecycle of the
service consumer expires. Further, as discussed above, a par
ticular lifecycle declaration may be applied to a particular
access ticket. For example, the service provider may provide
a ?rst lifecycle declaration for the functionality speci?ed in a
?rst access ticket, but may also have a global lifecycle decla
ration based upon a different lifecycle. Other methods for
determining expiration of the communication pair may also
be implemented so that the access ticket may automatically
expire as soon as either peer in the relationship expires.

[0065] The access ticket mechanism provides the folloWing
advantages in terms of security and convenience. (1) Since a
Web application alWays accesses functionalities of another
application through an access ticket, and the access ticket
expires at the end of the lifecycle of the service provider, a
service consumer never sends any message to an incorrect
service provider. Therefore the service consumer is protected
from CWCP attacks. (2) Further, because an access ticket is a
native object that cannot be created directly or copied by
JavaScript®, an access ticket cannot be used by any Web
application other than the ticket requester. Therefore, the
service provider, i.e., the ticket granter, can ensure that every
service consumer has to acquire a ticket before invoking any
of the service provider’s functionalities. Accordingly, the ser
vice provider is also protected from CWCP attacks. (3) Addi
tionally, for each access ticket, the access control logic is
executed only once When the service provider handles the

Jul. 15,2010

ticket request. Since only the granted functionalities of the
service provider are able to be accessed through the access
ticket, checking of access rights is not needed in later rounds
of interaction betWeen the service provider and the service
consumer. Accordingly, it may be seen that the foregoing
provides a very ef?cient access control scheme.

Implementations Applied to SCDC Schemes

[0066] Implementations of the defensive mechanisms
described above may be applied to the proposed SCDC
schemes discussed previously, such as CompoWeb, HTML5
and MashupOS. For instance, CompoWeb adopts a compo
nent-oriented Web architecture to build Web mashups, and
includes several unique features. For example, Web applica
tions may be isolated by default even if they come from the
same domain. Therefore, implementations of the defense
mechanisms disclosed herein, When implemented With Com
poWeb, are not affected by SOP, Which grants fully accessi
bility betWeen applications from the same domain. Further
more, in CompoWeb, each Web application can expose a set
of APIs in the form of member methods, properties and
events. These structured APIs can be furthermore grouped by
publicly declared interfaces. Accordingly, the access control
implementations disclosed herein can be easily integrated
With the granularity of publicly declared interfaces.
[0067] In CompoWeb, a Web component called a “gadget”
is able to invoke another gadget in the same manner as if
invoking a normal JavaScript® object, i.e., through the latter
gadget’s exposed member properties, methods, and events.
CompoWeb alloWs a developer to declare an abstraction of
contract-based channels (i.e., gadget interfaces). A gadget
could choose to implement multiple interfaces by implement
ing the functionalities de?ned in the interface speci?cation
?les. Thus, a gadget can be considered a specialiZed service
provided by a Web application, and some gadgets provide
mashup type functionality by incorporating into themselves
other gadgets, information, or other services provided by
other Web applications.
[0068] FIG. 5A illustrates an example gadget 510 named
“News Gadget”, Which periodically fetches and displays the
recent neWs from other sources, such as from other Web
applications. This neWs gadget 510 has implemented tWo
interfaces 542, 544, named “IReader” and “IWriter” respec
tively, Where “IReader” abstracts the logic of fetching neWs
data from remote other gadgets or applications on other serv
ers, and “IWriter” abstracts the logic of outputting the gath
ered neWs, such as to the end user’s computer.
[0069] The folloWing is an example of script that may be
used to invoke anAPI named “ReadAll” exposed by the neWs
gadget:

[0070] var allNeWs:neWsGadgetId.ReadAll();
Where “neWsGadgetId” is the name of the gadget and “Read
All” is the API. Like an HTML WindoW in HTML5, a gadget
in CompoWeb can load different Web applications dynami
cally at different times. CompoWeb also may use the name of
the Web component to reference a Web application. As a
result, CompoWeb is also vulnerable to CWCP attacks like
other SCDC schemes.
[0071] As illustrated in FIG. 5B, several modi?cations may
be made to the CompoWeb communication model based on
implementations described herein. First, a Web application
developer can specify the lifecycle and the access control
rules for each Web application and gadget. The lifecycle dec
laration for each Web application can be de?ned in XML

