

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

SANDVINE CORPORATION AND SANDVINE INCORPORATED ULC,
Petitioners,

v.

PACKET INTELLIGENCE, LLC,
Patent Owner.

Case No. IPR2017-00863
U.S. Patent No. 6,665,725

PETITION FOR INTER PARTES REVIEW

OF U.S. PATENT NO. 6,665,725

 2

I.	 INTRODUCTION .. 1	
II.	 REQUIREMENTS FOR INTER PARTES REVIEW UNDER 37 C.F.R.

§ 42.104 .. 1	
A.	 Grounds for Standing Under 37 C.F.R. § 42.104(a) 1	
B.	 Identification of Challenge Under 37 C.F.R. §42.104(b) and Relief

Requested ... 1	
1.	 Level of Ordinary Skill in the Art .. 2	
2.	 Claim Construction .. 2	

III.	 OVERVIEW OF THE ‘725 PATENT ... 4	
A.	 Description of the ‘725 Patent .. 4	
B.	 Prosecution History of the ‘725 Patent .. 4	

IV.	 THERE IS A REASONABLE LIKELIHOOD THAT THE CHALLENGED
CLAIMS ARE UNPATENTABLE .. 6	
A.	 Baker Anticipates Claims 1-2 under §102(b) 6	

V.	 MANDATORY NOTICES UNDER 37 C.F.R. § 42.8(A)(1) 46	
A.	 Real Party-In-Interest and Related Matters .. 46	
B.	 Lead and Back-Up Counsel Under 37 C.F.R. § 42.8(b)(3) 46	
C.	 Payment of Fees Under 37 C.F.R. § 42.103 47	

VI.	 CONCLUSION .. 47	

 1

I. INTRODUCTION

Petitioners request Inter Partes Review (“IPR”) of claims 1-2 of U.S. Patent

No. 6,665,725 (“‘725 Patent”). EX1033.

II. REQUIREMENTS FOR INTER PARTES REVIEW UNDER 37 C.F.R.
§ 42.104

A. Grounds for Standing Under 37 C.F.R. § 42.104(a)

Petitioners certify that the ‘725 Patent is available for IPR and that no

Petitioner is barred or estopped. Specifically, Petitioners state: (1) they are not the

owner of the ‘725 Patent; (2) have not filed a civil action challenging the validity

of any claim of the ‘725 Patent; (3) this Petition is timely filed less than one year

after it was served with a complaint alleging infringement of the ‘725 Patent; and

(4) this Petition is filed more than nine months after the ‘725 Patent issued.

B. Identification of Challenge Under 37 C.F.R. §42.104(b) and Relief
Requested

In view of the prior art, evidence, and discussion of claim limitations, claims

1-2 of the ‘725 Patent are unpatentable and should be cancelled. 37 C.F.R.

§42.104(b)(1). This review is governed by pre-AIA §§102 and 103.

Proposed Statutory Rejections for the ‘725 Patent

Claims 1-2: Anticipated under §102(b) by WO 97/23076 (“Baker”) [EX1038]

 2

1. Level of Ordinary Skill in the Art

A person of ordinary skill in the field of computer networking at the time of

the alleged invention, June 30, 1999, (“POSITA”) would have had at least a

bachelor’s degree, or equivalent, in electrical engineering, computer engineering,

computer science, or a related field or an equivalent number of years of working

experience, and one to two years of experience in networking environments,

including at least some experience with network traffic monitors, analyzers, and/or

firewalls or other intrusion detection systems. EX1006, Declaration of Bill Lin,

PhD. (“Lin Decl.”), ¶¶20-22.

2. Claim Construction

A claim subject to IPR receives the “broadest reasonable construction in

light of the specification of the patent in which it appears.” 37 C.F.R. §42.100(b).

Unless otherwise noted below, Petitioners propose, for purposes of this proceeding

only, that the claim terms of the ‘725 Patent are presumed to take on their ordinary

and customary meaning that the term would have to one of ordinary skill in the art.

The claim construction analysis is not, and should not be viewed as a concession

by Petitioners as to the proper scope of any claim term in litigation. These

assumptions are not a waiver of any argument in any litigation that claim terms in

the ‘725 Patent are indefinite or otherwise invalid or unpatentable.

 3

a. “whereby the data structure is configured for rapid searches
using the index set” (claim 1)

Petitioners submit that the term “rapid” is not entitled to patentable weight

because it is a statement of a desired result, rather than an apparatus or specific

structure to accomplish the desired result. Hewlett-Packard Co. v. Bausch & Lomb

Inc., 909 F.2d 1464, 1468 (Fed. Cir. 1990)(“[A]pparatus claims cover what a

device is, not what a device does.”); In re Schreiber, 128 F.3d 1473, 1478–79 (Fed.

Cir. 1997)(“choosing to define an element functionally, i.e., by what it does,

carries with it a risk,” as functional language is not given patentable weight if the

prior art structure can inherently perform the function); Euramax International, Inc.

v. Invisaflow, LLC, IPR2016–00423, Paper No. 9 at 8-9 (PTAB June 1,

2016)(instituting IPR proceeding, language describing intended use of apparatus

not entitled to patentable weight). Affording no patentable weight to language

describing an intended use or desired result of an apparatus has long been the rule.

In re Gardiner, 171 F.2d 313, 315–16 (C.C.P.A. 1948)(“It is trite to state that the

patentability of apparatus claims must be shown in the structure claimed and not

merely upon a use, function, or result thereof.”). Accordingly, these limitations are

purely functional and should be afforded no patentable weight.

 4

III. OVERVIEW OF THE ‘725 PATENT

A. Description of the ‘725 Patent

The ‘725 Patent was filed on June 30, 2000 and claims priority to a U.S.

Provisional App. No. 60/141,903 (EX1005) filed on June 30, 1999. On its face,

the ‘725 Patent is directed to a method of performing protocol specific operations

on a packet. EX1033, Abstract. The method includes performing various functions

such as receiving the packet and a set of protocol descriptions for protocols that

may be used in the packet and performing protocol specific operations on the

packet based on the protocol descriptions. Id. The protocol description includes

child protocols, information related to the location of the child protocol, and any

protocol specific operations to be performed on the packet for the particular

protocol at a particular layer level. Id. The protocol specific operations may also

include state processing operations. Id.

B. Prosecution History of the ‘725 Patent

The ‘725 Patent was filed on June 30, 2000 with 18 claims. See EX1039,

June 30, 2000 As-Filed Application. The Examiner rejected claims 1 and 16 under

§112 as indefinite and claims 1-3, 13-14, and 17-18 as anticipated by Bruell. Id. at

06/04/03 Rejection. The Examiner indicated that claims 4-11 and 15-16 contained

allowable subject matter, noting that the prior art did not disclose:

• Storing a database in a memory, the database generated from the set

of protocol descriptions and including a data structure containing

 5

information on the possible protocols and organized for locating the

child protocol related information for any protocol, the data structure

contents indexed by a set of one or more indices, the database entry

indexed by a particular set of index values including an indication of

validity, wherein the child protocol related information includes a

child recognition pattern, wherein step (c) of performing the protocol

specific operations includes, at any particular protocol layer level

starting from the base level, searching the packet at to the particular

protocol for the child field, the searching including indexing the data

structure until a valid entry is found, and whereby the data structure is

configured for rapid searches using the index set.

• Looking up a flow-entry database comprising one or more flow-

entries, at least one flow-entry for each previously encountered

conversational flow, the looking up using at least some of the selected

packet portions and determining if the packet matches an existing

flow-entry; if the packet is of an existing flow, classifying the packet

as belonging to the found existing flow; and if the packet is of a new

flow, storing a new flow-entry for the new flow in the flow-entry

database, including identifying information for future packets to be

identified with the new flow-entry, wherein the parsing and extraction

operations depend on the contents of one or more packet headers.

