el

‘ 2|8 PATENT NUMBER
NLIE |
~N 25 }
1 I
NHE =
N B \ i
U.S. UTILITY Patent Application g\
O..P.E. PATENT DATE L
; Z;; - 200 ’
/ SCANNED @ Q.A. AQQ DEC 16 v : ;'j{
}
' APPLICATION NO. CONT/PRIOR | CLASS - SUBCLASS ART UNIT EXAMINER ! ‘\' \’ i
09/609179 D 709 e w52 e <~ ,
¥, o\ C . ,
* i ¢ }’; N k3 J " :;
(] ,
: ertificate |
E !
< JUN 2.6 200k |
Yy f Correctionwae “
= 0 12/99

P

N i
\ / 7
!

. L

ISSUING CLASSIFICATION |
ORIGINAL ’ CROSS REFERENCE(S) i
CLASS SUBCLASS CLASS lr SUBCLASS (ONE SUBCLASS PER BLOCK) ,
09 | 220 |07 24622 "
INTERNATIONAL CLASSIFICATION 3’70 5 8?
lGiolél € 13/00
\\

~

O Continu?d on |SS).le Slip Inside File Jacket

050 o Cl0foc

|:| TERMINAL DRAWINGS CLAIMS ALLOWED

DISCLAIMER Sheets Drwg. | Figs. . | PrintFig. Total Claims Print Claim for O.G.
= g5 | 17| /7

[The term of this patent NOTICE OF ALLOWANCE MAILED

subsequentto _______ (cate) | KHANY_Quanc i 6//9/e5 1
has been disclaimed. (Assistant Examiner) (Da®) ‘

7/ot]e3
(] The term of this patent shal! ?
not extend beyond the expiration date R §
of USPatent No._ HOSAIN T. ALAM ssveree i/ |
PRIMARY EXAMINER Amount Due Date Paid ,
WWoe 6ul55| gproo 2 é
(Primary Examiner) (Date) q /a k“ - 03 \
- . ISSUE BATCH NUMBER '
The terminal _____months of « K , 3.0
this patent have been disclaimed. q&e’\/%\ f’ a3
(Legal lnskuments Examiner) (Date)

WARNING:

The information disclosed herein may be restricted. Unauthorized disclosure may be prohibited by the United States Code Title 35, Sections 122, 181 and 368.
Possession outside the U.S. Patent & Trademark Office is restricted to authorized employees and contractors only.

Form PT0-436A FILEDWITH: [] bisk (cRF) []FIcCHE [_]cb-RoM

(Rev. 6/99)
Attached in pocket on right inside flap)
\SSUE rEE IN FILE FONMAL VX Aw1 NG

(FACE) Petitioners' EX1039 Page{))

ENT APPLICATION

llIlll\I|||||I||II\lllllllllIiill|||l\||'||||||II| P

09609179

INITIALS 242&0 /2

~ |
CONTENTS

Date Received Date Received
(Encl. C. of M.) (Incl. C. of M.)

or or
/ Date Mailed Date Mailed
/p lication papers. 42, {
P
(AT A éd@ §—23 1 q

aC N / X-24 o 44:

45” . Tt I

,5(:’:— . .S . Y-41-62 s

Whdona s Zdewe s L1495 ar.

] 7 foendd K -13-0% 48.
L[S ap0\ L2713 4o

b1 et e € oNow. 7101163 s, N :

B fandd & e B2 14-,3 41, :

1.y v2 e /02793 . :
—rr—— Ly (o€ "”7/04 53.

13.) ! 54.

14. i 55.

15. | 56.

16. 57.

17. 58.

18. 59.

1. 60.

20. | 61.

21, 62.

22, 63.

23. ' 64.

24, 65.

25. 66.

26. 67.

27. 68.

28. 69.

29. 70.

: :

32. 73. ¢

33. ‘ 74. —

34. 75.

35. 76.

36. 77.

37. 78.

38. 79.

39. ' 80.

40. w 81,

a1. 82.

(LEFT OUTSIDE) Petitioners' EX1039 Page 2

Page 1 of

UNITED STATES PATENT AND TRADEMARK OFFIGE

COMMISSIONER FOR PATENTS
UNITED STATES PATENT AND TRADEMARK OFFICE
WASHINGTON, D C. 20231

www,uspto.gov
Bib Data Sheet
FILING DATE
ATTORNEY
SERIAL NUMBER 06/30/2000 CLASS GROUP ART UNIT L~ h65ekET NO.
09/609,179 709 2756
RULE _ “U APPT-001-2
IAPPLICANTS
Russell S. Dietz, San Jose, CA ;
Andrew A. Koppenhaver, Littleton, CO ;
James F. Torgerson, Andover, MN
ke % CONTINUING DATA e e v e e e I e e g 3 e e e ok o e ok e ok o e ok
THIS APPLN CLAIMS BENEFIT OF 60/141,903 06/30/1999
Vi | LD
e % FOREIGN APPLICATIONS e e g v e g % % I % ek o % ok o ok
N)
W 0D
IF REQUIRED, FOREIGN FILING LICENSE
GRANTED ** 08/23/2000 -
Foreign Priority claimed D yes M no
35 USC 119 (a-d) conditions [lZf 0 STATE OR | SHEETS TOTAL NDEPENDENT]
met Allom)/,e:c no = Met after COUNTRY | DRAWING CLAIMS CLAIMS
Verified and ﬁ/n CA 20 18 1
Acknowledged Examiner's Signature Initials
ADDRESS
Dov Rosenfeld B
5507 College Avenue
Suite 2
Oakland ,CA 94618
TITLE
Method and apparatus for monitoring traffic in a network
O Al Fees
Q 1.16 Fees (Filing)
FILING FEE |FEES: Authority has been given in Paper D 1.17 Fees (Processing Ext. of
RECEIVED |No. to charge/credit DEPOSIT ACCOUNT |[|time)
840 No. for following: O 1 18 Fees (Issue)
O other
O credit

//C:\APPS\PreExam\correspondence\l_A.xml Petitioners’ EX1039 Page $7/00

01-03-00

IN THE U.S. PATENT AND TRADEMARK OFFICE
Application Transmittal Sheet

Our Ref./Docket No.: _ APPT-001-2

0ld 'sS'A ¥¥eOr

-~ 00/0¢/90
g

' Box Patent Application
ASSISTANT COMMISSIONER FOR PATENTS

il

n
Washington, D.C. 20231 o~ =,
oy =]|S
. - o =2
Dear Assistant Commissioner: :{ §g’
. I _— nonv=g
Transmitted herewith is the patent application of SQ =o
n =
INVENTOR(s)APPLICANT(s)
Last Name First Name, MI Residence (City and State or Country)
Dietz : Russell S. San Jose, CA
Torgerson James F. Andover, MN
Koppenhaver Andrew A. Fairfax, VA
TITLE OF THE INVENTION

PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL
DESCRIPTION LANGUAGE

‘ CORRESPONDENCE ADDRESS AND AGENT FOR APPLICANT(S)

Dov Rosenfeld, Reg. No. 38,387
£ 5507 College Avenue, Suite 2

Oakland, California, 94618

Telephone: (510) 547-3378; Fax: (510) 653-7992

ENCLOSED APPLICATION PARTS (check all that apply)

Included are:
s X 129 sheet(s) of specification, claims, and abstract
20 sheet(s) of formal Drawing(s) with a submission letter to the Official Draftsperson
Information Disclosure Statement.
Form PTO-1449. INFORMATION DISCLOSURE CITATION IN ANAPPLICATION, together with a
copy of each references included in PTO-1449.
Declaration and Power of Attorney
An assignment of the invention to_Apptitude, Inc.
A letter requesting recordation of the assignment.
An assignment Cover Sheet.
Additional inventors are being named on separately numbered sheets attached hereto.
Return postcard.
This application has:
a small entity status. A verified statement:
is enclosed
was already filed.

SHTT T

The fee has been calculated as shown in the following page.

Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal
Service as Express Mail (Express Mail Label: EI417961935US in an envelope addressed to Box Patent

Application, Assistant Commissioner for Patents, Washington, D.C. 20231 on,
Date: _ Prone 20, ABSO Signed:%/

SUBMISSION DOCUMENT

ATTORNEY DOCKET NO. _APPT-001-2

Page 2

NO. OF EXTRA RATE EXTRA CLAIM
TOTAL CLAIMS CLAIMS FEE

TOTAL 18 0 $18 $ 0.00
CLAIMS

INDEP. 1 0 $78 $ 0.00
CLAIMS

BASIC APPLICATION FEE: $690.00

TOTAL FEES PAYABLE: $ 690.00

METHOD OF PAYMENT

A check in the amount of is attached for application fee and presentation of claims.
A check in the amount of $ 40.00 is attached for recordation of the Assignment.
The Commissioner is hereby authorized to charge payment of the any missing filing or other fees
required for this filing or credit any overpayment to Deposit Account No. 50-0292
(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,

Menfeld , Reg. No. 38687

brewe 30 goco

ate

Correspondence Address:
Dov Rosenfeld
5507 College Avenue, Suite 2
QOakland, California, 94618
Telephone: (510) 547-3378; Fax: (510) 653-7992

e

Petitioners' EX1039 Page 5

Our Ref./Docket No.: _APPT-001-2

PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS SPECIFIED
BY A PROTOCOL DESCRIPTION LANGUAGE

Inventor(s):

DIETZ, Russell S.
San Jose, CA

KOPPENHAVER, Andrew A.
Fairfax, VA

TORGERSON, James F.
Andover, MN

Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal Service as Express Mail
(Express Mail Label: EI417961935US in an envelope addressed to Box Patent Application, Assistant Commissioner for Patents,

Washington, D.C. 20231 on.
Date: /X:LJC—Q/}O/ AL Sig%\
o Narke Dov Rofehétitisn &psisEX 1039 Page 6

dippy g

10

15

20

25

30

1

METHOD AND APPARATUS FOR MONITORING
TRAFFIC IN A NETWORK

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application Serial No.:
60/141,903 for METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A
NETWORK to inventors Dietz, et al., filed June 30, 1999, the contents of which are

incorporated herein by reference.

This application is ‘related to the following U.S. patent applications, each filed

concurrently with the present application, and each assigned to Apptitude, Inc., the

assignee of the present invention:

U.S. Patent Application Serial No. 29/ éog,ﬁifor METHOD AND APPARATUS FOR Laf 7
(o)
MONITORING TRAFFIC IN A NETWORK, to inventors Dietz, et al., filed June 30, 4

2000, Attorney/Agent Reference Number APPT-001-1, and incorporated herein by

reference.

U.S. Patent Application Serial No. 04 /6(28!Z_éfor RE-USING INFORMATION FROM ¥’

qu3‘

DATA TRANSACTIONS FOR MAINTAINING STATISTICS IN NETWORK
MONITORING, to inventors Dietz, et al., filed June 30, 2000, Attorney/Agent
Reference Number APPT-001-3, and incorporated herein by reference.)
W\
U.S. Patent Application Serial No. (4 /{8,f,for ASSOCIATIVE CACHE S| & /U,ZI

STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW RECORDS IN A
NETWORK MONITOR, to inventors Sarkissian, et al., filed June 30, 2000,
Attorney/Agent Reference Number APPT-001-4, and incorporated herein by reference.

U.S. Patent Application Serial No. 09 4, 16]for STATE PROCESSOR FOR qu{?} Io?
PATTERN MATCHING IN A NETWORK MONITOR DEVICE, to inventors
Sarkissian, et al., filed June 30, 2000, Attorney/Agent Reference Number APPT-001-5,

and incorporated herein by reference.

FIELD OF INVENTION

The present invention relates to computer networks, specifically to the real-time
elucidation of packets communicated within a data network, including classification

according to protocol and application program.

- %

Petitioners' EX1039 Page 7

10

15

20

25

30

COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material that is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure, as it appears in
the Patent and Trademark Office patent file or records, but otherwise reserves all

copyright rights whatsoever.

BACKGROUND

There has long been a need for network activity monitors. This need has become
especially acute, however, given the recent popularity of the Internet and other
interconnected networks. In particular, there is a need for a real-time network monitor that
can provide details as to the application programs being used. Such a monitor should
enable non-intrusive, remote detection, characterization, analysis, and capture of all
information passing through any point on the network (i.e., of all packets and packet
streams passing through any location in the network). Not only should all the packets be
detected and analyzed, but for each of these packets the network monitor should
determine the protocol (e.g., http, ftp, H.323, VPN, etc.), the application/use within the
protocol (e.g., voice, video, data, real-time data, etc.), and an end user’s pattern of use
within each application or the application context (e.g., options selected, service
delivered, duration, time of day, data requested, etc.). Also, the network monitor should
not be reliant upon server resident information such as log files. Rather, it should allow a
user such as a network administrator or an Internet service provider (ISP) the means to
measure and analyze network activity objectively; to customize the type of data that is
collected and analyzed; to undertake real time analysis; and to receive timely notification

of network problems.

The recognizing and classifying in such a network monitor should be at all
protocol layer levels in conversational flows that pass in either direction at a point in a
network. Furthermore, the monitor should provide for properly analyzing each of the
packets exchanged between a client and a server, maintaining information relevant to the

current state of each of these conversational flows.

Related and incorporated by reference U.S. Patent application 4./ @]3] for
METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK, to

- Petitioners' EX1039 Page 8

¥y
ALk

10

15

20

25

30

3

inventors Dietz, et al, Attorney/Agent Docket APPT-001-1, describes a network monitor
that includes carrying out protocol specific operations on individual packets including
extracting information from header fields in the packet to use for building a signature for
identifying the conversational flow of the packet and for recognizing future packets as
belonging to a previously encountered flow. A parser subsystem includes a parser for
recognizing different patterns in the packet that identify the protocols used. For each
protocol recognized, a slicer extracts important packet elements from the packet. These
form a signature (i.e., key) for the packet. The slicer also preferably generates a hash for

rapidly identifying a flow that may have this signature from a database of known flows.

The flow signature of the packet, the hash and at least some of the payload are
passed to an analyzer subsystem. In a hardware embodiment, the analyzer subsystem
includes a unified flow key buffer (UFKB) for receiving parts of packets from the parser
subsystem and for storing signatures in process, a lookup/update engine (LUE) to lookup
a database of flow records for previously encountered conversational flows to determine
whether a signature is from an existing flow, a state processor (SP) for performing state
processing, a flow insertion and deletion engine (FIDE) for inserting new flows into the
database of flows, a memory for storing the database of flows, and a cache for speeding
up access to the memory containing the flow database. The LUE, SP, and FIDE are all
coupled to the UFKB, and to the cache.

Each flow-entry includes one or more statistical measures, €.g., the packet count

related to the flow, the time of arrival of a packet, the time differential.

In the preferred hardware embodiment, each of the LUE, state processor, and
FIDE operate independently from the other two engines. The state processor performs one

or more operations specific to the state of the flow.

A network analyzer should be able to analyze many different protocols. At a base
level, there are a number of standards used in digital telecommunications, including
Ethernet, HDLC, ISDN, Lap B, ATM, X.25, Frame Relay, Digital Data Service, FDDI
(Fiber Distributed Data Interface), T1, and others. Many of these standards employ
different packet and/or frame formats. For example, data is transmitted in ATM and
frame-relay systems in the form of fixed length packets (called “cells”) that are 53 octets
(i.e., bytes) long. Several such cells may be needed to make up the information that might

be included in the packet employed by some other protocol for the same payload

Petitioners' EX1039 Page 9

10

15

20

25

30

4

information—for example in a conversational flow that uses the frame-relay standard or

the Ethernet protocol.

In order for a network monitor to be able to analyze different packet or frame
formats, the monitor needs to be able to perform protocol specific operations on each
packet with each packet carrying information conforming to different protocols and
related to different applications. For example, the monitor needs to be able to parse
packets of different formats into fields to understand the data encapsulated in the different
fields. As the number of possible packet formats or types increases, the amount of logic

required to parse these different packet formats also increases.

Prior art network monitors exist that parse individual packets and look for
information at different fields to use for building a signature for identifying packets. Chiu,
et al., describe a method for collecting information at the session level in a computer
network in United States Patent 5,101,402, titled “APPARATUS AND METHOD FOR
REAL-TIME MONITORING OF NETWORK SESSIONS AND A LOCAL AREA
NETWORK.” In this patent, there are fixed locations specified for particular types of
packets. For example, if a DECnet packet appears, the Chiu system looks at six specific
fields (at 6 locations) in the packet in order to identify the session of the packet. If, on the
other hand, an IP packet appears, a different set of six locations are examined. The system
looks only at the lowest levels up to the protocol layer. There are fixed locations for each
of the fields that specified the next level. With the proliferation of protocols, clearly the
specifying of all the possible places to look to determine the session becomes more and

more difficult. Likewise, adding a new protocol or application is difficult.

It is desirable to be able to adaptively determine the locations and the information
extracted from any packet for the particular type of packet. In this way, an optimal
signature may be defined using a protocol-dependent and packet-content-dependent

definition of what to look for and where to look for it in order to form a signature.

There thus is also a need for a network monitor that can be tailored or adapted for
different protocols and for different application programs. There thus is also a need for a
network monitor that can accommodate new protocols and for new application programs.
There also is a need for means for specifying new protocols and new levels, including
new applications. There also is a need for a mechanism to describe protocol specific

operations, including, for example, what information is relevant to packets and packets

Petitioners' EX1039 Page 10

10

15

20

25

30

5

that need to be decoded, and to include specifying parsing operations and extraction
operations. There also is a need for a mechanism to describe state operations to perform

on packets that are at a particular state of recognition of a flow in order to further

recognize the flow.

SUMMARY

One embodiment of the invention is a method of performing protocol specific operations
on a packet passing through a connection point on a computer network. The packet
contents conform tb protocols of a layered model wherein the protocol at a particular
layer level may include one or a set of child protocols defined for that level. The method
includes receiving the packet and receiving a set of protocol descriptions for protocols
may be used in the packet. A protocol description for a particular protocol at a particular
layer level includes any child protocols of the particular protocol, and for any child
protocol, where in the packet information related to the particular child protocol may be
found. A protocol description also includes any protocol specific operations to be
performed on the packet for the particular protocol at the particular layer level. The
method includes performing the protocol specific operations on the packet specified by
the set of protocol descriptions based on the base protocol of the packet and the children
of the protocols used in the packet. A particular embodiment includes providing the
protocol descriptions in a high-level protocol description language, and compiling to the
descriptions into a data structure. The compiling may further include compressing the
data structure into a compressed data structure. The protocol specific operations may
include parsing and extraction operations to extract identifying information. The protocol
specific operations may also include state processing operations defined for a particular

state of a conversational flow of the packet.

BRIEF DESCRIPTION OF THE DRAWINGS

Although the present invention is better understood by referring to the detailed
preferred embodiments, these should not be taken to limit the present invention to any
specific embodiment because such embodiments are provided only for the purposes of
explanation. The embodiments, in turn, are explained with the aid of the following

figures.

Petitioners' EX1039 Page 11

10

15

20

25

6

FIG. 1 is a functional block diagram of a network embodiment of the present
invention in which a monitor is connected to analyze packets passing at a connection

point.

FIG. 2 is a diagram representing an example of some of the packets and their
formats that might be exchanged in starting, as an illustrative example, a conversational
flow between a client and server on a network being monitored and analyzed. A pair of
flow signatures particular to this example and to embodiments of the present invention is
also illustrated. This represents some of the possible flow signatures that can be generated
and used in the process of analyzing packets and of recognizing the particular server

applications that produce the discrete application packet exchanges.

FIG. 3 is a functional block diagram of a process embodiment of the present
invention that can operate as the packet monitor shown in FIG. 1. This process may be

implemented in software or hardware.

FIG. 4 is a flowchart of a high-level protocol language compiling and optimization
process, which in one embodiment may be used to generate data for monitoring packets

according to versions of the present invention.

FIG. 5 is a flowchart of a packet parsing process used as part of the parser in an

embodiment of the inventive packet monitor.

FIG. 6 is a flowchart of a packet element extraction process that is used as part of

the parser in an embodiment of the inventive packet monitor.

FIG. 7 is a flowchart of a flow-signature building process that is used as part of

the parser in the inventive packet monitor.

FIG. 8 is a flowchart of a monitor lookup and update process that is used as part of

the analyzer in an embodiment of the inventive packet monitor.

FIG. 9 is a flowchart of an exemplary Sun Microsystems Remote Procedure Call

application than may be recognized by the inventive packet monitor.

FIG. 10 is a functional block diagram of a hardware parser subsystem including
the pattern recognizer and extractor that can form part of the parser module in an

embodiment of the inventive packet monitor.

Petitioners' EX1039 Page 12

10

15

20

25

7

FIG. 11 is a functional block diagram of a hardware analyzer including a state

processor that can form part of an embodiment of the inventive packet monitor.

FIG. 12 is a functional block diagram of a flow insertion and deletion engine

process that can form part of the analyzer in an embodiment of the inventive packet

monitor.

FIG. 13 is a flowchart of a state processing process that can form part of the

analyzer in an embodiment of the inventive packet monitor.

FIG. 14 is a simple functional block diagram of a process embodiment of the

present invention that can operate as the packet monitor shown in FIG. 1. This process

may be implemented in software.

FIG. 15 is a functional block diagram of how the packet monitor of FIG. 3 (and

FIGS. 10 and 11) may operate on a network with a processor such as a microprocessor.

FIG. 16 is an example of the top (MAC) layer of an Ethernet packet and some of
the elements that may be extracted to form a signature according to one aspect of the

invention.

FIG. 17A is an example of the header of an Ethertype type of Ethernet packet of
FIG. 16 and some of the elements that may be extracted to form a signature according to

one aspect of the invention.

FIG. 17B is an example of an IP packet, for example, of the Ethertype packet
shown in FIGs. 16 and 17A, and some of the elements that may be extracted to form a

signature according to one aspect of the invention.

FIG. 18A is a three dimensional structure that can be used to store elements of the
pattern, parse and extraction database used by the parser subsystem in accordance to one

embodiment of the invention.

FIG. 18B is an alternate form of storing elements of the pattern, parse and
extraction database used by the parser subsystem in accordance to another embodiment of

the invention.

Petitioners' EX1039 Page 13

\

10

15

20

25

30

8

FIG. 19 shows various PDL file modules to be compiled together by the compiling

process illustrated in FIG. 20 as an example, in accordance with a compiling aspect of the

invention.

FIG. 20 is a flowchart of the process of compiling high-level language files

according to an aspect of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Note that this document includes hardware diagrams and descriptions that may
include signal names. In most cases, the names are sufficiently descriptive, in other cases

however the signal names are not needed to understand the operation and practice of the

invention.

Operation in a Network

FIG. 1 represents a system embodiment of the present invention that is referred to
herein by the general reference numeral 100. The system 100 has a computer network 102
that communicates packets (e.g., IP datagrams) between various computers, for example
between the clients 104-107 and servers 110 and 112. The network is shown
schematically as a cloud with several network nodes and links shown in the interior of the
cloud. A monitor 108 examines the packets passing in either direction past its connection
point 121 and, according to one aspect of the invention, can elucidate what application
programs are associated with each packet. The monitor 108 is shown examining packets
(i.e., datagrams) between the network interface 116 of the server 110 and the network.
The monitor can also be placed at other points in the network, such as connection point
123 between the network 102 and the interface 118 of the client 104, or some other
location, as indicated schematically by connection point 125 somewhere in network 102.
Not shown is a network packet acquisition device at the location 123 on the network for
converting the physical information on the network into packets for input into monitor

108. Such packet acquisition devices are common.

Various protocols may be employed by the network to establish and maintain the
required communication, e.g., TCP/IP, etc. Any network activity—for example an
application program run by the client 104 (CLIENT 1) communicating with another
running on the server 110 (SERVER 2)—will produce an exchange of a sequence of

packets over network 102 that is characteristic of the respective programs and of the

f

Petitioners' EX1039 Page 14

10

9

network protocols. Such characteristics may not be completely revealing at the individual
packet level. It may require the analyzing of many packets by the monitor 108 to have
enough information needed to recognize particular application programs. The packets
may need to be parsed then analyzed in the context of various protocols, for example, the
transport through the application session layer protocols for packets of a type conforming

to the ISO layered network model.

Communication protocols are layered, which is also referred to as a protocol stack.
The ISO (International Standardization Organization) has defined a general model that
provides a framework for design of communication protocol layers. This model, shown in
table form below, serves as a basic reference for understanding the functionality of

existing communication protocols.

e

15

ISO MODEL

Layer Functionality | Example

7 Application Telnet, NFS, Novell NCP, HTTP,
H.323 '

6 Presentation XDR

5 Session RPC, NETBIOS,-SNMP, etc.

4 Transport TCP, Novel SPX, UDP, etc.

3 Network IP, Novell IPX, VIP, AppleTalk, etc.
2 Data Link Network Interface Card (Hardware

Interface). MAC layer

1 Physical Ethernet, Token Ring, Frame Relay,
ATM, T1 (Hardware Connection)

"

Different communication protocols employ different levels of the ISO model or
may use a layered model that is similar to but which does not exactly conform to the ISO
model. A protocol in a certain layer may not be visible to protocols employed at other
layers. For example, an application (Level 7) may not be able to identify the source

computer for a communication attempt (Levels 2-3).

Petitioners' EX1039 Page 15

10

15

20

25

30

10

In some communication arts, the term “frame” generally refers to encapsulated
data at OSI layer 2, including a destination address, control bits for flow control, the data
or payload, and CRC (cyclic redundancy check) data for error checking. The term
“packet” generally refers to encapsulated data at OSI layer 3. In the TCP/IP world, the
term “datagram” is also used. In this specification, the term “packet” is intended to
encompass packets, datagrams, frames, and cells. In general, a packet format or frame
format refers to how data is encapsulated with various fields and headers for transmission
across a network. For example, a data packet typically includes an address destination
field, a length field, an error correcting code (ECC) field, or cyclic redundancy check
(CRC) field, as well as headers and footers to identify the beginning and end of the
packet. The terms “packet format” and “frame format,” also referred to as “cell format,”

are generally synonymous.

Monitor 108 looks at every packet passing the connection point 121 for analysis.
However, not every packet carries the same information useful for recognizing all levels
of the protocol. For example, in a conversational flow associated with a particular
application, the application will cause the server to send a type-A packet, but so will
another. If, though, the particular application program always follows a type-A packet
with the sending of a type-B packet, and the other application program does not, then in
order to recognize packets of that application’s conversational flow, the monitor can be
available to recognize packets that match the type-B packet to associate with the type-A
packet. If such is recognized after a type-A packet, then the particular application

program’s conversational flow has started to reveal itself to the monitor 108.

Further packets may need to be examined before the conversational flow can be
identified as being associated with the application program. Typically, monitor 108 is
simultaneously also in partial completion of identifying other packet exchanges that are
parts of conversational flows associated with other applications. One aspect of monitor
108 is its ability to maintain the state of a flow. The state of a flow is an indication of all
previous events in the flow that lead to recognition of the content of all the protocol
levels, e.g., the ISO model protocol levels. Another aspect of the invention is forming a
signature of extracted characteristic portions of the packet that can be used to rapidly

identify packets belonging to the same flow.

Petitioners' EX1039 Page 16

10

15

20

25

30

11
In real-world uses of the monitor 108, the number of packets on the network 102
passing by the monitor 108’s connection point can exceed a million per second.
Consequently, the monitor has very little time available to analyze and type each packet
and identify and maintain the state of the flows passing through the connection point. The
monitor 108 therefore masks out all the unimportant parts of each packet that will not
contribute to its classification. However, the parts to mask-out will change with each

packet depending on which flow it belongs to and depending on the state of the flow.

The recognition of the packet type, and ultimately of the associated application
programs according to the packets that their executions produce, is a multi-step process
within the monitor 108. At a first level, for example, several application programs will all
produce a first kind of packet. A first “signature” is produced from selected parts of a
packet that will allow monitor 108 to identify efficiently any packets that belong to the
same flow. In some cases, that packet type may be sufficiently unique to enable the
monitor to identify the application that generated such a packet in the conversational flow.
The signature can then be used to efficiently identify all future packets generated in traffic

related to that application.

In other cases, that first packet only starts the process of analyzing the
conversational flow, and more packets are necessary to identify the associated application
program. In such a case, a subsequent packet of a second type—but that potentially
belongs to the same conversational flow—is recognized by using the signature. At such a
second level, then, only a few of those application programs will have conversational
flows that can produce such a second packet type. At this level in the process of
classification, all application programs that are not in the set of those that lead to such a
sequence of packet types may be excluded in the process of classifying the conversational
flow that includes these two packets. Based on the known patterns for the protocol and for
the possible applications, a signature is produced that allows recognition of any future

packets that may follow in the conversational flow.

It may be that the application is now recognized, or recognition may need to
proceed to a third level of analysis using the second level signature. For each packet,
therefore, the monitor parses the packet and generates a signature to determine if this
signature identified a previously encountered flow, or shall be used to recognize future

packets belonging to the same conversational flow. In real time, the packet is further

" Petitioners' EX1039 Page 17

10

15

20

25

30

12

analyzed in the context of the sequence of previously encountered packets (the state), and
of the possible future sequences such a past sequence may generate in conversational
flows associated with different applications. A new signature for recognizing future
packets may also be generated. This process of analysis continues until the applications
are identified. The last generated signature may then be used to efficiently recognize
future packets associated with the same conversational flow. Such an arrangement makes
it possible for the monitor 108 to cope with millions of packets per second that must be

inspected.

Another aspect of the invention is adding Eavesdropping. In alternative
embodiments of the present invention capable of eavesdropping, once the monitor 108
has recognized the executing application programs passing through some point in the
network 102 (for example, because of execution of the applications by the client 105 or
server 110), the monitor sends a message to some general purpose processor on the
network that can input the same packets from the same location on the network, and the
processor then loads its own executable copy of the application program and uses it to
read the content being exchanged over the network. In other words, once the monitor 108

has accomplished recognition of the application program, eavesdropping can commence.

The Network Monitor

FIG. 3 shows a network packet monitor 300, in an embodiment of the present
invention that can be implemented with computer hardware and/or software. The system
300 is similar to monitor 108 in FIG. 1. A packet 302 is examined, e.g., from a packet
acquisition device at the location 121 in network 102 (FIG. 1), and the packet evaluated,
for example in an attempt to determine its characteristics, e.g., all the protocol information

in a multilevel model, including what server application produced the packet.

The packet acquisition device is a common interface that converts the physical
signals and then decodes them into bits, and into packets, in accordance with the
particular network (Ethernet, frame relay, ATM, efc.). The acquisition device indicates to

the monitor 108 the type of network of the acquired packet or packets.

Aspects shown here include: (1) the initialization of the monitor to generate what
operations need to occur on packets of different types—accomplished by compiler and

optimizer 310, (2) the processing—parsing and extraction of selected portions—of

Petitioners' EX1039 Page 18

10

15

20

25

30

13

packets to generate an identifying signature—accomplished by parser subsystem 301, and

(3) the analysis of the packets—accomplished by analyzer 303.

The purpose of compiler and optimizer 310 is to provide protocol specific
information to parser subsystem 301 and to analyzer subsystem 303. The initialization

occurs prior to operation of the monitor, and only needs to re-occur when new protocols

are to be added.

A flow is a stream of packets being exchanged between any two addresses in the
network. For each i)rotocol there are known to be several fields, such as the destination
(recipient), the source (the sender), and so forth, and these and other fields are used in
monitor 300 to identify the flow. There are other fields not important for identifying the

flow, such as checksums, and those parts are not used for identification.

Parser subsystem 301 examines the packets using pattern recognition process 304
that parses the packet and determines the protocol types and associated headers for each
protocol layer that exists in the packet 302. An extraction process 306 in parser subsystem
301 extracts characteristic portions (signature information) from the packet 302. Both the
pattern information for parsing and the related extraction operations, e.g., extraction
masks, are supplied from a parsing-pattern-structures and extraction-operations database

(parsing/extractions database) 308 filled by the compiler and optimizer 310.

The protocol description language (PDL) files 336 describes both patterns and
states of all protocols that an occur at any layer, including how to interpret header
information, how to determine from the packet header information the protocols at the
next layer, and what information to extract for the purpose of identifying a flow, and
ultimately, applications and services. The layer selections database 338 describes the
particular layering handled by the monitor. That is, what protocols run on top of what
protocols at any layer level. Thus 336 and 338 combined describe how one would decode,
analyze, and understand the information in packets, and, furthermore, how the

information is layered. This information is input into compiler and optimizer 310.

When compiler and optimizer 310 executes, it generates two sets of internal data
structures. The first is the set of parsing/extraction operations 308. The pattern structures
include parsing information and describe what will be recognized in the headers of
packets; the extraction operations are what elements of a packet are to be extracted from

El

Petitioners' EX1039 Page 19

t

10

15

20

25

30

14

the packets based on the patterns that get matched. Thus, database 308 of
parsing/extraction operations includes information describing how to determine a set of

one or more protocol dependent extraction operations from data in the packet that indicate

a protocol used in the packet.

The other internal data structure that is built by compiler 310 is the set of state
patterns and processes 326. These are the different states and state transitions that occur in
different conversational flows, and the state operations that need to be performed (e.g.,
patterns that need to be examined and new signatures that need to be built) during any

state of a conversational flow to further the task of analyzing the conversational flow.

Thus, compiling the PDL files and layer selections provides monitor 300 with the
information it needs to begin processing packets. In an alternate embodiment, the contents
of one or more of databases 308 and 326 may be manually or otherwise generated. Note
that in some embodiments the layering selections information is inherent rather than
explicitly described. For example, since a PDL file for a protocol includes the child

protocols, the parent protocols also may be determined.

In the preferred embodiment, the packet 302 from the acquisition device is input
into a packet buffer. The pattern recognition process 304 is carried out by a pattern
analysis and recognition (PAR) engine that analyzes and recognizes patterns in the
packets. In particular, the PAR locates the next protocol field in the header and
determines the length of the header, and may perform certain other tasks for certain types
of protocol headers. An example of this is type and length comparison to distinguish an
IEEE 802.3 (Ethernet) packet from the older type 2 (or Version 2) Ethernet packet, also
called a DIGITAL-Intel-Xerox (DIX) packet. The PAR also uses the pattern structures
and extraction operations database 308 to identify the next protocol and parameters
associated with that protocol that enables analysis of the next protocol layer. Once a
pattern or a set of patterns has been iélentified, it/they will be associated with a set of none
or more extraction operations. These extraction operations (in the form of commands and
associated parameters) are passed to the extraction process 306 implemented by an
extracting and information identifying (EII) engine that extracts selected parts of the
packet, including identifying information from the packet as required for recognizing this
packet as part of a flow. The extracted information is put in sequence and then processed

in block 312 to build a unique flow signature (also called a “key”) for this flow. A flow

#
i

~ Petitioners' EX1039 Page 20

10

15

20

25

30

15
signature depends on the protocols used in the packet. For some protocols, the extracted
components may include source and destination addresses. For example, Ethernet frames
have end-point addresses that are useful in building a better flow signature. Thus, the
signature typically includes the client and server address pairs. The signature is used to

recognize further packets that are or may be part of this flow.

In the preferred embodiment, the building of the flow key includes generating a
hash of the signature using a hash function. The purpose if using such a hash is
conventional—to spread flow-entries identified by the signature across a database for
efficient searching. The hash generated is preferably based on a hashing algorithm and

such hash generation is known to those in the art.

In one embodiment, the parser passes data from the packet—a parser record—that
includes the signature (i.e., selected portions of the packet), the hash, and the packet itself
to allow for any state processing that requires further data from the packet. An improved
embodiment of the parser subsystem might generate a parser record that has some
predefined structure and that includes the signature, the hash, some flags related to some
of the fields in the parser record, and parts of the packet’s payload that the parser
subsystem has determined might be required for further processing, e.g., for state

processing.

Note that alternate embodiments may use some function other than concatenation
of the selected portions of the packet to make the identifying signature. For example,

some “digest function” of the concatenated selected portions may be used.

The parser record is passed onto lookup process 314 which looks in an internal
data store of records of known flows that the system has already encountered, and decides
(in 316) whether or not this particular packet belongs to a known flow as indicated by the
presence of a flow-entry matching this flow in a database of known flows 324. A record

in database 324 is associated with each encountered flow.

The parser record enters a buffer called the unified flow key buffer (UFKB). The
UFKB stores the data on flows in a data structure that is similar to the parser record, but
that includes a field that can be modified. In particular, one or the UFKB record fields
stores the packet sequence number, and another is filled with state information in the form

of a program counter for a state processor that implements state processing 328.

Petitioners' EX1039 Page 21

10

15

20

25

30

16
The determination (316) of whether a record with the same signature already
exists is carried out by a lookup engine (LUE) that obtains new UFKB records and uses
the hash in the UFKB record to lookup if there is a matching known flow. In the
particular embodiment, the database of known flows 324 is in an external memory. A
cache is associated with the database 324. A lookup by the LUE for a known record is
carried out by accessing the cache using the hash, and if the entry is not already present in

the cache, the entry is looked up (again using the hash) in the external memory.

The flow-entry database 324 stores flow-entries that include the unique flow-
signature, state information, and extracted information from the packet for updating
flows, and one or more statistical about the flow. Each entry completely describes a flow.
Database 324 is organized into bins that contain a number, denoted N, of flow-entries
(also called flow-entries, each a bucket), with N being 4 in the preferred embodiment.
Buckets (i.e., flow-entries) are accessed via the hash of the packet from the parser
subsystem 301 (i.e., the hash in the UFKB record). The hash spreads the flows across the
database to allow for fast lookups of entries, allowing shallower buckets. The designer
selects the bucket depth N based on the amount of memory attached to the monitor, and
the number of bits of the hash data value used. For example, in one embodiment, each
flow-entry is 128 bytes long, so for 128K flow-entries, 16 Mbytes are required. Using a
16-bit hash gives two flow-entries per bucket. Empirically, this has been shown to be
more than adequate for the vast majority of cases. Note that another embodiment uses

flow-entries that are 256 bytes long.

Herein, whenever an access to database 324 is described, it is to be understood

that the access is via the cache, unless otherwise stated or clear from the context.

If there is no flow-entry found matching the signature, i.e., the signature is for a
new flow, then a protocol and state identification process 318 further determines the state
and protocol. That is, process 318 determines the protocols and where in the state
sequence for a flow for this protocol’s this packet belongs. Identification process 318 uses
the extracted information and makes reference to the database 326 of state patterns and
processes. Process 318 is then followed by any state operations that need to be executed

on this packet by a state processor 328.

If the packet is found to have a matching flow-entry in the database 324 (e.g., in

the cache), then a process 320 determines, from the looked-up flow-entry, if more

Petitioners' EX1039 Page 22

10

15

20

25

30

17

classification by state processing of the flow signature is necessary. If not, a process 322
updates the flow-entry in the flow-entry database 324 (e.g., via the cache). Updating
includes updating one or more statistical measures stored in the flow-entry. In our

embodiment, the statistical measures are stored in counters in the flow-entry.

If state processing is required, state process 328 is commenced. State processor
328 carries out any state operations specified for the state of the flow and updates the state
to the next state according to a set of state instructions obtained form the state pattern and

processes database 326.

The state processor 328 analyzes both new and existing flows in order to analyze
all levels of the protocol stack, ultimately classifying the flows by application (level 7 in
the ISO model). It does this by proceeding from state-to-state based on predefined state
transition rules and state operations as specified in state processor instruction database
326. A state transition rule is a rule typically containing a test followed by the next-state
to proceed to if the test result is true. An operation is an operation to be performed while
the state processor is in a particular state—for example, in order to evaluate a quantity
needed to apply the state transition rule. The state processor goes through each rule and

each state process until the test is true, or there are no more tests to perform.

In general, the set of state operations may be none or more operations on a packet,
and carrying out the operation or operations may leave one in a state that causes exiting
the systein prior to completing the identification, but possibly knowing more about what
state and state processes are needed to execute next, i.e., when a next packet of this flow
is encountered. As an example, a state process (set of state operations) at a particular state

may build a new signature for future recognition packets of the next state.

By maintaining the state of the flows and knowing that new flows may be set up
using the information from previously encountered flows, the network traffic monitor 300
provides for (a) single-packet protocol recognition of flows, and (b) multiple-packet
protocol recognition of flows. Monitor 300 can even recognize the application program
from one or more disjointed sub-flows that occur in server announcement type flows.
What may seem to prior art monitors to be some unassociated flow, may be recognized by
the inventive monitor using the flow signature to be a sub-flow associated with a

previously encountered sub-flow.

Petitioners' EX1039 Page 23

10

15

20

25

30

18

Thus, state processor 328 applies the first state operation to the packet for this
particular flow-entry. A process 330 decides if more operations need to be performed for
this state. If so, the analyzer continues looping between block 330 and 328 applying
additional state operations to this particular packet until all those operations are
completed—that is, there are no more operations for this packet in this state. A process
332 decides if there are further states to be analyzed for this type of flow according to the
state of the flow and the protocol, in order to fully characterize the flow. If not, the
conversational flow. has now been fully characterized and a process 334 finalizes the

classification of the conversational flow for the flow.

In the particular embodiment, the state processor 328 starts the state processing by
using the last protocol recognized by the parser as an offset into a jump table (jump
vector). The jump table finds the state processor instructions to use for that protocol in the
state patterns and processes database 326. Most instructions test something in the unified
flow key buffer, or the flow-entry in the database of known flows 324, if the entry exists.
The state processor may have to test bits, do comparisons, add, or subtract to perform the
test. For example, a common operation carried out by the state processor is searching for

one or more patterns in the payload part of the UFKB.

Thus, in 332 in the classification, the analyzer decides whether the flow is at an
end state. If not at an end state, the flow-entry is updated (or created if a new flow) for

this flow-entry in process 322.

Furthermore, if the flow is known and if in 332 it is determined that there are

further states to be processed using later packets, the flow-entry is updated in process 322.

The flow-entry also is updated after classification finalization so that any further
packets belonging to this flow will be readily identified from their signature as belonging

to this fully analyzed conversational flow.

After updating, database 324 therefore includes the set of all the conversational

flows that have occurred.

Thus, the embodiment of present invention shown in FIG. 3 automatically
maintains flow-entries, which in one aspect includes storing states. The monitor of FIG. 3
also generates characteristic parts of packets—the signatures—that can be used to

recognize flows. The flow-entries may be identified and accessed by their signatures.

- Petitioners' EX1039 Page 24

10

15

20

25

30

19
Once a packet is identified to be from a known flow, the state of the flow is known and
this knowledge enables state transition analysis to be performed in real time for each
different protocol and application. In a complex analysis, state transitions are traversed as
more and more packets are examined. Future packets that are part of the same
conversational flow have their state analysis continued from a previously achieved state.
When enough packets related to an application of interest have been processed, a final
recognition state is ultimately reached, i.e., a set of states has been traversed by state
analysis to completely characterize the conversational flow. The signature for that final
state enables each new incoming packet of the same conversational flow to be

individually recognized in real time.

In this manner, one of the great advantages of the present invention is realized.
Once a particular set of state transitions has been traversed for the first time and ends in a
final state, a short-cut recognition pattern—a signature—can be generated that will key on
every new incoming packet that relates to the conversational flow. Checking a signature
involves a simple operation, allowing high packet rates to be successfully monitored on

the network.

In improved embodiments, several state analyzers are run in parallel so that a large
number of protocols and applications may be checked for. Every known protocol and
application will have at least one unique set of state transitions, and can therefore be

uniquely identified by watching such transitions.

When each new conversational flow starts, signatures that recognize the flow are
automatically generated on-the-fly, and as further packets in the conversational flow are
encountered, signatures are updated and the states of the set of state transitions for any
potential application are further traversed according to the state transition rules for the
flow. The new states for the flow—those associated with a set of state transitions for one
or more potential applications—are added to the records of previously encountered states

for easy recognition and retrieval when a new packet in the flow is encountered.

Detailed operation

FIG. 4 diagrams an initialization system 400 that includes the compilation process.
That is, part of the initialization generates the pattern structures and extraction operations

database 308 and the state instruction database 328. Such initialization can occur off-line

" Petitioners' EX1039 Page 25

10

15

20

25

30

20

or from a central location.

The different protocols that can exist in different layers may be thought of as
nodes of one or more trees of linked nodes. The packet type is the root of a tree (called
level 0). Each protocol is either a parent node or a terminal node. A parent node links a
protocol to other protocols (child protocols) that can be at higher layer levels. Thus a
protocol may have zero or more children. Ethernet packets, for example, have several
variants, each having a basic format that remains substantially the same. An Ethernet
packet (the root or level 0 node) may be an Ethertype packet—also called an Ethernet
Type/Version 2 and a DIX (DIGITAL-Intel-Xerox packet)—or an IEEE 803.2 packet.
Continuing with the IEEE 802.3 packet, one of the children nodes may be the IP protocol,
and one of the children of the IP protocol may be the TCP protocol.

FIG. 16 shows the header 1600 (base level 1) of a complete Ethernet frame (i.e.,
packet) of information and includes information on the destination media access control
address (Dst MAC 1602) and the source media access control address (Src MAC 1604).
Also shown in FIG. 16 is some (but not all) of the information specified in the PDL files

for extraction the signature.

FIG. 17A now shows the header information for the next level (level-2) for an
Ethertype packet 1700. For an Ethertype packet 1700, the relevant information from the
packet that indicates the next layer level is a two-byte type field 1702 containing the child
recognition pattern for the next level. The remaining information 1704 is shown hatched
because it not relevant for this level. The list 1712 shows the possible children for an
Ethertype packet as indicated by what child recognition pattern is found offset 12.

FIG. 17B shows the structure of the header of one of the possible next levels, that of the
IP protocol. The possible children of the IP protocol are shown in table 1752.

The pattern, parse, and extraction database (pattern recognition database, or PRD)
308 generated by compilation process 310, in one embodiment, is in the form of a three
dimensional structure that provides for rapidly searching packet headers for the next
protocol. FIG. 18A shows such a 3-D representation 1800 (which may be considered as
an indexed set of 2-D representations). A compressed form of the 3-D structure is

preferred.

%

Petitioners' EX1039 Page 26

T e

sl

m
’

10

15

20

25

30

21

An alternate embodiment of the data structure used in database 308 is illustrated in
FIG. 18B. Thus, like the 3-D structure of FIG. 18A, the data structure permits rapid
searches to be performed by the pattern recognition process 304 by indexing locations in a
memory rather than performing address link computations. In this alternate embodiment,
the PRD 308 includes two parts, a single protocol table 1850 (PT) which has an entry for
each protocol known for the monitor, and a series of Look Up Tables 1870 (LUT’s) that
are used to identify known protocols and their children. The protocol table includes the
parameters needed by the pattern analysis and recognition process 304 (implemented by
PRE 1006) to evaluate the header information in the packet that is associated with that
protocol, and parameters needed by extraction process 306 (implemented by slicer 1007)
to process the packet header. When there are children, the PT describes which bytes in the
header to evaluate to determine the child protocol. In particular, each PT entry contains

the header length, an offset to the child, a slicer command, and some flags.

The pattern matching is carried out by finding particular “child recognition codes”
in the header fields, and using these codes to index one or more of the LUT’s. Each LUT
entry has a node code that can have one of four values, indicating the protocol that has
been recognized, a code to indicate that the protocol has been partially recognized (more
LUT lookups are needed), a code to indicate that this is a terminal node, and a null node

to indicate a null entry. The next LUT to lookup is also returned from a LUT lookup.

Compilation process is described in FIG. 4. The source-code information in the
form of protocol description files is shown as 402. In the particular embodiment, the high
level decoding descriptions includes a set of protocol description files 336, one for each
protocol, and a set of packet layer selections 338, which describes the particular layering

(sets of trees of protocols) that the monitor is to be able to handle.

A compiler 403 compiles the descriptions. The set of packet parse-and-extract
operations 406 is generated (404), and a set of packet state instructions and operations
407 is generated (405) in the form of instructions for the state processor that implements
state processing process 328. Data files for each type of application and protocol to be
recognized by the analyzer are downloaded from the pattern, parse, and extraction
database 406 into the memory systems of the parser and extraction engines. (See the
parsing process 500 description and FIG. 5; the extraction process 600 description and

FIG. 6; and the parsing subsystem hardware description and FIG. 10). Data files for each

- A

Petitioners' EX1039 Page 27

10

15

20

25

30

22

type of application and protocol to be recognized by the analyzer are also downloaded
from the state-processor instruction database 407 into the state processor. (see the state

processor 1108 description and FIG. 11.).

Note that generating the packet parse and extraction operations builds and links
the three dimensional structure (one embodiment) or the or all the lookup tables for the
PRD.

Because of the large number of possible protocol trees and subtrees, the compiler
process 400 includes optimization that compares the trees and subtrees to see which
children share common parents. When implemented in the form of the LUT’s, this
process can generate a single LUT from a plurality of LUT’s. The optimization process

further includes a compaction process that reduces the space needed to store the data of
the PRD.

As an example of compaction, consider the 3-D structure of FIG. 18A that can be
thought of as a set of 2-D structures each representing a protocol. To enable saving space
by using only one array per protocol which may have several parents, in one embodiment,
the pattern analysis subprocess keeps a “current header” pointer. Each location (offset)
index for each protocol 2-D array in the 3-D structure is a relative location starting with
the start of header for the particular protocol. Furthermore, each of the two-dimensional
arrays is sparse. The next step of the optimization, is checking all the 2-D arrays against
all the other 2-D arrays to find out which ones can share memory. Many of these 2-D
arrays are often sparsely populated in that they each have only a small number of valid
entries. So, a process of "folding" is next used to combine two or more 2-D arrays
together into one physical 2-D array without losing the identity of any of the original 2-D
arrays (i.e., all the 2-D arrays continue to exist logically). Folding can occur between any
2-D arrays irrespective of their location in the tree as long as certain conditions are met.
Multiple arrays may be combined into a single array as long as the individual entries do
not conflict with each other. A fold number is then used to associate each element with its
original array. A similar folding process is used for the set of LUTs 1850 in the alternate
embodiment of FIG. 18B.

In 410, the analyzer has been initialized and is ready to perform recognition.

FIG. 5 shows a flowchart of how actual parser subsystem 301 functions. Starting

Petitioners' EX1039 Page 28

I

10

15

20

25

30

23
at 501, the packet 302 is input to the packet buffer in step 502. Step 503 loads the next
(initially the first) packet component from the packet 302. The packet components are
extracted from each packet 302 one element at a time. A check is made (504) to determine
if the load-packet-component operation 503 succeeded, indicating that there was more in
the packet to process. If not, indicating all components have been loaded, the parser

subsystem 301 builds the packet signature (512)—the next stage (FIG 6).

If a component is successfully loaded in 503, the node and processes are fetched
(505) from the pattern, parse and extraction database 308 to provide a set of patterns and
processes for that node to apply to the loaded packet component. The parser subsystem
301 checks (506) to determine if the fetch pattern node operation 505 completed
successfully, indicating there was a pattern node that loaded in 505. If not, step 511
moves to the next packet component. If yes, then the node and pattern matching process
are applied in 507 to the component extracted in 503. A pattern match obtained in 507 (as
indicated by test 508) means the parser subsystem 301 has found a node in the parsing

elements; the parser subsystem 301 proceeds to step 509 to extract the elements.

If applying the node process to the component does not produce a match (test
508), the parser subsystem 301 moves (510) to the next pattern node from the pattern
database 308 and to step 505 to fetch the next node and process. Thus, there is an
“applying patterns” loop between 508 and 505. Once the parser subsystem 301 completes
all the patterns and has either matched or not, the parser subsystem 301 moves to the next

packet component (511).

Once all the packet components have been the loaded and processed from the
input packet 302, then the load packet will fail (indicated by test 504), and the parser

subsystem 301 moves to build a packet signature which is described in FIG. 6

FIG. 6 is a flow chart for extracting the information from which to build the
packet signature. The flow starts at 601, which is the exit point 513 of FIG. 5. At this
point parser subsystem 301 has a completed packet component and a pattern node
available in a buffer (602). Step 603 loads the packet component available from the
pattern analysis process of FIG. 5. If the load completed (test 604), indicating that there
was indeed another packet component, the parser subsystem 301 fetches in 605 the
extraction and process elements received from the pattern node component in 602. If the

fetch was successful (test 606), indicating that there are extraction elements to apply, the

s

" Ppetitioners' EX1039 Page 29

IEUTI

o B

10

15

20

25

30

24

parser subsystem 301 in step 607 applies that extraction process to the packet component
based on an extraction instruction received from that pattern node. This removes and

saves an element from the packet component.

In step 608, the parser subsystem 301 checks if there is more to extract from this
component, and if not, the parser subsystem 301 moves back to 603 to load the next
packet component at hand and repeats the process. If the answer is yes, then the parser
subsystem 301 moves to the next packet component ratchet. That new packet component
is then loaded in step 603. As the parser subsystem 301 moved through the loop between
608 and 603, extra extraction processes are applied either to the same packet component if

there is more to extract, or to a different packet component if there is no more to extract.

The extraction process thus builds the signature, extracting more and more
components according to the information in the patterns and extraction database 308 for
the particular packet. Once loading the next packet component operation 603 fails (test
604), all the components have been extracted. The built signature is loaded into the
signature buffer (610) and the parser subsystem 301 proceeds to FIG. 7 to complete the

signature generation process.

Referring now to FIG. 7, the process continues at 701. The signature buffer and
the pattern node elements are available (702). The parser subsystem 301 loads the next
pattern node element. If the load was successful (test 704) indicating there are more
nodes, the parser subsystem 301 in 705 hashes the signature buffer element based on the
hash elements that are found in the pattern node that is in the element database. In 706 the
resulting signature and the hash are packed. In 707 the parser subsystem 301 moves on to

the next packet component which is loaded in 703.

The 703 to 707 loop continues until there are no more patterns of elements left
(test 704). Once all the patterns of elements have been hashed, processes 304, 306 and
312 of parser subsystem 301 are complete. Parser subsystem 301 has generated the

signature used by the analyzer subsystem 303.

A parser record is loaded into the analyzer, in particular, into the UFKB in the
form of a UFKB record which is similar to a parser record, but with one or more different
fields.

FIG. 8 is a flow diagram describing the operation of the lookup/update engine

/,‘
E

” Petitioners' EX1039 Page 30

RN

10

15

20

25

30

25
(LUE) that implements lookup operation 314. The process starts at 801 from FIG. 7 with
the parser record that includes a signature, the hash and at least parts of the payload. In
802 those elements are shown in the form of a UFKB-entry in the buffer. The LUE, the
lookup engine 314 computes a “record bin number” from the hash for a flow-entry. A bin
herein may have one or more “buckets” each containing a flow-entry. The preferred

embodiment has four buckets per bin.

Since preferred hardware embodiment includes the cache, all data accesses to

records in the flowchart of FIG. 8 are stated as being to or from the cache.

Thus, in 804, the system looks up the cache for a bucket from that bin using the
hash. If the cache successfully returns with a bucket from the bin number, indicating there
are more buckets in the bin, the lookup/update engine compares (807) the current
signature (the UFKB-entry’s signature) from that in the bucket (i.e., the flow-entry
signature). If the signatures match (test 808), that record (in the cache) is marked in step
810 as “in process” and a timestamp added. Step 811 indicates to the UFKB that the
UFKB-entry in 802 has a status of “found.” The “found” indication allows the state
processing 328 to begin processing this UFKB element. The preferred hardware
embodiment includes one or more state processors, and these can operate in parallel with

the lookup/update engine.

In the preferred embodiment, a set of statistical operations is performed by a
calculator for every packet analyzed. The statistical operations may include one or more
of counting the packets associated with the flow; determining statistics related to the size
of packets of the flow; compiling statistics on differences between packets in each
direction, for example using timestamps; and determining statistical relationships of
timestamps of packets in the same direction. The statistical measures are kept in the flow-
entries. Other statistical measures also may be compiled. These statistics may be used
singly or in combination by a statistical processor component to analyze many different
aspects of the flow. This may include determining network usage metrics from the
statistical measures, for example to ascertain the network’s ability to transfer information
for this application. Such analysis provides for measuring the quality of service of a
conversation, measuring how well an application is performing in the network, measuring

network resources consumed by an application, and so forth.

To provide for such analyses, the lookup/update engine updates one or more

rAPetitioners' EX1039 Page 31

10

15

20

25

30

26
counters that are part of the flow-entry (in the cache) in step 812. The process exits at 813.
In our embodiment, the counters include the total packets of the flow, the time, and a

differential time from the last timestamp to the present timestamp.

It may be that the bucket of the bin did not lead to a signature match (test 808). In
such a case, the analyzer in 809 moves to the next bucket for this bin. Step 804 again
looks up the cache for another bucket from that bin. The lookup/update engine thus
continues lookup up buckets of the bin until there is either a match in 808 or operation
804 is not successful (test 805), indicating that there are no more buckets in the bin and no

match was found.

If no match was found, the packet belongs to a new (not previously encountered)
flow. In 806 the system indicates that the record in the unified flow key buffer for this
packet is new, and in 812, any statistical updating operations are performed for this packet
by updating the flow-entry in the cache. The update operation exits at 813. A flow

insertion/deletion engine (FIDE) creates a new record for this flow (again via the cache).

Thus, the update/lookup engine ends with a UFKB-entry for the packet with a

“new” status or a “found” status.

Note that the above system uses a hash to which more than one flow-entry can
match. A longer hash may be used that corresponds to a single flow-entry. In such an

embodiment, the flow chart of FIG. 8 is simplified as would be clear to those in the art.

The hardware system

Each of the individual hardware elements through which the data flows in the
system are now described with reference to FIGS. 10 and 11. Note that while we are
describing a particular hardware implementation of the invention embodiment of FIG. 3,
it would be clear to one skilled in the art that the flow of FIG. 3 may alternatively be
implemented in software running on one or more general-purpose processors, or only
partly implemented in hardware. An implementation of the invention that can operate in
software is shown in FIG. 14. The hardware embodiment (FIGS. 10 and 11) can operate
at over a million packets per second, while the software system of FIG. 14 may be
suitable for slower networks. To one skilled in the art it would be clear that more and

more of the system may be implemented in software as processors become faster.

.

Petitioners' EX1039 Page 32

10

15

20

25

30

27

FIG. 10 is a description of the parsing subsystem (301, shown here as subsystem
1000) as implemented in hardware. Memory 1001 is the pattern recognition database
memory, in which the patterns that are going to be analyzed are stored. Memory 1002 is
the extraction-operation database memory, in which the extraction instructions are stored.
Both 1001 and 1002 correspond to internal data structure 308 of FIG. 3. Typically, the
system is initialized from a microprocessor (not shown) at which time these memories are
loaded through a host interface multiplexor and control register 1005 via the internal
buses 1003 and 1004. Note that the contents of 1001 and 1002 are preferably obtained by
compiling process 310 of FIG. 3.

A packet enters the parsing system via 1012 into a parser input buffer memory
1008 using control signals 1021 and 1023, which control an input buffer interface
controller 1022. The buffer 1008 and interface control 1022 connect to a packet
acquisition device (not shown). The buffer acquisition device generates a packet start
signal 1021 and the interface control 1022 generates a next packet (i.e., ready to receive
data) signal 1023 to control the data flow into parser input buffer memory 1008. Once a
packet starts loading into the buffer memory 1008, pattern recognition engine (PRE) 1006
carries out the operations on the input buffer memory described in block 304 of FIG. 3.
That is, protocol types and associated headers for each protocol layer that exist in the

packet are determined.

The PRE searches database 1001 and the packet in buffer 1008 in order to
recognize the protocols the packet contains. In one implementation, the database 1001
includes a series of linked lookup tables. Each lookup table uses eight bits of addressing.
The first lookup table is always at address zero. The Pattern Recognition Engine uses a
base packet offset from a control register to start the comparison. It 1oads this value into a
current offset pointer (COP). It then reads the byte at base packet offset from the parser

input buffer and uses it as an address into the first lookup table.

Each lookup table returns a word that links to another lookup table or it returns a
terminal flag. If the lookup produces a recognition event the database also returns a

command for the slicer. Finally it returns the value to add to the COP.

The PRE 1006 includes of a comparison engine. The comparison engine has a first
stage that checks the protocol type field to determine if it is an 802.3 packet and the field

should be treated as a length. If it is not a length, the protocol is checked in a second

Petitioners' EX1039 Page 33

10

15

20

25

30

28

stage. The first stage is the only protocol level that is not programmable. The second stage
has two full sixteen bit content addressable memories (CAMs) defined for future protocol

additions.

Thus, whenever the PRE recognizes a pattern, it also generates a command for the
extraction engine (also called a “slicer”) 1007. The recognized patterns and the commands
are sent to the extraction engine 1007 that extracts information from the packet to build
the parser record. Thus, the operations of the extraction engine are those carried out in
blocks 306 and 312 of FIG. 3. The commands are sent from PRE 1006 to slicer 1007 in
the form of extraction instruction pointers which tell the extraction engine 1007 where to

a find the instructions in the extraction operations database memory (i.e., slicer instruction
database) 1002.

