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I, Bill Lin, hereby declare the following: 

I. BACKGROUND AND EDUCATION 

1. My name is Bill Lin, and I am a Professor of Electrical and Computer 

Engineering and an Adjunct Professor of Computer Science and Engineering at the 

University of California, San Diego. 

2. I received a Bachelor of Science in Electrical Engineering and 

Computer Sciences from University of California, Berkeley in May 1985; a 

Masters of Science in Electrical Engineering and Computer Sciences from the 

University of California, Berkeley in May 1988; and a Ph.D. in Electrical 

Engineering and Computer Sciences from the University of California, Berkeley in 

May 1991.  Although I discuss my expert qualifications in more detail below, I 

also attach as Appendix A a recent and complete curriculum vitae, which details 

my educational and professional background and includes a selected listing of my 

relevant publications. 

3. I have been involved in research and technology in all aspects of 

computer networking and computer design problems, including the design of data 

networks, high-performance switches and routers, high-performance packet 

monitoring and measurements, many-core processors, and systems-on-chip 

designs. 
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4. I am a named inventor on five patents in the field of computer 

engineering, including several patents in the field of computer networking, and I 

have published over 170 journal articles and conference papers in top-tier venues 

and publications. 

5. I have also served or am currently serving as Associate Editor or 

Guest Editor for 3 ACM or IEEE journals, as General Chair on 4 ACM or IEEE 

conferences, on the Organizing or Steering Committees for 6 ACM or IEEE 

conferences, and on the Technical Program Committees of over 44 ACM or IEEE 

conferences. 

6. In summary, I have over 25 years of experience in research and 

development in the areas of computer networking and computer design.  

7. I have been retained by Erise IP, PA on behalf of Sandvine 

Corporation and Sandvine Incorporated ULC and am submitting this declaration to 

offer my independent expert opinion concerning certain issues raised in the 

Petition for inter partes Review (“Petition”).  My compensation is not based on the 

substance of the opinions rendered here.  As part of my work in connection with 

this matter, I have studied U.S. Patent No. 6,665,725 (“the ‘725 patent”), including 

the respective written descriptions, figures, claims, in addition to the original file 

history.  Moreover, I have reviewed the two Petitions for Inter Partes Review of 
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the ‘725 patent and I have also carefully considered the following references 

discussed in the Petitions, in addition to all of the materials cited herein: 

• U.S. Patent No. 6,115,393 to Engel et al. (“Engel”), entitled “Network 
Monitoring,” filed July 21, 1995 and issued September 5, 2000 
[EX1007], including Engel’s Appendix VI (cited in Engel at 1:10-15, 
6:1-3, 43:25-56) [EX1009] 

• International Patent Pub. No. WO 97/23076 to Baker et al. (“Baker”), 
entitled “System and Method for General Purpose Network Analysis,” 
filed December 13, 1996 and issued June 26, 1997 [EX1038]  

II. LEGAL FRAMEWORK 

8. I have been informed by counsel and understand that the first step in 

an unpatentability analysis involves construing the claims, as necessary, to 

determine their scope.  And, second, the construed claim language is then 

compared to the disclosure of the prior art.  In proceedings before the United States 

Patent and Trademark Office, I have been informed that the claims of an unexpired 

patent are to be given their broadest reasonable interpretation in light of the 

specification from the perspective of a person of ordinary skill in the art at the time 

of the invention. I have been informed that the ‘725 Patent is unexpired. 

9. In comparing the claims of the ‘725 Patent to the prior art, I have 

carefully considered the ‘725 Patent and its prosecution history based upon my 

experience and knowledge in the relevant field. In my opinion, the broadest 

reasonable interpretation of the claim terms of the ‘725 Patent is generally 

consistent with the ordinary and customary meaning of those terms, as one skilled 
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in the relevant field would understand them at the time of the invention.  For 

purposes of this proceeding, I have applied the claim constructions set forth in the 

claim construction section of the IPR Petition that this declaration accompanies 

when analyzing the prior art and the claims.  For those terms that have not 

expressly been construed, I have applied the meaning of the claim terms of the 

‘725 Patent that is generally consistent with the terms’ ordinary and customary 

meaning, as a person of ordinary skill in the art would have understood them at the 

time of the invention. 

10. I have been informed by counsel that there are two ways in which a 

prior art patent or printed publication can be used to invalidate a patent. First, the 

prior art can be shown to “anticipate” the claim. Second, the prior art can be shown 

to “render obvious” the claim. My understanding of the two legal standards is set 

forth below. 

11. I have been informed by counsel that, in general, for a patent claim to 

be invalid as “anticipated” by the prior art, each and every feature of the claim 

must be found, expressly or inherently, in a single prior art reference or product 

arranged as in the claim. Claim limitations that are not expressly found in a prior 

art reference are inherent if the prior art necessarily functions in accordance with, 

or includes, the claim limitations. 
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12. I have also been informed by counsel that an inventor is not entitled to 

a patent if his or her invention would have been obvious to a person of ordinary 

skill in the field of the invention at the time the invention was made. I understand 

that a patent claim is not patentable under 35 U.S.C. § 103 if the differences 

between the patent claim and the prior art are such that the claimed subject matter 

as a whole would have been obvious at the time the claimed invention was made to 

a person having ordinary skill in the art to which the subject matter pertains.  

Obviousness, as I understand it, is based on the scope and content of the prior art, 

the differences between the prior art and the claim, the level of ordinary skill in the 

art, and, to the extent that they exist and have an appropriate nexus to the claimed 

invention (as opposed to prior art features), secondary indicia of non-obviousness. 

13. I have been informed that whether there are any relevant differences 

between the prior art and the claimed invention is to be analyzed from the view of 

a person of ordinary skill in the art at the time of the invention, in this case June 

30, 1999.  As such, my opinions below as to a person of ordinary skill in the art are 

as of the time of the invention, even if not expressly stated as such; for example, 

even if stated in the present tense. 

14. In analyzing the relevance of the differences between the claimed 

invention and the prior art, I have been informed that I must consider the impact, if 

any, of such differences on the obviousness or non-obviousness of the invention as 
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a whole, not merely some portion of it.  The person of ordinary skill faced with a 

problem is able to apply his or her experience and ability to solve the problem and 

also look to any available prior art to help solve the problem. 

15. An invention is obvious if a person of ordinary skill in the art, facing 

the wide range of needs created by developments in the field, would have seen an 

obvious benefit to the solutions tried by the applicant.  When there is a design need 

or market pressure to solve a problem and there are a finite number of identified, 

predictable solutions, it would be obvious to a person of ordinary skill to try the 

known options.  If a technique has been used to improve one device, and a person 

of ordinary skill in the art would recognize that it would improve similar devices in 

the same way, using the technique would have been obvious. 

16. It is my understanding that a precise teaching in the prior art directed 

to the subject matter of the claimed invention is not needed and that one may take 

into account the inferences and creative steps that a person of ordinary skill in the 

art would have employed in reviewing the prior art at the time of the invention.  

For example, if the claimed invention combined elements known in the prior art 

and the combination yielded results that were predictable to a person of ordinary 

skill in the art at the time of the invention, then this evidence would make it more 

likely that the claim was obvious.  On the other hand, if the combination of known 

elements yielded unexpected or unpredictable results, or if the prior art teaches 
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away from combining the known elements, then this evidence would make it more 

likely that the claim that successfully combined those elements was not obvious. 

17. I understand that hindsight must not be used when comparing the 

prior art to the invention for obviousness. 

18. It is my understanding that obviousness may also be shown by 

demonstrating that it would have been obvious to modify what is taught in a single 

piece of prior art to create the subject matter of the patent claim.  Obviousness may 

be shown by showing that it would have been obvious to combine the teachings of 

more than one item of prior art.  In determining whether a piece of prior art could 

have been combined with other prior art or combined with or modified in view of 

other information within the knowledge of one of ordinary skill in the art, the 

following are examples of approaches and rationales that may be considered: 

• Combining prior art elements according to known methods to yield 
predictable results;  

• Simple substitution of one known element for another to obtain 
predictable results;  

• Use of a known technique to improve similar devices (methods, or 
products) in the same way;  

• Applying a known technique to a known device (method, or product) 
ready for improvement to yield predictable results;  

• Applying a technique or approach that would have been "obvious to 
try" (choosing from a finite number of identified, predictable solutions, 
with a reasonable expectation of success);  
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• Known work in one field of endeavor may prompt variations of it for 
use in either the same field or a different one based on design 
incentives or other market forces if the variations would have been 
predictable to one of ordinary skill in the art; or  

• Some teaching, suggestion, or motivation in the prior art that would 
have led one of ordinary skill to modify the prior art reference or to 
combine prior art reference teachings to arrive at the claimed 
invention.  

19. I understand that the rationale for modifying a reference and/or 

combining references may come from sources such as explicit statements in the 

prior art, or the knowledge of one of ordinary skill in the art, including any need or 

problem known in the field at the time, even if different from the specific need or 

problem addressed by the inventor of the patent claim. 

III. LEVEL OF A PERSON HAVING ORDINARY SKILL IN THE ART 

20. I understand that the factors considered when determining the 

ordinary level of skill in the art include the complexity of the technology involved 

at the time of the alleged invention, the types of problems faced in the art at that 

time, prior art solutions to those problems, and the educational level of active 

workers in the field. As discussed throughout this declaration, I am familiar with 

each of these factors. See, e.g., Section VI (discussing the state of the art and 

technology involved at the time of the alleged invention).  

21. It is my opinion that a person having ordinary skill in the art at the 

time of the alleged invention of the ‘725 patent (June 30, 1999) would have had at 

least a bachelor’s degree, or equivalent, in electrical engineering, computer 
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engineering, computer science, or a related field or an equivalent number of years 

of working experience, and one to two years of experience in networking 

environments, including at least some experience with network traffic monitors, 

analyzers, and/or firewalls or other intrusion detection systems. 

22. As demonstrated by my experience above, I more than meet the 

definition of one of ordinary skill in the art. In addition, throughout the 1990s and 

2000s, I worked with numerous people of ordinary skill in the field in question. 

IV. OVERVIEW OF THE ‘725 PATENT 

23. On its face, the ‘725 Patent is directed to a method of performing 

protocol specific operations on a packet. EX1033, ‘725 patent at Abstract.  The 

method includes performing various functions such as receiving the packet and a 

set of protocol descriptions for protocols that may be used in the packet and 

performing protocol specific operations on the packet based on the protocol 

descriptions.  Id.  The protocol description includes child protocols, information 

related to the location of the child protocol, and any protocol specific operations to 

be performed on the packet for the particular protocol at a particular layer level.  

Id.  The protocol specific operations may also include state processing operations.  

Id.   

24. An exemplary implementation of the disclosed system is shown in 

Fig. 4: 
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V. OVERVIEW OF THE RELEVANT FILE HISTORIES 

25. The ‘725 Patent was filed on June 30, 2000 with 18 claims. See 

EX1039, June 30, 2000 As-Filed ‘725 Application.   

26. The Examiner rejected claims 1 and 16 under § 112 as indefinite, 

requesting that the term “none or more” be changed to “one or more.” The 

Examiner also rejected claims 1-3, 13, 14, 17, and 18 as anticipated by Bruell.  

EX1039, June 4, 2003 Rejection.  The Examiner objected to claims 4-11 and 15 as 
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being dependent upon rejected base claims, but indicated that they would be 

allowable if rewritten in independent form noting that the prior art did not disclose 

a network monitor for analyzing different packets or frame formats for performing 

specific operations comprising a combination of, among other things: 

• Storing a database in a memory, the database generated from the set 
of protocol descriptions and including a data structure containing 
information on the possible protocols and organized for locating the 
child protocol related information for any protocol, the data structure 
contents indexed by a set of one or more indices, the database entry 
indexed by a particular set of index values including an indication of 
validity, wherein the child protocol related information includes a 
child recognition pattern, wherein step (c) of performing the protocol 
specific operations includes, at any particular protocol layer level 
starting from the base level, searching the packet at to the particular 
protocol for the child field, the searching including indexing the data 
structure until a valid entry is found, and whereby the data structure is 
configured for rapid searches using the index set. 

• Looking up a flow-entry database comprising one or more flow-
entries, at least one flow-entry for each previously encountered 
conversational flow, the looking up using at least some of the selected 
packet portions and determining if the packet matches an existing 
flow-entry; if the packet is of an existing flow, classifying the packet 
as belonging to the found existing flow; and if the packet is of a new 
flow, storing a new flow-entry for the new flow in the flow-entry 
database, including identifying information for future packets to be 
identified with the new flow-entry, wherein the parsing and extraction 
operations depend on the contents of one or more packet headers. 
 

EX1039, June 4, 2003 Rejection.  

27. In response, Applicants cancelled independent claim 1 and amended 

the remaining claims. EX1039, June 13, 2003 Response. Applicants asserted that 

the rejection of claims 13, 17, and 18 was erroneous, distinguishing Bruell from 
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the purported invention on numerous grounds, including that Bruell does not form 

a function of the selected portions for identifying the packet as belonging to 

conversational flow and does not perform processing that is a function of the state 

of the flow of the packet.  See June 13, 2003 Response. Applicants subsequently 

filed a supplemental response amending claim 18. EX1039, June 27, 2003 

Supplemental Response.  

28. The Examiner issued a Notice of Allowance without any further 

explanation.  EX1039, July 1, 2003 Notice of Allowance. 

VI. BACKGROUND ON RELEVANT TECHNOLOGIES 

29. As discussed above, the subject matter of the ‘725 patent generally 

relates to the field of network monitoring of computer networks.  To better 

understand my opinions on the inventions claimed in the ‘725 patent and their 

relation to Engel and Baker, I provide below some background on computer 

networking, network monitoring, and content addressable memories. 

A. Computer Networking and Protocol Layers 

30. Computer networks based on layered protocol architectures have been 

well-known since at least the 1970s.  The two most dominant models of protocol 

layers are the OSI model and the Internet model.  Both models were defined in 

1970s.  The OSI model defines a seven-layer protocol stack whereas the Internet 

model defines a simpler five-layer protocol stack.   
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31. The Internet model is illustrated in Figure 1(a) below.  The physical 

layer is concerned with the low-level details of transmitting raw bits over some 

physical medium (e.g., fiber optics, copper cables, or radio frequency 

transmissions). 

 

Figure 1: The Internet protocol stack (a) and OSI model (b). 

32. The link layer is responsible for controlling access to an individual 

network by a host or transferring data between two hosts on the same network.  

Examples of link layer protocols include Ethernet and WiFi.  Such networks are 

commonly referred to as Layer 2 networks. 

33. For reasons that are beyond the scope of this matter, there are 

practical limits on the size of each individual network, and the individual networks 

may use different addressing schemes or frame formats, or more broadly, different 

link layer protocols.  Therefore, an internetworking protocol layer is needed so that 
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larger networks can be formed from individual networks that may span far 

geographical distances. 

34. This is the role of the network layer in the Internet protocol stack, and 

the network-layer protocol for the Internet is called the IP protocol (Internet 

Protocol).  Among other functions, the IP protocol provides a uniform addressing 

scheme across the Internet so that hosts on different networks can talk to each 

other.  The IP protocol layer is commonly referred to as Layer 3, and the Layer 3 

interconnection devices that are used to internetwork individual networks are 

commonly referred to as routers, which are responsible for forwarding (routing) 

packets across network boundaries. 

35. While the IP protocol layer provides for Internet addressing and 

routing functions, the transport layer is concerned with the end-to-end transport of 

application-layer messages between application end-points.  The two most widely 

used transport protocols are TCP and UDP, either of which can be used to transport 

application-layer messages.  Whereas TCP provides a connection-oriented service 

to its applications that includes guaranteed delivery and congestion control, UDP 

provides a simpler connectionless service that does not provide for reliability or 

flow control. 
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36. Finally, the application layer is concerned with the application itself.  

Examples of application layer protocols include HTTP (for web browsing), SMTP 

(for emails), and FTP (for file transfers). 

37. The seven-layer OSI reference model is illustrated in Figure 1(b) 

above.  Five of the OSI model layers have roughly the same functions as their 

similarly named counterparts in the Internet model (namely, the physical, link, 

network, transport, and application layers).  The OSI reference model has two 

additional layers, the session and presentation layers.  The session layer controls 

the connections between computers, and the presentation layer establishes context 

between application-layer entities.  These two layers are not present in the Internet 

model.  The Internet model assumes that the services associated with these two 

layers are built into the application if they are needed. 

B. Encapsulation 

38. To transport application-layer messages across the Internet using 

TCP/IP, the application-layer message is first encapsulated into TCP segments.  

Each TCP segment adds a TCP header, which contains information that the 

receiver-side will use for connection and application identification, sequencing, 

and reliable transmission.  The TCP segments are in turn encapsulated into IP 

(Layer 3) packets.  Each IP packet adds an IP header, which contains, among other 

information, protocol identification information and the source and destination IP 
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addresses.  Finally, the IP packets are in turn encapsulated into Layer 2 frames for 

forwarding within a Layer 2 network.  Each Layer 2 frame adds a Layer 2 header, 

for example an Ethernet header if Ethernet is used.  Among other information, the 

Ethernet header contains a Layer 2 address, also referred to as a MAC (media 

access control) address.  This is illustrated in Figure 2 below.  Similar 

encapsulations are performed when using another transport-layer protocol like 

UDP. 

 

Figure 2: Encapsulation of TCP/IP. 

39. The ideas of encapsulation and de-encapsulation are well-known since 

at least the 1970s when the Internet protocol stack was first defined.  The various 

encapsulation steps are performed by the sending host as application messages go 

through the different protocols layers, with a layer-specific header added at each 

layer, before the final encapsulated packet leaves the host and enters the network.  

Similarly, on the receiving end, the host is responsible for de-encapsulating the 

received packet, extracting relevant header and payloads at each layer of the 

protocol stack, performing protocol specific operations, and passing the de-
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encapsulated packet up the next layer for further processing.  Since the de-

encapsulation of packets requires the parsing and extraction of packet headers and 

payloads, techniques for packet parsing and extraction of specific information 

(e.g., protocol identification, port numbers, and address fields, etc) were also well-

known since at least the 1970s. 

C. Network Monitoring 

40. The general goal of networking monitoring is to collect useful 

information from various parts of the network so that the network can be managed 

and controlled using the collected information.  Most of the network devices are 

located in remote locations.  Thus, network monitoring techniques have been 

developed to allow network management applications to check the states of remote 

network devices and collect information from them. 

41. SNMP (Simple Network Management Protocol) is an Internet-

standard protocol for collecting and organizing information about managed devices 

on IP networks and for modifying that information to change device behavior.  It 

was initially specified in RFC 1067 in August 1988.  (See EX1021, RFC 1067.)  

SNMP was further updated to version 2 in January 1996. 

42. In network monitoring using SNMP, monitored information is seen as 

a set of managed objects.  MIBs (Management Information Bases) define the sets 

of objects being monitored. 
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43. RMON (Remote Network Monitoring) is another important Internet 

standard that specifies how to monitor Internet traffic.  RMON was originally 

standardized by RFC 1271 (see EX1022, RFC 1271) in November 1991, but it was 

later updated by RFC 1757 in February 1995.  (See EX1023, RFC 1757.)  The 

overall goal for RMON is to allow RMON-compliant network monitoring devices 

to be constructed.  These devices are usually referred to as monitors or probes, 

which measure specific aspects of the network without interfering normal 

operations.  These devices are often stand-alone devices and located in remote 

parts of the network.  The RMON standard allows these devices to communicate 

over the network that they are monitoring. 

44. Starting in the 1995-1996 timeframe, network monitoring products 

capable of monitoring performance at the application-level were becoming 

commercially available. 

 “CoroNet’s CoroNet Management System (CMS) is a 
Windows-based management platform that ca also provide 
application-by-application fault and performance statistics across both 
LANs and WANs.” (See May 15, 1995, Network World, p. 17, 
available at: 
https://books.google.com/books?id=yBAEAAAAMBAJ&pg=PA37&
dq=%22coronet+management+system%22&hl=en&sa=X&ved=0ahU
KEwjDyuf_65TQAhXDKiYKHUJZDzEQ6AEIMTAF#v=onepage&
q=%22coronet%20management%20system%22&f=false) 

 
“The firm, which requested that its name not be mentioned, is 

using CoroNet Systems’s CoroNet Management System (CMS) to 
determine how much bandwidth a particular application is using.” 
(See May 1, 1995, Network World, p. 20, available at: 
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https://books.google.com/books?id=thIEAAAAMBAJ&pg=PA20&dq
=%22coronet+systems%22&hl=en&sa=X&ved=0ahUKEwj8z76K85
TQAhWBKyYKHUVgBEgQ6AEIHzAB#v=onepage&q=%22corone
t%20systems%22&f=false)  

 
“Compuware Corp. takes the mystery out of understanding and 

managing application-level performance in large complex enterprise 
networks with EcoNet 2.0… EcoNet’s differentiation (and strength) 
lies in its capability to effectively monitor network conversations at 
the application level.” (See September 30, 1996, InfoWorld, p. N/4, 
available at: 
https://books.google.com/books?id=LjoEAAAAMBAJ&pg=RA1-
PA53-
IA5&dq=%22Econet%22+compuware&hl=en&sa=X&ved=0ahUKE
wjUhrvB5pTQAhWEbSYKHSIfBx0Q6AEIPzAJ#v=onepage&q=%2
2Econet%22%20compuware&f=false)  

 
 “Compuware plans to announce Version 3.1 of EcoScope 3.1.  