Id.

In response, Applicants amended the claims based on the indicated

allowable subject matter. Id. at 06/13/03 Response. Applicants also argued that

Bruell does not disclose: protocol descriptions that “describe the protocol

 6

description operations to be performed,” “the extraction being to form a function of

the selected portions for identifying the packet as belonging to conversational flow,”

or “processing that is a function of the state of the flow of the packet.” Id. at pp.10-

13; also id. at 06/27/03 Supplemental Response (amending claim 18). The

amended claims were allowed. Id. at 07/01/03 Notice of Allowance.

IV. THERE IS A REASONABLE LIKELIHOOD THAT THE
CHALLENGED CLAIMS ARE UNPATENTABLE

The following prior art references disclose each limitation of the Challenged

Claims. As such, the Challenged Claims are unpatentable. Included below are

exemplary citations to the prior art references.

A. Baker Anticipates Claims 1-2 under §102(b)

Baker was filed December 13, 1996, published June 26, 1997, is prior art

under §102(b) and, as described below, anticipates Claims 1-2 of the ‘725 Patent.

Claim 1. A method of performing protocol specific operations on a packet
passing through a connection point on a computer network, the method
comprising:

Baker discloses a network interface system programmed with analysis

control logic for retrieving network frames (i.e., packets) passing through a

connection point on a computer network and, for example, performing parsing and

extraction operations on the frame (i.e., protocol specific operations) in accordance

with protocol description files that describe network protocols and include rules for

analyzing them:

 7

“Referring now to FIG. 1, a network interface system in accordance with

one form of the present invention, generally referred to as 10, may be

implemented in a network device including input devices 12, data storage

devices 14, analysis control logic 16 for facilitating the input, storage,

retrieval, and analysis of network frames, and output devices 18 for

forwarding frames or displaying or printing the results of analyses. A data

storage device 14 may include a data file 20 of network frames having n

protocol data records, wherein each data record contains data stored in a

plurality of predefined fields. Protocol description files 22 also may be

stored in the data storage device 14. The protocol description files 22 may

include a protocol control record and n field sub-records, which together

may describe a subset of a network protocol and include rules for analyzing

that protocol.

The network device control logic 16 is capable of retrieving a subset of

network frames from the input devices 12 or data files 20 which satisfy one

or more criteria based upon extracted field values and filtering criteria

contained in one or more of the protocol description files 22. The network

device control logic 16 also includes logic for determining frame and

protocol header lengths, gathering statistics, verification and error checking,

determining routes, varying values, and formatting output.”

EX1038, Baker at 10:10-35; also id. at 3:32-4:9 (“The present invention is directed

to improved systems and methods for parsing, filtering, generating and analyzing

data (or frames of data) transmitted over a data communications network.”), 3:32-

35 (“The system of the present invention also preferably includes logic for

extracting field values from particular network frames, performing validation and

 8

error checking, and making parsing decisions based upon field values and

information in the programmably configurable protocol descriptions.”), 1:8-2:10,

2:28-3:8, 3:26-4:33, 26:26-27:35, 30:10-34, 37:17-28, Figs. 11-14, 16; see also

Elements 10(b)(iii), 10(c).

[1(a)] receiving the packet;

 Baker discloses a network interface system, such as a network analyzer,

bridge, or router, capable of receiving frames from a network:

“[T]he system of the present invention may be incorporated in a network

device, such as a network analyzer, bridge, router, or traffic generator,

including a CPU and a plurality of input devices, storage devices, and

output devices, wherein frames of network data may be received from an

associated network, stored in the storage devices, and processed by the CPU

based upon one or more programmably configurable protocol descriptions

also stored in the storage devices.”

Id. at 4:27-35; also 1:8-2:10, 3:32-4:9, 10:10-35, 11:6-8, 37:17-23, Figs. 1, 11.

[1(b)] receiving a set of protocol descriptions for a plurality of protocols that
conform to a layered model,

According to the ‘725 Patent, a protocol description is “source-code

information” in the form of, for example, a file. EX1033, ‘725 Patent at 14:63-65;

also id. at 44:14-22, 42:46-43:9, columns 56-93 (exemplary protocol description

language files). Similarly, Baker discloses a set of protocol-specific protocol

description files (PDFs) (i.e., protocol descriptions), each corresponding to one of a

 9

plurality of protocols (e.g., Ethernet, IP, TCP) that conform to a layered model,

such as the well-known ISO/OSI model.

“The protocol description files 22 may include a protocol control record

and n field sub-records, which together may describe a subset of a network

protocol and include rules for analyzing that protocol.”

EX1038 at 10:22-25, 19:7-10 (“[E]ach of these protocol description records with

its associated field, statistics, lookup, and filter record information is also written to

a protocol specific protocol description file (PDF).”).

“The Ethernet protocol definition described above specifies only one

possible upper level protocol, the Generic Protocol (GP) which is indicated

by placing a hexadecimal 0×8888 value in the protocol type field. The

Generic Protocol (GP) specification shown below in Table 13 has been

fabricated to provide examples of different types of field functionalities

found in actual network protocols.”

EX1038 at 21:32-22:5; also id. at 34:16-21 (mentions supporting IP, TCP, UDP,

and IPX protocols), 12:22-24 (“It will be appreciated by those skilled in the art that

any possible organization of fields for any possible protocol specification is

contemplated for the network interface system 10 of the present invention.”),

24:11-12 (describing “ParseLvl” variable that is the “Zero based protocol level in

ISO reference model of protocol being parsed (current protocol)”), 36:28-36, 38:4-

16, Tables 12, 13, Figs. 4, 4A-4D, 5, 5A-5E; EX1033 at 6:32-54; EX1006, ¶179.

 10

Baker discloses that network interface system stores the programmably

configurable PDFs (EX1038 at 10:21-22, Fig. 1) and is programmed to receive

PDFs and run an initialization/compilation process (i.e., receiving a set of protocol

descriptions) as follows:

“[T]he initialization of the system includes a determination of the presence

of PDF files and the extraction of the protocol and associated control record

information from all of the PDF files found. The number of PDF files is

determined, and a ProtocolList is constructed consisting of a sorted vector

of protocol records at least the size of the number of PDF files found. The

name of each protocol record found is inserted in the ProtocolList. The PDF

files are then read to memory in the sequence described above for the PDF

file writing. The lookup records that indicate a next protocol are associated

with the appropriate entries in the ProtocolList.”

EX1038 at 20:35-21:11; also 4:27-35, 19:13-20:34; EX1006, ¶¶143-156, 219.

There is no disclosure in the ‘725 Patent of “receiving a set of protocol

descriptions” aside from inputting a set of PDL files to a compilation process of a

network interface system to generate/build/load/fill internal data structures, which,

as discussed above and with respect to claim 2, is disclosed by Baker. EX1033 at

41:15-52, 43:10-58, 9:22-27, 9:42-44, 9:53-54, 22:7-10, 14:63-15:17, Fig. 4;

EX1006, ¶¶133, 218-219. See also Baker applied to Claim 2.