Thus, when the PRE 1006 recognizes a protocol it outputs both the protocol
identifier and a process code to the extractor. The protocol identifier is added to the flow
signature and the process code is used to fetch the first instruction from the instruction
database 1002. Instructions include an operation code and usually source and destination
offsets as well as a length. The offsets and length are in bytes. A typical operation is the
MOVE instruction. This instruction tells the slicer 1007 to copy n bytes of data
unmodified from the input buffer 1008 to the output buffer 1010. The extractor contains a
byte-wise barrel shifter so that the bytes moved can be packed into the flow signature.
The extractor contains another instruction called HASH. This instruction tells the

extractor to copy from the input buffer 1008 to the HASH generator.

Thus these instructions are for extracting selected element(s) of the packet in the
input buffer memory and transferring the data to a parser output buffer memory 1010.

Some instructions also generate a hash.

The extraction engine 1007 and the PRE operate as a pipeline. That is, extraction
engine 1007 performs extraction operations on data in input buffer 1008 already
processed by PRE 1006 while more (i.e., later arriving) packet information is being
simultaneously parsed by PRE 1006. This provides high processing speed sufficient to

accommodate the high arrival rate speed of packets.

Once all the selected parts of the packet used to form the signature are extracted,

the hash is loaded into parser output buffer memory 1010. Any additional payload from

Petitioners' EX1039 Page 34

10

15

20

25

30

29
the packet that is required for further analysis is also included. The parser output memory
1010 is interfaced with the analyzer subsystem by analyzer interface control 1011. Once
all the information of a packet is in the parser output buffer memory 1010, a data ready
signal 1025 is asserted by analyzer interface control. The data from the parser subsystem

1000 is moved to the analyzer subsystem via 1013 when an analyzer ready signal 1027 is

asserted.

FIG. 11 shows the hardware components and dataflow for the analyzer subsystem
that performs the functions of the analyzer subsystem 303 of FIG. 3. The analyzer is
initialized prior to operation, and initialization includes loading the state processing
information generated by the compilation process 310 into a database memory for the

state processing, called state processor instruction database (SPID) memory 1109.

The analyzer subsystem 1100 includes a host bus interface 1122 using an analyzer
host interface controller 1118, which in turn has access to a cache system 1115. The cache
system has bi-directional access to and from the state processor of the system 1108. State
processor 1108 is responsible for initializing the state processor instruction database

memory 1109 from information given over the host bus interface 1122.

With the SPID 1109 loaded, the analyzer subsystem 1100 receives parser records
comprising packet signatures and payloads that come from the parser into the unified flow
key buffer (UFKB) 1103. UFKB is comprised of memory set up to maintain UFKB
records. A UFKB record is essentially a parser record; the UFKB holds records of packets
that are to be processed or that are in process. Furthermore, the UFKB provides for one or
more fields to act as modifiable status flags to allow different processes to run

concurrently.

Three processing engines run concurrently and access records in the UFKB 1103:
the lookup/update engine (LUE) 1107, the state processor (SP) 1108, and the flow
insertion and deletion engine (FIDE) 1110. Each of these is implemented by one or more
finite state machines (FSM's). There is bi-directional access between each of the finite
state machines and the unified flow key buffer 1103. The UFKB record includes a field
that stores the packet sequence number, and another that is filled with state information in
the form of a program counter for the state processor 1108 that implements state
processing 328. The status flags of the UFKB for any entry includes that the LUE is done
and that the LUE is transferring processing of the entry to the state processor. The LUE

Petitioners' EX1039 Page 35

10

15

20

25

30

30

done indicator is also used to indicate what the next entry is for the LUE. There also is
provided a flag to indicate that the state processor is done with the current flow and to
indicate what the next entry is for the state processor. There also is provided a flag to
indicate the state processor is transferring processing of the UFKB-entry to the flow

insertion and deletion engine.

A new UFKB record is first processed by the LUE 1107. A record that has been
processed by the LUE 1107 may be processed by the state processor 1108, and a UFKB
record data may be processed by the flow insertion/deletion engine 1110 after being
processed by the state processor 1108 or only by the LUE. Whether or not a particular
engine has been applied to any unified flow key buffer entry is determined by status fields
set by the engines upon completion. In one embodiment, a status flag in the UFKB-entry
indicates whether an entfy is new or found. In other embodiments, the LUE issues a flag
to pass the entry to the state processor for processing, and the required operations for a

new record are included in the SP instructions.

Note that each UFKB-entry may not need to be processed by all three engines.
Furthermore, some UFKB entries may need to be processed more than once by a

particular engine.

Each of these three engines also has bi-directional access to a cache subsystem
1115 that includes a caching engine. Cache 1115 is designed to have information flowing
in and out of it from five different points within the system: the three engines, external
memory via a unified memory controller (UMC) 1119 and a memory interface 1123, and
a microprocessor via analyzer host interface and control unit (ACIC) 1118 and host
interface bus (HIB) 1122. The analyzer microprocessor (or dedicated logic processor) can

thus directly insert or modify data in the cache.

The cache subsystem 1115 is an associative cache that includes a set of content
addressable memory cells (CAMs) each including an address portion and a pointer
portion pointing to the cache memory (e.g., RAM) containing the cached flow-entries.
The CAMs are arranged as a stack ordered from a top CAM to a bottom CAM. The
bottom CAM’s pointer points to the least recently used (LRU) cache memory entry.
Whenever there is a cache miss, the contents of cache memory pointed to by the bottom
CAM are replaced by the flow-entry from the flow-entry database 324. This now becomes

the most recently used entry, so the contents of the bottom CAM are moved to the top

' Petitioners' EX1039 Page 36

LS

10

15

20

25

30

31

CAM and all CAM contents are shifted down. Thus, the cache is an associative cache

with a true LRU replacement policy.

The LUE 1107 first processes a UFKB-entry, and basically performs the operation
of blocks 314 and 316 in FIG. 3. A signal is provided to the LUE to indicate that a “new”
UFKB-entry is available. The LUE uses the hash in the UFKB-entry to read a matching
bin of up to four buckets from the cache. The cache system attempts to obtain the
matching bin. If a matching bin is not in the cache, the cache 1115 makes the request to

the UMC 1119 to b'fing in a matching bin from the external memory.

When a flow-entry is found using the hash, the LUE 1107 looks at each bucket
and compares it using the signature to the signature of the UFKB-entry until there is a

match or there are no more buckets.

If there is no match, or if the cache failed to provide a bin of flow-entries from the
cache, a time stamp in set in the flow key of the UFKB record, a protocol identification
and state determination is made using a table that was loaded by compilation process 310
during initialization, the status for the record is set to indicate the LUE has processed the
record, and an indication is made that the UFKB-entry is ready to start state processing.
The identification and state determination generates a protocol identifier which in the
preferred embodiment is a “jump vector” for the state processor which is kept by the
UFKB for this UFKB-entry and used by the state processor to start state processing for
the particular protocol. For example, the jump vector jumps to the subroutine for

processing the state.

If there was a match, indicating that the packet of the UFKB-entry is for a
previously encountered flow, then a calculator component enters one or more statistical
measures stored in the flow-entry, including the timestamp. In addition, a time difference
from the last stored timestamp may be stored, and a packet count may be updated. The
state of the flow is obtained from the flow-entry is examined by looking at the protocol
identifier stored in the flow-entry of database 324. If that value indicates that no more
classification is required, then the status for the record is set to indicate the LUE has
processed the record. In the preferred embodiment, the protocol identifier is a jump
vector for the state processor to a subroutine to state processing the protocol, and no more
classification is indicated in the preferred embodiment by the jump vector being zero. If

the protocol identifier indicates more processing, then an indication is made that the

" Petitioners' EX1039 Page 37

10

15

20

25

30

32

UFKB-entry is ready to start state processing and the status for the record is set to indicate

the LUE has processed the record.

The state processor 1108 processes information in the cache system according to a
UFKB-entry after the LUE has completed. State processor 1108 includes a state processor
program counter SPPC that generates the address in the state processor instruction
database 1109 loaded by compiler process 310 during initialization. It contains an
Instruction Pointer (SPIP) which generates the SPID address. The instruction pointer can
be incremented or loaded from a Jump Vector Multiplexor which facilitates conditional
branching. The SPIP can be loaded from one of three sources: (1) A protocol identifier
from the UFKB, (2) an immediate jump vector form the currently decoded instruction, or

(3) a value provided by the arithmetic logic unit (SPALU) included in the state processor.

Thus, after a Flow Key is placed in the UFKB by the LUE with a known protocol
identifier, the Program Counter is initialized with the last protocol recognized by the

Parser. This first instruction is a jump to the subroutine which analyzes the protocol that

was decoded.

The State Processor ALU (SPALU) contains all the Arithmetic, Logical and String
Compare functions necessary to implement the State Processor instructions. The main
blocks of the SPALU are: The A and B Registers, the Instruction Decode & State
Machines, the String Reference Memory the Search Engine, an Output Data Register and
an Output Control Register

The Search Engine in turn contains the Target Search Register set, the Reference
Search Register set, and a Compare block which compares two operands by exclusive-or-

ing them together.

Thus, after the UFKB sets the program counter, a sequence of one or more state
operations are be executed in state processor 1108 to further analyze the packet that is in

the flow key buffer entry for this particular packet.

FIG. 13 describes the operation of the state processor 1108. The state processor is
entered at 1301 with a unified flow key buffer entry to be processed. The UFKB-entry is
new or corresponding to a found flow-entry. This UFKB-entry is retrieved from unified
flow key buffer 1103 in 1301. In 1303, the protocol identifier for the UFKB-entry is used

to set the state processor’s instruction counter. The state processor 1108 starts the process

» " Petitioners' EX1039 Page 38

10

15

20

25

30

33

by using the last protocol recognized by the parser subsystem 301 as an offset into a jump
table. The jump table takes us to the instructions to use for that protocol. Most
instructions test something in the unified flow key buffer or the flow-entry if it exists. The

state processor 1108 may have to test bits, do comparisons, add or subtract to perform the

test.

The first state processor instruction is fetched in 1304 from the state processor
instruction database memory 1109. The state processor performs the one or more fetched
operations (1304). In our implementation, each single state processor instruction is very
primitive (e.g., a move, a compare, etc.), so that many such instructions need to be
performed on each unified flow key buffer entry. One aspect of the state processor is its
ability to search for one or more (up to four) reference strings in the payload part of the
UFKB entry. This is implemented by a search engine component of the state processor

responsive to special searching instructions.

In 1307, a check is made to determine if there are any more instructions to be
performed for the packet. If yes, then in 1308 the system sets the state processor
instruction pointer (SPIP) to obtain the next instruction. The SPIP may be set by an
immediate jump vector in the currently decoded instruction, or by a value provided by the

SPALU during processing.

The next instruction to be performed is now fetched (1304) for execution. This
state processing loop between 1304 and 1307 continues until there are no more

instructions to be performed.

At this stage, a check is made in 1309 if the processing on this particular packet
has resulted in a final state. That is, is the analyzer is done processing not only for this
particular packet, but for the whole flow to which the packet belongs, and the flow is fully
determined. If indeed there are no more states to process for this flow, then in 1311 the
processor finalizes the processing. Some final states may need to put a state in place that
tells the system to remove a flow—for example, if a connection disappears from a lower
level connection identifier. In that case, in 1311, a flow removal state is set and saved in
the flow-entry. The flow removal state may be a NOP (no-op) instruction which means

there are no removal instructions.

Once the appropriate flow removal instruction as specified for this flow (a NOP or

. Petitioners' EX1039 Page 39

ew P

TN

]

10

15

20

25

30

34

otherwise) is set and saved, the process is exited at 1313. The state processor 1108 can

now obtain another unified flow key buffer entry to process.

If at 1309 it is determined that processing for this flow is not completed, then in
1310 the system saves the state processor instruction pointer in the current flow-entry in
the current flow-entry. That will be the next operation that will be performed the next
time the LRE 1107 finds packet in the UFKB that matches this flow. The processor now
exits processing this particular unified flow key buffer entry at 1313.

Note that st:ate processing updates information in the unified flow key buffer 1103
and the flow-entry in the cache. Once the state processor is done, a flag is set in the
UFKB for the entry that the state processor is done. Furthermore, If the flow needs to be
inserted or deleted from the database of flows, control is then passed on to the flow
insertion/deletion engine 1110 for that flow signature and packet entry. This is done by
the state processor setting another flag in the UFKB for this UFKB-entry indicating that
the state processor is passing processing of this entry to the flow insertion and deletion

engine.

The flow insertion and deletion engine 1110 is responsible for maintaining the
flow-entry database. In particular, for creating new flows in the flow database, and

deleting flows from the database so that they can be reused.

The process of flow insertion is now described with the aid of FIG. 12. Flows are
grouped into bins of buckets by the hash value. The engine processes a UFKB-entry that
may be new or that the state processor otherwise has indicated needs to be created.

FIG. 12 shows the case of a new entry being created. A conversation record bin
(preferably containing 4 buckets for four records) is obtained in 1203. This is a bin that
matches the hash of the UFKB, so this bin may already have been sought for the UFKB-
entry by the LUE. In 1204 the FIDE 1110 requests that the record bin/bucket be
maintained in the cache system 1115. If in 1205 the cache system 1115 indicates that the
bin/bucket is empty, step 1207 inserts the flow signature (with the hash) into the bucket
and the bucket is marked “used” in the cache engine of cache 1115 using a timestamp that
is maintained throughout the process. In 1209, the FIDE 1110 compares the bin and
bucket record flow signature to the packet to verify that all the elements are in place to
complete the record. In 1211 the system marks the record bin and bucket as “in process”

and as “new” in the cache system (and hence in the external memory). In 1212, the initial

. Petitioners' EX1039 Page 40

10

15

20

25

30

35
statistical measures for the flow-record are set in the cache system. This in the preferred
embodiment clears the set of counters used to maintain statistics, and may perform other

procedures for statistical operations requires by the analyzer for the first packet seen for a

particular flow.

Back in step 1205, if the bucket is not empty, the FIDE 1110 requests the next
bucket for this particular bin in the cache system. If this succeeds, the processes of 1207,
1209, 1211 and 1212 are repeated for this next bucket. If at 1208, there is no valid bucket,
the unified flow key buffer entry for the packet is set as “drop,” indicating that the system
cannot process the particular packet because there are no buckets left in the system. The
process exits at 1213. The FIDE 1110 indicates to the UFKB that the flow insertion and
deletion operations are completed for this UFKB-entry. This also lets the UFKB provide
the FIDE with the next UFKB record.

Once a set of operations is performed on a unified flow key buffer entry by all of
the engines required to access and manage a particular packet and its flow signature, the
unified flow key buffer entry is marked as “completed.” That element will then be used
by the parser interface for the next packet and flow signature coming in from the parsing

and extracting system.

All flow-entries are maintained in the external memory and some are maintained
in the cache 1115. The cache system 1115 is intelligent enough to access the flow
database and to understand the data structures that exists on the other side of memory
interface 1123. The lookup/update engine 1107 is able to request that the cache system
pull a particular flow or “buckets” of flows from the unified memory controller 1119 into
the cache system for further processing. The state processor 1108 can operate on
information found in the cache system once it is looked up by means of the lookup/update
engine request, and the flow insertion/deletion engine 1110 can create new entries in the
cache system if required based on information in the unified flow key buffer 1103. The
cache retrieves information as required from the memory through the memory interface
1123 and the unified memory controller 1119, and updates information as required in the

memory through the memory controller 1119.

There are several interfaces to components of the system external to the module of
FIG. 11 for the particular hardware implementation. These include host bus interface

1122,which is designed as a generic interface that can operate with any kind of external

Petitioners' EX1039 Page 41

10

15

20

25

30

36

processing system such as a microprocessor or a multiplexor (MUX) system.
Consequently, one can connect the overall traffic classification system of FIGS. 11 and 12
into some other processing system to manage the classification system and to extract data

gathered by the system.

The memory interface 1123 is designed to interface to any of a variety of memory
systems that one may want to use to store the flow-entries. One can use different types of
memory systems like regular dynamic random access memory (DRAM), synchronous
DRAM, synchronous graphic memory (SGRAM), static random access memory (SRAM),
and so forth.

FIG. 10 also includes some “generic” interfaces. There is a packet input interface
1012—a general interface that works in tandem with the signals of the input buffer
interface control 1022. These are designed so that they can be used with any kind of
generic systems that can then feed packet information into the parser. Another generic
interface is the interface of pipes 1031 and 1033 respectively out of and into host interface
multiplexor and control registers 1005. This enables the parsing system to be managed by
an external system, for example a microprocessor or another kind of external logic, and

enables the external system to program and otherwise control the parser.

The preferred embodiment of this aspect of the invention is described in a
hardware description language (HDL) such as VHDL or Verilog. It is designed and
created in an HDL so that it may be used as a single chip system or, for instance,
integrated into another general-purpose system that is being designed for purposes related
to creating and analyzing traffic within a network. Verilog or other HDL implementation

is only one method of describing the hardware.

In accordance with one hardware implementation, the elements shown in FIGS. 10
and 11 are implemented in a set of six field programmable logic arrays (FPGA’s). The
boundaries of these FPGA’s are as follows. The parsing subsystem of FIG. 10 is
implemented as two FPGAS; one FPGA, and includes blocks 1006, 1008 and 1012, parts
of 1005, and memory 1001. The second FPGA includes 1002, 1007, 1013, 1011 parts of
1005. Referring to FIG. 11, the unified look-up buffer 1103 is implemented as a single
FPGA. State processor 1108 and part of state processor instruction database memory
1109 is another FPGA. Portions of the state processor instruction database memory 1109

are maintained in external SRAM’s. The lookup/update engine 1107 and the flow

"~ Petitioners' EX1039 Page 42

10

15

20

25

30

37

insertion/deletion engine 1110 are in another FPGA. The sixth FPGA includes the cache
system 1115, the unified memory control 1119, and the analyzer host interface and

control 1118.

Note that one can implement the system as one or more VSLI devices, rather than
as a set of application specific integrated circuits (ASIC’s) such as FPGA’s. It is
anticipated that in the future device densities will continue to increase, so that the

complete system may eventually form a sub-unit (a “core”) of a larger single chip unit.

Operation of the Invention

Fig. 15 shows how an embodiment of the network monitor 300 might be used to
analyze traffic in a network 102. Packet acquisition device 1502 acquires all the packets
from a connection point 121 on network 102 so that all packets passing point 121 in either
direction are supplied to monitor 300. Monitor 300 comprises the parser sub-system 301,
which determines flow signatures, and analyzer sub-system 303 that analyzes the flow
signature of each packet. A memory 324 is used to store the database of flows that are
determined and updated by monitor 300. A host computer 1504, which might be any
processor, for example, a general-purpose computer, is used to analyze the flows in
memory 324. As is conventional, host computer 1504 includes a memory, say RAM,
shown as host memory 1506. In addition, the host might contain a disk. In one
application, the system can operate as an RMON probe, in which case the host computer

is coupled to a network interface card 1510 that is connected to the network 102.

The preferred embodiment of the invention is supported by an optional Simple
Network Management Protocol (SNMP) implementation. Fig. 15 describes how one
would, for example, implement an RMON probe, where a network interface card is used
to send RMON information to the network. Commercial SNMP implementations also are
available, and using such an implementation can simplify the process of porting the

preferred embodiment of the invention to any platform.

In addition, MIB Compilers are available. An MIB Compiler is a tool that greatly

simplifies the creation and maintenance of proprietary MIB extensions.

Examples of Packet Elucidation

Monitor 300, and in particular, analyzer 303 is capable of carrying out state

-

. Petitioners' EX1039 Page 43

10

15

20

25

30

38

analysis for packet exchanges that are commonly referred to as “server announcement”
type exchanges. Server announcement is a process used to ease communications between
a server with multiple applications that can all be simultaneously accessed from multiple
clients. Many applications use a server announcement process as a means of multiplexing
a single port or socket into many applications and services. With this type of exchange,
messages are sent on the network, in either a broadcast or multicast approach, to
announce a server and application, and all stations in the network may receive and decode
these messages. The messages enable the stations to derive the appropriate connection
point for communicating that particular application with the particular server. Using the
server announcement method, a particular application communicates using a service
channel, in the form of a TCP or UDP socket or port as in the IP protocol suite, or using a

SAP as in the Novell IPX protocol suite.

The analyzer 303 is also capable of carrying out “in-stream analysis” of packet
exchanges. The “in-stream analysis” method is used either as a primary or secondary
recognition process. As a primary process, in-stream analysis assists in extracting detailed
information which will be used to further recognize both the specific application and
application component. A good example of in-stream analysis is any Web-based
application. For example, the commonly used PointCast Web information application can
be recognized using this process; during the initial connection between a PointCast server
and client, specific key tokens exist in the data exchange that will result in a signature

being generated to recognize PointCast.

The in-stream analysis process may also be combined with the server
announcement process. In many cases in-stream analysis will augment other recognition
processes. An example of combining in-stream analysis with server announcement can be

found in business applications such as SAP and BAAN.

“Session tracking” also is known as one of the primary processes for tracking
applications in client/server packet exchanges. The process of tracking sessions requires
an initial connection to a predefined socket or port number. This method of
communication is used in a variety of transport layer protocols. It is most commonly seen

in the TCP and UDP transport protocols of the IP protocol.

During the session tracking, a client makes a request to a server using a specific

port or socket number. This initial request will cause the server to create a TCP or UDP

Petitioners' EX1039 Page 44

10

15

20

25

30

39
port to exchange the remainder of the data between the client and the server. The server
then replies to the request of the client using this newly created port. The original port
used by the client to connect to the server will never be used again during this data

exchange.

One example of session tracking is TFTP (Trivial File Transfer Protocol), a
version of the TCP/IP FTP protocol that has no directory or password capability. During
the client/server exchange process of TFTP, a specific port (port number 69) is always
used to initiate the packet exchange. Thus, when the client begins the process of
communicating, a request is made to UDP port 69. Once the server receives this request, a
new port number is created on the server. The server then replies to the client using the
new port. In this example, it is clear that in order to recognize TFTP; network monitor
300 analyzes the initial request from the client and generates a signature for it. Monitor
300 uses that signature to recognize the reply. Monitor 300 also analyzes the reply from
the server with the key port information, and uses this to create a signature for monitoring

the remaining packets of this data exchange.

Network monitor 300 can also understand the current state of particular
connections in the network. Connection-oriented exchanges often benefit from state
tracking to correctly identify the application. An example is the common TCP transport
protocol that provides a reliable means of sending information between a client and a
server. When a data exchange is initiated, a TCP request for synchronization message is
sent. This message contains a specific sequence number that is used to track an
acknowledgement from the server. Once the server has acknowledged the synchronization
request, data may be exchanged between the client and the server. When communication
is no longer required, the client sends a finish or complete message to the server, and the
server acknowledges this finish request with a reply containing the sequence numbers
from the request. The states of such a connection-oriented exchange relate to the various

types of connection and maintenance messages.

Server Announcement Example

The individual methods of server announcement protocols vary. However, the
basic underlying process remains similar. A typical server announcement message is sent
to one or more clients in a network. This type of announcement message has specific

content, which, in another aspect of the invention, is salvaged and maintained in the

Petitioners' EX1039 Page 45

10

15

20

25

40
database of flow-entries in the system. Because the announcement is sent to one or more
stations, the client involved in a future packet exchange with the server will make an
assumption that the information announced is known, and an aspect of the inventive

monitor is that it too can make the same assumption.

Sun-RPC is the implementation by Sun Microsystems, Inc. (Palo Alto, California)
of the Remote Procedure Call (RPC), a programming interface that allows one program to
use the services of another on a remote machine. A Sun-RPC example is now used to

explain how monitor 300 can capture server announcements.

A remote program or client that wishes to use a server or procedure must establish

a connection, for which the RPC protocol can be used.

Each server running the Sun-RPC protocol must maintain a process and database
called the port Mapper. The port Mapper creates a direct association between a Sun-RPC
program or application and a TCP or UDP socket or port (for TCP or UDP
implementations). An application or program number is a 32-bit unique identifier
assigned by ICANN (the Internet Corporation for Assigned Names and Numbers,

www.icann.org), which manages the huge number of parameters associated with Internet

protocols (port numbers, router protocols, multicast addresses, etc.) Each port Mapper on
a Sun-RPC server can present the mappings between a unique program number and a
specific transport socket through the use of specific request or a directed announcement.

According to ICANN, port number 111 is associated with Sun RPC.

As an example, consider a client (e.g., CLIENT 3 shown as 106 in FIG. 1) making
a specific request to the server (e.g., SERVER 2 of FIG. 1, shown as 110) on a predefined
UDP or TCP socket. Once the port Mapper process on the sun RPC server receives the

request, the specific mapping is returned in a directed reply to the client.

1. A client (CLIENT 3, 106 in FIG. 1) sends a TCP packet to SERVER 2
(110 in FIG. 1) on port 111, with an RPC Bind Lookup Request
(rpcBindLookup). TCP or UDP port 111 is always associated Sun RPC. This
request specifies the program (as a program identifier), version, and might

specify the protocol (UDP or TCP).

Petitioners' EX1039 Page 46

10

15

20

25

30

41
2. The server SERVER 2 (110 in FIG. 1) extracts the program identifier and

version identifier from the request. The server also uses the fact that this

packet came in using the TCP transport and that no protocol was specified, and

thus will use the TCP protocol for its reply.

3. The server 110 sends a TCP packet to port number 111, with an RPC Bind
Lookup Reply. The reply contains the specific port number (e.g., port number
‘port’) on which future transactions will be accepted for the specific RPC

program identifier (e.g., Program ‘program’) and the protocol (UDP or TCP)

for use.

It is desired that from now on every time that port number ‘port’ is used, the
packet is associated with the application program ‘program’ until the number ‘port’ no
longer is to be associated with the program ‘program’. Network monitor 300 by creating a
flow-entry and a signature includes a mechanism for remembering the exchange so that
future packets that use the port number ‘port’ will be associated by the network monitor

with the application program ‘program’.

In addition to the Sun RPC Bind Lookup request and reply, there are other ways
that a particular program—say ‘program’—might be associated with a particular port
number, for example number ‘port’. One is by a broadcast announcement of a particular
association between an application service and a port number, called a Sun RPC
portMapper Announcement. Another, is when some server—say the same SERVER 2—
replies to some client—say CLIENT 1—requesting some portMapper assignment with a
RPC portMapper Reply. Some other client—say CLIENT 2—might inadvertently see this
request, and thus know that for this particular server, SERVER 2, port number ‘port’ is
associated with the application service ‘program’. It is desirable for the network monitor
300 to be able to associate any packets to SERVER 2 using port number ‘port’ with the

application program ‘program’.

FIG. 9 represents a dataflow 900 of some operations in the monitor 300 of FIG. 3
for Sun Remote Procedure Call. Suppose a client 106 (e.g., CLIENT 3 in FIG. 1) is
communicating via its interface to the network 118 to a server 110 (e.g., SERVER 2 in
FIG. 1) via the server’s interface to the network 116. Further assume that Remote
Procedure Call is used to communicate with the server 110. One path in the data flow 900

starts with a step 910 that a Remote Procedure Call bind lookup request is issued by client

c

‘Petitioners' EX1039 Page 47

10

15

20

25

30

42
106 and ends with the server state creation step 904. Such RPC bind lookup request
includes values for the ‘program,’ ‘version,” and ‘protocol’ to use, e.g., TCP or UDP. The

process for Sun RPC analysis in the network monitor 300 includes the following aspects. :

e Process 909: Extract the ‘program,’ ‘version,” and ‘protocol’ (UDP or TCP).
Extract the TCP or UDP port (process 909) which is 111 indicating Sun RPC.

e Process 908: Decode the Sun RPC packet. Check RPC type field for ID. If
value is portMapper, save paired socket (i.e., dest for destination address, src
for soufce address). Decode ports and mapping, save ports with socket/addr
key. There may be more than one pairing per mapper packet. Form a signature

(e.g., a key). A flow-entry is created in database 324. The saving of the request

is now complete.

At some later time, the server (process 907) issues a RPC bind lookup reply. The
packet monitor 300 will extract a signature from the packet and recognize it from the
previously stored flow. The monitor will get the protocol port number (906) and lookup
the request (905). A new signature (i.e., a key) will be created and the creation of the
server state (904) will be stored as an entry identified by the new signature in the flow-

entry database. That signature now may be used to identify packets associated with the

SCrver.

The server state creation step 904 can be reached not only from a Bind Lookup
Request/Reply pair, but also from a RPC Reply portMapper packet shown as 901 or an
RPC Announcement portMapper shown as 902. The Remote Procedure Call protocol can
announce that it is able to provide a particular application service. Embodiments of the
present invention preferably can analyze when an exchange occurs between a client and a
server, and also can track those stations that have received the announcement of a service

in the network.

The RPC Announcement portMapper announcement 902 is a broadcast. Such
causes various clients to execute a similar set of operations, for example, saving the
information obtained from the announcement. The RPC Reply portMapper step 901 could
be in reply to a portMapper request, and is also broadcast. It includes all the service

parameters.

Petitioners' EX1039 Page 48

10

15

20

25

30

43

Thus monitor 300 creates and saves all such states for later classification of flows

that relate to the particular service ‘program’.

FIG. 2 shows how the monitor 300 in the example of Sun RPC builds a signature
and flow states. A plurality of packets 206-209 are exchanged, e.g., in an exemplary Sun
Microsystems Remote Procedure Call protocol. A method embodiment of the present
invention might generate a pair of flow signatures, “signature-1” 210 and “signature-2”
212, from information found in the packets 206 and 207 which, in the example,

correspond to a Sun RPC Bind Lookup request and reply, respectively.

Consider first the Sun RPC Bind Lookup request. Suppose packet 206 corresponds
to such a request sent from CLIENT 3 to SERVER 2. This packet contains important
information that is used in building a signature according to an aspect of the invention. A
source and destination network address occupy the first two fields of each packet, and
according to the patterns in pattern database 308, the flow signature (shown as KEY1 230
in FIG. 2) will also contain these two fields, so the parser subsystem 301 will include
these two fields in signature KEY 1 (230). Note that in FIG. 2, if an address identifies the
client 106 (shown also as 202), the label used in the drawing is “C,”. If such address
identifies the server 110 (shown also as server 204), the label used in the drawing is “S;”.

The first two fields 214 and 215 in packet 206 are “S;” and C,” because packet 206 is

provided from the server 110 and is destined for the client 106. Suppose for this example,
“S;” is an address numerically less than address “C;”. A third field “p!” 216 identifies the

particular protocol being used, e.g., TCP, UDP, etc.

In packet 206, a fourth field 217 and a fifth field 218 are used to communicate
port numbers that are used. The conversation direction determines where the port number
field is. The diagonal pattern in field 217 is used to identify a source-port pattern, and the
hash pattern in field 218 is used to identify the destination-port pattern. The order
indicates the client-server message direction. A sixth field denoted “i!” 219 is an element ‘
that is being requested by the client from the server. A seventh field denoted *s;a” 220 is
the service requested by the client from server 110. The following eighth field “QA” 221
(for question mark) indicates that the client 106 wants to know what to use to access

application “sja”. A tenth field “QP” 223 is used to indicate that the client wants the

server to indicate what protocol to use for the particular application.

-" Petitioners' EX1039 Page 49

10

15

20

25

30

44
Packet 206 initiates the sequence of packet exchanges, e.g., a
RPC Bind Lookup Request to SERVER 2. It follows a well-defined format, as do all the

packets, and is transmitted to the server 110 on a well-known service connection identifier

(port 111 indicating Sun RPC).

Packet 207 is the first sent in reply to the client 106 from the server. It is the
RPC Bind Lookup Reply as a result of the request packet 206.

Packet 207 includes ten fields 224-233. The destination and source addresses are

carried in fields 224 and 225, e. g., indicated “C;” and “S”, respectively. Notice the order

is now reversed, since the cliént-server message direction is from the server 110 to the
client 106. The protocol “pl” is used as indicated in field 226. The request “i1” is in field
229. Values have been filled in for the application port number, e.g., in field 233 and
protocol ““p2”” in field 233.

The flow signature and flow states built up as a result of this exchange are now
described. When the packet monitor 300 sees the request packet 206 from the client, a
first flow signature 210 is built in the parser subsystem 301 according to the pattern and
extraction operations database 308. This signature 210 includes a destination and a source
address 240 and 241. One aspect of the invention is that the flow keys are built
consistently in a particular order no matter what the direction of conversation. Several
mechanisms may be used to achieve this. In the particular embodiment, the numerically
lower address is always placed before the numerically higher address. Such least to
highest order is used to get the best spread of signatures and hashes for the lookup

operations. In this case, therefore, since we assume “S;”<“C,”, the order is address “S;”
followed by client address “C;”. The next field used to build the signature is a protocol

field 242 extracted from packet 206’s field 216, and thus is the protocol “p!”. The next
field used for the signature is field 243, which contains the destination source port number
shown as a crosshatched pattern from the field 218 of the packet 206. This pattern will be
recognized in the payload of packets to derive how this packet or sequence of packets
exists as a flow. In practice, these may be TCP port numbers, or a combination of TCP
port numbers. In the case of the Sun RPC example, the crosshatch represents a set of port
numbers of UDS for p! that will be used to recognize this flow (e.g., port 111). Port 111
indicates this is Sun RPC. Some applications, such as the Sun RPC Bind Lookups, are

‘. "_Petitioners' EX1039 Page 50

10

15

20

25

30

45
directly determinable (“known”) at the parser level. So in this case, the signature KEY-1
points to a known application denoted “al” (Sun RPC Bind Lookup), and a next-state that

the state processor should proceed to for more complex recognition jobs, denoted as state

“stp” is placed in the field 245 of the flow-entry.

When the Sun RPC Bind Lookup reply is acquired, a flow signature is again built
by the parser. This flow signature is identical to KEY-1. Hence, when the signature enters
the analyzer subsystem 303 from the parser subsystem 301, the complete flow-entry is

obtained, and in this flow-entry indicates state “stp”. The operations for state “stpy” in the

state processor instruction database 326 instructs the state processor to build and store a
new flow signature, shown as KEY-2 (212) in FIG. 2. This flow signature built by the
state processor also includes the destination and a source addresses 250 and 251,

respectively, for server “S,” followed by (the numerically higher address) client “C;”. A

protocol field 252 defines the protocol to be used, e.g., “p2” which is obtained from the
reply packet. A field 253 contains a recognition pattern also obtained from the reply
packet. In this case, the application is Sun RPC, and field 254 indicates this application
“a2”. A next-state field 255 defines the next state that the state processor should proceed
to for more complex recognition jobs, e.g., a state “stl”. In this particular example, this is
a final state. Thus, KEY-2 may now be used to recognize packets that are in any way
associated with the application “a2”. Two such packets 208 and 209 are shown, one in
each direction. They use the particular application service requested in the original Bind
Lookup Request, and each will be recognized because the signature KEY-2 will be built

in each case.

The two flow signatures 210 and 212 always order the destination and source
address fields with server “S;” followed by client “C;”. Such values are automatically
filled in when the addresses are first created in a particular flow signature. Preferably,
large collections of flow signatures are kept in a lookup table in a least-to-highest order

for the best spread of flow signatures and hashes.

Thereafter, the client and server exchange a number of packets, e.g., represented
by request packet 208 and response packet 209. The client 106 sends packets 208 that

have a destination and source address S; and Cj, in a pair of fields 260 and 261. A field

262 defines the protocol as “p2”, and a field 263 defines the destination port number.

Petitioners' EX1039 Page 51

s o)

10

15

20

25

30

46

Some network-server application recognition jobs are so simple that only a single
state transition has to occur to be able to pinpoint the application that produced the packet.
Others require a sequence of state transitions to occur in order to match a known and

predefined climb from state-to-state.

Thus the flow signature for the recognition of application “a2” is automatically set
up by predefining what packet-exchange sequences occur for this example when a
relatively simple Sun Microsystems Remote Procedure Call bind lookup request
instruction executes. More complicated exchanges than this may generate more than two
flow signatures and their corresponding states. Each recognition may involve setting up a

complex state transition diagram to be traversed before a “final” resting state such as “st;”

in field 255 is reached. All these are used to build the final set of flow signatures for

recognizing a particular application in the future.

Embodiments of the present invention automatically generate flow signatures with
the necessary recognition patterns and state transition climb procedure. Such comes from
analyzing packets according to parsing rules, and also generating state transitions to
search for. Applications and protocols, at any level, are recognized through state analysis

of sequences of packets.

Note that one in the art will understand that computer networks are used to
connect many different types of devices, including network appliances such as telephones,
“Internet” radios, pagers, and so forth. The term computer as used herein encompasses all
such devices and a computer network as used herein includes networks of such

computers.

Although the present invention has been described in terms of the presently
preferred embodiments, it is to be understood that the disclosure is not to be interpreted as
limiting. Various alterations and modifications will no doubt become apparent to those or
ordinary skill in the art after having read the above disclosure. Accordingly, it is intended
that the claims be interpreted as covering all alterations and modifications as fall within

the true spirit and scope of the present invention.

The Pattern Parse and Extraction Database Format

The different protocols that can exist in different layers may be thought of as

nodes of one or more trees of linked nodes. The packet type is the root of a tree (called

Petitioners' EX1039 Page 52

10

15

20

25

30

47
base level). Each protocol is either a parent node of some other protocol at the next later
or a terminal node. A parent node links a protocol to other protocols (child protocols) that

can be at higher layer levels. Thus a protocol may have zero or more children.

As an example of the tree structure, consider an Ethernet packet. One of the
children nodes may be the IP protocol, and one of the children of the IP protocol may be

the TCP protocol. Another child of the IP may be the UDP protocol.

A packet includes at least one header for each protocol used. The child protocol of
a particular protocél used in a packet is indicated by the contents at a location within the
header of the particular protocol. The contents of the packet that specify the child are in

the form of a child recognition pattern.

A network analyzer preferably can analyze many different protocols. At a base
level, there are a number of packet types used in digital telecommunications, including
Ethernet, HDLC, ISDN, Lap B, ATM, X.25, Frame Relay, Digital Data Service, FDDI
(Fiber Distributed Data Interface), and T1, among others. Many of these packet types use
different packet and/or frame formats. For example, data is transmitted in ATM and
frame-relay systems in the form of fixed length packets (called “cells”) that are 53 octets
(i.e., bytes) long; several such cells may be needed to make up the information that might

be included in a single packet of some other type.

Note that the term packet herein is intended to encompass packets, datagrams,
frames and cells. In general, a packet format or frame format refers to how data is
encapsulated with various fields and headers for transmission across a network. For
example, a data packet typically includes an address destination field, a length field, an
error correcting code (ECC) field or cyclic redundancy check (CRC) field, as well as
headers and footers to identify the beginning and end of the packet. The terms “packet

format,” “frame format” and “cell format” are generally synonymous.

The packet monitor 300 can analyze different protocols, and thus can perform
different protocol specific operations on a packet wherein the protocol headers of any
protocol are located at different locations depending on the parent protocol or protocols
used in the packet. Thus, the packet monitor adapts to different protocols according to the
contents of the packet. The locations and the information extracted from any packet are

adaptively determined for the particular type of packet. For example, there is no fixed

. Petitioners' EX1039 Page 53

10

15

20

25

30

48
definition of what to look for or where to look in order to form the flow signature. In
some prior art systems, such as that described in United States Patent 5,101,402 to Chiu,
et al., there are fixed locations specified for particular types of packets. With the
proliferation of protocols, the specifying of all the possible places to look to determine the
session becomes more and more difficult. Likewise, adding a new protocol or application
is difficult. In the present invention, the number of levels is variable for any protocol and
is whatever number is sufficient to uniquely identify as high up the level system as we

wish to go, all the way to the application level (in the OSI model).

Even the same protocol may have different variants. Ethernet packets for example,
have several known variants, each having a basic format that remains substantially the
same. An Ethernet packet (the root node) may be an Ethertype packet—also called an
Ethernet Type/Version 2 and a DIX (DIGITAL-Intel-Xerox packet)—or an IEEE
Ethernet (IEEE 803.x) packet. A monitor should be able to handle all types of Ethernet
protocols. With the Ethertype protocol, the contents that indicate the child protocol is in
one location, while with an IEEE type, the child protocol is specified in a different

location. The child protocol is indicated by a child recognition pattern.

FIG. 16 shows the header 1600 (base level 1) of a complete Ethernet frame (i.e.,
packet) of information and includes information on the destination media access control
address (Dst MAC 1602) and the source media access control address (Src MAC 1604).
Also shown in FIG. 16 is some (but not all) of the information specified in the PDL files
for extraction the signature. Such information is also to be specified in the parsing
structures and extraction operations database 308. This includes all of the header
information at this level in the form of 6 bytes of Dst MAC information 1606 and 6 bytes
of Src MAC information 1610. Also specified are the source and destination address
components, respectively, of the hash. These are shown as 2 byte Dst Hash 1608 from the
Dst MAC address and the 2 byte Src Hash 1612 from the Src MAC address. Finally,
information is included (1614) on where to the header starts for information related to the
next layer level. In this case the next layer level (level 2) information starts at packet

offset 12.

FIG. 17A now shows the header information for the next level (level-2) for an

Ethertype packet 1700.

For an Ethertype packet 1700, the relevant information from the packet that

Petitioners' EX1039 Page 54

10

15

20

25

30

49
indicates the next layer level is a two-byte type field 1702 containing the child recognition
pattern for the next level. The remaining information 1704 is shown hatched because it
not relevant for this level. The list 1712 shows the possible children for an Ethertype

packet as indicated by what child recognition pattern is found offset 12.

Also shown is some of the extracted part used for the parser record and to locate
the next header information. The signature part of the parser record includes extracted

part 1702. Also included is the 1-byte Hash component 1710 from this information.

An offset field 1710 provides the offset to go to the next level information, i.e., to
locate the start of the next layer level header. For the Ethertype packet, the start of the
next layer header 14 bytes from the start of the frame.

Other packet types are arranged differently. For example, in an ATM system, each
ATM packet comprises a five-octet “header” segment followed by a forty-eight octet
“payload” segment. The header segment of an ATM cell contains information relating to
the routing of the data contained in the payload segment. The header segment also
contains traffic control information. Eight or twelve bits of the header segment contain the
Virtual Path Identifier (VPI), and sixteen bits of the header segment contain the Virtual
Channel Identifier (VCI). Each ATM exchange translates the abstract routing information
represented by the VPI and VCI bits into the addresses of physical or logical network
links and routes each ATM cell appropriately.

FIG. 17B shows the structure of the header of one of the possible next levels, that
of the IP protocol. The possible children of the IP protocol are shown in table 1752. The
header starts at a different location (L3) depending on the parent protocol. Also included
in FIG. 17B are some of the fields to be extracted for the signature, and an indication of

where the next level’s header would start in the packet.

Note that the information shown in FIGS. 16, 17A, and 17B would be specified to
the monitor in the form of PDL files and compiled into the database 308 of pattern

structures and extraction operations.

The parsing subsystem 301 performs operations on the packet header data based
on information stored in the database 308. Because data related to protocols can be

considered as organized in the form of a tree, it is required in the parsing subsystem to

Petitioners' EX1039 Page 55

-. In
g b

R

i

10

15

20

25

50
search through data that is originally organized in the form of a tree. Since real time

operation is preferable, it is required to carry out such searches rapidly.

Data structures are known for efficiently storing information organized as trees.
Such storage-efficient means typically require arithmetic computations to determine
pointers to the data nodes. Searching using such storage-efficient data structures may
therefore be too time consuming for the present application. It is therefore desirable to

store the protocol data in some form that enables rapid searches.

In accordance with another aspect of the invention, the database 308 is stored in a
memory and includes a data structure used to store the protocol specific operations that
are to be performed on a packet. In particular, a compressed representation is used to store
information in the pattern parse and extraction database 308 used by the pattern
recognition process 304 and the extraction process 306 in the parser subsystem 301. The
data structure is organized for rapidly locating the child protocol related information by
using a set of one or more indices to index the contents of the data structure. A data
structure entry includes an indication of validity. Locating and identifying the child
protocol includes indexing the data structure until a valid entry is found. Using the data
structure to store the protocol information used by the pattern recognition engine (PRE)

1006 enables the parser subsystem 301 to perform rapid searches.

In one embodiment, the data structure is in the form of a three-dimensional
structure. Note that this three dimensional structure in turn is typically stored in memory
as a set of two-dimensional structures whereby one of the three dimensions of the 3-D
structure is used as an index to a particular 2-D array. This forms a first index to the data

structure.

FIG. 18A shows such a 3-D representation 1800 (which may be considered as an

indexed set of 2-D representations). The three dimensions of this data structure are:

o

€\ Petitioners' EX1039 Page 56

10

15

20

25

30

51
1. Type identifier [1:M]. This is the identifier that identifies a type of

protocol at a particular level. For example, 01 indicates an Ethernet frame. 64
indicates IP, 16 indicates an IEEE type Ethernet packet, etc. Depending on
how many protocols the packet parser can handle, M may be a large number;
M may grow over time as the capability of analyzing more protocols is added
to monitor 300. When the 3-D structure is considered a set of 2-D structures,

the type ID is an index to a particular 2-D structure.

2. Size [1:64]. The size of the field of interest within the packet.

3. Location [1:512]. This is the offset location within the packet, expressed as

a number of octets (bytes).

At any one of these locations there may or may not be valid data. Typically, there
will not be valid data in most locations. The size of the 3-D array is M by 64 by 512,
which can be large; M for example may be 10,000. This is a sparse 3-D matrix with most

entries empty (i.e., invalid).

Each array entry includes a “node code” that indicates the nature of the contents.
This node code has one of four values: (1) a “protocol” node code indicating to the pattern
recognition process 304 that a known protocol has been recognized as the next (i.e., child)
protocol; (2) a “terminal” node code indicating that there are no children for the protocol
presently being searched, i.e., the node is a final node in the protocol tree; (3) a “null”

(also called “flush”) node code indicating that there is no valid entry.

In the preferred embodiment, the possible children and other information are
loaded into the data structure by an initialization that includes compilation process 310
based on the PDL files 336 and the layering selections 338. The following information is

included for any entry in the data structure that represents a protocol.

(a) A list of children (as type IDs) to search next. For example, for an Ethernet
type 2, the children are Ethertype (IP, IPX, efc, as shown in 1712 of FIG.
17). These children are compiled into the type codes. The code for IP is 64,
that for IPX is 83, etc.

(b) For each of the IDs in the list, a list of the child recognition patterns that
need to be compared. For example, 64:0800;¢ in the list indicates that the

~ Petitioners' EX1039 Page 57

10

15

20

25

30

52

value to look for is 0800 (hex) for the child to be type ID 64 (which is the IP
protocol). 83:8137 ¢ in the list indicates that the value to look for is 8137

(hex) for the child to be type ID 83 (which is the IPX protocol), etc.

(c) The extraction operations to perform to build the identifying signature for
the flow. The format used is (offset, length, flow_signature_value_identifier),
the flow_signature_value_identifier indicating where the extracted entry goes
in the signature, including what operations (AND, ORs, efc.) may need to be
carried out. If there is also a hash key component, for instance, then
information on that is included. For example, for an Ethertype packet, the 2-
byte type (1706 in FIG 17) is used in the signature. Furthermore, a 1-byte
hash (1708 in FIG. 17A) of the type is included. . Note furthermore, the child
protocol starts at offset 14.

An additional item may be the “fold.” Folding is used to reduce the storage
requirements for the 3-D structure. Since each 2-D array for each protocol ID may be
sparsely populated, multiple arrays may be combined into a single 2-D array as long as
the individual entries do not conflict with each other. A fold number is then used to
associate each element. For a given lookup, the fold number of the lookup must match the

fold number entry. Folding is described in more detail below.

In the case of the Ethernet, the next protocol field may indicate a length, which
tells the parser that this is a IEEE type packet, and that the next protocol is elsewhere.
Normally, the next protocol field contains a value which identifies the next, i.e., child

protocol.

The entry point for the parser subsystem is called the virtual base layer and
contains the possible first children, i.e., the packet types. An example set of protocols
written in a high level protocol description language (PDL) is included herein. The set
includes PDL files, and the file describing all the possible entry points (i.e., the virtual
base) is called virtual.pdl. There is only one child, 01, indicating the Ethernet, in this file.
Thus, the particular example can only handle Ethernet packets. In practice, there can be

multiple entry points.

In one embodiment, the packet acquisition device provides a header for every
packet acquired and input into monitor 300 indicating the type of packet. This header is

'

_ Petitioners' EX1039 Page 58

10

15

20

25

30

53

used to determine the virtual base layer entry point to the parser subsystem. Thus, even at

the base layer, the parser subsystem can identify the type of packet.

Initially, the search starts at the child of the virtual base, as obtained in the header
supplied by the acquisition device. In the case of the example, this has ID value 01, which

is the 2-D array in the overall 3-D structure for Ethernet packets.

Thus hardware implementing pattern analysis process 304 (e.g., pattern
recognition engine (PRE) 1006 of FIG. 10) searches to determine the children (if any) for
the 2-D array that t;as protocol ID 01. In the preferred embodiment that uses the 3-D data
structure, the hardware PRE 1006 searches up to four lengths (i.e., sizes) simultaneously.

Thus, the process 304 searches in groups of four lengths. Starting at protocol ID 01, the

first two sets of 3-D locations searched are

(1,1,1) (1,1,2)
(1,2,1) (1,2,2)
(1,3,1) (1,3,2)
(1,4,1) (1,4,2)

* At each stage of a search, the analysis process 304 examines the packet and the 3-
D data structure to see if there is a match (by looking at the node code). If no valid data is
found, e.g., using the node code, the size is incremented (to maximum of 4) and the offset

is then incremented as well.

Continuing with the example, suppose the pattern analysis process 304 finds
something at 1, 2, 12. By this, we mean that the process 304 has found that for protocol
ID value 01 (Ethernet) at packet offset 12, there is information in the packet having a
length of 2 bytes (octets) that may relate to the next (child) protocol. The information, for
example, may be about a child for this protocol expressed as a child recognition pattern.
The list of possible child recognition patterns that may be in that part of the packet is

obtained from the data structure.

The Ethernet packet structure comes in two flavors, the Ethertype packet and
newer IEEE types, and the packet location that indicates the child is different for both.
The location that for the Ethertype packet indicates the child is a “length” for the IEEE
type, so a determination is made for the Ethernet packet whether the “next protocol”

location contains a value or a length (this is called a “LENGTH?” operation). A successful

‘% Petitioners' EX1039 Page 59

10

15

20

25

30

54
LENGTH operation is indicated by contents less than or equal to 05DC g, then this is an

IEEE type Ethernet frame. In such a case, the child recognition pattern is looked for

elsewhere. Otherwise, the location contains a value that indicates the child.

Note that while this capability of the entry being a value (e.g., for a child protocol
ID) or a length (indicating further analysis to determine the child protocol) is only used
for Ethernet packets, in the future, other packets may end up being modified.
Accordingly, this capability in the form of a macro in the PDL files still enables such

future packets to bé decoded.

Continuing with the example, suppose that the LENGTH operation fails. In that
case, we have an Ethertype packet, and the next protocol field (containing the child
recognition pattern) is 2 bytes long starting at offset 12 as shown as packet field 1702 in
FIG. 17A. This will be one of the children of the Ethertype shown in table 1712 in
FIG. 17A. The PRE uses the information in the data structure to check what the ID code
is for the found 2-byte child recognition pattern. For example, if the child recognition
pattern is 0800 (Hex), then the protocol is IP. If the child recognition pattern is 0BAD
(Hex) the protocol is VIP (VINES).

Note that an alternate embodiment may keep a separate table that includes all the |

child recognition patterns and their corresponding protocol ID’s

To follow the example, suppose the child recognition pattern at 1,2,12 is 0800,
indicating IP. The ID code for the IP protocol is 64;¢). To continue with the Ethertype

example, once the parser matches one of the possible children for the protocl--in the
example, the protocol type is IP with an ID of 64--then the parser continues the search for
the next level. The ID is 64, the length is unknown, and offset is known to be equal or
larger than 14 bytes (12 offset for type, plus 2, the length of type), so the search of the 3-
D structure commences from location (64, 1) at packet offset 14. A populated node is
found at (64, 2) at packet offset 14. Heading details are shown as 1750 in FIG. 17B. The

possible children are shown in table 1752.

Alternatively, suppose that at (1, 2, 12) there was a length 1211,4. This indicates

that this is an IEEE type Ethernet frame, which stores its type elsewhere. The PRE now
continues its search at the same level, but for a new ID, that of an IEEE type Ethernet

frame. An IEEE Ethernet packet has protocol ID 16, so the PRE continues its search of

" Petitioners' EX1039 Page 60

s P I T O T
Py By P

10

15

20

25

30

55

the three-dimensional space with ID 16 starting at packet offset 14.

In our example, suppose there is a “protocol” node code found at (16, 2) at packet
offset 14, and the next protocol is specified by child recognition pattern 0800, ¢. This

indicates that the child is the IP protocol, which has type ID 64. Thus the search
continues, starting at (64, 1) at packet offset 16.

Compression.

As noted above, the 3-D data structure is very large, and sparsely populated. For
example, if 32 bytés are stored at each location, then the length is M by 64 by 512 by 32
bytes, which is M megabytes. If M = 10,000, then this is about 10 gigabytes. It is not
practical to include 10 Gbyte of memory in the parser subsystem for storing the database
308. Thus a compressed form of storing the data is used in the preferred embodiment. The
compression is preferably carried out by an optimizer component of the compilation

process 310.

Recall that the data structure is sparse. Different embodiments may use different
compression schemes that take advantage of the sparseness of the data structure. One

embodiment uses a modification of multi-dimensional run length encoding.

Another embodiment uses a smaller number two-dimensional structures to store
the information that otherwise would be in one large three-dimensional structure. The

second scheme is used in the preferred embodiment.

FIG. 18A illustrated how the 3-D array 1800 can be considered a set of 2-D
arrays, one 2-D array for each protocol (i.e., each value of the protocol ID). The 2-D
structures are shown as 1802-1, 1802-2, ..., 1802-M for up to M protocol ID’s. One table
entry is shown as 1804. Note that the gaps in table are used to illustrate that each 2-D
structure table is typically large.

Consider the set of trees that represent the possible protocols. Each node
represents a protocol, and a protocol may have a child or be a terminal protocol. The base
(root) of the tree has all packet types as children. The other nodes form the nodes in the
tree at various levels from level 1 to the final terminal nodes of the tree. Thus, one
element in the base node may reference node ID 1, another element in the base node may

reference node ID 2 and so on. As the tree is traversed from the root, there may be points

- Petitioners' EX1039 Page 61

Sy

10

15

20

25

30

56
in the tree where the same node is referenced next. This would occur, for example, when
an application protocol like Telnet can run on several transport connections like TCP or
UDP. Rather than repeating the Telnet node, only one node is represented in the patterns

database 308 which can have several parents. This eliminates considerable space

explosion.

Each 2-D structure in FIG. 18A represents a protocol. To enable saving space by
using only one array per protocol which may have several parents, in one embodiment,
the pattern analysis subprocess keeps a “current header”” pointer. Each location (offset)
index for each protocol 2-D array in the 3-D structure is a relative location starting with

the start of header for the particular protocol.

Each of the two-dimensional arrays is sparse. The next step of the optimization, is
checking all the 2-D arrays against all the other 2-D arrays to find out which ones can
share memory. Many of these 2-D arrays are often sparsely populated in that they each
have only a small number of valid entries. So, a process of "folding" is next used to
combine two or more 2-D arrays together into one physical 2-D array without losing the
identity of any of the original 2-D arrays (i.e., all the 2-D arrays continue to exist
logically). Folding can occur between any 2-D arrays irrespective of their location in the

tree as long as certain conditions are met.

Assume two 2-D arrays are being considered for folding. Call the first 2-D arrays
A and the second 2-D array B. Since both 2-D arrays are partially populated, 2-D array B
can be combined with 2-D arrays A if and only if none of the individual elements of these
two 2-D arrays that have the same 2-D location conflict. If the result is foldable, then the
valid entries of 2-D array B are combined with the valid entries of 2-D array A yielding
one physical 2-D array. However, it is necessary to be able to distinguish the original 2-D
array A entries from those of 2-D array B. For example, if a parent protocol of the
protocol represented by 2-D array B wants to reference the protocol ID of 2-D array B, it
must now reference 2-D array A instead. However, only the entries that were in the
original 2-D array B are valid entries for that lookup. To accomplish this, each element in
any given 2-D array is tagged with a fold number. When the original tree is created, all
elements in all the 2-D arrays are initialized with a fold value of zero. Subsequently, if 2-
D array B is folded into 2-D array A, all valid elements of 2-D array B are copied to the
corresponding locations in 2-D array A and are given different fold numbers than any of

v .
e v

| Petitioners' EX1039 Page 62

R R

10

15

20

25

30

57
the elements in 2-D array A. For example, if both 2-D array A and 2-D array B were
original 2-D arrays in the tree (i.e., not previously folded) then, after folding, all the 2-D
array A entries would still have fold 0 and the 2-D array B entries would now all have a
fold value of 1. After 2-D array B is folded into 2-D array A, the parents of 2-D array B
need to be notified of the change in the 2-D array physical location of their children and

the associated change in the expected fold value.

This folding process can also occur between two 2-D arrays that have already been
folded, as long as none of the individual elements of the two 2-D arrays conflict for the
same 2-D array location. As before, each of the valid elements in 2-D array B must have
fold numbers assigned to them that are unique from those of 2-D array A. This is
accomplished by adding a fixed value to all the 2-D array B fold numbers as they are
merged into 2-D array A. This fixed value is one larger than the largest fold value in the
original 2-D array A. It is important to note that the fold number for any given 2-D array

is relative to that 2-D array only and does not span across the entire tree of 2-D arrays.

This process of folding can now be attempted between all combinations of two 2-
D arrays until there are no more candidates that qualify for folding. By doing this, the

total number of 2-D arrays can be significantly reduced.

Whenever a fold occurs, the 3-D structure (i.e., all 2-D arrays) must be searched
for the parents of the 2-D array being folded into another array. The matching pattern
which previously was mapped to a protocol ID identifying a single 2-D array must now

be replaced with the 2-D array ID and the next fold number (i.e., expected fold).

Thus, in the compressed data structure, each entry valid entry includes the fold

number for that entry, and additionally, the expected fold for the child.

An alternate embodiment of the data structure used in database 308 is illustrated in
FIG. 18B. Thus, like the 3-D structure described above, it permits rapid searches to be
performed by the pattern recognition process 304 by indexing locations in a memory
rather than performing address link computations. The structure, like that of FIG. 18A, is
suitable for implementation in hardware, for example, for implementation to work with

the pattern recognition engine (PRE) 1006 of FIG. 10.

A table 1850, called the protocol table (PT) has an entry for each protocol known

by the monitor 300, and includes some of the characteristics of each protocol, including a

Petitioners' EX1039 Page 63

10

15

20

25

30

58

description of where the field that specifies next protocol (the child recognition pattern)
can be found in the header, the length of the next protocol field, flags to indicate the
header length and type, and one or more slicer commands, the slicer can build the key

components and hash components for the packet at this protocol at this layer level.

For any protocol, there also are one or more lookup tables (LUTSs). Thus database
308 for this embodiment also includes a set of LUTs 1870. Each LUT has 256 entries
indexed by one byte of the child recognition pattern that is extracted from the next
protocol field in the packet. Such a protocol specification may be several bytes long, and

so several of LUTs 1870 may need to be looked up for any protocol.

Each LUT’s entry includes a 2-bit “node code” that indicates the nature of the
contents, including its validity. This node code has one of four values: (1) a “protocol”
node code indicating to the pattern recognition engine 1006 that a known protocol has
been recognized; (2) an “intermediate” node code, indicating that a multi-byte protocol
code has been partially recognized, thus permitting chaining a series of LUTSs together
before; (3) a “terminal” node code indicating that there are no children for the protocol
presently being searched, i.e., the node is a final node in the protocol tree; (4) a “null”

(also called “flush” and “invalid”’) node code indicating that there is no valid entry.

In addition to the node code, each LUT entry may include the next LUT number,
the next protocol number (for looking up the protocol table 1850), the fold of the LUT
entry, and the next fold to expect. Like in the embodiment implementing a compressed
form of the 3-D representation, folding is used to reduce the storage requirements for the
set of LUTs. Since the LUTs 1870 may be sparsely populated, multiple LUTs may be
combined into a single LUT as long as the individual entries do not conflict with each

other. A fold number is then used to associate each element with its original LUT.

For a given lookup, the fold number of the lookup must match the fold number in
the lookup table. The expected fold is obtained from the previous table lookup (the “next
fold to expect” field). The present implementation uses 5-bits to describe the fold and thus

allows up to 32 tables to be folded into one table.

When using the data structure of FIG. 18B, when a packet arrives at the parser, the
virtual base has been pre-pended or is known. The virtual base entry tells the packet

recognition engine where to find the first child recognition pattern in the packet. The

- Petitioners' EX1039 Page 64

10

15

20

25

30

59
pattern recognition engine then extracts the child recognition pattern bytes from the
packet and uses them as an address into the virtual base table (the first LUT). If the entry
looked up in the specified next LUT by this method matches the expected next fold value
specified in the virtual base entry, the lookup is deemed valid. The node code is then
examined. If it is an intermediate node then the next table field obtained from the LUT
lookup is used as the most significant bits of the address. The next expected fold is also
extracted from the entry. The pattern recognition engine 1006 then uses the next byte

from the child recognition pattern as the for the next LUT lookup.