The version has the capability to analyze application traffic at the 
protocol level, and also includes enhanced topology views and Web-
based reporting.” (See April 20, 1998, InfoWorld, p. 10, available at: 
https://books.google.com/books?id=vFAEAAAAMBAJ&pg=PA10&
dq=infoworld+compuware+1998&hl=en&sa=X&ved=0ahUKEwj3u8
6Ln7PQAhWM0YMKHRcaAMkQ6AEIOzAI%23v=onepage&q&f=
false)  

 

45. In response to the growing need for network monitoring at the 

application-level, the RMON standard was extended to add support for network- 

and application-layer monitoring, including classes of protocols at the network, 

transport, session, presentation, and application layers.  This extended RMON 

standard, known as RMON2, was standardized by RFC 2012 in January 1997.  

(See EX1024, RFC 2012.)  To cover network monitoring on higher layers of 

traffic, the RMON2 MIB added ten more groups, including groups that cover 
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Layer 3 traffic statistics and groups that cover traffic statistics by application 

protocols.   

D. Packet Specifications 

1. Ethernet Frame Format 

46. The figure below shows the fields of an Ethernet packet:   

 

EX1040, IEEE 802.3 Standard at p. 53; see also EX1041, IEEE 802.3 1997 

Standard at p. 28.  As depicted above and described in the IEEE 802.3 Standard 

(both in the current version of the standard (EX1040) and in the 1997 version of 

the Standard (EX1041)), the first field in an Ethernet frame is the Destination 

Address Field, which is a six-octet field indicating the station(s) for which the 

frame is intended. The second field in an Ethernet frame is the Source Address 
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Field, which is a six-octet field containing the physical address of the station 

sending the frame. IEEE 802.3 Standard at pp. 53, 54-55; IEEE 802.3 1997 

Standard at pp. 28, 29.   

47. The third field in an Ethernet frame is the Length/Type Field, which 

consists of a two-octet value used to determine whether the packet is an Ethernet II 

packet or an IEEE type packet.  If the value of this field is greater than or equal to 

1536 decimal (0600 hexadecimal), then the Length/Type field indicates that the 

packet is of type Ethernet II and the value of this field specifies the next layer 

protocol encapsulated in the Ethernet frame Data Field.  IEEE 802.3 Standard at 

pp. 53, 55, 28; IEEE 802.3 1997 Standard at pp. 28, 30.  I note that the ‘725 patent 

refers to this type of packet as “Ethernet Type/Version 2” and “Ethertype”:   

“An Ethernet packet (the root node) may be an Ethertype packet—also 
called an Ethernet Type/Version 2 and a DIX (DIGITAL-Intel-Xerox 
packet)—or an IEEE Ethernet (IEEE 803.x) packet. A monitor should be 
able to handle all types of Ethernet protocols. With the Ethertype protocol, 
the contents that indicate the child protocol is in one location, while with an 
IEEE type, the child protocol is specified in a different location. The child 
protocol is indicated by a child recognition pattern. 
 

* * * 
 
For an Ethertype packet 1700, the relevant information from the packet that 
indicates the next layer level is a two-byte type field 1702 containing the 
child recognition pattern for the next level. . . . The list 1712 shows the 
possible children for an Ethertype packet as indicated by what child 
recognition pattern is found offset 12.” 
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‘725 Patent at 33:7-45, 13:66-14:21.  If the Type Field of the Ethernet frame 

contains a value of hexadecimal 0800 (2048 decimal), then the next layer protocol 

is IP and the Ethernet frame Data Field will contain the IP header followed by the 

IP data.  EX1042, RFC 894 at p. 1 (“IP datagrams are transmitted in standard 

Ethernet frames. The type field of the Ethernet frame must contain the value 

hexadecimal 0800. The data field contains the IP header followed immediately by 

the IP data.”); EX1043, RFC 1010 at p. 14; ‘725 Patent at Fig. 17A (“IP = 

0x0800”), column 71 (etherType FIELD definition includes “ip(0x0800)”).  I note 

that the IP protocol has also been referred to as “DOD IP” and that, even when 

referred to as “DOD IP,” the Type Field value assigned is hexadecimal 0800 (2048 

decimal). RFC 1010 at p. 14.  If the Type Field of the Ethernet frame contains a 

value of hexadecimal 0806 (2054 decimal), then the next layer protocol is ARP. 

‘725 Patent at Fig. 17A (“ARP = 0x0806”), column 71 (etherType FIELD 

definition includes “arp(0x0806)”); RFC 1010 at p. 14. 

48. If the value of the Type/Length Field of the Ethernet frame is less than 

or equal to 1500 decimal (05DC hexadecimal), then the Length/Type field 

indicates that the packet is of type IEEE, such as 802.2 or 802.3, and the value of 

this field specifies the number of data octets contained in the subsequent Data Field 

of the basic frame (i.e., it indicates a “Length”).  IEEE 802.3 Standard at pp. 53, 
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55; IEEE 802.3 1997 Standard at pp. 28, 30.  The ‘725 patent refers to this type of 

packet as “IEEE type.”  

“In the case of the Ethernet, the next protocol field may indicate a length, 
which tells the parser that this is a IEEE type packet, and that the next 
protocol is elsewhere. Normally, the next protocol field contains a value 
which identifies the next, i.e., child protocol.” 
 

‘725 patent at 35:51-55; see also ‘725 Patent at 33:7-15 (reproduced above). 

2. IP Datagram 

49. The figure below shows the fields of an IP datagram header:  

 

EX1044, RFC 791 at p. 11.  The Protocol Field is an 8-bit field that “indicates the 

next level protocol used in the data portion of the [I]nternet datagram.”  RFC 791 

at p. 14.  The values for the protocols are assigned.  RFC 791 at p. 14; RFC 1010 at 

4-5.  For example, the assigned value for the TCP protocol is 6 decimal, the 

assigned value for the UDP protocol is 17 decimal, the assigned value for the 
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ICMP protocol is 1 decimal.  RFC 1010 at p. 4; see also ‘725 patent at Fig. 17B 

item 1752 (ICMP=1, TCP=6, UCP=17). 

50. The IHL Field is a 4-bit Internet Header Length Field that “is the 

length of the [I]nternet header in 32 bit words, and thus points to the beginning of 

the data.”  RFC 791 at p. 11. 

3. TCP Segment 

51. The figure below shows the fields of a TCP segment:  

 

EX1045, RFC 793 at p. 15.  The Source Port Field is a 16-bit field that includes the 

source port number.  The Destination Port Field is a 16-bit field that includes the 

destination port number.  RFC 793 at p. 15.  Many application programs have 
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assigned or “well-known” port numbers.  For example, the assigned port number 

for the FTP Data channel is 20 decimal, the assigned port number for the FTP 

Control channel is 21 decimal, the assigned port number for Telnet is 23 decimal, 

and the assigned port number for SMTP is 25 decimal.  RFC 1010 at p. 6.  

52. The Data Offset Field is a 4-bit field that is “[t]he number of 32 bit 

words in the TCP Header” and “indicates where the data begins.”  RFC 793 at p. 

16. 

4. UDP Segment 

53. The figure below shows the fields of a UDP segment:  

 

EX1046, RFC 768 at p. 1.  The Source Port Field indicates the port number of the 

sending process.  The Destination Port Field indicates the destination port number.  

RFC 768 at pp. 1-2.  The Length Field is “the length in octets of this user datagram 

including this header and the data.”  RFC 768 at p. 2. 
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VII. OPERATION OF ENGEL 

54. I was asked to review Engel and the source code found in Engel’s 

Appendix VI and to provide an overview of the operation of the Engel packet 

monitor as disclosed in the Engel patent and the Appendix VI source code. 

A. Packet Acquisition 

55. Engel discloses a packet monitor as depicted in Figure 5 of the Engel 

patent, which includes network controller hardware described as follows: 

“Device Driver 24 manages the network controller hardware so that 
Monitor 10 is able to read and write packets from the network and it 
manages the serial interface. It does so both for the purposes of monitoring 
traffic (promiscuous mode) and for the purposes of communicating with the 
Management Workstation and other devices on the network. The 
communication occurs through the network controller hardware of the 
physical network (e.g. Ethernet). The drivers for the LAN controller and 
serial line interface are used by the boot load module and the MTM. They 
provide access to the chips and isolate higher layers from the hardware 
specifics.” 
 

EX1007, Engel at 10:45-56.  Packet acquisition devices used to convert physical 

information on a network into packets for input into a monitor were well known 

and commonplace at the time of the alleged invention.  The ‘725 patent 

specification confirms the same.  EX1033, ‘725 patent at 6:11-15, 8:58-63.  A 

skilled artisan would recognize that Engel’s disclosed network controller hardware 

constitute a packet acquisition device. 
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B. Data Structures 

1. Dialog Data Structures 

56. Engel discloses that each dialog record includes the categories of 

information illustrated in Figure 7C: 

 

EX1007, Engel at Fig. 7C; see also Engel at 18:63-19:23, 17:32-18:19.  The Engel 

Appendix VI source code confirms that each dialog record includes a 

StatsAddrEntry data structure (corresponding to item 171 of Fig. 7C) linked via a 
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stats_ptr pointer (corresponding to item 176 of Fig. 7C) to an associated 

StatsDialogEntry data structure (corresponding to item 178 of Fig. 7C).  See 

EX1009, Engel Appendix VI at p. 179 (defining StatsAddrEntry data structure in 

stats.h) and p. 181 (defining StatsDialogEntry data structure in stats.h). Dialog 

records are maintained for the data link layer, network layer, transport layer, and 

application layer protocols utilized in a packet.  See, e.g., Engel Appendix VI at p. 

11 of rtp_dll_p.c (calling stats_dll_get_dialog); p. 51 of rtp_ip_p.c (calling 

stats_ip_get_dialog); pp. 126-127 of rtp_tcp_p.c (calling stats_tcp_get_dialog); p. 

159 of rtp_udp_p.c (calling stats_udp_get_dialog); p. 73 of rtp_nfs_p.c (calling 

stats_nfs_get_dialog).  Each dialog record is part of a doubly linked list, including 

forward and backward pointers to neighboring dialog records in an application-

specific dialog hash table.  Engel at 17:32-41, 18:63-67, Fig. 7C; Engel Appendix 

VI at p. 179 (defining StatsAddrEntry data structure in stats.h).   

57. By way of example, the NFS application layer dialog records are 

stored as StatsAddrEntry records, with a pointer to a linked StatsNfsDialogEntry 

record.  The StatsAddrEntry data structure is defined as follows: 
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Engel appendix VI at p. 179 of stats.h.  Each NFS dialog record is part of a doubly 

linked list, including forward and backward pointers to neighboring NFS dialog 

records in the nfs_dialog_hash_table (i.e., the “link” and “*hash_link” fields of the 

StatsAddrEntry dialog record).  Engel Appendix VI at pp. 479, 484 of 

stats_nfs_p.c.  The “address” field of the StatsAddrEntry data structure stores the 

source and destination IP addresses of the NFS dialog.  Engel Appendix VI at pp. 

480, 482 of stats_nfs_p.c.  

58. I also note that the “FIRST_SEEN” field of Figs. 7B and 7C 

(corresponding to field 122 of Fig. 7A) is the startTime field of the StatsAddrEntry 

data structure and indicates “the time at which the Network Monitor first saw the 

communication” (i.e., the time the monitor first saw a packet for the associated 

dialog or application-specific server flow).  Engel Appendix VI at p. 179 of stats.h; 

Engel at 18:4-6, Figs. 7A-7C.  The startTime field is set upon initialization of a 

newly allocated StatsAddrEntry data structure (e.g., when a new dialog or 
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application-specific server record is created).  Engel Appendix VI at pp. 477 and 

482 of stats_nfs_p.c, p. 561 of stats_tcp_p.c.   

59. The “LAST_SEEN” field of Figs. 7B and 7C (corresponding to field 

124 of Fig. 7A) is the lastTime field of the StatsAddrEntry data structure and 

indicates “the time at which the last communication was seen” (i.e., the time the 

monitor last saw a packet associated with the dialog or application-specific server 

flow).  Engel Appendix VI at p. 179 of stats.h; Engel at 18:6-7, Figs. 7A-7C.  The 

lastTime field is set upon initialization of a newly allocated StatsAddrEntry data 

structure (e.g., when a new dialog or application-specific server record is created).  

Engel Appendix VI at pp. 477 and 482 of stats_nfs_p.c, p. 562 of stats_tcp_p.c.  

The lastTime field is also updated every time a packet for the associated flow is 

encountered.  Engel Appendix VI at p. 75 of rtp_nfs_p.c, p. 127 of rtp_tcp_p.c, p. 

187 of stats.h (calling and defining the stats_update_age_timers macro for setting 

the lastTime field to the current time).   

60. The “START_TIME” field of Figs. 7B and 7C (corresponding to field 

120 of Fig. 7A) is the seconds_start_time field of the StatsAddrEntry data structure 

and is a time used by the event manager to perform later rate calculations.  Engel 

Appendix VI at p. 179 of stats.h; Engel at 18:2-4, Figs. 7A-7C.  The 

“EM_CONTROL” field of Figs. 7B and 7C (corresponding to field 118 of Fig. 7A) 

is the em_control field of the StatsAddrEntry data structure and indicates that the 
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statistics for the associated record have changed since the event manager (EM) 

“last serviced the database to update rates and other variables” so that the EM will 

recalculate, for example, rates when the EM next services the database.  Engel 

Appendix VI at p. 179 of stats.h; Engel at 17:62-67, Figs. 7A-7C.  The 

seconds_start_time field is set to the current time and the em_control field is set 

when the first packet for the associated flow is encountered since the last time the 

EM serviced the database.  Engel Appendix VI at p. 75 of rtp_nfs_p.c, p. 127 of 

rtp_tcp_p.c, pp. 188-189 of stats.h. 

61. For dialog records, the “*stats_ptr” field of the StatsAddrEntry record 

is a pointer to the associated StatsNfsDialogEntry record.  The 

StatsNfsDialogEntry data structure is defined as follows: 
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Engel Appendix VI at pp. 249-250 of stats_nfs.h.   

62. As shown above, each StatsNfsDialogEntry record stores various 

statistics, including the following statistical objects of type StatsCount32:  ops, 

readOps, writeOps, writeCacheOps, readBytes, writeBytes, rexmts, flowCtrls, in 

addition to various error-related StatsCount32 statistical objects.  Engel Appendix 
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VI at pp. 249-250 of stats_nfs.h.  Each of these StatsCount32 data structures stores 

count, running_count, and high_thld variables:   

 

Engel Appendix VI at p. 177 of stats.h.  Engel describes these StatsCount32 

statistical object classes as “counts”:   

A count is a continuously incrementing variable which rolls around to 0 on 
overflow. It may be reset on command from the user (or from software). A 
threshold may be applied to the count and will cause an alarm when the 
threshold count is reached. The threshold count fires each time the counter 
increments past the threshold value. For example, if the threshold is set to 5, 
alarms are generated when the count is 5, 10, 15, . . . . 
 

Engel at 15:47-54.   

63. Each StatsNfsDialogEntry record also stores statistical objects of type 

StatsRatePerS (also called StatsRollingRate) including opRate, readOpRate, 

writeOpRate, writeCacheOpRate, readByteRate, writeByteRate, rexmtRate, 

flowCtrlRate, in addition to various error-related StatsRatePerS statistical objects.  

Engel Appendix VI at pp. 249-250 of stats_nfs.h. Each of these StatsRatePerS 

statistical object classes stores a current, high, and low StatsRateValue in addition 

to high_thld, count, and type variables:   

Petitioners' EX1006 Page 34



 34 

 

Engel Appendix VI at p. 178 of stats.h.  Each of the current, high, and low 

StatsRateValue data structures stores count and time variables:   

 

Engel Appendix VI at p. 178 of stats.h.  Engel describes these StatsRatePerS type 

statistical object classes as “rates”: 

“A rate is essentially a first derivative of a count variable. The rate is 
calculated at a period appropriate to the variable. For each rate variable, a 
minimum, maximum and average value is maintained. Thresholds may be set 
on high values of the rate. The maximums and minimums may be reset on 
command. The threshold event is triggered each time the rate calculated is 
in the threshold region.” 

 
Engel at 15:55-61. 

64. Each StatsNfsDialogEntry record also stores a history of recorded 

events for the dialog in a StatsNfsState data structure, which includes a 

StatsNfsHistoryEntry array of for storing each even: 
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Engel Appendix VI at p. 248 of stats_nfs.h.  The size of the StatsNfsHistoryEntry 

array is set to store up to 8 events.  Engel Appendix VI at p. 242 of stats_nfs.h 

(NFS_HISTORY_ENTRIES set to 8).  Each event stored in the history array is 

identified by a unique transaction id (“xid”).  See also Paragraph 116 below. 

2. Client/Server Data Structures 

65. Engel also discloses separately storing statistics for each client and 

each server participating in communications.  Engel at 15:19, 18:41-62, Fig. 7B.  

The application-specific client and server data structures for storing such 

information are illustrated in Figure 7B: 
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Engel at Fig. 7B; see also Engel at 18:41-62, 17:32-18:40.  Each client/server 

StatsAddrEntry record is part of a doubly linked list, including forward and 

backward pointers to neighboring records in an application-specific hash table.  
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Engel at 17:32-41, 18:41-45; Engel Appendix VI at p. 179 (defining 

StatsAddrEntry data structure in stats.h).   

66. Additionally, each client/server record includes a pointer to a dialog 

link queue (corresponding to items 154 and 160 in Fig.7B).  Engel at 18:51-68, 

Fig. 7B.  The dialog link queue includes a linked list of all dialogs in which the 

client/server has participated.  Namely, when a new dialog is allocated for a given 

client/server pair, the new dialog record is added to the dialog link queue for each 

client and server record.  Engel Appendix VI at pp. 483-484 of stats_nfs_p.c; see 

also Section VII.C.7 (paragraphs 108-110) below. 

67. More specifically, Engel discloses separately storing statistics for each 

client and each server participating in communications for a particular application 

program (e.g., NFS, SMTP, FTP, Telnet, TFTP, SNMP, NSP (DNS), X Windows, 

LAT, NFT, RFA, VT, Netware).  Engel at 15:24-28, Fig. 19, 29:24-28.  In the NFS 

example, each NFS application-specific client and server record includes a 

StatsAddrEntry data structure (corresponding to item 146 of Fig. 7B) linked via a 

stats_ptr pointer (corresponding to item 150 of Fig. 7B) to an associated 

StatsNfsAddr data structure (corresponding to item 152 of Fig. 7B).  See Engel 

Appendix VI at p. 179 (defining StatsAddrEntry data structure in stats.h) and pp. 

247-248 (defining StatsNfsAddr data structure in stats_nfs.h). The StatsAddrEntry 

data structure is defined above in paragraph 57. Each NFS application-specific 
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client record is part of a doubly linked list, including forward and backward 

pointers to neighboring NFS client records in the nfs_client_hash_table.  Engel 

Appendix VI at pp. 468, 474 of stats_nfs_p.c.  Similarly, each NFS application-

specific server record is part of a doubly linked list, including forward and 

backward pointers to neighboring NFS server records in the nfs_server_hash_table.  

Engel Appendix VI at pp. 475-476, 478 of stats_nfs_p.c.  The “address” field of 

the StatsAddrEntry data structure stores the IP address of the NFS client/server 

participating in the communication.  Engel Appendix VI at pp. 473-474, 477 of 

stats_nfs_p.c.  

68. The “*stats_ptr” field of each NFS StatsAddrEntry record is a pointer 

to the associated StatsNfsAddr record. The StatsNfsAddr data structure is defined 

as follows: 
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Engel Appendix VI at pp. 245-248 of stats_nfs.h.  As shown above, each NFS 

client/server record includes a pointer to a linked list of all NFS dialogs to which 

the client/server has participated (“dialogQ” field).  Namely, when a new 

application-specific dialog (i.e., NFS dialog) is allocated for a given client/server 

pair, the new dialog record is added to the dialog link queue for each application-

specific client and server record (i.e., each NFS client and server record). Engel 

Appendix VI at pp. 483-484 of stats_nfs_p.c; see also Section VII.C.7 

(Paragraphs 108-110) below. 

69. As shown above, each StatsNfsAddr record stores various statistics, 

including the following statistical objects of type StatsCount32:  ops, readOps, 

writeOps, writeCacheOps, bytes, readBytes, writeBytes, errors, rexmts, flowCtrls, 

in addition to various error-related StatsCount32 statistics, and other statistics.  

Engel Appendix VI at pp. 245-248 of stats_nfs.h.  Each of these StatsCount32 data 

structures stores count, running_count, and high_thld variables.  See Paragraph 62 

above.    
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70. Each StatsNfsAddr record also stores statistical objects of type 

StatsRatePerS (also called StatsRollingRate) including opRate, readOpRate, 

writeOpRate, writeCacheOpRate, byteRate, readByteRate, writeByteRate, 

errorRate, rexmtRate, flowCtrlRate, various error-related StatsRatePerS statistics, 

and other statistics.  Engel Appendix VI at pp. 245-248 of stats_nfs.h.  Each of 

these StatsRatePerS data structures stores a current, high, and low StatsRateValue 

in addition to high_thld, count, and type variables.  See Paragraph 63 above.  Each 

of the current, high, and low StatsRateValue data structures stores count and time 

variables.  See Paragraph 63 above. 

71. Each StatsNfsAddr record also stores statistical objects of type 

StatsBucketRate, including opBuckets, byteBuckets, errorBuckets, and 

rexmtBuckets, among others.  Engel Appendix VI at pp. 245-248 of stats_nfs.h.  