 11

[1(b)(i)(1)] a protocol description for a particular protocol at a particular
layer level including: (i) if there is at least one child protocol of the protocol at
the particular layer level, the-one or more child protocols of the particular
protocol at the particular layer level,

Each PDF file (i.e., protocol description for a particular protocol at a

particular layer level) includes, if there is at least one child protocol, the child

protocol(s). Namely, each PDF includes “a protocol control record, and a plurality

(n) of field data records.” EX1038 at 12:25-28. When initialized in memory, a

field sub-record may include a “ptr2np” attribute that includes a “pointer to lookup

structure/class . . . next protocol definition to use (0 = none)” and the “next

protocol lookup records” are described with reference to Table 4 as including a

“Protocol” attribute that is a “pointer to protocol description structure.” Id. at

Tables 2, 4, 14:23-25. Each PDF file includes field sub-record information,

including a field record description of fields that may require a next protocol

lookup:

“In the presently preferred embodiment, the following sequence of data is

written to a PDF: …

For the Field Record …

the length of the field in bits,

the byte offset from the start of the protocol header, …

if the pointer to the lookup structure/class is not NULL,

a call is made to write the lookup type, the number of lookups, and the

lookup values”

 12

Id. at 19:11-20:31; also 147:28-148:13 (initialization routine for reading field sub-

record elements from PDF, including pointer to lookup structure/class), 177:4-26

(initialization routine for reading multi-protocol lookup structure elements from

PDF), EX1006, ¶¶150-156.

Baker provides two exemplary protocol descriptions – for Ethernet and for a

fabricated Generic Protocol (“GP”), which is described as being the “only one

possible upper level protocol” for Ethernet. EX1038 at 21:32-22:5, Tables 12, 13,

Figs. 4-4D, 5-5D. As discussed above, and with respect to Element 1(b), the PDFs

for these exemplary protocols would include the information depicted in Figs. 4-

4D and 5-5E.

Ethernet1: The Ethernet PDF (i.e., protocol description) for the Ethernet

protocol (i.e., a particular protocol at a particular layer level) includes one child

1 Although Baker’s protocol descriptions for Ethernet and GP are used as examples

throughout this Petition, Baker also discloses supporting additional protocols.

EX1038 at 21:32-22:5, 34:16-21, 12:21-34, 25:8-12, 36:28-36; EX1006, ¶180. As

described in Baker, each supported protocol would include its own PDF (i.e.,

protocol description) that includes information for parsing a packet in accordance

with the known standards for the protocol. EX1038 at 12:21-33, 4:7-21.

 13

protocol, “GP” (i.e., including … the-one or more child protocols of the particular

protocol at the particular layer level):

Id. at Fig. 4D; see also 8:21-30, 21:32-22:5, Table 12, Figs. 4, 4A (Type field

references Fig. 4D lookup structure). See also Elements 1(b)(i)(2), 1(b)(ii)-(iii).

GP: The GP PDF (i.e., protocol description) for the GP protocol (i.e., a

particular protocol at a particular layer level) includes four child protocols, “GP1,”

“GP2,” “GP3,” and “GP4” (i.e., the-one or more child protocols of the particular

protocol at the particular layer level):

 14

Id. at Figs. 5C-5E; see also 8:31-9:6, Table 13 (Frame Type field indicates “upper

level protocol identifier,” Src Socket and Dst Socket fields indicate “Socket of

Upper-layer protocol”), Figs. 5, 5A (Frame field references Fig. 5C lookup

structure, Source Socket field references Fig. 5D lookup structure, Destination

Socket field references Fig. 5E lookup structure). See also Elements 1(b)(i)(2),

1(b)(ii)-(iii).

[1(b)(i)(2)] the packet including for any particular child protocol of the
particular protocol at the particular layer level information at one or more
locations in the packet related to the particular child protocol,

Ethernet: Baker discloses an “Ethernet Protocol specification” that “is a

simplification of an actual Ethernet protocol header”:

 15

Id. at Table 12; see also 21:14-16. According to the disclosed specification, the

“Ethernet Protocol Type” field of the Ethernet frame header includes an “upper

layer protocol designator 0x8888=GP” (i.e., information at one or more locations

in the packet related to the particular child protocol). Id.

Additionally, each Ethernet frame includes an Ethernet header that is 14-

bytes (112-bits) long followed by the header of the next layer protocol (GP Header)

(i.e., information at a location in the packet related to the particular child protocol).

Id. at 25:29-32 (“Frame 1 shown below has a hardware length of eighty-two 8-bit

bytes and consists of a fourteen byte Ethernet header, a twenty byte GP header

with no option bytes, and forty-eight bytes of application data.”).

 16

Id. at Frame (1); also 26:10-14, Frame (2), 20:32-34. See also Elements 1(b)(i)(1),

1(b)(ii)-(iii).

 GP: The Baker General Protocol specification is provided for reference

below:

 17

 18

Id. at Table 13; see also 21:32-22:5. According to the specification, the Frame

Type, Src Socket, and Dst Socket fields provide information regarding the upper-

layer/level protocol(s) used in a packet (i.e., information at a location in the packet

related to the particular child protocol). Id.

Additionally, an Ethernet frame (as disclosed in Baker) may include a forty-

eight-byte application data field following the 20-byte GP layer header (i.e.,

information at a location in the packet related to the particular child protocol). Id.

at 25:29-32 (“Frame 1 shown below has a hardware length of eighty-two 8-bit

bytes and consists of a fourteen byte Ethernet header, a twenty byte GP header

with no option bytes, and forty-eight bytes of application data.”); see also Frame

(1). See also Elements 1(b)(i)(1), 1(b)(ii)-(iii).

[1(b)(ii)] (ii) the one or more locations in the packet where information is
stored related to any child protocol of the particular protocol, and

Each PDF protocol control record may include a “NumBits” attribute that is

“the total bit length of the protocol header.” EX1038 at Table 1 (“numBits”

attribute), 19:17; 56:30-57:11 (initialization routine for reading protocol control

record elements from PDF, including “num_bits” attribute), EX1006, ¶¶146-148.

The ‘725 patent similarly discloses a “HEADER” attribute of a PDL file “used to

describe the length of the protocol header.” EX1033 at 48:41-50. During the

parsing process, the value of the numBits attribute may be used to determine where

the next layer protocol header/data begins. See Element 1(c).

 19

Each PDF additionally includes field sub-records for each field of the

protocol header. EX1038 at 12:25-28, Tables 1, 2. Each field sub-record includes

an “fdwoff” attribute (also called Byte/Bit Offset) that is the byte offset of the field

from the start of the protocol header. EX1038 at Table 2 (“fdwoff” attribute), 20:5,

Figs. 4A, 5A; 147:28-148:13 (initialization routine for reading field sub-record

elements from PDF, including “fdwoff” attribute), EX1006, ¶¶149-150. This

attribute is used during the parsing process to extract the value of the associated

field. EX1038 at 27:17-35, Fig. 13 (step 210), Fig. 16 (step 502). See also

Element 1(c).

Ethernet: The Ethernet PDF NumBits attribute of the protocol control

record is set to 112, indicating the total bit length of the Ethernet header:

EX1038 at Fig. 4.

The Ethernet PDF “Type” field sub-record includes a “Bit Offset” (i.e.,

fdwoff attribute), indicating that the Type field is 96-bits offset from the start of the

Ethernet header:

 20

Id. at Fig. 4A; 29:32-30:4. Accordingly, the NumBits attribute of the Ethernet

control record and the fdwoff attribute of the Ethernet Type field sub-record are the

one or more locations in the packet where information is stored related to any child

protocol of the particular protocol. See also Elements 1(b)(i)(1)-(2), 1(b)(iii)

GP: The GP PDF NumBits attribute of the protocol control record is set to

160, indicating the total bit length of the GP header:

Id. at Fig. 5.