Thus, the operation of the PRE continues until a terminal code is found. The next
(initially base layer) protocol is looked up in the protocol table 1850 to provide the PRE
1006 with information on what field in the packet (in input buffer memory 1008 of parser
subsystem 1000) to use for obtaining the child recognition pattern of the next protocol,
including the size of the field. The child recognition pattern bytes are fetched from the

input buffer memory 1008. The number of bytes making up the child recognition pattern

is also now known.

The first byte of the protocol code bytes is used as the lookup in the next LUT. If a
LUT lookup results in a node code indicating a protocol node or a terminal node, the Next
LUT and next expected fold is set, and the “next protocol” from LUT lookup is used as an
index into the protocol table 1850. This provides the instructions to the slicer 1007, and
where in the packet to obtain the field for the next protocol. Thus, the PRE 1006
continues until it is done processing all the fields (i.e., the protocols), as indicated by the

terminal node code reached.

Note that when a child recognition pattern is checked against a table there is
always an expected fold. If the expected fold matches the fold information in the table, it

is used to decide what to do next. If the fold does not match, the optimizer is finished.

Note also that an alternate embodiment may use different size LUTs, and then

index a LUT by a different amount of the child recognition pattern.

The present implementation of this embodiment allows for child recognition
patterns of up to four bytes. Child recognition patterns of more than 4 bytes are re garded

as special cases.

In the preferred embodiment, the database is generated by the compiler process

Petitioners' EX1039 Page 65

10

15

20

25

60

310. The compiler process first builds a single protocol table of all the links between
protocols. Links consist of the connection between parent and child protocols. Each
protocol can have zero or more children. If a protocol has children, a link is created that
consists of the parent protocol, the child protocol, the child recognition pattern, and the
child recognition pattern size. The compiler first extracts child recognition patterns that
are greater than two bytes long. Since there are only a few of these, they are handled

separately. Next sub links are created for each link that has a child recognition pattern size

of two.
All the links are then formed into the LUTs of 256 entries.

Optimization is then carried out. The first step in the optimization is checking all
the tables against all the other tables to find out which ones can share a table. This process

proceeds the same way as described above for two-dimensional arrays, but now for the

sparse lookup tables.

Part of the initialization process (e.g., compiler process 310) loads a slicer
instruction database with data items including of instruction, source address, destination
address, and length. The PRE 1006 when it sends a slicer instruction sends this instruction
as an offset into the slicer instruction database. The instruction or Op code tells the slicer
what to extract from the incoming packet and where to put it in the flow signature.
Writing into certain fields of the flow signature automatically generates a hash. The
instruction can also tell the slicer how to determine the connection status of certain

protocols.

Note that alternate embodiments may generate the pattern, parse and extraction

database other than by compiling PDL files.

The compilation process

The compilation brocess 310 is now described in more detail. This process 310
includes creating the parsing patterns and extractions database 308 that provides the
parsing subsystem 301 with the information needed to parse packets and extract
identifying information, and the state processing instructions database 326 that provides

the state processes that need to be performed in the state processing operation 328.

Input to the compiler includes a set of files that describe each of the protocols that

_ Petitioners' EX1039 Page 66

0 I B S T W
PR3

10

15

20

25

30

61

can occur. These files are in a convenient protocol description language (PDL) which is a
high level language. PDL is used for specifying new protocols and new levels, including
new applications. The PDL is independent of the different types of packets and protocols
that may be used in the computer network. A set of PDL files is used to describe what
information is relevant to packets and packets that need to be decoded. The PDL is further
used to specify state analysis operations. Thus, the parser subsystem and the analyzer
subsystems can adapt and be adapted to a variety of different kinds of headers, layers, and
components and need to be extracted or evaluated, for example, in order to build up a

unique signature.

There is one file for each packet type and each protocol. Thus there is a PDL file
for Ethernet packets and there is a PDL file for frame relay packets. The PDL files are
compiled to form one or more databases that enable monitor 300 to perform different
protocol specific operations on a packet wherein the protocol headers of any protocol are
located at different locations depending on the parent protocol or protocols used in the
packet. Thus, the packet monitor adapts to different protocols according to the contents of
the packet. In particular, the parser subsystem 301 is able to extract different types of data
for different types of packets. For example, the monitor can know how to interpret a
Ethernet packet, including decoding the header information, and also how to interpret an

frame relay packet, including decoding the header information.

The set of PDL files, for example, may include a generic Ethernet packet file.
There also is included a PDL file for each variation Ethernet file, for example, an IEEE

Ethernet file.

The PDL file for a protocol provides the information needed by compilation
process 310 to generate the database 308. That database in turn tells the parser subsystem
how to parse and/or extract information, including one or more of what protocol-specific
components of the packet to extract for the flow signature, how to use the components to
build the flow signature, where in the packet to look for these components, where to look
for any child protocols, and what child recognition patterns to look for. For some
protocols, the extracted components may include source and destination addresses, and
the PDL file may include the order to use these addresses to build the key. For example,
Ethernet frames have end-point addresses that are useful in building a better flow

signature. Thus the PDL file for an Ethernet packet includes information on how the

_ Petitioners’ EX1039 Page 67

10

15

20

25

30

62

parsing subsystem is to extract the source and destination addresses, including where the
locations and sizes of those addresses are. In a frame-relay base layer, for example, there are
no specific end point addresses that help to identify the flow better, so for those type of
packets, the PDL file does not include information that will cause the parser subsystem to

extract the end-point addresses.

Some protocols also include information on connections. TCP is an example of such a
protocol. Such protocol use connection identifiers that exist in every packet. The PDL file for
such a protocol includes information about what those connection identifiers are, where they
are, and what their length is. In the example of TCP, for example running over IP, these are
port numbers. The PDL file also includes information about whether or not there are states
that apply to connections and disconnections and what the possible children are states. So, at
each of these levels, the packet monitor 300 learns more about the packet. The packet monitor
300 can identify that a particular packet is part of a particular flow using the connection
identifier. Once the flow is identified, the system can determine the current state and what

states to apply that deal with connections or disconnections that exist in the next layer up to

these particular packets.

For the particular PDL used in the preferred embodiment, a PDL file may include
none or more FIELD statement each defining a specific string of bits or bytes (i.e., a field) in
the packet. A PDL file may further include none or more GROUP statements each used to tie
together several defined fields. A set of such tied together fields is called a group. A PDL file
may further include none or more PROTOCOL statements each defining the order of the
fields and groups within the header of the protocol. A PDL file may further include none or
more FLOW statements each defining a flow by describing where the address, protocol type,
and port numbers are in a packet. The FLOW statement includes a description of how
children flows of this protocol are determined using state operations. States associated may
have state operations that may be used for managing and maintaining new states learned as

more packets of a flow are analyzed.

FIG. 19 shows a set of PDL files for a layering structure for an Ethernet packet
that runs TCP on top of IP. The contents of these PDL files are attached as an
APPENDIX hereto. Common.pdl (1903) is a file containing the common protocol
definitions, i.e., some field definitions for commonly used fields in various network
protocols. Flows.pdl (1905) is a file containing general flow definitions. Virtual.pdl
(1907) is a PDL file containing the definition for the VirtualBase layer used. Ethernet.pdl

Lo A

Petitioners' EX1039 Page 68

10

15

20

25

30

63
(1911) is the PDL file containing the definition for the Ethernet packet. The decision on
Ethertype vs. IEEE type Ethernet file is described herein. If this is Ethertype, the selection
is made from the file Ethertype.pdl (1913). In an alternate embodiment, the Ethertype
selection definition may be in the same Ethernet file 1911. In a typical implementation,
PDL files for other Ethernet types would be included. IP.pdl (1915) is a PDL file
containing the packet definitions for the Internet Protocol. TCP.pdl (1917) is the PDL file
containing the packet definitions for the Transmission Control Protocol, which in this
case is a transport service for the IP protocol. In addition to extracting the protocol
information the TCP protocol definition file assists in the process of identification of
connections for the processing of states. In a typical set of files, there also would be a file
UDP.pd] for the User Datagram Protocol (UDP) definitions. RPC.pdl (1919) is a PDL file

file containing the packet definitions for Remote Procedure Calls.

NFS.pdl (1921) is a PDL file containing the packet definitions for the Network
File System. Other PDL files would typically be included for all the protocols that might

be encountered by monitor 300.

Input to the compilation process 310 is the set of PDL files (e.g., the files of FIG
19) for all protocols of interest. Input to process 310 may also include layering
information shown in FIG. 3 as datagram layer selections 338. The layer selections
information describes the layering of the protocols—what protocol(s) may be on top of
any particular protocols. For example, IP may run over Ethernet, and also over many
other types of packets. TCP may run on top of IP. UDP also may run on top of [P. When
no layering information is explicitly included, it is inherent; the PDL files include the

children protocols, and this provides the layering information.

The compiling process 310 is illustrated in FIG. 20. The compiler loads the PDL
source files into a scratch pad memory (step 2003) and reviews the files for the correct
syntax (parse step 2005). Once completed, the compiler creates an intermediate file
containing all the parse elements (step 2007). The intermediate file in a format called
“Compiled Protocol Language” (CPL). CPL instructions have a fixed layer format, and
include all of the patterns, extractions, and states required for each layer and for the entire
tree for a layer. The CPL file includes the number of protocols and the protocol
definitions. A protocol definition for each protocol can include one or more of the

protocol name, the protocol ID, a header section, a group identification section, sections

Petitioners' EX1039 Page 69

10

15

20

25

30

64
for any particular layers, announcement sections, a payload section, a children section,
and a states section. The CPL file is then run by the optimizer to create the final databases
that will be used by monitor 300. It would be clear to those in the art that alternate
implementations of the compilation process 310 may include a different form of

intermediate output, or no intermediate output at all, directly generating the final

database(s).

After the parse elements have been created, the compiler builds the flow signature
elements (step 2009). This creates the extraction operations in CPL that are required at
each level for each PDL module for the building of the flow signature (and hash key) and
for links between layers (2009).

With the flow signature operations complete, the PDL compiler creates (step
2011) the operations required to extract the payload elements from each PDL module.
These payload elements are used by states in other PDL modules at higher layers in the

processing.

The last pass is to create the state operations required by each PDL module. The
state operations are complied from the PDL files and created in CPL form for later use
(2013).

The CPL file is now run through an optimizer that generates the final databases

used by monitor 300.

PROTOCOL DEFINITION LANGUAGE (PDL) REFERENCE GUIDE
(VERSION A0.02)

Included herein is this reference guide (the “guide”) for the page description language
(PDL) which, in one aspect of the invention, permits the automatic generation of the
databases used by the parser and analyzer sub-systems, and also allows for including new

and modified protocols and applications to the capability of the monitor.

COPYRIGHT NOTICE

A portion of this of this document included with the patent contains material which is
subject to copyright protection. The copyright owner (Apptitude, Inc., of San Jose,
California, formerly Technically Elite, Inc.) has no objection to the facsimile reproduction

by anyone of the patent document or the patent disclosure or this document, as it appears

- Petitioners' EX1039 Page 70

10

15

20

25

65

in the Patent and Trademark Office patent file or records, but otherwise reserves all

copyright rights whatsoever.

Copyright © 1997-1999 by Apptitude, Inc. (formerly Technically Elite, Inc.). All Rights

Reserved.

1. INTRODUCTION

The inventive Protocol Definition Language (PDL) is a special purpose language used to

describe network protocols and all the fields within the protocol headers.

Within this guide, protocol descriptions (PDL files) are referred to as PDL or rules when

there in no risk of confusion with other types of descriptions.

PDL uses both form and organization similar to the data structure definition part of the C
programming language and the PERL scripting language. Since PDL was derived from a
language used to decode network packet contact, the authors have mixed the language
format with the requirements of packet decoding. This results in an expressive language
that is very familiar and comfortable for describing packet content and the details required

representing a flow.

1.1 Summary

The PDL is a non-procedural Forth Generation language (4GL). This means is describes
what needs to be done without describing how to do it. The details of how are hidden in

the compiler and the Compiled Protocol Layout (CPL) optimization utility.

In addition, it is used to describe network flows by defining which fields are the address

fields, which are the protocol type fields, etc.

Once a PDL file is written, it is compiled using the Netscope compiler (nsc), which
produces the MeterFlow database (MeterFlow.db) and the Netscope database
(Netscope.db). The MeterFlow database contains the flow definitions and the Netscope

database contains the protocol header definitions.

These databases are used by programs like: mfkeys, which produces flow keys (also
called flow signatures); mfepl, which produces flow definitions in CPL format; mfpkts
which produces sample packets of all known protocols; and netscope, which decodes

Sniffer™ and tcpdump files.

- Petitioners' EX1039 Page 71

10

15

20

25

30

66
1.2 Guide Conventions

The following conventions will be used throughout this guide:

Small courier typeface indicates C code examples or function names. Functions are
written with parentheses after them [function ()], variables are written just as their
names [variables], and structure names are written prefixed with “struct”

[struct packet].

Italics indicate a filename (for instance, mworks/base/h/base.h). Filenames will usually

be written relative to the root directory of the distribution.

Constants are expressed in decimal, unless written “ox. ..”, the C language notation for

hexadecimal numbers.

Note that any contents on any line in a PDL file following two hyphen (--) are ignored

by the compiler. That is, they are comments.

2. PROGRAM STRUCTURE

A MeterFlow PDL decodes and flow set is a non-empty sequence of statements.
There are four basic types of statements or definitions available in MeterFlow PDL:

FIELD,
GROUP,
PROTOCOL and

FLOW.

2.1 FIELD Definitions

The FIELD definition is used to define a specific string of bits or bytes in the packet. The

FIELD definition has the following format:

Name FIELD

SYNTAX Type [{ Enums }]
DISPLAY-HINT "FormatString"
LENGTH "Expression"

FLAGS FieldFlags

ENCAP FieldName [, FieldName2]
LOOKUP LookupType [Filename]
ENCODING EncodingType

DEFAULT “value”

DESCRIPTION "Description"

Petitioners' EX1039 Page 72

10

67

Where only the FIELD and SYNTAX lines are required. All the other lines are attribute

lines, which define special characteristics about the FIELD. Attribute lines are optional

and may appear in any order. Each of the attribute lines are described in detail below:

2.1.1 SYNTAX Type[{ Enums }]

This attribute defines the type and, if the type is an INT, BYTESTRING, BITSTRING, or
SNMPSEQUENCE type, the enumerated values for the FIELD. The currently defined

~_types are:
INT(numBits) Integer that is numBits bits long.
UNSIGNED INT(numaBits) Unsigned integer that is numBits bits long.
BYTESTRING(numBytes) String that is numBytes bytes long.

BYTESTRING(R!..R2)

String that ranges in size from R/ to R2 bytes.

BITSTRING (numBits) String that is numBits bits long.
LSTRING(lenBytes) String with lenBytes header.
NSTRING Null terminated string.
DNSSTRING DNS encoded string.
SNMPOID SNMP Object Identifier.
SNMPSEQUENCE SNMP Sequence.
SNMPTIMETICKS SNMP TimeTicks.

COMBO fieldl field2 Combination pseudo field.

2.1.2 DISPLAY-HINT "FormatString"

This attribute is for specifying how the value of the FIELD is displayed. The currently

supported formats are:

Numx

Print as a num byte hexidecimal number.

Numd

Print as a num byte decimal number.

-

. Petitioners' EX1039 Page 73

10

15

68

Numo Print as a num byte octal number.
Numb Print as a num byte binary number.
Numa Print num bytes in ASCII format.
Text Print as ASCII text.

HexDump Print in hexdump format.

2.1.3 LENGTH "Expression"

This attribute defines an expression for determining the FIELD's length. Expressions are
arithmetic and can refer to the value of other FIELD’s in the packet by adding a $ to the
referenced field’s name. For example, “($tcpHeaderLen *4) — 20” is a valid expression if

tcpHeaderLen is another field defined for the current packet.

2.1.4 FLAGS FieldFlags

The attribute defines some special flags for a FIELD. The currently supported FieldFlags

are:

SAMELAYER Display field on the same layer as the previous field.

NOLABEL Don't display the field name with the value.
NOSHOW Decode the field but don't display it.
SWAPPED The integer value is swapped.

2.1.5 ENCAP FieldName [, FieldName2]

This attribute defines how one packet is encapsulated inside another. Which packet is
determined by the value of the FieldName field. If no packet is found using FieldName
then FieldName?2 is tried.

2.1.6 LOOKUP LookupType [Filename]

This attribute defines how to lookup the name for a particular FIELD value. The currently

supported LookupTypes are:

¥

"'/ Petitioners' EX1039 Page 74

10

15

20

25

69

SERVICE Use getservbyport().

HOSTNAME Use gethostbyaddr().
MACADDRESS Use SMETERFLOW/conf/mac2ip.cf.
FILE file Use file to lookup value.

2.1.7 ENCODING EncodingType

This attribute defines how a FIELD is encoded. Currently, the only supported
EncodingType is BER (for Basic Encoding Rules defined by ASN.1).

2.1.8 DEFAULT “value”

This attribute defines the default value to be used for this field when generating sample

packets of this protocol.

2.1.9 DESCRIPTION "Description"

This attribute defines the description of the FIELD. It is used for informational purposes

only.

2.2 GROUP Definitions

The GROUP definition is used to tie several related FIELDs together. The GROUP
definition has the following format:

Name GROUP

LENGTH "Expression"

OPTIONAL "Condition"

SUMMARIZE "Condition" : "FormatString" [
ncondition" : "FormatString"... 1]
DESCRIPTION "Description"

s := { Name=FieldOrGroup [,
Name=FieldOrGroup... 1 }

Where only the GROUP and ::= lines are required. All the other lines are attribute lines,
which define special characteristics for the GROUP. Attribute lines are optional and may

appear in any order. Each attribute line is described in detail below:

2.2.1 LENGTH "Expression'

This attribute defines an expression for determining the GROUP's length. Expressions are

" Petitioners' EX1039 Page 75

10

15

20

70

arithmetic and can refer to the value of other FIELD’s in the packet by adding a $ to the
referenced field’s name. For example, “($tcpHeaderLen *4) — 20” is a valid expression if

tcpHeaderLen is another field defined for the current packet.

2.2.2 OPTIONAL "Condition"
This attribute defines a condition for determining whether a GROUP is present or not.
Valid conditions are defined in the Conditions section below.

2.2.3 SUMMARIZE "Condition" : "FormatString' ["'Condition" :
"FormatString''...]

This attribute defines how a GROUP will be displayed in Detail mode. A different format
(FormatString) can be specified for each condition (Condition). Valid conditions are
defined in the Conditions section below. Any FIELD's value can be referenced within the
FormatString by proceeding the FIELD's name with a $. In addition to FIELD names

there are several other special $ keywords:

$LAYER Displays the current protocol layer.

$GROUP Displays the entire GROUP as a table.

$LABEL Displays the GROUP label.

$field Displays the field value (use enumerated name if available).
$.field Displays the field value (in raw format).

2.2.4 DESCRIPTION "Description"

This attribute defines the description of the GROUP. It is used for informational purposes

only.
2.2.5 ::={ Name=FieldOrGroup [, Name=FieldOrGroup...] }

This defines the order of the fields and subgroups within the GROUP.

2.3 PROTOCOL Definitions

The PROTOCOL definition is used to define the order of the FIELDs and GROUPs
within the protocol header. The PROTOCOL definition has the following format:

Petitioners' EX1039 Page 76

L

[

RN

ik

10

15

20

71

Name PROTOCOL
SUMMARIZE "Condition" : "FormatString" [
"Condition" : "FormatString"...]
DESCRIPTION "Description"
REFERENCE "Reference"
::= { Name=FieldOrGroup [,
Name=FieldOrGroup...] }
Where only the PROTOCOL and ::= lines are required. All the other lines are attribute
lines, which define special characteristics for the PROTOCOL. Attribute lines are
optional and may appear in any order. Each attribute line is described in detail below:

2.3.1 SUMMARIZE "Condition" : "FormatString" [""Condition" :
"FormatString"...]

This attribute defines how a PROTOCOL will be displayed in Summary mode. A
different format (FormatString) can be specified for each condition (Condition). Valid
conditions are defined in the Conditions section below. Any FIELD's value can be
referenced within the FormatString by proceeding the FIELD's name with a $. In addition

to FIELD names there are several other special $ keywords:

$LAYER Displays the current protocol layer.

$VARBIND Displays the entire SNMP VarBind list.

$field Displays the field value (use enumerated name if available).
$:field Displays the field value (in raw format).

$#field Counts all occurrences of field.

$*field Lists all occurrences of field.

2.3.2 DESCRIPTION "Description"

This attribute defines the description of the PROTOCOL. 1t is used for informational

purposes only.

2.3.3 REFERENCE '"Reference"

This attribute defines the reference material used to determine the protocol format. It is

used for informational purposes only.

" Petitioners’' EX1039 Page 77

10

I5

20

25

72
2.3.4 ::={Name=FieldOrGroup [, Name=FieldOrGroup...] }

This defines the order of the FIELDs and GROUPs within the PROTOCOL.

2.4 FLOW Definitions

The FLOW definition is used to define a network flow by describing where the address,
protocol type, and port numbers are in a packet. The FLOW definition has the following
format:

Name FLOW

HEADER { Option [, Option..] }
DLC-LAYER { Option [, Option..] }
NET-LAYER { Option [, Option.] }
CONNECTION { Option [, Option..] }
PAYLOAD { Option [, Option..] }
CHILDREN { Option [, Option..] }
STATE-BASED

STATES “Definitions”

Where only the FLOW line is required. All the other lines are attribute lines, which define
special characteristics for the FLOW. Attribute lines are optional and may appear in any
order. However, at least one attribute line must be present. Each attribute line is described

in detail below:

2.4.1 HEADER { Option [, Option...] }

This attribute is used to describe the length of the protocol header. The currently

_ supported Options are:

LENGTH=number Header is a fixed length of size number.

LENGTH=field Header is variable length determined by value of field.

IN-WORDS The units of the header length are in 32-bit words rather than bytes.

242 DLC-LAYER { Option [, Option...] }

If the protocol is a data link layer protocol, this attribute describes it. The currently

__ supported Options are:

DESTINATION=field Indicates which field is the DLC destination address.

SOURCE-=field Indicates which field is the DLC source address.

Petitioners' EX1039 Page 78

10

73

PROTOCOL

Indicates this is a data link layer protocol.

TUNNELING

Indicates this is a tunneling protocol.

24.3 NET-LAYER { Option [, Option...] }

If the protocol is a network layer protocol, then this attribute describes it. The currently

supported Options are:

DESTINATION=field

Indicates which field is the network destination address.

SOURCE:field

Indicates which field is the network source address.

TUNNELING

Indicates this is a tunneling protocol.

FRAGMENTATION=type

Indicates this protocol supports fragmentation. There are

currently two fragmentation types: IPV4 and IPV6.

24.4 CONNECTION { Option [, Option...] }

If the protocol is a connection-oriented protocol, then this attribute describes how

connections are established and torn down. The currently supported Options are:

IDENTIFIER =field

Indicates the connection identifier field.

CONNECT-START="flag”

Indicates when a connection is being initiated.

CONNECT-COMPLETE="flag” Indicates when a connection has been established.
DISCONNECT-START="flag” Indicates when a connection is being torn down.
DISCONNECT-COMPLETE="flag” Indicates when a connection has been torn down.
INHERITED Indicates this is a connection-oriented protocol but

the parent protocol is where the connection is

established.

2.4.5 PAYLOAD { Option [, Option...]}

This attribute describes how much of the payload from a packet of this type should be

Petitioners' EX1039 Page 79

10

74

stored for later use during analysis. The currently supported Options are:

INCLUDE-HEADER Indicates that the protocol header should be included.

LENGTH=number Indicates how many bytes of the payload should be stored.

DATA=field Indicates which field contains the payload.

2.4.6 CHILDREN { Option [, Option...] }

This attribute describes how children protocols are determined. The currently supported

Options are:

DESTINATION=field Indicates which field is the destination port.

SOURCE-=field Indicates which field is the source port.

LLCCHECK=flow Indicates that if the DESTINATION field is less than 0x05DC then

use flow instead of the current flow definition.

24.7 STATE-BASED

This attribute indicates that the flow is a state-based flow.

2.4.8 STATES “Definitions”’

This attribute describes how children flows of this protocol are determined using states.

See the State Definitions section below for how these states are defined.

2.5 CONDITIONS

Conditions are used with the OPTIONAL and SUMMARIZE attributes and may consist

of the following:

Valuel == Value2 Valuel equals Value2. Works with string values.

Valuel != Value2 Valuel does not equal Value2. Works with string values.

Valuel <= Value2 Valuel is less than or equal to Value2.

Valuel >= Value2

Valuel is greater than or equal to Value2.

' Petitioners' EX1039 Page 80

10

15

20

75

Valuel < Value2 Valuel is less than Value2.
Valuel > Value2 Valuel is greater than Value2.
Field m/regex/ Field matches the regular expression regex.

" Where Valuel and Value2 can be either FIELD references (field names preceded by a $)

or constant values. Note that compound conditional statements (using AND and OR) are

not currently supported.

2.6 STATE DEFINITIONS

Many applications running over data networks utilize complex methods of classifying
traffic through the use of multiple states. State definitions are used for managing and

maintaining learned states from traffic derived from the network.

The basic format of a state definition is:

StateName: Operand Parametersgs [Operand Parameters..]
The various states of a particular flow are described using the following operands:

2.6.1 CHECKCONNECT, operand

Checks for connection. Once connected executes operand.
2.6.2 GOTO state

Goes to state, using the current packet.

2.6.3 NEXT state

Goes to state, using the next packet.

2.6.4 DEFAULT operand

Executes operand when all other operands fail.

2.6.5 CHILD protocol

Jump to child protocol and perform state-based processing (if any) in the child.

2.6.6 WAIT numPackets, operandl, operand2

Waits the specified number of packets. Executes operandl when the specified number of

packets have been received. Executes operand2 when a packet is received but it is less

Petitioners' EX1039 Page 81

76

than the number of specified packets.

2.6.7 MATCH 'string' weight offset LF-offset range LF-range, operand

Searches for a string in the packet, executes operand if found.

2.6.8 CONSTANT number offset range, operand

5 Checks for a constant in a packet, executes operand if found.
2.6.9 EXTRACTIP offset destination, operand
Extracts an IP address from the packet and then executes operand.

2.6.10 EXTRACTPORT offset destination, operand

Extracts a port number from the packet and then executes operand.

S 10 2.6.11 CREATEREDIRECTEDFLOW, operand

Creates a redirected flow and then executes operand.

Petitioners' EX1039 Page 82

5

10

15

20

25

30

35

40

77

3. EXAMPLE PDL RULES

The following section contains several examples of PDL Rule files.

3.1 Ethernet

The following is an example of the PDL for Ethernet:

MacAddress FIELD

SYNTAX BYTESTRING (6)
DISPLAY-HINT “l1x:*

LOOKUP MACADDRESS
DESCRIPTION

“"MAC layer physical address”

etherType FIELD
SYNTAX INT (16)
DISPLAY-HINT "lx:*
LOOKUP FILE “EtherType.cf”
DESCRIPTION
"Ethernet type field"
etherData FIELD
SYNTAX BYTESTRING (46..1500)
ENCAP etherType
DISPLAY-HINT “HexDump"
DESCRIPTION
"Ethernet data"
ethernet PROTOCOL
DESCRIPTION
*Protocol format for an Ethernet frame"
REFERENCE "RFC 894"

:= { MacDest=macAddress, MacSrc=macAddress, EtherType=etherType,
Data=etherData }

ethernet FLOW
HEADER { LENGTH=14 }
DLC-LAYER {
SOURCE=MacSrc,
DESTINATION=MacDest,
TUNNELING,
PROTOCOL

}
CHILDREN { DESTINATION=EtherType, LLC-CHECK=llc }

......

Petitioners' EX1039 Page 83

AT H

'
BTN

gy

10

15

20

25

30

35

40

45

50

55

60

78

SYNTAX INT(8)
LOOKUP FILE "IpProtocol.cf"

ipData FIELD
SYNTAX
ENCAP
DISPLAY-HINT

ipProtocol
"HexDump"

ip PROTOCOL
SUMMARIZE

"$SFragmentOffset I= 0":

BYTESTRING(0..1500)

{ minCost(1},

maxThruput (3), minDelay(4)

dontFrag(l) }

3.2 IP Version 4
Here is an example of the PDL for the IP protocol:
ipAddress FIELD
SYNTAX BYTESTRING (4)
DISPLAY-HINT "“14."
LOOKUP HOSTNAME
DESCRIPTION
"IP address"
ipVersion FIELD
SYNTAX INT(4)
DEFAULT 4
ipHeaderLength FIELD
SYNTAX INT(4)
ipTypeOfService FIELD
SYNTAX BITSTRING (8)
maxReliability(2),
ipLength FIELD
SYNTAX UNSIGNED INT(16)
ipFlags FIELD
SYNTAX BITSTRING(3) { moreFrags(0),
IpFragmentOffset FIELD
SYNTAX INT (13)
ipProtocol FIELD

"IPFragment ID=$Identification Offset=$FragmentOffset"

"Default"
"IP Protocol=$Protocol"
DESCRIPTION

"Protocol format for the Internet Protocol"

REFERENCE "RFC 791"
:= { Version=ipVersion,
TypeOfService=ipTypeOfService,
Identification=UIntl6,

HeaderLength=ipHeaderLength,
Length=ipLength,
IpFlags=ipFlags,

FragmentOffset=ipFragmentOffset, TimeToLive=Ints,

Protocol=ipProtocol,
IpSrc=ipAddress,
Fragment=ipFragment, Data=ipData }

ip FLOW
HEADER { LENGTH=HeaderLength,
NET-LAYER {
SOURCE=1IpSrc,
DESTINATION=IpDest,
FRAGMENTATION=IPV4,
TUNNELING

Checksum=ByteStr2,
IpDest=ipAddress, Options=ipOptions,

IN-WORDS }

Petitioners' EX1039 Page 84

}

10

15

20

25

30

79

CHILDREN { DESTINATION=Protocol }

ipFragData FIELD
SYNTAX BYTESTRING(1l..1500)
LENGTH “ipLength - ipHeaderLength * 4"
DISPLAY~HINT "“HexDump"'

ipFragment GROUP
OPTIONAL "$FragmentOffset != 0"
::= { Data=ipFragData }

ipOptionCode FIELD
SYNTAX INT(8) { ipRR{0x07), ipTimestamp (0x44),
ipLSRR(0x83), ipSSRR(0x89) }
DESCRIPTION
'"IP option code"

ipOptionLength FIELD
SYNTAX UNSIGNED INT(8)
DESCRIPTION
*Length of IP option"

ipOptionData FIELD

SYNTAX BYTESTRING(0..1500)
ENCAP ipOptionCode
DISPLAY-HINT "HexDump"
ipOptions GROUP
LENGTH " (ipHeaderLength * 4) - 20"

:= { Code=ipOptionCode, Length=ipOptionLength, Pointer=UIntS$,
Data=ipOptionData }

Petitioners' EX1039 Page 85

80

3.3 TCP

Here is an example of the PDL for the TCP protocol:

" tcpPort FIELD
SYNTAX UNSIGNED INT(16)
5 LOOKUP FILE "TcpPort.cf"

tcpHeaderLen FIELD
SYNTAX INT(4)

10 tcpFlags FIELD
SYNTAX BITSTRING(12) { fin(0), syn(l), rst(2), psh(3),
. ack(4), urg(5) }

tcpbData FIELD

15 SYNTAX BYTESTRING (0. .1564)
LENGTH * ($ipLength- ($ipHeaderLength*4)) - ($tcpHeaderLen*4)"
ENCAP tcpPort

DISPLAY~HINT "HexDump"

= 20 tep PROTOCOL

SUMMARIZE
8-t "Default"
f "TCP ACK=$Ack WIN=$WindowSize"
h DESCRIPTION
e 25 *Protocol format for the Transmission Control Protocol®
- REFERENCE "RFC 793"

3 ::= { SrcPort=tcpPort, DestPort=tcpPort, SequenceNum=UInt32,
.2 Ack=UInt32, HeaderLength=tcpHeaderLen, TcpFlags=tcpFlags,
WindowSize=UIntl6é, Checksum=ByteStr2,
30 UrgentPointer=UIntlé, Options=tcpOptions, Data=tcpData }

tcp FLOW
HEADER { LENGTH=HeaderLength, IN-WORDS }

F CONNECTION {

- 35 IDENTIFIER=SequenceNum,

e CONNECT~START="TcpFlags:1",
CONNECT~COMPLETE="TcpFlags:4",
DISCONNECT-START="TcpFlags:0",
DISCONNECT-COMPLETE="TcpFlags:4"

40 }

PAYLOAD { INCLUDE-HEADER }
CHILDREN { DESTINATION=DestPort, SOURCE=SrcPort }

tcpOptionKind FIELD
45 SYNTAX UNSIGNED INT(8) { tcpOptEnd(0), tcpNop(l),
tcpMSS(2), tcpWscale(3), tcpTimestamp(4) }
DESCRIPTION

"Type of TCP option"

50 tcpOptionData FIELD

SYNTAX BYTESTRING (0. .1500)
ENCAP tcpOptionKind
FLAGS SAMELAYER
DISPLAY-HINT "HeXDump"
55
tcpOptions GROUP
LENGTH " ($tcpHeaderLen * 4) - 20"
1= { Option=tcpOptionKind, OptionLength=UInt8,
OptionData=tcpOptionData }
60

tcpMSS PROTOCOL
:= { MaxSegmentSize=UIntl6 }

" Petitioners' EX1039 Page 86

81

3.4 HTTP (with State)

Here is an example of the PDL for the HTTP protocol:

-~ B httpData FIELD
SYNTAX BYTESTRING(1..1500)
} 5 LENGTH "($ipLength - ($ipHeaderLength * 4)) - ($tcpHeaderLen * 4)"
DISPLAY-HINT "Text"
y FLAGS NOLABEL

N http PROTOCOL
10 SUMMARIZE
"$httpData m/"GET | "HTTP| “HEAD|"~POST/"
"HTTP S$httpDhata"
"$httpData m/~[Dd]late|~[Sslerver|~[Ll)ast-[Mm]odified/"
"HTTP S$httpDhata"
15 "$httpbata m/”[Cclontent-/"*
"HTTP S$httpData"
"ShttpData m/"~"<HTML>/*"
"HTTP [HTML document]"
"$httpbata m/"~GIF/"
- 20 "HTTP [GIF imagel"
; "Default"
- "HTTP [Datal"”
. DESCRIPTION
L "Protocol format for HTTP."
25 ::= { Data=httpData }

http FLOW
HEADER { LENGTH=0 }
CONNECTION { INHERITED }
30 PAYLOAD { INCLUDE-HEADER, DATA=Data, LENGTH=256 }

o

STATES
"S0: CHECKCONNECT, GOTO Sl
DEFAULT NEXT SO
35 Sl: WAIT 2, GOTO S2, NEXT Sl
DEFAULT NEXT SO
S2: MATCH
‘\n\r\n' 900 0 0 255 0, NEXT S3
40 ‘\n\n’ 900 0 0 255 0, NEXT S3
'POST /tds?' 50 0 0 127 1, CHILD sybaseWebsql
'.hts HTTP/1.0' 50 4 0 127 1, CHILD sybaseddbc
'jdbc:sybase:Tds' 50 4 0 127 1, CHILD sybaseTds
'PCN-The Poin' 500 4 1 255 0, CHILD pointcast
45 't: BW-C-' 100 4 1 255 0, CHILD backweb
DEFAULT NEXT S3
S3: MATCH
‘\n\r\n' 50 0 0 0 0, NEXT S3
50 "\n\n" 50 0 0 0 0, NEXT S3
'Content-Type: ' 800 0 0 255 0, CHILD mime
'PCN-The Poin' 500 4 1 255 0, CHILD pointcast
't: BW-C-' 100 4 1 255 0, CHILD backweb
DEFAULT NEXT SO*
55
sybaseWebsql FLOW
STATE-BASED
sybaseddbc FLOW
60 STATE-BASED
sybaseTds FLOW

STATE-BASED

Petitioners' EX1039 Page 87

10

15

20

25

30

35

40

45

50

55

60

65

pointcast FLOW
STATE~BASED
backweb FLOW
STATE-BASED
mime FLOW
STATE-BASED
STATES
“S0: MATCH
‘application* 900 0 0 1
‘audio’ 900 0 O 1
'image' 50 00 1
‘text! 50 00 1
'video' 5000 1
'x~-world' 500 4 1 255

DEFAULT GOTO SsO*"

mimeApplication FLOW
STATE-BASED

mimeAudio FLOW
STATE-BASED
STATES
*S0: MATCH
'basic
‘midi’
1 mpeg '
‘vnd.rn-realaudio’
‘'wav'
‘x-aiff’
'x~midi"
'x-mpeg'
'x-mpgurl'
'x-pn-realaudio
'x-wav'
DEFAULT GOTO SO*
mimeImage FLOW
STATE-BASED
mimeText FLOW
STATE-BASED
mimeVideo FLOW

STATE-BASED

mimeXworld FLOW
STATE-BASED

pdBasicAudio FLOW
STATE~BASED

pdMidi FLOW

STATE-BASED

pdMpeg2Audio FLOW
STATE-BASED

pdMpeg3Audio FLOW
STATE-BASED

pdrRealAudio FLOW

STATE-BASED

pdWav FLOW

82

100
100
100
100
100
100
100
100
100
100
100

[eNoNoNoNoNoNoNoNoNelN o)

0, CHILD mimeApplication
0, CHILD mimeAudio

0, CHILD mimeImage

0, CHILD mimeText

0, CHILD mimeVideo

0, CHILD mimeXworld

CHILD pdBasicAudio
CHILD pdMidi

CHILD pdMpeg2Audio
CHILD pdRealAudio
CHILD pdwav

CHILD pdAiff

CHILD pdMidi

CHILD pdMpeg2Audio
CHILD pdMpeg3Audio
CHILD pdRealAudio
CHILD pdwav

coocoo0oo0O0O0OO0OOO
RPRERREPRPERP B
cocoocoocoocoocoo0O0O0O

“ Petitioners' EX1039 Page 88

83

STATE-BASED

pdaiff FLOW
STATE-BASED

-

Petitioners' EX1039 Page 89

-

10

15

34

Embodiments of the present invention automatically generate flow signatures with
the necessary recognition patterns and state transition climb procedure. Such comes from
analyzing packets according to parsing rules, and also generating state transitions to
search for. Applications and protocols, at any level, are recognized through state analysis

of sequences of packets.

Note that one in the art will understand that computer networks are used to
connect many different types of devices, including network appliances such as telephones,
“Internet” radios, pagers, and so forth. The term computer as used herein encompasses all
such devices and a computer network as used herein includes networks of such

computers.

Although the present invention has been described in terms of the presently
preferred embodiments, it is to be understood that the disclosure is not to be interpreted as
limiting. Various alterations and modifications will no doubt become apparent to those or
ordinary skill in the art after having read the above disclosure. Accordingly, it is intended
that the claims be interpreted as covering all alterations and modifications as fall within

the true spirit and scope of the present invention.

Petitioners' EX1039 Page 90

85

APPENDIX: SOME PDL FILES.

The following pages include some PDL files as examples. Included herein are the
PDL contents of the following files. A reference to PDL is also included herein. Note that
any contents on any line following two hyphen (--) are ignored by the compiler. That is,

5 they are comments.
common.pdl;
flows.pd]; :
virtual.pdl;
ethernet.pdl;
10 IEEE8032.pdl and IEEE8033.pdl (ethertype files);
IP.pdl;
TCP.pdl and UDP.pd];
RPC.pdl;
NFS.pdl; and

15 HTTP.pdl.

Petitioners' EX1039 Page 91

-- Common.pdl - Common protocol definitions

5 -- Description:

-- This file contains some field definitions for commonly used fields
-- in various network protocols.

-~ Copyright:

10 -- Copyright (c) 1996-1999 Apptitude, Inc.
- (formerly Technically Elite, Inc.)
-- All rights reserved.

-~ RCS:
15 - $Id: Common.pdl,v 1.7 1999/04/13 15:47:56 skip Exp $

Int4 FIELD
SYNTAX INT(4)

20
Int8 FIELD
SYNTAX INT(8)
i; Intl6 FIELD
25 SYNTAX INT(16)

Int24 FIELD
SYNTAX INT(24)

30 Int32 FIELD
. SYNTAX INT(32)

Int64 FIELD
SYNTAX INT(64)

35
UInt8 FIELD
SYNTAX UNSIGNED INT(8)
UIntl6 FIELD
40 SYNTAX UNSIGNED INT(16)

UInt24 FIELD
SYNTAX UNSIGNED INT(24)

45 UInt32 FIELD
SYNTAX UNSIGNED INT(32)

UInt64 FIELD
SYNTAX UNSIGNED INT(64)

50
SIntlé FIELD
SYNTAX INT(16)
FLAGS SWAPPED
55 SUInt1l6 FIELD

SYNTAX UNSIGNED INT(16)
FLAGS SWAPPED

SInt32 FIELD
60 SYNTAX INT(32)
FLAGS SWAPPED

ByteStrl FIELD
SYNTAX BYTESTRING (1)
65
ByteStr2 FIELD
SYNTAX BYTESTRING (2)

\

Petitioners' EX1039 Page 92

87

ByteStr4d FIELD
SYNTAX BYTESTRING (4)

5 Padl FIELD
SYNTAX BYTESTRING (1)
FLAGS NOSHOW

Pad2 FIELD
10 SYNTAX BYTESTRING (2)
FLAGS NOSHOW

Pad3 FIELD
SYNTAX BYTESTRING (3)
15 FLAGS NOSHOW
Pad4 FIELD

SYNTAX BYTESTRING (4)
FLAGS NOSHOW
20
Pad5 FIELD
SYNTAX BYTESTRING (5)
FLAGS NOSHOW

25 macAddress FIELD

. SYNTAX BYTESTRING (6)

=) DISPLAY-HINT “1x:”

g LOOKUP MACADDRESS

i DESCRIPTION

R 30 "MAC layer physical address”

i ipAddress FIELD
SYNTAX BYTESTRING (4)
DISPLAY-HINT “1d4.”

35 LOOKUP HOSTNAME

DESCRIPTION

“IP address”

o ipv6Address FIELD

40 SYNTAX BYTESTRING (16)
= DISPLAY-HINT “1d.”
DESCRIPTION

“IPV6 address”

Petitioners' EX1039 Page 93

10

15

20

25

30

35

40

45

50

55

60

65

-- Flows.pdl - General FLOW definitions

-- Description:

-— This file contains general flow definitions.
-- Copyright:

- Copyright (c) 1998-1999 Apptitude, Inc.

-- (formerly Technically Elite, Inc.)

- All rights reserved.

-- RCS:
- $1d: Flows.pdl,v 1.12 1999/04/13 15:47:57 skip Exp $

chaosnet FLOW
spanningTree FLOW
sna FLOW

oracleTNS FLOW
PAYLOAD { INCLUDE-HEADER, LENGTH=256 }

ciscoQUI FLOW

igmp FLOW
GGP FLOW
ST FLOW
ucCL FLOW
egp FLOW
igp FLOW

BBN-RCC-MON FLOW
NVP2 FLOW
PUP FLOW
ARGUS FLOW
EMCON FLOW
XNET FLOW
MUX FLOW
DCN~MEAS FLOW
HMP FLOW
PRM FLOW
TRUNK1 FLOW

TRUNK2 FLOW

Petitioners' EX1039 Page 94

10

15

20

25

30

35

40

45

50

55

60

65

LEAF1 FLOW

LEAF2 FLOW

RDP FLOW

IRTP FLOW

IS0-TP4

NETBLT FLOW

MFE-NSP

MERIT-INP

SEP FLOW

PC3 FLOW

IDPR FLOW

XTP FLOW
DDP FLOW
IDPR-CMTP

TPPlus FLOW
IL FLOW
SIP FLOW
SDRP FLOW
SIP-SR FLOW
SIP-FRAG FLOW
IDRP FLOW
RSVP FLOW
MHRP FLOW
BNA FLOW
SIPP-ESP FLOW
SIPP-AH

INLSP FLOW
SWIPE FLOW
NHRP FLOW
CFTP FLOW
SAT-EXPAK
KRYPTOLAN

RVD FLOW

89

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

Petitioners' EX1039 Page 95

90

IPPC FLOW

SAT-MON FLOW
5 VISA FLOW

IPCV FLOW

CPNX FLOW

10
CPHB FLOW
WSN FLOW

15 PVP FLOW
BR-SAT-MON FLOW
SUN-ND FLOW

20

WB-MON FLOW
WB-EXPAK FLOW

25 ISO-IP FLOW

ot VMTP FLOW

: - SECURE-VMTP FLOW

N 30
P TTP FLOW
NSFNET-IGP FLOW
35 DGP FLOW
TCF FLOW
> IGRP FLOW
- 40
* OSPFIGP FLOW
Sprite-RPC FLOW

45 LARP FLOW
MTP FLOW
AX25 FLOW

50
IPIP FLOW
MICP FLOW

55 SCC-SP FLOW
ETHERIP FLOW
encap FLOW

60
GMTP FLOW

65 -- UDP Protocols

compressnet FLOW

~« Petitioners' EX1039 Page 96

91

rije FLOW
echo FLOW
discard FLOW
systat FLOW

10 daytime FLOW
gotd FLOW
msp FLOW

15 ,
chargen FLOW
biff FLOW

20 who FLOW

syslog FLOW

loadav FLOW

25
- notify FLOW
S acmaint_dbd FLOW
30 acmaint_transd FLOW
puparp FLOW
- applix FLOW
i 35
o ock FLOW
: 40 -- TCP Protocols
tcpmux FLOW
telnet FLOW
45 CONNECTION { INHERITED }
privMail FLOW
nsw-fe FLOW
50
msg-icp FLOW
msg-auth FLOW

55 dsp FLOW
privPrint FLOW

time FLOW

60
rap FLOW
rlp FLOW
65 graphics FLOW

nameserver FLOW

f " Petitioners' EX1039 Page 97

10

15

20

25

30

35

40

45

50

55

60

65

nicname
mpm-flags
mpm FLOW
mpm-snd
ni-ftp FLOW
auditd FLOW
finger FLOW
re-mail-ck
la-maint
xns-time
Xns-ch FLOW
isi-gl FLOW
Xns-auth
privTerm
xns-mail
privFile
ni-mail
acas FLOW
covia FLOW
tacacs-ds
sglnet FLOW
gopher FLOW
netrjs-1
netris-2
netrjs-3
netrijs-4
privDial
deos FLOW
privRJE
vettcp FLOW
hosts2-ns
xfer FLOW

ctf FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

92

Petitioners' EX1039 Page 98

3

1}

10

15

20

25

30

35

40

45

50

55

60

65

mit-ml-dev
mfcobol
kerberos
su-mit-tg
dnsix FLOW
mit-dov
npp FLOW
dcp FLOW
objcall
supdup FLOW
dixie FLOW
swift-rvf
tacnews
metagram
newacct
hostname
iso-tsap
gppitnp

csnet-ns

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

threeCom-tsmux

rtelnet
snagas FLOW
mcidas FLOW
auth FLOW
audionews
sftp FLOW
ansanotify
uucp-path
sglserv
cfdptkt
erpc FLOW
smakynet
ntp FLOW

ansatrader

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

93

.~ Petitioners' EX1039 Page 99

10

15

20

25

30

35

40

45

50

55

60

65

locus-~map
unitary
locus-con
gss-xlicen
pwdgen FLOW
cisco~fna
cisco-tna
cisco-sys
statsrv
ingres-net
loc-srv
profile
emfis-data
emfis-cntl
bl-idm FLOW
imap2 FLOW
news FLOW
uaac FLOW
iso-tp0
iso-ip FLOW
cronus FLOW
aed-512
sgl-net
hems FLOW
bftp FLOW
sgmp FLOW
netsc-prod
netsc-dev
sglsrv FLOW
knet-cmp
pcmail-srv
nss-routing

sgmp~-traps

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

94

Petitioners' EX1039 Page 100

10

15

20

25

30

35

40

45

50

55

60

65

cmip-man
cmip-agent
Xns-courier
s-net FLOW
namp FLOW
rsvd FLOW
send FLOW
print-srv
multiplex
cl-1 FLOW
xyplex-mux
mailg FLOW
vmnet FLOW
genrad-mux
xdmcp FLOW
nextstep
bgp FLOW
ris FLOW
unify FLOW
audit FLOW
ocbinder
ocserver
remote-kis
kis FLOW
aci FLOW
mumps FLOW
qaft FLOW
gacp FLOW
prospero
osu-nms
srmp FLOW
irc FLOW
dné-nlm-aud

dné6-smm-red

95

FLOW
FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW
FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

Petitioners' EX1039 Page 101

10

15

20

25

30

35

40

45

50

55

60

65

dls FLOW
dls-mon
smux FLOW
src FLOW
at-rtmp
at-nbp FLOW
at-3 FLOW
at-echo
at-5 FLOW
at-zis FLOW
at-7 FLOW
at-8 FLOW
tam FLOW
239-50 FLOW
anet FLOW
VmMpwWSCSs
softpc FLOW
atls FLOW
dbase FLOW
mpp FLOW
uarps FLOW
imap3 FLOW
fln-spx
rsh-spx
cde FLOW
sur-meas
link FLOW
dsp3270
pdap FLOW
pawserv
zserv FLOW
fatserv

csi-sgwp

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

96

Petitioners' EX1039 Page 102

10

15

20

25

30

35

40

45

50

55

60

65

clearcase FLOW
ulistserv FLOW
legent-1 FLOW
legent-2 FLOW

hassle FLOW

nip FLOW
EnETOS FLOW
dsETOS FLOW

is99%c FLOW

is99s FLOW
hp-collector FLOW
hp-managed-node
hp-alarm-mgr FLOW
arns FLOW
ibm-app FLOW
asa FLOW

aurp FLOW
unidata-1ldm FLOW
ldap FLOW

uis FLOW
synotics-relay
synotics-broker
dis FLOW
embl-ndt FLOW
netcp FLOW
netware-ip FLOW
mptn FLOW
kryptolan FLOW
work~-sol FLOW
ups FLOW

genie FLOW

decap FLOW

nced FLOW

ncld FLOW

FLOW

FLOW

FLOW

97

_Petitioners' EX1039 Page 103

10

15

20

25

30

35

40

45

50

55

60

65

imsp FLOW
timbuktu FLOW
prm-sm FLOW
prm-nm FLOW
decladebug FLOW
rmt FLOW
synoptics-trap
smsp FLOW
infoseek FLOW
bnet FLOW
silverplatter FLOW
onmux FLOW
hyper-g FLOW
ariell FLOW

smpte FLOW

ariel2 FLOW

ariel3 FLOW
opc-job-start FLOW
opc-job-track FLOW
icad-el FLOW
smartsdp FLOW
svrloc FLOW
ocs_cmu FLOW
ocs_amu FLOW
utmpsd FLOW
utmpcd FLOW

iasd FLOW

nnsp FLOW
mobileip-agent
mobilip-mn FLOW
dna-cml FLOW
comscm FLOW

dsfgw FLOW

FLOW

FLOW

98

Petitioners' EX1039 Page 104

99

dasp FLOW
sgcp FLOW

5 decvms-sysmgt FLOW
cve_hostd FLOW

https FLOW

10
CONNECTION { INHERITED }
snpp FLOW
microsoft-ds FLOW
15
ddm-rdb FLOW
ddm-~dfm FLOW
20 ddm-byte FLOW
as-servermap FLOW
E_ tserver FLOW
g 25
exec FLOW
o CONNECTION { INHERITED }
e login FLOW
30
. CONNECTION { INHERITED }
*ool cmd FLOW
- CONNECTION { INHERITED }
e 35 printer FLOW
CONNECTION { INHERITED }
talk FLOW
40 CONNECTION { INHERITED }
ntalk FLOW
CONNECTION { INHERITED }
utime FLOW
45

efs FLOW
timed FLOW

50 tempo FLOW

courier FLOW

conference FLOW
55

netnews FLOW

netwall FLOW

60 apertus-1dp FLOW
uucp FLOW
uucp-rlogin FLOW

65
klogin FLOW

Petitioners' EX1039 Page 105

100

kshell FLOW
new-rwho FLOW

5 dsf FLOW

remotefs FLOW

rmonitor FLOW
10

monitor FLOW

chshell FLOW

15 p9fs FLOW
whoami FLOW
meter FLOW

20

ipcserver FLOW

i urm FLOW

- 25 ngs FLOW
- : sift-uft FLOW
= npmp-trap FLOW
30
npmp-1local FLOW
npmp-gui FLOW
35 ginad FLOW

doom FLOW

mdgs FLOW

40
elcsd FLOW

entrustmanager FLOW
45 netviewdml FLOW
netviewdm?2 FLOW
netviewdm3 FLOW
50
netgw FLOW
netrcs FLOW
55 flexlm FLOW
fujitsu-dev FLOW
ris-cm FLOW
60
kerberos-adm FLOW
rfile FLOW

65 pump FLOW

grh FLOW

Petitioners' EX1039 Page 106

PR

10

15

20

25

30

35

40

45

50

55

rrh FLOW
tell FLOW
nlogin FLOW
con FLOW
ns FLOW
rxe FLOW
gquotad FLOW
cycleserv
omserv FLOW
webster
phonebook
vid FLOW
cadlock
rtip FLOW
cycleserv2
submit FLOW
rpasswd
entomb FLOW
wpages FLOW
wpgs FLOW
concert
mdbs_daemon
device FLOW
xtreelic
maitrd FLOW
busboy FLOW
garcon FLOW
puprouter

socks FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

101

Peitioners' EX1039 Page 107

10

15

20

25

30

35

40

45

50

55

60

65

-~ Virtual.pdl - Virtual Layer definition

-- Description:
- This file contains the definition for the VirtualBase layer used
- by the embodiment.

~- Copyright:

-- Copyright (c) 1998-1999 Apptitude, Inc.
- (formerly Technically Elite, Inc.)

-- All rights reserved.

-- RCS:
-- $Id: Virtual.pdl,v 1.13 1999/04/13 15:48:03 skip Exp $

-- This includes two things: the flow signature (called FLOWKEY) that the

-~ system that is going to use.

~- note that not all elements are in the HASH. Reason is that these non-HASHED
-~ elements may be varied without the HASH changing, whihc allows the system
-- to look up multiple buckets with a single HASH. That is, the MeyMatchFlag,
-- StateStatus Flag and MuliPacketID may be varied.

FLOWKEY {
KeyMatchFlags, -- to tell the system which of the in-HASH elements have to
~- match for the this particular flow record.
-~ Flows for which complete signatures may not yet have
-- been generated may then be stored in the system

StateStatusFlags,
GroupIdl IN-HASH, -- user defined
GroupId?2 IN-HASH, -- user defined
DLCProtocol IN-HASH, , -- data link protocol - lowest level we

-- evaluate. It is the type for the
-- Ethernet Vv 2

NetworkProtocol IN-HASH, -- IP, etc.
TunnelProtocol IN-HASH, -~ IP over IPX, etc.
TunnelTransport IN-HASH,

TransportProtocol IN~HASH,

ApplicationProtocol IN-HASH,

DLCAddresses (8) IN-HASH, -- lowest level address
NetworkAddresses(16) IN-HASH,
TunnelAddresses(16) IN-HASH,

Connectionlds IN-HASH,

MultiPacketId -- used for fragmentaion purposes
z— now define all of the children. In this example, only one virtual
~- child - Ethernet.
;ErtuaIChildren FIELD

SYNTAX INT(8) { ethernet(l) }

-~ now define the base for the children. In this case, it is the same as
-- for the overall system. There may be multiples.

VirtualBase PROTOCOL
::= { Virtualchildren=virtualChildren }

Petitioners' EX1039 Page 108

103

-~ The following is the header that every packet has to have and
-- that is placed into the system by the packet acquisition system.

5
VirtualBase FLOW
HEADER { LENGTH=8)}
CHILDREN { DESTINATION=VirtualChildren } -- this will be
-- Ethernet for this example.
10 -

-- the VirtualBAse will be 01 for these packets.

Petitioners' EX1039 Page 109

10

15

20

25

30

35

40

45

50

55

60

65

-- Ethernet.pdl - Ethernet frame definition

-~ Description:

- This file contains the definition for the Ethernet frame. In this

-- PDL file, the decision on EtherType vs. IEEE is made. If this is

~-- EtherType, the selection is made from this file. It would be possible
-- to move the EtherType selection to another file, if that would assist

-- in the modularity.

~- Copyright:

-- Copyright (c) 1994-1998 Apptitude, Inc.
- (formerly Technically Elite, Inc.)

-- All rights reserved.

-- RCS:
-~ $Id: Ethernet.pdl,v 1.13 1999/01/26 15:15:57 skip Exp $

-- Enumerated type of a 16 bit integer that contains all of the
-- possible values of interest in the etherType field of an
-- Ethernet V2 packet.
etherType FIELD
SYNTAX INT(16) { xns(0x0600), ip(0x0800),
chaosnet (0x0804), arp(0x0806),
vines (0xbad) ,
vinesLoop (0x0Obae), vinesLoop (0x80c4),
vinesEcho (Oxbaf), vinesEcho (0x80c¢5),
netbios (0x3¢c00), netbios(0x3c0l),
netbios (0x3¢c02}, netbios (0x3c03),
netbios (0x3¢c04), netbios (0x3c05),
netbios (0x3c06), netbios(0x3c07),
netbios (0x3c08), netbios{0x3c09),
netbios (0x3c0a), netbios(0x3cOb),
netbios (0x3c0c), netbios(0x3c0d),
dec (0x6000), mop(0x6001), mop2(0x6002),
drp(0x6003), lat(0x6004), decDiag(0x6005),
lave (0x6007), rarp(0x8035), appleTalk(0x809b),
sna (0x80d5), aarp(0x80f£3), ipx(0x8137),
snmp (0x814c), ipv6(0x86dd), loopback(0x9000) 1}
DISPLAY-HINT “1x:”
LOOKUP FILE “EtherType.cf”
DESCRIPTION
“Ethernet type field”

-~ The unformatted data field in and Ethernet V2 type frame

etherData FIELD
SYNTAX BYTESTRING (46..1500)
ENCAP etherType
DISPLAY-HINT “HexDump”
DESCRIPTION

“Ethernet data”

-- The layout and structure of an Ethernet V2 type frame with
-- the address and protocol fields in the correct offset position

ethernet PROTOCOL
DESCRIPTION
“pProtocol format for an Ethernet frame”
REFERENCE “RFC 894"

Petitioners' EX1039 Page 110

105

:= { MacDest=macAddress, MacSrc=macAddress, EtherType=etherType,
Data=etherData }

5 -- The elements from this Ethernet frame used to build a flow key
-- to classify and track the traffic. Notice that the total length
-~ of the header for this type of packet is fixed and at 14 bytes or
-- octets in length. The special field, LLC-CHECK, is specific to
-- Ethernet frames for the decoding of the base Ethernet type value.
10 -~ If it is NOT LLC, the protocol field in the flow is set to the
-- EtherType value decoded from the packet.

ethernet FLOW
HEADER { LENGTH=14 }
15 DLC-LAYER {

.SOURCE=MacSrc,
DESTINATION=MacDest,
TUNNELING,
PROTOCOL
20 : }
CHILDREN { DESTINATION=EtherType, LLC-CHECK=llc }

Petitioners' EX1039 Page 111

-- IEEE8022.pdl - IEEE 802.2 frame definitions

5 -~ Description:
-- This file contains the definition for the IEEE 802.2 Link Layer
- protocols including the SNAP (Sub-network Access Protocol).

-~ Copyright:

10 -- Copyright (c) 1994-1998 Apptitude, Inc.
~-- (formerly Technically Elite, Inc.)
-- All rights reserved.