The StatsBucketRate data structure is defined as follows: 

 
 

Engel Appendix VI at pp. 178-179 of stats.h.  Engel describes this statistics data 

structure as follows: 
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“The list of events shown in data structure 130 of FIG. 7a illustrates the 
type of data that is collected for this address when the parse control field 
bits are set to on. Some of the entries in DLL segment statistics data 
structure 130 are pointers to buckets for historical data. In the case where 
buckets are maintained, there are twelve buckets each of which represents a 
time period of five minutes duration and each of which generally contains 
two items of information, namely, a count for the corresponding five minute 
time period and a MAX rate for that time period. MAX rate records any 
spikes which have occurred during the period and which the user may not 
have observed because he was not viewing that particular statistic at the 
time.” 

 
Engel at 18:20-32.   

“The hourly rate is calculated from a sum of the last twelve 5 minute 
readings, as obtained from the buckets for the pertinent parameter. Each 
new reading replaces the oldest of the twelve values maintained. Maximum 
and minimum values are retained until reset by the user.” 
 

Engel at 16:63-67.  Accordingly, each StatsBucketRate metric stores a count and 

associated maximum for each of twelve contiguous 5-minute time intervals.  

72. Each StatsNfsAddr record also stores an rpcStats statistical object of 

type StatsRpc.  The StatsRpc data structure is defined as follows: 
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Engel Appendix VI at 263 of stats.h.  As discussed further in Paragraph 119, 125, 

and 127 below, these statistics are error related statistics of type StatsCount32 and 

StatsRatePerS. 

C. Real Time Parse Routine 

73. Upon receipt by the network monitor, a frame (i.e., packet) is first 

placed on a lan_rcv_frame_q buffer.  When a frame is queued on the 

lan_rcv_frame_q buffer, the kernel main loop calls the real time parse (“rtp”) 

routine. Engel Appendix VI at p. 167-170 of rtp.c.  For each frame to be parsed, 

the rtp routine calls the data link layer parse routine (rtp_dll_parse), passing as 

inputs to the routine a pointer to the frame and the length of the frame.  Engel 

Appendix VI at p. 168 of rtp.c, p. 8 of rtp_dll_p.c.    
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1. Data Link Layer Parse Routine 

74. As an initial matter, I note that the rtp_dll_p.c file handles both 

Ethertype and IEEE packets (as discussed above in Paragraphs 46-48) and the ‘725 

Patent contemplates a single file for handling both types of packets. EX1033, ‘725 

patent at 42:54-60 (“In an alternate embodiment, the Ethertype selection definition 

may be in the same Ethernet file 1911.”), 56:29 (“IEEE8032.pdl and IEEE8033.pdl 

(ethertype files)”).  As provided in the rtp_dll_p.c source code file, the 

rtp_dll_parse routine initially extracts the MAC destination and source addresses 

and also the value Length/Type Field in the Ethernet header and stores them in the 

nested mac_header data structure of a local “frame_ptr” data structure.  Engel 

Appendix VI at p. 8 (initializing frame_ptr data structure), p. 5 (defining 

dll_framestr data structure as including, in part, mac_header data structure of type 

mac_headerstr), p. 4 (defining mac_headerstr data structure as including dst_addr 

and src_addr variables each of type MacAddress and a length variable) of 

rtp_dll_p.c.  The extracted source and destination MAC addresses from the packet 

header are also stored in globally accessible MacAddress data structures associated 

with the source and destination.  

 

Engel Appendix VI at p. 8 of rtp_dll_p.c; see also p. 2.   

Petitioners' EX1006 Page 45



 45 

75. After updating statistics objects related to the data link layer, the 

rtp_dll_parse routine determines whether the packet is Ethertype or 802.3/802.2 

(i.e., IEEE) by checking the extracted value of the Length/Type Field (the “length” 

variable of the nested mac_header data structure of the frame_ptr data structure).  

As discussed in Paragraphs 46-48 above, the Length/Type Field is the two octets 

(also referred to as bytes) that follow the MAC destination and source addresses in 

the Ethernet frame header.  The routine also determines that the packet is Ethertype 

if the extracted Length/Type Field value is greater than or equal to 1500 decimal 

(the value of MAXDATA):   

 

Engel Appendix VI at pp. 14-15 of rtp_dll_p.c; also Engel Appendix VI at p. 2 

(defining MAXDATA as 1500 decimal).  As discussed in Paragraphs 46-48 above, 

this is consistent with the standard approach for determining whether a packet is 

Ethertype or IEEE.  The routine also determines that the packet is Ethertype if the 
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value of the Length/Type Field is equal to the value assigned to the XEROX PUP 

protocol (512 decimal) and if the size of the Ethernet Data Field (determined by 

subtracting the MAC header length (MAC_HEADER_SIZE set to 14) from the 

total length of the Ethernet frame (data_length variable passed as input to 

rtp_dll_parse routine)) is not equal to the value assigned to the XEROX PUP 

protocol.  The routine also determines that the packet is Ethertype if the value of 

the Length/Type Field is equal to the value assigned to the PUP Addr. Trans. 

protocol (513 decimal) and if the size of the Ethernet Data Field is not equal to the 

value assigned to the PUP Addr. Trans. protocol.  Engel Appendix VI at pp. 14-15 

of rtp_dll_p.c (above), p. 5 of rtp_dll_p.c (defining MAC_HEADER_SIZE as 14); 

EX1043, RFC 1010 at p. 14 (assigning XEROX PUP protocol value of 512 

decimal and PUP Addr. Trans. protocol a value of 513 decimal); EX1007, Engel at 

20:4-7 (citing RFC 1010 in discussing rtp_dll_parse routine). 

76. If the packet is of Ethertype, a variable “protocol” is set to the value 

of the Ethernet Type Field (i.e., 

).  Engel Appendix VI at pp. 14-15 of rtp_dll_p.c.  In this way, the rtp_dll_p.c 

source code file includes the Type Field location in the packet (i.e., 

), where information is stored related to any 

child protocol of the Ethertype protocol.   This “protocol” variable is used to 

determine which next protocol layer parse routine should be called.  
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77. Namely, after updating additional statistics objects related to the data 

link layer, the rtp_dll_parse routine calls the next layer’s parse routine for the 

determined next layer protocol as set by the “protocol” variable:  

 

Engel Appendix VI at p. 17 of rtp_dll_p.c.  As discussed in Paragraph 47 above, 

the IP protocol is also referred to as “DOD IP,” and is assigned a value of 

hexadecimal 0800 (2048 decimal).  EX1043, RFC 1010 at p. 14.  As set forth on p. 

17 of the rtp_dll_p.c source code file, the rtp_dll_parse routine includes the IP 

(referred to as DOD_IP) and ARP child protocols, which are higher layer protocols 

of the Ethernet protocol for Ethertype or Ethernet II packets.  I note that this is 

similar to the ‘725 patent’s Ethernet.pdl file, which includes an “etherType” Field 

defined as including IP and ARP child protocols, among others.  ‘725 patent at 

column 71 (etherType field includes “ip(0x0800)” and “arp(0x0806)”), column 72 

(CHILDREN attribute for Ethertype packets defined as 
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“DESTINATION=EtherType”), 49:45-55 (CHILDREN attribute “describes how 

children protocols are determined”). 

78. If the next layer protocol is DOD_IP (IP), the next layer’s parse 

routine is rtp_ip_parse and the rtp_dll_parse routine determines the start of the IP 

header by adding the dll_length variable to the pointer set at the start of the 

Ethernet frame.  Engel Appendix VI at p. 17 of rtp_dll_p.c.  In the case of an 

Ethertype packet, the dll_length variable is set to 14, which is the well-known 

length of the Ethernet II frame header, as discussed above in Paragraphs 46-48 and 

as disclosed in the ‘725 patent.  Engel Appendix VI at p. 14 (dll_length = 

MAC_HEADER_SIZE), p. 5 (defining MAC_HEADER_SIZE as 14) of 

rtp_dll_p.c; ‘725 patent at column 73 (“the total length of the header for this ty[p]e 

of packet is fixed and at 14 bytes or octets in length”), 33:53-54 (“For the 

Ethertype packet, the start of the next layer header 14 byte from the start of the 

frame.”).  In this way, the Engel rtp_dll_p.c file includes the Data Field location in 

the packet ( ), where information is stored related to the IP 

child protocol of the Ethernet protocol.  Accordingly, the inputs to the rtp_ip_parse 

routine are a pointer to the start of the IP datagram and the length of the IP 

datagram. Engel Appendix VI at p. 17 of rtp_dll_p.c, p. 48 of rtp_ip_p.c.   
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2. Internet Protocol Parse Routine 

79. As provided in the rtp_ip_p.c source code file, the rtp_ip_parse 

routine initially extracts data from the IP datagram header, including the IHL 

(header length) Field (discussed in Paragraph 50 above), converts the header length 

(in 32-bit words) to the length in bytes, and stores it as a local variable called 

“ip_hdr_length” ( ). Engel 

Appendix VI at p. 48 of rtp_ip_p.c.  In this way, the rtp_ip_p.c source code file 

includes the IHL Field location in the packet (i.e., ), where 

information is stored related to any child protocol of the IP protocol. 

80. The rtp_ip_parse routine also extracts information from the IP 

datagram header, including the value of the Protocol Field (discussed in 

Paragraph 49 above) and stores it as a local variable called “protocol” 

 

Engel Appendix VI at p. 49 of rtp_ip_p.c.  In this way, the rtp_ip_p.c source code 

file includes the Protocol Field location in the packet (i.e., 

), where information is stored related to any child 

protocol of the IP protocol.   As discussed, below, this “protocol” variable is used 

to determine which next layer protocol parse routine should be called.  The 

rtp_ip_parse routine also extracts information from the IP datagram header 
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including the source and destination IP addresses and stores them as global 

variables.   

 

 

Engel Appendix VI at pp. 48-49 of rtp_ip_p.c; see also p. 44. 

81. After updating various statistics objects related to the Internet protocol 

layer, the rtp_ip_parse routine calls the next layer’s parse routine for the 

determined next layer protocol as set by the “protocol” variable: 

          

            
Engel Appendix VI at pp. 56-57 of rtp_ip_p.c. As set forth on pp. 56-57 of the 

rtp_ip_p.c source code file, the rtp_ip_parse routine includes the ICMP, UDP, and 
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TCP child protocols, which are higher layer protocols of the Internet protocol.  I 

note that the ‘725 patent’s IP.pdl file similarly uses the Protocol Field to determine 

the next layer protocol and discloses the ICMP, UDP, and TCP protocols as being 

child protocols of the Internet protocol.  ‘725 patent at column 79 (CHILDREN 

attribute defined as “DESTINATION=Protocol”), 49:45-55 (CHILDREN attribute 

“describes how children protocols are determined”), Fig. 17B item 1752 (ICMP=1, 

TCP=6, UDP=17), 34:2-3 (“The possible children of the IP protocol are shown in 

table 1752.”). 

82. If the next layer protocol is TCP_PROTOCOL, the next layer’s parse 

routine is rtp_tcp_parse and the inputs to the routine are a pointer to the start of the 

TCP segment and the length of the TCP segment.  Engel Appendix VI at pp. 56-57 

of rtp_ip_p.c, p. 123 of rtp_tcp_p.c. If the next layer protocol is 

UDP_PROTOCOL, the next layer’s parse routine is rtp_udp_parse and the inputs 

to the routine are a pointer to the start of the UDP segment and the length of the 

UDP segment.  Engel Appendix VI at p. 56 of rtp_ip_p.c, p. 156 of rtp_udp_p.c.  If 

the next layer protocol is ICMP_PROTOCOL, the next layer’s parse routine is 

rtp_icmp_parse and the inputs to the routine are a pointer to the start of the ICMP 

message and the length of the ICMP message. Engel Appendix VI at p. 56 of 

rtp_ip_p.c, p. 32 of rtp_icmp_p.c.   
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83. For each of these protocols (TCP, UDP, and ICMP), the rtp_ip_parse 

routine determines the start of the next layer header by adding the ip_hdr_length 

variable (the length of the header in bytes) to the pointer set at the start of the IP 

datagram:   

 

Engel Appendix VI at pp. 56-57 of rtp_ip_p.c.  The ‘725 patent discloses a similar 

procedure for determining the start of the next layer protocol.  ‘725 patent at Fig. 

17B (“L4 Offset = L3 + (IHL/4)”).  In this way, the Engel rtp_ip_p.c file includes 

the Data Field location in the packet ( ), where 

information is stored related to the ICMP, UCP, and TCP child protocols of the 

Internet protocol.   

3. Transmission Control Protocol Parse Routine 

84. As provided in the rtp_tcp_p.c source code file, the rtp_tcp_parse 

routine initially extracts data from the TCP segment header, including the Data 

Offset Field (discussed in Paragraph 52 above), converts the header length (in 32-

bit words) to the length in bytes, and stores it as a local variable called 

“tcp_hdr_length”:  

 

Engel Appendix VI at p. 124 of rtp_tcp_p.c.   The Data Offset Field indicates 

where the data begins, which is where the next layer/child protocol data begins. In 
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this way, the rtp_tcp_p.c source code file includes the Data Offset Field location in 

the packet (i.e., ), where information is stored related to any child 

protocol of the TCP protocol.  The rtp_tcp_parse routine also extracts information 

from the TCP segment header including the source and destination ports, among 

other fields, and stores them as global variables.   

 

Engel Appendix VI at p. 124 of rtp_tcp_p.c; see also pp. 111-112 (setting up 

“Global TCP data structures” including tcp_src_port and tcp_dst_port), 

Paragraphs 51-52 above.   

85. The rtp_tcp_parse routine next determines whether there is a port to 

application program (also called a protocol) mapping for the port being used for 

the TCP communication by calling the stats_port_to_protocol routine and passing 
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as inputs a pointer to the source/destination IP address data structure and the 

source/destination port.   

 

Engel Appendix VI at p. 124 of rtp_tcp_p.c.   

86. When called, the stats_port_to_protocol routine first determines if the 

port is well known by calling the stats_well_known_port routine and passing the 

port as an input.   

 

 

Engel Appendix VI at pp. 632-633 of stats_p.c. If the port is in the 

statsWellKnownPorts port table, the port number is returned.  Engel Appendix VI 
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at p. 644 of stats_p.c (defining stats_well_known_port routine as determining if the 

port in question is an entry in the statsWellKnownPorts data structure), pp. 632-

633 of stats_p.c (stats_port_to_protocol routine returns the port if it is in the 

statsWellKnownPorts data structure), p. 183 of stats.h (defining 

statsWellKnownPorts data structure).    If not, the stats_well_known_port routine 

calls the stats_pmap_lookup routine, passing as inputs a pointer to the 

source/destination IP address data structure, the source/destination port, and the 

transport_protocol (i.e., TCP).  Engel Appendix VI at pp. 632-633 of stats_p.c.   

87. The stats_pmap_lookup routine walks the linked list of StatsPmapping 

records for the source/destination IP address record to determine if the port used 

for the packet communication and the transport_protocol match an entry of the list.  

If there is a match, a pointer to the associated StatsPmapping record is returned to 

the stats_port_to_protocol routine. 
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Engel Appendix VI at pp. 507-508 of stats_pmap_p.c.  Each StatsPmapping record 

defines a known port-to-application program association for the source/destination 

IP address in question. 

 

   

Engel Appendix VI at pp. 260-261 of stats_pmap.h.   

88. In this way, the stats_port_to_protocol routine determines whether 

there is a known port to application program association for the source/destination 

IP address in question.  The stats_port_to_protocol routine returns the “protocol” 

identifier of the associated application program (e.g., “FTP_PORT,” 

“TELNET_PORT,” “SMTP_PORT,” “MOUNT_PORT,” “NFS_PORT,” 

“MAPPER_PORT”) if there is a match.  If there isn’t a match, 
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“UNKNOWN_PORT” is returned.  Engel Appendix VI at pp. 632-633 of stats_p.c, 

p. 132 of rtp_tcp_p.c (listing exemplary known application identifiers).  The 

rtp_tcp_parse routine stores the returned protocol identifier/port as the variables 

“tcp_protocol” and “protocol.”  Engel Appendix VI at p. 124 of rtp_tcp_p.c.  As 

discussed, below, this “tcp_protocol” variable is used to determine which next 

layer protocol parse routine should be called. 

89. Because the rtp_tcp_parse routine of the rtp_tcp_p.c source code file 

uses the extracted source/destination port to determine the next layer protocol’s 

parse routine, the rtp_tcp_p.c source code file includes the Source/Destination Port 

Field locations in the packet (i.e.,  and ), 

where information is stored related to any child protocol of the TCP protocol: 

 

Engel Appendix VI at p. 124 of rtp_tcp_p.c; see also p. 124.   

90. After updating various statistics related to the TCP layer, the 

rtp_tcp_parse routine calls the respective next layer’s parse routine based on the 

program identified from the port to program map and set as the “tcp_protocol” 

variable:   
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Engel Appendix VI at pp. 131-132 of rtp_tcp_p.c.  As set forth on pp. 131-132 of 

the rtp_tcp_p.c source code file, the rtp_tcp_parse routine includes the parse 

routines for the FTP, Telnet, SMTP, RPC (PortMapper), NFS Mount, and NFS 

child protocols, which are higher layer protocols of the TCP protocol.  I note that 

the ‘725 patent’s TCP.pdl file similarly uses the Source/Destination Port to 

determine the next layer protocol.  ‘725 patent at column 81 (“tcpPort” field 

described as “the 16 bit field where the child protocol is located for the next layer 

beyond TCP”; defining SrcPort=tcpPort and DestPort=tcpPort; CHILDREN 

attribute defined as “DESTINATION=DestPort, SOURCE=Srcport”), 49:45-55 

(CHILDREN attribute “describes how children protocols are determined”). 
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91. As set forth on p. 132 of rtp_tcp_p.c, if the program identified is FTP, 

the next layer’s parse routine is rtp_ftp_parse. If the program identified is Telnet, 

the next layer’s parse routine is rtp_telnet_parse. If the program identified is 

SMTP, the next layer’s parse routine is rtp_smtp_parse. Finally, if the program 

identified is PortMapper, NFS, or NFS Mount, the next layer’s parse routine is 

rtp_rpc_parse.  Engel Appendix VI at p. 132 of rtp_tcp_p.c.   The inputs to each of 

these parse routines is a pointer to the start of the application layer, the length of 

the data, and TCP_PROTOCOL.  Engel Appendix VI at p. 132 of rtp_tcp_p.c; see 

also p. 130 (setting data_length = length – tcp_hdr_length). 

92. For each of these protocols (FTP, Telnet, SMTP, and RPC), the 

rtp_tcp_parse routine determines the start of the next layer by adding the 

tcp_hdr_length variable (the length of the TCP header in bytes) to the pointer set at 

the start of the TCP segment:   

 

Engel Appendix VI at p. 132 of rtp_tcp_p.c. In this way, the Engel rtp_tcp_p.c file 

includes the Data Field location in the packet ( ), where 

information is stored related to the FTP, Telnet, SMTP, RPC (PortMapper), NFS 

Mount, and NFS child protocols of the TCP protocol.   
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4. User Datagram Protocol Parse Routine 

93. As provided in the rtp_udp_p.c source code file, the rtp_upd_parse 

routine initially extracts data from the UDP segment header, including the source 

and destination ports, among other fields, and stores them as global variables.  

Engel Appendix VI at p. 156.  The rtp_udp_parse routine also extracts information 

from the UDP segment header including the Length Field (discussed in 

Paragraph 53 above):  

 

Engel Appendix VI at p. 156 of rtp_udp_p.c; see also p. 152 (setting up “Global 

UDP data structures” including udp_src_port and udp_dst_port). 

94. The rtp_udp_parse routine next determines whether there is a port to 

program mapping for the port being used for the UDP communication by calling 

the stats_port_to_protocol routine and passing as inputs the source or destination 

IP address and port, as discussed in Paragraphs 85-89 above.  
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Engel Appendix VI at p. 157 of rtp_udp_p.c; see also pp. 260-261 of stats_pmap.h, 

pp. 632-633 of stats_p.c, pp. 507-508 of stats_pmap_p.c.  Because the 

rtp_udp_parse routine of the rtp_udp_p.c source code file uses the extracted 

source/destination port to determine the next layer protocol’s parse routine, the 

rtp_udp_p.c source code file includes the Source/Destination Field locations in the 

packet (i.e.,  and ), where 

information is stored related to any child protocol of the UDP protocol.  Engel 

Appendix VI at pp. 156-157 of rtp_udp_p.c. 

95. After updating statistics objects related to the UDP layer, 

rtp_udp_parse calls the respective next layer’s parse routine based on the program 

identified from the port to program map and set as the “udp_protocol” variable:  

 

 

 Engel Appendix VI at pp. 162-163 of rtp_udp_p.c.  As set forth on pp. 162-163 of 

rtp_udp_p.c source code file, the rtp_udp_parse routine includes the parse routine 

(rtp_rpc_parse) for the RPC (PortMapper), NFS Mount, and NFS child protocols, 

which are higher layer protocols of the UDP protocol.  I note that the ‘725 patent’s 
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UDP.pdl file similarly uses the Source/Destination Port to determine the next layer 

protocol.  ‘725 patent at column 83 (CHILDREN attribute defined as 

“DESTINATION=DestPort, SOURCE=Srcport”), 49:45-55 (CHILDREN attribute 

“describes how children protocols are determined”).  As set forth on p. 163 of 

rtp_udp_p.c, if the program identified is PortMapper, NFS, or NFS Mount, the next 

layer’s parse routine is rtp_rpc_parse.  Engel Appendix VI at p. 163 of rtp_tcp_p.c.  