The GP PDF “Frame Type,” “Source Socket,” and “Destination Socket”

field sub-records each include a “Byte Offset” (i.e., fdwoff attribute), indicating the

respective offsets from the start of the GP header:

 21

Id. at Fig. 5A. Accordingly, the NumBits attribute of the GP control record and the

fdwoff attribute of the GP Frame Type, Source Socket, and Destination Socket

field sub-records are the one or more locations in the packet where information is

stored related to any child protocol of the particular protocol. See also Elements

1(b)(i)(1)-(2), 1(b)(iii).

[1(b)(iii)] (iii) if there is at least one protocol specific operation to be
performed on the packet for the particular protocol at the particular layer
level, the one or more protocol specific operations to be performed on the
packet for the particular protocol at the particular layer level; and

 “Protocol specific operations” in accordance with the claim at least include

“one or more parsing and extraction operations on the packet” (see Element 10(d)).

The ‘725 Patent discloses: “[T]he PDL file for an Ethernet packet includes

information on how the parsing subsystem is to extract the source and destination

addresses, including where the locations and sizes of those addresses are.”

EX1033 at 42:3-6; also 41:57-65.

 22

The Baker PDFs include the locations and sizes of fields that are to be

extracted by the parsing control logic (e.g., the disclosed ParseFrame,

ParseProtocol, ParseFields, ValidateValue, and GetValue control logic), among

other information. See generally EX1038 at 19:11-20:34, Tables, 1-13, Figs. 4,

4A-D, 5, 5A-D (describing data written to PDF file); 26:26-40:36, Figs. 11-16

(describing control logic), 64:1-68:24; EX1006, ¶¶157-177 (describing parsing

control logic as implemented by disclosed source code). Namely, each PDF field

sub-record includes an “fdwoff” attribute (also called Byte/Bit Offset) that is the

byte offset of the respective field from start of protocol header (i.e., the location of

the field that is to be extracted). EX1038 at Table 2 (“fdwoff” attribute), 20:4,

27:17-35, Figs. 4A, 5A, 13 (step 210), 16 (step 502), 147:28-148:13, 148:25-26;

EX1006, ¶¶169, 185, 149-150; see Element 1(b)(ii). Each PDF field sub-record

also includes an “fblen” attribute (also called Bit Length) that is the length of the

respective field in bits (i.e., the size of the field that is to be extracted). EX1038 at

Table 2 (“fblen” attribute), 20:4, 35:27-30, Figs. 4A, 5A, 13 (step 222), 147:28-

148:13, 148:25-26; EX1006, ¶¶185, 149-150. See also Element 1(c).

Each PDF also includes information on where in the packet to look for any

child protocols. See Elements 1(b)(i)(1), 1(b)(ii), 1(c).

 23

[1(c)] performing the protocol specific operations on the packet specified by
the set of protocol descriptions based on the base protocol of the packet and
the children of the protocols used in the packet,

The ‘725 Patent discloses “the base protocol” of a packet is the protocol

associated with the packet type, such as Ethernet. EX1033 at column 71 (setting

virtualChildren FIELD as “ethernet(1)”; disclosing “now define the base for the

children” and setting VirtualBase PROTOCOL as

“{VirtualChildren=virtualChildren}”), 32:29-33 (“At a base level, there are a

number of packet types used in digital telecommunications, including

Ethernet ….”), 33:16-20 (FIG. 16 shows the header 1600 (base level 1) of a

complete Ethernet frame (i.e., packet) ….”), 32:9-12, 35:56-65, 40:1-22, 42:3-11;

EX1006, ¶158.

As described in detail below, the Baker control logic performs protocol

specific operations on the packet as specified by the set of protocol description

files based on the base layer protocol (e.g., Ethernet) of the packet and the children

of the protocols used in the packet (e.g., GP and others).

According to Baker, “once the system has received a network frame (at

100),” the base protocol of the packet (e.g., Ethernet) is determined by setting the

ProtPtr variable (also referred to as the CurrentProtocol variable) to “the initial

protocol description structure of the receiving interface number which for frame (2)

is the Ethernet Protocol description defined in FIGS. 4-4d.” EX1038 at 37:17-36;

 24

also 67:6-21 (ParseFrame2 function receives ProtPtr as input), Fig. 11, Table 14

(CurrentProtocol, SrcIntf and IntTypes variables), 27:17-20, 52:12; EX1006,

¶¶158-160. The ParseFrame control logic “systematically parses through each

network frame (at 104 to 108 and 128) until all known protocol headers have been

parsed.” EX1038 at 36:32-34; also 67:6-68:24 (ParseFrame2 function), Fig. 11-13;

EX1006, ¶¶157-162. The ParseFrame control logic uses the ParseFields control

logic to parse protocol fields as provided in accordance with protocol description

records, starting with the initial or base protocol description record (e.g., Ethernet).

EX1038 at 37:17-39:2, Figs. 11-13, EX1006, ¶¶157-177.

The ParseFields control logic “parses the fields in each protocol header” in

accordance with Fig. 13 (30:10-31:2) and at step 210 initiates the GetValue control

logic (implemented as get_value function in source code) to search for and locate a

field in the packet and extract a value from the field. EX1038 at 27:17-35, 145:20-

146:2, Figs. 13, 16; EX1006, ¶¶166-169. Namely, the GetValue control logic uses

the fdwoff attribute (see Elements 1(b)(ii)-(iii)) as defined in the associated PDF

and stored in an indexed element of a field array to locate and extract a value from

a field (i.e., perform protocol specific operations specified by protocol

descriptions):

“Referring now to FIG. 13, a value is extracted by the GetValue control

logic (shown in FIG. 16) of the system (at 210) for each configured field that

is relevant to the current network frame. As shown in FIG. 16, the fdwoff

 25

value is added to ParsePtr to locate and extract a 32-bit value (at 502)

containing the field value[.] . . . The extracted value is returned (at 508) by

the GetValue control logic.”

EX1038 at 27:17-35.

EX1038 at 145:20-146:2 (get_value function adds fdwoff variable (byte offset of

the field) to ParsePtr variable (position of the start of the frame) to obtain location

of the field in packet and extracts and returns value from packet); also 64:18,

148:26, Fig. 13 (step 210), Fig. 16 (step 502, “set ptr to 32 bit field at offset

 26

(ParsePtr + fdwoff) set value to 32 bit value at offset”), Table 2; EX1006, ¶169;

see also Element 1(d)(i).

 At step 214 of Fig. 13, the ParseFields control logic further initiates the

ValidateValue control logic (implemented as value_ok function in source code),

which determines whether a lookup structure exists for a particular field and, if so,

uses the Protocol attribute (implemented as “Prot” element in source code) of the

associated lookup structure to “specify NextProtocol, the protocol description (at

308) to be used after current protocol header parsing is completed[.].” EX1038 at

29:1-31, Fig. 14; also 175:35-176:24, 64:25-38, 146:19-25; EX1006, ¶¶170-174.

For example, when parsing the Ethernet Type field in accordance with the Ethernet

PDF (Figs. 4-4D), the ValidateValue logic determines the next layer (i.e., child)

protocol by comparing the extracted value from the Ethernet Type field (i.e.,

0x8888) with the protocols present in the Fig. 4D lookup structure and sets the

NextProtocol variable to the associated protocol description (Fig. 5) of the found

value (i.e., GP):

“Using value 0×8888 as an example, if the ValidateValue control logic is

applied to the Ethernet Type field and associated lookup structure shown in

FIGS. 4a and 4d respectively, the lookup structure would be found (at 302),

the value will be found in it (at 304), the associated Protocol field found

with the range containing 0×8888 value will be used to update the

NextProtocol variable (at 308) if it is NULL (at 306), and the associated

Next Index field will be used to update the CurField variable.”