-- RCS:
15 - $Id: IEEE8022.pdl,v 1.18 1999/01/26 15:15:58 skip Exp $
20 -- IEEE 802.2 LLC

llcsap FIELD

o SYNTAX INT(16) { ipx(0xFFFF), ipx(0xXEQEQ), isoNet (0xFEFE),
. netbios (0xFOF0), vsnap(OxAAAA), ip(0x0606),
- 25 vines (0xBCBC), xns (0x8080), spanningTree (0x4242),

sna(0x0c0c), sna(0x0808), sna(0x0404) }
e DISPLAY-HINT “1x:”
o DESCRIPTION
“Service Access Point”
30
) llcControl FIELD
i -- This is a special field. When the decoder encounters this field, it
-- invokes the hard-coded LLC decoder to decode the rest of the packet.
-- This is necessary because LLC decoding reqguires the ability to
35 -- handle forward references which the current PDL format does not
~- support at this time.
SYNTAX UNSIGNED INT(8)
DESCRIPTION
“Control field”

o 40

s 1lcPduType FIELD

SYNTAX BITSTRING(2) { llcInformation(0), llcSupervisory(l),
llcInformation(2), llcUnnumberexrd(3) }

45 llcData FIELD
SYNTAX BYTESTRING (38..1492)
ENCAP 11cPduType
FLAGS SAMELAYER
DISPLAY-HINT “HexDump”
50
1llc PROTOCOL
SUMMARIZE
“$11lcPduType == llcUnnumbered”
“LLC ($SAP) S$Modifier”
55 *$11cPduType == llcSupervisory”
“LLC ($SAP) $Function N(R)=$NR”
*$11lcPduType == 0|2”
“LLC ($SAP) N(R)=$NR N(S)=$NS”
“Default”
60 “LLC ($SAP) $1lcPduType”
DESCRIPTION
“IEEE 802.2 LLC frame format”
:= { SAP=llcSap, Control=1llcControl, Data=1llcData }

65 llc FLOW
HEADER { LENGTH=3 }
DLC-LAYER { PROTOCOL }

#
3

Péfitioners' EX1039 Page 112

10

15

20

25

30

35

40

45

50

55

60

65

107

CHILDREN { DESTINATION=SAP }

llcUnnumberedData FIELD

SYNTAX

ENCAP 1l1cSap
DISPLAY-HINT “HexDump”

1lcUnnumbered PROTOCOL
SUMMARIZE

w

Default”

BYTESTRING (0.

.1500)

“LLC ($SAP) $Modifier”
:= { Data=llcUnnumberedData }

llcSupervisoryData FIELD
SYNTAX BYTESTRING (0.
DISPLAY-HINT “HexDump”

llcSupervisory PROTOCOL
SUMMARIZE

w

Default”

.1500)

“LLC ($SAP) S$Function N(R)=S$NR”
::= { Data=llcSupervisoryData }

llcInformationData FIELD

SYNTAX

ENCAP
DISPL

llcSap
AY-HINT “HexDump”

llcInformation PROTOCOL

SUMMA.

w

RIZE
Default”

BYTESTRING(0..1500)

“LLC ($SAP) N(R)=SNR N(S)=$NS”
::= { Data=llcInformationData }

{ snap(*00:00:00"), ciscoOUI(*00:00:0C"),

-—- SNAP
snapOrgCode FIELD
SYNTAX BYTESTRING (3)
appleouI(*08:00:07") }
DESCRIPTION
“Protocol ID or Organizational Code”
vsnapData FIELD
SYNTAX BYTESTRING(46..1500)
ENCAP snapOrgCode
FLAGS SAMELAYER
DISPLAY~-HINT “HexDump"”
DESCRIPTION

w

vsnap PROTO

SNAP LLC data”

COL

DESCRIPTION

w

::= { OrgCode=snapOrgCode,

vsnap

snapType

SNAP LLC Frame”

FLOW
HEADER { LENGTH=3 }

DLC-LAYER { PROTOCOL }

Data=vsnapData }

CHILDREN { DESTINATION=OrgCode }

FIELD

SYNTAX INT(16) { xns(0x0600), ip{(0x0800), arp(0x0806),

vines (0xbad),
mop (0x6001),
lat(0x6004),
rarp(0x8035)

mop2 (0x6002), drp(0x6003),
decDiag (0x6005), lavc(0x6007),

appleTalk(0x809B), sna(0x80d45),

Petitioners' EX1039 Page 113

108

aarp (0x80F3), ipx(0x8137), snmp(0x8ldc), ipv6(0x86dd) }
DISPLAY-HINT “1lx:."
LOOKUP FILE “EtherType.cf”
DESCRIPTION
S “SNAP type field”

snapData FIELD
SYNTAX BYTESTRING (46..1500)
ENCAP snapType
10 DISPLAY-HINT “HexDump”
DESCRIPTION
“SNAP data”

snap PROTOCOL
15 SUMMARIZE
“$0rgCode == 00:00:00"
“SNAP Type=$SnapType”
“Default”
“WSNAP Org=$0rgCode Type=$SnapType”
20 DESCRIPTION
“SNAP Frame”
:= { SnapType=snapType, Data=snapData }

snap FLOW
25 HEADER { LENGTH=2 }
DLC-LAYER { PROTOCOL }
s CHILDREN { DESTINATION=SnapType }

Petitioners' EX1039 Page 114

-- IEEE8023.pdl - IEEE 802.3 frame definitions

5 ~-- Description:
-- This file contains the definition for the IEEE 802.3 (Ethernet)
-- protocols.
-- Copyright:

10 -- Copyright (c) 1994-1998 Apptitude, Inc.

-- (formerly Technically Elite, Inc.)
- All rights reserved.

-- RCS:
15 - $Id: IEEE8023.pdl,v 1.7 1999/01/26 15:15:58 skip Exp $
20 -- IEEE 802.3

ieeeB8023Length FIELD

SYNTAX UNSIGNED INT(16)

- 25 ieee8023Data FIELD

= SYNTAX BYTESTRING (38..1492)
Fam ENCAP =1lc
e LENGTH “$ieee8023Length”
- DISPLAY-HINT “HexDump”
E 30
. ieee8023 PROTOCOL
- DESCRIPTION
“IEEE 802.3 (Ethernet) frame”
il REFERENCE “RFC 1042"
= 35 ::= { MacDest=macAddress, MacSrc=macAddress, Length=ieee8023Length,

Data=ieee8023Data }

Petitioners' EX1039 Page 115

-~ IP.pdl - Internet Protocol (IP) definitions

5 -- Description:
-- This file contains the packet definitions for the Internet
-— Protocol. These elements are all of the fields, templates and

~-- processes required to recognize, decode and classify IP datagrams
-- found within packets.

10 -
-~ Copyright:
-- Copyright (c) 1994-1998 Apptitude, Inc.
-- (formerly Technically Elite, Inc.)
-~ All rights reserved.
15 --
-- RCS:
-- $Id: IP.pdl,v 1.14 1999/01/26 15:15:58 skip Exp $
20
-- The following are the fields that make up an IP datagram.
;;_ -~ Some of these fields are used to recognize datagram elements, build
- -~ flow signatures and determine the next layer in the decode process.
e 25 --
a0 ipVersion FIELD
- SYNTAX INT (4)
“re ' DEFAULT wgr
30 ipHeaderLength FIELD
) SYNTAX INT(4)
ipTypeOfService FIELD
- SYNTAX BITSTRING(8) { minCost(l), maxReliability(2),
- 35 maxThruput (3), minDelay(4) }
ipLength FIELD
SYNTAX UNSIGNED INT(16)
40 --
= —~- This field will tell us if we need to do special processing to support
-- the payload of the datagram existing in multiple packets.
ipFlags FIELD
45 SYNTAX BITSTRING (3) { moreFrags(0), dontFrag(l) }
ipFragmentOffset FIELD
SYNTAX INT(13)
50 --

-~ This field is used to determine the children or next layer of the
-- datagram.
ipProtocol FIELD
55 SYNTAX INT(8)
LOOKUP FILE “IpProtocol.cf”

ipData FIELD
SYNTAX BYTESTRING(0..1500)
60 ENCAP ipProtocol

DISPLAY-HINT “HexDump”
-- Detailed packet layout for the IP datagram. This includes all fields
65 —- and format. All offsets are relative to the beginning of the header.

ip PROTOCOL

Petitioners' EX1039 Page 116

10

15

20

25

30

35

40

45

50

55

60

111

SUMMARIZE

“$FragmentOffset != 0”:

“IPFragment ID=$Identification Offset=$FragmentOffset”

“Default”

“IP Protocol=$Protocol”

DESCRIPTION

“Protocol format for the Internet Protocol”

REFERENCE “RFC 791”
::= { Version=ipVersion,

HeaderLength=ipHeaderLength,

TypeOfService=ipTypeOfService, Length=ipLength,

Identification=UIntlé,
FragmentOffset=ipFragmentOffset,

IpFlags=ipFlags,

TimeToLive=Int8§,

Protocol=ipProtocol, Checksum=ByteStr2,

IpSrc=ipAddress,
Fragment=ipFragment, Data=ipData

IpDest=ipAddress,

Options=ipOptions,
}

-~ This is the description of the signature elements required to build a flow

-~ that includes the IP network layer protocol.

-~ the lower layers.

Notice that the flow builds on

Only the fields required to complete IP are included.

-- This flow requires the support of the fragmentation engine as well as the

-- potential of having a tunnel.
-- protocol field.

ip FLOW

The child field is found from the IP

HEADER { LENGTH=HeaderLength, IN-WORDS }

NET-LAYER ({
SOURCE=IpSrc,
DESTINATION=IpDest,
FRAGMENTATION=IPV4,
TUNNELING

}

CHILDREN { DESTINATION=Protocol }

“$ipLength - $ipHeaderLength * 4*

ipFragbhata FIELD
SYNTAX BYTESTRING(1l..1500)
LENGTH
DISPLAY-HINT “HexDump”
ipFragment GROUP
OPTIONAL “SFragmentOffset != 0”

::= { Data=ipFragData }

ipOptionCode FIELD
SYNTAX INT(8) { ipRR(0x07)
ipLSRR(0x83),
DESCRIPTION
“IP option code”

ipOptionLength FIELD
SYNTAX UNSIGNED INT(8)
DESCRIPTION
“Length of IP option”

ipOptionData FIELD

, ipTimestamp (0x44),

ipSSRR(0x89) }

SYNTAX BYTESTRING(0..1500)
ENCAP ipOptionCode
DISPLAY-HINT “HexDump”
ipOptions GROUP
LENGTH “($ipHeaderLength * 4) - 20*

::= { Code=ipOptionCode, Length=ipOptionLength, Pointer=UInts8,

Data=ipOptionData }

Petitioners' EX1039 Page 117

10

15

20

25

30

35

40

45

50

35

60

65

-- TCP.pdl - Transmission Control Protocol (TCP) definitions

-- Description:

-- This file contains the packet definitions for the Transmission

-- Control Protocol. This protocol is a transport service for

-~ the IP protocol. 1In addition to extracting the protocol information

-- the TCP protocol assists in the process of identification of connections
-- for the processing of states.

-- Copyright:

-- Copyright (c) 1994-1998 Apptitude, Inc.
-- (formerly Technically Elite, Inc.)

- All rights reserved.

-- RCS:
- $Id: TCP.pdl,v 1.9 1999/01/26 15:16:02 skip Exp $

-- This is the 16 bit field where the child protocol is located for
-- the next layer beyond TCP.

tcpPort FIELD
SYNTAX UNSIGNED INT(16)
LOOKUP FILE “TcpPort.cf”

tcpHeaderLen FIELD
SYNTAX INT(4)

tcpFlags FIELD
SYNTAX BITSTRING(12) { £in(0), syn(l), rst(2), psh(3), ack(4), urg(5) }

tcpData FIELD

SYNTAX BYTESTRING(0..1564)
LENGTH “($ipLength - ($ipHeaderLength * 4)) - ($tcpHeaderlLen * 4)”
ENCAP tcpPort

DISPLAY-HINT “HexDump”

-- The layout of the TCP datagram found in a packet. Offset based on the
-- beginning of the header for TCP.

tcp PROTOCOL

SUMMARIZE
“Default”
“TCP ACK=$Ack WIN=$WindowSize"
DESCRIPTION
“Protocol format for the Transmission Control Protocol”
REFERENCE “RFC 793"

:= { SrcPort=tcpPort, DestPort=tcpPort, SequenceNum=UInt32,
Ack=UInt32, HeaderLength=tcpHeaderLen, TcpFlags=tcpFlags,
WindowSize=UIntlé, Checksum=ByteStr2,
UrgentPointer=UIntlé, Options=tcpOptions, Data=tcpData }

-~ The flow elements required to build a key for a TCP datagram.

-- Noticed that this FLOW description has a CONNECTION section. This is
-- used to describe what connection state is reached for each setting
-~ of the TcpFlags field.

tecp FLOW
HEADER { LENGTH=HeaderLength, IN-WORDS }
CONNECTION {
IDENTIFIER=SequenceNum,
CONNECT-START="TcpFlags:1”,

Petitioners' EX1039 Page 118

113

CONNECT-COMPLETE="TcpFlags:4”,
DISCONNECT-START="TcpFlags:0”,
DISCONNECT-COMPLETE="TcpFlags:4”
}
5 PAYLOAD { INCLUDE-HEADER }
CHILDREN { DESTINATION=DestPort, SOURCE=SrcPort }

tcpOptionKind FIELD
SYNTAX UNSIGNED INT(8) { tcpOptEnd{0), tcpNop{l), tcpMSS(2),
10 tcpWscale(3), tcpTimestamp(4) }
DESCRIPTION

“Type of TCP option”

tcpOptionbata FIELD
15 SYNTAX BYTESTRING(0..1500)
ENCAP tcpOptionKind
FLAGS SAMELAYER

DISPLAY~-HINT “HexDump”

20 tcpOptions GROUP

LENGTH “($tcpHeaderLen * 4) - 207
- SUMMARIZE
- “Default”
- - “Option=$Option, Len=$OptionLength, $OptionData”
T 25 ::= { Option=tcpOptionKind, OptionLength=UInt8, OptionData=tcpOptionData }
tcpMSS PROTOCOL

5 } ::= { MaxSegmentSize=UIntlé }

Petitioners' EX1039 Page 119

-- UDP.pdl - User Datagram Protocol (UDP) definitions

5 -- Description:
-- This file contains the packet definitions for the User Datagram
-- Protocol.
-- Copyright:

10 -- Copyright (c) 1994-1998 Apptitude, Inc.

-- (formerly Technically Elite, Inc.)
-- All rights reserved.

-- RCS:
15 -- $Id: UDP.pdl,v 1.9 1999/01/26 15:16:02 skip Exp §$
udpPort FIELD
SYNTAX UNSIGNED INT(16)
20 LOOKUP FILE “UdpPort.cf”

- udpLength FIELD
o SYNTAX UNSIGNED INT(16)

25 udpData FIELD
SYNTAX BYTESTRING (0..1500)
ENCAP udpPort
DISPLAY-HINT “HexDump"”

- 30 udp PROTOCOL

= SUMMARIZE

T “Default”

: “UDP Dest=$DestPort Src=$SrcPort”

o DESCRIPTION

i 35 “Protocol format for the User Datagram Protocol.”
: REFERENCE "RFC 768"

:= { SrcPort=udpPort, DestPort=udpPort, Length=udpLength,
Tl Checksum=ByteStr2, Data=udpData)}

_%: 40 udp FLOW

HEADER { LENGTH=8 }
CHILDREN { DESTINATION=DestPort, SOURCE=SrcPort }

Petitioners' EX1039 Page 120

-~ RPC.pdl - Remote Procedure Calls (RPC) definitions

5 -~ Description:
- This file contains the packet definitions for Remote Procedure
- Calls.
-- Copyright:

10 -- Copyright (c) 1994-1999 apptitude, Inc.

-- (formerly Technically Elite, Inc.)
- All rights reserved.

-- RCS:
15 -~ $Id: RPC.pdl,v 1.7 1999/01/26 15:16:01 skip Exp $
rpcType FIELD
20 SYNTAX UNSIGNED INT(32) { rpcCall(0), rpcReply(l) }
rpcDhata FIELD
. SYNTAX BYTESTRING (0. .100)
- ENCAP rpcType
£ FLAGS SAMELAYER
25 DISPLAY-HINT “HexDump”
. rpc PROTOCOL
i i SUMMARIZE
ias “$Type == rpcCall”
: 30 “RPC $Program”
: “$ReplyStatus == rpcAcceptedReply”
: “RPC Reply Status=$Status”
“$ReplyStatus == rpcDeniedReply”
- “RPC Reply Status=$Status, AuthStatus=$AuthStatus”
o 35 “Default”
: “RPC $Program”
I DESCRIPTION
: “Protocol format for RPC”
REFERENCE
= 40 “RFC 1057"
; ::= { XID=UInt32, Type=rpcType, Data=rpcData }
rpc FLOW
HEADER { LENGTH=0 }
45 PAYLOAD { DATA=XID, LENGTH=256 }
-- RPC Call

50 rpcProgram FIELD
SYNTAX UNSIGNED INT(32) { portMapper (100000), nfs(100003),
mount (100005), lockManager(100021), statusMonitor(100024) }

rpcProcedure GROUP
55 SUMMARIZE
*Default”
“Program=$Program, Version=$Version, Procedure=$Procedure”
:= { Program=rpcProgram, Version=UInt32, Procedure=UInt32 }

60 rpcAuthFlavor FIELD
SYNTAX UNSIGNED INT(32) { null{(0), unix(l), short(2) }

rpcMachine FIELD
SYNTAX LSTRING(4)
65
rpcGroup GROUP
LENGTH “$NumGroups * 4”

Petitioners' EX1039 Page 121

v
s L

10

Is

20

25

30

35

40

45

50

55

60

65

116
:= { Gid=Int32 }

rpcCredentials GROUP
LENGTH “$CredentialLength”

::= { Stamp=UInt32, Machine=rpcMachine, Uid=Int32, Gid=Int32,
NumGroups=UInt32, Groups=rpcGroup }

rpcVerifierData FIELD
SYNTAX BYTESTRING(0..400)
LENGTH “$VerifierLength”
rpcEncap FIELD

SYNTAX COMBO Program Procedure
LOOKUP FILE “RPC.cf”

rpcCallData FIELD
SYNTAX BYTESTRING (0. .100)
ENCAP rpcEncap
DISPLAY-HINT “HexDump"”

rpcCall PROTOCOL
DESCRIPTION
“Protocol format for RPC call“

:= { RPCVersion=UInt32, Procedure=rpcProcedure,
CredentialAuthFlavor=rpcAuthFlavor, CredentialLength=UInt32,
Credentials=rpcCredentials,
VerifierAuthFlavor=rpcAuthFlavor, VerifierLength=UInt32,
Verifier=rpcVerifierData, Encap=rpcEncap, Data=rpcCallData }

rpcReplyStatus FIELD
SYNTAX INT(32) { rpcAcceptedReply(0), rpcDeniedReply(l} }

rpcReplyData FIELD

SYNTAX BYTESTRING(0..40000)
ENCAP rpcReplyStatus
FLAGS SAMELAYER

DISPLAY-HINT “HexDump”

rpcReply PROTOCOL
DESCRIPTION
“Protocol format for RPC reply”
::= { ReplyStatus=rpcReplyStatus, Data=rpcReplyData }

rpcAcceptStatus FIELD
SYNTAX INT (32) { Success(0), ProgUnavail(l), ProgMismatch(2),
ProcUnavail (3), GarbageArgs(4), SystemError(5) }

rpcAcceptEncap FIELD
SYNTAX BYTESTRING (0)
FLAGS NOSHOW

rpcAcceptData FIELD
SYNTAX BYTESTRING(0..40000)
ENCAP rpcAcceptEncap

DISPLAY-HINT “HexDump”

rpcAcceptedReply PROTOCOL
:= { VerifierAuthFlavor=rpcAuthFlavor, VerifierLength=UInt32,
Verifier=rpcVerifierData, Status=rpcAcceptStatus,
Encap=rpcAcceptEncap, Data=rpcAcceptData }

rpcDeniedStatus FIELD
SYNTAX INT(32) { rpcVersionMismatch(0), rpcAuthError(l) }

Petitioners' EX1039 Page 122

117

rpcAuthStatus FIELD
SYNTAX INT(32) { Okay({(0), BadCredential(l), RejectedCredential(2),
Badverifier(3), RejectedVerifier(4), TooWeak(5),
InvalidResponse(6), Failed(7) }

rpcDeniedReply PROTOCOL
::= (Status=rpcDeniedStatus, AuthStatus=rpcAuthStatus)}

10 -- RPC Transactions
rpcBindLookup PROTOCOL
SUMMARIZE
“Default”
15 “RPC GetPort Prog=$Prog, Ver=$Ver, Proto=$Protocol”
:= { Prog=rpcProgram, Ver=UInt32, Protocol=UInt32 }

rpcBindLookupReply PROTOCOL
SUMMARIZE
20 “Default”
“RPC GetPortReply Port=$Port”
:= { Port=UInt32 }

Petitioners' EX1039 Page 123

10

15

20

25

30

35

40

45

50

55

60

65

-- NFS.pdl

-- Descrip

- Network File System

tion:

(NFS) definitions

-- This file contains the packet definitions for the Network File
- System.

-- Copyrig

ht:

-- Copyright (c) 1994-1998 Apptitude, Inc.
-- (formerly Technically Elite, Inc.)
- All rights reserved.

-- RCS:

-- $Id: NFS.pdl,v 1.3 1999/01/26 15:15:59 skip Exp $

nfsString

FIELD

SYNTAX LSTRING(4)

nfsHandle

FIELD

SYNTAX BYTESTRING (32)
DISPLAY-HINT "“16x\n

nfsData

SYNTAX

FIELD

DISPLAY-HINT “HexDump”

BYTESTRING (0..100)

Filename=nfsString }

nfsAccess PROTOCOL
SUMMARIZE
“Default”
“NFS Access S$Filename”
::= { Handle=nfsHandle,
nfsStatus FIELD

SYNTAX INT(32) { OK(0), NoSuchFile(2) }

nfsAccessReply PROTOCOL
SUMMARIZE
“Default”
“NFS AccessReply $Status”

:= { Statu

nfsMode

s=nfsStatus }

FIELD

SYNTAX UNSIGNED INT(32)
DISPLAY-HINT “40”

nfsCreate

PROTOCOL

SUMMARIZE

“Default”
“NFS Create $Filename”

e=nfsHandle, Filename=nfsString, Filler=Int8, Mode=nfsMode,

Uid=Int32, Gid=Int32, Size=Int32, AccessTime=Int64, ModTime=Int64 }

:= { Handl

nfsFileType FIELD
SYNTAX INT(32) { Regular(l),
nfsCreateReply PROTOCOL
SUMMARIZE
“Default”

:= { Status=nfsStatus,

Directory(2) }

“NFS CreateReply $Status”

Mode=nfsMode, Links=UInt32,
BlockSize=Int32, NumBlocks=Int64, FileSysId=UInt32, FileId=UInt32,
AccessTime=Int64, ModTime=Inté64, InodeChangeTime=Inté64)}

nfsRead

PROTOCOL

Handle=nfsHandle, FileType=nfsFileType,

Uid=Int32, Gid=Int32, Size=Int32,

Petitioners' EX1039 Page 124

IR

ol

10

15

20

25

30

35

40

45

50

55

60

65

119

SUMMARIZE
“Default”
“NFS Read Offset=$0ffset Length=$Length”
::= { Length=Int32, Handle=nfsHandle, Offset=UInt64, Count=Int32)}

nfsReadReply PROTOCOL
SUMMARIZE
“Default”
“NFS ReadReply $Status”
::= { Status=nfsStatus, FileType=nfsFileType,
Mode=nfsMode, Links=UInt32, Uid=Int32, Gid=Int32, Size=Int32,
BlockSize=Int32, NumBlocks=Int64, FileSysId=UInt32, FileId=UInt32,
AccessTime=Int64, ModTime=Int64, InodeChangeTime=Int64)}

nfsWrite PROTOCOL
SUMMARIZE
“Default”
“NFS Write Offset=$0ffset”
:= { Handle=nfsHandle, Offset=Int32, Data=nfsData }

nfsWriteReply PROTOCOL
SUMMARIZE
“Default”
“NFS WriteReply $Status”
::= { Status=nfsStatus, FileType=nfsFileType,
Mode=nfsMode, Links=UInt32, Uid=Int32, Gid=Int32, Size=Int32,
BlockSize=Int32, NumBlocks=Int64, FileSysId=UInt32, FileId=UInt32,
AccessTime=Int64, ModTime=Int64, InodeChangeTime=Inté64)}

nfsReadDir PROTOCOL
SUMMARIZE
“Default”
“NFS ReadDir"
::= { Handle=nfsHandle, Cookie=Int32, Count=Int32 }

nfsReadDirReply PROTOCOL
SUMMARIZE
*Default”
“NFS ReadDirReply $Status”
::= { Status=nfsStatus, Data=nfsData }

nfsGetFileAttr PROTOCOL
SUMMARIZE
“Default”
*NFS GetAttr’
::= { Handle=nfsHandle }

nfsGetFileAttrReply PROTOCOL
SUMMARIZE
“Default”
“NFS GetAttrReply $Status $FileType”
::= { Status=nfsStatus, FileType=nfsFileType,
Mode=nfsMode, Links=UInt32, Uid=Int32, Gid=Int32, Size=Int32,
BlockSize=Int32, NumBlocks=Int64, FileSysId=UInt32, FileId=UInt32,
AccessTime=Int64, ModTime=Int64, InodeChangeTime=Int64 }

nfsReadLink PROTOCOL
SUMMARIZE
“Default”
*NFS ReadLink”
:= { Handle=nfsHandle)

nfsReadLinkReply PROTOCOL
SUMMARIZE
“Default”
“NFS ReadLinkReply Path=$Path”
::= { Status=nfsStatus, Path=nfsString }

-

Petitioners' EX1039 Page

125

120

nfsMount PROTOCOL

SUMMARIZE
"Default”
“NFS Mount $Path”

5
: { Path=nfsString }

nfsMountReply PROTOCOL

SUMMARIZE
10 “Default” :
“NFS MountReply $MountStatus”

{ MountStatus=nfsStatus, Handle=nfsHandle }

nfsStatFs PROTOCOL

15 SUMMARIZE
“Default”

“NFS StatFs”
{ Handle=nfsHandle }

PROTOCOL

20 nfsStatFsReply

SUMMARIZE
“Default”
“NFS StatFsReply $Status”
{ Status=nfsStatus, TransferSize=UInt32, BlockSize=UInt32,
FreeBlocks=UInt32, AvailBlocks=UInt32 }

25 TotalBlocks=UInt32,

) . nfsRemoveDir PROTOCOL
o ‘ SUMMARIZE
“Default”
30 “NFS RmDir $Name”
{ Handle=nfsHandle, Name=nfsString }

nfsRemoveDirReply PROTOCOL

SUMMARIZE
35 *Default”
“"NFS RmDirReply $Status”

{ Status=nfsStatus }

nfsMakeDir PROTOCOL

40 SUMMARIZE
“Default”

“NFS MkDir $Name”
{ Handle=nfsHandle, Name=nfsString }

nfsMakeDirReply PROTOCOL

45
SUMMARIZE
“Default”
“NFS MkDirReply $Status”

{ Status=nfsStatus }

50
nfsRemove PROTOCOL
SUMMARIZE
“Default”

“"NFS Remove $Name”
{ Handle=nfsHandle, Name=nfsString }

55 iz
nfsRemoveReply PROTOCOL
SUMMARIZE
“Default”
60 “NFS RemoveReply $Status”
::= { Status=nfsStatus }

Petitioners' EX1039 Page 126

10

15

20

25

30

35

40

45

50

55

60

65

-- HTTP.pdl - Hypertext Transfer Protocol (HTTP) definitions

-- Description:

-— This file contains the packet definitions for the Hypertext Transfer
- Protocol.

-- Copyright:

-- Copyright (c¢) 1994-1999 Apptitude, Inc.
-- (formerly Technically Elite, Inc.)

-- All rights reserved.

-- RCS:
-- $Id: HTTP.pdl,v 1.13 1999/04/13 15:47:57 skip Exp $

httpData FIELD
SYNTAX BYTESTRING(1..1500)
LENGTH “($ipLength - ($ipHeaderLength * 4))

($tcpHeaderLen
* 4)11

DISPLAY-HINT “Text”
FLAGS NOLABEL

http PROTOCOL
SUMMARIZE
“$httpData m/"“GET|"HTTP|"HEAD|"POST/”
“HTTP $httpData”
“$httpData m/~[Dd]ate|~[Ss]erver|~([Ll]last~[Mm]odified/”
“HTTP $httpData”
“$httpData m/"[(Cclontent-/*
“HTTP $httpData”
“$httpData m/~<HTML>/"*
“HTTP [HTML document]”
“$ShttpData m/~GIF/”
“HTTP [GIF imagel”
“Default”
“HTTP [Datal”
DESCRIPTION
“Protocol format for HTTP.”
::= { Data=httpData }

http FLOW
CONNECTION { INHERITED }
PAYLOAD { INCLUDE-HEADER, DATA=Data, LENGTH=256 }
STATES
“S0: CHECKCONNECT, GOTO S1
DEFAULT NEXT SO

S1: WAIT 2, GOTO S2, NEXT S1
DEFAULT NEXT SO

S2: MATCH
‘\n\r\n' 900 0 0 255 0, NEXT S3
‘\n\n' 900 0 0 255 0, NEXT S3
'POST /tds?' 50 0 0 127 1, CHILD sybaseWebsqgl
' .hts HTTP/1.0' 50 4 0 127 1, CHILD sybaseJdbc
‘jdbc:sybase:Tds' 50 4 0 127 1, CHILD sybaseTds
'PCN-The Poin' 500 4 1 255 0, CHILD pointcast
‘t: BW-C-' 100 4 1 255 0, CHILD backweb
DEFAULT NEXT S3

S3: MATCH
‘\n\r\n' 50 0 O 0 0, NEXT S3
‘\n\n' 50 0 O 0 0, NEXT S3
‘Content-Type: ' 800 0 0 255 0, CHILD mime
'PCN-The Poin' 500 4 1 255 0, CHILD pointcast

Petitioners' EX1039 Page 127

122

't: BW-C-' 100 4 1 255 0, CHILD backweb
DEFAULT NEXT SO0”

sybaseWebsql FLOW
5 STATE-BASED

sybaseJddbc FLOW
STATE-BASED

10 sybaseTds FLOW
STATE~-BASED

pointcast FLOW
STATE-BASED
15
backweb FLOW
STATE-BASED
mime FLOW
20 STATE-BASED
STATES
N “S0: MATCH
o 'application' 900 0 0 1 0, CHILD mimeApplication
e 'audio’ 900 0 0 1 0, CHILD mimeAudio
a, 25 'image' 50 0 0 1 0, CHILD mimeImage
= 'text' 50 00 1 0, CHILD mimeText
e) ‘video' 50 0 0 1 0, CHILD mimeVideo
Cut . 'x-world' 500 4 1 255 0, CHILD mimeXworld
= DEFAULT GOTO S0”
L - 30
mimeApplication FLOW
= STATE-BASED
N mimeAudio FLOW
e 35 STATE-BASED
STATES
*S0: MATCH
‘basic’ 100 0 0 1 0, CHILD pdBasicAudio
i ‘midi’ 100 0 0 1 0, CHILD pdMidi
s 40 ‘mpeg’ 100 0 0 1 0, CHILD pdMpeg2audio
= ‘vnd.rn-realaudio' 100 0 0 1 0, CHILD pdRealAudio
‘wav' 100 0 0 1 0, CHILD pdwav
'x-aiff’ 100 0 0 1 0, CHILD pdAiff
'x-midi'’ 100 0 0 1 0, CHILD pdMidi
45 'x-mpeg' 100 0 0 1 0, CHILD pdMpeg2Audio
'X-mpgurl' 100 0 0 1 0, CHILD pdMpeg3Audio
'x-pn~-realaudio’ 100 0 0 1 0, CHILD pdrRealAudio
'x-wav' 100 0 0 1 0, CHILD pdwav
DEFAULT GOTO SO“
50
mimeImage FLOW
STATE-BASED
mimeText FLOW
55 STATE-BASED

mimevideo FLOW
STATE-BASED

60 mimeXworld FLOW
STATE-BASED

pdBasicAudio FLOW
STATE-BASED
65
pdMidi FLOW
STATE-BASED

Petitioners' EX1039 Page 128

10

15

pdMpeg2Audio FLOW
STATE-BASED

pdMpeg3Audio FLOW
STATE-BASED

pdRealAudio FLOW
STATE-BASED

pdwWav FLOW
STATE-BASED

pdAiff FLOW
STATE-BASED

123

»

Petitioners' EX1039 Page 129

124

CLAIMS

What is claimed is:

L. A method of pefforming protocol specific operations on a packet passing through
ﬁ‘g\ a connection pointfon a computer network, the method comprising:

5 (a) receivi

(b) receivi g a set of protocol descriptions for a plurality of protocols that

10 packet including for any particular child protocol of the particular
protgcol information at one or more locations in the packet related to the

partjcular child protocol,

the one or more locations in the packet where information is stored

(ii)
relgted to any child protocol of the particular protocol, and
15 (iii) the none or more protocol specific operations to be
performed on the packet for the particular protocol at the particular layer

level; and

©) performing the protocol specific operations on the packet specified by the
set of ﬂprotocol descriptions based on the base protocol of the packet and the

20 childrgn of the protocols used in the packet.

2. A method|according to claim 1, wherein step (c) of performing protocol specific

operations i performed recursively for any children of the children.

3. A method according to claim 1, wherein which protocol specific operations are
performed i step (c) depends on the contents of the packet such that the method

25 adapts to different protocols according to the contents of the packet.

4. A method according to claim 1, further comprising:

Petitioners' EX1039 Page 130

10

e 15

20

25

125

storing a dqtabase in a memory, the database generated from the set of
protocol descriptions and including a data structure containing information on
the possible prptocols and organized for locating the child protocol related
information fgr any protocol, the data structure contents indexed by a set of
one or more ipdices, the database entry indexed by a particular set of index

values including an indication of validity,
wherein the child prgtocol related information includes a child recognition pattern,

wherein step (c) of/performing the protocol specific operations includes, at any
particular protocol|layer level starting from the base level, searching the packet at
the particular protpcol for the child field, the searching including indexing the data

structure until a valid entry is found, and
whereby the datajstructure is configured for rapid searches using the index set.

A method acgording to claim 4, wherein the protocol descriptions are provided in

ption language, the method further comprising:
compliling the PDL descriptions to produce the database.

A method agcording to claim 4, wherein the data structure comprises a set of

arrays, each arfay identified by a first index, at least one array for each protocol, each

array further indexed by a second index being the location in the packet where the
child protocol felated information is stored, such that finding a valid entry in the data

structure provides the location in the packet for finding the child recognition pattern

A method 4ccording to claim 6, wherein each array is further indexed by a third
index being the size of the region in the packet where the child protocol related
information i$ stored, such that finding a valid entry in the data structure provides
the location dnd the size of the region in the packet for finding the child recognition

pattern.

A method according to claim 7, wherein the data structure is compressed
according tola compression scheme that takes advantage of the sparseness of valid

entries in the data structure.

Petitioners' EX1039 Page 131

10

15

20

25

10.

11.

12.

13.

14.

15.

126

A method according to claim 8, wherein the compression scheme combines two

or more arrays that have no conflicting common entries.

A method accordling to claim 4, wherein the data structure includes a set of tables,
each table identifiefd by a first index, at least one table for each protocol, each table
further indexed by [a second index being the child recognition pattern, the data
structure further including a table that for each protocol provides the location in the
packet where the dhild protocol related information is stored, such that finding a
valid entry in the data structure provides the location in the packet for finding the

child recognition pattern for an identified protocol.

A method according to claim 10, wherein the data structure is compressed

according to a compression scheme that takes advantage of the sparseness of valid

entries in the set ¢f tables.

A method according to claim 11, wherein the compression scheme combines two

or more tables tth have no conflicting common entries.

A method accprding to claim 1, wherein the protocol specific operations include
one or more par§ing and extraction operations on the packet to extract selected
portions of the packet to form a function of the selected portions for identifying the

packet as belonging to a conversational flow.

A method acdording to claim 1, wherein the protocol descriptions are provided in

a protocol description language.

A method accprding to claim 14, further comprising:

compiling the PDL descriptions to produce a database and store the
a memory, the database generated from the set of protocol

descriptioris and including a data structure containing information on the

possible prptocols and organized for locating the child protocol related
information for any protocol, the data structure contents indexed by a set of
one or more| indices, the database entry indexed by a particular set of index

values includling an indication of validity,

Petitioners' EX1039 Page 132

10

20

25

16.

17.

18.

127

wherein the child/protocol related information includes a child recognition pattern,

and

wherein the step of performing the protocol specific operations includes, at any
particular protgcol layer level starting from the base level, searching the packet at
the particular grotocol for the child field, the searching including indexing the data

structure until ja valid entry is found,
whereby the data structure is configured for rapid searches using the index set.
A method/according to claim 13, further comprising:

looking up a flow-entry database comprising none or more flow-entries, at least
one flow-entry for each previously encountered conversational flow, the looking up
using at legst some of the selected packet portions and determining if the packet

matches ag existing flow-entry;

if the packet is of an existing flow, classifying the packet as belonging to the

found existing flow; and

if the packet is of a new flow, storing a new flow-entry for the new flow in the

flow-enfry database, including identifying information for future packets to be

ethod according to claim 13, wherein the protocol specific operations further
includ¢ one or more state processing operations that are a function of the state of the

flow gf the packet.

A method according to claim 1, wherein the protocol specific operations include
one of more state processing operations that are a function of the state of the flow of

the packet.

Petitioners' EX1039 Page 133

-

10

15

20

128

ABSTRACT

A method of performing protocol specific operations on a packet passing through a
connection point on a computer network. The packet contents conform to protocols of a
layered model wherein the protocol at a at a particular layer level may include one or a
set of child protocols defined for that level. The method includes receiving the packet
and receiving a set of protocol descriptions for protocols may be used in the packet. A
protocol description for a particular protocol at a particular layer level includes any child
protocols of the particular protocol, and for any child protocol, where in the packet
information related to the particular child protocol may be found. A protocol description
also includes any protocol specific operations to be performed on the packet for the
particular protocol at the particular layer level. The method includes performing the
protocol specific operations on the packet specified by the set of protocol descriptions
based on the base protocol of the packet and the children of the protocols used in the
packet. A particular embodiment includes providing the protocol descriptions in a high-
level protocol description language, and compiling to the descriptions into a data
structure. The compiling may further include compressing the data structure into a
compressed data structure. The protocol specific operations may include parsing and
extraction operations to extract identifying information. The protocol specific operations
may also include state processing operations defined for a particular state of a

conversational flow of the packet.

Petitioners' EX1039 Page 134

PRINT OF DRAWINGS

AS ORIGINALLY FILET
1/20
100
CLIENT 4 108
ANALYZER
116
L/

CLIENT 3 SERVER 2

" M0

121

DATA COMMUNICATIONS
NETWORK

102
125
\\\l 123
'p—-‘:} 118
SERVER 2 105 —
B CLIENT 2 |/ CLIENT 1~
112 104

FIG. 1

Petitioners' EX1039 Page 135

Petitioners' EX1039 Page 136

_ 602 H
2ol / k
“ u = Aldas wnyep ‘ A |ls | — % | .
| \ 802
e v_A 5.2 120 €12 2.2 112 0.2° _vr
/ﬂl||o = 1senbal wnyep A |t s |1y :
: \ | :
i 592> $92° £92° 292° 192° 092 :
2 H3IAH3S$ NOILYOddY € IN3IO |
\ 4
R T 4 J =
) KN A 1o s feas]
—
Q= 658> 62> €52 252> 162> 0S2 |
-~ =1 L2 mo A
« Im e {901) 20e m
¢ 02 __ Gis B e *ﬂ Lo | ts haa
. N — e L Y
e 0be
- Sve vve eve ave BNU /,EN -
| e < | ee2’ze2’ie2’0ee’ 622°822°L22 922’ SeT vee 902 | S

= |ofdspolas|w | | @[t |'s Y]

£22’222 122’022’ 612°812°212 912’ §12° vlg’

o —

PRINT OF DRAWINGS

AS ORIGINALL

R R T N R A e LR

ALLY FILES

e ———
PR

PRINT OF DRAWINGS
AS ORIGIN

5

3/20

'

JOVNONVY]
Ol1dIos3aa

1000104d

| e _
| HIZAIVNY _
| ENOILVYHIJO _
ONSSIO0Hd
_ 31VIS \ _
I I
| * NV _
_ 8¢t _
| 9ce I
I _ HIZINILDO
_ asvaviva _) ANV
|7 § N NOILONHLSNI| | | 43 NdNOO
_ HOSS300Hd _
i ENAARS) Y
| __| NOLLYZITYNIL _
| [[NLvolissvio _
! r
! ¥ Lo
| _ _ 3svaviva
aHoO3H NOILVOI4ILNIAl _ NOILOVH1X3 80€|
'Ly NMONM [o 31VIS B _ _ any ~
I MO, 7020104d | 3ISHVd ‘NH3ILIVd
~~ 3lvadn _
Iz gLe—" _ _
L _ L _ Fe = |
1 »
| : || _ ~
e e e — _ J
| (IHOVO VIA P
zle
“ veedaa) | | “ 8 A 4&
SQHOOH | | 13) v,
Ssvawiva | | 1 L¢ eadoomy ond el tidvemAnG o« NoLVIEONI | NOUEIHON
_ « MIN R ea | | ONIAILNIQI
dNXoo1 INDINN aling 3ZIND0O3H
(_ M 1 | T |anv 3ziwn
e _ | 90€ < voe
vee ———4 ' [0 yasuvd
< > _ o o _ _______

c0¢€

Petitioners' EX1039 Page 137

Niada A3
PRINT OF DRAWINGS
AS ORIGINALLY FILED

4/20

401

402
HIGH LEVEL | /

PACKET
DECODING
DESCRIPTION
g 404 405
GENERATE P AGKETE
z b APSSSELD COMPILE STATE
DESCRIPTIONS —™|INSTRUCTIONS
EXTRACT AND
OPERATIONS OPERATIONS
Q 403
N———— — 407
i 406 RATTERN, PARSE STATE y
= AND PROCESSOR
EXTRACTION INSTRUCTION
= DATABASE 408 409 DATABASE
ek PR
LOAD LOAD STATE
»| o FARSING NSTRUCTION
' SUBSYSTEM DATABASE
MEMORY MEMORY

\400

ﬂ%
410

FIG. 4

Petitioners' EX1039 Page 138

Niatz ¢

PRINT OF DRAWINGS
AS ORIGINALLY FILEF

5/20

Q\f 501

ﬂ\lPUT PACKET /<f 502

503 *\/

504

506

LOAD PACKET
COMPONENT [
512
BUILD
ORE IN PACKET® o PACKET
KEY
YES
FETCH NODE AND
» PROCESS FROM|)
PATTERNS 505
513
NEXT

PACKET z
COMPONENT 511

A

APPLY NODE' A
PROCESS TO
COMPONENT

510\

EXTRACT
509 S ELEMENTS

FIG. 5

500

Petitioners' EX1039 Page 139

PRINT OF DRAWINGS
AS ORIGINALLY FILEF

6/20

601

PACKET 602
COMPONENT AND
PATTERN NODE
c03 :

LOAD PACKET

™ COMPONENT [610 >
LOAD KEY
BUFFER
FETCH EXTRACTION
AND PROCESS FRO
PATTERNS 605
NO 611
606 NEXT
ORE EXTRACTION>_NO»{ PACKET | =609
ELEMENTS? COMPONENT
607 1 APPLY EXTRACTION
PROCESS TO
COMPONENT \
600
MORE TO 608
EXTRACT?
YES—

FIG. 6

Petitioners' EX1039 Page 140

NiAts -~
PRINT OF DRAWINGS
AS ORIGINALLY FILEF

7/20

701

EY BUFFER AND 702
PATTERN NODE

LOAD PATTERN
703~ NODE ELEMENT [¢]

708 3

704 MORE PATTER NO N ,JoutPuTTO
NODES? ANALYZER

> 3
A 4
HASH KEY BUFFE

R
ELEMENT FROM_I\j 705
PATTERN NODE _|

PACK KEY & HASH

706 l)\700

MPONE
707 —g—

FIG. 7

709

L/7

Petitioners' EX1039 Page 141

[TP

PRINT OF DRAWINGS
AS ORIGINALLY FILET

800
N

8/20
801

FKB ENTRY FO
PACKET

/u

COMPUTE CONVERSATION
RECORD BIN FROM HASH

;

i i

805

NEXT BUCKET

Q 809

REQUEST RECORD BIN/
BUCKET FROM CACHE

ORE BUCKET
IN THE BIN?

COMPARE CURRENT BIN
AND BUCKET RECORD KEY
TO PACKET

] e

~ 803

804

5 806

SET UFKB FOR
PACKET AS 'NEW'

/— 807

YES

MARK RECORD BIN AND
BUCKET 'IN PROCESS' IN
CACHE AND TIMESTAMP

810

y

SET UFKB FOR PACKET

811 —_| AS 'FOUND'
812~ | UPDATE STATISTICS FOR
RECORD IN CACHE

\/8) FIG. 8

Petitioners' EX1039 Page 142

Ry

PRINT OF DRAWINGS
AS ORIGINALLY FILET

901

PORTMAPPESH

RPC

BIND LOOKUF
REQUEST

EXTRACT PROGRAM EXTRACT PORT
903 “\ GET 'PROGRAM, GET 'PROGRAM!,
'VERSION', 'PORT AND 'VERSION' AND
'PROTOCOL (TCP OR 'PROTOCOL (TCP OR
UDP) UDP)'

/

)

[

908
< SAVE REQUEST

SAVE 'PROGRAM',

CREATE SERVER STAT

SAVE 'PROGRAM,, 'VERSION' AND
904 ‘\ 'VERSION', 'PORT' AND 'PROTOCOL (TCP OR
'PROTOCOL (TCP OR UDP)' WITH
UDP)' WITH NETWORK DESTINATION
ADDRESS IN SERVER NETWORK ADDRESS.

STATE DATABASE. KEY
ON SERVER ADDRESS
AND TCP OR UDP PORT.

BOTH MAKE A KEY.

907

906 W

EXTRACT
PROGRAM

K‘ 905

LOOKUP REQUEST
FIND 'PROGRAM'

900/

AND 'VERSION' GET 'PORT' AND
WITH LOOKUP OF 'PROTOCOL (TCP
SOURCE NETWORK OR UDP).
ADDRESS.

FIG. 9

Petitioners' EX1039 Page 143

NiAat> A+

PRINT OF DRAW INGS
AS ORIGINALLY FILET

1000 —y 10/20
PATTERN 100?\ EXTRACTION
RECOGNITION OPERATIONS
DATABASE DATABASE
MEMORY 1001 MEMORY

PATTERN
RECOGNITN
ENGINE
(PRE)

EXTRACTION ENGINE
(SLICER)

1013

PARSER1
A PARSER INPUT BUFFER OUTPUT PACKET KEY
INPUT MEMORY BUFFER AND PAYLOA
MEMORY
1012
101
1021 1025
"START)| INPUT BUFFER 1011\ | ANALvzem DATAREADY
INTERFACE INTERFACE
‘ CONTROL CONTROL
PACKET

FIG.

10

1027

Petitioners' EX1039 Page 144

MNindé= -
PRINT OF DRAWINGS
AS ORIGINALLY FILEY

11/20
1100 —y

§1101 31103

LOOKUP/
UPDATE

ENGINE HOST

BUS
INTER-

FACE
(HIB)

PARSER
INTER-
Z FACE

STATE
PROCESSR
(SP)

f1119 11232

UNIFIED

MEMORY

MEMORY INTER-
FLOW CONTROL FACE
INSERTION/ (UMC)
DELETION
ENGINE

(FIDE)

1110

FIG. 11

Petitioners' EX1039 Page 145

» ——— o s

Dietz et
PRINT OF DRAWINGS
Aswt);k_l_q_;lV_ALLY FILEY

12/20

1201

UFKB ENTRY FOR
PACKET WITH 1202
STATUS 'NEW!

ACCESS
CONVERSATION f1 203
RECORD BIN

!

REQUEST RECORD BIN/
BUCKET FROM CACHE |/~ 1294

= REQUEST NEXT | NO
(] BUCKET FROM <BIN/BUCKET EMPTY
1206 CACHE
l YES
NG |INSERT KEY AND HASH |/~ 1207
: IN BUCKET, MARK 'USED
1208 WITH TIMESTAMP

YES 2
B COMPARE CURRENT BIN—1209

1205

1210 AND BUCKET RECORD
SET UFKB FOR
N\ T UPKB FC KEY TO PACKET
'DROP" T
MARK RECORD BIN AND

BUCKET 'IN PROCESS' |/~ 1211
AND 'NEW' IN CACHE

'

SET INITIAL STATISTICS
FOR RECORD IN CACHE

1213
»

FIG. 12

1212

Petitioners' EX1039 Page 146

MNint-

PRINT OF DRAWINGS

Ty

(NENERER

AS ORIGINALLY FILE?

13/20

(9\/~1301

UFKB ENTRY FOR

1300 —
/ PACKET WITH STATUSA
'NEW' OR ‘FOUND' 1302

SET STATE PROCESSOR
INSTRUCTION POINTER TO | —1303
UALUE FOUND IN UFKB ENTRY
FETCH INSTRUCTION FROM
»| STATE PROCESSOR /1304
INSTRUCTION MEMORY
PERFORM OPERATION BASED
ON THE STATE INSTRUGTION |~ 120°
SET STATE .
PROCESSOR
INSTRUCTION DONE PROCESSING 1307
POINTER TO STATES FOR THIS
VALUE FOUND IN PACKET?
CURRENT STATE
1308
1310 |
SAVE STATE |
PROCESSOR |
INSTRUCTION {_NO 1309 |
POINTER IN TATES FOR THIS FLO
CURRENT FLOW
RECORD
SET AND SAVE FLOW REMOVAL
STATE PROCESSOR Vel
INSTRUCTION IN CURRENT
FLOW RECORD

,é\fms

FIG. 13

Petitioners' EX1039 Page 147

14/20

FILE’

W3LSASANS

Petitioners' EX1039 Page 148

T —e——

PRINT OF DRAWINGS
AS ORIGINALLY

— - e — — v — w— m— m—n w— mm— = amae mmm mmm e wme e e e S e e e e Gmam e e

_
HIZATYNY - |
=22 SNOILVYHId]
N | | | SISAIVNY _
vvahlo 31ViS "
. | |
zevt |- L/JV
_]
NOLLYZIT¥NI 8cvl | Vi O_H_
NLVOIJISSV1O S3IA _
_ v ooyl
« HOLO313S |
ANIHOVIN _
ALV1S b T 7 7 W3sAsans)
1 Ly 8oyt H3sSHvVd |
) _
_ _
Y A L SNOILYHIJO _
aQyoo3H | NOILOVH1X3
NAMONM . anv _
MO, _ S3YNLONYLS |
31vadn L NY3L1vd _
|
2evi _ _
D G
_
! !
ro-z-=-=-z-_I _
SMOT4 40 H SIVIS/ y !
verl 9q) NOILVYWHOANI
ASvaviva momoo%rm x93 MmO, Lo [100Hd B OaNIl | Nu3Lvd ||
[NMONX [T "aina [| ©NIALLINGAL 7] 3ZIN90O3H
dnXo01 | 11 1ovd1x3 ANV 3ZATVNY| |
TIERN _zipl C—gop1 <—popl | oVl

PRINT OF DRAWINGS

AS ORIGIN

*

NALLY FILE

15/20

gl old

!

S13MOVd
dd ®
2 ayvo
ysia || 3ov4HaLNI o1
— MHOMLIN
8051 0151
00¢
HOLINOW
AHOW3W | HOSS300Hd
1SOH 1SOH [T
7] 30I1A3d
9051 Y051 | OILISINDOYe——
(XHOWIW) 13X0vd
SMO14
0 T s 06 2051 J
3Svavivd H3Z A TVNY HIASHVd
e J

VRO TR TR g

N TN

X"

Petitioners' EX1039 Page 149

S

i

PRINT OF DRAWINGS
AS ORIGINALLY FILE

16/20

1602 0 - 3Bytes

' \’ Dst MAC

offset 0 - 11 T- Dst MAC | Src MAC ~/‘_/ 1604
‘ Src MAC

A— 1600

- %
X
1608
Dst MAC (6)]
| Dst Hash (2 1610
1612 Src MAC (6)
1614 VI._Src Hash (2
\LZ O?Fet =12

FIG. 16

Petitioners' EX1039 Page 150

Niats

PRINT OF DRAWINGS
AS ORIGINALLY FILET

offset

12t0 13

A R

1702

\

17/20

1704

~ Type

WA

_ /

1708

1710

{ 1706
Type (2) /

\~Hash (1) *— 1700

\JL3 Offket = 14

FIG. 17A

"]
1712

INEREEE

L3 to
L3 +
(IHL / 4)
-1]

I IR0/ TYee,

IDP = 0x0600*
IP = 0x0800*
CHAOSNET = 0x0804
ARP = 0x0806
VIP = O0x0BAD*
VLOOP = 0x0BAE
VECHO = OxOBAF
NETBIOS-3COM = 0x3C00 -
0x3COD#
DEC-MOP = 0x6001
DEC-RC = 0x6002
DEC-DRP = 0x6003*
DEC-LAT = 0x6004
DEC-DIAG = 0x6005
DEC-LAVC = 0x6007
RARP = 0x8035
ATALK = 0x809B*
VLOOP = 0x80C4
VECHO = 0x80C5
SNA-TH = 0x80D5*
ATALKARP = 0x80F3
IPX =0x8137*
SNMP = 0x814C#
IPv6 = 0x86DD *
LOOPBACK = 0x9000

Apple = 0x080007
* L3 Decoding

|/

L5 Decoding

i
////Yaensier////

[Tt/
[FiA8/Difss!

i
Ol

Protocol | H

/

Src Address

Dst Address

/111100 R Faddid) 111/

~

la AN

Dst Address

Dst Hash (2)

Src Address

Src Hash (2)

Protoqol (1)

¥— 1750

FIG. 17B
:@et = L3 + (IHL/4)

1752

\
<
ICMP =1
IGMP =2

GGP =3

TCP =6*
EGP =8
IGRP =9
PUP =12
CHAOS =16
ubpP =17"*
IDP =22#
ISO-TP4 =29
DDP =37#
ISO-IP =80
VIP =83#
EIGRP =88
OSPF =89

* L4 Decoding
L.3 Re-Decoding

Petitioners' EX1039 Page 151

S ORIGINALLY FILE’

PRINT OF DRAWINGS

AS ORIGINALL

18/20

PROTOCOL

HLON3T a13i4

FIG. 18A

1870
LuTNuM, ¥

[TTT7T71
[T

a13id 4o

H\\\\\\x\\\

3002 3144

A—1850

.._OOOHOMQ

FIG. 18B

Petitioners' EX1039 Page 152

o e

i,

P b

oot g e

PRINT OF DRAWINGS
AS ORIGINALLY FILE

T e ®*
e

19/20

Q\Iwm

COMMON.PDL _/ 1903

‘

FLOWS.PDL Ve 1905

v

VIRTUAL.PD
UALPDL |\ —1907

I

1911 ETHERNET.PDL

I

1913
ETHERTYPE |/

I

IP.PDL U 1915

TCP.PDL 1917
RPC.PDL /1918

1921—v NFS.PDL

192:-/‘6 FlG 19

Petitioners' EX1039 Page 153

I':”lﬂ i I' l! W

PRINT OF DRAWINGS
AS ORIGINALLY FILE’

20/20

@\f 2001

READ IN PDL SOURCE 2003
MODULES v

v

PARSE MODULES FOR
SYNTAX /2005

!

FIRST PASS, CREATE
ALL PARSE ELEMENTS|_/~ 2007

I

2009 __ RND PASS, BUILD FLO
“\[SIGNATURE ELEMENT

T

THIRD PASS, CREATE | /™~ 2011
PAYLOAD ELEMENTS

T

FORTH PASS, BUILD
STATES FOR EACH LINK_/~ 2013

v

READ IN LAYERING 2015
SOURCE MODULES

|

WALK LAYERING LINKS\/— 2017
FOR EACH PDL

v

OUTPUT CPL
2019 —~_| INTERMEDIATE FILE

202*/\(5 FIG. 20

Petitioners' EX1039 Page 154

Our Ref./Docket No: APPT-001-2 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, et al.

Title: PROCESSING PROTOCOL SPECIFIC
INFORMATION IN PACKETS SPECIFIED
BY A PROTOCOL DESCRIPTION
LANGUAGE

Group Art Unit: unassigned

Examiner: unassigned

ta i by

LETTER TO OFFICIAL DRAFTSPERSON
- SUBMISSION OF FORMAL DRAWINGS

The Assistant Commissioner for Patents
Washington, DC 20231
ATTN: Official Draftsperson

Dear Sir or Madam:

Attached please find 20 sheets of formal drawings to be made of record for the above
identified patent application submitted herewith.

. Respectfully Submitted,
JM(J?— }0/. ASDS© %
ﬁ Date DovRosenfeld, Reg. No. 38687

Address for correspondence and attorney for applicant(s):
Dov Rosenfeld, Reg. No. 38,687
5507 College Avenue, Suite 2
Oakland, CA 94618
Telephone: (510) 547-3378; Fax: (510) 653-7992

Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal
Service as Express Mail (Express Mail Label: EI417961935US in an envelope addressed to Box Patent

Application, Assistant Commissioner for Patents, Washington, D.C. 20231 on.
D%&@M Sineg, e

Nanfé Doy Rosenfeld, Reg. No. 38687

Petitioners EXT039 Page 15

Dietzetal. APPT-001-2
s T L
Ve LISTSUBCLA €

s 162 30

3665725
1/20
100
CLIENT 4 108
ANALYZER
116
SERVER 2
CLIENT 3 —~,
10

121

DATA COMMUNICATIONS -
NETWORK

102
125
\ 123
118
SERVER 2 105 —
N CLIENT 2 |/ CLIENT 1|~
12 104

FIG. 1

Petitioners' EX1039 Page 156

/
%

S ISUBRCE st

APPT-QQ01-2
R el

B ERCME: -

-Dietz et al.

4

e
z

!

™ fe

ﬂ/{;

2old - n
. cu g Adas wnep o Ad s |t o |
: 802 EA
........... v_A /2 12§12 2.2 12 0L’
S) m Jsenbai wnjep 3 Al |t |
i 592’ y9z’ £92° 292 192° 092’ :
¢ H3AY3S NOLLYOIddVY e INTTO |
Y
[T 4 N
i x hs | e feommm * 4 | to | ts A
o —
~ = 552’ 52 €52 252° 152’ 052
N =1
AN =l \ 12 |
— 0¢) {901) c0c
= m (s B e WMW d | o | s jAaM
. N) w— W v — \
Ve’ ovz
Sve~ vve evg eve e . /,EN
4 m NQ wa gs| ! \W\\ < —,Q ks | Mo — 3
.......... < | ee20282°162°062 622°822°422 922 S22 122 902 S
) — .
€22°222 122 022 612°812°212 912’ GI12° v12’

Petitioners' EX1039 Page 157

3/20

’ -+ 1(
1,001:2
7%

x

APP

Y

N

fl.

PR T

ietz et al.

-
byw
i

| 508 _
| YIZATYNY |
: SNOILLYH3dO | S
HNSS3I00Hd
_ 31VIS \ _ HIAV] 0lLd10s3d
_ | |wvaoviva
_ r) _
_ 82t I
_ 928 | ,
I I Y3ZINILJO
| 3svavivd _ < ANV
| 758 O 53 NOLLONYLSNI| | | 831dWOD
: / ﬁ HOSSIO0Hd _
31VIS ole
i | NOLLVZIT¥NId cee 4 “ I
| [[NLYOIHISSY1O |
_ r—- —— -
_ 7 _ | _
_ I | 3svavivad I
a4oo3y NOLLYDI4ILNIal _ NOILOVH1X3 808
| Ly NMONM JIVIS ¥ _ _ aNv gy
I m\.,_.><mm._m_3 71000.104d : | FSHVd ‘NY3Llvd _
| 25 | gle—" : _ “
A e &
! b _) |
e e e o — - J |
_ S3IA - e _
vee aq) _ [Y _
smod 0| | | $quoo3y | | | (13) () _
ssvaviva | | 1L equooay NMONY | | L e e ol e NOtvioai | NOGHETE B3
_ oY | I BNIAdILNIAl ’
dMIOO1 3INOINN aling pravimive 3ZINDOO3 _
\ _ < || ANV IZAIVNY| | 20¢
v2e _ A [— 90e < voe
|||||||||||| - I0E Y3sSHvd _
Y Pl L e e e e e e = — -

A I T A S AT e
T e By R R T R e, pA ey

Petitioners' EX1039 Page 158

, " I K l‘; ’
'Dietzetal. APRT-001-2

i

3
7
P

2

j~407

4/20
401
S—,——
402
HIGH LEVEL f
PACKET
DECODING
DESCRIPTIONS
5404 405
GENERATE EAGKET
PARSIRET D COMPILE STATE
EXTRACT € DESCRIPTIONS INSTRUCTIONS
OPERATIONS OPERATIONS
z403
kt::::::::5 P ———
406 TRATTERN, PARSE STATE
AND PROCESSOR
EXTRACTION INSTRUCTION
DATABASE 408 409 DATABASE
JoifRo | ARSI,
RU |
SUBSYSTEM DATABASE
MEMORY MEMORY

—(b
410

FIG. 4

Petitioners' EX1039 Page 159

400

)
Dietzetal. APPT.001-2
- R *

RS

504

5/20

Q\fsm

/INPUT PACKET/<f502

505 K/

ORE IN PACKET?

v

LOAD PACKET
COMPONENT

YES

»

FETCH NODE AND

PROCESS FROM) 505

PATTERNS

506

MORE
PATTERN
NODES?