The input to the rtp_rpc_parse routine is a pointer to the start of the application 

layer, the length of the data, the determined application program (i.e., PortMapper, 

NFS, or NFS Mount), and UDP_PROTOCOL.  Engel Appendix VI at p. 163 of 

rtp_udp_p.c. 

96. The rtp_udp_parse routine determines the start of the next layer by 

adding the size of the UDP header to the pointer set at the start of the UDP 

segment:   

 

Engel Appendix VI at p. 163 of rtp_udp_p.c. In this way, the Engel rtp_udp_p.c 

file includes the Data Field location in the packet, where information is stored 

related to the child protocols of the UDP protocol.   

5. Remote Procedure Call Parse Routine 

97. The Remote Procedure Call parse routine (rtp_rpc_parse) extracts 

information from the packet, including unique transaction ID (“xid”) and the call 
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direction (i.e., whether it is a call or a reply).  Engel Appendix VI at p. 104 of 

rtp_rpc_p.c.  If the communication is a call, the rtp_rpc_parse routine additionally 

extracts the protocol, program, version, and transport_protocol values from the 

packet and stores the values as elements of the rpcInfo data structure based.   

 

Engel Appendix VI at p. 104 of rtp_rpc_p.c.  After assigning various values to 

other elements of the rpcInfo data structure based on whether the communication is 

a call or a reply and the contents of the packet, the rtp_rpc_parse routine hands off 

the packet to the next layer’s parse routine, as determined by the transport layer 

parse routine (e.g., TCP or UDP).   
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Engel Appendix VI at p. 107 of rtp_rpc_p.c.   

98. As set forth on p. 107 of rtp_rpc_p.c source code file, the 

rtp_rpc_parse routine includes the parse routine for the PortMapper and NFS child 

protocols, which are higher layer protocols of the RPC protocol.  If the program 

identified is PortMapper, the next layer’s parse routine is rtp_pmap_parse.  Engel 

Appendix VI at p. 107 of rtp_rpc_p.c.  If the program identified is NFS or NFS 

Mount, the next layer’s parse routine is rtp_nfs_parse.  Engel Appendix VI at p. 

107 of rtp_rpc_p.c. The input to the rtp_pmap_parse routine is a pointer to the start 

of the application layer.  Engel Appendix VI at p. 107of rtp_rpc_p.c.  The inputs to 

the rtp_nfs_parse routine is a pointer to the start of the application layer, the length 

of the data, the determined application program (i.e., PortMapper, NFS, or NFS 

Mount), and the transport layer protocol (e.g., TCP_PROTOCOL or 

UDP_PROTOCOL).  Engel Appendix VI at p. 107 of rtp_rpc_p.c.  Accordingly, 

the rtp_rpc_parse routine passes to the next layer parse routine, the start of the 
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application layer as determined by the transport layer parse routine (e.g., 

rtp_tcp_parse or rtp_udp_parse). Engel Appendix VI at p. 107 of rtp_rpc_p.c.  

6. Portmap Parse Routine 

99. The rtp_pmap_parse routine first determines the direction of the 

communication (i.e., whether it is a call or a reply).  Engel Appendix VI at p. 95 of 

rtp_pmap_p.c.  If the communication is a call, the rtp_pmap_parse routine saves 

the event in a nested history data structure of a pmapData data structure, including 

a “status” of “PMAP_OUTSTANDING”, the call procedure, source IP address, 

and xid.  Engel Appendix VI at pp. 95-96 of rtp_pmap_p.c.  If the call is for a 

“GETPORT”, “SET”, or “UNSET” request, rtp_pmap_parse further stores the 

“program_number”, “version”, and “transport_protocol” in the history data 

structure as they appear in the pmap protocol portion of the received packet.  Engel 

Appendix VI at p. 96 of rtp_pmap_p.c.   

100. If the communication is a reply, the rtp_pmap_parse routine walks 

back through the history entries stored in the nested history data structure of the 

pmapData data structure to determine if the destination IP address and the xid of 

the instant packet matches that of a call in the history data structure. If 

rtp_pmap_parse finds such an entry in the history data structure, the status is 

changed to “PMAP_ANSWERED”.  Engel Appendix VI at pp. 96-97 of 
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rtp_pmap_p.c.  Where the status is updated, the reply is processed for a respective 

“GET”, “SET”, or “UNSET” request as detailed below. 

101. For a successful reply to a “GET” request, rtp_pmap_parse determines 

whether the program number corresponds to a program that is being monitored 

(stats_program routine).  Engel Appendix VI at p. 98 of rtp_pmap_p.c.  If so, 

rtp_pmap_parse calls the stats_pmap_lookup routine to determine whether the port 

and program have already been recorded for the specific source IP address and, if 

so, returns a pointer to the StatsPmapping data structure for the port/program.  

Engel Appendix VI at p. 98 of rtp_pmap_p.c, pp. 507-508 of stats_pmap_p.c, p. 

260-261 of stats_pmap.h.  If the port/program has not been recorded, 

rtp_pmap_parse calls the stats_pmap_get routine in order to attempt to allocate a 

StatsPmapping data structure for the new port/program pair.  Engel Appendix VI at 

pp. 98-99 of rtp_pmap_p.c, pp. 508-509 of stats_pmap_p.c, p. 260-261 of 

stats_pmap.h.  Once a new StatsPmapping data structure has been allocated, the 

rtp_pmap_parse routine stores the port, protocol, program, version, and 

transport_protocol values as found in the packet in the new data structure.   Engel 

Appendix VI at 98-99 of rtp_pmap_p.c. 

102. For a successful reply to a “SET” request, the same procedure is 

followed as with the “GET” request, except rtp_pmap_parse calls the 

stats_pmap_lookup routine to determine whether the port and program have 
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already been recorded for the specific destination IP address (i.e., the node that 

sourced the SET request) and, if so, returns a pointer to the StatsPmapping data 

structure for the port/program.  Engel Appendix VI at pp. 99-100 of rtp_pmap_p.c. 

103. For a successful reply to an “UNSET” request, rtp_pmap_parse 

removes the mapping of the specific destination IP address to the StatsPmapping 

data structure for the port/program and deallocates the associated StatsPmapping 

data structure.  Engel Appendix VI at p. 100 of rtp_pmap_p.c, p. 509 of 

stats_pmap_p.c. 

7. Network File System Parse Routine 

104. The rtp_nfs_parse routine first finds or allocates the relevant statistics 

records for the client, server, and dialog.  The rtp_nfs_parse routine calls the 

stats_nfs_get_client routine in order to find or allocate an NFS client 

StatsAddrEntry record given the source IP address.  Engel Appendix VI at pp. 72-

73 of rtp_nfs_p.c, p. 472 of stats_nfs_p.c.  The stats_nfs_get_client routine, in turn 

calls the stats_nfs_lookup_client routine, which finds an NFS client 

StatsAddrEntry record given the source IP address or returns NULL, if a record for 

the NFS client is not found.  Engel Appendix VI at p. 473 and pp. 467-473 of 

stats_nfs_p.c.  In determining whether an NFS client record exists for the given IP 

address, the stats_nfs_lookup_client routine first computes a hash function on the 

IP address as follows: 
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Engel Appendix VI at p. 468 of stats_nfs_p.c.  The stats_nfs_lookup_client routine 

then uses the hash function as an index to the nfs_client_hash_table, thereby 

setting up a pointer to an indexed entry of the NFS client hash table.  The 

stats_nfs_lookup_client routine then walks the linked list of NFS client records to 

determine whether the IP address matches an IP address of an entry in the database, 

based on a comparison of the extracted IP address with the IP address stored in 

each NFS client record of the NFS client hash table.  Engel Appendix VI at p. 468 

of stats_nfs_p.c.   

105. Once the stats_nfs_lookup_client routine completes processing, 

processing is returned to the stats_nfs_get_client routine, which determines 

whether the NFS client is new or previously encountered: 

 

See Engel Appendix VI at p. 473 of stats_nfs_p.c. If an NFS client record doesn’t 

already exist for the IP address, stats_nfs_get_client will attempt to allocate new 

StatsAddrEntry and StatsNfsAddr linked records for the client, and then will add 

the new client address structure to the nfs_client_hash_table at the indexed location 

Petitioners' EX1006 Page 69



 69 

corresponding to the computed hash function for the IP address of the client 

participating in the communication.  Engel Appendix VI at pp. 473-475, pp. 469-

472 of stats_nfs_p.c.  When the newly created StatsAddrEntry record for the NFS 

client is initialized, the address field is set to include the client IP address.  Engel 

Appendix VI at pp. 473-474. The “type” variable of each of the newly created 

StatsNfsAddr rate statistics (e.g., opRate, rexmtRate) is set to STATS_RATE_10S, 

indicating a 10 second rate sample period.  Engel Appendix VI at pp. 469-472 of 

stats_nfs_p.c; p. 75 of rtp_nfs_p.c.  The stats_nfs_get_client routine will then add 

the new NFS client address structure to the nfs_client_hash_table at the indexed 

location corresponding to the computed hash function for the IP address of the 

client participating in the communication.  Engel Appendix VI at p. 474 of 

stats_nfs_p.c.  The nfs_client_hash_table includes an index that is the hash 

function computed as part of the lookup_client routine and also a pointer to the 

new NFS client address structure.  Engel Appendix VI at p. 474 of stats_nfs_p.c. 

106. The rtp_nfs_parse routine then calls the stats_nfs_get_server routine 

in order to find or allocate an NFS server StatsAddrEntry record given the 

destination IP address.  Engel Appendix VI at pp. 72-73 of rtp_nfs_p.c, p. 476 of 

stats_nfs_p.c.  The stats_nfs_get_server routine, in turn calls the 

stats_nfs_lookup_server routine, which finds an NFS server StatsAddrEntry record 

given the destination IP address or returns NULL, if a record for the NFS server is 

Petitioners' EX1006 Page 70



 70 

not found.  Engel Appendix VI at pp. 475-476 of stats_nfs_p.c.  In determining 

whether an NFS server record exists for the given IP address, the 

stats_nfs_lookup_server routine first computes a hash function on the IP address as 

follows: 

 

Engel Appendix VI at p. 475 of stats_nfs_p.c.  The stats_nfs_lookup_server 

routine then uses the hash function as an index to the nfs_server_hash_table, 

thereby setting up a pointer to an indexed entry of the NFS server hash table.  The 

stats_nfs_lookup_server routine then walks the linked list of NFS server records to 

determine whether the IP address matches an IP address of an entry in the database, 

based on a comparison of the extracted IP address with the IP address stored in 

each NFS server record of the NFS server hash table.  Engel Appendix VI at pp. 

475-476 of stats_nfs_p.c.   

107. Once the stats_nfs_lookup_server routine completes processing, 

processing is returned to the stats_nfs_get_server routine, which determines 

whether the NFS server is new or previously encountered: 
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See Engel Appendix VI at p. 476 of stats_nfs_p.c.  If an NFS server record doesn’t 

already exist for the IP address, stats_nfs_get_server will attempt to allocate new 

StatsAddrEntry and StatsNfsAddr linked records for the server, will set the 

“startTime” and “lastTime” fields for the new server record to the current time, and 

then will add the new server address structure to the nfs_server_hash_table at the 

indexed location corresponding to the computed hash function for the IP address of 

the server participating in the communication.  Engel Appendix VI at pp. 476-478, 

pp. 469-472 of stats_nfs_p.c.  When the newly created StatsAddrEntry record for 

the NFS server is initialized, the address field is set to include the server IP address.  

Engel Appendix VI at p. 477.  The “type” variable of each of the newly created 

StatsNfsAddr rate statistics (e.g., opRate, rexmtRate) is set to STATS_RATE_10S, 

indicating a 10 second rate sample period.  Engel Appendix VI at pp. 469-472 of 

stats_nfs_p.c; p. 75 of rtp_nfs_p.c.  The stats_nfs_get_server routine will then add 

the new NFS server address structure to the nfs_server_hash_table at the indexed 

location corresponding to the computed hash function for the IP address of the 

server participating in the communication.  Engel Appendix VI at p. 478 of 

stats_nfs_p.c.  The nfs_server_hash_table includes an index that is the hash 

function computed as part of the lookup_server routine and also a pointer to the 

new NFS server address structure.  Engel Appendix VI at p. 478 of stats_nfs_p.c. 
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108. The rtp_nfs_parse routine then calls the stats_nfs_get_dialog routine 

in order to find or allocate an NFS dialog given the two IP address of the 

client/server participating in the communication.  Engel Appendix VI at pp. 72-73 

of rtp_nfs_p.c, p. 480 of stats_nfs_p.c.  The stats_nfs_get_dialog routine, in turn 

calls the stats_nfs_lookup_dialog routine, which finds an NFS dialog given the two 

IP addresses or returns NULL, if a dialog is not found.  Engel Appendix VI at p. 

480 and pp. 478-480 of stats_nfs_p.c.  In determining whether an NFS dialog 

exists given two IP addresses, the stats_nfs_lookup_dialog routine first computes a 

hash function on both IP addresses as follows: 

 

Engel Appendix VI at p. 479 of stats_nfs_p.c. The stats_nfs_lookup_dialog routine 

then uses the hash function as an index to the nfs_dialog_hash_table, thereby 

setting up a pointer to an indexed entry of the dialog hash table.  The 

stats_nfs_lookup_dialog routine then walks the linked list of NFS dialog records to 

determine whether the IP address pair matches an IP address pair of an entry in the 

database, based on a comparison of the extracted IP addresses with the IP 

addresses stored in each dialog record of the NFS dialog hash table.  Engel 

Appendix VI at pp. 478-480 of stats_nfs_p.c.   
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109. Once the stats_nfs_lookup_dialog routine completes processing, 

processing is returned to the stats_nfs_get_dialog routine, which determines 

whether the NFS dialog is new or previously encountered: 

 

See Engel Appendix VI at p. 480 of stats_nfs_p.c.  If an NFS dialog doesn’t 

already exist for the IP address pair, stats_nfs_get_dialog will attempt to allocate 

new StatsAddrEntry and StatsNfsDialogEntry linked records for the dialog and 

will set the “startTime” and “lastTime” fields for the new dialog record to the 

current time.  Engel Appendix VI at pp. 480-482 of stats_nfs_p.c. When the newly 

created StatsAddrEntry record for the dialog is initialized, the address field is set to 

include the source and destination IP addresses.  Engel Appendix VI at p. 482 of 

stats_nfs_p.c.  Additionally, the “type” variable of each of the newly created 

StatsNfsDialogEntry rate statistics (e.g., opRate, rexmtRate) is set to 

STATS_RATE_10S, indicating a 10 second rate sample period.  Engel Appendix 

VI at pp. 482-483 of stats_nfs_p.c; p. 75 of rtp_nfs_p.c.   

110. Next, the stats_nfs_get_dialog routine will “link the dialog statistics 

into the dialog queue for each nfs address stats.”  Engel Appendix VI at p. 483 of 

stats_nfs_p.c.  Namely, when a new NFS dialog is allocated for a given 

client/server pair, the new dialog record is added to the dialog link queue for each 
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of the corresponding NFS client and server records.  Engel Appendix VI at pp. 

483-484 of stats_nfs_p.c.  The stats_nfs_get_dialog routine will then add the new 

dialog address structure to the nfs_dialog_hash_table at the indexed location 

corresponding to the computed hash function for the IP address pair of the 

client/server participating in the dialog.  Engel Appendix VI at p. 484 of 

stats_nfs_p.c. The nfs_dialog_hash_table includes an index that is the hash 

function computed as part of the lookup_dialog routine and also a pointer to the 

new dialog address structure.  Engel Appendix VI at p. 484 of stats_nfs_p.c. 

111. After finding or allocating an NFS dialog, the rtp_nfs_parse routine 

calls the stats_update_age_timers macro, which updates the “lastTime” field of the 

dialog record, the NFS client record, and the NFS server record:   

 

Engel Appendix VI at p. 187 of stats.h; also p. 75 of rtp_nfs_p.c (calling 

stats_update_age_timers macro). The lastTime field indicates the time of the last 
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seen packet for the associated flow.  Engel Appendix VI at pp. 179 and 187 of 

stats.h; Engel at 18:6-8 (“a last_seen field 124 for the time at which the last 

communication was seen”), 18:63-67, Figs. 7A, 7C, 21.   

112. The rtp_nfs_parse routine then calls the stats_set_rate_10s macro, 

which updates the em_control and seconds_start_time fields of the dialog record, 

the NFS client record, and the NFS server record.   

 

. . . 

 

Engel Appendix VI at pp. 188-189 of stats.h; also p. 75 of rtp_nfs_p.c (calling 

stats_set_rate_10s macro).  The em_control field (referred to in the Engel 
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specification as the EM_control field 118) indicates that the statistics for the 

associated record have changed since the event manager (EM) “last serviced the 

database to update rates and other variables.”  Engel at 17:62-67; see also Engel 

Appendix VI at p. 75 of rtp_nfs_p.c, p. 179 of stats.h (defining StatsAddrEntry 

data structure).  The seconds_start_time field (referred to in the Engel specification 

as the start_time field 120) is a time used by the event manager to perform later 

rate calculations.  Engel Appendix VI at p. 75 of rtp_nfs_p.c; pp. 179, 188-189 of 

stats.h; Engel at 18:2-4, Figs. 7A, 7C, 21. 

113. The rtp_nfs_parse routine next calls the nfs_stats_bytes macro, which 

updates the total byte count and byte rate of the NFS client record and the NFS 

server record.  Engel Appendix VI at pp. 75 of rtp_nfs_p.c (calling nfs_stats_bytes 

routine), 65 of rtp_nfs_p.c (defining nfs_stats_bytes routine as calling 

stats_bytes_for_nodes macro);  p. 193 of stats.h (defining stats_bytes_for_nodes 

macro as calling stats_count_bytes); pp. 628-629 of stats_p.c (defining 

stats_count_bytes routine).  These counters effectively keep track of the total NFS 

bytes transferred to/from the associated node across all previously encountered 

dialogs and issue alarms if a certain threshold is exceeded.  If the total byte count 

for the NFS client or server record for the time interval from the last issued alarm 

(i.e., measured by the running_count counter) exceeds a certain threshold, an alarm 

is issued to the Event Manager.   
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Engel Appendix VI at pp. 628-629 of stats_p.c.  Namely, the stats_count_bytes 

routine increments the bytes count and running_count variables and also 

increments the byteRate count variable by adding the byte size of the current 

packet to the running totals for each NFS client and NFS server record.  Engel 

Appendix VI at pp. 628-629 of stats_p.c. The stats_count_byte routine then tests, 

for each record, whether the bytes running_count variable has exceeded the 

high_thld variable.  If so, an alarm is issued and the running_count variable is reset 

to 0.  Engel Appendix VI at pp. 628-629 of stats_p.c.  
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114. The rtp_nfs_parse routine next updates the history of recorded events 

in the StatsNfsState data structure of the associated StatsNfsDialogEntry data 

structure. In particular, rtp_nfs_parse first determines the direction of the 

communication (i.e., whether it is a call or a reply) and if it is a call first checks to 

see if the packet is a retransmission and, if so, updates the rexmts statistics objects 

using the stats_for_nodes and stats_for_dialog macros.  Engel Appendix VI at pp. 

76-77 of rtp_nfs_p.c (calling nfs_stats_rexmts), p. 66 of rtp_nfs_p.c (defining 

nfs_stats_rexmts as calling stats_for_nodes and stats_for_dialog macros), pp. 198-

199 of stats.h (defining stats_for_dialog macro, calling stats_count routine), pp. 

191-192 of stats.h (defining stats_for_node macro, calling stats_count routine), pp. 

626-627 of stats_p.c (defining stats_count routine).  In particular, the 

stats_for_nodes and stats_for_dialog macros are used to update variables of the 

rexmts counter and rexmtsRate rate statistics objects for the associated NFS dialog, 

client, and server records.  Namely, the stats_count routine increments the rexmts 

count and running_count variables and also increments the rexmtsRate count 

variable for each of the dialog, NFS client, and NFS server records.   
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Engel Appendix VI at pp. 626-627 of stats_p.c. The stats_count routine then tests, 

for each record, whether the rexmts running_count variable has exceeded the 

high_thld variable.  If so, an alarm is issued and the running_count variable is reset 

to 0.  Engel Appendix VI at pp. 626-627 of stats_p.c.  In this way, if the rexmts 

running_count of the NFS dialog, client, or server for the time interval from the 

last issued alarm (i.e., when the running_count variable was last set to 0) exceeds a 
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certain threshold, an alarm is issued to the Event Manager.  Engel Appendix VI at 

pp. 626-627 of stats_p.c.   

115. US Patent No. 6,839,751 (“the ‘751 patent,” EX1002), which is 

incorporated by reference into the ‘725 patent (EX1033, ‘725 patent at 1:22-27) 

discloses a CSConnectionRetransmissions metric.  The rexmts statistics object, like 

the ‘751 Patent CSConnectionRetransmissions metric, stores information about the 

transport-level connection health for a given application (e.g., NFS) and both a 

specific Client-Server Pair (rexmts metric of the NFS dialog record) and a specific 

Server and all of its clients (rexmts metric of the NFS server record). Namely, like 

the ‘751 Patent CSConnectionRetransmission metric, the rexmts metric stores a 

count of the number retransmission call packets (i.e., the number of transport, data-

bearing packet retransmissions from the Client(s) to the Server).  Compare ‘751 

Patent at 46:17-39 with discussion in Paragraphs 62, 69 and 114 above.   