 27

EX1038 at 29:32-30-4; see also Tables 2 (“ptr2np” attribute), 4 (“Protocol”

attribute), 15:10-17, 29:1-31, Figs. 4A (Type field referencing Fig. 4D), 4D (GP

Protocol identified by 0x8888 value and referencing Fig. 5 protocol description),

13-14. See Baker applied to Elements 1(d)(iii)-(iv). In this way, the ParseFields,

GetValue, and ValidateValue control logic determine any child protocols of the

protocol being parsed as specified by the associated PDF (i.e., perform protocol

specific operations specified by protocol descriptions).

As the ParseFields control logic parses fields of a protocol header, a

ProtoParseLen variable is updated by adding the BitLength/fblen attribute (see

Element 1(b)(iii)) of each parsed field to the running value of the ProtoParseLen

variable. EX1038 at 35:27-30, 65:20-24, Figs. 13 (step 222), 4A, 5A, Tables 2, 14;

EX1006, ¶175. When parsing of the current protocol terminates, the ParsePtr

variable is set to the start of the next layer protocol header/data (i.e., by adding the

value of ProtoParseLen (which for Ethernet is equal to the value of NumBits) to

the ParsePtr variable). EX1038 at 36:13-27, 64:11-13, 38:13-18, Figs. 4

(“NumBits” attribute), 13 (step 228); EX1006, ¶¶174, 161, 165.

Accordingly, Baker discloses that after the Ethernet protocol fields are

parsed (at step 106 of Fig. 11), the NextProtocol variable “will refer to the GP

shown in FIGS. 5-5(e), and ParsePtr will point at the start of line 2” of the frame.

EX1038 at 38:13-18; also 146:19-25, 67:27-32, 29:17-31, Figs. 11-14, EX1006,

 28

¶¶174, 161, 165. At this point, the CurrentProtocol variable will be updated with

the NextProtocol value (of GP) and the GP fields in the frame are parsed using the

ParseProtocol, ParseFields, GetValue, and ValidateValue fields described above.

EX1038 at 38:18-24, 67:27-32, Fig. 11 (steps 108, 128); EX1006, ¶¶161-177. In

one embodiment, once the GP fields have been parsed as specified by the GP

protocol description, the Data fields will be parsed as specified by the associated

protocol description (PDF):

“Referring back to the ParseFields control logic shown in FIG. 13, the

ParseFields control logic parses the fields in each protocol header

contained in a particular network frame by using field values obtained in

accordance with information specified in associated protocol descriptions.

The ParseFields control logic is applied for each protocol description

required for a particular network frame. If the ParseFields control logic

were applied to the exemplary frame, "Frame (1)," described above, the

network interface system 10 of the present invention would apply the

ParseFields control logic with the protocol descriptions for the Ethernet

protocol shown in Table 12, the GP shown in Table 13, and an unspecified

Data protocol description.”

EX1038 at 30:10-23; also 33:30-32 (“The statistics entity of the field sub-record

may be used to indicate categories of statistics to be maintained for each protocol

header field (at 218 and 236).”), 36:28-36, 67:33-36; see generally 3:32-5:9, 5:4-9,

26:26-30:35, 33:21-34-7, 35:13-38:24, 19:3-23-8, Tables 1-4, 12-14, Figs. 4-5D,

11-14; EX1006, ¶162.

 29

[1(d)(i)] the method further comprising:

storing a database in a memory, the database generated from the set of
protocol descriptions and including a data structure containing information
on the possible protocols and organized for locating the child protocol related
information for any protocol,

According to the ‘725 Patent, a database may include a Protocol Table (PT)

and a series of one or more Look Up Tables (LUTs) associated with a protocol in

PT and used to identify known protocols and their children. EX1033 at 14:39-43,

39:22-40:60, Fig. 18B. Baker discloses a database in memory generated from the

set of protocol descriptions consistent with the ‘725 Patent Fig. 18B embodiment.

EX1006, ¶¶182-187. Namely, Baker discloses that, upon initialization and when

PDF files are read into memory, the resulting protocol description data structures

include a data structure of protocol records (each corresponding to a PDF) and

further provides a ProtocolList sorted vector that is used as an index for searching

the protocol descriptions supported by the system. EX1038 at 20:35-21:11,

127:20-128:13, 128:33-129:1; EX1006, ¶¶143-147, 183. The protocol data

structure includes the elements depicted in Table 1, including an indexed field

array of one or more field sub-records:

 30

EX1038 at 155:35-154:8 (elements of protocol data structure) also Table 1;

EX1006, ¶146.

EX1038 at 57:7-9 (allocation of field array to size of num_fields element of PDF;

records stored in array starting at index 0 and incrementing to num_fields);

EX1006, ¶148-150.

 Each field entry in the field sub-record array includes the elements depicted

in Table 2 and may include a ptr2np variable that, when set, is a pointer to a next

protocol lookup structure.

 31

EX1038 at 148:24-149:7; also Table 2; EX1006, ¶149. The field array also

includes an “fdwoff” variable describing the “field offset in bytes” and an “fblen”

variable describing “field length in bits.” Id. The fdwoff variable is used to

determine the location of the field in a packet that may relate to the child protocol.

EX1038 at 145:20-146:2, 27:17-35, Figs. 13 (step 210), 16; EX1006, ¶169.

For multi-protocol next protocol lookups, each next protocol lookup

structure is an array of next protocol records, where each entry in the array

includes the elements depicted in Table 4 and is indexed by a value that is

extracted from the packet and used to determine the child protocol.

 32

EX1038 at 177:4-26; also 148:11-12, 165:37-166:5, 171:23-177:33, Table 4;

EX1006, ¶¶150-156.

During parsing, the protocol data structure is used to extract a field that

specifies the next protocol, which is then used as an address into the lookup

structure for determining the child protocol. EX1038 at 145:20-146:2, 64:18,

148:26, 27:17-35, Fig. 13 (step 210), Fig. 16, Table 2 (get_value function

determines location of field in packet and extracts value from it), EX1006, ¶169,

186 and 64:25-38, 175:35-176:24, 29:1-31, Fig. 13 (step 214), Fig. 14 (value_ok

 33

function uses extracted value as index to lookup structure to determine if value is

for a valid protocol), EX1006, ¶¶170-174, 186. When the next protocol is

identified using the lookup structure, it is used as an index into the protocol table.

EX1038 at 146:19-25, 29:17-31, 67:27-32, Fig. 11 (steps 108, 128), Fig. 14 (steps

306, 308, 310, 312) (if the extracted value is found in a lookup structure, set

pointer to next protocol’s data structure); EX1006, ¶¶174, 161, 186. In light of the

above, and as explained by a POSITA, Baker discloses this limitation. EX1006,

¶¶182-188.

[1(d)(ii)] the data structure contents indexed by a set of one or more indices,

Baker discloses that multi-protocol lookup structures are each indexed by a

value extracted from the next/child protocol field in the packet. EX1038 at 177:4-

26 (reproduced above); also 64:25-38, 175:35-176:24, 29:1-31, Fig. 13 (step 214),

Fig. 14 (value_ok function uses extracted value as index to lookup structure to

determine if value is for a valid protocol); EX1006, ¶¶151-156, 170-172. The ‘725

Patent similarly discloses that each LUT is “indexed by one byte of the child

recognition pattern that is extracted from the next protocol field in the packet.”

EX1033 at 39:33-35.