APPLY NODE AND
PROCESS TO
COMPONENT

510\

509 S ELEMENTS

EXTRACT

512

BUILD
PACKET
KEY

Q

513

NEXT
PACKET

COMPONENT. 511

A

FIG. 5

N

500

Petitioners' EX1039 Page 160

‘ i~
Dietzetal. -ARPT-001-2

Lg e -

TCU L

6/20
601
COMPONENT AND
PATTERN NODE
603 T~ l

LOAD PACKET

™| COMPONENT [* 610 3
LOAD KEY
BUFFER
FETCH EXTRACTION
AND PROCESS FROM)
PATTERNS 605
NO 611
606 NEXT
ORE EXTRACTION>>_NO»| _ PACKET | ~609
ELEMENTS? COMPONENT,
A
607 2’ APPLY EXTRACTION
PROCESS TO
COMPONENT \
600
MORE TO 608

EXTRACT?

YES—

FIG. 6

Petitioners' EX1039 Page 161

/

N R)

- Dietz et al.

703

704

APPT:001-2

7/20

701

" KEY BUFFER AND 702
PATTERN NODE

:

LOAD PATTERN
NODE ELEMENT

I

MORE PATTER

OUTPUT TO

—>

NODES?

YES

h 4
HASH KEY BUFFER
ELEMENT FROM
PATTERN NODE

‘g\ PACK KEY & HASH
706

l

NEXT PACKET

ANALYZER

709

700

COMPONENT

707 ‘g_'

FIG. 7

Petitioners' EX1039 Page 162

Dietzetal. APPT-001-2

N
TR

AR

8/20
801

UFKB ENTRY FOR
/ PACKET /éf 802

800 \ l
: COMPUTE CONVERSATION| — g3
RECORD BIN FROM HASH |/~

y

REQUEST RECORD BIN/
BUCKET FROM CACHE |/— 804

j 806

ORE BUCKET
IN THE BIN?

SET UFKB FOR

805 PACKET AS 'NEW'

COMPARE CURRENT BIN /— 807
AND BUCKET RECORD KEY
TO PACKET

NEXT BUCKET le=NO W 808
Q YES
809

MARK RECORD BIN AND 810
BUCKET 'IN PROCESS'IN |/~
CACHE AND TIMESTAMP

|

SET UFKB FOR PACKET
811 —~_| AS 'FOUND'

I

812 ™\ UPDATE STATISTICS FOR
RECORD IN CACHE

813wé} FIG. 8

Petitioners' EX1039 Page 163

f".
Dietz et al. APP&I‘-091 5

RETETS

901

PORTMAPPER

EXTRACT PROGRAM

903
N GET 'PROGRAM',
'VERSION', 'PORT' AND

'PROTOCOL (TCP OR
UDP)

[

)

CREATE SERVER STATE

SAVE 'PROGRAM!,

904 \ 'VERSION', PORT' AND
'PROTOCOL (TCP OR

ADDRESS IN SERVER
STATE DATABASE. KEY
ON SERVER ADDRESS

AND TCP OR UDP PORT.

900/)A

///"905

T

FIND 'PROGRAM'
AND 'VERSION'
WITH LOOKUP OF
SOURCE NETWORK

ADDRESS.

RPC
BIND LOOKUF

<i909

GET 'PROGRAM:,
'VERSION' AND
UDPY

908
< SAVE REQUEST

SAVE 'PROGRAM,,
'VERSION' AND
'PROTOCOL (TCP OR
UDP)' WITH
DESTINATION
NETWORK ADDRESS.
BOTH MAKE A KEY.

907

906—\

EXTRACT

'PROTOCOL (TCP
OR UDP)I'

S

FIG. 9

Petitioners' EX1039 Page 164

I
- Dietz gtal. APPT-001-2

W

Ty T AL

1000 —y 10/20
PATTERN 100 EXTRACTION
RECOGNITION OPERATIONS
DATABASE DATABASE
MEMORY 1001 MEMORY

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRL |

1006~ | pATTERN 1007
RECOGNITN EXTRACTION ENGINE
ENGINE (SLICER)
(PRE)
1008 1013

PARSER
OUTPUT PACKET KEY
BUFFER AND PAYLOA
MEMORY

PACKE PARSER INPUT BUFFER
INPUT MEMORY

1012
1021
PACKET INPUT BUFFER] 1011 ANALYZER DATAREADY
INTERFACE INTERFACE

CONTROL CONTROL

1023 FIG 10 1027

Petitioners' EX1039 Page 165

\(N
Distz.etal. - APPT001-2
Cegpee

T L ke

11/20
1100 —y

§11o1 %1103 1115 1118 1122}

HOST
BUS
INTER-
FACE
(HIB)

INSTRUCN
DATABASE
(SPID)

N

1109

- PARSER
| - INTER-
- FACE

STATE
PROCESSR
(SP)

(1119 11232

UNIFIED MEMORY
AR) NG
FLOW FACE
INSERTION/ (UMC)
DELETION

ENGINE
(FIDE)

1110

FIG. 11

Petitioners' EX1039 Page 166

Dietzetal. APPT-001-2
e o s
\ =‘,,J9f‘~{. £

Bt

12/20

1201

UFKB ENTRY FOR
PACKET WITH 1202
STATUf 'NEW'

ACCESS
CONVERSATION f1 203
RECORD BIN

'

REQUEST RECORD BIN/
BUCKET FROM CACHE |/~ 1294

REQUEST NEXT | NO
/] BUCKET FROM <BIN/BUCKET EMPTYZ> 1205
1206 CACHE
{ YES
= NG |INSERT KEY AND HASH |/~ 1207
< IN BUCKET, MARK 'USED
1208 WITH TIMESTAMP
YES v
COMPARE CURRENT B —1209
1210 AND BUCKET
SET UFKB FOR
N\ =T UPKB FC KEY TO PACKET
'DROP'

v

MARK RECORD BIN AND
BUCKET IN PROCESS' |/~ 1211
AND 'NEW' IN CACHE

i

1212 _JSET INITIAL STATISTICS
FOR RECORD IN CACHE

1213
>

FIG. 12

Petitioners' EX1039 Page 167

Dietzetal. APPT-001-2

S . . Ig:' 3
R A

«;“’Lg ,«-;) ‘é&

13/20

UFKB ENTRY FOR

1300 —y
/ PACKET WITH STATUS A
'NEW! OR 'FOUND' 1302

SET STATE PROCESSOR
INSTRUCTION POINTER TO — 1303
ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM
> STATE PROCESSOR

INSTRUCTION MEMORY

'

PERFORM OPERATION BASED
ON THE STATE INSTRUGTION 1395

SET STATE
PROCESSOR
INSTRUCTION DONE PROCESSING 1307
POINTER TO STATES FOR THIS
VALUE FOUND IN PACKET?
;: CURRENT STATE
1308
1310
SAVE STATE
PROCESSOR
INSTRUCTION DONE PROCESSING 1309
POINTER IN TATES FOR THIS FLO
CURRENT FLOW
RECORD
SET AND SAVE FLOW REMOVAL
STATE PROCESSOR Ve
INSTRUCTION IN CURRENT
FLOW RECORD

,6\11313

FIG. 13

Petitioners' EX1039 Page 168

_APPT-001-2

- JB(\', ‘.’»ui "

- Dietz et al.

,z ‘J)(’t,

14/20

W31LSASENS
H3IZATVNY

vmvrv HlIOZ

NOILVZITVNId
NLVOI4ISSY1O

ENOILYH3Id(
SISATVNY
31ViS

y

ayqoo3d
NMONM
._BOJu n

\ 31vddn
acvl

SMO14 40
3svaviva

gt
9cvli 00¥1
HOLO313S
INIHOVIN
ALviS h N3SASENS |
)\ by sovl HIASHVd |
S _
_ _
1 L SNOILYHIO |
_ NOILOVH.LX3
| anv _
by S3HNLONYLS |
I NY3.Livd |
_
_
| A !
_) _
_
| !
r---z-=-=_! % !
I |
(ver1 aa)| | Jooﬂwq%wm N zoxmwmrwmz_ |
SA4003H |
MO [T A MO 1| BNIAILNT G] 3ZINDOOTH
dNY001 | 11 10vH1IX3 ANV 3ZAIVNY| |
N—pLpl] /\NE# L—gop1 C—popl |
) 1

ovi

Petitioners' EX1039 Page 169

APPT-001-2
e

Dietz et al.

Yo
.17(

A

r’)(‘

15/20

gl 'Old

!

S13MOVd
dad e
9 advo
MSIa JOV4H3I1NI 201
80G1 0LG1 L
00¢g¢
HOLINOW
AHOWIW | HOSS3O0Hd
1SOH 1SOH ——P
7 p 321A3d
90G1 yosL -~ . — NOILISIND DO Ye¢——!
(XgOWIN) 13IM0Vd
SMOT4
0 T wm 56 2061
3svaviva H3IZATYNY H3ASHYd
v2e L

(X4

Petitioners' EX1039 Page 170

DietZ'etal. APPT-001-2
L

T Tt

A— 1600

16/20
1602 0 - 3 Bytes
N\
B Dst MAC

offset0-11 T~ Dst MAC | Src MAC \7/ 1604
‘ Src MAC =
NI J/
7\ 1606
1608
Dst MAC (6) —]
[Dst Hash (2 1610
1612\ Src MAC (6) -
1614 | Src Hash (2)
\\1.2 OiFFet =12

FIG. 16

Petitioners' EX1039 Page 171

S
Dietzetal. APPT-001-2
S

o 4\01\ ‘Z ~%C

1702

\

17/20

1704

offset
12to 13

> Type

T

L

/

X

1708

|[Hash (1)
1710

\[[3 Offbet = 14

FIG. 17A

Type (2) /

Y— 1700

1706

e
1712

/

IDP = 0x0600*
IP = 0x0800*
CHAOSNET = 0x0804
ARP = 0x0806
VIP = O0xOBAD*
VLOOP = 0x0BAE
VECHO = 0x0BAF
NETBIOS-3COM = 0x3C00 -
0x3COD#
DEC-MOP = 0x6001
DEC-RC = 0x6002
DEC-DRP = 0x6003*
DEC-LAT = 0x6004
DEC-DIAG = 0x6005
DEC-LAVC = 0x6007
RARP = 0x8035
ATALK = 0x809B*
VLOOP = 0x80C4
VECHO = 0x80C5
SNA-TH = 0x80D5*
ATALKARP = 0x80F3
IPX = 0x8137*
SNMP = 0x814C#
IPv6 = 0x86DD*
LOOPBACK = 0x9000

Apple = 0x080007
*L3 Decoding
L5 Decoding

eriAL/ 12/ 1Vee/ fTtalLetiai/// /)
L3to | 1////18eminer//// \iad/V/Frag/Ofseh
L3+ | VT Protocol HgBgH ehessi
Src Address
-1l Dst Address
1/ ORios B adding///////////

X

7

~

Dst Address

Dst Hash (2)

Src Address

Src Hash (2)

Protodol (1)

FIG. 17B

L4 Offset = L3 + (IHL/4)

¥— 1750

1752

ICMP =1
IGMP =2
GGP =3
TCP =6*
EGP =8
IGRP =9
PUP =12
CHAOS =16
UDP =17"*
IDP =22#
ISO-TP4 =29
DDP =37#
ISO-IP =80
VIP =83#
EIGRP =88
OSPF = 89

* L4 Decoding
L3 Re-Decoding

Petitioners' EX1039 Page 172

APPT-0G -2
Cosdrey T

c/l(;’l’(*{ 7,7(: .

Dietz et al.

18/20

PROTOCOL

HLON31 d13id

FIG. 18A

1870

=

2| [TTTTT/TT1
SV

Q1314 40

30090 31Ad

JS\EE

A—1850

—
1020L0¥d

FIG. 18B

Petitioners' EX1039 Page 173

Dietz et al.

APPT-0b1-2
NIt 10

T

. ~ I
1%

COMMON.PDL

'

FLOWS.PDL

|

VIRTUAL.PDL

|

1911—\J

ETHERNET.PDL

I

ETHERTYPE

;

IP.PDL

y

TCP.PDL

v

RPC.PDL

I

1921—\/

NFS.PDL

um/(g FIG. 19

Petitioners' EX1039 Page 174

R N ’t;
Dietzetal. APR¥001-2
e

P

20/20

Q\fzom

READ IN PDL SOURCE 2003
MODULES v

y

PARSE MODULES FOR
SYNTAX /2005

'

FIRST PASS, CREATE
ALL PARSE ELEMENTS|_/— 2007

’

2009 __ [2ND PASS, BUILD FLOW
" \[SIGNATURE ELEMENTS

|

THIRD PASS, CREATE | /2011
PAYLOAD ELEMENTS

]

FORTH PASS, BUILD
STATES FOR EAGH LiNk_/ 2013

;

READ IN LAYERING
SOURCE MODULES |/~ 291°

]

WALK LAYERING LINKS\f— 2017
FOR EACH PDL

'

OUTPUT CPL
2019~ | |INTERMEDIATE FILE

2021-/\8) FIG. 20

Petitioners' EX1039 Page 175

FORMALITIES LETTER

U0V O O

0C000000005346098

file:///c:/APPS/preexam/correspondence/4 hun

UNITED STATES DEPARTMENT OF COMMERCE
Patent and Trademark Office

Address. COMMISSIONER OF PATENT AND TRADEMARKS
Washington, D C 20231

APPLICATION NUMBER

FILING/RECE!PT DATE

FIRST NAMED APPLICANT ATTORNEY DOCKET NUMBER J

09/609,179

Dov Rosenfeld

5507 College Avenue
Suite 2

Qakland, CA 94618

06/30/2000

Russell S. Dietz APPT-001-2

Date Mailed: 08/23/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR 1.53(b)

Filing Date Granted

An application number and filing date have been accorded to this application. The item(s) indicated below,
however, are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all
required items and pay any fees required below to avoid abandonment. Extensions of time may be obtained by
filing a petition accompanied by the extension fee under the provisions of 37 CFR 1.136(a).

¢ The statutory basic filing fee is missing.

Applicant must submit $ 690 to complete the basic filing fee and/or file a small entity statement claiming
such status (37 CFR 1.27).

* The oath or declaration is missing.
A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the

above Application Number and Filing Date, is required.

« To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1.16(e) of
$130 for a non-small entity, must be submitted with the missing items identified in this letter.
¢ The balance due by applicant is $ 820.

/Z‘ . {)CCL —2)

A copy of this notice MUST be returned with the reply.

Customer Service Center
Initial Patent Examination Division (703) 308-1202
PART 3 - OFFICE COPY

Petitioners' EX1039 Page 176

\P E

Secfor f\)#

Ouf®Ef./Docket No: APP. _01-2 Patent

"

Wl : ¢ INTHE UNITED STATES PATENT AND TRADEMARK OFFICE

@m&%ﬁcant(s): Dietz, et al.

S

Group Art Unit: 2756
Application No.: 09/609179

Filed: June 30, 2000

Examiner: (Unassigned)

Title: PROCESSING PROTOCOL SPECIFIC
INFORMATION IN PACKETS SPECIFIED
BY A PROTOCOL DESCRIPTION
LANGUAGE

RESPONSE TO NOTICE TO FILE MISSING PARTS OF APPLICATION .

Assistant Commissioner for Patents
Washington, D.C. 20231
Attn: Box Missing Parts

Dear Assistant Commissioner:

This is in response to a Notice to File Missing Parts of Application under 37 CFR 1.53(f).
Enclosed is a copy of said Notice and the following documents and fees to complete the filing
requirements of the above-identified application:

X _ Executed Declaration and Power of Attorney. The above-identified application is the
same application which the inventor executed by signing the enclosed declaration;
X _ Executed Assignment with assignment cover sheet.

X A credit card payment form in the amount of $___ 860.00 is attached, being for:
X Statutory basic filing fee: $ 690

X Additional claim fee of $0
X Assignment recordation fee of $ 40
X__ Missing Parts Surcharge $130

_X_Applicant(s) believe(s) that no Extension of Time is required. However, this conditional
petition is being made to provide for the possibility that applicant has inadvertently
overlooked the need for a petition for an extension of time.

___ Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a) of:

one months ($110) two months ($380)
two months ($870) four months ($1360)

If an additional extension of time is required, please consider this as a petition therefor.

Certificate of Mailing under 37 CFR 1.8
I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an
envelope addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231 on.

Date: M&M Signe%‘ B—

Name: Dov Rosenfeld, Reg. No. 38687

Petitioners' EX1039 Page 177

Application 09/609179, Page 2

X The Commissioner is hereby authorized to charge payment of any missing fees associated
with this communication or credit any overpayment to Deposit Account
No. 50-0292

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,

Ot co sone A
Date ‘ osenfeld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, CA 94618
Tel. (510) 547-3378; Fax: (510) 653-7992

Petitioners' EX1039 Page 178

file:///c:/APPS/preexam/correspondence/3 htm

FORMALITIES LETTER UNITED STATES DEPARTMENT OF COMMERCE
Patent and Trad k Offi
00 20000 00O 0 00 s COMMISSIONER OF PATENT AND TRADEMARKS
0OC000000005346098 Waslungton, D C 20231
APPLICATION NUMBER FILING/RECEIPT DATE FIRST NAMED APPLICANT ATTORNEY DOCKET NUMBER
09/609,179 06/30/2000

Russell S. Dietz APPT-001-2

Dov Rosenfeld

5507 College Avenue
Suite 2

Oakland, CA 94618

Date Mailed: 08/23/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR 1.53(b)

Filing Date Granted

An application number and filing date have been accorded to this application. The item(s) indicated below,
however, are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all

required items and pay any fees required below to avoid abandonment. Extensions of time may be obtained by
filing a petition accompanied by the extension fee under the provisions of 37 CFR 1 136(a).

» The statutory basic filing fee is missing.

Applicant must submit $ 690 to complete the basic filing fee and/or file a small entity statement claiming
such status (37 CFR 1.27).
¢ The oath or declaration is missing.

A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the
above Application Number and Filing Date, is required.
» To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1 16(e) of

$130 for a non-small entity, must be submitted with the missing items identified in this letter.
| ¢ The balance due by applicant is $ 820.

A copy of this notice MUST be returned with the reply.

o =
% a o 25
2 2 E =8
“ Aaes) =2 Sg
== = - AV B]
Customer Service Center & H
Initial Patent Examination Division (703) 308-1202 = 2
PART 2 - COPY TO BE RETURNED WITH RESPONSE ': = o
2 2 Z
= 2 B
2 8
& &
2 ., =2 oaas
0 vt il [N
Petitioners' EX1034 Page=179:
lof 1

R/23/00 457 AM

Our Ref./Docket No: APt 001-2 Patent
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, et al.
Application No.: 09/609179
Filed: June 30, 2000

Group Art Unit:

Examiner: (Unassigned)

Title: PROCESSING PROTOCOL SPECIFIC
+—_ INFORMATION IN PACKETS SPECIFIED
(P E J3BY A PROTOCOL DESCRIPTION
O 9 ‘& ANGUAGE
A 2

N é
&
ewrg s REQUEST FOR RECORDATION OF ASSIGNMENT

Assistant Commissioner for Patents
Washington, D.C. 20231
Attn: Box Assignment

Dear Assistant Commissioner:

Enclosed herewith for recordation in the records of the U.S. Patent and Trademark Office is an
original Assignment, an Assignment Cover Sheet, and $40.00. Please record and return the
Assignment.

Respectfully Submitted,

O 20 ioeo D%

Date Senfeld, Reg. No. 38687

Address for correspondence:

Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Tel. (510) 547-3378; Fax: (510) 653-7992

Certificate of Mailing under 37 CFR 1.8 o
I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an
envelope addressed to the Assistant Commissioner for Patents, Washington, D.C. on.

Date: 6% é: 20 Paion D) Signed:] >
~

Name: IX5v Rosenfeld, Reg. No. 38687

Petitioners' EX1039 Page 180

’ PATENT APPLICATION
ATTORNEY, |

[

DECLARATION AND FOWER ©

'FOR PATENT APPLICATION. -

As a below named inventor, | hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;

e] am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are
\ %) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

Q PROCESS@? PROTOCOL SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL DESCRIPTION LANGUAGE
]
w.\tlt 'ngciﬁcat@n of which is attached hereto unless the folloyefig U is<hecked:

X é\k was filed on June 30, 2000 as US Application Serial No. 09/609179 or PCT International Application Number and
Q‘% was amended on (if applicable).

el sa¥te that | have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
drerent(s) referred to above. | acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim:of Foreign Priority

1 hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35
YES: NO: ___
YES: NO: _

Provisional Application
| hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE
60/141,903 June 30, 1999

U.S. Priority Claim

1 hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35, United States Code Section 112, | acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS(patented/pending/abandoned)

POWER OF ATTORNEY:

As a named inventor, | hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

Serd Correspondence fo; .
4 . Dov jteld |
| 5507 Collge v

1 hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

Name of First Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

PW

29
7k
ﬁst Invenfor’s Sign% Date

Petitioners' EX1039 Page 181

Declaration and Power of Attorney (Continued)
Case No; APPT-001-2
Page 2

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Andrew A. Koppenhaver

Residence: 10400 Kenmore Drive, Fairfax, VA 22030

Post Office Address: Same

Inventor’s Signature

Name of Third Inventor: James F. Torgerson

Residence: 227 157th Ave., NW, Andover, MN 55304

Post Office Address: _Same

Inventor’s Signature

Citizenship: USA

Date

Citizenship: USA

Date

Petitioners' EX1039 Page 182

\ P
CRMEIN

TENT APPIHCATION
DECLARATION AND POWER OF ATTORNEY W 2 ATTORNEY DOCKET NO,_APPT-001-2
_FOR PATENT APPLICATION w e
S
As a below named inventor, I hereby declare that: . &

My residence/post office address and citizenship are as sta QIWAW ‘*my name;

I believe I am the original, first and sole inventor (if only one name'is isted below) or an original, first and joint inventor (if plural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL DESCRIPTION LANGUAGE

the specification of which is attached hereto unless the following box is checked:

X was filed on June 30, 2000 as US Application Serial No. 09/609179 or PCT International Application Number and
was amended on (if applicable).

1 hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits und:er Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35
YES: NO:
YES: ___ NO:

Provisional Application
I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE
60/141,903 June 30, 1999

U.S. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERTAL NUMBER FILING DATE STATUS(patented/pending/abandoned)

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

Send Correspondence to: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687
5507 College Avenue, Suite 2 Tel: (510) 547-3378
Qakland, CA 94618

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

Name of First Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

Post Office Address: Same

First Inventor’s Signature Date

Petitioners' EX1039 Page 183

Declaration and Power of Attorney (Continued)
Case No; APPT-001-2
Page 2

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: _Andrew A. Koppenhaver Citizenship: USA

Residence: 9325 W. Hinsdale Place, Littleton, CO 80128

Post Office Address: Same

/ / P“ g ‘o!/o{ “)Q;z
Inventor’s Signature Date

Name of Third Inventor: James F. Torgerson Citizenship: USA

Residence: 227 157th Ave.,, NW, Andover, MN 55304

Post Office Address: Same

Inventor’s Signature Date

Petitioners' EX1039 Page 184

PATENT APPLICATION

NT 83" Below named inventor, I hereby declare that:
My residence/post office address and citizenship are as stated below next to my name;

[believe I am the original, first and sole inventor (1f only one name is listed below) or an original, first and joint inventor (if plural names are
listed below) of the subject matter which 1s claimed and for which a patent is sought on the invention entitled:

PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL DESCRIPTION LANGUAGE

the specification of which is attached hereto unless the following box is checked:

X) was filed on _June 30, 2000 as US Application Serial No. 09/609179 or PCT International Application Number and
was amended on (if applicable).

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. [acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)

certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35
YES: ___ NO:
YES: NO:

Provisional Application
I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE
60/141,903 June 30, 1999

U.S. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS(patented/pending/abandoned)

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

e T
Beg

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

Name of First Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

Post Office Address: _Same

First Inventor’s Signature Date

Petitioners' EX1039 Page 185

Declaration and Power of Attorney (Continued)
Case No; APPT-001-2
Page 2

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Andrew A. Koppenhaver Citizenship: USA

Residence: 10400 Kenmore Drive, Fairfax, VA 22030

Post Office Address: Same

Inventor’s Signature Date

Name of Third Inventor: James F. Torgerson Citizenship: USA

Residence: 227 157th Ave.. NW, Andover, MN 55304

Post Office Address: _Same

(7%%/«; - /27 Joo

Inv?ntor’s Signature; (/ Date

Petitioners' EX1039 Page 186

G/

Ja-2 Patent N s
- JUS

Serial No.: 09/609179

Group Art Unit: 2756

Filed: June 30, 2000 Examiner: RECEIVED
Title: PROCESSING PROTOCOL
SPECIFIC INFORMATION IN APR 1 6 2001
PACKETS SPECIFIED BY A
PROTOCOL DESCRIPTION Technology Center 2100
LANGUAGE :

Commissioner for Patents
Washington, D.C. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X

X
X

Date

An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copy of each reference cited in form 1449,

Return postcard.

The commissioner is hereby authorized to charge payment of any missing fee associated
with this communication or credit any overpayment to Deposit Account 50-0292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfully submitted,

: April 9, 2001 %/

v Rosenfeld
Attorney/Agent for Applicant(s)
Reg. No. 38687

Correspondence Address:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, CA 94618
Telephone No.: +1-510-547-3378

Certificate of Mailing under 37 CFR 1.18

[hereby certify that this correspondence 1s being deposited wath the United States Postal Service as first
class mail 1n an envelope addressed to. Commissioner for Patents, Washington, D.C. 20231.

Date of Deposit: /gﬂf q }9’0 /

4 /Z

Signature.
Dov ReSeffield, Reg. No. 38,687

Petitioners' EX1039 Page 187

cket/Ref. No.: APPT .1-2 Patent

&%’7 IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

5 S — —
w&ant(S). Dietz et al.

Serial No.: 09/609179
Filed: June 30, 2000

Group Art Unit: 2756
Examiner: RECE'VED

Title: PROCESSING PROTOCOL APR 4 6 7001
SPECIFIC INFORMATION IN Technology Center 2100
PACKETS SPECIFIED BY A
PROTOCOL DESCRIPTION
LANGUAGE

Commissioner for Patents
Washington, D.C. 20231

INFORMATION DISCLOSURE STATEMENT

Dear Commaissioner:
This Information Disclosure Statement is submitted:

_X_under 37 CFR 1.97(b), or
(Within three months of filing national application; or date of entry of international
application; or before mailing date of first office action on the merits; whichever
occurs last)

under 37 CFR 1.97(c) together with either a:
___ Certification under 37 CFR 1.97(e), or
__ a3180.00 fee under 37 CFR 1.17(p)
(After the CFR 1.97(b) time period, but before final action or notice of
allowance, whichever occurs first)

under 37 CFR 1.97(d) together with a:

___ Certification under 37 CFR 1.97(e), and

__ awpetition under 37 CFR 1.97(d)(2)(i1), and

__ a$130.00 petition fee set forth in 37 CFR 1.17(1)(1).

(Filed after final action or notice of allowance, whichever occurs first, but before
payment of the issue fee)

_X _ Applicant(s) submit herewith Form PTO 1449-Information Disclosure Citation together
with copies, of patents, publications or other information of which applicant(s) are aware, which
applicant(s) believe(s) may be material to the examination of this application and for which there
may be a duty to disclose in accordance with 37 CFR 1.56.

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence 1s being deposited with the United States Postal Service as first
class mail in an envelope addressed to Commissioner for Patents, Washington, D.C. 20231.

Date of Deposit: /4;7!‘ 4, }9@[

Signature:

Dov Rdgenfeld, Reg. No. 38,687

Petitioners" EXT039 Page 188

S/N: 09/609179 Page 2 IDS

X Some of the references were cited in a search report from a foreign patent office in a
counterpart foreign application. In particular, references AD, AF, AH, CI, EA, EB, EC, and ED
were cited in a search report from a foreign patent office in a counterpart foreign application.

It is expressly requested that the cited information be made of record in the application and
appear among the “references cited” on any patent to issue therefrom.

As provided for by 37 CFR 1.97(g) and (h), no inference should be made that the information and
references cited are prior art merely because they are in this statement and no representation is
being made that a search has been conducted or that this statement encompasses all the possible
relevant information.

Respectfully submitted,

A

A& Rosenfeld

Attorney/Agent for Applicant(s)
Reg. No. 38687

Date: April 9, 2001

Correspondence Address:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, CA 94618
Telephone No.: +1-510-547-3378

Petitioners' EX1039 Page 189

Our Docket/Ref. No.: APPT-001-2 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz et al.
Serial No.: 09/609179 Group Art Unit: 2756

iled: June 30, 2000 Examiner:
@tﬁ% PROCESSING PROTOCOL

S\SPECIFIC INFORMATION IN RE CEj VED
ACKETS SPECIFIED BY A APp

PROTOCOL DESCRIPTION L7 2007
LANGUAGE Technolg

Commissioner for Patents
Washington, D.C. 20231

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:
This Information Disclosure Statement is submitted:

X _ under 37 CFR 1.97(b), or
(Within three months of filing national application; or date of entry of international

application; or before mailing date of first office action on the merits; whichever
occurs last)

X Applicant(s) submit herewith Form PTO 1449-Information Disclosure Citation together
with copies, of patents, publications or other information of which applicant(s) are aware, which
applicant(s) believe(s) may be material to the examination of this application and for which there
may be a duty to disclose in accordance with 37 CFR 1.56.

X (Certification) Each item of information contained in this information disclosure
statement was first cited in a formal communication from a foreign patent office in a counterpart
foreign application not more than three months prior to the filing of this information disclosure
statement (written opinion from PCT mailed Jan 11,2002).

It is expressly requested that the cited information be made of record in the application and
appear among the “references cited” on any patent to issue therefrom.

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231.

Date of Deposit: lﬁ) Mer 20002 Signature:_ .~ Z

<Pov Rosenfeld, Reg. No. 38,687

Petitioners EX1039Page 190

S/N: 09/609179 Page 2 IDS

As provided for by 37 CFR 1.97(g) and (h), no inference should be made that the information and
references cited are prior art merely because they are in this statement and no representation is
being made that a search has been conducted or that this statement encompasses all the possible
relevant information.

Respectfully submitted,
Date: 20 MOJ‘ 2007

Dov Rosenfeld
Attorney/Agent for Applicant(s)
Reg. No. 38687
Correspondence Address:

Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.: +1-510-547-3378

Petitioners' EX1039 Page 191

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address COMMISSIONER OF PATENTS AND TRADEMARKS

P.O Box 1450

Alexandna, Viggma 22313-1450

www uspto gov

r APPLICATION NO. [FILING DATE T FIRST NAMED INVENTOR [ATTORNEY DOCKET NO. | CONFIRMATION NO. J
09/609,179 06/30/2000 Russell 8. Dietz APPT-001-2 2668
7590 06/04/2003
Dov Rosenfeld { EXAMINER |
5507 College Avenue
Suite 2 DINH, KHANH Q

Oakland, CA 94618

[ART UNIT I PAPER NUMBER

|

2155

DATE MAILED: 06/04/2003

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 07-01)

Petitioners' EX1039 Page 192

ya

1

Application No. Applicant(s)

09/609,179 DIETZ ET AL. rw
Office Action Summary Examiner Art Unit >

Khanh Dinh 2155

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM
THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1 136(a). In no event, however, may a reply be timely filed

after SIX (6) MONTHS from the mailing date of this communication

If the period for reply specified above is iess than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.

If NO period for reply 1s specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U S.C. § 133).

Any reply received by the Office later than three months after the mailing date of this cCommunication, even If timely filed, may reduce any

earned patent term adjustment. See 37 CFR 1 704(b).

Status
1)K Responsive to communication(s) filed on 11 April 2002 .
2a)[] This action is FINAL. 2b)X] This action is non-final.

3)[J Since this application is in condition for allowance except for formal matters, prosecution as to the merits is
closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.
Disposition of Claims

4)X Claim(s) 1-18is/are pending in the application.
4a) Of the above claim(s) ___ is/are withdrawn from consideration.
5)J Claim(s) ____is/are allowed.
6)X] Claim(s) 1-3,13,14,17 and 18 is/are rejected.
7)X Claim(s) 4-11,15 and 16 is/are objected to.

8)J Claim(s)
Application Papers

are subject to restriction and/or election requirement.

9)[] The specification is objected to by the Examiner.

10)[] The drawing(s) filed on
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

is: a)[_] approved b)[] disapproved by the Examiner.

isfare: a)[] accepted or b)[] objected to by the Examiner.

11)[] The proposed drawing correction filed on

If approved, corrected drawings are required in reply to this Office action.
12)[] The oath or declaration is objected to by the Examiner.
Priority under 35 U.S.C. §§ 119 and 120
13)[J Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a)(JAIl b)[J Some * ¢)[] None of:
1. Certified copies of the priority documents have been received.
2.[] Certified copies of the priority documents have been received in Application No. ___

3. Copies of the certified copies of the priority documents have been received in this National Stage
application from the International Bureau (PCT Rule 17.2(a)).
* See the attached detailed Office action for a list of the certified copies not received.

14)[X] Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).

a) [] The translation of the foreign language provisional application has been received.
15)] Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

Attachment(s)

1) [E Notice of References Cited (PTO-892) 4) [:] Interview Summary (PTO-413) Paper No(s). .
2) D Notice of Draftsperson’s Patent Drawing Review (PTO-948) 5) D Notice of Informal Patent Application (PTO-152)
3) & Information Disclosure Statement(s) (PTO-1449) Paper No(s) 4. 5. 6) D Other:

ngﬁ'ga?;tsa’(wR;?d%Trgs)mce Office Action Summary Petitioners' Ex°1aQ§9a£@QQ 193

Application/Control Number: 09/609,179 Page 1
Art Unit: 2155

DETAILED ACTION

1. Claims 1-18 are presented for examination.

Claim Rejections - 35 USC § 112

2. The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which
the applicant regards as his invention.

3. Claims 1 and 16 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to
particularly point out and distinctly claim the subject matter which applicant regards as the invention.

In claim 1 (page 124, line 7 and line 13, word 2) and claim 16 (page 127, line 9 word 7 and line 16 word
12):

3

The term “none or more” should be changed to “one or more”. The Examiner assumed the term “one or

more” in this Office Action.

Correction is required.

Claim Rejections - 35 USC § 102
4. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the

rejections under this section made in this Office action:

A person shall be entitled to a patent unless —

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country,
more than one year prior to the date of application for patent in the United States.

5. Claims 1-3, 13, 14, 17 and 18 are rejected under 35 U.S.C. 102(b) as being anticipated by Bruell US pat.

No.5,680,585.

Petitioners' EX1039 Page 194

Application/Control Number: 09/609,179 Page 2
Art Unit: 2155

As to claim 1, Bruell discloses a method of performing protocol specific operations on a packet passing through
a connectic;n point on a computer network, the method comprising:

(a) receiving the packet (see fig.2a, abstract, col.4 lines 33-48).

(b) receiving a set of protoccﬁ descriptions for a plurality of protocols (i.e., using a wide range of data
type protocols, see col.5 lines 10-22) that conform to a layered model, a protocol description for a particular
protocol at a particular layer level including:

(1) the one or more child protocols of the particular protocol, the to packet including for any particular
child protocol of the particular protocol information at on or more locations in the packet related to the
particular child protocol (child fields, see col.4 line 49 to col.6 line 49).

(ii) the one or more locations in the packet where information is stored related to any child protocol of
the particular protocol (see col.9 line 8 to col.10 line 63).

(iii) the one more protocol specific operations (i.e., tests using packets description files) to be performed
on the packet for the particular protocol at the particular layer level (see col.9 line 8 to col.10 line 63 and col.14
line 37 to col.15 line 10).

(c) performing the protocol specific operations on the packet specified by the set of protocol descriptions
based on the base protocol of the packet and the children of the protocols used in the packet (see fig.4, col.15

line 11 to col.16 line 42).

As to claim 2, Bruell discloses performing protocol specific operations is performed recursively for any children

of the children (see col.9 line 8 to col.10 line 63 and col.14 line 37 to col.15 line 10).

Petitioners' EX1039 Page 195

Application/Control Number: 09/609,179 Page 3
Art Unit: 2155

As to claim 3, Bruell discloses which protocol specific operations (test platforms) are performed is step (c)
depending on the contents of the packet such that the method adapts to different protocols according to the

contents of the packet (see col.9 line 8 to col.10 line 63 and col.14 line 37 to col.15 line 10).

As to claim 13, Burell discloses the protocol specific operations including one or more parsing and extraction
operations on the packet to extract selected portions of the packet to form a function of the selected portions for
identifying the packet as belonging to a conversational flow (decoding packets received in accordance with a

defined packet format, see col.4 line 49 to col.6 line 30 and col.14 line 37 to col.15 line 10).

As to claim 14, Bruell discloses the protocol descriptions are provided in a protocol description language (using

Packet Description Language, see col.5 line 24 to col.6 line 49).

As to claim 17, Bruell discloses the protocol specific operations further including one or more state processing
operations that are a function of the state of the flow of the packet (see fig.1, col.3 line 20 to col.4 line 33 and

col.14 line 38 to col.15 line 10).

As to claim 18, Bruell discloses the protocol specific operations including one or more state processing
operations that are a function of the state of the flow of the packet (see fig.1, col.3 line 20 to col.4 line 33 and

col.14 line 38 to col.15 line 10).

Petitioners' EX1039 Page 196

Application/Control Number: 09/609,179 Page 4
Art Unit: 2155

Allowable Subject Matter
6. Claims 4-11 and 15 are objected to as being dependent upon a rejected base claim, but would be
allowable if rewritten in independent form including all of the limitations of the base claim and any intervening

claims.

7. Claim 16 would be allowable if rewritten to overcome the rejection(s) under 35 U.S.C. 112, second

paragraph, set forth in this Office action and to include all of the limitations of the base claim and any

intervening claims.

8. The following is a statement of reasons for the indication of allowable subject matter:

None of the cited prior art recites or discloses a network monitor to be analyze different packets or frame
formats for performing specific operations comprising a combination of: storing a database in a memory, the
database generated from the set of protocol descriptions and including a data structure containing information
on the possible protocols and organized for locating the child protocol related information for any protocol, the
data structure contents indexed by a set of one or more indices, the database entry indexed by a particular set of
index values including an indication of validity, wherein the child protocol related information includes a child
recognition pattern, wherein step (c) of performing the protocol specific operations includes, at any particular
protocol layer level starting from the base level, searching the packet at to the particular protocol for the child
field, the searching including indexing the data structure until a valid entry is found, and whereby the data
structure is configured for rapid searches using the index set. The invention further includes the steps of:
looking up a flow-entry database comprising one or more flow-entries, at least one flow-entry for each

previously encountered conversational flow, the looking up using at least some of the selected packet portions

Petitioners' EX1039 Page 197

Application/Control Number: 09/609,179 Page 5
Art Unit: 2155

and determining if the packet matches an existing flow-entry; if the packet is of an existing flow, classifying the
packet as belonging to the found existing flow; and if the packet is of a new flow, storing a new flow-entry for
the new flow in the flow-entry database, including identifying information for future packets to be identified
with the new flow-entry, wherein thé parsing and extraction operations depend on the contents of one or more

packet headers.

Other prior art cited
9. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure.
a. Logan et al., US pat. No.5,721,827.
b. Gupta et al., US pat. No.6,272,151.
¢. Rossmann, US pat. No.6,430,409.
d. Trip et al., US pat. No.6,516,337.

e. Harvey et al., US pat. No.6,519,568.

Conclusion
10. Claims 1-3, 13, 14, 17 and 18 are rejected.
11. Claims 4-11 and 15 are objected to as being dependent upon a rejected base claim, but would be
allowable if rewritten in independent form including all of the limitations of the base claim and any intervening
claims.
12. Claim 16 would be allowable if rewritten to overcome the rejection(s) under 35 U.S.C. 112, second

paragraph, set forth in this Office action and to include all of the limitations of the base claim and any

intervening claims.

Petitioners' EX1039 Page 198

Application/Control Number: 09/609,179 Page 6
Art Unit: 2155

13. Any inquiry concerning this communication or earlier communications from the examiner should be
directed to Khanh Dinh whose telephone number is (703) 308-8528. The examiner can normally be reached on
Monday through Friday from 8:00 A.m. to 5:00 P.m.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Ayaz R.
Sheikh, can be reached on (703) 305-9648. The fax phone numbers for this grouﬁ are:

After Final: (703) 746-7238

Official: (703) 746-7239

Non-Official/ Draft: (703) 746-7240

A shortened statutory period for reply is set to expire THREE months from the mailing date of this
communication. Failure to response within the period for response will cause the application to become
abandoned (35 U.S. C. Sect. 133). Extensions of time may be obtained under the provisions of 37 CFR
1.136(A4).

Any inquiry of a general nature or relating to the status of this application or proceeding should be

directed to the Group receptionist whose telephone number is (703) 305 -9600.

SUPERVISORY PATENT EXAMINER

HMOLOGY CENTER 2100
Khanh Dinh TEC G

Art Unit 2155
Patent Examiner
5/29/2003

Petitioners' EX1039 Page 199

O "%
Et al.FORM - 1449 " 0 SHEET 1 OF 5.
aop il B hxy

INFORMATIO

CLOSURE STATEMENT

(Use several sheets if necessary)

ATTY. DOCKET NO, SERIAL NO,
APPT-001-2 09/609179

RE(‘L‘M:
APPLICANT ‘W/T{f . D]
Dietz et al. APR 1 6 200
FILING DATE 1
6/30/2000

~—

00

U.S. PATENT DOCUMENTS

T
o aeB0logy Center
UsE

FILING DATE
“EXAMINER DOCUMENT DATE NAME CLASS | SUB-CLASS | /F APPROPRIATE
INITIAL NUMBER
W an 4736320 Apr. 5, |Bristol 364 |300 Ooct. 8,
/ 1988 1985
W) A8 14891639 Jan. 2, akamura 340 |825.500 [Jun. 23,
1990 1988
ac 5101402 Mar. 31, |Chui et al. 370 117 May 24,
(0 1992 1988
D 5247517 Sep. 21, [Ross et al. 370 [85.5 Sep. 2,
W 1993 1992
: ae 247693 Sep. 21, |Bristol 395~ (806— ov. 17,
Hﬁ , 1993 ‘ 011903 1992
AF 5315580 May 24, |Phaal 370 |13 Aug. 26,
uﬂ 1994 1991
aG 5339268 lAug. 16, Machida 365 49 Nov. 24,
UO 1994 1992
A 5351243 Sep. 27, |[Kalkunte et. al. 370 [92 Dec. 27,
“ﬂ] 1994 1991
Ilﬂ A 5365514 ov. 15, [Hershey et al. 370 |17 Mar. 1,
1994 1993
5375070 Dec. 20, Hershey at al. 364 1550 Mar. 1,
D A 1994 1993
5394394 Feb. 28, |Crowther et al. 370 {60 Jun. 24,
U/@ o 1995 1993
FOREIGN PATENT DOCUMENTS
PUBLI-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS | SUB-CLASS LATION
NUMBER YES | NO
e \
\
AN
OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)
"Technical Note: the Narus System," Downloaded April 29, 1999 from
(’(/0 AR lwww.narus.com, Narus Corporation, Redwood City California.
AS

EXAMINER

Khonh

,D)lf\h

DATE CONSIDERED

</ 24/03

"EXAMINER

initial if citation considered, whether or not citation s in conformance with MPEP 609. Draw line through citation if not in conformance

and not considered. Include a copy of this form with next communication to Applicant

Petitioners' EX1039 Page 200

\P £

0 v%‘
taLFORM - 1449 oo © SHEET_2 OF 5.
R 1 &
2, %&‘ ATTY. DOCKET NO. SERIAL NO.
& O APPT-001-2 09/609179
g 1pape RE CEn
INFORMATION DISCLOSURE STATEMENT APPLICANT I

(Use several sheets if necessary)

Dietz et al.

#9

FILING DATE
6/30/2000

P
GROUP ‘Wmolog

U.S. PATENT DOCUMENTS

and not considered. include a copy of this form with next communication to Applicant.

P

etifioners

EXTE38 Page 201

FILING DATE
*EXAMINER DOCUMENT DATE NAME CLASS | SUB-CLASS | IF APPROPRIATE
INITIAL NUMBER
Ba 5414650 May 9, Hekhuis 364 (715.02 Mar. 24,
W 1995 1993
(/W 88 5430709 Jul. 4, [Galloway 370 (13 Jun. 17,
4 1995 1992
M o (3432776 Jul. 11, [Harper 370 [17 Sep. 30,
1995 1993
15493689 Feb. 20, [Waclawsky et al. 395 1824 Mar. 1
BD !
140 1996 vl7/4 206 |i993
W BE 5500855 Mar. 19, [Hershey et al. 370 |17 \Tan. 26,
1996 1994
M o 15568471 Oct. 22, [Hershey et al. 370 (17 Sep. 6,
1996 1995
ﬂ BG 5574875 Nov. 12, Stansfield et al. 395 403 Mar. 12,
M 1996 1993
W B 5586266 Dec. 17, [Hershey et al. 385~ 1366+ |Oct. 15,
1996 191246 1993
8l 5606668 Feb. 25, (Shwed 3—9-5-‘ 201t |Dec. 15,
1997 7% 12/ & 993
M By 5608662 Mar. 4, [Large et al. 364 724.01 (Jan. 12,
1997 1995
m gk 634009 May 27, |Iddon et al. 4395 2661 [Oct. 27,
1997 2011 206 [1995
FOREIGN PATENT DOCUMENTS
PUBLI-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS | SUB-CLASS LATION
NUMBER YES | NO
o \
BN \
OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)
BR \
BS \,
EXAMINER ' DATE CONSIDERED
’(j\W/‘Q 5714 /02
*EXAMINER intial 1f citation considered, whether or not citation 1s 1n conformance with MPEP 609 Draw It e

\Pé

D
7

)700

@) e
Et al.FORM - 1449 ““9 . SHEET 3 OF 5.
. 6‘? ATTY DOCKET NO SERIAL NO.
% X APPT-001-2 09/60917
g >
&g rraped pECI':n o
INFORMATION D SURE STATEMENT APPLICANT SR
Dietz et al. A&"“ APR 1g 2
0
(Use several sheets if necessary) FILING DATE GROUP
6/30/2000 9—?55’&, 6r¢
U.S. PATENT DOCUMENTS
FILING DATE
‘EXAMINER DOCUMENT DATE NAME CLASS | SUB-CLASS | /F BPPROPRIBTE
INITIAL NUMBER .
e oA 5651002 Jul. 22, [Van Seters et all. 370 392 Jul. 12,
L{/ﬁ 1997 1995
// cB 5684954 Nov. 4, |Kaiserswerth et al. 395 12002 Mar. 20,
un 1997 0% {203 [1993
P cc 5732213 Mar. 24, |Gessel et al. #33 [200. T Mar. 22,
(U 1998 707 | 21 € fisss
o 5740355 Bpr. 14, [Watanabe et al. 395 [183.21 |[Jun. 4,
\/ﬂ 1998 1996
, cE 5761424 Jun. 2, |Adams et al. 305- 266727 |Dec. 29,
1/(/0 : 1998 VA 23 2 h1995
; oF 5764638 Jun. 9, [Ketchum 370 401 Sep. 14,
“/’7 1998 1995
\ ca 5781735 Jul. 14, [Southard 305~ 20054 |Sep. 4,
Wﬂ 1998 N9 | 238 (997
/ o 9784298 Jul. 21, [Hershey et al. 364 [557 Jul. 11,
(A 1998 1996
. 5787253 lJul. 28, McCreery et al. 13896~ U6t [May 28,
W 1998 207 227 |r1996
(/BO o) 5805808 Sep. 8, |Hansani et al. 399 120072 |Apr. 9,
V) 1998 709|203 1997
M ok 5812529 Sep. 22, [Czarnik et al. 370 245 Nov. 12,
1998 1996
FOREIGN PATENT DOCUMENTS
PUBLI-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS | SUB-CLASS LATION
NUMBER YES | NO
cm \
CN \
OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)
CR
cs \—\

EXAMINER

Ul Dur

DATE CONSIDERED

and not considered Include a copy of this form with next communication to Apphicant

s/ 29/03

*EXAMINER initial if citation considered, whether or not citation is in conformance with MPEP 609. Dre(w hine through citation if not in conformance

Petitioners” EXT039 Page 202

l"‘s
Et a1.FORM - 1449 M) SHEET 4 OF 5.
oy = M 2.
&
’:’,,/? &/ ATTY. DOCKET NO SERIAL NO.
’l'/\&mmﬁ“\“ APPT-001-2 09/609179
| nPo
INFORMATION DISCLOSURE STATEMENT APPLICANT 'kbt/
Dietz et al. 4&/\{
R App lp
(Use several sheets if necessary) FILING DATE GROUP léch 4
6/30/2000 2756 09,
¥ Contyy
U.S. PATENT DOCUMENTS
FILING DATE
*EXAMINER DOCUMENT DATE NAME CLASS | SUB-CLASS |/F8PPROPRIBTE
INITIAL NUMBER ‘
w 5819028 Oct. 6, Manghirmalani et al. BI5 (85T Apr. 16,
DA
1998 301 20 3 1997
W . 5825774 Oct. 20, [Ready et al. 370 401 Jul. 12,
1998 1995
oe 5835726 Nov. 10, |Shwed et al. 2660759 |[Jun. 17,
fﬁ 1998 709|228 |1996
\lﬁ op 3838919 Nov. 17, [Schwaller et al. 395 20054 [sep. 10,
1998 ‘70? 205 [1996
DE 5841895 Nov. 24, Huffman 382 155 Oct. 25,
UJ) 1998 1996
DF 5850386 Dec. 15, |Anderson et al. 370 (241 Nov. 1,
m 1998 1996
DG 5850388 Dec. 15, Anderson et al. 370 [252 Oct. 31,
fw 1998 1996
DH 5862335 Jan. 19, Welch, Jr. et al. B~ 1296757 |Apr. 1,
U)O 1999 209 22 2. |1993
oI 5878420 Mar. 2, |[de la Salle 707 |10 Oct. 29,
M@ 1999 1997
W{) oy 5893155 Apr. 6, [Cheriton 711 |144 Dec. 3,
1999 1996
5903754 May 11, |Pearson 13-0-5- . 1680~ Nov. 14,
UG | o 1999 07122 € 1997
FOREIGN PATENT DOCUMENTS
PUBLI-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS | SUB-CLASS LATION
NUMBER YES | NO
DM \
DN S~
OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)
DR
. \

EXAMINER

Khood Gl

DATE CONSIDERED

5/207/0 2

*EXAMINER

initiat if citation considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance
and not considered. nclude a copy of this form with next communication to Applicant.

Et al.FORM - 1449 SHEET 5 OF 5.

ATTY. DOCKET NO. SERIAL NO.
APPT-001-2 09/609179
V)
INFORMATION DISCLOSURE STATEMENT APPLICANT ~%
Dietz et al. A&/"& AP/? I
™ b
(Use several sheets if necessary) FILING DATE GROUP Whﬂolog
6/30/2000 275T Y Cef
LIST

U.S. PATENT DOCUMENTS

FILING DATE
*EXAMINER DOCUMENT . DATE NAME CLASS | SUB-CLASS | IF BPPROPRIBTE
INITIAL NUMBER

LN £ 5017821 Jun. 29, |Gobuyan et al. 370 392 lAug. 16,

1999 1996
Wf B 5414704 May 9, Spinney 370 |60 Apr. 5,

1995 1994

L v | ec 6014380 lJan 11, |[Hendel et al. 370 {392 Jun. 30,
2000 1997

5511215 Apr. 23, (Perasaka et al. 39S 8o oct. 26,
///0 ED 1996 709 1[Z4-€ |1993

e \

. N

- N

- N

g AN

- AN

SN
EK
FOREIGN PATENT DOCUMENTS
PUBLI-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS | SUB-CLASS LATION
NUMBER YES | NO
DM \
DN \
OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)
DR
DS

EXAMINER DATE CONSIDERED

Khowh — Dud /18 /603

7 X
*EXAMINER. nitial if citation considered, whether or not citation 1s in conformance with MPEP 609. Draw line th@gh citation if not in conformance

and not considered. Include a copy of this form with next communication to Applicant D atitinnare' EXY1N20 DA
— T wtUTTOUTY 7V 1TVUJVUUV1

a 204
J°T

a
uaygv

Et alFORM - 1449

SHEET 1 oOF 1.

ATTY. DOCKET NO. SERIAL NO.
APPT-001-2 09/609179
APPLICANT

Dietz et al. & 6
FILING DATE GROUP
6/30/2000

U.S. PATENT DOCUMENTS

FILING DATE
*EXAMINER DOCUMENT DATE NAME CLASS | SUB-CLASS | IF APPROPRIATE
INITIAL NUMBER)
W AA 5,703,877 Dec. 30, Nuber et al. 370 J395 Nov. 22,
/ 1997 1995
m s 1D.826,017 Oct. 20, Holzmann 395120606 [Feb. 10,
1998 1| a0 11992
Ac \
40 \ RECE IVED
AE \ PR 1 7 002
s \ Tectndlogy Cenfer 2100
AG \
AH \
Al \
AJ \
AK \
AL
AM
AN \
FOREIGN PATENT DOCUMENTS
PUBLI-CATION | TRANS-
DOCUMENT DATE COUNTRY CLASS | SUB-CLASS LATION
NUMBER i YES | NO
AO \
OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)

AP :\

EXAMINER

Khcinh

[%wh

DATE CONSIDERED

S[18/03

‘EXAMINER: initial if citation considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance

and not considered. Include a copy of this form with next communication to Applicant. P atitinners' EX1029 Paqge 2058
N J

Application/Control Né). Applican.t(s)/Patent Under
09/609,179 Rexamnaton
Notice of References Cited S—— AU
Khanh Dinh 2155 Page 1 of 1
U.S. PATENT DOCUMENTS
CountrB%%:jZ?\lTJtmr::mgs; Code MM?at?YY Name Classification
A | US-5,680,585 10-1997 Bruell, Gregory O. 703/26
B | US-5,721,827 02-1998 Logan et al. 709/217
C | US-6,272,151 08-2001 Gupta et al. 370/489
D | US-6,430,409 08-2002 Rossmann, Alain 455/422 .1
E | US-6,516,337 02-2003 Tripp et al. 709/202
F | US-6,519,568. 02-2003 Harvey et al. 705/1
G | USs-
H | US-
I | US-
J L uUSs-
K | US-
L | US-
M | US-
FOREIGN PATENT DOCUMENTS
County Cosamumbrion Code | MMATYYY Country Name Classification
N
o}
P
Q
R
S
T
NON-PATENT DOCUMENTS
Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages)
U
\
w
X

U.S. Patent and Trademark Office
PTO-892 (Rev. 01-2001)

*A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a))
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.

Notice of References Cited

Part of Paper No. 6

Petitioners' EX1039 Page 206

Jun 13 03 03:40p Dov "senfeld +1-5* -281-2885 p.7

| . [
Our Ref./Docket No: APPT-001-2 Patent #: ﬁ:.
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE L '7,03
Applicant(s): Dietz. et al. Group Art Unit: 2155 ./Q),\-\-b%‘«

Application No.: 09/609179
Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC
INFORMATION IN PACKETS SPECIFIED BY A
PROTOCOL DESCRIPTION LANGUAGE

Examiner: Dinh, Khanh Q.

RESPONSE TO OFFICE ACTION UNDER 37 CFR 1.111

. Mail Stop Non Fee Amendment
Commissioner for Patents
P.O. Box 1450

- Alexandria, VA 22313-1450

Dear Commissioner:

This is a response to the Office Action of June 4, 2003.

Vs 50D

Certificate of Facsimile T'ransmission under 37 CFR 1.8

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark
Office at telephonc number 703-746-7239 addressed the Commissioner for Patents, P.O. Box 1450,

Alexandria, VA 22313-1450 on. %‘
Date:) Tl:\u.— e > Signed:

A
Name: Dov Roscnfeld, Reg. No. 38687

Recelved from < +1 510 291 2985 > at 6/13/03 7:41:12 PM [Eastern Daylight Time]

Petitioners' EX1039 Page 207

Jun 13 03 03:40p Dov “senfeld +1-517 -291-2885 p-8

S/N 09/609179 Page 2 APPT-001-2

INTRODUCTORY REMARKS:

In response to the Office Action of June 4, 2003, kindly amend this application as follows
and kindly consider the following remarks.

Recelved from < +1 510 291 2985 > at 8/13/03 7:41:12 PM [Eastern Daylight Time]

Petitioners' EX1039 Page 208

'Y o

Jun 13 03 03:40p Dov ~“nasenfeld +1-5* " -291-2985 p.9

S/N 09/609179 Page 3 APPT-001-2

AMENDMENT(S) TO THE CLAIMS:

The following listing of claims will replace all prior versions, and listings, of claims on the
application. Claims being amended are set forth in a larger font than all other claims. All
claims are set forth below with one of the following annotations.

(Original): Claim filed with the application following the specification.
(Currently amended): Claim being amended in the current amendment paper.

(Previously amended): Claim not being currently amended, but which was amended
in a previous amendment paper.

(Cancelled): Claim cancelled or deleted from the application.
(Withdrawn): Claim still in the application, but in a non-elected status,
(Previously added): Claim added in an earlier amendment paper.
(New): Claim being added in the current amendment paper.

(Reinstated - formerly claim # _): Claim deleted in an earlier amendment paper, but
re-presented with a new claim number in current amendment.

(Previously reinstated): Claim deleted in an earlier amendment and reinstated in an
earlier amendment paper.

(Re-presented - formerly dependent claim # _): Dependent claim re-presented in
independent form in current amendment paper.

(Previously re-presented): Dependent claim re-presented in independent form in an
earlier amendment, but not currently amended.

{Cancelled)
\0
(Currently amended) A method according to claim -1-;g,’wherein step (c) of

performing protocol specific operations is performed recursively for any children of

the children.

\0 .
(Currently amended) A method according to claim 4’1@ wherein which protocol

specific operations are performed is step (c) depends on the contents of the packet
such that the method adapts to different protocols according to the contents of the

packet.

(Currently amended) A method accordinats f-la;m_'i' furthor aomnrisinacl

of performing protoco! specific operations on a packet passing through a connection

point on a computer network, the method comprising:

Received from <+1 510 291 2985 > at 6/13/03 7:41:12 PM [Eastern Daylight Time]

Petitioners’ EX103Q Page 209

Jun 13 03 03:41p Dov “osenfeld +1-5*" -281-2985

S/N 09/609179 Page 4 APPT-001-2

{a) receiving the packet;

(b} receiving a set of protocol descriptions for a plurality of protocols that
conform to a lavered model, a protocol description for a particular protoco! at
a particular layer level including:

(i) if there is at least one child protocol of the protocol at the particular

layer level, the-one or more child protocols of the particular protocol at

the particular layer level, the packet including for any particular child
protocol of the particular protocol at the particular laver {evel

information at one or more locations in_the packet related to the
| particular child protocol,
i

(i) the one or more locations in the packet where information is stored
1 related to any child protocol of the particular protoco!, and

! (iii} if there is at least one protocol specific operation to be performed on

\ the packet for the particular protocol at the particular layer level, the
\ one or more protocol specific operations to be performed on the
packet for the particular protocol at the particular laver leve|; and

(c) performing the protocol specific operations on the packet specified by the
set of protocol descriptions based on the base protocol of the packet and the
children of the protocols used in the packet,

the method further comprising:

storing a database in a memory, the database generated from the set of protocol
descriptions and including a data structure containing information on the
possible protocols and organized for locating the child protocol related
information for any protocal, the data structure contents indexed by a set of one
or more indices, the database entry indexed by a particular set of index values
including an indication of validity,

wherein the child protocol related information includes a chlld recognltion pattern,

wherein step (c) of performing the protocol specific operations includes, at any
particular protocol layer level starting from the base level, searching the packet at the
particular protocol for the child field, the searching including indexing the data
structure until a valid entry is found, and

Received from <+1 510 291 2985 > at 6/13/03 7:41:12 PM [Eastern Daylight Time]

p-10

Petitioners' EX1039 Page 210

Jun 13 03 03:41p Dov "osenfeld +1-5""~-291-2985

S/N 09/609179 Page 5§ APPT-001-2

whereby the data structure is configured for rapid searches using the index set.

j)./ (Original) A method according to claim % wherein the protocol descriptions are provided

in a protocol description language, the method further comprising:
compiling the PDL descriptions to produce the database.

3

/((Original) A method according to claim';{, wherein the data structure comprises a set of
arrays, each array identified by a first index, at least one array for each protocol, each array
further indexed by a second index being the location in the packet where the child protocol
related information is stored, such that finding a valid entry in the data structure provides the

location in the packet for finding the child recognition pattern for an identified protocol.

_\\,C‘

(Original) A method according to claim j(wherein each array is further indexed by a third
index being the size of the region in the packet where the child protocol related information is
stored, such that finding a valid entry in the data structure provides the location and the size

of the region in the packet for finding the child recognition pattern.

\ ,8/ (Original) A method according to claim],/ wherein the data structure is compressed

% according to a compression scheme that takes advantage of the sparseness of valid entries in
the data structure.