116. If the rtp_nfs_parse determines that the communication is a call and 

not a retransmission, the event is recorded in the history StatsNfsHistoryEntry 

array of the dialog and the status is set to “NFS_OUTSTANDING.”  Engel 

Appendix VI at pp.  75, 76-77 of rtp_nfs_p.c; see also p. 248 of stats_nfs.h 

(defining StatsNfsState and StatsNfsHistoryEntry data structures). If the 

communication is determined to be a reply, rtp_nfs_parse searches the 

StatsNfsHistoryEntry data structure for the instant dialog to determine whether the 
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unique transaction id (“xid”) in the packet for this reply matches that of a call in 

the history and if the status for that call is “NFS_OUTSTANDING.”  If both 

conditions are met, the status is changed to “NFS_ANSWERED.”  Engel 

Appendix VI at p. 77 of rtp_nfs_p.c.  As discussed in Paragraph 64 above, the 

history array size is set to 8 entries.  When the number of call events, not including 

retransmission, exceeds 8, rtp_nfs_parse will begin overwriting previously 

recorded events.   Engel Appendix VI at p. 77 of rtp_nfs_p.c.   

117. If the communication is for a mount protocol (“MOUNT_PORT”) and 

the communication is a call, the rtp_nfs_parse routine updates the ops and opRate 

statistics objects using the stats_for_nodes and stats_for_dialog macros.  Engel 

Appendix VI at p. 78 of rtp_nfs_p.c (calling nfs_stats_ops), p. 64 of rtp_nfs_p.c 

(defining nfs_stats_ops as calling stats_for_nodes and stats_for_dialog macros), 

pp. 198-199 of stats.h (defining stats_for_dialog macro, calling stats_count 

routine), pp. 191-192 of stats.h (defining stats_for_node macro, calling stats_count 

routine), pp. 626-627 of stats_p.c (defining stats_count routine).  In particular, the 

stats_for_nodes and stats_for_dialog macros discussed above are used to update 

variables of the ops count and opRate rate statistics objects for the associated NFS 

dialog, client, and server records. Accordingly, if the ops running_count variable of 

the NFS dialog, client, or server for the time interval from the last issued alarm 

(i.e., when the running_count variable was last set to 0) exceeds a certain 

Petitioners' EX1006 Page 82



 82 

threshold, an alarm is issued to the Event Manager.  Engel Appendix VI at pp. 626-

627 of stats_p.c. 

118. If the request is to mount a file, rtp_nfs_parse next calls the 

stats_nfs_get_file_stystem routine to link the file to the client requesting to mount 

it and then stores a pointer to the file in the StatsNfsHistoryEntry data structure for 

the dialog.  Engel Appendix VI at p. 78 of rtp_nfs_p.c; see also pp. 489-493 of 

stats_nfs_p.c (stats_nfs_get_file_system routine).  If the request is to unmount a 

file, rtp_nfs_parse calls the stats_nfs_lookup_file_system routine to look up the file 

and then stores a pointer to the file in the StatsNfsHistoryEntry data structure for 

the dialog.  Engel Appendix VI at p. 78 of rtp_nfs_p.c; see also pp. 485-487 of 

stats_nfs_p.c (stats_nfs_lookup_file_system routine). 

119. If the communication is for a mount protocol reply message and if the 

reply indicates that an error occurred (e.g., the program is unavailable, the message 

was denied due to bad credentials, the mount failed), the rtp_nfs_parse routine 

updates various statistics objects of each of the NFS dialog, client, and server 

records relating to the error.  Engel Appendix VI at pp. 80-82, 92 of rtp_nfs_p.c.  

The stats_for_nodes and stats_for_dialog macros discussed above are used for 

updating the various error related count statistics (i.e., rpcProgramFail, 

rpcMismatch, or rpcAuthFail count statistics of the dialog record, and similar count 

statistics (e.g., progUnavail, versionMismatch, authRejectedCred) of the rpcStats 
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data structure or errors and mountFailures count statistics of the NFS client and 

server records), and associated rate statistics (i.e., rpcProgramFailRate, 

rpcMismatchRate, or rpcAuthFailRate rate statistics of the dialog record, and 

similar rate statistics (e.g., progUnavailRate, versionMismatchRate, 

authRejectedCredRate) of the rpcStats data structure or errorRate and 

mountFailureRate rate statistics of the NFS client and server records). Engel 

Appendix VI at pp. 80-82, 92 of rtp_nfs_p.c, pp. 66-69 of rtp_nfs_p.c (relevant 

routines use stats_for_nodes and stats_for_dialog macros for updating statistics).  

Accordingly, if any error running_count variable of the NFS dialog, client, or 

server for the time interval from the last issued alarm (i.e., when the running_count 

variable was last set to 0) exceeds a certain threshold, an alarm is issued to the 

Event Manager.   

120. If the reply did not otherwise result in an error and is an unmount 

response, rtp_nfs_parse removes the client’s link to the file system(s) being 

unmounted.   Engel Appendix VI at pp. 82-83 of rtp_nfs_p.c.  If the reply is to a 

successful mount, the file system is marked as in use.  Engel Appendix VI at pp. 

83-84 of rtp_nfs_p.c.  If the reply is to an unsuccessful mount, the client’s link to 

the file system is removed, and, if necessary, deallocates the data structure of the 

file system. Engel Appendix VI at pp. 84-85 of rtp_nfs_p.c.  The mountFailures 

and errors count statistics and mountFailureRate and errorRate statistics of the NFS 
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client record and NFS server record are also updated using the stats_for_nodes and 

stats_for_dialog macros discussed above.  Engel Appendix VI at pp. 84-85, 92 of 

rtp_nfs_p.c; see also pp. 66, 68-69 of rtp_nfs_p.c (relevant routines use 

stats_for_nodes and stats_for_dialog macros for updating statistics). Accordingly, 

if the errors or mountFailures running_count variable of the NFS dialog, client, or 

server for the time interval from the last issued alarm (i.e., when the running_count 

variable was last set to 0) exceeds a certain threshold, an alarm is issued to the 

Event Manager. 

121. If the communication is for the NFS protocol (“NFS_PORT”) and the 

communication is a call, the rtp_nfs_parse routine updates variables of the ops 

count and opRate rate statistics objects for the dialog record, the NFS client record, 

and the NFS server record using the stats_for_nodes and stats_for_dialog macros, 

as discussed above.  Engel Appendix VI at p. 86 of rtp_nfs_p.c (calling 

nfs_stats_ops).  Again, if the ops running_count variable of the NFS dialog, client, 

or server for the time interval from the last issued alarm (i.e., when the 

running_count variable was last set to 0) exceeds a certain threshold, an alarm is 

issued to the Event Manager.  

122. The rtp_nfs_parse routine next updates various statistics objects of the 

dialog based on whether the request is a “NFS_READ”, “NFS_WRITECACHE”, 

or “NFS_WRITE”.  Engel Appendix VI at pp. 86-87 of rtp_nfs_p.c.  Specifically, 
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if the request is a “NFS_READ,” the readOps count and readOpRate rate statistics 

objects of the dialog record, NFS client record, and NFS server record are updated 

using the stats_for_nodes and stats_for_dialog macros, as discussed above.  Engel 

Appendix VI at p. 86 of rtp_nfs_p.c (calling nfs_stats_read_ops), pp. 66-67 of 

rtp_nfs_p.c (defining nfs_stats_read_ops as calling stats_for_nodes and 

stats_for_dialog macros).  If the readops running_count variable of the NFS dialog, 

client, or server for the time interval from the last issued alarm (i.e., when the 

running_count variable was last set to 0) exceeds a certain threshold, an alarm is 

issued to the Event Manager.   

123. If the request is “NFS_WRITECACHE,” the writeCacheOps count 

and writeCacheOpRate rate statistics objects of the dialog record, NFS client 

record, and NFS server record are updated using the stats_for_nodes and 

stats_for_dialog macros.  Engel Appendix VI at p. 86 of rtp_nfs_p.c (calling 

nfs_stats_write_cache_ops), p. 65 of rtp_nfs_p.c (defining 

nfs_stats_write_cache_ops as calling stats_for_nodes and stats_for_dialog macros).  

If the writeCacheOps running_count variable of the NFS dialog, client, or server 

for the time interval from the last issued alarm (i.e., when the running_count 

variable was last set to 0) exceeds a certain threshold, an alarm is issued to the 

Event Manager. Additionally, the writeBytes, writeByteRate statistics objects of 

the dialog record, NFS client record, and NFS server record are updated using the 
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stats_bytes_for_nodes and stats_bytes_for_dialogs macros.  Engel Appendix VI at 

p. 86 of rtp_nfs_p.c (calling nfs_stats_write_bytes), pp. 65-66 of rtp_nfs_p.c 

(defining nfs_stats_write_bytes as calling stats_bytes_for_nodes and 

stats_bytes_for_dialog macros), p. 193 of stats.h (defining stats_bytes_for_nodes 

macro as calling stats_count_bytes); p. 199 of stats.h (defining 

stats_bytes_for_dialog macro as calling stats_count_bytes); pp. 628-629 of 

stats_p.c (defining stats_count_bytes routine).  In particular, the stats_count_bytes 

routine sums the byte_count of the instant packet to the running total writeBytes 

count and running_count variables and also to the writeBytesRate count variable 

for each of the dialog, NFS client, and NFS server records.  Engel Appendix VI at 

pp. 628-629 of stats_p.c.  The stats_count_byte routine then tests, for each record, 

whether the byte running_count variable has exceeded the high_thld variable.  If 

so, an alarm is issued and the running_count variable is reset to 0.  Engel Appendix 

VI at pp. 628-629 of stats_p.c.  In this way, if the writeBytes running_count 

variable of the NFS dialog, client, or server for the time interval from the last 

issued alarm (i.e., when the running_count variable was last set to 0) exceeds a 

certain threshold, an alarm is issued to the Event Manager.  Engel Appendix VI at 

pp. 628-629 of stats_p.c.   

124. If the request is a “NFS_WRITE,” the writeOps count and 

writeOpRate rate statistics objects of the dialog record, NFS client record, and NFS 
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server record are updated using the stats_for_nodes and stats_for_dialog macros, as 

discussed above.  Engel Appendix VI at p. 86 of rtp_nfs_p.c (calling 

nfs_stats_write_ops), p. 65 of rtp_nfs_p.c (defining nfs_stats_write_ops as calling 

stats_for_nodes and stats_for_dialog macros).  If the writeOps running_count 

variable of the NFS dialog, client, or server for the time interval from the last 

issued alarm (i.e., when the running_count variable was last set to 0) exceeds a 

certain threshold, an alarm is issued to the Event Manager. Additionally, the 

writeBytes, writeByteRate statistics objects of the dialog record, NFS client record, 

and NFS server record are updated using the stats_bytes_for_nodes and 

stats_bytes_for_dialogs macros, as discussed above.  Engel Appendix VI at p. 86 

of rtp_nfs_p.c (calling nfs_stats_write_bytes), pp. 65-66 of rtp_nfs_p.c (defining 

nfs_stats_write_bytes as calling stats_bytes_for_nodes and stats_bytes_for_dialog 

macros).  If the writeBytes running_count variable of the NFS dialog, client, or 

server for the time interval from the last issued alarm (i.e., when the running_count 

variable was last set to 0) exceeds a certain threshold, an alarm is issued to the 

Event Manager.   

125. If the communication is for an NFS protocol reply and if the reply 

indicates that an error occurred (e.g., the program is unavailable, the message was 

denied due to bad credentials), the rtp_nfs_parse routine updates various statistics 

objects of each of the NFS dialog, client, and server records relating to the error.  
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Engel Appendix VI at pp. 87-89, 92 of rtp_nfs_p.c.  Namely, the stats_for_nodes 

and stats_for_dialog macros are used for updating the various error related count 

statistics (i.e., rpcProgramFail, rpcMismatch, or rpcAuthFail count statistics of the 

dialog record, and similar count statistics (e.g., progUnavail, versionMismatch, 

authRejectedCred) of the rpcStats data structure and/or errors count statistic of the 

NFS client and server records), and associated rate statistics (i.e., 

rpcProgramFailRate, rpcMismatchRate, or rpcAuthFailRate rate statistics of the 

dialog record, and similar rate statistics (e.g., progUnavailRate, 

versionMismatchRate, authRejectedCredRate) of the rpcStats data structure and/or 

errorRate rate statistic of the NFS client and server records).  Engel Appendix VI at 

pp. 87-89, 92 of rtp_nfs_p.c, pp. 66-68 of rtp_nfs_p.c (relevant routines use 

stats_for_nodes and stats_for_dialog macros for updating statistics).  Accordingly, 

if any of the error running_count variables of the NFS dialog, client, or server for 

the time interval from the last issued alarm (i.e., when the running_count variable 

was last set to 0) exceeds a certain threshold, an alarm is issued to the Event 

Manager.   

126. If the reply did not otherwise result in an error to this point, the 

rtp_nfs_parse routine updates various statistics objects of each of the NFS dialog, 

client, and server records relating to the status of the NFS reply.  Engel Appendix 

VI at pp. 89-91 of rtp_nfs_p.c.  Namely, if the reply is “NFS_OK,” the readBytes, 
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readByteRate statistics objects of each of the dialog record, NFS client record, and 

NFS server record are updated using the stats_bytes_for_nodes and 

stats_bytes_for_dialogs macros.  Engel Appendix VI at pp. 89-90 of rtp_nfs_p.c 

(calling nfs_stats_read_bytes), p. 65 of rtp_nfs_p.c (defining nfs_stats_read_bytes 

as calling stats_bytes_for_nodes and stats_bytes_for_dialog macros).  If the 

readBytes running_count variable of the NFS dialog, client, or server for the time 

interval from the last issued alarm (i.e., when the running_count variable was last 

set to 0) exceeds a certain threshold, an alarm is issued to the Event Manager.   

127. If the reply indicates an access/user/resource type of error (e.g., name 

too long, stale, file too big), the rtp_nfs_parse routine updates various statistics 

objects of each of the NFS dialog, client, and server records relating to the error. 

Engel Appendix VI at pp. 89-90 of rtp_nfs_p.c.  Namely, the stats_for_nodes and 

stats_for_dialog macros are used for updating the various error related count 

statistics (e.g., nfsAccessError, nfsUserError, or nfsResourceError count statistics 

of the dialog record, and nfsErrPerm, nfsErrNoEnt, or nfsErrFBig count statistics 

of the NFS client and server records), and associated rate statistics (e.g., 

nfsAccessErrorRate, nfsUserErrorRate, or nfsResourceErrorRate rate statistics of 

the dialog record, and nfsErrPermRate, nfsErrNoEntRate, or nfsErrFBigRate rate 

statistics of the NFS client and server records).  Engel Appendix VI at pp. 89-90 of 

rtp_nfs_p.c, pp. 69-72 of rtp_nfs_p.c (routines use stats_for_nodes and 
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stats_for_dialog macros for updating statistics).  Accordingly, if any of the error 

running_count variables of the NFS dialog, client, or server for the time interval 

from the last issued alarm (i.e., when the running_count variable was last set to 0) 

exceeds a certain threshold, an alarm is issued to the Event Manager.   

D. Age Out Timers 

128. Engel discloses an aging mechanism for determining when dialog and 

address data structures should be discarded and the space recycled.  According to 

Engel, the age out time is configurable: 

“[A]ll statistical data collected by the Monitor is subject to age out. Thus, if 
no activity is seen for an address (or address pair) in the time period defined 
for age out, then the data is discarded and the space reclaimed so that it 
may be recycled. In this manner, the Monitor is able to use the memory for 
active elements rather than stale data. The user can select the age out times 
for the different components. The EM periodically kicks off the aging 
mechanism to perform this recycling of resources. STATS provides the 
routines which the EM calls, e.g. stats_age. . . . 
 
The deallocate routine is called by the aging routines when a structure is to 
be recycled.” 
 

Engel at 17:2-16.   

129. Engel specifically discloses a statsNfsAgeDialog routine that 

determines whether the period of inactivity for each dialog address pair has 

exceeded a defined threshold (i.e., the nfsDialogAgeTimer variable of the monCtrl 

data structure).  Engel Appendix VI at pp. 435-438 of stats_nfs_a.c.  The period of 

inactivity is measured by subtracting the lastTime variable of the dialog 
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StatsAddrEntry record (i.e., the last time an NFS packet between the IP address 

pair of the dialog was seen) from the current time: 

 

Engel Appendix VI at p. 436; see also above discussion regarding lastTime 

variable.  If the period of inactivity exceeds the nfsDialogAgeTimer value, the 

dialog is removed from the nfs_dialog_hash_table and from the dialogQ for each 

of the NFS client/server data structures, and the StatsAddrEntry, 

StatsNfsDialogEntry, and StatsNfsState data structures are deallocated. Engel 

Appendix VI at pp. 436-438 of stats_nfs_a.c. 

E. Other Application Programs and Protocols Supported 

130. The Engel Appendix VI code supports at least FTP, Telnet, SMTP, 

and NFS application programs.  Engel Appendix VI at p. 132 of rtp_tcp_p.c. Engel 

further discloses supporting TFTP, SNMP, NSP (DNS), X Windows, LAT, NFT, 

RFA, VT, and Netware programs.  Engel at Fig. 19, 15:35-39.  The differences 

between the Engel Appendix VI get_dialog and lookup_dialog routines are 

insubstantial (e.g., the hash function is computed based on different extracted 

information such as IP addresses and/or ports).  Given the standardized nature of 

these routines, one of skill in the art would recognize that the relevant routines for 

each of these programs would operate in a similar, if not identical, manner to those 

specifically disclosed for NFS.  Further, Engel specifically discloses use of macros 
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for updating statistics (including application layer dialogs and server records).  

Engel at 16:30-33; Engel Appendix VI at pp. 187-207 of stats.h, pp. 626-629 of 

stats_p.c, p. 75 of rtp_nfs_p.c.  Engel also discloses: “the Monitor can be readily 

extended to handle other protocol families.”  Engel at 29:25-26.  Upon reading the 

disclosures of Engel and the Engel Appendix VI source code, a skilled artisan 

would recognize that such macros would readily be utilized by other supported 

application layer parse routines.   

131. Engel further discloses supporting additional network layer protocols 

(e.g., DecNet Routing, NCP) and transport layer protocols (e.g., UDP, NSP, NCP).  

Engel at 29:24-28, Fig. 19.  Engel also discloses parsing different protocols at 

various layers in accordance with known standards.  Engel at 20:1-28.  Given the 

standardized nature of Engel’s source code files and parse routines, one of skill in 

the art would recognize that each supported protocol would be implemented 

through a separate source code file that includes information for parsing a packet in 

accordance with the known standard for the protocol. 

F. Receiving Engel’s Protocol Descriptions 

132. I was asked to consider whether Engel discloses “receiving a set of 

protocol descriptions for a plurality of protocols that conform to a layered model,” 

as required by claims 10 and 17.   
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133. I note that the ‘725 patent discloses “receiving” protocol descriptions 

only in the context of compiler and optimizer 310 that receives and “compiles” 

protocol “source-code information in the form of protocol description files.”  

“Compilation process is described in FIG. 4. The source-code information 
in the form of protocol description files is shown as 402. In the particular 
embodiment, the high level decoding descriptions includes a set of protocol 
description files 336, one for each protocol, and a set of packet layer 
selections 338, which describes the particular layering (sets of trees of 
protocols) that the monitor is to be able to handle. 
 
A compiler 403 compiles the descriptions.” 
 

‘725 patent at 14:63-15:3; see also Fig. 4 at steps 402, 403.  I also note that, 

although the ‘725 patent discloses a compilation process that “generates,” “builds,” 

“fill[s],” or “load[s]” specific “internal data structures” during initialization 

(discussed in more detail in Paragraph 218 below), such data structures are not 

required by claims 10 or 17. 

134. Engel disclose a compiler of the network monitor that receives and 

compiles source code files: 

“The source code is written in C language. It may be compiled by a 
MIPS R3000 C compiler (Ver. 2.2) and run on a MIPS 3230 
workstation which has a RISC-os operating system (MIPS products 
are available from MIPS Computer Systems, Inc. of Sunnyvale, 
Calif.).” 

EX1007, Engel at 43:52-56, see also 10:5-7 (“Monitor 10 includes a MIPS R3000 

general purpose microprocessor (from MIPS Computer Systems, Inc.)[.]”).  After 

reviewing the source files found in Appendix VI of Engel, I confirm that the source 
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code is, in fact, written in the C programming language.  Additionally, as discussed 

in detail above, each of the protocol-specific parsing source code files (i.e., 

rtp_dll_p.c, rtp_ip_p.c, rtp_tcp_p.c, rtp_udp_p.c, rtp_rpc_p.c, and rtp_nfs_p.c) 

provides commands that describe a protocol that may be used in packets 

encountered by the monitor, determines any protocols that may be encountered in 

the next layer of the packet (i.e., child protocol), and calls the appropriate parse 

routine for such protocols. 

135. The programming languages C and C++ were first defined in 1972 

and 1983, respectively.  Around the same time that these programming languages 

were defined, compilers became available for compiling high-level source codes 

written in these programming languages into low-level executable machine 

instructions that can directly run on a computer processor (also referred to as a 

CPU or a microprocessor). 

136. For example, Engel describes a network monitor that includes a MIPS 

R3000 microprocessor and provides source code in C for implementing various 

network monitoring functions.  A skilled artisan would readily know that this 

source code in C when received by the disclosed compiler can be automatically 

compiled or translated to executable machine instructions that are stored in 

memory of the network monitor’s microprocessor for subsequent execution.  In the 

context of Engel’s protocol-specific parsing source code files (i.e., rtp_dll_p.c, 
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rtp_ip_p.c, rtp_tcp_p.c, rtp_udp_p.c, rtp_rpc_p.c, and rtp_nfs_p.c), a skilled artisan 

would understand from Engel’s disclosure that each of the commands described in 

the parsing files are translated into executable machine instructions and initialized 

in memory of the network monitor’s microprocessor.  Such executable machine 

instructions, in the context of the parsing commands and as discussed in detail 

above, instruct the processor on the specific parsing and extraction operations that 

are to be performed when a particular protocol is encountered by the monitor.  