Ex. 1013 / Page 15 of 18

US 2010/0180330 A1

format, as described above, or in other suitable format. The
access control rules can also be de?ned in XML. Each access
control rule speci?es What kind of functionalities can be
exposed to What kind of communication peers. For instance,
it is possible to specify the access control of “granting full
access” to those gadgets from the self domain (Which Will be
referred to as “self.com” in this example) and granting inter
face IReader 542 access to those gadgets from other domains.
The folloWing is an example of XML script Which may be
used for specifying such access control:

<AccessControlRules>
<add origin=“selfcom” grantedInterfaces=“*” />
<add origin=
“*”grantedlnterfaces=“http ://gadgetInterfaces.com/IReader.xml;” />
</AccessControlRules>

[0072] In some implementations herein, instead of directly
invoking the neWs gadget, a Web application has to acquire an
access ticket from the neWs gadget 510 by using the one of the
gadget’s member methods, Which is named “RetrieveTicket”
in this example. The “RetrieveTicket” is a pre-de?ned mem
ber method added to every Web gadget in CompoWeb by our
proposal. Thus, as illustrated in FIG. 5B, retrieve access ticket
policy & expiration policy 520 is applied to gadget 510. As
described above With respect to the exemplary process of
FIG. 4, the gadget checks the caller’s identity against the
speci?ed access control rules and returns an access ticket
object 550 to the caller.

[0073] For instance, in the illustrated example of FIG. 5B,
neWs gadget 510 receives a request for an access ticket 550
from a Web application that requests access to the IReader
functionality 542. After verifying the identity of the ticket
requester, as discussed above With respect to the process of
FIG. 4, neWs gadget 510 determines Whether to grant access
to this functionality for this requester. Access control rules
may be consulted by neWs gadget 510 for determining
Whether a particular requester should have access to particu
lar functionalities. These access control rules may be tailored
for each application and speci?c access requesters. If access
is granted, then a ticket 550 is returned to requester for use
When accessing the IReader functionality 542. Lifecycle dec
larations may also be provided and used in these implemen
tations to determine When the access ticket 550 expires.
Through this access ticket object 550, a Web application as a
service consumer is able to access the permitted functional
ities exposed by the neWs gadget 510 and granted by the
access control rules. The ticket object may expire When the
neWs gadget expires. In implementations With a lifecycle
declaration from the neW gadget, the expiration condition of
the neWs gadget is speci?ed by the lifecycle declaration, such
as through a lifecycle declaration XML ?le. An exemplary
script to access neWs gadget 510 may be as folloWs:

var ticket = neWsGadgetId.RetrieveTicket();

if (ticket.IsActive) {
var allNeWs = ticket.readAll();

ticket.onExpired = //respond the ticket expiration event

Jul. 15,2010

[0074] Additionally, in those SCDC schemes Which still
partially adopt the SOP, such as HTML5 and MashupOS, Web
applications from the same domain are mutually fully trusted,
Which can enable some of the implementations disclosed
herein to be bypassed. Accordingly, implementations dis
closed above, in the case of SOP, are arranged so that each
Web application is placed in a different domain so that there
no fully trusted relationship exists betWeen any tWo Web
components.
[0075] From the foregoing, it Will be apparent that imple
mentations disclosed herein provide defense mechanisms to
address the vulnerabilities caused by dynamic Web mashups.
Some implementations provide for defense mechanisms that
enable a Web application developer to explicitly specify the
lifecycle of a Web application through a lifecycle declaration,
so that a broWser can automatically monitor the lifecycle of
the Web application by detecting changes that take place With
respect to Web applications in dynamic Web mashups, and
then respond accordingly. Some implementations provide for
defense mechanisms that enforce accessibility to a Web appli
cation through the use of access tickets. An access ticket has
to be acquired before accessing a Web application’s exposed
functionalities. A ?rst Web application can select a subset of
exposed functionalities to grant access rights to another Web
application. Only the exposed functionalities speci?ed in the
access ticket canbe accessed, and the access ticket is bound to
the ticket requester/holder and cannot be transferred to other
Web applications.
[0076] Implementations also relate to a system and appa
ratus for performing the operations described herein. This
system and apparatus may be specially constructed for the
required purposes, or may include one or more general-pur
pose computers selectively activated or recon?gured by one
or more programs When the program instructions are

executed. Such programs may be stored in one or more pro
cessor-readable storage mediums as instructions executed by
one or more processors to perform steps of the implementa
tions described herein. The one or more processor-readable

storage mediums may include, but are not limited to, optical
disks, magnetic disks, read-only memories, random access
memories, solid-state devices and drives, or any other type of
medium suitable for storing electronic information, and may
be located at a location remote from the one or more proces
sors executing the one or more programs.