When the next/child protocol is identified using the Baker lookup structure,

it is used as an index into the protocol table. EX1038 at 146:19-25, 29:17-31,

67:27-32, Fig. 11 (steps 108, 128), Fig. 14 (steps 306, 308, 310, 312), Table 4 (if

 34

the extracted value is found in a lookup structure, set pointer to next protocol’s

data structure); EX1006, ¶¶174, 161, 190. The ‘725 Patent similarly discloses that

when a lookup results in a valid next protocol, the next protocol “is used as an

index into the protocol table.” EX1033 at 40:27-31.

Baker also discloses a ProtocolList sorted vector that is used as an index for

searching protocol descriptions supported by the system. EX1038 at 127:20-

128:13, 128:33-129:1; EX1006, ¶¶143-147, 191. And, as discussed above, each

protocol record includes an indexed array of field sub-records. EX1038 at 147:28-

148:13 and 148:24-149:7 (reproduced above), Table 2; EX1006, ¶¶148-150, 191.

The field array index is used “to determine where parsing of the current protocol

will continue after the current field.” EX1038 at 16:47-53; also Fig. 4D, 5C-5E

(Next Index), 16:60-67, 64:11-13, 36:13-17, Table 4; EX1006, ¶¶176-177, 191. In

light of the above, and as explained by a POSITA, Baker discloses this limitation.

EX1006, ¶¶189-192.

[1(d)(iii)] the database entry indexed by a particular set of index values
including an indication of validity,

According to the ‘725 Patent, each LUT entry includes a “node code” that

indicates the validity of the contents. EX1033 at 39:39-50, 35:4-11, 14:57-61. A

“protocol” node code indicates a recognized protocol. Id. A “null” node code

indicates “that there is no valid entry.” Id.

 35

As discussed above, the Baker multi-protocol lookup structure entries are

indexed by a valid protocol identification value. See Elements 1(d)(i)-(ii) above;

also EX1006, ¶¶151-156, 170-172, 194. Entries also include a “prot” variable

(“Protocol” of Table 4 and Figs. 4D, 5C-5E) that, similar to the ‘725 Patent “node

code,” has one of two values: (1) a pointer to a protocol record, indicating the

protocol that has been recognized as the next/child protocol; or (2) a “null” code

indicating an “unknown” or “illegal” entry (i.e., there is no valid entry):

EX1038 at Fig. 5C.

Id. at Fig. 5D; also Fig. 5E, Table 4 (describing “Protocol” variable as “pointer to

protocol description structure”); see Element 1(d)(i); EX1006, ¶195.

 36

 During parsing, the value_ok function (also called the ValidateValue control

logic) uses an extracted value as an index to the lookup structure to determine if

the value is for a valid protocol.

“Values or ranges of values found in configured lookup structures are

considered to be valid. The Prot and NextIndex values associated with a

value or range found are used to specify NextProtocol, the protocol

description (at 308) to be used after current protocol header parsing is

completed, and the index of the next field (at 310) is used to determine where

parsing of the current protocol will continue after the current field. …

The ValidateValue control logic returns an updated CurField value (at 312

and 316) together with a valid/invalid indication, and where indicated (at

308) may return an updated value for NextProtocol.”

EX1038 at 29:17-31.

 37

EX1038 at 175:35-176:24 (value_ok sub-function searches lookup array at the

indexed location corresponding to the extracted value (array[value]), tests whether

value is valid entry, and returns a valid/invalid indication to main value_ok

function); also 64:25-38, 29:1-31, Fig. 13 (step 214), Fig. 14; EX1006, ¶¶170-172.

 38

EX1038 at 146:19-25 (if valid entry indication returned from value_ok sub-

function, main value_ok function sets local next protocol variable to “prot”

variable of the valid entry and returns valid indication); also Fig. 14 (steps 306,

308, 310, 312); EX1006, ¶174. In light of the above, and as explained by a

POSITA, Baker discloses this limitation. EX1006, ¶¶193-196.

[1(d)(iv)] wherein the child protocol related information includes a child
recognition pattern,

Baker’s “Generic Protocol” (GP) defines three fields of a packet (Frame

Type, Source Socket, Destination Socket) that may lead to identification of the

child protocol:

 39

EX1038 at Fig. 5A; see also Element 1(b)(i)-(ii). When stored in the field sub-

record array, each of these three field records includes a ptr2np pointer to an

associated next protocol lookup array (depicted in Figs. 5C-5E). See Element

1(d)(i); EX1006, ¶¶198-199. Each of these lookup structures includes multiple

protocol entries over a range of corresponding valid values for the associated

protocol. See, e.g.,

EX1038 at Fig. 5C; also Figs. 5D-5E; EX1006, ¶199. Each lookup structure is

stored as an array, indexed by a valid protocol identification value (i.e., child

recognition pattern). See Element 1(d)(i); EX1006, ¶¶151-156, 199. For example,

as depicted in Fig. 5C, Baker discloses that the child protocol (e.g., GP1) of a

particular protocol (e.g., GP), is indicated by a child recognition pattern (e.g., 0x01

(hex)). Compare EX1038 at Fig. 5C-5E with EX1033 at 35:23-30; EX1006, ¶200.

In light of the above, and as explained by a POSITA, Baker discloses this

limitation. EX1006, ¶¶197-202.

[1(e)] wherein step (c) of performing the protocol specific operations includes,
at any particular protocol layer level starting from the base level, searching

 40

the packet at the particular protocol for the child field, the searching
including indexing the data structure until a valid entry is found,

 Baker discloses performing protocol specific operations starting from the

“base” level (e.g., Ethernet). See Element 1(c). Such operations include, at any

level, searching the packet for fields that include information on the child protocol.

Namely, Baker discloses ParseFields control logic, that iterates through fields of a

packet that are defined in an associated indexed field array of a particular protocol

description record in accordance with Fig. 13. EX1038 at Fig. 13; EX1006, ¶¶166-

168. For each field that is to be parsed in accordance with the protocol description

and starting at index (i=0) of the field sub-records array, the ParseFields control

logic initiates the get_value function (also called the GetValue control logic) to

determine the location of the field in the packet and extract a value from the field.

EX1038 at 64:11-18, EX1006, ¶¶168-169; See Element 1(c). If the field includes a

child recognition pattern (see Element 1(d)(iv)), Baker initiates the value_ok

function (also called the ValidateValue control logic) to use the extracted value as

an index to the associated lookup array and determine if the value is for a valid

protocol. See Element 1(d)(iii). If the currently parsed field either doesn’t contain

a child recognition pattern or the value_ok function determines that there is not a

valid entry for the child recognition pattern, the index used to increment through

the field array is incremented by 1 and the ParseFields logic continues by parsing

 41

the next field of the field array. EX1038 at 146:9-18, 64:11-13, 29:7-16, Figs. 13,

14; EX1006, ¶¶170-172.

If at any point, the currently parsed field includes a child recognition pattern

and the value_ok function determines that it is associated with a valid child

protocol, the NextProtocol variable is set to the associated protocol description that

will be used to parse the next layer of the packet for the “first valid field parsed in

a protocol that specifies the NextProtocol.” EX1038 at 146:19-25, 29:17-31, Fig.

14; EX1006, ¶¶172-174. The ParseFields logic continues implementing the

get_value and value_ok functions in this way until a valid child protocol is

identified or when processing otherwise is terminated, at which point, parsing of

the next layer protocol continues in accordance with the identified NextProtocol

protocol description using the ParseFields logic. EX1038 at 64:11-13, 36:13-17,

Figs. 11, 13; EX1006, ¶¶176, 168-175, 161-165. In this way, the Baker control

logic “systematically parses through each network frame (at 104 to 108 and 128)

until all known protocol headers have been parsed” at which point “[a]ny

remaining frame bits are parsed as application data (at 110, 112 and 130) and/or

pad data (at 114, 116 and 132).” EX1038 at 36:32-36; also Figs. 11-16; EX1006,

¶¶162.