Accordingly, Engel discloses a compiler of the network monitor that receives 

source code information in the form of protocol description files. 

G. Engel’s High-Level Protocol Description Language 

137. I was asked to consider whether Engel discloses “protocol 

descriptions” that “are provided in a protocol description language” as required by 

claim 13.   

138. I note that the ‘725 patent describes a “protocol description language” 

as follows: 

“Input to the compiler includes a set of files that describe each of the 
protocols that can occur. These files are in a convenient protocol 
description language (PDL) which is a high level language. PDL is used for 
specifying new protocols and new levels, including new applications. The 
PDL is independent of the different types of packets and protocols that may 
be used in the computer network. A set of PDL files is used to describe what 
information is relevant to packets and packets that need to be decoded. The 
PDL is further used to specify state analysis operations. Thus, the parser 
subsystem and the analyzer subsystems can adapt and be adapted to a 
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variety of different kinds of headers, layers, and components and need to be 
extracted or evaluated, for example, in order to build up a unique signature.” 
 

EX1033, ‘725 patent at 41:24-37.  The ‘725 patent additionally states: 

“The protocol description language (PDL) files 336 describes both patterns 
and states of all protocols that an occur at any layer, including how to 
interpret header information, how to determine from the packet header 
information the protocols at the next layer, and what information to extract 
for the purpose of identifying a flow, and ultimately, applications and 
services. … This information is input into compiler and optimizer 310.” 
 

‘725 patent at 9:29-40; see also Fig. 4.  Thus, any high-level language that 

describes how to perform some of these functions would constitute a protocol 

description language. 

139. Engel discloses source code written in a high-level language: 

“The source code is written in C language. It may be compiled by a 
MIPS R3000 C compiler (Ver. 2.2) and run on a MIPS 3230 
workstation which has a RISC-os operating system (MIPS products 
are available from MIPS Computer Systems, Inc. of Sunnyvale, 
Calif.). 

EX1007, Engel at 43:52-56.  After reviewing the source files found in Appendix 

VI of Engel, I confirm that the source code is, in fact, written in the C 

programming language.   

140. A skilled artisan would understand that Engel’s protocol-specific 

parsing source code files (i.e., rtp_dll_p.c, rtp_ip_p.c, rtp_tcp_p.c, rtp_udp_p.c, 

and rtp_nfs_p.c), are protocol descriptions that are provided in a protocol 

description language within the meaning of the ‘725 patent.  Namely, as discussed 
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in detail above, each of the protocol-specific parsing source code files provides 

commands that describe a protocol that may be used in packets encountered by the 

monitor, interprets header information, parses/extracts information based on the 

protocol described in the file, determines any protocols that may be encountered in 

the next layer of the packet (i.e., child protocol), and calls the appropriate parse 

routine for such protocols.  See Paragraphs 74-127 above. 

VIII. OPERATION OF BAKER  

141. I was asked to review Baker and the source code found in Baker’s 

disclosures and to provide an overview of the operation of the Baker network 

interfaces system as disclosed in Baker. 

A. Overview 

142. By way of background, Baker discloses a network interface system 

that supports the addition of new protocols to the system “without requiring 

substantial modification to the system or its control logic.”  EX1038, Baker at 3:1-

8, 1:25-30.  In particular, Baker discloses a network device including a data storage 

device 14 for storing protocol description files (PDFs) and a separate analysis 

control logic 16 for parsing received network frames based on information 

contained in the protocol description files. Baker at 10:10-35.  Each Baker PDF 

includes a protocol control record that “define[s] the overall structure of a network 

protocol and reference[s] other information relating to the network protocol.”  
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Baker at 12:28-32.  The data present in each protocol control record is set forth in 

Table 1: 

 

Baker at Table 1.   Each protocol control record references field records (discussed 

in more detail below) at bytes 28-31, which describe the protocol header and 

include pointers to other records as discussed at Baker 12:25-19:10, Tables 1-11.  

As described in more detail below, each PDF includes information describing 

extraction operations that should be performed when it is determined that the 

protocol, which is the subject of the PDF, is in use in the packet.  For example, 

each protocol description file includes a total bit length of the protocol header, a 
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number of fields required to describe the header, and field records, each describing 

a protocol header field, including a byte offset from the start of the protocol header 

and, if appropriate, an associated lookup structure for determining the next 

protocol control record to use. Baker at 19:11-20:36, Table 1 and 2.  

B. Initialization  

143. Baker discloses that upon initialization of the system, the protocol and 

associated control record information is extracted from all PDF files and a 

“ProtocolList is constructed consisting of a sorted vector of protocol records.”  

Baker at 20:35-21:7.  “The PDF files are then read to memory” in the sequence 

described at 19:11-20:36.  Baker at 21:7-9.  Each protocol description control 

record and all associated records are shown in Tables 1-11 as they appear when 

resident in memory, upon system initialization.  Baker at 19:3-6; see also Baker at 

20:35-21:7, Fig. 3.  Namely, Baker states: 

“In the presently preferred embodiment, the initialization of the system 
includes a determination of the presence of PDF files and the extraction of 
the protocol and associated control record information from all of the PDF 
files found. The number of PDF files is determined, and a ProtocolList is 
constructed consisting of a sorted vector of protocol records at least the size 
of the number of PDF files found. The name of each protocol record found is 
inserted in the ProtocolList. The PDF files are then read to memory in the 
sequence described above for the PDF file writing. The lookup records that 
indicate a next protocol are associated with the appropriate entries in the 
ProtocolList.” 
 

Baker at 20:35-21:11. 
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144. This initialization process is implemented by the Baker control logic 

(source code) through a setup_protocols function.  Baker at 127:5-129:13.  

Namely, the setup_protocols function first determines the number of PDFs stored 

by the system by counting the number of PDF files: 

 

Baker at 127:10-18.  A ProtocolList vector is then setup to be twice the size of the 

current number of PDF files found. 

 

Baker at 127:20-22.   

145. Next, the setup_protocols function creates a new data structure of type 

“protocol” for each PDF (protocol description) and each protocol is inserted into 

the ProtocolList vector: 
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Baker at 127:24-128:13. The ProtocolList vector is used as an index for searching 

the protocol descriptions supported by the system and includes a variable for 

storing a protocol name_length variable and a pointer to a protocol data structure.  

See e.g., Baker at 127:24-128:13 (reproduced above), 128:33-129:1 (reproduced 

below).  

146. The protocol data structure includes the data elements depicted in the 

protocol control record (Table 1) of Baker: 
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* * * 

 

 

Baker at 149:12-154:8; see also Baker at Table 1. 

147. The setup_protocols function then creates the required data structures 

for each PDF using the protocol::get_from_file function. Namely, for each PDF, 

the setup_protocols function opens the file, reads the name_length and 

protocol_name elements from the file, and searches the ProtocolList index for the 

associated protocol record stored in memory (ProtocolList->find(p, t)).   
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Baker at 128:24-129:5. 

148. If a protocol record is found, the protocol::get_from_file function 

initializes the found protocol record (t.prot()) based on the protocol control record 

information in the associated PDF. The get_from_file function also creates an 

indexed array called “fs” of type “field” for storing each field sub-record of the 

PDF.  Baker at 57:7-9.  The size of the array is set according to the “num_fields” 

value read from the PDF, which indicates the number of fields required to describe 

the associated protocol header.   
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Baker at 56:30-57:11; see also Table 2.   

149. The field data structure includes the data elements of the field sub-

record depicted in Table 2 of Baker: 

 

* * * 
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Baker at 141:21-149:7; see also Baker at Table 2. 

150. Returning to the protocol::get_from_file function, another 

get_from_file function is used to read field sub-record information from the 

associated PDF and store each element in the accompanying field element of the fs 

array at an indexed location, where the index sequentially increments from 0 to the 

value of num_fields. 

 

Petitioners' EX1006 Page 106



 106 

Baker at 57:7-9.  The get_from_file function for initializing the field elements of 

the fs array is reproduced below. 

 

 

Baker at 147:28-148:13.  

151. As depicted above, this get_from_file function uses an 

alloc_lookup_structs function to allocate a data structure called ptr2np for the next 

protocol lookup records (Baker at Table 4) referenced in the PDF based on the type 

of data structure needed.   

Petitioners' EX1006 Page 107



 107 

 

 

Baker at 73:36-74:9.   

152. Namely, if the current protocol has only one upper level protocol, 

alloc_lookup_structs (using a lookup_value constructor) allocates a new data 

structure of type “lookup_valu,” that includes a pointer to a data structure called 

“range” of type “verify” and also an “entrees” variable that indicates whether the 

next protocol entry has been setup.  
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* * * 

 

Baker at 167:30-171:22.    

153. If the current protocol has multiple upper level protocols, 

alloc_lookup_structs (using a lookup_vect constructor) allocates a new data 

structure of type “lookup_vect,” that includes: a “size” variable set to 256, 

indicating the array size in entries; an “entrees” variable that indicates the number 

of entries in the array; and a pointer to a data structure called “array” including 257 

entries (size+1), each of type “verify” (i.e., each entry including the data elements 

defined in the verify data structure).   
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* * * 

 

Baker at 171:23-177:33.   

154. The verify data structure includes the data elements depicted in Table 

4 of Baker: 
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Baker at 165:37-166:5; see also Table 4.  As depicted above, the “prot” element of 

the verify data structure is a pointer to a protocol record. 

155. Once the alloc_lookup_structs function allocates the appropriate 

ptr2np data structure for the lookup records, processing returns to the 

get_from_file function and ptr2np->get_from_file(fp) is called to read the lookup 

record values from the PDF and store them in the newly allocated ptr2np record. 

 

Baker at 148:11-12.   

156. For a multi-protocol ptr2np data structure, the number of valid array 

entries is first determined and then each lookup entry found in the PDF is stored as 

at least one indexed entry in the array data structure.  Specifically, each lookup 

record is stored in the array at indexed locations including the minval and maxval 

variables of the lookup record (capped at maxval 256, the size of the array) and 

also at indexed locations including the even, odd or all values in between minval 

and maxval based on the okbits variable of the lookup record. 
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Baker at 177:4-26.  See also Baker at Table 4.  In this way, the lookup structure is 

stored as an indexed array, and each entry is indexed by a valid value. 

C. ParseFrame Control Logic 

157. Baker describes ParseFrame control logic (depicted in Fig. 11) that 

“systematically parses through each network frame (at 104 to 108 and 128) until all 

known protocol headers have been parsed.”  Baker at 36:32-34, Fig. 11.  The 

source code includes a ParseFrame2 function that parses a network frame in 

accordance with Fig. 11. 
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158. Namely, the ParseFrame2 function receives as an input, a pointer to 

the initial protocol description record (called ProtoPtr in the source code and also 

referred to as the CurrentProtocol variable).   

 

Baker at 67:6-21; see also Table 14 (CurrentProtocol variable is “Pointer to 

protocol description control record in use”).  I note that the ‘725 patent refers to 

this “initial protocol” as the “base protocol” used in a packet.  ‘725 patent at 32:11-

12 (“The packet type is the root of a tree (called base level).”), column 71 (setting 

virtualChildren FIELD as “ethernet(1)”; disclosing “now define the base for the 

children” and setting VirtualBase PROTOCOL as 

“{VirtualChildren=virtualChildren}”), 32:29-33 (“At a base level, there are a 

number of packet types used in digital telecommunications, including Ethernet, 
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HDLC, ISDN, Lap B, ATM, X.25, Frame Relay, Digital Data Service, FDDI 

(Fiber Distributed Data Interface), and T1, among others.”), 33:16-20 (FIG. 16 

shows the header 1600 (base level 1) of a complete Ethernet frame (i.e., packet) 

….”), 32:9-12, 35:56-65, 40:1-22, 42:3-11. The Baker source code supports 

initial/base protocols including Ethernet, FDDI, and Token Ring.  Baker at 27:17-

20 (Describing InfTypes variable as “Array of values defining the type of each 

interface in the network system”), 52:12 (“IntfTypes[256] - {ETHERNET, FDDI, 

TOKEN RING};”), 189:6. 

159. As disclosed in Baker at 67:6-21 (reproduced above), the 

ParseFrame2 function sets locally defined variables, including the ParseLen 

(indicating the running total number of bits parsed in the frame) and ParseLevel 

(indicating the ISO layer position) variables to 0.  And, the ParsePtr variable is set 

to point to the start of the frame.  See also Baker at Fig. 11 (step 102).   

160.    The ParseFrame2 function then enters a while loop to call a 

ParseProtocol2 function, passing as an input, the pointer to the initial protocol 

description record “ProtPtr.” 
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Baker at 67:27-32, Fig. 11 (steps 104, 106). 

161. When processing is returned by the ParseProtocol2 function, the 

ParseFrame2 function determines whether the ProtPtr variable points to a valid 

next protocol description record, as determined and returned by the ParseProtocol2 

and ParseFields2 functions discussed in Paragraphs 163-177 below.  Baker at 

67:27-32, Fig. 11 (steps 108, 128).  If the ProtPtr variable points to a valid next 

protocol description record, the ParseFrame2 function again calls the 

ParseProtocol2 function, passing as an input, the pointer to the next protocol 

description record “ProtPtr.”  Baker at 67:27-32, Fig. 11 (steps 108, 128).   

162. The ParseFrame2 function iterates through the discoverable protocol 

layers in this manner (using the Protocol2 and ParseFields2 functions as discussed 

in detail below) until the ProtPtr variable returned is null.  Baker at 67:27-32, Fig. 

11 (step 108).  When all known protocol headers have been parsed, “[a]ny 

remaining frame bits are parsed as application data (at 110, 112 and 130) and/or 

pad data (at 114, 116 and 132).”  Baker at 36:34-36; see also Baker at 67:34-68:24.  

Where there is application data to be parsed, Baker discloses parsing such 

application data in the same manner as for other protocols (by calling the Protocol2 

function, which calls the ParseFields2 function as discussed below), passing as an 

input to the Protocol2 function, a pointer to an application protocol record that 

defines how the application data should be parsed.  Baker at 67:33-36. 
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D. ParseProtocol Control Logic 

163. Baker describes ParseProtocol control logic (depicted in Fig. 12) that 

is responsible for parsing “all fixed and optional protocol fields.” Baker at 37:1-16, 

Fig. 12.  The source code includes a ParseProtocol2 function that parses fixed and 

optional protocol fields in accordance with Fig. 12. 

164. Namely, the ParseProtocol2 function receives as an input, the pointer 

to the initial/base protocol description record “p”.  The ParseProtocol2 function 

then calls the ParseFields2 function, passing as inputs, the pointer to the 

initial/base protocol description record, and a HeaderLen variable. 

 

Baker at 66:12-20.   

165. As discussed in detail below and depicted in Fig. 13, the ParseFields2 

function parses fixed fields in the protocol header of a packet as defined by the 

current protocol description record, determining the next layer protocol as it 

progresses.  Baker at 37:4-5, Fig. 12 (step 152), Fig. 13; see also Paragraphs 166-

177 below.  Once the fields that are fixed in location have been parsed using the 
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ParseFields2 function, the ParseProtocol2 function determines whether there are 

optional protocol fields as defined by the current protocol description record and, if 

so, parses those fields.  Baker at 37:1-16, 66:21-34, Fig. 12.  If all hardware bits 

end up being parsed, the ParseProtocol2 function returns “0.”  Otherwise, when 

processing returns to the ParseFrame2 function, the ParseProtocol2 function 

returns the next protocol to use in parsing the frame.  Baker at 37:13-16, 66:35-

67:4.   

E. ParseFields Control Logic 

166. Baker describes ParseFields control logic (depicted in Fig. 13) that 

“parses the fields in each protocol header contained in a particular network frame 

by using field values obtained in accordance with information specified in 

associated protocol descriptions.”  Baker at 30:10-15, Fig. 13.  The source code 

includes a ParseFields2 function that parses the fields in a protocol header in 

accordance with the Fig. 13.  

167. Namely, the ParseFields2 function receives as an input, a pointer to a 

particular protocol description record in the protocol data structure (protocol *p).  

The ParseFields2 function then sets a locally defined field variable (f) as a pointer 

to the protocol record’s field array (fs).  
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Baker at 64:1-10; see also Baker at 151:16 (field *fieldptr() const { return(fs); }).  

168. The ParseFields2 function then enters a for loop to increment through 

the indexed fields of the protocol record’s field array, starting at index “i=0.”   

 

Baker at 64:11-14.  The method for incrementing the index value will be discussed 

with reference to validating an extracted value below. 

169. The ParseFields2 function then calls a get_value function (also 

referred to as the GetValue control logic) to locate and extract the associated field 

value from the packet, as defined by the currently indexed element of the protocol 

record’s field array (fs[i]): 
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Baker at 64:18.  Namely, the get_value function adds the value of the fdwoff 

variable (as defined in the currently indexed element of the protocol record’s field 

array fs[i]) to the ParsePtr variable (which is set to the start of the frame being 

parsed).  The fdwoff variable value is the byte offset of the associated field, 

measured from the start of the protocol header.  Baker at Table 2, 148:26 (fdwoff 

variable of fs array described as “field offset in bytes”).  Accordingly, when fdwoff 

variable for a particular field is added to the ParsePtr variable, the resulting value 

provides the location of the field in the packet.  This enables the get_value function 

to search and locate the field value in the packet.  The get_value function then sets 

a local variable “val” as the value of the located field from the packet, and 

modifies this value to, for example, eliminate any extraneous bits.  The resulting 

extracted value is returned: 
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Baker at 145:20-146:2.  Baker similarly describes this process as follows: 

“Referring now to Fig. 13, a value is extracted by the GetValue control logic 
(shown in Fig. 16) of the system (at 210) for each configured field that is 
relevant to the current network frame. As shown in Fig. 16, the fdwoff value 
is added to ParsePtr to locate and extract a 32-bit value (at 502) containing 
the field value, which is then byteswapped (at 510) if the fswap field is TRUE. 
If the ptr2vary field is NULL (at 512 or 518), indicating that the value does 
not need to be modified or varied, the field value is extracted (at 506) by 
shifting the 32-bit value left fshl bits and then right by fshr bits to eliminate 
any extraneous bits. If the ptr2vary field is non-NULL, the extracted 32-bit 
value is modified using the configured method (at 514 or 520) and the 
resulting 32-bit value overwrites the extracted 32-bit value (at 516 or 522). 
If the extracted value was byteswapped (at 510), the modified value is 

Petitioners' EX1006 Page 120



 120 

swapped back (at 516) prior to overwriting the original value. The extracted 
value is returned (at 508) by the GetValue control logic.” 
 

Baker at 27:17-35; see also Baker at Fig. 13 (step 210), Fig. 16. 

170. After processing is returned, the ParseFields2 function calls a 

value_ok function (also referred to as the ValidateValue control logic in the 

Baker), passing as inputs the extracted value “val,” the index of the associated field 

“i,” and a pointer to a local next protocol data structure:  

 

Baker at 64:25-38; see also Baker at 29:1-31, Fig. 13 (step 214), Fig. 14.  The 

value_ok function determines whether the extracted field value is valid.  Namely, 

the value_ok function first determines whether the ptr2np variable (as defined in 

the indexed element of the protocol record’s field array fs[i]) is set to “0,” 

indicating that a lookup structure is not configured for the particular field in 

question.  If this is the case, the index “i” (used to determine which indexed entry 

of the field array should be parsed next) is incremented by one and “TRUE” is 

returned:   
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Baker at 146:9-13; see also Baker at 29:7-11, Fig. 14 (steps 302, 318, 312).   

171. Alternatively, it is determined (Baker at 146:9-13) that a lookup 

structure does exist for the particular field and the value_ok function tests whether 

the extracted value is found in that lookup structure. 

 

Baker at 146:14-18; see also Baker at 29:12-16, Fig. 14 (steps 304, 314, 316).  If 

the value is not found in the lookup structure, the index “i” (used to determine 

which indexed entry of the field array should be parsed next) is incremented by 

one and “FALSE” is returned. 

172. The specific function used to determine whether an extracted value is 

found in a particular multi-protocol lookup structure is as follows: 
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Baker at 175:35-176:24.  As detailed above, this function first tests to see if the 

extracted value is bigger than the size of the array (256).  If not, the function sets 

up a pointer “v” to the array entry at an indexed location corresponding to the 

extracted value (array[value]).  The function then tests whether the value is equal 

to or between the minval and maxval variables of the array entry at the value-

indexed location.  If so, and if the value is an odd number, the function verifies that 
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the okbits variable of the array entry at the value-indexed location indicates that 

odd or all values for the associated next protocol are ok.  If the value is an even 

number, the function verifies that the okbits variable of the array entry at the value-

indexed location indicates that even or all values for the associated next protocol 

are ok.  If one of these last two checks is true, the function returns the pointer to 

the array entry at the value-indexed location.  Otherwise, “0” is returned, indicating 

that a valid entry was not found. 

173. The specific function used to determine whether an extracted value is 

found in a particular single protocol lookup structure is as follows: 

 

 

Baker at 170:28-171:7.  As detailed above, this function tests whether the value is 

equal to or between the minval and maxval variables of the verify record.  If so, 
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and if the value is an odd number, the function verifies that the okbits variable of 

the record indicates that odd or all values for the associated next protocol are ok.  If 

the value is an even number, the function verifies that the okbits variable of the 

record indicates that even or all values for the associated next protocol are ok.  If 

one of these checks is true, the function returns a pointer to the verify record.  