\o $

/9./ (Original) A method according to claim/{, wherein the compression scheme combines two

4

)
)K (Original) A method according to claim/, wherein the data structure includes a set of
tables, each table identified by a first index, at least one table for each protocol, each table

or more arrays that have no conflicting common entries.

further indexed by a second index being the child recognition pattern, the data structure
further including a table that for each protocol provides the location in the packet where the
child protocol related information is stored, such that finding a valid entry in the data

structure provides the location in the packet for finding the child recognition pattern for an

1

(Original) A method according to claim)O,/ wherein the data structure is compressed

identified protocol.

\.-V‘S

according to a compression scheme that takes advantage of the sparseness of valid entries in

%

),2./ (Original) A method according to claim)(, wherein the compression scheme combines
two or more tables that have no conflicting common entries.

the set of 1ables.

Received from < +1 510 291 2985 > at 6/13/03 7:41:12 PM [Eastern Daylight Time]

Petitioners' EX1039 Page 211

Jun 13 03 03:41p Dov “osenfeld +1-5° -281-2985 p.l2

S/N 09/609179 Page 6 APPT-001-2
\O

A5 (Currently amended) A method asserding-to-elaim—t-furthercomprising

of performing protocol specific operations on a packet passing through a connection
point on a computer network, the method comprising:

{(a) receiving the packet;

(b} receiving a set of protocol descriptions for a plurality of protocols that
conform to.a layered model, a protocol description for a particular protocol at
a particular layer level including:

(i if there is at least one child protocol of the protocol at the particular
layer level, the-one or more child protocols of the particular protocol at
the particular layer level, the packet including for any particular child
protocol of the particular protocol at the particular layer level
information at one or more locations in the packet related to the
particular child protocol,

\ {ii) the one or more locations in the packet where information is stored
% related to any child protocol of the particular protocol, and
i}y if there is at least one protocol specific operation to be performed on

the packet for the particular protocol at the particular laver level, the
one or more protocol specific operations to be performed on the

packet for the particular protocol at the particular laver level; and

(c) performing the protocol specific operations on the packet specified by the

set of protocol descriptions based on the base protocol of the packet and the
children of the protocols used in the packet,

wherein the protocol specific operations include one or more parsing and extraction
operations on the packet to extract selected portions of the packet to form a function
of the selected portions for identifying the packet as belonging to a conversational

flow.

\3 \©
147 (Currently amended) A method according to claim ¢;¢§,/wherein the protocol

descriptions are provided in a protocol description language.

! \?
Pon (Original) A method according to claim]/Kfurther comprising:

Recelved from < +1 510 291 2085 > at 8/13/03 7:41:12 PM [Eastern Daylight Time]

Petitioners' EX1039 Page 212

Jun 13 03 03:41p Dov “osenfeld +1-5' -281-2885 p-13

S/N 09/609179 Page 7 APPT-001-2

compiling the PDL descriptions to produce a database and store the database in a
memory, the database generated from the set of protocol descriptions and including a
data structure containing information on the possible protocols and organized for
locating the child protocol related information for any protocol, the data structure
contents indexed by a set of one or more indices, the database entry indexed by a

particular set of index values including an indication of validity,
wherein the child protocol related information includes a child recognition pattern, and

wherein the step of performing the protoco! specific operations includes, at any particular
protocol layer level starting from the base level, searching the packet at the particular
protocol for the child field, the searching including indexing the data structure until a valid
entry is found,
4 whereby the data structure is configured for rapid searches using the index set.
\©O
}8./ (Currently amended) A method according to claim }affurther comprising:

looking up a flow-entry database comprising rene-ermere-flow-entries:-at least
one flow-entry for each previously encountered conversational flow, the looking up

using at least some of the selected packet portions and determining if the packet
matches an existing-flow-entry in the flow-entry database

if the packet is of an existing flow, classifying the packet as belonging to the found
existing flow; and

if the packet is of a new flow, storing a new flow-entry for the new flow in the flow-
entry database, including identifying information for future packets to be identified
with the new flow-entry;

wherein for at least one protocol, the parsing and extraction operations depend on
the contents of rere-one or more packet headers.

\e o | |
417 (Original) A method according to claim)/3', wherein the protocol specific operations
further include one or more state processing operations that are a function of the state of the

flow of the packet.

18. (Origlnal) A method i laim-1- of performing protocol specific
4 N operations on a packet passing through a connection point on a computer network,

Q; the metll\od comprising:

Received from <+1 510 291 2985 > at 6/13/03 7:41:12 PM [Eastern Daylight Time]

Petitioners' EX1039 Page 213

Jun 13 03 03:42p Dov "osenfeld +1-5°* -291-2985 p.14

S/N 09/609179 Page 8 APPT-001-2

{(a) __ receivinhg the packet;

hg a set of protocol descriptions for a plurality of protocols that

(b)Y receivi
o a layered model, a protocol description for a particular protocol at

conform {
a particulr layer level including:

if there is at least one child protocol of the protocol at the particular
yer level, the-one or more child protocols of the particular protocol at
e particular laver level, the packet including for any particular child
rotocol of the particular protocol at the particular layer level
hformation at one or more locations in the packet related to the

)

g

—~

articular child protocol,

?%/ \ (i) the one or more locations in the packet where informatiog is stored

felated to any child protocol of the particular protocol, and

i} Jf there is at least one protocol specific operation to be performed on

the packet for the particular protocol at the particular layer level, the
X lone or more protocol specific operations to be performed on the

-/Qﬂ\ packet for the particular protocol at the particular laver level; and

(c) performingithe protocol specific operations on the packet specified by the set of
protocol descliptions based on the base protocol of the packet and the children of the

protocols used in the packet

wherein the pirotocol specific operations include one or more state processing

operations thTt are a function of the state of the flow of the packet.

) Received from <+1 510 291 2985 > at 6/13/03 7:41:12 PM [Eastern Daylight Time]
' Petitioners' EX1039 Page 214

Jun 13 03 03:42p Dov Tosenfeld +1-5° -291-2985 P-

S/N 09/609179 Page 9 APPT-001-2

REMARKS

Status of the Application:

Claims [-18 are the claims of record of the application. Claims 1-3, 13, 14, 16, 17 and 18
have been rejected and claims 4-11, and 15 have been objected to as being dependent upon
a rejected base claim, but would be allowable if rewritten in independent form.

Note that the examiner did not explicitly mention claim 12. As claim 12 depends on claim
11 and claim 11 was objected to as being dependent upon a rejected base claim, but would
be allowable if rewritten in independent form, the same is assumed to apply to claim 12.

Amendment to the Claims:

Claim 1 has been cancelled. Some of the remaining claims were amended to not depend on
any cancelled claim. Furthermore, the none or more phrases in the claims was amended.

Claim Rejections -35 USC § 112 Second Paragraph (Indefiniteness)

In paragraph 3 of the office action, claims 1 and 16 were rejected under 35 USC 112,
second paragraph, as being indefinite. In particular the examiner asserted that the phrase
“none or more” renders the claims indefinite.

Applicants respectfully disagree that the phrase "none or more" is indefinite in this context.
The phrasing is common in computer language descriptions, and the meaning would be
clear to those in the art. Nevertheless, the recitations in the claims that include "none or
more" have been amended to indicate the definite meaning. In claim 1, for example, the
recitation of "the none or more child protocols of the particular protocol” has been
amended to "if there is at least one child protocol of the particular protocol at the particular
layer level, the one or more child protocols of the particular protocol at the particular layer
level, the packet including for any particular child protocol of the particular protocol
information at one or more locations in the packet related to the particular child protocol.

Claim Rejections -35 USC § 102

In paragraph 5 of the office action, claims 1-3, 13, 14, 17 and 18 were rejected under 35
USC 102(b) as being anticipated by Bruell (U.S. Patent 5,680,585).

Claim 1 has been canceled and claims 2, 3 and 14 have been amended to depend on claim
13 that is believed to be allowable.

The rejection of claims 13, 17 and 18 are believed to be erroneous.
Description of Bruell.

Bruell describes a language for describing different packet formats. A packet description
language file describes a format. A compiler translates the packet description language file

2,
L3

v LGOS
Petitioners' EX1039\E’age 215

o

Received from <+1 510 291 2985 > at 6/13/03 7:41:12 PM [Eastern Daylight Time}

Jun 13 03 03:43p Dov “osenfeld +1~-5' -291-2985 p.16

S/N 09/609179 Page 10 APPT-001-2

into a data structure. Application programs may both encode data into packets according to
the defined format as well as decode packets that were assembled according to the
protocol. To do this, application programs need only reference a data structure resulting
from the compiled packet description language file. In this manner, numerous data packets
formats may be defined in accordance with different data transfer media and packet
protocols.

Claim 13

Regarding claim 13, the examiner asserts that Bruell discloses protocol specific operations
that include one or more parsing and extraction operations on the packet to extract selected
portions of the packet to form a function of the selected portions for identifying the packet
as belonging to a conversational flow.

Applicants' respectfully disagree.

First, the examiner has failed to show that any protocol specific operations disclosed in
Bruell are the protocol specific operations of step (c).

* In the rejection of original claim 1 (now cancelled but incorporated into claim 13), the
examiner asserts that Bruell in col. 9 line 8 to col. 10 line 43, and in col. 14, line 37 to
col. 15, line 10 describes that the protocol description for a particular protocol at a
particular layer level includes any protocol specific operations to be performed on the
packet for the particular protocol at the particular layer level. The examiner also asserts that
“test using packet description files" in Bruell are such protocol specific operations. Col. 9
line 8 to col. 10 line 43 of Bruell describes protocols and how Bruell's language can be
used to describe how to interpret protocols, in particular, how to decode a packet based on
the protocol. Col. 14, line 37 to col. 15, line 10 of Bruell describes how the language may
be used to specify filtering. Thus, Bruell describes using the language to define a set of
protocol specific operations. However, the examiner has not shown that in Bruell the
feature the descriptions of the protocols themselves, i.e., the protocol description of the
protocol describe the protocol specific operations to be performed.

In the rejection of original claim 1 (now cancelled but incorporated into claim 13),
the examiner also asserts that Bruell in FIG. 4 and in col. 15 line 11—col. 16, line 42
discloses step (c) of performing the protocol specific operations on the packet specified by
the set of protocol descriptions based on the base protocol of the packet and the children of
the protocols used in the packet.

Applicants respectfully disagree. While the cited passage describes some protocol
specific operations, protocol specific operations are part of what Bruell calls test
application routines. For example, Bruell states that the test application routines

“may include a send routine 410, a receive routine 420 and a tap routine 430. The
test application routines each refer to the PDL data structures 405 for carrying out
their respective functions with respect to the device under test 305."

o \’b/ob

Received from <-+1 510 201 2685 > at 6/13/03 7:41:12 PM [Eastern Daylight Time]

Petitioners' EX1039 Page 216

Jun 13 03 03:43p Dov "osenfeld +1-57' "-281-29885 p.17

S/N 09/609179 Page 11 APPT-001-2

Thus, one may argue that Bruell describes performing protocol specific operations. In
Applicants' invention, any protocol specific operations to be performed on the packet for a
particular protocol as part of step (c) are included in the protocol description for the
particular protocol at a particular layer level (See restriction (iii) of step (b) that describes
what is included in the protocol description for a particular protocol). However, in Bruell,
the protocol description of the protocol does not describe the protocol description
operations to be performed. Rather, the cited part of Bruell describes how test application
routines may be written;and how such written application routines, e.g., filtering, may use
compiled protocol desciiptions.

In the rejection of claim 13, the examiner asserts that "decoding packets in accordance with
a defined packet format" describes "parsing and extraction operations on the packet to
extract selected portions of the packet to form a function of the selected portions for
identifying the packet as belonging to a conversational flow" and further that this is

- disclosed in col. 4 line 49 to col 6, line 30 and col. 14, line 37 to col. 15, line 10 of Bruell.

Applicants respectfully disagree.

Those in the art would understand that decoding a packet is the determining of the payload
at each layer according to the protocol. This may include parsing, may include extraction
operations, and may include extracting selected portions of the packet. However, the
examiner has failed to show that Bruell discloses the feature of the extraction being to form
a function of the selected portions for identifying the packet as belonging to a
conversational flow. Applicants invention is in order to recognize packets, e.g., that pass
through a node in a netwoik, as belonging to a conversational flow. A conversational flow
is the set of packets of a conversation. The function of the extracted portions is used to
recognize a packet as belonging to a conversational flow. The examiner has failed to show
that Bruell discloses such forming of a function.

Thus, claim 13 is believed allowable. Action to that end is respectfully requested.
Claim 17

Regarding claim 17, the examiner asserts that Bruell discloses that the protocol specific
operations include one or more state processing operations that are a function of the state
of the flow of the packet. In particular, that Bruell's FIG. 1 and col. 3, line 20 to col. 4, line
33, and col. 14, line 38 to col. 15, line 10 describe this feature.

Claim 17 depends on claim 13. The rejection of claim 13 is believed overcome. The above
arguments with respect to claim 13 are incorporated herein by reference. Thus claim 17 is
believed allowable and action to that end is respectfully requested.

However, even if the examiner remains unconvinced by applicant’s arguments for
overcoming the rejection of claim 13, Applicants still believe the examiner’s arguments for
rejecting claim 17 are erroncous.

State processing that depends on the state of a conversational flow is a concept described in
the specification. A conversational flow is the set of packets of a conversation. The state of

» 03
Petitioners' EX1039 Bage 217

Recelved from <+1 510 201 2985 > at 6/13/03 7:41:12 PM [Eastern Daylight Time]

Jun 13 03 03:44p Dov "osenfeld +1-51"-291-2985 P-

S/N 09/609179 Page 12 APPT-001-2

a flow is described in the specification as an indication of all previous events in the flow.
State processing thus is processing that depends on the state of a conversational flow, i.e.,
on the sequence of one or more previously encountered packets of the same conversational
flow (or initial state in the case of the first packet in a conversational flow). The examiner
has failed to show that Bruell includes this feature. For example, the word "state"” does not
even appear in Bruell.

The cited FIG. 1 of Bruell shows the process of constructing a packet. The cited part on
cols. 3 and 4 of Bruell describes FIG. | and also the use of Bruell's language to define
protocols and to process a single packet. No conversational flows or state processing are
disclosed. The cited part on cols. 14 and 15 of Bruell describes how Bruell's packet
description language (PDL) may be advantageously implemented in a system for testing
internetwork routing devices (the device test environment 301). See FIG. 3. A user defines
one or several PDL files 302. To use the device test environment 301, a user creates a test
file 303 that specifies the number, type and optional content of packets for the device test
environment 301 to send to and receive from a device under test 305. The remainder of the
cited part of Bruell is repeated here:

The device test environment 301 follows the script created by the test files with reference to
the data packet formats defined in the PDL files. The PDL files determine the structure and
default content of each packet type. When a device test environment 301 reads an
instruction in a test file for the device under test to send a type of packet, it assembles the
test packet by referring to the packet assembly specification in the PDL files 302. For
example, if the device test environment reads a test file instruction to send an Ethernet
header (ENET.sub.-- HDR) packet, it looks for the ENET.sub.-- HDR specification in the
PDL files and assembles the packet accordingly. Similarly, when the device fest
environment reads an instruction in a test file for the device under test to receive a type of
packet, a test packet is provided for the device to receive. If the packet the test environment
reads matches the packet type in the PDL files, then the device test environment 301
reports that the test succeeded; otherwise, it reports that it failed.

There is no concept of a conversational flow or of the state of the flow of the packet. Bruell
discloses testing individual packets. Thus, applicants assert, the examiner has failed to
show that Bruell describes state processing that is a function of the state of the flow of the
packet.

The rejection of claim 17 is thus believed overcome and the claims are allowable. Action to
that end is respectfully requested.

Claim 18

Regarding claim 18, the examiner asserts that Bruell discloses that the protocol specific
operations include one or more state processing operations that are a function of the state
of the flow of the packet. In particular, that Bruell's FIG. I and col. 3, line 20 to col. 4, line
33, and col. 14, line 38 to col. 15, line 10 describe this feature.

-\
\g
Recelved from < +1 510 291 2985 > at 6/13/03 7:41:12 PM [Eastern Daylight Time]

Petitioners' EX1039 Page 218

Jun 13 03 03:45p Dov “osenfeld +1-5* -291-2985 p.19

S/N 09/609179 Page 13 APPT-001-2

First, the examiner has failed to show that any protocol specific operations disclosed in
Bruell are the protocol specific operations of step (c). The arguments presented above for
this aspect of claim 13 also apply to the rejection of claim 18, as amended, and are
incorporated herein by reference. Furthermore, the examiner has failed to show that Bruell
discloses that the protocol specific operations include one or more state processing
operations that are a function of the state of the flow of the packet. The arguments
presented above for this aspect of claim 17 also apply to the rejection of claim 18 and are
incorporated herein by reference.

The rejection of claim 18 is thus believed overcome and the claims are allowable. Action to
that end is respectfully requested.

For these reasons, and in view of the above amendment, this application is now considered
to be in condition for allowance and such action is earnestly solicited.

Conclusion

The Applicants believe all of Examiner’s rejections have been overcome with respect to all
remaining claims (as amended), and that the remaining claims are allowable. Action to that
end is respectfully requested.

If the Examiner has any questions or comments that would advance the prosecution and
allowance of this application, an email message to the undersigned at dov@inventek.com,
or a telephone call to the undersigned at +1-510-547-3378 is requested.

Respectfully Submitted,

Date D6V Rosenfeld, Reg. No. 38687
Address for correspondence:
Dov Rosenfeld
5507 College Avenue,Suite 2
Oakland, CA 94618)
Tel. +1-510-547-3378; Fax: +1-510-291-2985 . J*}
Email: dov@inventek.com Lt

¢ '

Received from < +1 510 291 2985 > at 6/13/03 7:41:12 PM [Eastern Daylight Time]

Petitioners' EX1039 Page 219

Jun 13 03 03:39p

Dowv asenfeld

INVENTEK

Dov Rosenfeld
5507 College Avenue, Suite 2

Oakland, CA 94618, USA

Phone: {510)547-3378; Fax: (510)653-7992

_dov@inventek.com

+1-5° -291-2985

Fax

Patent Application Ser. No.: 09/609179
Applicant(s): Dietz, et al.
Filing Date: June 30, 2000

Ref./Docket No: APPT-001-2
Examiner.: Dinh, Khanh Q.
Art Unit: 2155

FAX COVER PAGE

T0: Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450
United States Patent and Trademark Office
(Examiner Dinh, Khanh Q., Art Unit 2155)
Fax No.: 703-746-7239
DATE: June 13, 2003
FROM: Dov Rosenfeld, Reg. No. 38687
RE: Response to Office Action
Number of pages including cover: 19
OFFICIAL COMMUNICATION |

PLEASE URGENTLY DELIVER A COPY OF

THIS RESPONSE TO

EXAMINER DINH, KHANH Q., ART UNIT 2155

on.

Date:

'3

Certificate of Facsimile Transmission under 37 CFR 1.8

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark Office at
telephone number 703-746-7239 addressed the Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450

Signed:
Name: Dov Rosenfeld, Reg. No, 38687

%—

Received from < +1 510 291 2985 > at 6/13/03 7:41:12 PM [Eastern Daylight Time]

Petitioners' EX1039 Page 220

Jun 13 03 03:38p

Dov asenfeld +1-57

-291-2985

TRA N S M ITTA L Application Number 09/609179
FORM

(to ba used for alf correspondence after initial fiting)
Filing Date 30 Jun 2000
First Named Inventor Dietz, Russell S.
Group Art Unit 2155
Examiner Name Dinh, Khanh Q.
Attorney Docket Number | APPT-001-2

ENCLOSURES (check alil that apply)

D Fee Transmittal Form

|

Application

O0OO0O0O0O OoOoOKO

O O

CFR 1.52 or 1.53

Fee Attached

Amendment / Response

D After Final Petition Routing Slip (PTO/SB/69)
and Accompanying Petition
Affidavits/declaration{s) To Convert a2

Extension of Time Request

Express Abandonment Request
Information Disclosure Statement
Certified Copy of Priority Document(s)

Response to Missing Parts/ Incomplete

Response to Missing Parts under 37

Assignment Papers
(for an Application)
Drawing(s)

Licensing-related Papers

Provisional Application

Power of Attomey, Revocation
Change of Correspondence
Address

Terminal Disclaimer

Small Entity Statement

Request of Refund

OO0 OoOooooad

OOooocoo

O 0O [

After Allowance Communication
to Group

Appeal Communication to Board
of Appeals and Interferences
Appeal Communication to Group
(Appeal Notice, Brief, Reply Brief)
Proprietary Information

Status Letter

Additional Enclosure(s)
{please identify below):

Retumn Postcard

Y}
[}
3
o
D
A
(7]

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT/ CORRESPONDENCE ADDRESS

Individual name

Firm or Dov Rosenfeld, Reg. No. 38687
Individual name el B -
Signature .

Date Juné 13, 2003

ADDRESS FOR CORRESPONDENCE

Firm Dov Rosenfeld

or 5507 College Avenue, Suite 2

Oakland, CA 94618, Tel: +1-510-547-3378

CERTIFICATE OF FACSIMILE TRANSMISSION

22313-1450 on this date:

Telephone number 703-746-7239 addressed to: Commissioner for Patents, P.O. Box 1450, Alexandria, VA

I hereby certify that this correspondence is being facsimile transmitted with the United States Patent and Trademark Office at

June 13, 2003

Type or printed name

Signature

Dov %g. No. 38687

I Date

TJune 13, 2003

Recelved from < +1 510 291 2985 > at 6/13/03 7:41:12 PM [Eastern Daylight Time] ¢

.
.y
TN

U’\(S/ oo

Petitioners' EX1039 Page 221

Jun 13 03 03:39p Dov »92senfeld +1-5" -291-2985 pP-

Our Ref./Docket No: APPT-001-2 Patent
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, ez al. Group Art Unit: 2155

Application No.: 09/609(79 Examiner: Dinh, Khanh Q.
Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC
INFORMATION IN PACKETS SPECIFIED
BY A PROTOCOL DESCRIPTION
LANGUAGE

TRANSMITTAL: RESPONSE TO OFFICE ACTION

Mail Stop Non Fee Amendment
Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

Transmitted herewith is a response to an office action for the above referenced application.
Included with the response are:

formal drawings {with separate letter);
This application has:

a small entity status. If a claim for such status has not earlier been made, consider
this as a claim for small entity status.

X __ No additional fee is required.

Certificate of Facsimile T ransmission under 37 CFR 1.8

1 hereby certily that this response is being facsimilc transmitted to the United States Patent and Trademark
Office at telephone number 703-746-7239 addressed the Commissioner for Patents, P.O. Box 1450,

Alcxandria, VA 22313-1450 on. W———
é/

Date: 1% T O 2 Signed:
Name: Dov Rosenfeld, Reg. No. 38687

Received from < +1 510 291 2085 > at 6/13/03 7:41:12 PM [Eastern Daylight Time]

Petitioners' EX1039 Page 222

‘Jun 13 03 03:38p Daov osenfeld +1-5 -291-2985 p.4
S/N 09/609179 Page 4 APPT-001-2
The fee has been calculated as shown below:
CLAIMS AS AMENDED
CLAIMS REMAINING HIGHEST NUMBER NO OF EXTRA RATE ADDITIONAL
AFTER AMENDMENT PREVIQUSLY PAID FOR CLAIMS PRESENT FCE
TOTAL CLAIMS 17 MINUS 20 0 $18 $ 0.00
INDEP. CLAIMS 3 MINUS 3 0 534 $ 0.00
TOTAL ADDITIONAL FEE DUE: $ 0.00

X _ Applicant(s) believe(s) that no Extension of Time is required. However, this
conditional petition is being made to provide for the possibility that applicant has
inadvertently overlooked the need for a petition for an extension of time.

Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a) of:
one months (5110) two months ($410)
two months ($930) four months ($1450)
If an additional extension of time is required, please consider this as a petition therefor.

A credit card payment form for the required fee(s) is attached.

X _ The Commissioner is hereby authorized to charge payment of the following fees
associated with this communication or credit any overpayment to Deposit Account
No. 50-0292 (A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

X _ Any missing filing fees required under 37 CFR 1.16 for presentation of
additional claims.
X _ Any missing extension or petition fees required under 37 CFR 1.17.

Respectfully Submitted,

—_ . /
2 Jume O %/
Date Do¥Kosenfeld, Reg. No. 38687

Address for.correspondence:
Dov Rosenfeld

5507 College Avenue,Suite 2
QOuakland, CA 94618 \
Tel. +1-510-547-3378; Fax: +1-510-291-2985 TR

Recelved from < +1 510 291 2985 > at 6/13/03 7:41:12 PM [Eastern Daylight Time]

Petitioners' EX1039 Page 223

Jun 13 03 03:38p Dov osenfeld +1-5 -291-2985 P.S

Qur Ref./Docket No: APPT-001-2 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, er al. Group Art Unit: 2155

Application No.: 09/609179 Examiner: Dinh, Khanh Q.

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC
INFORMATION IN PACKETS SPECIFIED
BY A PROTOCOL DESCRIPTION
LANGUAGE

TRANSMITTAL: RESPONSE TO OFFICE ACTION

Mail Stop Non Fee Amendment
Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

Transmitted herewith is a response to an office action for the above referenced application.
Included with the response are:

formal drawings (with separate letter);

This application has:

a small entity status. If a claim for such status has not earlier been made, consider
this as a claim for small entity status.

_X No additional fee is required.

G2
Ve \»

Certificate of Facsimile Transmission under 37 CFR 1.8

1 hereby certify that this response is being facsimile ransmitted to the United States Patent and Trademark
Office at telephone number 703-746-7239 addresscd the Commissioner for Patents, P.O. Box 1450,

Alexandria, VA 22313-1450 on. W
—_ N
Date: 13 Jyna. ©D Signed: : /
=

Name: Dov Rosenfeld, Reg. No. 38687

Recelved from < +1 510 201 2085 > at 6/13/03 7:41:12 PM [Eastern Daylight Time]

Petitioners' EX1039 Page 224

Jun 13 03 03:40p Dov ossenfeld +1-5

-291-2985 P-
S/N 09/609179 Page 6 APPT-001-2
The fee has been calculated as shown below:
CLAIMS AS AMENDED
CLAIMS REMAINING HIGHEST NUMBER NO. OF EXTRA RATE ADDITIONAL
AFTER AMENDMENT PREVIOUSLY PAID FOR CLAIMS PRESENT FEE
TOTAL CLAIMS 17 , MINUS 20 0 $18 $ 0.00
INDEP. CLAIMS 3 | miNus 3 0 $84 $ 0.00
TOTAL ADDITIONAL FEE DUE: $ 0.00

X__ Applicant(s) believe(s) that no Extension of Time is required. However, this
conditional petition is being made to provide for the possibility that applicant has
inadvertently overlooked the need for a petition for an extension of time.

Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a) of:
one months ($110) two months ($410)
two months ($930) four months ($1450)
If an additional extension of time is required, please consider this as a petition therefor.

A credit card payment form for the required fee(s) is attached.

X __ The Commissioner is hereby authorized to charge payment of the following fees
associated with this communication or credit any overpayment to Deposit Account
No. 50-0292 (A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

X Any missing filing fees required under 37 CFR 1.16 for presentation of
additional claims.

X Any missing extension or petition fees required under 37 CFR 1.17.

Respectfully Submitted,

Date Dov Rosefffeld, Reg. No. 38687

Address for correspondence:

Dov Rosenfeld

5507 College Avenue,Suite 2

Oakland, CA 94618 .
Tel. +1-510-547-3378; Fax: +1-510-291-2985 " o

\o/\'b’@

Received from < +1 510 291 2985 > at 6/13/03 7:41:12 PM [Eastern Daytight Time}

Petitioners' EX1039 Page 225

Jun 27 03 08:08a Dov .osenfeld +1-5. ,-291-23885 p-1

INVENTEK Fax w1le

Dov Rosenfeld

5507 College Avenue, Suite 2 LD:S-
Oakland, CA 94618, USA (—30-03
Phone: (510)547-3378; Fax: (510)653-7992 ‘ : (
dov@inventek.com L
Patent Application Ser. No.: 09/609179 Ref./Docket No: APPT-001-2

Applicani(s): Dietz, eral. - Examiner.: Dinh, Khanh Q.

Filing Date: June 30, 2000 Art Unit: 2155

FAX COVER PAGE

TO: Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

United States Patent and Trademark Office
(Examiner Dinh, Khanh Q., Art Unit 2155)

Fax No.: 703-746-5510

DATE: June 27, 2003

FROM: Dov Rosenfeld, Reg. No. 38687

RE: Supplementary response: CLAIM 18 of Serial Number 09/609,179
Number of pages including cover: 6

Dear Sir,

Further to our telephone conversation yesterday, here is a revised amendment for claim 18, this time
with a clean version included. I've included the same remarks on the rejection of claim 18 as was in
the earlier supplemental response of 6/19/03 such that this forms a complete supplemental response.
Thank you very much,

Dov Rosenfeld

6/37/05

Certificate of Facsimile Transmission under 37 CFR 1.8

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark addressed the

Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on.
Date: &//27"/0 3 Signed:/\’
/ Name: DoV Rosenfeld, Reg. No. 38687

Received from < +1 510 291 2085 > at 6/27/03 12:06:26 PM [Eastern Daylight Time] Petitioners' EX1039 Page 226 ~

Jun 27 03 08:10a Dov !(osenfeld +1-5. .-291-2985 P.

S/N 09/609179 (Our APPT-001-2)

Applicant(s): Dietz, et al. Group Art Unit: 2155
Application No.: 09/609179

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC
INFORMATION IN PACKETS SPECIFIED
BY A PROTOCOL DESCRIPTION
LANGUAGE

Examiner: Dinh, Khanh Q.

SUPPLEMENTAL RESPONSE

Mail Stop Non Fee Amendment
Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

Dear sir,

Further to the telephone conversations between the examiner and the undersigned
regarding claim 18, here is a revised amendment to claim 18.

AMENDMENT TGO CLAIM 18 _~

- Kindly amend claim 18 to read as follows. A recitation showing the deletions and additions
follows on a separate sheet:

\(\ & A method of performing protocol specific operations on a packet passing through a
connection point on a computer network, the method comprising:

(a) receiving the packet;

\ (b) receiving a set of protocol descriptions for a plurality of protocols that
)% conform to a layered model, a protocol description for a particular protocol at a
particular layer level including:

@) if there is at least one child protocol of the protocol at the particular
layer level, the one or more child protocols of the particular protocol at
the particular layer level, the packet including for any particular child
protocol of the particular protocol at the particular layer level
information at one or more locations in the packet related to the
particular child protocol,

Received from < +1 510 291 2985 > at 8/27/03 12:06:26 PM [Eastern Daylight Time] Petitloners' EX1 039 Page 227

Jun 27 03 08:10a Doy .osenfeld +1-5..,-291-2985 p-3

S/N 09/609179 Page 2

(ii) the one or more locations in the packet where information is stored
related to any child protocol of the particular protocol, and

(iii) if there is at least one protocol specific operation to be performed on
the packet for the particular protocol at the particular layer level, the
one or more protocol specific operations to be performed on the packet
for the particular protocol at the particular layer level; and

(c) performing the protocol specific operations on the packet specified by the
set of protocol descriptions based on the base protocol of the packet and the
(@ (children of the protocols used in the packet,

wherein the packet belongs to a conversational flow of packets having a set of one or
A more states, and wherein the protocol specific operations include one or more state
,/@V\ processing operations that are a function of the state of the conversational flow of the
packet, the state of the conversational flow of the packet being indicative of the
sequence of any previously encountered packets of the same conversational flow as the
packet.

|

Received from <+1 510 201 2985 > at 6/27/03 12:06:26 PM [Eastern Daylight Time] P"etitioners' EX1039 Page 228

Jun 27 03 08:10a Dov .osenfeld +1-5,4-291-2985 Pp.4

S/N 09/609179 Page 3

Description of amendment to claim 18:

18. (Currently amended) A method asserding-te-claim—1-; of performing protocol
specific operations on a packet passing through a connection point on a computer

network, the method comprising:

(a) receiving the packet:

(b) receiving a set of protocol descriptions for a plurality of protocols that

coniorm to a layered model, a protocol description for a particular protoco! at
a particular laver level including:

(i) if there is at least one child protocol of the protocol at the particular

layer level. the-one or more child protocols of the particular protocol at
the particular laver level,_the packet including for anv particular child

protocol of the particular protocol at the particular layer level

information at one or more locations in the packet related to the
particular child protocol,

(i) the one or more locations in the packet where information is stored

related to any child protocol of the particular protocol, and

(iii) _if there is at |east one protocol specific operation to be performed on
the packet for the particular protocol at the particular layer level, the
one or more protocol specific operations to be petrformed on the

packet for the particular protocol at the particular layer level; and

(c) performing the protocol specific operations on the packet specified by the set of
protocol descriptions based on the base protocol of the packet and the children of the
protocols used in the packet,

wherein the packet belongs to a conversational flow of packets having a set of one or

more states, and wherein the protocol specific operations include one or more state
processing operations that are a function of the state of the conversational flow of the
packet, the state of the conversational flow of the packet being indicative of the
sequence of any previously encountered packets of the same conversational flow as
the packet.

Received from <+1 510 291 2085 > at 6/27/03 12:06:26 PM [Eastern Daylight Time] Petitioners' EX1039 Page 229

Jun 27 03 08:10a Do. :osenfeld +1-5.,-291-2985 p.5

S/N 09/609179 Page 4

REMARKS ON THE REJECTION OF CLAIM 18

Regarding claim 18, the examiner asserts that Bruell discloses that the protocol specific
operations include one or more state processing operations that are a function of the state
of the flow of the packet. In particular, that Bruell's FIG. 1 and col. 3, line 20 to col. 4, line
33, and col. 14, line 38'to col. 15, line 10 describe this feature.

Applicants respectfully disagree.

State processing that depends on the state of a conversational flow is a concept described in
the specification. A conversational flow is the set of packets of a conversation. A
conversational flow has a set of one or more states. The state of a flow is described in the
specification as an indication of all previous events in the flow. State processing thus is
processing that depends on the state of a conversational flow the packet belongs to, i.e., on
the sequence of any previously encountered packets of the same conversational flow as the
packet. The examiner has failed to show that Bruell includes this feature. For example, the
word "state" does not even appear in Bruell.

The cited FIG. 1 of Bruell shows the process of constructing a packet. The cited part on
cols. 3 and 4 of Bruell describes FIG. 1 and also the use of Bruell's language to define
protocols and to process a single packet. No conversational flows or state processing are
disclosed. The cited part on cols. 14 and 15 of Bruell describes how Bruell's packet
description language (PDL) may be advantageously implemented in a system for testing
internetwork routing devices (the device test environment 301). See FIG. 3. A user defines
one or several PDL files 302. To use the device test environment 301, a user creates a test
file 303 that specifies the number, type and optional content of packets for the device test
environment 301 to send to and receive from a device under test 305. The remainder of the
cited part of Bruell is repeated here:

The device test environment 301 follows the script created by the test files with
reference to the data packet formats defined in the PDL files. The PDL files
determine the structure and default content of each packet type. When a device test
environment 301 reads an instruction in a test file for the device under test to send
a type of packet, it assembles the test packet by referring to the packet assembly
specification in the PDL files 302. For example, if the device test environment
reads a test file instruction to send an Ethernet header (ENET.sub.-- HDR) packet,
it looks for the ENET.sub.-- HDR specification in the PDL files and assembles the
packet accordingly. Similarly, when the device test environment reads an
instruction in a test file for the device under test to receive a type of packet, a test
packet is provided for the device to receive. If the packet the test environment reads
matches the packet type in the PDL files, then the device test environment 301
reports that the test succeeded; otherwise, it reports that it failed.

There is no concept of a conversational flow or of the state of the flow of the packet. Bruell
discloses testing individual packets. Thus, applicants assert, the examiner has failed to

Recelved from <+1 510 291 2985 > at 6/27/03 12:08:26 PM [Eastern Daylight Time] Petitioners' EX1039 Page 230

Jun 27 03 08:11a Dov :osenfeld +1-5.,-291-2985 p.6

S/N 09/609179 Page 5

show that Bruell describes state processing that is a function of the state of the flow of the
packet.

The rejection of claim 18 is thus believed overcome and the claims are allowable. Action to
that end is respectfully requested.

If the Examiner has any questions or comments that would advance the prosecution and
allowance of this application, an email message to the undersigned at dov@inventek.com,
or a telephone call to the undersigned at +1-510-547-3378 is requested.

Respectfully Submitted,
— %/\
Jpgar RIF 226005
Date 7 Doy Résenfeld, Reg. No. 38687

Address for correspondence:

Dov Rosenfeld

5507 College Avenue,Suite 2

Oakland, CA 94618

Tel. +1-510-547-3378; Fax: +1-510-291-2985
Email: dov@inventek.com

Received from < +1 510 201 2985 > at 6/27/03 12:06:26 PM [Eastern Daylight Time] Petitioners' EX1039 Page 231

Application No. Applicant(s)
. .rs 9/609,179 AL.
Notice of Allowability D08, 17 Forrad
Khanh Dinh 2155

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address--
All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If notincluded
herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS
NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative
of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.

1. X This communication is responsive to 6/13/2003.
2. X The allowed claim(s) is/are 2-18. ,
3. [X] The drawings filed on 6/30/2000 are accepted by the Examiner.
4.] Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a)[] Al b)[J Some* c)[JNone ofthe:
1. [Certified copies of the priority documents have been received.
2. [Certified copies of the priority documents have been received in Application No.
3. L] Copies of the certified copies of the priority documents have been received in this national stage application from the
Internationai Bureau (PCT Rule 17.2(a)).
* Certified copies not received:
5. [C] Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).
(a) (] The translation of the foreign language provisional application has been received.
6. [Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

Applicant has THREE MONTHS FROM THE “MAILING DATE” of this communication to file a reply complying with the requirements noted
below. Failure to timely comply will resultin ABANDONMENT of this application. THIS THREE-MONTH PERIOD IS NOT EXTENDABLE

7. [J A SUBSTITUTE OATH OR DECLARATION must be submitted. Note the attached EXAMINER'S AMENDMENT or NOTICE OF
INFORMAL PATENT APPLICATION (PTO-152) which gives reason(s) why the oath or declaration is deficient.

8. [[] CORRECTED DRAWINGS must be submitted.
(a) [0 including changes required by the Notice of Draftsperson’s Patent Drawing Review (PTO-948) attached
1) [hereto or 2) [] to PaperNo. ____.
(b)] including changes required by the proposed drawing correction filed , which has been approved by the Examiner.

(¢)[O including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No.

Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front {not the back) of
each sheet.

9. [] DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the
attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

Attachment(s)

1] Notice of References Cited (PTO-892) 2[] Notice of Informat Patent Application (PTO-152)

3[] Notice of Draftperson's Patent Drawing Review (PTO-948) 4[] Interview Summary (PTO-413), Paper No.____ .

5[] Information Disclosure Statements (PTO-1449), Paper No. _____. 8] Examiner's Amendment/Comment

7[] Examiner's Comment Regarding Requirement for Deposit 8[C] Examiner's Statement of Reasons for Allowance
of Biological Material 9[] Other

NWhGerr

HOSAINT, ALAM
PRIMARY EXAMINER

U.S. Patent and Trademark Office

PTO-37 (Rev. 04-03) Notice of AllowabilityPetitionerS' EX1 039 Pagéar%lzper No. 9

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address COMMISSIONER FOR PATENTS

PO. Box 1450

Alexandna, Virgirua 22313-1450

www uspto gov

NOTICE OF ALLOWANCE AND FEE(S) DUE

7590 07/01/2003 [EXAMINER I

Dov Rosenfeld

5507 College Avenue DINH, KHANH Q

Suite 2

Oakland, CA 94618 f ART UNIT | crasssuscLass |
' 2155 709-230000

DATE MAILED: 07/01/2003

[APPLICATIONNO. | FILING DATE | FIRST NAMED INVENTOR | ATTORNEY DOCKET NO. | CONFIRMATION NO. 1
09/609,179 06/30/2000 Russell S. Dietz APPT-001-2 2668
TITLE OF INVENTION: METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK
r APPLN. TYPE L SMALL ENTITY | ISSUE FEE | PUBLICATION FEE J TOTAL FEE(S) DUE | DATE DUE |
nonprovisional NO $1300 $0 $1300 10/01/2003

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT.
PROSECUTION ON THE MERITS IS CLOSED, THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS.
THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE OR UPON
PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE
MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY
PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE REFLECTS A CREDIT
FOR ANY PREVIOUSLY PAID ISSUE FEE APPLIED IN THIS APPLICATION. THE PTOL-85B (OR AN EQUIVALENT)
MUST BE RETURNED WITHIN THIS PERIOD EVEN IF NO FEE IS DUE OR THE APPLICATION WILL BE REGARDED AS
ABANDONED.

HOW TO REPLY TO THIS NOTICE:
1. Review the SMALL ENTITY status shown above.

If the SMALL ENTITY is shown as YES, verify your current
SMALL ENTITY status:

A. If the status is the same, pa)} the TOTAL FEE(S) DUE shown
above.

If the SMALL ENTITY is shown as NO:
A. Pay TOTAL FEE(S) DUE shown above, or

B. If the status is changed, pay the PUBLICATION FEE (if required)
and twice the amount of the ISSUE FEE shown above and notify the
United States Patent and Trademark Office of the change in status, or

B. If applicant claimed SMALL ENTITY status before, or is now
claiming SMALL ENTITY status, check the box below and enclose
the PUBLICATION FEE and 1/2 the ISSUE FEE shown above.

O Applicant claims SMALL ENTITY status.
See 37 CFR 1.27.

II. PART B - FEE(S) TRANSMITTAL should be completed and returned to the United States Patent and Trademark Office (USPTO) with
your ISSUE FEE and PUBLICATION FEE (if required). Even if the fee(s) have already been paid, Part B - Fee(s) Transmittal should be
completed and returned. If you are charging the fee(s) to your deposit account, section "4b" of Part B - Fee(s) Transmittal should be
completed and an extra copy of the form should be submitted.

T1I. All communications regarding this application must give the application number. Please direct all communications prior to issuance to
Box ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of
maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

Page 1 of 4
PTOL-85 (REV. 05-03) Approved for use through 04/30/2004.

Petitioners' EX1039 Page 233

PART B - FEE(S) TRANSMITTAL

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE

Commissioner for Patents
Alexandria, Virginia 22313-1450
Fax (703)746-4000

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if requir.ed%). Blocks 1 through 4 should be completed where

appropnate. All further correspondence including the Patent, advance orders and notification of maintenance fees will

¢ mailed to the current correspondence address as

imflcated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for

maintenance fee notifications.

CURRERT CORRESPONDENCE ADDRESS (Note Legibly mark-up with any COTEctions of use B1ock 1)

7590

Dov Rosenfeld
5507 College Avenue
Suite 2

Oakland, CA 94618

Note: A certificate of mailing can only be used for domestic mailings of the
07/01/2003 Fee(s) Transmittal. This certificate cannot be used for any other
accompanying papers. Each additional paper, such as an assignment or
formal drawing, must have its own certificate of mailing or transmission.

Certificate of Mailing or Transmission
I hereby certify that this Fee(s) Transmittal is being deposited with the
United States Postal Service with sufficient postage for first class mail in an
envelope addressed to the Box Issue Fee address above, or being facsimile
transmitted to the USPTO, on the date indicated below.

(Depositar's name)

(Signature)

(Date)
l APPLICATION NO l " FILING DATE l FIRST NAMED INVENTOR l ATTORNEY DOCKET NO. | CONFIRMATION NO. l
09/609,179 06/30/2000 Russell S. Dietz APPT-001-2 2668
TITLE OF INVENTION: METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK
I APPLN. TYPE] SMALL ENTITY l ISSUE FEE | PUBLICATION FEE l TOTAL FEE(S) DUE | DATE DUE]
nonprovisional NO $1300 50 $1300 10/01/2003
{ EXAMINER | ART UNIT | cLasssuBcLass |
DINH, KHANH Q 2155 709-230000
éFCI:{hzlmf&())f correspondence address or indication of "Fee Address" (37 2. For printing on the patent front page, list (1)

O Change of corre%ondence address (or Change of Correspondence

Address form PTO.
Q "Fee Address" indication (or "Fee

the names of up to 3 registered patent attorneys
or agents OR, alternatively, (2) the name of a

B/122) attached. single firm (having as a member a registered 2
Address" Indication form attoney or agent) and the names of up to 2
s" Indication fo
PTO/SB/47; Rev 03-02 or more recent) attached. Use of a Customer Feg]stered patent att.orneys or agents. If no name 3
is listed, no name will be printed.

Number is required.

3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. Inclusion of assignee data is only appropriate when an assignment has
been previously submitted to the USPTO o is being submitted under separate cover. Completion of this form is NOT a substitute for filing an assignment.

(A) NAME OF ASSIGNEE

(B) RESIDENCE: (CITY and STATE OR COUNTRY)

Please check the approprate assignee category or categories (will not be printed on the patent) Q individual O corporation or other private group entity QO government

4a. The following fee(s) are enclosed:

Q Issue Fee
Q Publication Fee
Q Advance Order - # of Copies

4b Payment of Fee(s):
Q A check in the amount of the fee(s) is enclosed.
Q Payment by credit card. Form PTO-2038 is attached.

Q The Commissioner is hereby authorized by char%e the required fee(s), or credit any overpayment, to
Deposit Account Number (enclose an extra copy of this form).

Commussioner for Patents is requested to apply the Issue Fee and Publication Fee (if any) or to re-apply any previously paid issue fee to the application 1dentified above.

(Authorized Signature)

(Date)

NOTE, The Issue Fee and Publication Fee (if required) will not be accepted from anyone
other than the applicant; a registered attomegl or agent; or the assignee or other party in
interest as shown by the records of the Umted States Patent and Trademark Office.

This collection of information is required by 37 CFR 1.311. The information is required to
obtain or retain a benefit by the public which is to file (and by the USPTO to process) an
application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection 1s
estimated to take 12 minutes to complete, including gathering, preparing, and submtting the
completed application form to the USPTO. Time will vary dependinF upon the individual
case. Any comments on the amount of time you require to complete this form and/or
suggestions for reducing this burden, should be ‘sent to the Chief Information Officer, U.S.
Patent and Trademark Office, U.S. Department of Commerce, Alexandria, Virginia
22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS.
SEND TO: Commissioner for Patents, Alexandria, Virginia 22313-1450.

Under the Paperwork Reduction Act of 1995, mi/l%ersons are required to respond to a
collection of information unless 1t displays a valid OMB control number.

TRANSMIT THIS FORM WITH FEE(SP

igs '
PTOL-85 (REV. 05-03) Approved for use through 04/30/2004. OMB 0651-0033 U.S. Patent anﬁ!:alngrgm(gﬁ; I%EPQ%%I:E’IQQ &)l%\%i%CE

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address' COMMISSIONER FOR PATENTS

PO Box 1450

Alexandna, Virgima 22313-1450

www uspto gov

| APPLICATION NO l FILING DATE l FIRST NAMED INVENTOR | ATTORNEY DOCKET NO, | CONFIRMATION NO. J
09/609,179 06/30/2000 Russell S, Dietz APPT-001-2 2668
7590 07/01/2003 l EXAMINER]
Dov Rosenfeld DINH, KHANH Q
5507 College Avenue
Suite 2 [ART UNIT [paperNUMBER |

Oakland, CA 94618

2155
DATE MAILED:; 07/01/2003

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)
(application filed on or after May 29, 2000)

The patent term adjustment to date is 643 days. If the issue fee is paid on the date that is three months after the
mailing date of this notice and the patent issues on the Tuesday before the date that is 28 weeks (six and a half
months) after the mailing date of this notice, the term adjustment will be 643 days.

If a continued prosecution application (CPA) was filed in the above-identified application, the filing date that
determines patent term adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval
(PAIR) system. (http://pair.uspto.gov)

Any questions regarding the patent term extension or adjustment determination should be directed to the Office of
Patent Legal Administration at (703)305-1383.

Page 3 of 4

PTOL-85 (REV. 05-03) Approved for use through 04/30/2004,

Petitioners' EX1039 Page 235

UNITED STATES PATENT AND TRADEMARK OFFIGE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address COMMISSIONER FOR PATENTS

PO Box 1450

Alexandna, Virgiua 22313-1450

www uspto gov

APPLICATION NO. I FILING DATE] FIRST NAMED INVENTOR l ATTORNEY DOCKET NO. | CONFIRMATION NO.]
09/609,179 06/30/2000 _ Russell S. Dietz APPT-001-2 2668
7590 07/01/2003 | EXAMINER I
Dov Rosenfeld DINH, KHANH Q
5507 College Avenue
Suite 2 [ART UNIT [PAPER NUMBER |

Oakland, CA 94618

2155
UNITED STATES

DATE MAILED: 07/01/2003

Notice of Fee Increase on January 1, 2003

If a reply to a "Notice of Allowance and Fee(s) Due" is filed in the Office on or after January 1, 2003, then the
amount due will be higher than that set forth in the "Notice of Allowance and Fee(s) Due" since there will be an increase

in fees effective on January 1, 2003. See Revision of Patent and Trademark Fees for Fiscal Year 2003; Final Rule, 67 Fed.
Reg. 70847, 70849 (November 27, 2002). -

The current fee schedule is accessible from: http:/www.uspto.gov/main/howtofees. htm.

If the issue fee paid is the amount shown on the "Notice of Allowance and Fee(s) Due," but not the correct amount
in view of the fee increase, a "Notice to Pay Balance of Issue Fee" will be mailed to applicant. In order to avoid
processing delays associated with mailing of a "Notice to Pay Balance of Issue Fee," if the response to the Notice of
Allowance and Fee(s) due form is to be filed on or after January 1, 2003 (or mailed with a certificate of mailing on or
after January 1, 2003), the issue fee paid should be the fee that is required at the time the fee is paid. If the issue fee was
previously paid, and the response to the "Notice of Allowance and Fee(s) Due" includes a request to apply a
previously-paid issue fee to the issue fee now due, then the difference between the issue fee amount at the time the
response is filed and the previously paid issue fee should be paid. See Manual of Patent Examining Procedure, Section
1308.01 (Eighth Edition, August 2001).

Questions relating to issue and publication fee payments should be directed to the Customer Service Center
of the Office of Patent Publication at (703) 305-8283.

Page 4 of 4

PTOL-85 (REV. 05-03) Approved for use through 04/30/2004.

Petitioners' EX1039 Page 236

Jul 14 03 10:18a Dov Rosenfela T1-D1U-CT 1 ~cDOD Peo CW

Our Ref/Docket No: _APPT-001-2 Patent
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dletz, etal. Gmup Art Unit: 2155 Lw—

03

Application No.: 09/609179 Examianer: Dinh, Khanh Q. 10 ~2%
Filed: June 30, 2000 Notice of Allowance mailed: July 1, W
Title: PROCESSING PROTOCOL SPECIFIC 2003 S 0%
INFORMATION IN PACKETS SPECIFIED BY A Confirmation No.: 2668 1_/[
PROTOCOL DESCRIPTION LANGUAGE \07

AMENDMENT AFTER ALLOWANCE UNDER 37 CFR 1.312 sk o ondin
Mail Stop Non Fee Amendment .]C D N \’r
Commissioner for Patents ! /
P.O. Box 1450
Alexandria, VA 22313-1450 ‘o/ 227/ 0%
Dear Commissioner:

This.is an amendment after allowance under 37 CFR 1.312.

This amendment was previously sent July 8, 2003 to the non-after final fax number for the
Art Unit, and is now being sent 1o the after-final fax number per examiner request.

Certificate of Facsimile Traosmission under 37 CFR 1.3)
1 hereby certify that this response is being facsimile transmitied to the United States Patent and Trademark

Office at telephone number 703-746-7238 addressed the Commissioner for Patents, P.C. Box 1430
Alexandrsia, VA 22313-1450 on.
Date: F ,“'{ [O 5 Signed:

Narme: #ifeld, Reg. No. 38687

Received from < +1 $10201 2085 » 0 T114/03 2:15:18 M (Eastern Ouylight Tiene]

mMatch and Return

Petitioners' EX1039 Page 237

Wi AT WY AV eRwS MW NMUDTI G f e Wew mwae A -

S/N 09/609179 Page 2 APPT-001-2

INTRODUCTORY REMARKS:
Kindly amend this application as follows and kindly consider the following remarks.

Recelyed rom < #1 510 204 2985 » &2 711403 2:15:18 PM {Eastemn Daylight Time]

Petitioners' EX1039 Page 238

S/N 09/609179 Page 3 APPT-001-2

AMENDMENT TO THE TITLE /

Kindly delete the title of record and substitute the following title therefor:

--PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS SPECIFIED
BY A PROTOCOL DESCRIPTION LANGUAGE-~-

Recelved from < +1 510 201 2633 > al /34D 2:15:18 PM [Eastern Daytght Tune)

Petitioners' EX1039 Page 239

S/N 09/609179 Page 4 APPT-001-2
REMARKS

Status of the Application:
A Notice of Allowance was mailed on July 1, 2003.
Amendment to the Title:

Upon receipt of the Notice of Allowance, it was noticed that the title cited on the Notice
was wrongly written as

METHOD AND APPRATUS FOR MONITIRING TRAFFIC IN A NETWORK

This is not the title of the invention as filed. A filing receipt was issued on November 7,
2000 with this wrong title. The application was filed on June 20, 2000 with the correct
title, whichis:

PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS
SPECIFIED BY A PROTOCOL DESCRIPTION LANGUAGE

Correction of the title is respectfully requested.

Applicants understand that an amendment after allowance under 37 CFR 1.312is not a
right. but is discretionary. The original error was the error of the Patent Office. Applicants
respectfully request that this amendment be entered.

If the Examiner has any questions or comments that would advance the prosecution and
uliowance of this application, an email message to the undersigned at dov@inventek.com,
or a telephone call to the undersigned at +1-510-547-3378 is requested.

Respectfully Submitted,
SISICE W
Date Dov R}!)i}(ﬁﬁeg. No. 38687

Address for correspondence:

Dov Rosenfeld

$507 College Avenue Suite 2

Oakland, CA 94618

Tel. +1-510-547-3378; Fax: +1-510-291-2985
Email: dov@inventek.com

Recelved from <+1 510 201 2083 » al 71409 2:13:18 PM fEastern Dayognt Time}

Petitioners' EX1039 Page 240

INVENTEK Fax

Dov Rosenfeld

§507 College Avenue. Suits 2

Oakland, CA 94618, USA

Phone: (510)547-3378; Fax: (510)653-7992

dov@inventek.com
Patent Application Ser. No.: 09/609179 Ref/Docket No: APPT-001-2
Applicant(s): Dietz, et al. Examiner.: Dinh, Khanh Q.
Filing Date: Iune 30, 2000 Art Unit: 2155
FAX COVER PAGE
T0: Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

United States Patent and Trademark Office
(Examiner Dinh, Khanh Q., Art Unit 2155)

Fax No.: 703-746-7238

DATE: July 14, 2003
FROM: Dov Rosenfeld, Reg. No. 38687
RE: Amendment after Allowance

Number of pages including cover: 6

B OFFICIAL COMMUNICATION]

PLEASE URGENTLY DELIVER A COPY OF
THIS RESPONSE TO
EXAMINER DINH, KHANH Q., ART UNIT 2155

Certificate of Facsimile Transmission under 37 CFR 1.8
1 hercby certify that this response is boing facsimile transmitted to the United Stotes Patent and Trademark Office at

telephone number 703-746-7238 ddressed the Commissioner for Patenis, P.O. Box 1450, Alezandria, VA 22313.1450
on - /"- e
Darc: :r /"’) /O 3 Signed: /

Name: Dov Rosem. No. 38687

Recelvad from < +1 510 281 2085 > a17/14/03 2:15:18 PM [Eastern Daytignt Time]

Petitioners' EX1039 Page 241

‘“ TRAN SMlT-rAL Application Number 09608178
FORM

(o be used for all comaspondance alter initial liling)
Filing Dat 30 Jun 2000
First Named Invem r Dietz, Russell S.
Group At Unit 2155
Examiner Name Dinh, Khanh Q.
Attomey Docket Number | APPT-001-2

ENCLOSURES (check aji that apply)

Afer Allowance Communication
to Group

Appeal Communication 1o Board
of Appeals and interferances

Appeal Communication to Group
{Appeal Notice, Brief, Reply Briaf)

Proprietary information
Status Letter

Additiona! Enclosure(s)
{pleass identity below):

Retum Postcard

oo aooaoaon

D Fes Transmittal Form D Assignment Papaeis
(for an Application)

D Fee Attached Drawingt(s)

Amendment / Response D Licensing-related Papers

D D Alter Final D Petition Routing Slip (PTO/SB/6%)
and Accompanying Petifion

D D Aftidavis/deciaration(s) D ToConverta
Provisional Application

D Extension of Time Request D ao‘:erof ;lamey, Revocation

nge respondence

Address

D Express Abandonment Request D Terminal Disclaimes

D Intormation Disclosure Statemant D Smali Entlty Statermnent

D Certified Copy of Priority Document(s) D Request of Retund

D Response to Missing Parts/ Incomplete Remarks

Application
D D Response to Missing Parts under 37
CFR 1.52 or 1.53

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT/ CORRESPONDENCE ADDRESS

Firm or Dov Rosenfeld, Reg. No.
Individual name

Signature /

Date Jul

ADDRESS FOR CORRESPONDENEE

Firm Dov Rosenieid

8507 Coliegs Avenus, Suite 2
Qakland, CA 394818, Tel: +1-510-547-3378

or
{ndividual name

CERTIFICATE OF FACSIMILE TRANSMISSION

Telephone number 703-748-7238 adiressed to: Commissioner for Patents,

1 hereby certily that this correspondence is being facsimile transmitied with the United States Patent and Trademark Office at
. Bax 1450, Alexandria, VA

lmyu.zoos - ‘

22313-1450 on this dats: o
Dov Rosenteld, Reg. e 38867

| Date

| Juty 14, 2003

Type or.printed name

Signature
Recelved trom < +1 510291 2985 » at 7/14/03 2:13: 18 PM (Eastern Daytight Time}

Petitioners' EX1039 Page 242

Sep 24 03 0S:47p Dov senfeld A * +1-510-. -2985 P.4

PART B - FEE(S) TRANSMITTAL

fete and send this form, tagether w ‘h applicable fee(s), to: Mall Mail Stop ISSUE FEE
Commissioner for Pafents
Alexandria, Virginia 22313-1450
m (703)745-4000

S: This form should be used Jor transmi rod). Blocks 1 ibrough 4 B:oT i bo mptsﬁa where

R '3
appropriste. All further correspondence inchutling - thc Putent, advance orders nd noﬂnaum of mlmemnce fcu w:ll mailed to the cutrent corresponde: :Mrgu
indicated ong s:eﬂedmt:low directed otherwise in Block 1, by (a) specifying a new correspondence addrass; and/or (b) indicating o scpanate ADDRESS" for
NOLN o R LS Ry w ie: A orrtificate of mai, nly be used for 7
1590 0140!0001 :’ee(s) "l:mmﬁn& 'n\&u hwa&?wglm be u‘s:d i -?n? other
M < dong , such grment
Dov Rosenfeld . f drowing, mist have its own mn&‘ﬁ:m of ansmassion.

5507 Coilege Avenue

Certificate of Mailing or Transmission

Suite 2 {Jut:ibgm “gtlllsﬂml’ 'g'fmnulubmﬁ”n ited with the
M wi
Oakdand, CA 94618 o kiresocd 1o the Bon I55e Eoe pAAiss sbove, of Vet Retimiis
: mnm wdwtheusn'o cntbeducmd)mdbeow

(] rmEe D {Ospoalior's sams)

{Sigrarare)

a4 Sep O3 (Ore)
| ArrLicaTionwo. | FUNGDATE | . FIRST NAMED INVENTOR ° | ATTORXEY DOCKET¥0. | ConmRMaTiON NO. |

09/609,179 06302000 Rusacli S, Dietz APPT-001-2 2668

TITLE OF INVENTION: METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

[arvwisvee | swaueaoy | ssuerEe] PUBLICATIONFEE | TOTALFEE(S)DUE | DATEDUE |
nonprovisionat NO $1300 50 $1300 10/01/2003
[EXAMINER . | ASTUNIT | crass-susctass |
DINK, KHANH Q 2155 709-230000

l.CI\anféesof pond, ddress o indication of "Fee Addrcss® (37 2. Por priming oa the pstont front page, list (1)

the names of up 10 3 registered patent snomeys I_Qﬂ_&&ﬂﬂé_
:IOmnac of corrc ndenoc address (or Change of Correspondence or agents OR, sliemacively, (2) the name of a

Addms B/122) attached. single firm (hlvit)l‘ a3 & member :»f uginsmtzl P to !5
sarney or agent) and the names w w
Address™ indication {or "Fee Address™ Indication form
Y registered petent attomeys or ogents, 1f oo name
mggﬁr&c: ge:in or mote recem) attached, Use of a Cestomer is listed, no will bo peinted. 3
3. ASSIGNEE NAME AND RES!DENCE DATA TO BE PRINTED ON THE PATENT (print of type)
PLEASE NOTE: Unl is jdentified delow, no assignee dara will appear om the patent. (nclusion of ignes data @ iprisie when ent has
been previously sub'r‘nfu:d”t; (he SI’TO of i3 being s:;mud eem“ cover. c::,uaﬂ' of this foem is gxo?. n&mnnc.};n i:g g':mxg-;en 80 assignon
(A) NAME OF ASSIGNEE (B) RESIDENCE: (CITY and STATE OR COUNTRY)
Hi/€n, Tnc. Los Gates, A
Please check the sppropriate assy wory or categoties (will not be printed on the patem) Qincividual XKeorporation o7 othar private group eatity 2 govemment
4 Th following fee(s) we cndoscd. 4b, Paymens of Fec(s):
X lssue Fee . O A cheek in the amount of the fes(s) is enclosed.
Q Publicatitm Fes W Payment by credit card. Form PT0-2038 is axtached,
P . The C i3 hereby outhorized by ¢! the required fee(s), or credit any & ment, 10
W Advence Order - #of Copies_{Q e e oo oS G RA A (tnaToee aa esira copy of nts orm). oY

Commissioner for Palents is requessed 1o spply the Issue Fee and Publication Fec (ifany) or to reapply any previousty paid issue fee ta the application identified above.