Accordingly, Baker discloses searching the packet at the particular protocol

for a field that includes a child recognition pattern (i.e., the child field). This

 42

search includes indexing until a valid entry is found at least because fields of the

protocol are searched by searching the packet for the field indicated by the indexed

field array entry, and incrementing the field array index until the field contains a

child recognition pattern (i.e., until a field includes a valid “ptr2np” entry).

EX1006, ¶¶204-205, 176.

Baker also discloses searching the packet at the particular protocol for a field

that includes a valid child recognition pattern (i.e., the child field). This search

includes indexing until a valid entry is found at least because, for multi-protocol

lookups, Baker uses an extracted child recognition pattern as an index to the

associated lookup array and determines if the child recognition pattern is valid.

EX1006, ¶¶170-172, 190, 206; see also Element 1(d)(iv). Searching (i.e.,

incrementing the field array index, extracting value, determining validity)

continues until a valid child recognition pattern is found. EX1006, ¶206.

[1(f)] and whereby the data structure is configured for rapid searches using
the index set.

It is Petitioners position that the data structure being configured for “rapid”

searches is not entitled to any patentable weight because it claims a desired a result.

See Section II.B.2.d. Baker discloses a data structure configured for searches using

the index set. See Elements 1(e), 1(d)(ii). However, if “rapid” searches is deemed

to be limiting, a POSITA understands that Baker discloses the same within the

 43

meaning of the ‘725 Patent. EX1006, ¶¶209-210. Namely, the ‘725 patent

discloses “rapid searches using the index set” in the following context:

“An alternate embodiment of the data structure used in database 308 is

illustrated in FIG. 18B. [T]he data structure permits rapid searches to be

performed by the pattern recognition process 304 by indexing locations in a

memory rather than performing address link computations. …

The pattern matching is carried out by finding particular “child recognition

codes” in the header fields, and using these codes to index one or more of

the LUT's.”

EX1033 at 14:33-62. The Baker data structure uses a child recognition

code/pattern (see Element 1(d)(iv)) to index multi-protocol next protocol lookup

arrays in the exact same way. EX1038 at 177:4-26; EX1006, ¶210. Additionally,

searching the Baker multi-protocol lookup arrays is performed by indexing

locations in memory rather than performing address link computations. EX1038 at

64:25-38, 175:35-176:24, 29:1-31, Fig. 13 (step 214), Fig. 14 (value_ok function

uses extracted value as index to lookup structure to determine if value is for a valid

protocol); EX1006, ¶¶170-172, 210. Searching the Baker multi-protocol lookup

arrays is the same as searching the Lookup Tables of the ‘725 Patent. Compare

Baker as discussed above with EX1033 at 14:33-62; EX1006, ¶¶209-210.

Accordingly, searching the Baker multi-protocol lookup arrays by indexing

locations in memory is a “rapid search” using the child recognition pattern index

set within the meaning of the ‘725 patent. EX1006, ¶¶209-210.

 44

Claim 2. A method according to claim 1, wherein the protocol descriptions are
provided in a protocol description language, the method further comprising:
compiling the PDL descriptions to produce the database.

Each of Baker’s PDF files describes a protocol that may be used in packets

encountered by the monitor. EX1038, Baker at 11:22-25 (“[E]ach of these protocol

description records with its associated field, statistics, lookup, and filter record

information is also written to a protocol specific protocol description file (PDF).”);

EX1006, ¶213. Each PDF describes commands for determining the length of the

header. Compare EX1033 at 48:41-50 (describing “HEADER” attribute), column

73 (“HEADER { LENGTH=14 }”) with EX1038 at Table 1 (“numBits” attribute),

11:32 (describing “numbBits” attribute as “the total bit length of the protocol

header”), 57:1; EX1006, ¶214. Each PDF describes commands for defining the

fields within the protocol header. Compare EX1033 at 47:34-48:18 (describing

“PROTOCOL” definition), column 79 (PROTOCOL section provides “Detailed

packet layout for the IP datagram. This includes all fields and format. All offsets

are relative to the beginning of the header.”) with EX1038 at Table 1 (“fields”

attribute), Table 2 (“fblen” and “fdwoff” attributes), 11:49-50 (describing “fblen”

attribute as “the length of the field in bits” and “fdwoff” attribute as “the byte

offset from the start of protocol header”), 11:36-40, 147:35-36; EX1006, ¶215.

Further, each PDF describes commands for determining the protocols used at the

next layer. Compare EX1033 at 49:45-55 (“CHILDREN” attribute used to “used

 45

to describe how children protocols are determined.”), column 79 (“CHILDREN

{ DESTINATION=Protocol }”) with EX1038 at Table 2 (“ptr2np” attribute

includes a “pointer to lookup structure/class … next protocol definition to use (0 =

none)”), Table 4 (“Protocol” attribute describing “pointer to protocol description”),

8:13-15, 148:10-12, 165:37-166:5, 177:4-26; EX1006, ¶216. A POSITA

recognizes that Baker’s PDFs are written in a protocol description language.

EX1006, ¶¶212-217

Consistent with the compilation process disclosed in the ‘725 Patent, Baker

discloses implementation of the system on a network device capable of storing

programmably configurable PDFs and programmed to run an

initialization/compilation process to produce the searchable and indexed database

discussed throughout claim 1:

“[T]he initialization of the system includes a determination of the presence

of PDF files and the extraction of the protocol and associated control record

information from all of the PDF files found. The number of PDF files is

determined, and a ProtocolList is constructed consisting of a sorted vector

of protocol records at least the size of the number of PDF files found. The

name of each protocol record found is inserted in the ProtocolList. The PDF

files are then read to memory in the sequence described above for the PDF

file writing. The lookup records that indicate a next protocol are associated

with the appropriate entries in the ProtocolList.”

 46

EX1038 at 12:7-18; also 2:63-3:7, 11:26-12:6; EX1006, ¶¶143-156, 219; see also

EX1033 at 9:22-27 (“Both the pattern information for parsing and the related

extraction operations, e.g., extraction masks, are supplied from a parsing-pattern-

structures and extraction-operations database (parsing/extractions database) 308

filled by the compiler and optimizer 310.”), 9:42-44, 9:53-54, 22:7-10, 13:53-57,

14:63-15:17, Fig. 4.

V. MANDATORY NOTICES UNDER 37 C.F.R. § 42.8(A)(1)

A. Real Party-In-Interest and Related Matters

Petitioners are the real parties-in-interest. 37 C.F.R. § 42.8(b)(1). The ‘725

Patent is the subject of a lawsuit filed by Patent Owner against Petitioners in the

U.S. District Court for the Eastern District of Texas. EX1019; 37 C.F.R.

§ 42.8(b)(2). The ‘725 Patent is also the subject of one other pending lawsuit and

numerous terminated lawsuits, a full list of which can be found at EX1020. 37

C.F.R. § 42.8(b)(2). In addition, Petitioners have filed IPRs on the related ‘646,

‘751, ‘789, and ‘099 Patents. See IPR2017-00450, IPR2017-00451, IPR2017-

00629, IPR2017-00630, IPR2017-00769. Petitioners are concurrently filing a

petition for IPR on additional claims of the ‘725 Patent. See IPR2017-00862.

B. Lead and Back-Up Counsel Under 37 C.F.R. § 42.8(b)(3)

Petitioners provide the following designation and service information for

lead and back-up counsel.