[0077] Some implementations are described in the context
of computer-executable instructions, such as program mod
ules, and executed by one or more computers or other pro
cessing devices. Generally, program modules include rou
tines, programs, objects, components, data structures, and the
like, that perform particular tasks or implement particular
functions. Typically the functionality of the program modules
may be combined or distributed as desired in various imple
mentations. In addition, implementations are not necessarily
described With reference to any particular programming lan
guage. It Will be appreciated that a variety of programming
languages may be used to implement the teachings described
herein. Further, it should be noted that the system con?gura
tions illustrated in FIGS. 1 and 2A are purely exemplary of
systems in Which the implementations may be provided, and
the implementations are not limited to a particular hardWare
con?guration. In the description, numerous details are set
forth for purposes of explanation in order to provide a thor

Ex. 1013 / Page 16 of 18

US 2010/0180330 A1

ough understanding of the disclosure. However, it Will be
apparent to one skilled in the art that not all of these speci?c
details are required.
[0078] Although the subject matter has been described in
language speci?c to structural features and/or methodologi
cal acts, it is to be understood that the subject matter de?ned
in the appended claims is not limited to the speci?c features or
acts described above. Rather, the speci?c features and acts
described above are disclosed as example forms of imple
menting the claims.Additionally, those of ordinary skill in the
art appreciate that any arrangement that is calculated to
achieve the same purpose may be substituted for the speci?c
implementations disclosed. This disclosure is intended to
cover any and all adaptations or variations of the disclosed
implementations, and it is to be understood that the terms
used in the folloWing claims should not be construed to limit
this patent to the speci?c implementations disclosed in the
speci?cation. Rather, the scope of this patent is to be deter
mined entirely by the folloWing claims, along With the full
range of equivalents to Which such claims are entitled.

1. A computer-implemented method implemented by one
or more processors executing processor-executable instruc
tions stored in one or more processor-accessible mediums,
and carried out for securing communications in a Web
mashup, the method comprising:

receiving an access ticket request from a service consumer,
said access ticket request for receiving permission for
accessing one or more functionalities of a service pro

vider;
verifying an identity of the service consumer;
issuing an access ticket that speci?es one or more function

alities of the service provider that the service consumer
is permitted to access; and

providing access to the one or more functionalities speci
?ed in the access ticket to the service consumer.

2. The method according to claim 1, further comprising:
checking the access ticket for determining the functional

ities that the service consumer is permitted to access
prior to granting the access request.

3. The method according to claim 1, further comprising:
monitoring conditions of the service provider and/or ser

vice consumer; and
expiring the access ticket When the monitored conditions

indicate that at least one of the service provider and
service consumer is expired.

4. The method according to claim 1, further comprising:
providing a lifecycle declaration by at least one of the

service consumer and the service provider; and
expiring the access ticket When a lifecycle of at least one of

the service consumer and the service provider expires
based on the lifecycle declaration.

5. The method according to claim 4, Wherein providing the
lifecycle declaration comprises that the lifecycle expires upon
the occurrence of an event selected from a group comprising:

the service provider or the service consumer making the
lifecycle declaration navigates to a different uniform
resource locator;

the service provider or the service consumer making the
lifecycle declaration carries out a page refresh; or

the service provider or the service consumer making the
lifecycle declaration runs script able to retrieve content
dynamically.

Jul. 15,2010

6. The method according to claim 4, further comprising:
providing a ticket lifecycle declaration by the service pro

vider, Wherein the ticket lifecycle declaration speci?es a
ticket lifecycle different from a global lifecycle speci?ed
in a global lifecycle declaration provided by the service
provider; and

expiring the ticket When either the ticket lifecycle or the
global lifecycle expires.

7. The method according to claim 1, further comprising:
the access ticket is a native object and the accessible func

tionalities speci?ed by the access ticket are referenced in
the native object.

8. The method according to claim 7, further comprising:
creating the access ticket by a broWser upon the request by

the service provider,
Wherein the service provider can only let a broWser gener

ate access tickets for specifying functionalities of the
service provider that can be accessed by service con
sumers, and cannot let a broWser generate access tickets
to access the other functionalities of the service provider
or the functionalities of other Web applications.