{Authorized S} (Dwe) 58
2 Ser 3 38
I Publ o Fee (if gy will m:‘e‘iccapl:dgmuymi: « g‘g‘
a X or other party
munst as :hovm ‘m" “y:‘f"ht Un%%m and ‘l’tm‘lcn%n'h?“e Office. - =
'ﬁ;ﬁc'a)ewo ”m Wsﬂmml The 3 omanmnsmqmﬁ
b ret, benefit by the public which is to file {and d: zheUSH"Ow es3) R §
:p;l::gron C‘::;:dmmhw% xmmed by 35 U.S.C. 122 <m63 CFR 1.14. This c%gcecngn ~
¥ fete, including gathering. prepariag, and submitt
complc!cd apphcnﬂon fonn Io 65?1‘0 Time wxll vary depend»z??an Ihe mdzvxdua!
ggemons for uducing :hls d :hould be,s:“u';‘nq:‘ha Chief In mion om L s
rademark Office, U.S. Department of Commerce, Alexandria, iniz
22313 1450 DO NOT SEND FEES OR COMPLETED FORMS 1'0 rms ADDR 3.
SEND TO: Commissioner for Patents, Alcxandria, Virginia 22313-1450.
rk Reduction Act of 1993, fred to d ¢
Under tbehpwo sduction ft.‘ 9%, 30 ersons are pond to 1 %
TRANSMIT THIS FORM WITH FEE(S)
PTOL-8S (REV. 05-03) Approved for use through 04/30/2004. OMB 0651-6033 U.S. Potent snd Trademark Office; U.S. DEPARTMENT OF commen% §§
Recetved from <+1 $10 2901 2089 > ot 0724103 8:43:006 PM [Eastern Daylight Ttme] § E':;
. g
~
s 33

Petitioners' EX1039 Page 243

\

Sep 24 03 0S:46p Dov senfeld ™ ' +1-510- .-2988% p.1

> &

. 8 9 INVENTEK | Fax

Dov Rosenfeld

5507 College Avenue, Stite 2

Osakiand, CA 94818, USA

Phone: (510)547-3378; Fax: (510)653-7992
dov@inventak.com

o

OUR REF: APPT-001-2

TO: Mail Stop Issue Fee FAX Ng.: (T03) 746-4000
Commissioner for Patents '
P.Q. Box 1450
Alexandria, VA 22313-1450

DATE: September 24, 2003

FROM: Dov Rosenfeld, Reg. No., 38,687

RE: Issue Fee for Application No.: 09/609,179

Number of pages including cover: 5

OFFICIAL COMMUNICATION
ISSUE FEE PAYMENT

Included herewith are:
s A transmittal letter and copy
e Fee(s) Transmittal (form PTOL-85)

e Credit Card charge form for issue fee

Certificote of Facsimile Transmission under 37 CFR 1.8

I hereby certify that this response is being facsimile transmitied to the Unitcd States Patent and Trademark Office at telephone
number (703) 746-4000 addressed to Mail Stop Issue Fee, Commissioner for Pawcnts, P.O. Box 1450, Alexandria, VA 223)3-1450

on. S,

Date; _Scptember 24, 2003

Received from <+1 510 291 2085 > ot 3724703 8:43:08 PM [Eastern Daylight Thme]

Match and Return

Petitioners' EX1039 Page 244

Sep 24 03 0S5:46p Dov . senfeld <« - * +1-510-~. ~-2985 p.2

Our Ref/Docket No: APPT-001-2 Patent
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, e al. Group Art Unit: 2756
Application No.: 09/609,179 Bxaminer:

Filed: June 30, 2000 Notice of Allowance Mailed:
Title: PROCESSING PROTOCOL SPECIFIC July, 1, 2003

INFORMATION IN PACKETS SPECIFIED | confirmation No: 2668
BY A PROTOCOL DESCRIPTION nhrmaton
LANGUAGE

SUBMISSION OF ISSUE FEE

Mail Stop ISSUE FEE
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

Transmitted herewith is a completed “Issue Fee Transmittal” Form. Included with the form are:
X _ A credit card payment form for the issue fee and any advance order of copies;

drawing corrections (with separate letter);

formal drawings (with separate letter);

deerevet—

X . The Commissioner is hereby authorized to charge payment of the any missing fee or
credit any overpayment to Deposit Account No. 50-0292
(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,
2 Sep 032)y
Date . Dov Résgnfeld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld
5507 College Avenue,Suite 2
Oakland, CA 94618
Tel. #1-510-547-3378; Fax: +1-413-638-1280

Certificate of Facsimile Transmission under 37 CFR 1.8

1 hereby cectify that this response Is being facsimilc transmitted to the United States Patent and Trademnark Office at
telephone number (703) 746-4000 addressed 1o Mail Stop Issue Fee, Commissioner for Patents, P.O. Box 1450,
Alexandria, VA 22313-1450 on.

Date;__Sentember 24, 2003 Signed: =
Name: Dov Kosenfeld, Reg. No. 38687

Recetved from <+1 5§10 291 2083 > at 9/24/03 8:4%.:08 PIS [Eastern Daylight Time]

Petitioners' EX1039 Page 245

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address COMMISSIONER FOR PATENTS

P O.Box 1450

Alexandna, Virgimia 22313-1450

WWWw uspto.gov

r APPLICATION NO. | FILING DATE | FIRST NAMED INVENTOR | ATTORNEY DOCKET NO. | CONFIRMATION NO. |
09/609,179 06/30/2000 Russell S. Dietz APPT-001-2 2668
7590 10/27/2003 [EXAMINER J
Dov Rosenfeld DINH, KHANH Q
5507 College Avenue
Suite 2 | ARTUNIT PAPERNUMBER |
Oakland, CA 94618 2155 /
DATE MAILED: 10/27/2003 /

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 10/03)

Petitioners' EX1039 Page 246

Application No. Applicant(s)
R to Rule 312 C icati 09/609,179 DIETZETAL.
esponse 1o xuie ommunication Examiner At Unit
Khanh Dinh 2155

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address —

1. [Q The amendment filed on 14 July 2003 under 37 CFR 1.312 has been considered, and has been:
a)X] entered.

b)] entered as directed to matters of form not affecting the scope of the invention.

¢) [disapproved because the amendment was filed after the payment of the issue fee.

Any amendment filed after the date the issue fee is paid must be accompanied by a petition under 37 CFR 1.313(c)(1)
and the required fee to withdraw the application from issue.

d) [disapproved. See explanation below.

e)] entered in part. See explanation below.

Yoo

HOSAIN ALAM

K .DINH
10/23/03
A0 218

U.S. Patent and Trademark Office .
PTOL-271 (Rev. 04-01) Reponse to Rule 312 Communication Part of Paper No. 11

Petitioners' EX1039 Page 247

TIFE ‘ ‘ (Y} C
C%‘;\Ref./Docket No: APPT-001-2 Patent #
»
" APR 0 8 2004 . IN THE UNITED STATES PATENT AND TRADEMARK OFFICE (o
\:It“ &
N ro /
NAzoafentor(s): Dietz, et al.

Assignee: Hi/fn, Inc.

Patent No: 6,665,725%{

Issue Date: December, 16, 2003
Application No.: 09/609,179
Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC
INFORMATION IN PACKETS SPECIFIED
BY A PROTOCOL DESCRIPTION
LANGUAGE

Al

Cartiticaie

> ¢ 2004
ot G«arreeﬂon

REQUEST FOR CERTIFICATE OF CORRECTIONS

Corﬁmissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Commissioner:

The above patent contains significant errors as indicated on the attached Certificate of Correction form

(submitted in duplicate).

X __ Sucherrors arose through the fault of the Patent and Trademark Office. It is requested that the

certificate be issued at no cost to the applicant.

However, if it is determined that the error(s) arose through the fault of applicant(s), please note
that such error is of clerical error or minor nature and occurred in good faith and therefore issuance of
the certificate of Correction is respectfully requested. The Commissioner is authorized to charge

Deposit Acqgunt No. 50-0292 any required fee. A duplicate of this

request is attached.

Such vérrgr arose through the fault of applicant(s). A credit card charge form for the fee is
enclosed. Such error is of clerical error or minor nature and occurred in good faith and therefore

issuance of the certificate of Correction is respectfully requested.
Such errors specifically:

In col. 6, line 47 change "NBTBIOS" to --NETBIOS--.

Certificate of Mailing under 37 CFR 1.8

Date: &0(5 { L o041 Signed:

I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an
envelope addressed to the Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on.

b_—

Name: Amy Drury

U v

Petitioners' EX1039 PagAgRZhé 0

Our Ref./Docket No: _APPT-001-2 Page 2

In col. 6, line 55 change "Diferent" to --Different--.

In col. 16, line 27 change "FIG. 6 FIG 6" to

--FIG 6.

FIG6--.

In col. 18, line 17 change "updatelookup" to --update-lookup--.
In col. 25, line 38 change "server-say" to --server—say--.

In col. 53, line 4 change ""Default"" to --"Default" :--.

In col. 53, line 45 shift "DISPLAY-HINT" to the right so its beginning lines up with the beginning
of "SYNTAX" in line 42 and with the beginning of "LENGTH" in line 43.

In col. 53 line 46 shift "FLAGS" to the right so its beginning lines up with the beginning of
"SYNTAX" in line 42 and with the beginning of "LENGTH" in line 43.

In col. 61, aprox. line 32 change "rip" to --rlp--.

In col 71, 9th line from the bottom change "netbios (0x3¢00," to --netbios (0x3c00)--,

In col. 73, aprox. line 25 change "tyop" to --type--.

In col. 79, 4th line from the bottom change "SYNTAXINT(8)" to --SYNTAX INT (8)--.

In col. 81, approx. line 41 change "SYNTAXBITSRING(12)" to --SYNTAX BITSTRING (12)--.
In col. 83, approx. line 36 change "LOOKUPFILE" to --LOOKUP FILE--.

In col. 93, approx. line 45 change "'vnd.m-relaudio” to --'vnd.rn-realaudio'--,

In col. 96, line 38, change "In" to --in--.

The undersigned requests being contacted at (510) 547-3378 if there are any questions or clarifications,
or if there are any problems with issuance of the Certificate of Correction.

Respectfully Submitted,

kor 5 oo™
Date Dov&osenfeld, Reg. No. 38687
Agent of Record.
Address for correspondence:
Dov Rosenfeld
5507 College Avenue, Suite 2,
Oakland, CA 94618 Tel. (510)547-3378; Fax: (510)291-2985

Petitioners' EX1039 Page 249

PTO/SB/44 (10-96)

Approved for use through 6/30/99. OMB 0651-0033

i _ Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control

number.

{Also Form PTO-1050)

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO : 6,665,725 g/
DATED . December 16, 2003
INVENTOR(S) : Dietz, et al.

It is certified that an error appears in the above-identified patent and that said Letters Patent
are hereby corrected as shown below:

In col. 6, line 47 change "NBTBIOS" to --NETBIOS--.

In col. 8, line 55 change "Diferent" to --Different--.

In col. 16, line 27 change "FIG. 6 FIG 6" to

--FIG 6.

FIG6--.

In col. 18, line 17 change "updatelookup" to --update-lookup--.
In col. 25, line 38 change "server-say" to --server—say--.

In col. 53, line 4 change "'Default" to --"Default" :--.

In col. 53, line 45 shift "DISPLAY-HINT" to the right so its beginning lines up with the beginning of
"SYNTAX" in line 42 and with the beginning of "LENGTH" in line 43.

In col. 53 line 46 shift "FLAGS" to the right so its beginning lines up with the beginning of "SYNTAX" in
line 42 and with the beginning of "LENGTH" in line 43.

In col. 61, aprox. line 32 change "rip" to --rip--.

In col 71, Sth line from the bottom change "netbios (0x3c00," to --netbios (0x3c00)--.

In col. 73, aprox. line 25 change "tyop" to --type--.

In col. 79, 4th line from the bottom change "SYNTAXINT(8)" to --SYNTAX INT (8)--.

In col. 81, approx. line 41 change "SYNTAXBITSRING(12)" to --SYNTAX BITSTRING (12)--.
In col. 83, approx. line 36 change "LOOKUPFILE" to --LOOKUP FILE--.

in col. 93, approx. line 45 change "'vnd.m-relaudio" to --'vnd.rn-realaudio’--.

In col. 96, line 38, change "In" to --in--.

MAILING ADDRESS OF SENDER (Atty/Agent of Record):

Dov Rosenfeld, Reg. No. 38687 PATENT NO: _ 6,665,725

5507 College Avenue, Suite 2 No. of additional copies
Oakland, CA 94618

APR 19 2004

Petitioners' EX1039 Page 250

Application or Docket Number

PATENT APPLICATION FEE DETERMINATION RECORD
Effective October 1, 2000

CLAIMS AS FILED - PART | SMALL ENTITY OTHER THAN
{Column 1) Column 2 TYPE [3 OR SMALL ENTITY
TOTAL CLAIMS RATE | FEE RATE | FEE
FOR NUMBER FILED NUMBER EXTRA BASIC FEE| 355.00 |oR|BASIC FEE] 710.00
TOTAL CHARGEABLE CLAIMS // minus 20= |* X$ 9= orl| xs18=
INDEPENDENT CLAIMS / minus 3 = X40= OR X80=
MULTIPLE DEPENDENT CLAIM PRESENT D
+135= OR| +270=
If the difference in column 1 is less than zero, enter “0” in column 2 TOTAL OR TOTAL 7/0
‘il ®
CLAIMS AS AMENDED - PART Il g OTHER THAN
Column 1 _(Column2) _ (Column 3) SMALL ENTITY OR SMALL ENTITY
CLAIMS HIGHEST
i REMAINING NUMBER PRESENT ADDI- ADDI-
AFTER PREVIOUSLY EXTRA RATE |TIONAL RATE | TIONAL
gl AMENDMENT PAID FOR FEE FEE
=
g | Tota . |9 [Minus w20 |=—— X$ 9= or| Xxs$18=
w N i *hk =
E Independent =2 Minus 3 .J X40= OR X80=
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM D
+135= OR|] +270=
" TOTAL TOTAL
ADDIT. FEE OR ADDIT FEE
Column 2) (Column 3)
HIGHEST
o REMAINING NUMBER PRESENT ADDI- ADDI-
= AFTER PREVIOUSLY EXTRA RATE |]TIONAL RATE | TIONAL
Z | AMENDMENT PAID FOR FEE FEE
E Total Minus ** = X$9 X$18
E : = OR -
<E; Independent | » Minus *x = X40< oR X80=
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM [:I
+135= oRr| +270=
TOTAL TOTAL
ADDIT. FEE OR ADDIT. FEE
(Column 2) (Column 3)
HIGHEST
Q NUMBER PRESENT ADD'- ADDI-
E PREVIOUSLY EXTRA RATE] TIONAL RATE | TIONAL
w PAID FOR FEE FEE
= Total Minus . =
% nu - X$ 9= OR X$18=
independent |« Minus xrx =
= | P X40= or | X80=
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM D
+135= or | +270=
* If the entry in column 1 is less than the entry in column 2, write “0” in column 3. TOTAL TOTAL
** If the "Highest Number Previously Paid For" IN THIS SPACE is less than 20, enter "20." AppT FEE OR ADDIT. FEE

***|f the “Highest Number Previously Paid For” IN THIS SPACE is less than 3, enter "3."
The “Highest Number Previously Paid For” (Total or Independent) is the highest number found in the appropriate box in column 1.

FORM PTO-875
(Rev 8/00)

PRS2 S OSTo PAGRNES? bommERCE

PATENT APPLICATION FEE DETERMINATION RECORD
Effective December 29, 1999

Application or Docket Number

CLAIMS AS FILED - PART |

***|f the “Highest Number Previously Paid For” IN THIS SPACE is less than 3, enter “3."
The “Highest Number Previously Paid For” (Total or Independent) is the highest number found in the appropriate box in column 1.

Datitic

FORM PTO-875
(Rev 12/99)

U
g batent an

SMALL ENTITY OTHER THAN
(Column 1) (Column 2) TYPE [OR SMALLENTITY
FOR NUMBER FILED NUMBER EXTRA RATE FEE RATE FEE
BASIC FEE J 345.00 OR 690.00
TOTAL CLAIMS ({ minus20= |+ X§ 9= orl xs18=
INDEPENDENT CLAIMS /) minus3=* 39 orl x7e-
MULTIPLE DEPENDENT CLAIM PRESENT
+130= OR| +260=
* If the difference in column 1 is less than zero, enter “0" in column 2 TOTAL OR TOTAL
CLAIMS AS AMENDED - PART Il OTHER THAN
(Column 1) (Column 2) (Column 3) SMALL ENTITY OR SMALL ENTITY
CLAIMS HIGHEST
ADDI- ADDI-
< REMAINING NUMBER PR T
£ AFTER PREVIOUSLY | Dxopn RATE |TIONAL RATE | TIONAL
w AMENDMENT PAID FOR FEE FEE
=) .
% Total * Minus - = X$ 9= OR| X$18=
m * i ok =
E Independent Minus X39= oR X78=
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM
+130= OR| +260=
TOTAL OR TOTAL
ADDIT. FEE ADDIT. FEE
{Column 1) (Column 2) (Column 3) .
CLAIMS HIGHEST
@ REMAINING NUMBER PRESENT ADDI- ADDI-
e AFTER PREVIOUSLY EXTRA RATE |TIONAL RATE | TIONAL
] AMENDMENT PAID FOR FEE FEE
; Total * Minus - = X$ 9= or| X$18=
"5" Independent |« Minus ww = X39< oR X78=
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM
+130= OR| +260=
~ TOTAL OR TOTAL
ADDIT. FEE ADDIT. FEE
(Column 1) (Column 2) (Column 3)
CLAIMS HIGHEST
o REMAINING NUMBER PRESENT ADDI- ADDI-
l-z- AFTER PREVIOUSLY EXTRA RATE [TIONAL RATE } TIONAL
uEJ AMENDMENT PAID FOR FEE FEE
% Total * Minus Ll = X$ 9= OR X$1 8=
"E" Independent |« Minus wen =
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM
+130= OR | +260=
* If the entry in column 1 is fess than the entry in column 2, write “0” in column 3. e
** 1f the “Highest Number Previously Paid For* IN THIS SPACE is less than 20, enter "20.” ADDI?DIIQIE_ OR ADDI?DIIQIE_

'
s Irademarz ,Sﬂlce, zg DESAQ; aENT OF COMMERCE

*U S GPO. 2000-463-433/29044

-

This Form is for INTERNAL PTO USE ONLY
. It does NOT get mailed to the applicant.

NOTICE OF FILING / CLAIM FEE(S) DUE
(CALCULATION SHEET)

APPLICATION NUMBER: f7{/ le7)79

Total Fee Calculation

Tow! Number

Fee Code # Claims Fitrn \ lee Fee - Tota!
Sa/lg Sm Entiry Lg Entiry
r) .
Lacle Fihag Fzc 2010 : - M - M
Tow! Claim: »20 250 ZJ 2o~ N —_— T
Indzpundent Clazmz =5 2021100 ___L_ i N — —— * —
Stult Deg Claim Prescar 204102 - —— " —
Suriharas 2050C5 S —ﬁ—a— - 120
Zrgheh Tanslanon 19 ——
TOTALTEL CALCULATION ——8—/—0—2—?-
Foes due epen filing te applizanon
Toul Filing Feus Dur = 3 F20 -
L 4
Less Filing Fees Subminied - S e
‘s

BALANCE DUE =5 £20.0

) dit

—f
Office of lnitial Patent Efmxination

! e 7

FORM OIPE-RAM-01 (Rev. 12/97)

Petitioners' EX1039 Page 253

-ISSUE SLIP STAPLE AREA (for additional cross references)

POSITION INITIALS IO NO. DATE
FEE DETERMINATION Q.4 22/)
| O.1.P.E. CLASSIFIER v/ YT 9/974
FORMALITY REVIEW ST
RESPONSE FORMALITY REVIEW 6T 7y P—-Z 2
INDEX OF CLAIMS
Y Rejected N o, Non-elected
[e Allowed I Interference
— (Through numeral)... Canceled A, Appeal
e ———————— Restricted O e, Objected
Claim | pry Date Claim Date Claim Date
3 ﬁ.‘\ ki 5
21N P c g
EENN i 3o
iCQ F\0) [[e) Llo
Y V|= 51 101
{ il v = 52 102|
gz slvi= 53 103
1 ’ i o= 54 1041
\ 2150]|= 55 105
- 6l0[= 56 106
4l710l= 57 107
5 8N = 58 108
1EIRE 59 109
11106 = 60 10
q[11] O[> 61 111
12{Q] = 62 112
1o@v > 63 3
1B 114 Y= 64 114
MIELE 65 115
(19161 = 66 116
\G17iv | = 67 117
IRiEEE 68 118
19 69 119
20 70 120
21| 71 121
22 72 122
23 73 123
24 74 124
25| 75 125
26 76 126
27 77 127
28 78 128
29 79 129
30 80 130
31 81 131
32 82 132)
33 83 133
34 84 134
35 85 135
36 86 136)
37 87 137]
38 88 138
39 89 139
40 20 140
41 91 141
~= 42 92 142
43 93 14
44 94 144
a5 95 145
46 96 146
47 a7 147]
48 98 148
49 99 149
50 100 150

If more than 150.claims or 10 actions
staple additional sheet here

(LEFT INSIDE) petitioners' EX1039 Page 254

o

SEARCHED

SEARCH NOTES

(INCLUDING SEARCH STRATEGY)

Class

Sub.

Date

Exmr.

109

03
370.

W
206
21h

U
11L
1<

b

26
«g9

|5
|7

S7Uy03

WEST

Date

Exmr.

512903

28,

w?o\od«z

clags ceurh

g/ l\8 (03

S| S|

s

/19 /03

|

INTERFERENCE SEARCHED

Class

Sub.

Date

Exmr.

~/09

370

e

22.
&

L

b/1&jo3

|

20,

L

e ———

(RIGHT OUTSIDE)

Petitioners' EX1039 Page 255

WEST Refine Search http://westbrs:8002/bin/cgi-bin/PreSear

[Help “ Logout H Interrupt

- blain Menu | Search Form 5 Posting Caunts 1 Showy & RMumbers E Edit & rMumbers | Freferonces

Search Results -

Documeqts) 1
29

: Term

[23'AND 11).USPT. -
|(L11 AND L23).USPT.

iy

US Patents Full-Text Database
i US Pre-Grant Publication Full-Text Database
. JPO Abstracts Database
. EPO Abstracts Database
, . Derwent World Patents Index
Database: i |BM Technical Disclosure Bulletins

L24 -
Search: | Refine Search

' Clear ;

Bdaali

Search History

DATE: Thursday, May 29,2003 Printable Copy Create Case

Petitioners' EX1039 Page 256

Record List Display http://westbrs:8002/bin/gate.exe?f=TOC¢ S8n7e5.25&ref=24&dbname=USPT&ESNAME

.

l Generate Collection “ Print |

Search Results - Record(s) 1 through 29 of 29 returned.

¥l 1. Document ID: US 6571285 B1

L24: Entry 1 of 29 File: USPT May 27, 2003

US-PAT-NO: 6571285
DOCUMENT-IDENTIFIER: US 6571285 Bl

TITLE: Providing an integrated service assurance environment for a network

sohments | Claims| Ko |

¥ 2. Document ID: US 6519568 Bl

L24: Entry 2 of 29 File: USPT Feb 11, 2003

US-PAT-NO: 6519568
DOCUMENT-IDENTIFIER: US 6519568 Bl

TITLE: System and method for electronic data delivery

1 -‘FL{*“A{ REDSUHUR R

Drpame [res

o |

3. Document ID: US 6516337 Bl

L24: Entry 3 of 29 File: USPT Feb 4, 2003

US-PAT-NO: 6516337
DOCUMENT-IDENTIFIER: US 6516337 Bl

TITLE: Sending to a central indexing site meta data or signatures from objects on a
computer network

4. Document ID: US 6430409 B1

L24: Entry 4 of 29 File: USPT Aug 6, 2002

US-PAT-NO: 6430409
DOCUMENT-IDENTIFIER: US 6430409 Bl

Petitioners' EX1039 Page 257

Record List Display hittp://westbrs:8002/bin/gate.exe?f=TOC¢ 58n7e5.25&ref=24&dbname=USPT&ESNAME

TITLE: Method and architecture for an interactive two-way data communication network

1 5. Document ID: US 6421730 B1
L24: Entry 5 of 29 File: USPT Jul 16, 2002

US-PAT-NO: 6421730
DOCUMENT-IDENTIFIER: US 6421730 Bl

TITLE: Programmable system for processing a partitioned network infrastructure

| Front | Raview | ©

ation | Dats | F

Crraws {r

| 6. Document ID: US 6405037 B1
1.24: Entry 6 of 29 File: USPT Jun 11, 2002

US-PAT-NO: 6405037
DOCUMENT-IDENTIFIER: US 6405037 Bl

TITLE: Method and architecture for an interactive two-way data communication network

}:‘“:,\’l_lqpa ‘

7. Document ID: US 6401117 Bl
L24: Entry 7 of 29 File: USPT Jun 4, 2002

US-PAT-NO: 6401117
DOCUMENT-IDENTIFIER: US 6401117 Bl

TITLE: Platform permitting execution of multiple network infrastructure applications

i

RISt R B

il [

tac bimentz

tu;sf:] Fraut 3 }‘Iw‘u‘lb.-.'l.;hl ; Clazzitization ‘ Lrats Rafeieno

8. Document ID: US 6393487 B2
L24: Entry 8 of 29 File: USPT May 21, 2002

US-PAT-NO: 6393487
DOCUMENT-IDENTIFIER: US 6393487 B2

TITLE: Passing a communication control block to a local device such that a message

Petitioners' EX1039 Page 258

Kecord List Display http://westbrs:8002/bin/gate.exe?f=TOC¢ 58n7e5.25&ref~24&dbname=USPT&ESNAME

is processed on the device

Fs |

9. Document ID: US 6334153 Bl
L24: Entry 9 of 29 File: USPT Dec 25, 2001

US-PAT-NO: 6334153
DOCUMENT-IDENTIFIER: US 6334153 Bl

TITLE: Passing a communication control block from host to a local device such that a
message 1s processed on the device

1 10. Document ID: US 6304915 B1
L24: Entry 10 of 29 File: USPT oct 16, 2001

US-PAT-NO: 6304915
DOCUMENT-IDENTIFIER: US 6304915 Bl

TITLE: System, method and article of manufacture for a gateway system architecture
with system administration information accessible from a browser

tion | Front | Rewiem | ©

fri"l,l’l:s‘lrl'_'_{ l

[vl 11. DocumentID: US 6272151 Bl
L24: Entry 11 of 29 File: USPT Aug 7, 2001

US-PAT-NO: 6272151
DOCUMENT-IDENTIFIER: US 6272151 Bl

TITLE: Scalable multimedia network

J&quénae;}.&Hmenmd;

Vf"l.l” E 1}'!%[».‘-;-5 ‘ 1.:‘!h;€fii:=l‘a‘i Front ; !‘:i:-'.ilfr.:lnl:I i Vl._.!:j:;;‘!1|f_‘;;;4ia1,sr| 3 Lv:;.;tr,;-: | ;(ﬂgh;.—“-:“m{’ ‘

Qram.ﬁezc“T‘Hnaga

o =0 e T e T e S

ivl] 12. Document ID: US 6247060 B1
L24: Entry 12 of 29 File: USPT Jun 12, 2001

US-PAT-NO: 6247060
DOCUMENT~IDENTIFIER: US 6247060 Bl

TITLE: Passing a communication control block from host to a local device such that a
message is processed on the device

Petitioners' EX1039 Page 259

Record List Display hitp://westbrs:8002/bin/gate.exe?f=TOC# 8n7e5.25&ref=24&dbname=USPT&ESNAME

ation | Date fre i I Sttackm

i1 13. Document ID: US 6202060 B1
L24: Entry 13 of 29 File: USPT Mar 13, 2001

US-PAT-NO: 6202060
DOCUMENT-IDENTIFIER: US 6202060 Bl

TITLE: Data management system

chimierds |

{1 14. Document ID: US 6199076 B1

L24: Entry 14 of 29 File: USPT Mar 6, 2001

US-PAT-NO: 6199076
DOCUMENT - IDENTIFIER: US 6199076 Bl

TITLE: Audio program player including a dynamic program selection controller

AT Frn ‘

v
)

tior | Frand | Rewiew | Classiication | Dabe

1

|

| edte bt

15. Document ID: US 6157955 A
L24: Entry 15 of 29 File: USPT Dec 5, 2000

US-PAT-NO: 6157955
DOCUMENT-IDENTIFIER: US 6157955 A

TITLE: Packet processing system including a policy engine having a classification
unit

[rrave Deso

16. Document ID: US 6157935 A
L24: Entry 16 of 29 File: USPT Dec 5, 2000

US-PAT-NO: 6157935
DOCUMENT-IDENTIFIER: US 6157935 A

TITLE: Remote data access and management system

Petitioners' EX1039 Page 260

Record List Display hitp://westbrs:8002/bin/gate.exe?f=TOC® $8n7e5.25&ref=24&dbname=USPT&ESNAME

Full | Title

L1 17. Document ID: US 6150962 A
L24: Entry 17 of 29 File: USPT Nov 21, 2000

US-PAT-NO: 6150962
DOCUMENT-IDENTIFIER: US 6150962 A

TITLE: Predictive data entry method for a keyboard

o Eul | e | Cia

R |

merts |

3 Drrawe Dazc

1 18. Document ID: US 6085233 A
L24: Entry 18 of 29 File: USPT Jul 4, 2000

US-PAT-NO: 6085233
DOCUMENT- IDENTIFIER: US 6085233 A

TITLE: System and method for cellular network computing and communications

achments |

19. Document ID: US 5978840 A -

L24: Entry 19 of 29 File: USPT Nov 2, 1999

US-PAT-NO: 5978840
DOCUMENT-IDENTIFIER: US 5978840 A

TITLE: System, method and article of manufacture for a payment gateway system
architecture for processing encrypted payment transactions utilizing a multichannel,
extensible, flexible architecture

e |

[ii—raa.a'x.«. ez T (maga}

{1 20. Document ID: US 5931917 A

L24: Entry 20 of 29 File: USPT Aug 3, 1999

US-PAT-NO: 5931917
DOCUMENT-IDENTIFIER: US 5931917 A

TITLE: System, method and article of manufacture for a gateway system architecture
with system administration information accessible from a browser

Petitioners' EX1039 Page 261

Record List Display http://westbrs:8002/bin/gate.exe?:=TOC¢# S8n7e5.25&ref=24&dbname=USPT&ESNAME

1 21. DocumentID: US 5911485 A
L24: Entry 21 of 29 File: USPT Jun 15, 1999

US-PAT-NO: 5911485
DOCUMENT-IDENTIFIER: US 5911485 A

TITLE: Predictive data entry method for a keypad

ac:a“{é;:}r;i [Tst» i

{1 22. Document ID: US 5864542 A
L24: Entry 22 of 29 File: USPT Jan 26, 1999

US-PAT-NO: 5864542
DOCUMENT-IDENTIFIER: US 5864542 A

TITLE: Scalable multimedia network

=l

MGQEI

memD%:

1 23. Document ID: US 5809415 A

L24: Entry 23 of 29 File: USPT Sep 15, 1998

US-PAT-NO: 5809415
DOCUMENT-IDENTIFIER: US 5809415 A

TITLE: Method and architecture for an interactive two-way data communication network

 Full | Tite | Ciation | Frant | Review | Clas

Lot [ras

1 24. Document ID: US 5799017 A
L24: Entry 24 of 29 File: USPT Aug 25, 1998

US-PAT-NO: 5799017
DOCUMENT-IDENTIFIER: US 5799017 A

TITLE: Scalable multimedia network

T ciation | Fron

ication | Date | Refem

rEge |

Petitioners' EX1039 Page 262

Record List Display http://westbrs:8002/bin/gate.exe?f=TOC& S8n7e5.25&ref=24&dbname=USPT&ESNAME

i1 25. Document ID: US 5740176 A
L24: Entry 25 of 29 File: USPT Apr 14, 1998

US-PAT-NO: 5740176
DOCUMENT-IDENTIFIER: US 5740176 A

TITLE: Scalable multimedia network

Full | Tin

1 26. Document ID: US 5732216 A
L24: Entry 26 of 29 File: USPT Mar 24, 1998

US-PAT-NO: 5732216
DOCUMENT-IDENTIFIER: US 5732216 A

TITLE; Audio message exchange system

¥l 27. Document ID: US 5721827 A
L24: Entry 27 of 29 File: USPT Feb 24, 1998

US-PAT-NO: 5721827
DOCUMENT-IDENTIFIER: US 5721827 A

TITLE: System for electrically distributing persconalized information

1 28. Document ID: US 5673265 A
L24: Entry 28 of 29 File: USPT Sep 30, 1997

US-PAT-NO: 5673265
DOCUMENT-IDENTIFIER: US 5673265 A

TITLE: Scalable multimedia network

[l l_ |

Hachments |

Petitioners' EX1039 Page 263

Record List Display http://westbrs:8002/bin/gate.exe?f=TOC& 8n7e5.25&ref=24&dbname=USPT&ESNAME

£1 29. Document ID: US 5555244 A
L24: Entry 29 of 29 File: USPT Sep 10, 1996

US-PAT-NO: 5555244
DOCUMENT-IDENTIFIER: US 5555244 A

TITLE: Scalable multimedia network

| Clasziii

) };_‘m,x'h'_“ i

] Front |F»«s(ems) o ! Trata [Falsienis fi‘::r;an:jt,aer xl:r:x; attachments !

| Generate Collection ! Print |

[w - Term R Doucumgwnts]
|23 AND 11).USPT,] I 29)
- @11 AND L23).USPT. _ I 29]

Display Format: [TT || Change Format |

Previous Page Next Page

Petitioners' EX1039 Page 264

WEST Refine Search

Set Name Query
side by side
DB=USPT; PLUR=YES; OP=ADJ
L24 111 and L23
L23 114and L22
L22 113 and 120
L21 115and L20
L20 112and113
L19 117andL18
L18 110andlll
L17 Ll6and19
L16 16andL15
LIS 14andl5s
Ll4 12and13
L13 pars$4 and compil$3
L12 compress$3 and L11
L1l index$3 same entry
L10 client and server
L9 child$4 and protocol
L8 child$4 (4a) protocol
L7 child$4 4a protocol
L6 layer$2 and L5
LS protocol same operat$4
L4 pdl or protocol definition language
L3 monitor$4 same 11
L2 ip or internet protocol
L1 network or internet
END OF SEARCH HISTORY

Hit Count Set Name

29
29
280

280

1453

62
141
5387
3782
3331
12455
16935
8849
0

0
10625
31181
1895
31281
39482
263481

result set

=
N

=
w

c
)

C

=
=

EREREEEREE|

http://westbrs:8002/bin/cgi-bin/PreSear

Petitioners' EX1039 Page 265

Applicatior Number Information http://expoweb1:8001/cgi-bin/expo/GenInfo/snquery.pl?APPL._ID=09609179

lofl

Day : Monday

PALM INTRANET Time: 1149:19

Application Number Information

Application Number: 09/609175 Examiner Number: 74865 / DINH, KHANH

Filing Date: 06/30/2000 Group Art Unit: 2155

Effective Date: 06/30/2000 Class/Subclass: 709/236.000

Application Received: 07/03/2000 Lost Case: NO .

Patent Number: Interference Number: Kdvilitln&goioi?}}glp onse Desc.
Issue Date: 00/00/0000 ‘ Unmatched Petition: NO

Date of Abandonment: 00/00/0000 L&R Code: Secrecy Code:1

Attormey Docket Number: APPT-001-2 Third Level Review: NO Secrecy Order: NO

Status: 41 /NON FINAL ACTION MAILED Status Date: 06/04/2003
Confirmation Number: 2668 Oral Hearing: NO

Title of Invention: METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A
NETWORK

Location Employee Name Location

Location | Date Loc Name MI
No Charge No PK2/06/C
09609179 21C1 |06/05/2003 ||to Location |Charge to. SAID, ABUDULKADAR 09
Name
L _ L i Name I

Appln [Contents |[Pefition Info |[Atty/Agentinfo [Continuity Data |[Foreign Data [Inve
Info

S

Search Anotheration# 1 or Patent#] | ["Searer]
PCT/{__|/] [[Search] or PG PUBS #| | [Search |
Attorney Docket # | [Search]
Bar Code #|] Search |

To go back use Back button on your browser toolbar.

Back to PALM | ASSIGNMENT | OASIS | Home page

o

Petitioners' EX1039 Page 26603 11:49 AM

“~lication Number Information http://expoweb1:8001/cgi-bin/expo/GenInfo/snquery.pl?APPL_ID=09609179

Day : Monday

PALM INTRANET Time: 11449015

IRVSEY SV %

Application Number Information

Application Number: 09/609179

Assienments Examiner Number: 74865 / DINH, KHANH

Filing Date: 06/30/2000 Group Art Unit: 2155

Effective Date: 06/30/2000 Class/Subclass: 709/236.000

Application Received: 07/03/2000 Lost Case: NO T

Patent Number: Interference Number: Wal.tmg or Response Desc.
. Mail Non Final

Issue Date: 00/00/0000 : Unmatched Petition: NO

Date of Abandonment: 00/00/0000 L&R Code: Secrecy Code:1

Attorney Docket Number: APPT-001-2 Third Level Review: NO Secrecy Order: NO

Status: 41 /NON FINAL ACTION MAILED Status Date: 06/04/2003

Confirmation Number: 2668 Oral Hearing: NO

Title of Invention: METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A

NETWORK

a Chargeto | g ojoyee Name Location

Location ! Date Name B

: ! No Charge]
09609179 | 21C1 06/05/2003 !to Location SAID,ABUDULKADAR

Bar Code ;

PK2/06/C

Appln [Contents |[Petition Info || Atty/Agent Info__|[_Continuity Data__|[Foreign Data |[Inve

Info
x""ﬁ;;rch Another: Ageggiication# 1 or Patent#|” | [Searcr]
PCT /| |/} |[Search | or PG PUBS #1 || Search |
Attorney Docket # []| Search |
Bar Code # || Search |

To go back use Back button on your browser toolbar.

Back to PALM | ASSIGNMENT | OASIS | Home page

Lof1 Petitioners' EX1039 Page 26703 11:49 AM

GTrace — A Graphical Traceroute Tool

Ram Periakaruppan, Evi Nemeth
University of Colorado at Boulder
Cooperative Association for Internet Data Analysis (CAIDA)
{ramanath, evi}@cs.colorado.edu

Abstract

Traceroute ({Jacobson88], originally
“written by Van Jacobson in 1988, has become a
classic tool for determining the routes that
packets take from a source host to a destination
host. 1t does not provide any information
. regarding the physical location of each node
along the route, which makes it difficuh to
effectively identify geographically circuitous
unicast routing. Indeed, there are examples of
paths between hosts just a few miles apart that
cross the entire United States and back,
phenomena not immediately evident from the
textual output of traceroute. While such path
information may not be of much interest to many
end users, it can provide valuable insight to
system administrators, netwc;rk engineers,
operators and analysts. We present a tool that
depicts geographically the IP /i’)ath information
that traceroute provides, drawing the nodes on a

world map according to their latitude/longitude

coordinates. ,
/

/

1. Introduction /

Today's /Internet has evolved into a
large and complex aggregation of network
hardware scattered across the globe, with
resources accessed transparently with respect to
their location, be it in the next room or on
another continent. As the Internet becomes
increasingly commercialized among many
different corporate administrative entities, it is
more difficult to ascertain the geographical
routes that packets actually travel across the
network. Knowledge of these geographical paths
can provide useful insight to system
administrators, network engineers, operators and
analysts.

It is challenging to obtain the location
for a given node of a path since there is no
existing database that accurately maps hostnames

or IP addresses to physical Jocations. Although
RFC 1876 [RFC1876] defined a DNS resource
record to carry such location information (the
LOC record) for hosts, networks and subnets,
very few sites maintain LOC records. Hence
there is no straightforward way to determine the
physical location of hosts.

GTrace is a graphical front end to
traceroute that uses a number of heunistics to
determine the location of a node. Often the name
of a node in the path contains geographical
information such as a city name/abbreviation or
airport code. GTrace operates on the assumption
that these codes and names indicate the physical
location of the node. The locations obtained are
connected together on a world map to show the
geographical path that packets take from the
source to destination host. GTrace also tries to
verify the validity of each location obtained,
eliminating ones that are incorrect.

The following sections review the
traceroute tool and descnbe the design and
implementation of GTrace. We also show
example output from GTrace.

2. Traceroute

Traceroute is a tool that discovers the
route an P datagram takes through the Internet
from a source host to a destination host. It works
by exploiting the TTL (Time To Live) field of
the [P Header. Each router that handles an [P
datagram decrements the TTL field. When the
TTL reaches zero, a router must discard the
packet and send an error message to the
originator of the datagram.

Traceroute uses this feature, initially
sending a datagram with the TTL set to one.
The first router along the path, upon receiving
the datagram decrements the TTL, discards the
datagram and sends back an ICMP error

.

Petitioners' EX1039 Page 268

message. Traceroute records this first IP address
(source address of the error message packet) and
then sends the next datagram with the TTL set to
two. This process continues until the datagram
finally reaches the target host, or until the
maximum TTL threshold is reached.

3. Design and Implementation of GTrace

Recognizing that it is not possible to
obtain precise physical location information for
all existing [P addresses, our main design criteria
for GTrace was that it be sufficiently flexible to
support the addition of new databases and
heuristics. We chose to implement GTrace in
Java, for both its portability and its new Swing
[Swing] user interface toolkit. GTrace operates
in two phases. In the first phase GTrace executes
traceroute to the destination host and tries to
determine locations for each node along the path.

During the second phase, GTrace verifies
whether the locations obtained in the previous
phase are reasonably correct.

GTrace is composed of the following
seven key components: Graphical User Interface,
Dispatcher Thread, Hop Threads, Lookup Client,
NetGeo Server, Lookup Server and Location
Verifier. Fig. 1 illustrates the overall architecture
of the tool. The function of each component is
described below.

3.1 Graphical User Interface

The Main Thread handles all features of
the Graphical User Interface and is responsible
for spawning the dispatcher thread when a
destination host is specified. Fig. 2 shows a
snapshot of GTrace on startup. The GUI has two
sections, with a map on the top and traditional

Y Co)

awn -4 m~AFXn~wOm-—-C

I

——»)

v

[Main Thesd

Domain Parsing
Files

é——-— Hop ‘Muread

H Lacation Verifier |

]

Fig. | GTrace Architecture

Petitioners' EX1039 Page 269

traceroute output below. The tool supports
.zooming in or out of particular regions of the
maps. Twenty-three maps are available courtesy
of VisualRoute [VisualRoute] and users can also
add their own. We later provide an example that
highlights some of the features of the GUIL

Fig. 2 GTrace’ startup screen

3.2 Dispatcher Thread

The function of the dispatcher thread is
to execute fraceroute to the destination host. It
then reads the output of traceroute, creating a
new thread for each line of output. These threads
are referred to as hop threads. The dispatcher
thread can also read traceroute output from a
file, which allows users to visualize traceroutes
performed using third-party traceroute servers.

3.3 Hop Threads

Each hop thread parses its line of
traceroute output and immediately notifies the
main thread so that it can update the display with
relevant traceroute fields for the corresponding
hop. It then creates an instance of the Lookup
Client, which tries to determine the location of
the node and return the resulting information to
the main thread before exiting.

3.4 Lookup Client

The Lookup Client tries to determine
the location of a node by using a set of search
heuristics. Many of the nodes in a typical
traceroute path are in the “.net” domain. Often

the names of these nodes have some
geographical hint in them. The Lookup Client
uses customized domain parsing files that
specify rules for extracting these geographic
hints. We have such files for several *‘.net”
domains that use internally consistent naming
conventions within their domain.

However this technique does not solve
the problem of locating nodes that do not have
embedded geographical hints. GTrace also
utilizes databases from CAIDA [DBCAIDA] and
NDG Software [DBNDG] that map hostnames
and IP addresses to latitude/longitude
coordinates. For nodes with no information in
these databases, the Lookup Client uses the
domain's registered address (unfortunately often
only the headquarters for a geographically
distributed infrastructure) obtained through a
whois lookup to determine the location. Nodes
for which the Lookup Client is unable to
determine a location are listed in the text portion,
but skipped in the geographical display.

The search algorithm is described
below. We try each heuristic in turn, stopping as
soon as one Yields a location. The Lookup Client
also makes a note of the search step that
produced the location, providing this information
to the user as well as the Location Venfier.

Search Algorithm:

1. Check the cache to see if the location for the
IP address has already been determined from
a previous trace.

2. Check if the host has a DNS LOC record. If
not, reduce the hostname to the next higher
level domain (i.e, remove the (first
component of the name) and check again for
a LOC record. Continue until we have
reached the last meaningful component of
the name (for example foo.com in
xxXx.foo.com or bar.com.au in
xxx.yyy.bar.com.au). Note that if a site has a
LOC record for the whole domain, but
machines are located outside the scope of
that LOC record, GTrace would end up
using incorrect data. If the Location Verifier
detects such a situation, GTrace will notify
the user and optionally can be configured to
notify GTrace’ author, who will contact the
DNS administrator at the corresponding site
to correct their LOC records.

Petitioners' EX1039 Page 270

3. Search for a complete match of the
hostname/IP address in the databases and
files specified in the GTrace configuration
file.

4. If the hostname has a corresponding domain
parsing file, use the rules defined in the file
to extract geographical hints and proceed as
indicated in the file.

5. Reduce the hostname to the next higher
level domain as in step 2 and search for a
match as in step 3. The process is repeated
until we have reached the last meaningful
component of the name.

6. Query the NetGeo [NetGeo] server with the
IP address. NetGeo determines the location
based on whois registrant information.

7. 1If still no match occurs and the last two
letters of the hostname end in a two-letter
country code, map it to the geographic
center of that country.

The search algorithm is ordered in
decreasing level of location reliability. Locations
obtained from steps 2 and 3 are taken as
authoritative, while those from step 4 onward are
considered a guess. Cache entries will indicate
whether the location was authoritatively
determined or was a guess; this status determines
the color of the lines connecting the nodes on the
map.

The Lookup Client does not determine
locations for IP addresses that fall in the ranges
10.0.0.0 - 10.255.255.255, 172.16.0.0 -
172.31.255.255 or 192.168.0.0 -
192.168.255.255, as these blocks are reserved for
private internet use [RFC 1918]. Unfortunately
some addresses in these blocks do occur in traces
since some ISPs use this address space for
internal router interfaces. These nodes are shown
in the text portion of the display with the
location marked as private internet use.

The Lookup Client queries the Lookup
Server if one is defined in the GTrace
configuration file and if location information has
not been obtained through step 1, 2 or 3 of the
search algorithm. GTrace compares the reply
from the Lookup Server with any obtained
previously from local lookups, with preference
given to the location obtained through a lower
numbered search step. Based on the GTrace

configuration file, the Lookup Client also uses
databases, text files and domain parsing files as
follows.

Databases

The Lookup Client may need to
perform lookups in many databases before
determining a location. GTrace's database
support is provided by the BerkeleyDB
{BerkeleyDB] embedded database system, which
supports a Java API that the Lookup Client uses
to query the databases. The database interface
allows multiple thread reads on the same
database at the same time. Locking is not an
issue, since Lookup Clients only read, do not
write.

The following five databases are
packaged with the GTrace distribution.

Machine.db Maps machine names to
[DBCAIDA] their latitude/longitude
values.

Organization.db Maps organizations to
(DBCAIDA} their latitude/longitude
values.

Hosts.db Maps 1P addresses to their
[DBNDG] latitude/longitude values.
Cities.db Maps cities around the
[DBCAIDA] world to their latitude

Nlongitude values.
Airport.db Maps airport codes to
[AirportCodes] their latitude/longitude
values.

One can add a new database in
BerkeleyDB format to GTrace with
GTraceCreateDB and by adding an entry to the
GTrace configuration file. The contents.of the
database ie., whether it maps hostnames, IP
addresses, or both to latitude/longitude values,
also have to be indicated in the configuration
file. The user can also add records to existing
databases using GTraceAddRec.
GTraceCreateDB and GTraceAddRec are lava
classes packaged with the GTrace distribution.

Text Files

Users may aiso specify new locations
for nodes in text files, though it is more efficient
to create a database for large data sets. New files
have to be listed in the GTrace configuration file

Petitioners' EX1039 Page 271

in order for the search algorithm to have access
to them.

Domain Parsing files

Files describing properties of each
domain are used to ferret out geographical hints
embedded in hostnames. These files define
parsing rules using PerlS compatible regular
expressions. GTrace uses the regular expression
library from ORO Inc. [OROMatcher] for
parsing. New files can be added and existing
ones modified without requiring any changes to
GTrace.

For example, ALTER.NET (a domain
name used by UUNET, a part of
MCl/WorldCom) names some of their router
interfaces with three letter airport codes as
shown below:

193.ATM8-0-0.GW2.EWR1.ALTER.NET
(EWR -> Newark, NJ)

190.ATM8-0-0.GW3.BOS1.ALTERNET
(BOS -> Boston, MA)

198.ATM8-0.XR2.SCL1.ALTER.NET
{Exception)

199.ATM6-0.XR1.ATL1.ALTER.NET
(ATL -> Atianta, GA)

Fig. 3 shows an example of a GTrace
domain parsing file that would work for
ALTER.NET hosts. The file first defines the

- regular expressions, followed by any domain
specific exceptions. The exceptions are strings
that match the result of the regular expressions.

- The user may identify the exception’ location

either by city or by latitude/longitude vatue using
the format shown below:

exception=city,state,country
city,country
L: fatitude, longitude

In the former case, the user should also
use GTraceQueryDB to ensure that the cities
database has a latitude/longitude entry for the
city specified. The first line in Fig. 3 defines a
substitution operation, which when matched
against 193.ATMS8-0-0.GW2.EWR1.ALTER.
NET, would return ‘EWR” The contents
following the last “/ ™ of the first line indicate
what to do with a successful match, namely in

this case to instruct the program to first check for
a match in the data specified in the current file
and then for a match in the airport database.

s/ (ML ALTER\.NET/$ 1/this, airport.db
sci=santaclara, ca, us

tco=tysonscorner, va, us

nol=neworleans, ia, us

Fig. 3 Example of a domain parsing file for
ALTER.NET.

The reason for checking the domain
parsing file first is that somctimes the naming
scheme for a given domain is not consistent. For
example, a search for SCL obtained from
198. ATM6-0.XR2.SCLL.ALTER.NET in the
airport database would return a location for
Santiago de Chile. In the case of ALTER.NET,
they also use three letter codes that are not
airport codes but abbreviations for US cities
(Fig. 3 illustrates three such abbreviations.)
Note that if this exception list were not present
and SCL did get mapped to Chile, the Location
Verifier would likely have eliminated it using the
Round Trip Time (RTT) heuristic described
later, which would have recognized the RTT as
much too small to get a packet to Chile and back.

Sometimes [SPs name their hosts with
more than one geographical hint in them. For
example VERIO.NET names some of their hosts
in the following format: den0.sjc0.verio.net,
which typically suggests source and destination
of the interface. If there is no rule on whether the
convention is to use the source or destination
label first in the hostname, the rule could be
defined to extract both and GTrace could use the
Location Verifier§ heuristics to guess.

The advantage of this technique is that
one can describe an entire domain as a set of
rules without needing database entries for every
host in the domain. The limitation of the
technique is that it will fail for domains that do
not use internally consistent naming schemes.

3.5 NetGeo Server

The original design of the Lookup
Client performed and parsed results of whois
lookups directly, which required storage of a
prohibitively large number of mappings of world

Petitioners' EX1039 Page 272

locations to latitude/longitude values.
Distributing such a large database with GTrace
was not ideal. CAIDAS NetGeo [NetGeo] tool,
with its ability to determine geographical
locations based on the data available in whois
records, provided a vital resource.

NetGeo is a database and collection of
Perl scripts used to map IP addresses to
geographical locations. Given an [P address,
NetGeo will first search its own local database.
If a record for the target address is found in the
database, NetGeo will return the requested
location information, e.g., latitude and longitude.
If NetGeo finds no matching record in its
database, it will perform one or more whois
lookups until it finds a whois record for the
appropriate network. The NetGeo Perl scripts
will then parse the whois record and extract
location information, which NetGeo both returns
to the client and stores in its local database for
future use.

The NetGeo database contains tables for
mapping world location names (city, state/
province/district, country) or US zip.codes to
latitude/longitude values. Most whois records
provide enough address information for NetGeo
to be able to associate some latitude/longitude
value with the [P address. Occasionally the
whois record only suggests a country or state, in
which case NetGeo returns a generic
latitude/longitude for that country or state. In
preliminary testing, NetGeo has been able to
parse addresses and find (albeit sometimes
imprecise) latitude/longitude information for
89% of 17,000 RIPE whois records, 76% of 700
APNIC whois records and for more than 95% of
30,000 ARIN whois records.

3.6 Lookup Server

The Lookup Server handles requests
from Lookup Clients and tries to determine the
Jocation of a host or [P address by executing
steps 3, 4 and 5 of the search algorithm. This
information is sent back to the client, which then
decides whether to use the location information
or not depending on the locations it might have
received from other Lookup Servers or lookups
it performed locally. The Lookup Client selects
the location that was obtained from the lowest
numbered search step.

The Lookup Server can also be
requested by the Lookup Client to execute step 2

of the search algorithm. This is because not all
versions of nslookup support queries for LOC
records. GTrace tests the version of nslookup on
the machine it is running on tu determine if such
a request is necessary.

3.7 Location Verifier

The Main Thread invokes the Location
Verifier once all the hop threads have died and
the trace is complete. The task of the Location
Verifier is to check whether the locations
obtained for nodes along the path are reasonable.
The verifier does not determine new locations for
nodes, it only indicates to the user why an
existing location might be wrong and where the
node could possibly be located.

The verifier algorithm is based on the
fact that 1P packets can not travel faster than the
speed of light. Light travels across different .
mediums at different speeds: 3.0 x 10® m/s in
vacuum, 2.3 x 10* m/s in copper and 2.0 x 10°
/s in fiber [Peterson]. GTrace uses the speed of
light in copper for all of its calculations.

For each successive pair of hops that
have locations, the verifier algorithm uses the
deltas of the round-trip times (RTT) retumed by
traceroute to rule out locations that are
physically not possible. Traceroute measures
RTT rather than one way latency, as this would
require control over both end nodes and delays
are often not symmetric. Also, one must be
cautious with the RTT values since they
incorporate several components of delay. The
RTT between two nodes has four components:
the speed-of-light propagation delay, the amount
of time it takes to transmit the unit of data,
queuing delays inside the network and the
processing time at the destination node to
generate the ICMP time exceeded message.
Traceroute typically sends 40-byte UDP
datagrams, so it is safe to assume negligible
transmit time. Ideally, for the verifier algorithm
one would like the RTT to represent only the
propagation delay, but this is not the case due to
variable queuing and processing delays, hence it
is not possible to set the upper bound on the RTT
to a hop. Accordingly the verifier algorithm uses
the minimum RTT returned by traceroute, as this
would represent the best approximation of the
propagation delay. Things are further
complicated by the fact that the RTT delta
between hops & and &+/ can be biased because

Petitioners' EX1039 Page 273

the return path the ICMP packet takes from hop &
can be totally different from the retum path it
takes from hop k+/. The Location Verifier tries
to re-determine RTT values for hops it thinks are
biased using ping.

By default, traceroute sends three
datagrams each time it increments the TTL to
search for the next hop. Changing the value of
the g parameter in the GTrace configuration file
will modify this behavior. The larger the value of
g, the more accurate the estimate of the
propagation delay, but large values of ¢ also
slow down GTrace as traceroute has to send g
packets for each hop.

Knowing the geographical distance
between two nodes, GTrace can calculate the
time-of-flight RTT (the propagation delay at the
speed-of-light in copper), compare it against
traceroute$ value and flag a problem if the RTT
is smaller than physically possible. In such a
case either the location of the source or of the
destination or both is incorrect. The details of the
verification algorithm are as follows:

Verifier Algorithm:

1. ldeally, the RTT to hop k in a,path should
always be less than the RTT to hop k+/ or
k+2... But this is not always true due to
queuing delays, asymmetric paths and other
delays. We allow a Ims fudge factor to
cover such discrepancies. Thus the RTTs
between hops & and k+7 should be such that
RTT(k) € RTT(k+/) + Ims. If this condition
does not hold true then the RTT to each of
the out-of-order hops preceding hop % is
estimated again with ping, ie. till the first
hop j preceding k such that RTT() s
RTT(k+7) + 1ms. If the RTT estimates
obtained using ping still do not satisfy the
condition RTT(k) < RTT(k+/) + tms, then
hop k is not used in the later stages of the
verifier algorithm.

2. Cluster the traceroute path into regions
having simifar RTT values. This is based on
the assumption that nodes with similar RTTs
will tend to be in the same geographic
region.

3. For each region identified in the previous
step, calculate the time-of-flight RTT for
pairs of hops that have locations. If the RTT

delta reported by traceroute for that pair of
hops is smaller than the time-of-flight RTT,
flag the pair of hops so that it is corrected in
step 5.

4. Repeat step 3 for hops falling on the edges
of adjacent regions.

5. Try to ‘correct” unreasonable location
values that were identified in steps 3 and 4
using the reliability of the search step that
produccd the location match. Adjacent
nodes botween regions are corrected first
because they represent larger and probably
more inaccurate locations. Correcting the
nodes identified in step 3 follows this, By
correct, we mean trying different
alternatives for the incorrect location based
on the cluster in which it falls, flagging it to
the user and not plotting it in the display.

Example:

Consider the trace shown in Fig. 4,
where locations are expressed as city names for
ease of illustration. The Search Step column
indicates which step of the search algorithm
produced the location for that hop. Step | of the
verifier algorithm would mark hop 13 as
unusable since its RTT is greater than its
subsequent hops. In this case it is probably due
to the return path from hop 13 being longer than
that from hop 14. Next, step 2 of the algorithm
would cluster the fraceroute path into the
following regions: 1-4, S, 6-8, 9-10, 11-12 and
14-16. Step 3 would flag that there is a problem
between hops 7 and 8 since it is not possible for
a packet to travel from San Francisco to New
Jersey in less than.a millisecond. Likewise, step
4 would flag a problem between hops 10 and 11.
Step 5 would first try to correct hops 10 and 13,
since they fall in different regions. Seeing that
the location for hop 11 was obtained through
step 3 of the search algorithm and hop 10 was
from a higher step, the Location Verifier would
change hop 10% location to that of hop 115, in
this example to Washington and rerun the
algorithm from step 3. This process is repeated
until all locations from one hop to the next are
physically realistic. In the end the Location
Verifier would have indicated to the user that
hop 8 is incorrect and is most probably located
somewhere near San Francisco. Hops 9 and 10
are also incorrect and may be in Washington
with their interfaces labeled San Francisco to

Petitioners' EX1039 Page 274

Hop | Node Name IP Address Search | Location RTT (ms)
Step

1 pinot-fe2-0-0 (192.172.226.65) 6 San Diego 0.917ms
2 medusa.sdsc.edu (198.17.46.10) 3 San Diego 0.881ms
3 | sdsc-gw.san-bbl.cerf.net (192.12.207.9) 4 San Diego 1.944 ms
4 | pos0-0-155M.san-bb6.cerf.net (134.24.29.130) 4 San Diego 4.640 ms
S atm6-0-1-622M.1ax-bb4.cerf.net (134.24.25.142) 4 Los Angeles 9.598 ms
6 | pos6-0-622M.sfo-bb3.cerf.net (134.24.29.233) 4 San Francisco | 15.317 ms
7 pos10-0-0-155M.sfo-bbl.cerf.net | (134.24.32.86) 4 San Francisco | 16.813 ms
8 192.205.31.29 (192.205.31.29) 6 New Jersey 16917 ms
9 | att-gw.sf.cw.net (192.205.31.78) 4 San Francisco | 81.281 ms
10 | corerouter2.SanFrancisco.cw.net | (204.70.9.132) 4 San Francisco | 81.254 ms
11 | corel.Washington.cw.net (204.70.4.129) 3 Washington 89.727 ms
12 | mix1-fddi-0. Washington.cw.net (204.70.2.14) 4 Washington 89.708 ms
13 | vsnlpoone.Washington.cw.net (204.189.152.134) 4 Poone 706.301 ms
14 1202.54.6.17 (202.54.6.17) 6 Madras 697.946 ms
15 |202.54.6.254 (202.54.6.254) 6 Madras 702.893 ms
16 | giasmda.vsnl.net.in (202.54.6.161) 4 Madras 704.856 ms

Fig. 4 A sample traceroute output produced by the first phase of GTrace.

identify the other end of that link.