Eric A. Buresh (Reg. No. 50,394) (LEAD)

 47

eric.buresh@eriseip.com
Mark C. Lang (Reg. No. 55,356) (Back-Up)

mark.lang@eriseip.com
Kathleen D. Fitterling (Reg. No. 62,950) (Back-Up)

kathleen.fitterling@eriseip.com
6201 College Blvd., Suite 300
Overland Park, Kansas 66211
Telephone: (913) 777-5600

Fax: (913) 777-5601

Abran J. Kean, Reg. No. 58,540 (Back-Up)
abran.kean@eriseip.com

5600 Greenwood Plaza Blvd., Suite 200
Greenwood Village, CO 80111

Phone: (913) 777-5600

C. Payment of Fees Under 37 C.F.R. § 42.103

The undersigned submitted payment by deposit account with the filing of

this Petition authorizing the Office to charge fees required under 37 C.F.R.

§ 42.103(a) and 42.15(a).

VI. CONCLUSION

Petitioners respectfully request that claims 1-2 of the ‘725 Patent be

canceled.

Date: February 9, 2017 Respectfully submitted,
 ERISE IP, P.A.

 BY: /s/ Eric A. Buresh/
 Eric A. Buresh, Reg. No. 50,394

Mark C. Lang, Reg. No. 55,356
Kathleen D. Fitterling, Reg. No. 62,950

 6201 College Blvd., Suite 300
 Overland Park, KS 66211

 48

 P: (913) 777-5600
F: (913) 777-5601

 eric.buresh@eriseip.com
 mark.lang@eriseip.com

kathleen.fitterling@eriseip.com

Abran J. Kean, Reg. No. 58,540
5600 Greenwood Plaza Blvd., Suite 200
Greenwood Village, CO 80111
Phone: (913) 777-5600
abran.kean@eriseip.com

 ATTORNEYS FOR PETITIONERS

APPENDIX OF EXHIBITS

EX1001 RESERVED
EX1002 U.S. Patent No. 6,839,751 (“the ‘751 Patent”) to Dietz, et al.,

filed on June 30, 2000, and issued on January 4 ,2005
EX1003 RESERVED
EX1004 RESERVED
EX1005 U.S. Provisional App. No. 60/141,903, filed on June 30, 1999
EX1006 Expert Declaration of Bill Lin
EX1007 RESERVED
EX1008 RESERVED
EX1009 RESERVED
EX1010 RESERVED
EX1011 RESERVED
EX1012 RESERVED
EX1013 RESERVED
EX1014 RESERVED
EX1015 RESERVED
EX1016 RESERVED
EX1017 RESERVED
EX1018 RESERVED
EX1019 Complaint in Packet Intelligence, LLC v. Sandvine Corporation,

et al., Case No. 2:16-cv-147 (E.D. Tex.)
EX1020 Listing of Cases Involving Challenged Patent
EX1021 RFC 1067, “A Simple Network Management Protocol,”

published August 1988 by Network Working Group
EX1022 RFC 1271, “Remote Network Monitoring Management

Information Base,” published November 1991 by Network
Working Group

EX1023 RFC 1757, “Remote Network Monitoring Management
Information Base,” published February 1995 by Network
Working Group

EX1024 RFC 2012, “SNMPv2 Management Information Base for the
Transmission Control Protocol using SMIv2,” published
November 1996 by Network Working Group

EX1025 RESERVED
EX1026 RESERVED

EX1027 RESERVED
EX1028 Harry Newton. 1996. Newton’s Telecom Dictionary (11th ed.).

Flatiron Publishing, Inc., Command Web, New Jersey, USA, pp.
48, 169.

EX1029 RESERVED
EX1030 RESERVED
EX1031 RESERVED
EX1032 RESERVED
EX1033 U.S. Patent No. 6,665,725 (“the ‘725 Patent”) to Dietz, et al.,

filed on June 30, 2000, and issued on December 16, 2003
EX1034 RESERVED
EX1035 RESERVED
EX1036 RESERVED
EX1037 RESERVED
EX1038 International Publication No. WO 97/23076 to Baker, et al.

(“Baker”), filed on December 13, 1996, and published on June 26,
1997, with corrected figures published on October 16, 1997, with
corrected figures published on October 16, 1997, and claiming
priority to U.S. Application Ser. No. 08/575,506 filed on
December 20, 1995

EX1039 ‘725 Patent File History
EX1040 IEEE Std 802.3 – 2012, “IEEE Standard for Ethernet,” published

December 28, 2012, pp. 53-58
EX1041 IEEE Std 802.3x-1997 and IEEE Std 802.3y-1997, “IEEE

Standards for Local and Metropolitan Area Networks:
Supplements to Carrier Sense Multiple Access with Collision
Detection (CSMA/CD) Access Method and Physical Layer
Specifications—Specification for 802.3 Full Duplex Operation
and Physical Layer Specification for 100 Mb/s Operation on Two
Pairs of Category 3 or Better Balanced Twisted Pair Cable
(100BASE-T2),” approved March 20, 1997 by IEEE Standards
Board and September 5, 1997 by American National Standards
Institute, pp. 28-32

EX1042 RFC 894, “A Standard for the Transmission of IP Datagrams over
Ethernet Networks,” published April 1984 by Network Working
Group

EX1043 RFC 1010, “Assigned Numbers,” published May 1987 by
Network Working Group

EX1044 RFC 791, “Internet Protocol DARPA Internet Program Protocol
Specification,” published September 1981

EX1045 RFC 793, “Transmission Control Protocol DARPA Internet
Program Protocol Specification,” published September 1981

EX1046 RFC 768, “User Datagram Protocol,” published August 28, 1980
EX1047 RESERVED

CERTIFICATE OF COMPLIANCE

Pursuant to 37 C.F.R. § 42.24(d), I hereby certify that this Petition complies

with the type-volume limitation of 37 C.F.R. § 42.24(a)(1)(i) because it contains

8,221 words as determined by the Microsoft® Office Word word-processing

system used to prepare the brief, excluding the parts of the brief exempted by 37

C.F.R. § 42.24(a)(1).

 /s/Eric A. Buresh/
 Eric A. Buresh

CERTIFICATE OF SERVICE ON PATENT OWNER
UNDER 37 C.F.R. § 42.105(a)

Pursuant to 37 C.F.R. §§ 42.6(e) and 42.105(b), the undersigned certifies

that on February 9, 2017, a complete and entire copy of this Petition for Inter
Partes Review was provided via Federal Express to the Patent Owner by serving
the correspondence address of record for the ‘725 Patent and Patent Owner’s
litigation counsel:

Meunier Carlin & Curfman LLC
999 Peachtree Street NE
Suite 1300
Atlanta, GA 30309

Steven W. Hartsell
SKIERMONT DERBY LLP
2200 Ross Avenue, Suite 4800W
Dallas, Texas 75201

 ERISE IP, P.A.

 BY: /s/ Mark C. Lang/
 Eric A. Buresh, Reg. No. 50,394

Mark C. Lang, Reg. No. 55,356
 Kathleen D. Fitterling, Reg. No. 62,950

6201 College Blvd., Suite 300
 Overland Park, KS 66211
 P: (913) 777-5600

F: (913) 777-5601
 eric.buresh@eriseip.com
 mark.lang@eriseip.com
 kathleen.fitterling@eriseip.com

Abran J. Kean, Reg. No. 58,540
5600 Greenwood Plaza Blvd., Suite 200
Greenwood Village, CO 80111
Phone: (913) 777-5600

 ATTORNEYS FOR PETITIONERS