9. The method according to claim 7, further comprising:
invoking, by the service consumer, one of the functional

ities speci?ed in the access ticket to access the function
ality;

checking by the broWser Whether the invoked functionality
is speci?ed by the access ticket;

delegating the invocation to the service provider, Wherein
the service provider does not need to check if the service
consumer has permission to access the invoked func
tionality.

10. The method according to claim 1, further comprising:
providing a ?rst Web application as the service provider

and a second Web application as the service consumer,
said ?rst Web application running on a ?rst server and
said second Web application running on a second server.

11. One or more processor-accessible storage mediums
containing processor-executable instructions implemented
by one or more processors for carrying out the method of
claim 1.

12. A system for securing communications in a Web
mashup, the system comprising:

a processor;

a memory coupled to the processor,
Wherein the processor is con?gured to receive a lifecycle

declaration provided by one of a ?rst application or a
second application for securing communications
betWeen the ?rst application and the second application,

Wherein the ?rst application provides a service and the
second application consumes the service in the Web
mashup, and

Wherein the processor is con?gured to monitor the ?rst
application or second application Which provided the
lifecycle declaration, and terminate communication
betWeen the ?rst application and the second application
When a lifecycle of the ?rst application or the second
application has expired, as determined from the lifecycle
declaration.

13. The system according to claim 12,
Wherein the lifecycle declaration comprises that the life

cycle expires When the ?rst application or second appli
cation Which provided the lifecycle declaration navi
gates to a different uniform resource locator.

Ex. 1013 / Page 17 of 18

US 2010/0180330 A1

14. The system according to claim 12,
wherein the lifecycle declaration comprises that the life

cycle expires When the ?rst application or second appli
cation Which provided the lifecycle declaration carries
out a page refresh.

15. The system according to claim 12,
Wherein the lifecycle declaration comprises that the life

cycle expires When the ?rst application or second appli
cation Which provided the lifecycle declaration runs
script able to retrieve content dynamically.

16. The system according to claim 12, further comprising:
a computer comprising the processor including a Web

broWser executed by the processor;
Wherein the Web broWser is con?gured to monitor condi

tions of the ?rst application or second application Which
provided the lifecycle declaration to determine When the
lifecycle expires; and

Wherein the Web broWser is con?gured to notify the ?rst
application or the second application When the lifecycle
of the other of the ?rst application or the second appli
cation expires to provide noti?cation that communica
tions betWeen the ?rst application and the second appli
cation terminate.

17. The system according to claim 12,
Wherein the processor is further con?gured to issue an

access ticket issued by the ?rst application to the second
application, and

Wherein the processor is con?gured to refer to the access
ticket When the second application requests access to
functionalities of the ?rst application, Wherein the
access ticket speci?es Which functionalities of the ?rst
application that the second application is permitted to
access.

18. The system according to claim 17, further comprising
Wherein the processor is con?gured to expire the access

ticket When the lifecycle of the ?rst application or the

Jul. 15,2010

second application Which provided the lifecycle decla
ration is determined to have ended based upon the life
cycle declaration.

19. The system according to claim 12,
Wherein both the ?rst application and the second applica

tion provide respective lifecycle declarations to the pro
cessor When establishing communications in the Web
mashup.

20. One or more processor-accessible storage media con
taining processor-executable instructions, implemented by
one or more processors, for performing acts comprising:

accessing a Web mashup aggregating a ?rst application
providing service and a second application consuming a
service, Wherein the ?rst application as a service pro
vider receives a ticket request from the second applica
tion as a service consumer, said ticket request being for
receiving permission for accessing one or more func
tionalities of the ?rst application;

receiving a lifecycle declaration from the ?rst application
for securing communications betWeen the ?rst applica
tion and the second application;

creating an access ticket by the broWser upon a request by
the ?rst application, Wherein the access ticket speci?es
functionalities of the ?rst application that the second
application is permitted to access, Wherein the second
application invokes the access ticket for accessing the
one or more functionalities of the ?rst application in the
Web mashup;

monitoring, by the broWser, conditions of the ?rst applica
tion to determine When the lifecycle expires; and

expiring the access ticket and notifying the second appli
cation When the lifecycle of the ?rst application expires
so that the second application is aWare that the access
ticket has expired.

Ex. 1013 / Page 18 of 18