Otherwise, “0” is returned, indicating that a valid entry was not found. 

174. Returning to the main value_ok function, if it is determined that a 

lookup structure does exist for a particular field and that the extracted value is 

found in that lookup structure, the value_ok function determines whether the local 

next protocol variable “tp” (also referred to in the disclosure as NextProtocol) has 

been previously set and, if not, sets it to the “prot” variable of the lookup structure 

array entry at the value-indexed location corresponding to the extracted value.  

This “prot” variable is a pointer to the next protocol description data structure that 

will be used to parse the next layer of the packet.  The index “i” (used to determine 

which indexed entry of the field array should be parsed next) is set to the nxtidx 

variable (also referred to in the disclosure as NextIndex) of the lookup structure 

array entry at the value-indexed location corresponding to the extracted value and 

“TRUE” is returned: 
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Baker at 146:19-25; see also Baker at 29:17-31, Fig. 14 (steps 306, 308, 310, 312).  

According to Baker, and consistent with the source code (i.e., if (tp == 0)), the 

“first valid field parsed in a protocol that specifies the NextProtocol has 

precedence over all subsequent NextProtocol specifiers [sic].”  Baker at 29:24-27. 

175. Processing is then returned to the ParseFields2 function and 

processing continues as illustrated in Fig. 13 of Baker at step 217.  Baker at 64:30-

65:35.  At step 222 of Fig. 13, the running number of bits parsed in the current 

frame (measured by the ParseLen variable) and the number of bits parsed in the 

current protocol header (measured by ProtoParseLen variable) are updated based 

on the “bitlen” value (also referred to as BitLength) of the field that was just 

parsed.  Baker at 35:27-30, 65:20-24, Fig. 13 (step 222).  

176. The ParseFields2 function then returns to the beginning of the for loop 

(discussed at Paragraph 168 above) and tests whether the now incremented index 

value “i” is: 1) less than the “numfields” variable of currently being parsed 

protocol description record (indicating that there is another field to parse); 2) 

whether the ProtoParseLen value is less than the HeaderLen value (indicating that 
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are additional bits in the current protocol header to be parsed); and 3) whether the 

ParseLen value is less than the FrameLen value (indicating that there are additional 

bits in the current frame to be parsed).  Baker at 64:11-13, 36:13-17, Fig. 13 (steps 

206, 208, 209).  If all of these conditions are met, the ParseFields2 function begins 

parsing the next field, as determined by locating field entry of the field array at the 

incremented index location (f[i]).  Baker at 64:11-13, Fig. 13.   

177. The ParseFields2 function iterates through the indexed field elements 

in the manner discussed with respect to Paragraphs 168-176 above until the index 

value “i” is: 1) not less than the “numfields” variable of currently being parsed 

protocol description record (indicating that there all fields have been parsed); 2) 

the ProtoParseLen value is not less than the HeaderLen value (indicating that every 

bit in the current protocol header has been parsed); and 3) whether the ParseLen 

value is less than the FrameLen value (indicating that every bit in the current frame 

has been parsed).  Baker at 64:11-13, 36:13-17, Fig. 13 (steps 206, 208, 209).  At 

this point, processing returns to the ParseProtocol2 function for determining 

whether there are optional protocol fields for the current protocol description.  See 

Paragraph 165 above. 
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F. Protocol Descriptions 

178. I was asked to considered whether the Baker protocol descriptions 

describe protocols that “conform to a layered model” as required by claim 1 of the 

‘725 patent. 

179. Baker specifically discloses supporting the Ethernet protocol (Baker at 

21:32-22:5), and also mentions supporting protocols “for any possible protocol 

specification”: 

“It will be appreciated by those skilled in the art that any possible 
organization of fields for any possible protocol specification is contemplated 
for the network interface system 10 of the present invention.” 
 

Baker at 12:21-24. Additionally, Baker specifically mentions configuring “IP, 

TCP, UDP and IPX checksum capabilities” as part of the application control logic, 

and provides source code to support such capabilities for these protocols.  Baker at 

34:16-21, 135:28-141:8, 213:24-35.  Further, Baker discloses a “ParseLvl” variable 

that is the “Zero based protocol level in ISO reference model of protocol being 

parsed (current protocol).”  Baker at Table 14 (at 25:8-10). A skilled artisan would 

understand that the “ISO reference model” referenced in Baker refers to the OSI 

model I discuss in Paragraphs 30-37 above, which is a layered model.  The source 

code confirms the same, describing the “ParseLevel” variable as the “ISO 7 layer 

position indication.”  Baker at 67:19.  Baker further discloses that PDFs may 

include a lookup structure record “for determining the next protocol control record 
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to use,” and accordingly describe how to determine the protocol used in a packet at 

a next upper-layer level.  Baker at 15:10-17, Table 4.  Upon reading these 

disclosures, a person having skill in the art at the time of the alleged invention 

would understand that Baker discloses supporting protocols that conform to a 

layered model, such as the ISO/OSI model. 

G. Storing a Database in a Memory 

180. I was asked to consider whether Baker discloses “storing a database in 

a memory, the database generated from the set of protocol descriptions and 

including a data structure containing information on the possible protocols and 

organized for locating the child protocol related information for any protocol, the 

data structure contents indexed by a set of one or more indices, the database entry 

indexed by a particular set of index values including an indication of validity, 

wherein the child protocol related information includes a child recognition pattern” 

as required by claim 1 of the ‘725 patent. 

181. For ease of review, I will discuss the individual requirements of this 

claim phrase separately.   
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1. “storing a database in memory, the database generated from 
the set of protocol descriptions and including a data structure 
containing information on the possible protocols and organized 
for locating the child protocol related information for any 
protocol” 

182. As an initial matter, I note that in one embodiment, the ‘725 patent 

discloses a database including a Protocol Table containing information on the 

possible protocols and a series of one or more Look Up Tables associated with a 

protocol in the Protocol Table.  The Look Up Tables are used to identify known 

protocols and their children:  

“In this alternate embodiment, the PRD 308 includes two parts, a single 
protocol table 1850 (PT) which has an entry for each protocol known for the 
monitor, and a series of Look Up Tables 1870 (LUT's) that are used to 
identify known protocols and their children.” 
 

‘725 patent at 14:39-43. 

“A table 1850, called the protocol table (PT) has an entry for each protocol 
known by the monitor 300, and includes some of the characteristics of each 
protocol, including a description of where the field that specifies next 
protocol (the child recognition pattern) can be found in the header, the 
length of the next protocol field, flags to indicate the header length and type, 
and one or more slicer commands, the slicer can build the key components 
and hash components for the packet at this protocol at this layer level. 
 
For any protocol, there also are one or more lookup tables (LUTs). Thus 
database 308 for this embodiment also includes a set of LUTs 1870. Each 
LUT has 256 entries indexed by one byte of the child recognition pattern 
that is extracted from the next protocol field in the packet. Such a protocol 
specification may be several bytes long, and so several of LUTs 1870 may 
need to be looked up for any protocol.” 
 

‘725 patent at 39:22-54. 
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183. As discussed in Section VIII.B above, Baker discloses an initialization 

process for reading the contents of PDF files into data structures stored in memory.  

In particular, Baker discloses that, upon initialization and when PDF files are read 

into memory as described above, the resulting protocol description data structures 

include a data structure of protocol records (each corresponding to a PDF) and 

further provides a ProtocolList sorted vector that is used as an index for searching 

the protocol descriptions supported by the system.  Baker at 127:20-128:13, 

128:33-129:1; see also Paragraphs 143-147 above.  The Baker protocol data 

structure like the Protocol Table of the ‘725 patent, contains information on the 

possible protocols known by the system.  Compare ‘725 patent at 39:22-23 (“A 

table 1850, called the protocol table (PT) has an entry for each protocol known by 

the monitor 300[.]”), Fig. 18B with Baker’s protocol data structure and 

ProtocolList as described above.  Also, like the Protocol Table of the ‘725 patent, 

the Baker data structure of protocol records includes an indication of the header 

length.  Compare ‘725 patent at 39:22-30 (describing protocol table as including 

“flags to indicate the header length”) with Baker at 154:2 (each protocol record 

includes an “num_bits” variable describing the “# of bits in fixed portion of 

protocol header”), Table 1 (“numBits” indicates the total bit length of the protocol 

header).   
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184. Additionally, and as discussed in detail Paragraphs 148-150 above, 

each protocol record includes an indexed array of field sub-records and each 

indexed field entry in the array specifies, for example, the location of the 

associated field in the packet header that may relate to the next layer (child) 

protocol and also the bit length of the field.  Compare ‘725 patent at 39:22-30 

(describing protocol table as including “a description of where the field that 

specifies next protocol [] can be found in the header, the length of the next protocol 

field”) with Baker at 145:20-146:2, 27:17-35, Fig. 13 (step 210), Fig. 16 (fdwoff 

variable used to determine the location of a field in the packet that may relate to 

next protocol), 148:25-26 (each field entry in indexed field array includes an 

“fdwoff” variable describing the “field offset in bytes” and an “fblen” variable 

describing the “field length in bits”), Table 2 (field sub-records include “fdwoff” 

indicating the byte offset from the start of the protocol header and “fblen” 

indicating the “length of field in bits”), Fig. 4A (Ethernet Type field (at indexed 

location 4) includes Bit Offset and Bit Length), Fig. 5A (Frame Type field (at 

indexed location 3) and Source/Destination Socket fields (at indexed locations 7 

and 8) includes Bit Offset and Bit Length); see also Paragraphs 148-150 above. 

185. Further, like the ‘725 patent’s Fig. 18B embodiment, the Baker 

protocol description data structures are organized for locating the child related 

information for any protocol.  Namely, like the Protocol Table and associated 
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series of one or more Look Up Tables (LUTs) of the ‘725 patent, each of Baker’s 

protocol records is associated with one or more next protocol lookup structures.  

Compare ‘725 patent at 39:31-32 (“For any protocol, there also are one or more 

lookup tables (LUTs)”), 14:39-43 (“a series of Look Up Tables 1870 (LUT’s) that 

are used to identify known protocols and their children”) with Baker at Table 4, 

15:10-17 (“Lookup structures can be used for determining the next protocol control 

record to use …”), Figs. 5A, 5C-E.  And, like the LUTs of the ‘725 patent, Baker 

discloses that, when there are multiple upper level protocols, each next protocol 

lookup structure has 256 entries and is indexed by a value extracted from the next 

protocol field in the packet.  Compare ‘725 patent at 39:33-35 (“Each LUT has 256 

entries indexed by one byte of the child recognition pattern that is extracted from 

the next protocol field in the packet.”) with Baker at 171:23-177:33, 165:37-166:5, 

and 177:4-26 as discussed in detail in Paragraphs 151-156 above (multi-protocol 

next protocol lookup structures are stored as an indexed array including 256 

entries, and each entry is indexed by a valid extracted value), Table 4.   

186. Accordingly, the protocol data structure, like the ‘725 patent Protocol 

Table, is used to extract a field that specifies the next protocol, which is then used 

as an address into the next protocol lookup structure for determining the next/child 

protocol.  Compare ‘725 patent at 40:1-7 (“When using the data structure of FIG. 

18B … [t]he pattern recognition engine then extracts the child recognition pattern 
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bytes from the packet and uses them as an address into the virtual base table (the 

first LUT).”) with Baker at 145:20-146:2, 64:18, 148:26, 27:17-35, Fig. 13 (step 

210), Fig. 16, Table 2 discussed in detail in Paragraph 169 (get_value function 

determines location of field in packet and extracts value from it) and 64:25-38, 

175:35-176:24, 29:1-31, Fig. 13 (step 214), Fig. 14 discussed in detail in 

Paragraphs 170-174 (value_ok function uses extracted value as index to lookup 

structure to determine if value is for a valid protocol).  When the next protocol is 

identified using the lookup structure/LUT, it is used as an index into the protocol 

table.  Compare ‘725 patent at 40:27-31 (“If a LUT lookup results in a node code 

indicating a protocol node … the “next protocol” from LUT lookup is used as an 

index into the protocol table 1850.”) with Baker at 146:19-25, 29:17-31, 67:27-32, 

Fig. 11 (steps 108, 128), Fig. 14 (steps 306, 308, 310, 312), Table 4 discussed in 

Paragraphs 161 and 174 (if the extracted value is found in a lookup structure, set 

pointer to next protocol’s data structure).  

187. Further, and as discussed in more detail in Paragraphs 211-219 below, 

Baker discloses a compilation process consistent with that disclosed in the ‘725 

patent for producing searchable and indexed data structures, which are a database 

similar to the ‘725 Fig. 18B database, as discussed in detail above.  See also, e.g., 

EX1028, 1996 Newton’s Telecom Dictionary at p. 169 (defining “database” as “A 

collection of data structured and organized in a disciplined fashion so that access is 
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possible quickly to information of interest. . . . Databases are stored on computers 

in different ways. Some are comma delineated. They differentiate between their 

fields with commas[.]”). 

188. For at least these reasons, it is my opinion that a person having 

ordinary skill in the art at the time of the invention would understand that Baker 

discloses storing a database in a memory, the database generated from the set of 

protocol description files and including a protocol data structure containing 

information on the possible protocols and organized for locating the child protocol 

related information for any protocol, as required by claim 1. 

2. “the data structure contents indexed by a set of one or more 
indices” 

189. In the Fig. 18B embodiment of the ‘725 patent, each LUT is “indexed 

by one byte of the child recognition pattern that is extracted from the next protocol 

field in the packet.”  ‘725 patent at 39:33-35.  Additionally, when a lookup results 

in a valid next protocol, “the “next protocol” from LUT lookup is used as an index 

into the protocol table 1850.”  ‘725 patent at 40:27-31.   

190. Like the ‘725 patent, Baker discloses that, for multi-protocol lookup 

structures, each next protocol lookup structure is indexed by a value extracted from 

the next protocol field in the packet. Baker at 171:23-177:33, 165:37-166:5, and 

177:4-26 as discussed in detail in Paragraphs 151-156 above (multi-protocol next 

protocol lookup structures are stored as an indexed array that is indexed by a valid 
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extracted value), Table 4; also 64:25-38, 175:35-176:24, 29:1-31, Fig. 13 (step 

214), Fig. 14 discussed in detail in Paragraphs 170-174 (value_ok function uses 

extracted value as index to lookup structure to determine if value is for a valid 

protocol).  Additionally, when the next protocol is identified using the lookup 

structure, it is used as an index into the protocol table. Baker at 146:19-25, 29:17-

31, 67:27-32, Fig. 11 (steps 108, 128), Fig. 14 (steps 306, 308, 310, 312), Table 4 

discussed in Paragraph 161 and 174 (if the extracted value is found in a lookup 

structure, set pointer to next protocol’s data structure). 

191. Moreover, and as discussed in detail above, Baker discloses a 

ProtocolList sorted vector that is used as an index for searching the protocol 

descriptions supported by the system.  Baker at 127:20-128:13, 128:33-129:1; see 

also Paragraphs 143-147 above.  Baker further discloses that each protocol record 

includes an indexed array of field sub-records.  Baker at 56:30-57:11, 147:28-

148:13, 141:21-149:7, and Table 2 discussed in detail in Paragraphs 148-150 

above; also Fig. 4A, Fig. 5A.  The index of each field sub-record is used during 

parsing “to determine where parsing of the current protocol will continue after the 

current field.”  Baker at 16:47-53; also Baker at 64:11-13, 36:13-17, and Fig. 13 

(steps 206, 208, 209) discussed in Paragraphs 176-177 above, Fig. 4D, 5C-5E 

(Next Index), 16:60-67, Table 4. 
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192. Accordingly, upon reading the disclosures of Baker, a person having 

ordinary skill in the art at the time of the invention would understand that Baker 

discloses a data structure with contents indexed by a set of one or more indices as 

described in the ‘725 patent.  

3. “the database entry indexed by a particular set of index values 
including an indication of validity” 

193. With respect to this element, I note that the ‘725 patent discloses: 

“Each LUT's entry includes a 2-bit “node code” that indicates the nature of 
the contents, including its validity. This node code has one of four values: (1) 
a “protocol” node code indicating to the pattern recognition engine 1006 
that a known protocol has been recognized; (2) an “intermediate” node 
code, indicating that a multi-byte protocol code has been partially 
recognized, thus permitting chaining a series of LUTs together before; (3) a 
“terminal” node code indicating that there are no children for the protocol 
presently being searched, i.e., the node is a final node in the protocol tree; 
(4) a “null” (also called “flush” and “invalid”) node code indicating that 
there is no valid entry.” 
 

‘725 patent at 39:39-50; see also 35:4-11.  

“Each LUT entry has a node code that can have one of four values, 
indicating the protocol that has been recognized, a code to indicate that the 
protocol has been partially recognized (more LUT lookups are needed), a 
code to indicate that this is a terminal node, and a null node to indicate a 
null entry.” 
 

‘725 patent at 14:57-61.  

194. As discussed above, Baker discloses that, for multi-protocol lookup 

structures, each next protocol lookup entry is indexed by a valid protocol 

identification value. Baker at 171:23-177:33, 165:37-166:5, and 177:4-26 as 
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discussed in detail in Paragraphs 151-156 above (multi-protocol next protocol 

lookup structures are stored as an indexed array that is indexed by a valid extracted 

value), Table 4; also 64:25-38, 175:35-176:24, 29:1-31, Fig. 13 (step 214), Fig. 14 

discussed in detail in Paragraphs 170-174 (value_ok function uses extracted value 

as index to lookup structure to determine if value is for a valid protocol). 

195. Moreover, each entry in a multi-protocol lookup structure array 

includes a “prot” variable (“Protocol” of Table 4 and Figs. 4D, 5C-5E) that is an 

indication of validity consistent with the disclosed embodiments of the ‘725 patent.  

Namely, similar to the ‘725 patent “node code,” the “prot” variable of a lookup 

structure has one of two values: (1) a pointer to a protocol record, indicating the 

protocol that has been recognized as the next (child) protocol; or (2) a “null” code 

indicating there is no valid entry (referred to in Baker as an “unknown” or “illegal” 

entry).   

 

Baker at Fig. 5C. 
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Baker at Fig. 5D; see also Fig. 5E, Table 4 (describing “Protocol” variable as 

“pointer to protocol description structure”); see also Paragraphs 151-156 

(describing initialization process for lookup structures, including “prot” variable of 

each lookup structure array entry). 

196. Accordingly, a skilled artisan would recognize that the “prot” variable 

of each entry of the next protocol lookup array is “an indication of validity” as 

described in the ‘725 patent and Baker discloses a database entry indexed by a 

particular set of index values including an indication of validity as required by 

claim 1. 

4. “wherein the child protocol related information includes a 
child recognition pattern” 

197. With respect to this element of claim 1, the ‘725 patent discloses: 

“The pattern matching is carried out by finding particular “child 
recognition codes” in the header fields, and using these codes to index one 
or more of the LUT's.” 
 

‘725 patent at 14:54-56. 
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“The child protocol of a particular protocol used in a packet is indicated by 
the contents at a location within the header of the particular protocol. The 
contents of the packet that specify the child are in the form of a child 
recognition pattern.” 
 

‘725 patent at 32:22-27. 

“For each of the IDs in the list, a list of the child recognition patterns that 
need to be compared. For example, 64:080016 in the list indicates that the 
value to look for is 0800 (hex) for the child to be type ID 64 (which is the IP 
protocol). 83:813716 in the list indicates that the value to look for is 8137 
(hex) for the child to be type ID 83 (which is the IPX protocol), etc.” 
 

‘725 patent at 35:23-30. 

198. Baker discloses a “Generic Protocol” (GP) (described in Baker at 

21:32-22:5, Table 13) that defines three fields of a packet that may lead to 

identification of the child protocol (Frame Type, Source Socket, Destination 

Socket): 

 

EX1038 at Fig. 5A.  When stored in the Baker disclosed data structures and as 

discussed in detail in Paragraphs 148-156 above, each of the GP fields illustrated 
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in Fig. 5a is stored as an indexed field sub-record in the field array of the GP 

protocol record.  The ptr2np variable of each record will be a pointer to the 

associated next protocol lookup structure – Fig. 5c (for the Frame Type field), Fig. 

5d (for the Source Socket field), and 5e (for the Destination Socket field).   

199. As depicted in Figs. 5c-5e, each of these lookup structures includes 

multiple protocol entries over a range of corresponding valid values for the 

associated protocol:   

 

Baker at Fig. 5c. 

 

Baker at 5d. 
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Baker at Fig. 5e.  When stored in the Baker disclosed data structures and as 

discussed in detail in Paragraphs 151-156 above, each of these lookup structures is 

stored as an indexed array, and indexed by a valid protocol identification value.  

200. Like the example provided in the ‘725 patent at 35:23-30 (reproduced 

above), Baker discloses that each possible child protocol includes a list of the child 

recognition patterns that need to be compared.  In the case of Fig. 5C, the value to 

look for is 0x01 (hex) for the child to be of type GP1 while the value to look for is 

0x02 (hex) for the child to be of type GP2.  Baker at Fig. 5C.  Similarly, Baker 

discloses that the values to look for are odd values between 0x0143 (hex) and 

0x018F (hex) for the child to be of type GP3 while the values to look for are even 

values between 0x0143 (hex) and 0x018F (hex) for the child to be of type GP4.  