4. Configuration Files

The configuration options in GTrace are
quite flexible. How it functions and executes the
search algorithm depends on the contents of two
configuration files: GTrace.conf and
GTraceMaps.conf

4.1 GTrace.conf

GTrace.conf specifies the location of
the commands GTrace uses and lists databases,
text files, Lookup Servers if any, to use in the
search algorithm. Fig. 5 shows an example
configuration file. This file is automatically
generated by the configure scripts while
installing GTrace.

4.2 GTraceMaps.conf

The GTraceMaps.conf configuration
file specifies attributes of the maps that GTrace
uses in displays. Users can add their own maps
as part of or independent from the existing world
hierarchy. Independent maps allow users to

describe their own intranet topology and then use
GTrace as a graphical debugging tool within

their network.

#GTrace configuration file

#Paths
TRACEROQUTE=/usr/sbin/traceroute —q 3
WHOIS=/usr/bin/whais

PING= lusr/sbin/ping
NSLOOKUP=/usr/sbin/nslookup
DOMAINFILES=/home/ram/gtrace/data
DATABASES=/home/ram/gtrace/db

#Names of databases and text files to be used
#for location lookups. Order is important, list
#them in the order they should be searched.
CITIES=cities.db ’
AIRPORTS=airport.db

HOSTSLOC=Machine.db,hostnames/ipaddr;
Hosts.db,ipaddr;
Organization.db,hostnames/ipaddr;

TEXTFILES=England.txt,hostnames/ipaddr;

#Location of Lookup Servers if any

LOOKUPSRVS=

Fig. 5§ Sample GTrace.conf file

Petitioners' EX1039 Page 275

5. GTrace Featurés

Fig. 6 shows an example of a trace that
was executed from University of Colorado,
Boulder to CAIDA in San Diego. On the display,
the colors of the lines on the map indicate the

NG

A ts e or e 15,
TR G Wt
o £t v o

p ae v, Ty (0w wio, KB

Bae. 11,42 9%

Ry

Fig. 6 Example of a trace produced by GTrace

reliability of the location obtained for the
endpoints. The colors are decided based on the
following criteria:

and four will bring up whois information for the
node.

Column five provides the latitudes and
longitudes obtained for each hop. Clicking on
this column will provide an explanation of how
the location was determined and whether the
Location Verifier detected any problems. A
small colored ball in front of the latitude and
longitude value indicates which search step
produced the location. The colors and the search
step they represent are given below:

Green Step 2 LOC record.

Yellow Step 3 Complete match

Blue Step 4 Domain parsing file

Cyan Step 5 Hostname reduction match

Red Step 6 whois record

Gray Step 7 Country code

Green Both endpoints are authoritative
locations.

Yellow | One endpoint is authoritative and
the other is a guess whose location
is not a country center, state center
or obtained from a whois record.

Blue Both endpoints are guesses and the
locations of both the endpoints are
not a country center, state center or
obtained from a whois record.

Red One endpoint is a location that is a
country center, state center or
obtained from a whois record.

The table in the lower section of the
display consists of six columns. The first column
provides the user with a checkbox that is enabled
for each location plotted on the map. The user
can disable a checkbox and the corresponding
location will be skipped. Locations that are
flagged as unreasonable by the Location Verifier
are not plotted by default.

The second, third and fourth columns
display the hop number, IP address and host
name respectively. Clicking on columns three

. The last column shows the smallest of
the round trip times returned by traceroute. The
color of the value indicates how many packets
timed out: black implies that no packets timed
out, blue implies that one packet timed out, and a
value in red indicates that two or more packets
timed out.

6. Using GTrace in the Local
Environment

System Administrators often use
traceroute as a debugging tool to identify
problems in their network. GTrace provides a
visual representation that can facilitate
understanding and debugging of their network. [t
can be used to discover routing loops as well as
for deciding routes. For example in a large
campus if a path from host A to host B (located
in the same building) goes across campus and
back, the routing could be fixed to avoid such
inefficient paths. GTrace can also be useful from
an end user perspective. Students can use the tool
to work out the topology of their campus
network.

7. Conclusion

- GTrace is a handy tool for identifying
network topology and routing problems as well
as gaining more macroscopic insight into the
Internet infrastructure. While GTrace uses
several heuristics to determine locations and its

Petitioners' EX1039 Page 276

approach does not guarantee accuracy, it is
robust and extensible. New databases, new
Lookup Servers and learned insights into ISP's
naming conventions can easily be added to
GTrace. We hope that users and system
administrators will find GTrace useful and
contribute their own domain parsing files, or
even run their own Lookup Servers for
community use.

The practical success of GTrace lies in
the rules defined for the ““.net” domains, since
these comprise the majority of hops in many
traceroutes. Looking up a “.net” name in the
whois database is only useful for small localized
ISPs. Relying on whois heuristics would result in
backbone providers' “.net” nodes to all uselessly
map to a single corporate headquarters for that
provider.

The accuracy of this tool would be
much improved if the Intemetf community
maintained LOC records in the DNS.
Unfortunately since LOC records’ are optional,
non-trivial in effort to support and without any
clear payoff to ISPs, pervasiveﬂxse of them will
probably never occur (and geographic
visualization of arbitrary Intemnet infrastructure
will continue to require Mheuristics to determine
physical location of nodes.

8. Acknowledgments

We would like to thank kc claffy at
CAIDA for suggesting the idea to develop this
tool. We would also like to mention 2 special
word of thanks to the following people and
institutions: VisualRoute for permission to use
their maps and labels, Sleepycat Software for the
BerkeleyDB Package, Jim Donohoe for
developing NetGeo and to the entire research
team at CAIDA who helped with many aspects
during the development of GTrace.

Several students (Colorado: Robert
Cooksey, Brent Halsey, Jamey Wood, Jeremy
Bargen and UCSD: Jim Anderson) wrote
graphical traceroute tools as class projects in Evi
Nemeth's Network System’s class. Many good
ideas from these students' projects were
incorporated into GTrace.

9. Availability and Suppeort

GTrace-1.0 is the current release and it
can be downloaded from the GTrace home page
at hep:/fwww.caida.org/Tools/GTrace. The
source code comes with the GTrace distribution.
Further information on using the tool or how you
can contribute domain parsing files can be found
on the GTrace home page.

10. Author Information

Ram Periakaruppan is pursuing his
Master's degree in Computer Science at the
University of Colorado, Boulder, He can be
reached at <ramanath@cs.colorado.edu>.

Evi Nemeth has been a computer
science faculty member at the University of
Colorado for years. Currently she is on leave
doing the 1EC (internet Engineering Curriculum)
project at CAIDA (Cooperative Association for
Internet Data Analysis) on the UCSD campus
and working furiously to make the publisher's
deadline for the third edition of the UNIX
System Administration Handbook. She can be
reached at <evi@cs.colorado.edu>.

References

[AirportCodes] Listing of Airport Codes,
http://www.mapping.com/airportcodes.htmi

[BerkeleyDB} BerkeleyDB Package
Distribution, http://www.sleepycat.com

{DBCAIDA] Database files compiled by
CAIDA, http://www.caida.org/NetGeo/NetGeo/

[DBNDG] Database file compiled by NDG
Software, http://www.dtek.chalmers.se/~d3augus
txy/d/ :

[Jacobson88] Van Jacobson, Traceroute source
code and documentation. Available from:
fip://ftp.ee.Ibl.gov/traceroute tar.Z.

[NetGeo] The Intemet Geographic Database,
http://www.caida.org/Tools/NetGeo

[OROMatcher] OROMatcher - Regular
Expression Package for Java,
http://www.savarese.org

Petitioners' EX1039 Page 277

[Peterson] Peterson, Larry L., & Davie, Bruce S.,
Computer Networks - A Systems Approach,
Morgan Kaufmann, (1996).

{RFC1876]) RFC 1876, Davis, C., Vixie, P

Goodwin, T., and Dickinson 1., A means for

Expressing Location Information in the Domain
Name System, January (1996).

[RFC1918] RFC 1918, Rekhter, Y., Mdskowitz,
B., Karrenberg, D., Groot, G. J{ Lear E.,
Address Allocation for Priya{e Internets,
February (1996). 4

[Swing] Java Foundation Classes - Swmg
http://java.sun. com/products/)fc/

{VisualRoute] ,Maps from VisualRoute,
http://www.visjualroute.com

/

Petitioners' EX1039 Page 278

¥ NOV94: Packet Filtering in the SNMP Remote Monitor Page 1 of 7

I ' , Software Tools for the
n Professional Programmer

Packet Filtering in the SNMP Remote Monitor

Controlling remote monitors on a LAN

William Stallings

William is president of Comp-Comm Consulting of Brewster, MA. This article is based on his recent book, SNMP, SNMPv2,
and CMIP: The Practical Guide to Network Management Standards (Addison-Wesley, 1993). He can be reached at
stallings@acm.org.

The Simple Network Management Protocol (SNMP) architecture was designed for managing complex, multivendor
internetworks. To achieve this, a few managers and numerous agents scattered throughout the network must communicate.
Each agent uses its own management-information database (MIB) of managed objects to observe or manipulate the local data
available to a manager.

The remote-network monitoring (RMON) MIB, defined as part of the SNMP framework, provides a tool that an SNMP or
SNMPv2 manager can use to control a remote monitor of a local-area network. The RMON specification is primarily a
definition of a data structure containing management information. The effect, however, is to define standard network-
monitoring functions and interfaces for communicating between SNMP-based management consoles and remote monitors. In
general terms, the RMON capability provides an efficient way of monitoring LAN behavior, while reducing the burden on
both other agents and management stations; see Figure 1.

The accompanying text box entitled, "Abstract Syntax Notation One (ASN.1)" gives details on defining the communication
formats between agents and managers.

The key to using RMON is the ability to define "channels”--subsets of the stream of packets on a LAN. By combining
various filters, a channel can be configured to observe a variety of packets. For example, a monitor can be configured to
count all packets of a certain size or all packets with a given source address.

To use RMON effectively, the person responsible for configuring the remote monitor must understand the underlying filter
and channel logic used in setting it up. In this article, I'll examine this filter and channel logic.

The RMON MIB contains variables that can be used to configure a monitor to observe selected packets on a particular LAN.
The basic building blocks are a data filter and a status filter. The data filter allows the monitor to screen observed packets
based on whether or not a portion of the packet matches a certain bit pattern. The status filter allows the monitor to screen
observed packets on the basis of their status (valid, CRC error, and so on). These filters can be combined using logical AND
and OR operations to form a complex test to be applied to incoming packets. The stream of packets that pass the test is
referred to as a "channel,” and a count of such packets is maintained. The channel can be configured to generate an alert if a
packet passes through the channel when it is in an enabled state. Finally, the packets passing through a channel can be
captured in a buffer. The logic defined for a single channel is quite complex. This gives the user enormous flexibility in
defining the stream of packets to be counted.

Filter Logic

At the lowest level of the filter logic, a single data or status filter defines characteristics of a packet. First, consider the logic
for defining packet characteristics using the variables input (the incoming portion of a packet to be filtered), filterPktData
(the bit pattern to be tested for), filterpktDataMask (the relevant bits to be tested for), and filrerPktDataNotMask (which

http://www.ddj.com/print/ | 3/4/2004
Petitioners' EX1039 Page 279

-

By
.

NOV94: Packet Filtering in the SNMP Remote Monitor - Page 2 of 7

indicates whether to test for a match or a mismatch). For the purposes of this discussion, the logical operators AND, OR,
NOT, XOR, EQUAL, and NOT-EQUAL are represented by the symbols o, +, --, _, =, and _, respectively.

Suppose that initially, you simply want to test the input against a bit pattern for a match. This could be used to screen for
packets with a specific source address, for example. In the expression in Example 1(a), you would take the bit-wise
exclusive-OR of input and filterPktData. The result has a 1 bit only in those positions where input and filterPktData differ.
Thus, if the result is all Os, there's an exact match. Alternatively, you may wish to test for a mismatch. For example, suppose
a LAN consists of a number of workstations and a server. A mismatch test could be used to screen for all packets that did not
have the server as a source. The test for a mismatch would be just the opposite of the test for a match; see Example 1(b). A 1
bit in the result indicates a mismatch.

The preceding tests assume that all bits in the input are relevant. There may, however, be some "don't-care" bits irrelevant to
the filter. For example, you may wish to test for packets with any multicast destination address. Typically, a multicast address
is indicated by one bit in the address field; the remaining bits are irrelevant to such a test. The variable filterPktDataMask is
introduced to account for "don't-care” bits. This variable has a 1 bit in each relevant position and 0 bits in irrelevant positions.
The tests can be modified; see Example 1(c).

The XOR operation produces a result that has a 1 bit in every position where there is a mismatch. The AND operation
produces a result with a 1 bit in every relevant position where there is a mismatch. If all of the resulting bits are 0, then there
is an exact match on the relevant bits; if any of the resulting bits is 1, there is a mismatch on the relevant bits.

Finally, you may wish to test for an input that matches in certain relevant bit positions and mismatches in others. For
example, you could screen for all packets that had a particular host as a destination (exact match of the DA field) and did not
come from the server (mismatch on the SA field). To enable these more complex tests to be performed, use
filterPktDataNotMask, where:

o The O bits in filterPktDataNotMask indicate the positions where an exact match is required between the relevant bits
of input and filter PktData (all bits match).

o The 1 bits in filter PktDataNotMask indicate the positions where a mismatch is required between the relevant bits of
input and filter PktData (at least one bit does not match).

For convenience, assume the definition in Example 2(a). Incorporating filterPktDataNotMask into the test for a match gives
Example 2(b).

The test for a mismatch is slightly more complex. If all of the bits of filterPktDataNotMask are O bits, then no mismatch test
is needed. By the same token, if all bits of filterPktDataNotMask are 1 bits, then no match test is needed. However, in this
case, filterPktDataNotMask is all Os, and the match test automatically passes relevant_bits_differento0=0. Therefore, the test
for mismatch is as in Example 2(c). '

The logic for the filter test is summarized in Figure 2. If an incoming packet is to be tested for a bit pattern in a portion of the
packet, located at a distance filterPktDataOffset from the start of the packet, the following tests will be performed:

o Test #1: As a first test (not shown in the figure), the packet must be long enough so that at least as many bits in the
packet follow the offset as there are bits in filter PktData. If not, the packet fails this filter.

o Test #2: Each bit set to 0 in filterPktDataNotMask indicates a bit position in which the relevant bits of the packet
portion should match filterPktData. If there is a match in every desired bit position, then the test passes; otherwise the
test fails.

o Test #3: Each bit set to 1 in filterPktDataNotMask indicates a bit position in which the relevant bits of the packet
portion should not match filterPktData. In this case, the test is passed if there is a mismatch in at least one desired bit
position.

A packet passes this filter if and only if it passes all three tests.

Why use the filter test? Consider that you might want to accept all Ethernet packets that have a destination address of "A5"h
but do not have a source address of "BB"h. The first 48 bits of the Ethernet packet constitute the destination address and the
next 48 bits, the source address. Example 3 implements the test. The variable filterPktDataOffset indicates that the pattern
matching should start with the first bit of the packet; filter PktData indicates that the pattern of interest consists of "A5"h in
the first 48 bits and "BB"h in the second 48 bits; filter PktDataMask indicates that the first 96 bits are relevant; and

http://www.ddj.com/print/ 3/4/2004
Petitioners' EX1039 Page 280

' NOV94: Packet Filtering in the SNMP Remote Monitor Page 3 of 7

filter PktDataNotMask indicates that the test is for a match on the first 48 bits and a mismatch on the second 48 bits.

The logic for the status filter has the same structure as that for the data filter; see Figure 2. For the status filter, the reported
status of the packet is converted into a bit pattern. Each error-status condition has a unique integer value, corresponding to a
bit position in the status-bit pattern. To generate the bit pattern, each error value is raised to a power of 2 and the results are
added. If there are no error conditions, the status-bit pattern is all Os. An Ethernet interface, for example, has the error values
defined in Table 1. Therefore, an Ethernet fragment would have the status value of 6(21+22).

Channel Definition

A channel is defined by a set of filters. For each observed packet and each channel, the packet is passed through each of the
filters defined for that channel. The way these filters are combined to determine whether a packet is accepted for a channel
depends on the value of an object associated with the channel (channelAcceptType), which has the syntax INTEGER

{ acceptMatched(1), acceptFailed(2)].

If the value of this object is acceptMatched(1), packets will be accepted for this channel if they pass both the packet-data and
packet-status matches of at least one associated filter. If the value of this object is acceptFailed(2), packets will be accepted
to this channel only if they fail either the packet-data match or the packet-status match of every associated filter.

Figure 3 illustrates the logic by which filters are combined for a channel whose accept type is acceptMatched. A filter is
passed if both the data filter and the status filter are passed; otherwise, that filter has failed. If you define a pass as a logical 1
and a fail as a logical 0, then the result for a single filter is the AND of the data filter and status filter for that filter. The
overall result for a channel is then the OR of all the filters. Thus, a packet is accepted for a channel if it passes at least one
associated filter pair for that channel.

If the accept type for a channel is acceptFailed, then the complement of the function just described is used. That is, a packet
is accepted for a channel only if it fails every filter pair for that channel. This would be represented in Figure 3 by placing a
NOT gate after the OR gate.

Channel Operation

The value of channelAcceptType and the set of filters for a channel determine whether a given packet is accepted for a
channel or not. If the packet is accepted, then the counter channelMatches is incremented. Several additional controls are
associated with the channel: channelDataControl, which determines whether the channel is on or off; channelEventStatus,
which indicates whether the channel is enabled to generate an event when a packet is matched; and channelEventindex,
which specifies an associated event.

When channelDataControl has the value off, then, for this channel, no events may be generated as the result of packet
acceptance, and no packets may be buffered. If channelDataControl has the value on, then these related actions are possible.

Figure 4 summarizes the channel logic. If channelDataControl is on, then an event will be generated if: 1. an event is defined
for this channel in channelEventindex; and 2. channelEventStatus has the value eventReady or eventAlwaysReady. If the
event status is eventReady, then each time an event is generated, the event status is changed to eventFired. It then takes a
positive action on the part of the management station to reenable the channel. This mechanism can therefore be used to
control the flow of events from a channel to a management station. If the management station is not concerned about flow
control, it may set the event status to eventAlwaysReady, where it will remain until explicitly changed.

Summary

The packet-filtering facility of RMON provides a powerful tool for the remote monitoring of LANSs. It enables a monitor to
be configured to count and buffer packets that pass or fail an elaborate series of tests. This facility is the key to successful
remote-network monitoring.

'

Abstract Syntax Notation One (ASN.1)

Steve Witten

http://www.ddj.com/print/ 3/4/2004
Petitioners' EX1039 Page 281

.,

¢
NOV94: Packet Filtering in the SNMP Remote Monitor Page 4 of 7

Steve, a software engineer for Hewlett-Packard, specializes in nenvork testing and measurement. You can contact him at
stevewi@hpspd.spd.hp.com.

SNMP protocol and MIB are formally defined using an abstract syntax. This allowed SNMP's authors to define data and data
structures without regard to differences in machine representations. This abstract syntax is an OS] language called "abstract
syntax notation one" (ASN.1). It is used for defining the formats of the packets exchanged by the agent and manager in the
SNMP protocol and is also the means for defining the managed objects.

ASN.1 is a formal language defined in terms of a grammar. The language itself is defined in ISO #8824. The management
framework defined by the SNMP protocol, the SMI, and the MIB use only a subset of ASN.1's capabilities. While the general
principles of abstract syntax are good, many of the bells and whistles lead to unnecessary complexity. This minimalist
approach is taken to facilitate the simplicity of agents.

module that contains global information for all MIB modules. Listing Two, another ASN.1 module, contains the definitions

of specific MIB objects. Finally, Listing Three illustrates manageable objects.

Once data structures can be described in a machine-independent fashion, there must be an unambiguous way of transmitting
those structures over the network. This is the job of the transfer-syntax notation. Obviously, you could have several transfer-
syntax notations for an abstract syntax, but only one abstract-syntax/transfer-syntax pair has been defined in OSI. The basic
encoding rule (BER) embodies the transfer syntax. The BER is simply a recursive algorithm that can produce a compact octet
encoding for any ASN.1 value.

At the top level, the BER describes how to encode a single ASN.1 type. This may be a simple type such as an Integer, or an
arbitrarily complex type. The key to applying the BER is understanding that the most complex ASN.1 type is nothing more
than several simpler ASN.1 types. Continuing the decomposition, an ASN.1 simple type (such as an Integer) is encoded.

Using the BER, each ASN.! type is encoded as three fields: a tag field, which indicates the ASN.1 type; a length field, which
indicates the size of the ASN.1 value encoding which follows; and a value field, which is the ASN.1 value encoding.

Each field is of variable length. Because ASN.1 may be used to define arbitrarily complex types, the BER must be able to
support arbitrarily complex encodings.

It is important to note how the BER views an octet. Each octet consists of eight bits. BER numbers the high-order (most
significant) bit as bit 8 and the low-order (least significant) bit as bit 1. It's critical that this view be applied consistentty
because different machine architectures use different ordering rules.

Figure | RMON description.
Figure 2 Logic for the filter test.
Figure 3 Logic by which filters are combined for a channel whose accept type is acceptMatched.

Figure 4: Logic for channel filter.

procedure packet_data_match;

begin
“‘if {(result = 1 and channelAcceptType = acceptMatched) or
{result = 0 and channelAcceptType = acceptFailed)
then begin
channelMatches := channelMatches + 1;

if channelDataControl = on
then begin

if {channelEventStatus _ eventFired) and

{channelEventIndex _ 0) then generate_event;
if {(channelEventStatus = eventReady) then -
channelEventStatus := eventFired

end;

end;

http://www.ddj.com/print/ 3/4/2004

Petitioners' EX1039 Page 282

1§

NOV94: Packet Filtering in the SNMP Remote Monitor Page 5 of 7

end; .

Example 1: Testing the input against a bit pattern for a match.

{a) (input XOR filterPktData) = 0 --> match

(b) (input XOR filterPktData) (does not equal) 0 --> mismatch

(c) {((input XOR filterPktData) (and) filterPktDataMask) =
0 --> match on relevant bits
{(input XOR filterPktData) (and) filterPktDataMask) (does not equal)
0 ~-> mismatch on relevant bits

Table 1: Ethernet-interface error values.

Bit Error

0 Packet is longer than 1518 octets.
1 Packet is shorter than 64 octets.
2 Packet experienced a CRC or

alignment error.

Example 2: Assuming the definition in (a), incorporating filterPktDataNotMask into the test for a match, you end up with
(b). Test for a mismatch is shown in (c).

(a) relevant_bits_different =
(input XOR filterPktData) (and) filterPktDataMask

(b) (relevant_bits_different (and) filterPktDataNotMask') =
0 ~-> successful match

(c) ((relevant_bits_different (and) filterPktDataNotMask) (does not equal) 0) +
(filterPktDataNotMask = 0) --> successful mismatch

Example 3: Launching a filter test.

filterPktDataOffset =0
filterPktData = "00 00 00 00 00 A5 00 00 00 00 00 BB"h
filterPktDataMask = "FF FF FF FF FF FF FF FF FF FF FF FF'h

filterPkt DataNotMask "00 00 00 00 00 00 FF FF FF FF FF FF'h

Listing One

SNMP-motors-MIB DEFINITIONS ::= BEGIN
IMPORTS
enterprises
FROM RFC1155-8MI;

SNMP-motors OBJECT IDENTIFIER enterprises 9999 }

a
-~

expr OBJECT IDENTIFIER :: { SNMP-motors 2 }
END

Listing Two

SNMP-motors-car-MIB DEFINITIONS ::= BEGIN

IMPORTS

SNMP-motors
FROM SNMP-motors-MIB;
IMPORTS

http://www.ddj.com/print/ 3/4/2004
Petitioners' EX1039 Page 283

NOV94: Packet Filtering in the SNMP Remote Monitor Page 6 of 7

OBJECT TYPE, ObjectName, NetworkAddress,
IpAddress, Counter, Gauge, TimeTicks, Opaque
FROM RFC1155-SMI;
car OBJECT IDENTIFIER ::= { SNMP-motors 3 }
-- this is a comment
-- Implementation of the car group is mandatory
-~ for all SNMP-motors cars.
-- (the rest of the SNMP-motors-car-MIB module)
END

Listing Three

carName OBJECT TYPE
SYNTAX DisplayString (SIZE (0..64))
ACCESS read-only
STATUS mandatory
DESCRIPTION
*A textual name of the car."
:= { car 1 }
carLength OBJECT TYPE
SYNTAX INTEGER (0..100)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The length of the car in feet.®
::= { car 2}
carPassengers OBJECT TYPE
SYNTAX INTEGER (0..4)
ACCESS read-only
STATUS mandatory
DESCRIPTION
*The number of passengers in the car."
::= { car 3}
carPassengerTable OBJECT TYPE
SYNTAX SEQUENCE OF CarPassengerEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A table describing each passenger.”
:= { car 4 }
carPassengerEntry OBJECT TYPE
SYNTAX SEQUENCE OF CarPassengerEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
“A entry table describing each passenger.”
:= { carPassengerTable 1 }
CarPassengerEntry ::= SEQUENCE (
carPindex
INTEGER,
carPname
DisplayString,
carPstatus
INTEGER
}
carPindex OBJECT TYPE
SYNTAX INTEGER (1..4)
ACCESS read-only
STATUS mandatory
DESCRIPTION
“Index for each passenger which ranges from
1 to the value of carPassengers."
::= { carPassengerEntry 1 }
carPname OBJECT TYPE

http://www.ddj.com/print/ 3/4/2004
Petitioners' EX1039 Page 284

NOV94: Packet Filtering in the SNMP Remote Monitor

SYNTAX DisplayString (SIZE (0..64))
ACCESS read-write
STATUS mandatory
DESCRIPTION

“The name of the passenger."
::= { carPassengerEntry 2 }

carPstatus OBJECT TYPE

SYNTAX INTEGER { other(l),driver(2) }
ACCESS read-write
STATUS mandatory
DESCRIPTION

"The status of the passenger.*
::= { carPassengerEntry 3)

Page 7 of 7

Copyright © 1994, Dr. Dobb's Journal

[Copyright © 2004 Dr. Dobb's Journal, Privacy Policy. Comments about the web site: webmaster @ddj.com |

http://www.ddj.com/print/

3/4/2004
Petitioners' EX1039 Page 285

Advanced Methods for Storage and Retrieval in Image http://www.cs.tulane.edu/www/Prototype/proposal. html

Title: Advanced Methods for Storage and Retrieval in Image Databases

Prototype Lead: Dr. Cris Koutsougeras, (504)862-3369, ck@eecs . tulane.edu

Proposed Funding Source: ESDIS Prototyping

Type: Prototype

Category: Engineering

Primary Purpose: Technology Evolution

Key Requirements Addressed: IMS-0150, IMS-0160, and IMS-190
Key Risks Addressed: 089 and 105

Results Need Date: N/A
Objective

We will continue to develop image/granule analysis and retrieval methods based on queries over metadata descriptions of the images. We will be
working closely with members of the MODIS science team and, for development and testing purposes, will base our research on MODIS products.
In particular, we will use a land surface Level 3 product (MOD13 including NDVI) and an atmospheric product. The atmospheric product is likely
to be the Level 2 Cloud Product (MODO06) but discussions are still underway with MODIS participants about this and about a possible oceanic
product as well. The prototype that currently exists at Tulane University will be extended to include these products. The principle on which the
Tulane prototype is based is that an abstraction of an image/granule in the form of metadata is immediately accessible, not the image/granule itself.
Queries by researchers are performed over the metadata. Selected images/granules are then transmitted to the researcher on a delayed basis.
Extending the prototype using these diverse MODIS products will enable us to not only directly benefit the MODIS science team but also to
develop methods that will assist DAAC users in general.

On a broader front, we will be addressing the issue of a uniform interface for heterogeneous data (Level 3 requirement IMS-0150), providing
different levels of user interaction support (IMS-0160), and investigating how to save knowledge between metadata searches (IMS-0190). The
effort will be a step toward defining precisely the set of user services needed (Risk 089) and reducing the likelihood that significant data will be
overlooked due to the large volumes of data managed by EOSDIS (Risk 105).

Aﬁproach

A prototype has been implemented as an end-to-end, client-server testbed (Fig. 1). This testbed, provides a close analog to the ECS Science Data
Processing Segment (SDPS) subsystems. The prototype has at its core the ObjectStore database and most of the current contents are based on the
NDVI product. The interface is interactive and web-based. Queries are performed over simple, atomic data as well as some structured data, e.g.,
image histograms. A set of metadata has been defined but is subject through this study to modification as we concentrate on new products and
interact with the MODIS science team.

1 of 6 ' 11/6/2003 11:25 AM
Petitioners' EX1039 Page 286

Advanced Methods for Storage and Retrieval in Image http://www.cs.tulane.edw/www/Prototype/proposal.html

&

Us r Defined Training Set

o , WWW Based Cli nt

HTML FORMS CLIENT
(Netscap)

.............. A |
Advanced| HTTE Sewer

" Client .

| Data Server-Bus |

_Statistics _/, fixed . dynamio
Extraction {
, Application
Dataset 1 Dataset 2 ‘ training sets

Fig. 1: Architecture of the Tulane EOS Query Prototype

Architecture of Present System. Because ObjectStore is an object-oriented database. the schema is discussed in terms of the object-oriented
concepts of classes. data members. and methods. It is important to distinguish between geodata and metadata. Geodata. sometimes called granule
level metadata. deals with the context of the image and includes information such as: date. flight. time. perspective (angle). instrument. latitude.
data format. longitude, and mission.

Metadata deals with the content of the image and includes such things as the mean irradiance. cloud cover percentage. and texture measures.

The Database Classes. There are two classes employed -- image and tile. An object of class image contains an image and the geodata associated
with it. An object of class tile contains the descriptive metadata and the identities of the image/subimage to which the object pertains. "Tile" is the
word we use to designate the statistics associated with any one member of the quad tree frames of an image. The tile objects are collected into a
container set called tI88 and the image objects are collected into a container set called Images. Images are stored in the database strictly for
development purposes. In a deployable system. the images would be stored on another media in a data warehouse.

Fig. 2 depicts the relationship among the objects and their container sets. There is a many-to-one relationship between the tile objects and image
objects. Each tile object contains the metadata for a portion of the image. Each tile object is stored separate from the image object to which it refers.
This permits (1) uniform querying of metadata at the image and subimage levels (2) changing the tiling protocol or philosophy without having to
change the database implementation.

ObjectStore

7 Toeobject

Tmege Objoct

20f6 11/6/2003 11:25 AM
Petitioners'-EX1039 Page 287

Advanced Methods for Storage and Retrieval in Image

3of6

OhjectStorea

::] The Ohject
Image Object

Fig. 2: Relationship Among Objects

http://www.cs.tulane.eduw/www/Prototype/proposal.html

Table 1 shows several of the two dozen metadata members of a tile object in the prototype implementation, The first three members, TilelD,
Imageld, and Channel, identify the tile and correlate it to an image object. The remaining data members are metadata values over which queries are

performed.

Table 1: Tile Object Data Members

| Metadata Data Type Description

Tileld String Tile identity as described in
Fg. 2
Imageld Integer Image of which tile is a
subimage
1 Channel

Integer

Instrument band number

~PmMcan Real) Spatial mcanof ":‘xll pixels -
| PixStdDev Real Standard deviation of pixe!
] values
1 PixMode Integer Pixel value mode statistic
1 PixMin Integer Minimum pixel vatue
PixMax [nteger Maximum pixel value

Histogram Integer{264) | Number of pixels in each
] histogram

bin

CloudPixels | Real The fraction of the tile having
cloud

cover

NullPixels Real The fraction of pixcls having
null

values

11/6/2003 11:25 AM

Petitioners' EX1039 Page 288

Advanced Methods for Storage and Retrieval in Image

htip://www cs.tulane.edu/www/Prototype/proposal.html

FourPhase Real[20][20] | The phase angles of the
Fourier

transform

FourAmp Real[20][20] | The amplitude of the Fourier

transform
Wavclel Real[20][20] | Wavelet (Haar) coefficients
Amplitude Real[20] Slope Real Fractal dimension

Sample Queries for the Proposed System. The purpose of metadata collection is to make accessible to the Earth science community the granules
collected daily. To profile by example the kinds of uses that an EOS DAAC must be responsive to, we present two typical query scenarios.

Scenario 1 User Goal: Find areas experiencing recent and ongoing deforestation

Approach Using the MODIS NDVI 100km by 100km, look for both "high" standard deviation and "high” roughness. Omit tiles
having a high percentage of cloudiness.

Discussion The tiles having the above characteristics are likely the ones representing the boundaries of the forest.

Scenario 2 User Goal: Study lee-wave cloud formation — clouds having a distinctive linear cloud pattern.

Approach Find (using any means) a set of tiles having the desired pattern and another set lacking it within the cloud product (MODOG6).
Cluster the training set using the Fourier signatures to define the texture of the desired tiles. Use the query system to search for images
having a similar texture.

Discussion This is an example of an "advanced client” query. The researcher must put more effort into the initial search. Afterwards, the
work can be reused by the researcher as well as by others.

Relationship of the Proposed Research to the Present Tulane Prototype. Presently, a researcher must be familiar with the nature of the
metadata and their potential applications. This is because the researcher has to be able to express what (s)he is searching for and express the search
requirements in terms of the metadata. The prototype web site performs simple queries over single-valued metadata variables such as

Retrieve images and subimages having a standard deviation of intensity less than x .

On structured data such as histograms, somewhat more advanced queries are possible such as submitting an exemplar histogram and retrieving the
images/subimages that have similar histograms.

The next step is putting in place an interface that assists this translation in accordance with the spirit of Level 3 requirement IMS-0160. Although
one could envision this interface as being so sophisticated that it is able to translate a sort of natural language query into a query involving the
ground procedures, classes, and metadata of the database, it would first be necessary to establish the concept at a more modest scale.

Evaluation Method/Criteria

We will work in conjunction with MODIS science team members. These members will have remote access to the web site and will be able to
provide specific requirements and provide feedback based on hands-on experience with the prototype.

Potential Impact

The prototype will address three significant IMS level 3 requirements: (1) uniform user interfaces, (2) interaction methods for different researchers
with different skill levels, and (3) saving search knowledge between query sessions by researchers. It will address two key risks: (1) lack of
well-defined user services and (2) overlooking significant information due to the volume of data managed. Additionally, there is a short-term impact
that should not be overlooked. It will be of direct and immediate benefit to the MODIS science team members.

Milestones and Deliverables

Scope of Work. Using the current prototype as a basis, Tulane University will extend the system by emphasizing two (and possibly three)
MODIS Level 2 and 3 products. The extensions include providing query support that requires different skill levels of researchers using the
system, saving search knowledge between query sessions, and developing better approaches to characterizing the information at the
subimage/subgranule level. The prototype made available to MODIS science team members may entail revising the metadata as now

40f 6 . 11/6/2003 11:25 AM
Petitioners' EX1039 Page 289

Advanced Methods for Storage and Retrieval in Image http://iwww.cs.tulane.edu/www/Prototype/proposal.html

.

defined based on their feedback.
The duration of the work outlined in this SOW is 12 months.

Summary of Tasks. The efforts during this period of performance will target further refinements to the existing work. More specifically,
we target the issues of efficient storage (space problem) and efficient retrieval. We can build on the framework that has been created,
refine it, and make it more user friendly.

Further development of the prototype will follow two directions: (1) Development of methods that use the available storage space more
effectively (see Tasks 2 and 3); (2) Development of interface mechanisms that allow greater query flexibility for researchers having more
expertise in data management (see Tasks 4 and 5).

Task 1: Project Management. Provide monthly progress reports to the Project Manager and Technical Lead. These 1-2 page reports will
summarize the previous month's progress, plans for the upcoming month, and any identified issues or impediments to progress. These
reports will also provide estimated dollar and labor contract expenditures for that month.

Task 2: Image Decomposition. Decomposition by quad tree, as described in the Approach section, is often preferred by scientists using
land products. Frequently the phenomenon sought by such scientists is not distributed across the entire image. Almost always, it is
contained in a subimage and the criteria used to find it will often be masked by the image as a whole. That is why the present prototype
computes the metadata over each tile in a quad tree.

Yet, the quad tree has drawbacks. Atmospheric and oceanic scientists sometimes prefer other forms of decomposition. In a quad tree, the
chief object in an image, say, a hurricane, is may be partitioned among different tiles. Clearly metadata particular to the storm will be
washed out by the background that surrounds the parts. Other decomposition methods require the use of criteria based on image content.
This might be pixel values or texture. However, decomposing the image into "'blobs” that represent areas of uniformity is a plausible
approach. Blobs fall short of complete image segmentation by region in that they need not fully partition the image and may overlap. They
constitute an augmentation of the quad tree decomposition, not a replacement for it. Metadata should be computed for each blob in
addition to each quad tree tile. A blob will more likely contain a coherent object in its entirety.

To illustrate, examine Fig. 3. Using ellipses as the basic geometry of a blob, the significant features on an image are enclosed. Shapes other
than ellipses will be investigated. With respect to the database schema, minimal changes are necessary. A blob description will just become
an additional tile in the illustration of Fig. 2. The metadata for a blob is the same as that for a tile.

Task 3: Data Space Conservation. Data concerning terabytes of mages must be immediately accessible. To conserve space, we will
investigate ways to discover parts of images (partial images) that reoccur and thus can be seen as building blocks. These can be helpful in
composing an image (or many images) but metadata descriptors of each of these components need to be stored only once. As a simplistic
example, consider an image that contains large bodies of water over which there is a uniform distribution of pixel values. If these areas
were represented as repetitions of a single tile, we would only need to store a detailed (sub)image description of this tile and then describe
the large bodies of water as a (structured) collection of pointers to it, thus saving substantially in the space required to store the image
metadata.

R T L e)

Fig. 3: Blob Decomposition of an Image

There are a couple of different possibilities for discovering building blocks. First, we can try to identify reoccurring tiles within an image.
Second, we can try to discover tiles that are useful in many images. The process of discovery must be automated and run at ingest time.
This problem has properties similar those of binpacking and thus an optimal solution will not be easy to find. However, evolutionary
algorithm techniques are promising and may provide good practical solutions The issues to be addressed in this task are: (1) determining
the geometry of the tiles, (2) tradeoffs in space savings in conjunction with the geometry of the tiles (this relates to the frequency of
reoccurrence), and (3) evolutionary algorithm techniques for optimal decompositions.

S5of6 ' 11/6/2003 11:25 AM
Petitioners' EX1039 Page 290

Advanced Methods for Storage and Retrieval in Image http://www.cs.tulane .edu/www/Prototype/proposal.html

L4

Task 4: Advanced and Reconstructive Metadata. During the year just past, we examined and chose metadata that are statistically
significant, that have high information content, and that researchers are already familiar with. We did not (and were not required to)
incorporate mechanisms for using the more highly structured metadata (such as texture and transform coefficients) into queries. We did
go beyond the requirements of the previous grant and develop means of using histogram information within queries.

In the coming year we will develop query mechanisms to complement all the metadata. Additionally, because we have defined and are
collecting metadata from which the image can be reconstructed at reduced resolution, we will develop mechanisms by which the
researcher can define her/his personal metadata and collect it from any set of images defined via less advanced queries. For example,
consider the Fourier coefficients. They require much storage but contain much information. A researcher might reconstruct the image or
tiles from an image using the Fourier coefficients then compute the eigenvalues of the pixel autocorrelation matrix. This is the sort of
query for which we can provide the basic structure through this task.

Task 5: Query Reuse. The result of a query is a set of image and tile id’s. The simplest approach to query reuse (and the one we will start
with) is to associate with various sets a "cluster condition,'" a Boolean statement which each member of the set satisfies. This leads to the
ability to reuse a set when the condition reoccurs. Next we will elaborate this In the form of an inverted file for which the key is a tile id
from which the complete set of cluster conditions (seen thus far) satisfied by that tile can be accessed. This will achieve a powerful query
reuse capability.

Deliverables. NASA will have the right to examine the software at any time. Provision to FTP software to NASA will be made on an
informal basis. Three additional deliverables are proposed.

Item A: Decomposition approach presented as written document. This document will define the approaches used for decomposition
(other than the quad tree) and the reasons for which one was selected. The issues of feasibility of performing the method upon
ingest will be described together with experiences using the method. This is the culmination of Task 2.

Item B: Operational end-to-end WWW-based prototype allowing direct query of fixed (statistical) metadata, utilization of
advanced queries that incorporate structured metadata, and allow a researcher to utilize reconstructive metadata (e.g., Fourier
coefficients) to define her/his personal metadata.

Item C: Final report summarizing "lessons learned," focusing primarily on the architecture of the prototype, the design of the

components that constitute the query interface, and changes that would be appropriate if another database product were utilized as
the core of the system.

Bear in mind that in additional to the deliverables, the MODIS science team will be able to gain direct benefit from the project beginning
in late September and continuing throughout the prescribed period of performance.

60f6 11/6/2003 11:25 AM
Petitioners' EX1039 Page 291

Y

Measurement and Analysis of the Digital
DECT Propagation Channel*

Fulvio Babich!, Giancarlo Lombardi!, Steno Schiavon2, Elvio Valentinuzzi’

1: Dipartimento di Elettrotecnica, Elettronica e Informatica,
Universita di Trieste, Via A. Valerio 10, 1-34127 Trieste, Italy
Phone: +39-40-676-3458; Fax: +39-40-676-3460
babich, lombardi, valent@stelvio.univ.trieste.it
http://ingsunl.univ.trieste/~{babich, lombardi}

2: TELITAL 8.p.A., Viale Stazione di Prosecco 5/B, I-34010 Sgonico (TS), Italy,
Phone: +39-40-4192-244; Fax: +39-40-251257; steno.schiavon@rsl.telital.it

Abstract - In this paper, an experimental setup is pre-
sented, to measure bit error patterns over a DECT
indoor radio channel. A prefixed bit sequence has
been exchanged on the air between a mobile and a
fixed part, using a DECT modem. DECT interfer-
ers were active in the environment during the exper-
iments. Error patterns have been obtained from re-
ceived sequences, aligning and comparing them with

" the transmitted ones. They have been stored in real

time on a mass memory, by means of a data acqui-
sition board, built for this purpose. Some results
are shown, inherent to the Packet Error Distribution
(PED) and to the burst and interburst length distri-
butions, obtained from the acquired database. Finite
State Markov Channel models have been determined,
using measurement conditions, to reproduce and ver-
ify empiric results.

1 Introduction

Wireless communications are experiencing a consid-
erable growth, due to their flexibility. The quick in-
crease of the subscriber number requires to reconsider
system architecture, in order to adapt it to the prop-
agation environment, as carefully as possible, and,
consequently, to obtain capacity gain. Given that ur-
ban and indoor wireless communications are the most
requested from users, Cordless Telecommunication
(CT) systems are being perfectioned, because they al-
low better coverage and capacity, with lower power
expense, than traditional cellular systems. Among Eu-
ropean standards, DECT is the most modern digital
standard, providing a broad range of services.

Being the mobile propagation channel (with inter-

*This work has been partially supported by MURST “ex-quota
40%". Italy.

ference) the main reason of degradation of the trans-
mitted signal, it may be useful to evaluate the channel
correlation properties, to increase system capacity by
taking into account channel memory [1]. In fact, the
traditional techniques of coding and interleaving de-
stroy error correlation at the receiver, but do limit sys-
tem capacity. It is useful, then, to study the correla-
tion properties of bit error sequences and to find mod-
els reproducing their behavior. Generally, bit error
streams on a wireless channel are obtained, through
simulation or as post-processing of experimental ana-
log measurements [2, 3, 4].

In this paper, an experimental setup is presented,
to measure and store bit error patterns over a DECT
indoor radio channel. Measurements have been per-
formed, building a database of bit error sequences
in an indoor environment. The packet error distri-
bution (PED) and the burst/interburst length distribu-
tions have been obtained from some streams of the
database and compared with the distribution obtained
from a Finite State Markov Channel model, proposed
in [5] and whose parameters are estimated from mea-
surement conditions.

The measurement setup is described in Section 2,
while measurement execution is outlined in Section 3.
Results about PED and burst/interburst length distri-
butions are discussed in Section 4 and 5, respectively,
while some conclusions are drawn in Section 6.

2 Measurement Setup

The measurements have been performed, using as
transmitter and as receiver, two radio communication
testers for DECT systems (CMD60, manufactured by
R&S), respectively. The scheme of measurement ap-
paratus is displayed in Figure 1. A continuous TTL

Petitioners' EX1039 Page 292

/\/%&

30dB ?EE‘
Interrupt| | Eror
.29 4B O Stream

Data Demod CMD60
Acquisition| Out Rx
CLK
£40dB CLK
Data Out
1.152 MH: Ref | 7] 4-Track
Oscilloscope
Data
CMD60 Generation
Tx Mod In and
Alignment l ‘

Figure 1: Scheme of the Measurement Setup.

l Level DEMOD
1 1 conversion [—8UT
Buffers
& *| Panaliclization {p - @
interface
ISA - Sampling DATA
SYSTEM|T— - & o
BUS Comparison REF
7 = T = =g
S : V- -
CLK
uil Control Logic w il -0
ouT

Figure 2: Scheme of the data acquisition board.

binary sequence, having DECT bit rate (1.152 Mb/s),
is generated and supplied to the first tester, where it
modulates a DECT carrier at 1897.344 MHz in the
DECT GMSK format (BT = 0.5). This signal is am-
plified by 40 dB, transmitted over a 80 m coaxial cable
(attenuation 29 dB) to the mobile end, where it is am-
plified again, by 30 dB, before being fed to a discone
transmitting antenna.

The receiving part is made by another discone an-
tenna, similar to previous, connected by a S m coax-
ial cable to a 20 dB low noise amplifier, that supplies
the signal to the second tester, where the received bi-
nary sequence is obtained by a frequency discrimina-
tor. This sequence is aligned with the transmitted se-
quence, used as reference, because the delay of the
measurement chain is about one and a half bit.

The comparison between transmitted and received
sequence and the storage of the error sequence inside
a PC Pentium 133 MHz are made, using a dedicated
acquisition digital board, controlled via software us-
ing the interrupt management. The sampling and de-

cision circuitry of the received signal are also on the
board. It is composed by the blocks showed in Fig-
ure 2. The demodulated sequence (DEMOD OUT),
having a Gaussian bit shape, is sampled and converted
to TTL levels, to be compared with the reference se-
quence (DATA REF). The high rate of the data re-
quires a parallel acquisition: shift registers, suitably
joined to the serial data line, are used. The paral-
lelized data are stored inside buffers, to be available
on the ISA System Bus, carrying them to the PC. The
control circuitry is for address and interrupt manage-
ment.

3 Measurement Execution

The measurements have been executed in the labora-
tory and office wing of a PCS factory, near Trieste.
The plan can be found in [6]. The basic structure of
the floor is given by a very long hallway, terminated
by a large laboratory and interrupted by metal fire-cut
doors. Along the hallway, several medium sized room
(in mean 5 x 5 m) and stairs are displaced. The fur-
nishing is typical of offices and laboratories, with sev-
eral metal cabinets and work benches. Further details
are given in [6, 7).

The experiments have been carried on after office
time, so that very few people was in the environ-
ment and stationarity can be assumed. On the other
side, several DECT terminals were active and it has
been observed that interference is the main reason of
error during measurement execution. The receiving
antenna is fixed on a 2.10 m dielectric pole, while
the transmitting one is moving and kept at a 1.90 m
height. The mobile antenna has been continuously
displaced along straight and circular paths. Straight
paths have a minimum length of 7 m (in the rooms)
and a maximum length of 35 m (in the main hallway).
The antenna was held on a vertical pole mounted on a
trolley and moved by a person, with speed ~ 0.4 m/s.
Circular paths have a ray of 1.5 m. The antenna is held
on a horizontal arm, mounted on a vertical pole rotat-
ing around its axis by means of an electromagnetic
engine. The angular speed impressed by the engine
is 27 rad/min, corresponding to an antenna peripheric
speed of 0.16 m/s.

Three positions of the receiving antenna have been
chosen, two in rooms along the hallway and one in the
lab terminating the hallway. The paths of the trans-
mitter has been chosen, trying to cover many rooms
of the floor. The measurement along every path has
been carried on with transmitter constant power. The
experiment at any path has been repeated varying the
signal power at modulator output among the values -
15, -25 and -35 dBm, respectively (about 40 dB have

Petitioners' EX1039 Page 293

10"L

£1072}

107

0

0 2 4 6 8 10 12 14 16 18 20
m

Figure 3: Packet Error Distribution P(n,m) withn = 64.
Solid line: Measure; Dashed Line: Theory.

to be added to these values to obtain radiated power).
The final database contains 32 error streams obtained
from straight paths and 33 error streams obtained from
circular paths.

4 PED Evaluation

The database has been pre-processed to transform the
bit error sequences in gap sequences, according to def-
initions in [8].

The first quantity evaluated from experimental data
is Packet Error Distribution (PED). PED P(n,m) is
defined as the probability that a data block, made by
n bits, contains n errors and is connected to Packet
Error Rate PER by the equation:

n t
PER = Z P(n,m):l—ZP(n,m), n

m=t+1 m=0

being ¢ the number of errors in the block, that can be
corrected.

Signal fading rate is very low: fpTp = 8.7-10~7,
for circular paths, and fpTj = 2.2 - 1075, for linear
paths, where T, = 868 ns is bit duration, fp = %
is channel Doppler spread, v is mobile speed and

= 15.7 cm is the wavelength. However, errors are
caused mainly by interference, originating from few
base stations, transmitting signaling packets (96 bit
long) in every slot (Ty = 417us). To represent the
instant signal-to-interference ratio (SIR), it seems rea-
sonable to use the Finite State Markov Channel model
(FSMC), proposed in [5], with fading rate fpT7r. This
means assuming that interference has approximately
the same effect of fading with f}, = fp . The model
considers Rayleigh fading, quantized on L levels, by
means of L—1 thresholds (referred to SIR [Section 3])
{Ak}EZ]l. L fading states {Si} =y are obtained, so

10 - -
107 1
g
N gn-2]
510
a \.\
_3 \'\.\ -
wy oo T 1
10-‘ L A e s e i 1. i
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
m

Figure 4: Packet Error Distribution P(n,m) withn =
256. Solid line: Measure; Dashed Line: Theory.

that {Sk : SIR € [Ax Ak41)}5s, where Ag = 0 and
Ap = +o0.

The FSMC model is completely characterized by
the transition matrix T = {tj,k}]l.’l,:zlo and by the
crossover probabilities e = {ek}f;é (where ey is the
average error probability over the Binary Symmetric
Channel, corresponding to the SIR in the state Sy).
The transition probabilities are given by:

N1
tk.k+lz——‘1 k=01"'

,L—2, (2a)
R¥)

N,
thh-1 ® —, k=1...,L-1, (b
R

tij~0, Vi,j:li—jl>1, 2¢)

the=1- txs, (2d)
£k

e 89 < 3 = \Fy0(-4).

¢ is the average SIR, p, = exp (_éek) _

exp (——ﬂ‘g—‘-) ,k =0,...,L — 1 are the steady state
probabilities for each state Sx. The crossover proba-
bilities for an incoherently demodulated 2-FSK, well

approximating GMSK, are given by:

o= v 4 (e a))

1 1
—exp [—Ak+| ('g- + 5)] }) 3

k=0,...,L—1.

PED has been evaluated from this model with the ai-
gorithm, described in [8, 3].

Figs. 3 and 4 compare measured PED with PED
obtained from FSMC model, for a particular circu-
lar path measurement, with -15 dBm power level at

Petitioners' EX1039 Page 294

P burst lengths n]

0 100 200 300 400 500 600 700 800
n [bits]

Figure 5: Burst length distribution. —: Measure; ----;
First order model at bit level; - - -: First order model at
block level.

modulator (SR1). In the former, packet length n is 64,
while in the second it is 256. The mean bit error rate is
P, = 1.46- 102, so that an average SIR ¢ = 18.2 dB
is estimated from P, = ﬁ [9]. Continuous line rep-
resents PED obtained from data, while dashed line
represents PED obtained from FSMC model, evalu-
ated using eqns. (2) and (3). The model has 12 quan-
tization levels, using as thresholds {Ax = p — 2(11 ~
KNL, dB.

It can be noticed that FSMC model follows well ex-
perimental results in Figure 3, while it shows some de-
parture in Figure 4. Furthermore, it has been checked
that PED behavior is quite insensitive to the value of
foT Gf fpT < 1073). It can be noticed that the
effect of interference on PED is well represented by
the FSMC model, defined by eqns. (2) and (3), used
in presence of fading with AWGN [3]. This means
that the effect of interference, also when interferers
are temporally deterministic and in small number, can
be considered Gaussian. The major departure of the-
ory from measurement in Figure 4 puts on evidence
the limits of the approximation.

S5 Burst Distribution

The error stream has been also analyzed, considering
the burst and interburst length distribution. A burst
is defined as a group of bit, starting and ending with
a wrong bit, such that the maximum separation be-
tween any couple of wrong bits is never higher than a
fixed number Ng (guard interval) [10]. In this work,
itis Ng = 100. The group of bits between two con-
secutive bursts is an interburst. Figs. 5 and 6 show
with solid line the distribution of burst and interburst
length, respectively, obtained from the same experi-
mental data, used in Section 4. Inside each figure,
the dash-dotted line represents the behavior obtained

10

3

v

-

4

2

]

=1

£

E

=

a

10-‘ L " . N . N N P
0 1000 2000 3000 4000 S000 6000 7000 8000
n (bits]

Figure 6: Interburst length distribution. —: Measure;
----: First order model at bit level; - - -: First order model at
block level.

from the FSMC, therein described. The burst and in-
terburst length distributions are approximated by the
residence time distribution in the state set S;-Sg and
S10~S12, considered as error and no-error states at
bit level, respectively. The evaluation method is de-
scribed in [11].

The dashed line represents the results obtained from
a first order Markov model at block level, discussed in
the following. Let n = 64 be the block length. Let G
and B be the events of correct block (without errors)
and of wrong block (containing wrong bits), respec-
tively. Let a two-state FSMC model at the bit level
be obtained, quantizing SIR with respect to a thresh-
old F, to represent the process at bit level. A typical
value, also used here, is F = g —4 (dB). Equations (2)
give its transition matrix:

Pob Pog
Tpi, = ,
ot [Pgb Pgg]

and its stationary distribution Pyis = [ps pg), where g
and b are the no-error and error states at the bit level,
respectively. :

A first order Markov chain describing the G-B pro-
cess can be built from Ty, Poig and its transition ma-
trix is given by:

Thlock = .
Pgg =1—Ppg Pgg = pg(pgg)™"
Pgp =1—Psc Pcc = (pge)"

where Pgg ~ P(bmy1 = 0,...,b;m4n = Olby =
Dpy + P(bm41 = 0,...,bm4n = Olbm = 0)py and
Pgg ~ P(bm.H =0,..., bm+n = 0|bm = 0) (given
n>1).

The burst and interburst length distributions are ob-
tained from this model, as residence time in the B and
G state, respectively.

Petitioners' EX1039 Page 295

The second model shows a closer resemblance with
the experimental results, because the state definition
matches better the burst and interburst definitions.
Therefore, from the burst/interburst distribution point
of view, the channel with interference is well repre-
sented even by an on-off Markov model, where the
‘on’ condition corresponds to SIR being above a suit-
able threshold F. Moreover, the first model exhibits
larger deviation in the burst length case, because the
approximation of a burst, as a sequence of totally
wrong bits, is an oversimplification.

6 Concllusﬁons and Future Work

In this paper, a measurement system has been de-
scribed, for the acquisition of bit error streams on a
DECT digital channel. A database of error patterns
has been obtained in a laboratory and office environ-
ment, considering also the effect of some DECT in-
terferers thereby placed. Some processing has been
made on it, consisting in evaluation of Packet Er-
ror Distribution (PED) and of burst and interburst
length distributions. The experimental results for PED
match with the ones given by a FSMC model, typ-
ically adopted for fading channel with AWGN. This
puts on evidence that the interference effect can be as-
sumed Gaussian. Burst/interburst length distributions
are correctly modeled even by a simple on-off model.
Though, some deviations between models and exper-
imental results have been also observed, due to the
deterministic features of interference.

Future work will consist in examining more com-
plex models, that are capable of giving more accurate
results and that can be applied to further character-
izing features of the channel, as the gap distribution.
The aim is to find a class of models, capable to give
a unitary description of digital wireless channel be-
havior, both at the bit level and at the packet level,
so that parameters useful to system project are readily
obtained from it.

Acknowledgments

The authors wish to thank the TELITAL S.p.A., for
having supplied measurement instrumentation and
having followed its execution with continuous and
qualified technical support.

References

[1] A. Goldsmith and P. Varaiya, “Capacity, Mutual
Information and Coding for Finite-State Markov
Channels”, IEEE Trans. Inform. Theory, vol. 42,
no. 3, pp. 868 - 886, May 1996.

[2] A. J. Goldsmith, L. J. Greenstein, and G. J.
Foschini, “Error Statistics of Real-Time Power
Measurements in Cellular Channels with Multi-
path and Shadowing”, IEEE Trans. Veh. Tech-
nol., vol. 43, no. 3, pp. 439 - 446, Aug. 1994.

[3] H. Bischl and E. Lutz, “Packet Error Rate in
the Non-Interleaved Rayleigh Channel”, [EEE
Trans. Commun., vol. 43, no. 2/3/4, pp. 1375 -
1382, Feb./Mar./Apr. 1995.

[4] P. M. Crespo, R. Mann Pelz, J. P. Cosmas, and
J. Garcia-Frias, “Results of Channel Error Pro-
files for DECT", IEEE Trans. Commun., vol. 44,
no. 8, pp. 913 -917, Aug. 1996.

[5] H. S. Wang and N. Moayeri, ‘“Finite-State
Markov Channel: A Useful Model for Radio
Communication Channel”, [EEE Trans. Veh.
Technol., vol. 44, no. 1, pp. 163 - 171, Feb.
1995.

[6] F. Babich, G. Lombardi, and E. Valentinuzzi,
“Indoor Propagation Characteristics in DECT
Band”, in Proceedings of IEEE VTC 96, At-
lanta, GA, Apr. 27 - May 2, 1996, pp. 574 - 578.

{7] F Babich, G. Lombardi, L. Tomasi, and E. Va-
lentinuzzi, *“Indoor Propagation Measurements
at DECT Frequencies”, in Proc. of IEEE MELE-
CON 96, Bari, Italy, May 13 - 16, 1996, pp.
1355 — 1359.

[8] L. N. Kanal and A. R. K. Sastry, “Models for
Channels with Memory and Their Applications
to Error Control”, Proc. IEEE, vol. 66, no. 7, pp.
724 - 744, July 1978.

[9] J. G. Proakis, . Digital Communications,
McGraw-Hill, New York, 1989.

[10] E. A. Newcombe and S. Pasupathy, “Error Rate
Monitoring for Digital Communications”, Proc.
IEEE, vol. 70, no. 8, Aug. 1982.

[11] Attila Csenki, Dependability for Systems with a
Partitioned State Space, vol. 90 of Lecture Notes
in Statistics, Springer-Verlag, 1994,

Petitioners' EX1039 Page 296

	Cover
	Contents
	1 Claims as Filed
	2 Missing Parts Notice
	3 Declaration
	4 IDS
	5 IDS
	6 Rejection
	7 Amendment A
	8 Amendment B
	9 Notice of Allowance
	10 Amendment C
	11 Notice of Entry
	12 Request for CoC
	Non-Patent References
	R, Periakaruppam and E. Nemeth. "GTrace-A Graphical Traceroute Tool." 1999 Usenix LISA. Available on www.caida.org, URL: http
	W. Stallings. "Packet Filtering in the SNMP Remote Monitor." Nov. 1994. Available on www.ddj.com, URL: http://www.ddj.com/doc
	Advanced Methods for Storage and Retrieval in Image; http://www.cs.tulane.edu/ww/Prototype/proposal.html; 1998. .
	Measurement and Analysis of the Digital DECT propagation Channel; IEEE; 1998. .