Baker at Fig. 5D, 5E.  In this way, Baker discloses that the child protocol, e.g., 

GP1, of a particular protocol, e.g., GP, is indicated by a child recognition pattern, 

e.g., 0x01 (hex) at a location within the header of the particular protocol.   
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201. As discussed previously and like the ‘725 patent disclosure at 14:54-

56 (reproduced above), during the parsing process, a value is extracted from a field 

of a packet and used as an index to search the next protocol lookup structure for an 

entry in the array that matches the extracted value.  Baker at 145:20-146:2, 64:18, 

148:26, 27:17-35, Fig. 13 (step 210), Fig. 16, Table 2 discussed in detail in 

Paragraphs 169 (get_value function determines location of field in packet and 

extracts value from it) and 64:25-38, 175:35-176:24, 29:1-31, Fig. 13 (step 214), 

Fig. 14 discussed in detail in Paragraphs 170-174 (value_ok function uses 

extracted value as index to lookup structure to determine if value is for a valid 

protocol). 

202. Upon reading the Baker disclosures, an ordinarily skilled artisan 

would recognize that the Baker data structures are organized for locating child 

protocol related information for a protocol and such protocol related information 

includes “a child recognition pattern” as described in the ‘725 patent. 

H. Searching the Packet 

203. I was asked to consider whether Baker discloses “at any particular 

protocol layer level starting from the base level, searching the packet at the 

particular protocol for the child field, the searching including indexing the data 

structure until a valid entry is found” as required by claim 1 of the ‘725 patent. 
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204. As discussed in detail above, the Baker control logic parses through 

each network frame, starting with the “initial” or “base” protocol of the frame, 

such as Ethernet.  See Paragraphs 157-177 above.  For each layer, including the 

base layer, Baker discloses parsing the fields of the packet as defined by the 

associated protocol description record’s indexed field array.  Namely, for each 

field that is to be parsed in accordance with the protocol description and starting at 

index (i=0) of the field array, the ParseFields2 function initiates the get_value 

function to determine the location of the associated field in the packet and extract a 

value from the field.  For any field parsed, if the field does not have a ptr2np 

variable set (i.e., the value of the element is null), it cannot be used to identify the 

child protocol (i.e., via a next protocol lookup array) and the field array index is 

incremented.  If the field does have a ptr2np variable set (i.e., the value of the 

element is not null), the field’s extracted value is a “child recognition pattern” in 

the terms of the ‘725 patent.  See Paragraphs 197-202 above.  In this way, the 

search for a field that includes a child recognition pattern continues by searching 

the packet for the field indicated by the indexed field array entry and incrementing 

the field array index until the field being searched contains a valid ptr2np variable.   

205. I note that this implementation of Baker is similar to ‘725 patent’s 

disclosure at 36:9-39 (describing incrementally searching an indexed array for field 

that includes child recognition pattern, indicating that the field may relate to the 
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child protocol).  Accordingly, searching the packet for the field indicated by the 

indexed field array entry and incrementing the field array index until the field 

being searched contains a valid ptr2np variable constitutes “searching including 

indexing the data structure until a valid entry is found” as described in the ‘725 

patent. 

206. Additionally, Baker discloses searching the packet for a valid child 

recognition pattern.  Namely, Baker uses the extracted child recognition pattern to 

determine if the value is for a valid protocol. For multi-protocol lookups, the 

value_ok function uses the extracted child recognition pattern (value) as an index 

to the associated lookup array.  See Paragraphs 170-172 and 190 above.  In this 

way, the search for a field that includes a valid child recognition pattern continues 

by searching the packet for the field indicated by the indexed field array entry and 

incrementing the field array index until the field being searched contains a child 

recognition pattern that itself is valid, as determined through (in the case of multi-

protocol lookups) an indexed search of an associated multi-protocol lookup array. 

207. As such, it is my opinion that a person having skill in the art at the 

time of the alleged invention would understand that Baker discloses at any 

particular protocol layer level starting from the base level, searching the packet at 

the particular protocol for the child field, the searching including indexing the data 

structure until a valid entry is found as described in the ‘725 patent. 
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I. Rapid Searches 

208. I was also asked to consider whether Baker discloses “whereby the 

data structure is configured for rapid searches using the index set” as required by 

claim 1 of the ‘725 patent. 

209. I note that the ‘725 patent discloses that the data structure used in Fig. 

18B and discussed at length above “permits rapid searches to be performed.”  

Namely, the ‘725 patent states: 

“An alternate embodiment of the data structure used in database 308 is 
illustrated in FIG. 18B. Thus, like the 3-D structure of FIG. 18A, the data 
structure permits rapid searches to be performed by the pattern recognition 
process 304 by indexing locations in a memory rather than performing 
address link computations. In this alternate embodiment, the PRD 308 
includes two parts, a single protocol table 1850 (PT) which has an entry for 
each protocol known for the monitor, and a series of Look Up Tables 1870 
(LUT's) that are used to identify known protocols and their children. The 
protocol table includes the parameters needed by the pattern analysis and 
recognition process 304 (implemented by PRE 1006) to evaluate the header 
information in the packet that is associated with that protocol, and 
parameters needed by extraction process 306 (implemented by slicer 1007) 
to process the packet header. When there are children, the PT describes 
which bytes in the header to evaluate to determine the child protocol. In 
particular, each PT entry contains the header length, an offset to the child, a 
slicer command, and some flags. 
 
The pattern matching is carried out by finding particular “child recognition 
codes” in the header fields, and using these codes to index one or more of 
the LUT's.” 
 

‘725 patent at 14:33-62; see also 39:13-40:47, 34:19-25. As further disclosed in the 

‘725 patent, performing address link computations requires performing arithmetic 

computations to determine pointers to data nodes.  ‘725 patent at 34:20-26.  A 
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skilled artisan would recognize that the data structure of the ‘725 patent Fig. 18B 

embodiment is configured for “rapid searches” by using a child recognition 

pattern/code to index the Lookup Tables, such that searching the Lookup Tables is 

performed by indexing locations in memory rather than performing address link 

computations.   

210. For all the reasons discussed in Paragraphs 182-202, the Baker 

protocol description data structure and associated next protocol lookup structures 

are similar to the Fig. 18A Protocol Table and associated series of one or more 

Lookup Tables.  Further, the Baker data structure, like the ‘725 patent Fig. 18B 

embodiment, uses a child recognition pattern to index multi-protocol next protocol 

lookup arrays.  Baker at 171:23-177:33, 165:37-166:5, and 177:4-26 as discussed 

in detail in Paragraphs 151-156 above (multi-protocol next protocol lookup 

structures are stored as an indexed array that is indexed by a valid extracted value), 

Table 4; also 64:25-38, 175:35-176:24, 29:1-31, Fig. 13 (step 214), Fig. 14 

discussed in detail in Paragraphs 170-174 (value_ok function uses extracted value 

as index to lookup structure to determine if value is for a valid protocol).  See also 

Paragraphs 197-202.  Searching the Baker multi-protocol lookup arrays is 

performed in the same way as searching the ‘725 patent Lookup Tables (LUTs) – 

by indexing locations in memory rather than performing address link 
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computations, and is therefore a “rapid search” using the index set discussed in 

Paragraph 170-172 above as described in the ‘725 patent.   

J. Compiling Baker’s Protocol Description Files 

211. I was also asked to consider whether Baker’s protocol description files 

“are provided in a protocol description language” and whether Baker discloses 

“compiling the PDL descriptions to produce the database,” as required by claim 2 

of the ‘725 patent.   

212. I note that the ‘725 patent describes a “protocol description language” 

as follows: 

“Input to the compiler includes a set of files that describe each of the 
protocols that can occur. These files are in a convenient protocol 
description language (PDL) which is a high level language. PDL is used for 
specifying new protocols and new levels, including new applications. The 
PDL is independent of the different types of packets and protocols that may 
be used in the computer network. A set of PDL files is used to describe what 
information is relevant to packets and packets that need to be decoded. The 
PDL is further used to specify state analysis operations. Thus, the parser 
subsystem and the analyzer subsystems can adapt and be adapted to a 
variety of different kinds of headers, layers, and components and need to be 
extracted or evaluated, for example, in order to build up a unique signature.” 
 

EX1033, ‘725 patent at 41:24-37.  The ‘725 patent additionally states: 

“The protocol description language (PDL) files 336 describes both patterns 
and states of all protocols that an occur at any layer, including how to 
interpret header information, how to determine from the packet header 
information the protocols at the next layer, and what information to extract 
for the purpose of identifying a flow, and ultimately, applications and 
services. … This information is input into compiler and optimizer 310.” 
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‘725 patent at 9:29-40; see also Fig. 4. For at least the reasons discussed below, 

Baker discloses commands written in a protocol description language as required 

by claim 2. 

213. The ‘725 patent discloses examples of PDL files, which are written in 

a protocol description language.  EX1033, ‘725 patent at columns 44-94.  Each file 

describes, for example, commands for particular protocol.  ‘725 patent at columns 

71-94 (including PDL files for several protocols).  Similarly, Baker discloses that 

each PDF (similar to the PDL of the ‘725 patent) describes commands for a 

particular protocol.  Baker at 11:22-25 (“[E]ach of these protocol description 

records with its associated field, statistics, lookup, and filter record information is 

also written to a protocol specific protocol description file (PDF).”).   

214. According to the ‘725 patent, an exemplary command in a high-level 

protocol description language is, for example, a “HEADER” attribute that 

“describe[s] the length of the protocol header.”  ‘725 patent at 48:41-50; see also 

‘725 patent at column 73 (“HEADER { LENGTH=14 }”).  Baker similarly 

discloses a “numBits” attribute that describes “the total bit length of the protocol 

header.”  Baker at Table 1 (“numBits” attribute), 11:32; also 

 

Baker at 57:1 (discussed in detail in Paragraphs 143-156 with respect to 

initialization). 
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215. Another exemplary command in a high-level protocol description 

language is, for example, a “PROTOCOL” definition used to “define the order of 

the FIELDs and GROUPs within the protocol header.”  ‘725 patent at 47:34-48:18; 

see also ‘725 patent at column 79 (PROTOCOL section provides “Detailed packet 

layout for the IP datagram. This includes all fields and format. All offsets are 

relative to the beginning of the header.”).  Similarly, Baker discloses a “fields” 

attribute that references the associated “field records that describe the protocol 

header” where each field record includes, for example, a “fblen” attribute 

describing “the length of the field in bits” and a “fdwoff” attribute describing “the 

byte offset from the start of protocol header,” among other attributes. Baker at 

Table 1 (“fields” attribute), Table 2 (“fblen” and “fdwoff” attributes), 11:36-40, 

11:49-50; also 

 

Baker at 147:35-36 (discussed in detail in Paragraphs 143-156 with respect to 

initialization).   

216. Yet another exemplary command in a high-level protocol description 

language is, for example, a “CHILDREN” attribute “used to describe how children 

protocols are determined.”  ‘725 patent at 49:45-55; see also ‘725 patent at column 

79 (“CHILDREN { DESTINATION=Protocol }”).  Similarly, Baker discloses a 

“ptr2np” attribute of each field record that includes a “pointer to lookup 
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structure/class . . . next protocol definition to use (0 = none)” and the “next 

protocol lookup records” are described with reference to Table 4 as including a 

“Protocol” attribute describing the “pointer to protocol description record,” among 

other attributes. Baker at Table 2 (“ptr2np” attribute), Table 4 (“Protocol” 

attribute), 8:13-15; also  

 

Baker at 148:10-12; also 165:37-166:5, 177:4-26 (discussed in detail in 

Paragraphs 143-156 with respect to initialization). 

217. Upon reading the Baker disclosure, one of ordinary skill in the art 

would recognize that Baker’s PDFs are written in a high-level programming 

language, because, upon initialization, the system is able to “extract[] the protocol 

and associated control record information” from the file, construct a ProtocolList, 

and read the PDF file into memory in the sequence described at 11:26-12:6; see 

also Paragraphs 143-156 above discussing initialization process.  Accordingly, 

Baker’s PDFs include commands in a high-level language that describe protocols 

that may be encountered by the monitor and, for example, how to interpret header 

information and how to determine from the packet header information the protocol 

at the next layer, and therefore discloses protocol description files that are provided 

in a protocol description language, as required by claim 2. 
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218. I also note that the ‘725 patent discloses that when compiler and 

optimizer 310 “executes” it performs a compilation process that “generates,” 

“builds,” “fill[s],” or “load[s]” specific “internal data structures” during 

initialization.  ‘725 patent at 9:42-44 (“When compiler and optimizer 310 executes, 

it generates two sets of internal data structures.”), 9:53-54 (“The other internal data 

structure that is built by compiler 310 is the set of state patterns and processes 

326.”), 9:22-27 (“Both the pattern information for parsing and the related 

extraction operations, e.g., extraction masks, are supplied from a parsing-pattern-

structures and extraction-operations database (parsing/extractions database) 308 

filled by the compiler and optimizer 310.”), 22:7-10 (“State processor 1108 

includes a state processor program counter SPPC that generates the address in the 

state processor instruction database 1109 loaded by compiler process 310 during 

initialization.”), 13:53-57 (“FIG. 4 diagrams an initialization system 400 that 

includes the compilation process. That is, part of the initialization generates the 

pattern structures and extraction operations database 308 and the state instruction 

database 328. Such initialization can occur off-line or from a central location.”), 

14:63-15:17, Fig. 4. 

219. Baker discloses a compilation process consistent with that disclosed in 

the ‘725 patent.  Namely, Baker discloses implementation of the system on a 

network device capable of storing programmably configurable protocol description 
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files and programmed to run an initialization/compilation process that includes 

receiving PDF files and, as discussed above, “extract[ing] the protocol and 

associated control record information” from the file, constructing a ProtocolList, 

and reading the contents of the PDF file into memory in the sequence described at 

11:26-12:6. 

“[T]he initialization of the system includes a determination of the presence 
of PDF files and the extraction of the protocol and associated control record 
information from all of the PDF files found. The number of PDF files is 
determined, and a ProtocolList is constructed consisting of a sorted vector 
of protocol records at least the size of the number of PDF files found. The 
name of each protocol record found is inserted in the ProtocolList. The PDF 
files are then read to memory in the sequence described above for the PDF 
file writing. The lookup records that indicate a next protocol are associated 
with the appropriate entries in the ProtocolList.” 
 

Baker at 12:7-18.   

“In one preferred form, the system of the present invention may employ a 
CPU or other hardware implementable method for analyzing data from a 
network in response to selectively programmed parsing, filtering, statistics 
gathering, and display requests. Moreover, the system of the present 
invention may be incorporated in a network device, such as a network 
analyzer, bridge, router, or traffic generator, including a CPU and a 
plurality of input devices, storage devices, and output devices, wherein 
frames of network data may be received from an associated network, stored 
in the storage devices, and processed by the CPU based upon one or more 
programmably configurable protocol descriptions also stored in the storage 
devices.” 

 
Baker at 2:63-3:7; see also Baker at 6:15-32, 6:41-47.  I discuss the Baker 

initialization/compilation process in detail in Paragraphs 143-156 above. 

Additionally, as discussed in Paragraphs 143-177 above, the 
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BILL LIN 
1005 Valleyside Lane 
Encinitas, CA 92024 

Tel: 858.531.2441 
Email: billmbox@gmail.com 

 

 
 
EDUCATION 
 

 Ph.D, Electrical Engineering and Computer Sciences 
University of California, Berkeley, May 1991 

 Masters of Science, Electrical Engineering and Computer Sciences 
University of California, Berkeley, May 1988 

 Bachelor of Science, Electrical Engineering and Computer Sciences 
University of California, Berkeley, May 1985 

 

PROFESSIONAL EXPERIENCE 
 
1/1997 – present University of California, San Diego 

Professor, Electrical and Computer Engineering 
Adjunct Professor, Computer Science and Engineering 

 
2/1992 – 12/1996    IMEC, Leuven, Belgium 

Group Head, Systems Control and Communications Group 
 

AREAS OF EXPERTISE 
 

 All aspects of computer networks and computer architecture problems, including the design of 
data networks, high-performance switches and routers, high-performance packet monitoring and 
measurements, wireless communications and mobile computing, multimedia and graphics 
systems, many-core processors, and systems-on-chip designs.  Source code analysis for 
communications and computing applications. 

 

PROFESSIONAL ACTIVITIES 
 

 Served or serving as Editor on 3 ACM or IEEE journals, as General Chair on 4 ACM or 
IEEE conferences, on the Organizing or Steering Committees for 5 ACM or IEEE 
conferences, and on the Technical Program Committees of 44 ACM or IEEE 
conferences. 

 
SELECTED PROFESSIONAL ACTIVITIES 
 

 General Chair, ACM/IEEE Symposium on Architectures for Networking and Communications 
Systems (ANCS), 2010  

 Chair of Steering Committee, ACM/IEEE Symposium on Architectures for Networking and 
Communications Systems (ANCS), 2010-present (Chair since 2012) 

 Guest Editor, IEEE Transactions on Network and Service Management (TNSM), 2012-2013 

 General Co-Chair, ACM SIGMETRICS, 2015 

 General Chair, ACM/IEEE International Symposium on Quality-of-Service (IWQoS), 2011 

 Steering Committee, ACM/IEEE International Symposium on Quality-of-Service (IWQoS), 
2011-present 

 Associate Editor, ACM Transactions on Design Automation and Electronics Systems 
(TODAES), 2010-2015  

 Editorial Board, International Journal of Embedded Systems, 2003-present  

 General Chair, ACM/IEEE Symposium on Networks-on-Chips (NOCS), 2009 
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PUBLICATIONS 
 

 Published over 170 journal articles and conference papers in top-tier venues and publications. 

 
SELECTED PUBLICATIONS 
 

 Bill Lin, Isaac Keslassy, “Frame-Aggregated Concurrent Matching Switch,”  ACM/IEEE 
Symposium on Architectures for Networking and Communications Systems (ANCS), Orlando, 
FL, December 3-4, 2007, pp. 107-116. 

 Jerry Chou, Bill Lin, “Coarse Circuit Switching by Default, Re-Routing Over Circuits for 
Adaptation,” Journal of Optical Networking, vol. 8, no. 1, pp. 33-50, January 2009. 

 Jerry C. Chou, Bill Lin, Subhabrata Sen, Oliver Spatscheck, “Proactive Surge Protection: A 
Defense Mechanism for Bandwidth-Based Attacks,” IEEE/ACM Transactions on Networking, 
17(6): 1711-1723 (2009). 

 Bill Lin, Isaac Keslassy, “The Interleaved Matching Switch Architecture,” IEEE Transactions on 
Communications, vol. 57, no. 12, December 2009. 

 Bill Lin, Isaac Keslassy, “The Concurrent Matching Switch Architecture,”  IEEE/ACM 
Transactions on Networking, vol. 18, no. 4, August 2010, pp. 1330-1343. 

 Chia-Wei Chang, Seungjoon Lee, Bill Lin, Jia Wang, “The Taming of the Shrew: Mitigating Low-
Rate TCP Targeted Attack,” IEEE Transactions on Network and Service Management, 7(1): 1-13 
(2010). 

 Nan Hua, Bill Lin, Jun Xu, Haiquan Zhao, “BRICK: A Novel Exact Active Statistics Counter 
Architecture,” IEEE/ACM Transactions on Networking, vol. 19, no. 3, June 2011, pp. 670-682. 

 Guanyao Huang, Chia-Wei Chang, Chen-Nee Chuah and Bill Lin, “Measurement-Aware Monitor 
Placement and Routing: A Joint Optimization Approach for Network-Wide Measurements,” 
IEEE Transactions on Network and Service Management, vol. 9, no. 1, March 2012, pp. 48-59. 

 Hao Wang, Haiquan Zhao, Bill Lin, and Jun Xu, “DRAM-based statistics counter array 
architecture with performance guarantee.” IEEE/ACM Transactions on Networking, vol. 20, no. 
4 (2012): 1040-1053. 

 Hao Wang, Haiquan (Chuck) Zhao, Bill Lin, and Jun (Jim) Xu, “Robust Pipelined Memory 
System with Worst Case Performance Guarantee,” IEEE Transactions on Computers, October 
2012. 

 Chia-Wei Chang, Han Liu, Guanyao Huang, Bill Lin and Chen-Nee Chuah, “Distributed 
Measurement-Aware Routing: Striking a Balance between Measurement and Traffic 
Engineering,” IEEE INFOCOM, Orlando, FL, March 25-30, 2012. 

 Xiaodong Yu, Bill Lin, Michela Becchi, “Revisiting State Blow-Up: Automatically Building 
Augmented-FA While Preserving Functional Equivalence,” IEEE Journal on Selected Areas in 
Communications, 32(10): 1822-1833 (2014). 

 Hao Wang, Bill Lin, “Reservation-Based Packet Buffers with Deterministic Packet Departures,” 
IEEE Transactions Parallel Distributed Systems, 25(5): 1297-1305 (2014). 

 Weijun Ding, Jun (Jim) Xu, Jim Dai, Yang Song, Bill Lin, “Sprinklers: A Randomized Variable-
Size Striping Approach to Reordering-Free Load-Balanced Switching,” ACM CoNEXT 2014. 
 

PATENTS 
 

 Mitigating Low-Rate Denial-of-Service Attacks in Packet-Switched Networks. United States 
Patent 8,443,444. Issued in May 14, 2013. 

 Systems and Methods for Proactive Surge Protection. United States Patent 7,860,004. Issued in 
December 28, 2010.  

 Method and Apparatus for Scan Block Caching. United States Patent 7,672,005. Issued in March 
2, 2010.  

 Design Environment and a Design Method for Hardware/Software Co-Design. United States 
Patent 5,870,588. Issued in February 9, 1999.  

 System and Method for Generating a Hazard-Free Asynchronous Circuit. United States Patent 
5,748,487. Issued in May 5, 1998.  
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