
(12) United States Patent
Edlund et al.

(54) METADATA SEARCH RESULTS RANKING
SYSTEM

(75) Inventors: Stefan B. Edlund, San Jose, CA (US);
Michael L. Emens, San Jose, CA (US);
Reiner Kraft, Gilroy, CA (US); Jussi
Myllymaki, San Jose, CA (US);
Shanghua Teng, Sunnyvale, CA (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 10/354,751

(22) Filed:

(65)

Jan.30,2003

Prior Publication Data

(62)

(51)
(52)
(58)

(56)

US 2003/0120654 Al Jun. 26, 2003

Related U.S. Application Data

Division of application No. 09/483,344, filed on Jan. 14,
2000.

Int. CI.7 G06F 17/30
U.S. Cl. 707/5; 707/1; 707/3; 707/10
Field of Search 707/1, 3, 10, 5

References Cited

U.S. PATENT DOCUMENTS

5,659,732 A
5,765,149 A
5,765,150 A
5,826,261 A
5,832,494 A

8/1997 Kirsch
6/1998 Burrows
6/1998 Burrows

10/1998 Spencer
11/1998 Egger et al.

(List continued on next page.)

I lllll llllllll Ill lllll lllll lllll lllll lllll 111111111111111111111111111111111

EP
JP
JP

US006718324B2

(10) Patent No.:
(45) Date of Patent:

US 6, 718,324 B2
Apr. 6, 2004

FOREIGN PATENT DOCUMENTS

0810535 A2
09311872
10143516

12/1997
12/1997
5/1998

OTHER PUBLICATIONS

Gavin McCormick, "FAST claims it wins the search engine
speed slalom", Mass High Tech, Aug. 30, 1999, p. 7.
"Organizing a Ranked List of Search Matches", IBM Tech­
nical Disclosure Bulletin, vol. 37, No. 11, Nov. 1994, pp.
117-120.

(List continued on next page.)

Primary Examiner----Kim Vu
Assistant Examiner---Cam-Y Truong
(74) Attorney, Agent, or Firm-Jon A. Gibbons; Fleit, Kain,
Gibbons, Gutman, Bongini & Bianco P.L.

(57) ABSTRACT

A system and method of metadata search ranking is dis­
closed. The present invention utilizes a combination of
popularity and/or relevancy to determine a search ranking
for a given search result association. Given the exponential
growth rate currently being experienced in the Internet
community, the present invention provides one of the few
methods by which searches of this vast distributed database
can produce useful results ranked and sorted by usefulness
to the searching web surfer. The present invention permits
embodiments incorporating a Ranking System/Method
(0100) further comprising a Session Manager (0101), Query
Manager (0102), Popularity Sorter (0103), and Association
(0104) functions. These components may be augmented in
some preferred embodiments via the use of a Query Entry
means (0155), Search Engine (0156); Data Repository
(0157), Query Database (0158), and/or a Resource List
(0159).

20 Claims, 4 Drawing Sheets

METADATA RANKING SYSTEM

Search
Engine
0223

Scheme
Database

0209

-~-~ 0200

Session
k---+--i Manager

Qll1

Representation
Manager

0204

Version
Manager >-<1-----_,

0206

Version
Adjusted
Popularity
Daemon
Process

0207

Ranking
Database

0208

Comcast, Exhibit-1103
1

US 6, 718,324 B2
Page 2

U.S. PATENT DOCUMENTS

5,848,404 A 12/1998 Hafner et al.
5,855,015 A 12/1998 Shoham
5,864,845 A 1/1999 Voorhees et al.
5,864,846 A 1/1999 Voorhees et al.
5,864,863 A 1/1999 Burrows
5,873,076 A 2/1999 Barr et al.
5,873,080 A 2/1999 Coden et al.
5,875,446 A 2/1999 Brown et al.
5,974,413 A 10/1999 Beauregard
6,006,221 A 12/1999 Liddy et al.
6,026,388 A 2/2000 Liddy et al.
6,029,195 A 2/2000 Herz
6,098,064 A 8/2000 Pirolli et al.
6,321,228 Bl * 11/2001 Crandall et al. 707/10
6,421,675 Bl * 7/2002 Ryan et al. 707/100
6,470,383 Bl * 10/2002 Leshem et al. 709/223

OIBER PUBLICATIONS

"Displaying Relative Precision in a Ranked List of Search
Matches", IBM Technical Disclosure Bulletin, vol. 37, No.
11, Nov. 1994, pp. 105-106.

"Agent System for Gathering, Integrating, Relevance Rank­
ing and Presenting Digital Text Documents from Heteroge­
neous Information Sources", IBM Technical Disclosure Bul­
letin, vol. 41, No. 01, Jan. 1998, pp. 271-272.

B. Thomas, "Rank and File [Web site design]", IEEE
Internet Computing, vol. 2, No. 4, Jul.-Aug. 1998, pp.
92-93.

Li Yanhong, "Toward a Qualitative Search Engine", IEEE
Internet Computing, vol.2, No. 4, Jul.-Aug. 1998, pp.
24--29.

YZ Feinstein et al., "Relevancy Ranking of Web Pages
Using Shallow Parsing", PADD97 Proceedings of the First
International Conference on the Practical Application of
Knowledge Discovery and Data Mining, published:Black­
pool UK, 1997, pp. 125-135.

B. Schneiderman, "A Framework for Search Interfaces",
IEEE Software, vol. 14, No. 2., Mar.-Apr. 1997, pp. 18-20.

* cited by examiner

2

R
e

p
o

si
to

ry

01
57

S
e

a
rc

h

E
n

g
in

e

01
56

R
e

su
lt

s
01

61

P
o

p
u

la
ri

ty

S
o

rt
e

r
01

03

+
 0

IJJ

c
I

±
:

0
~,

:i
 ·

-
.

U
)

U
)

'I"
""

Q

)
({

)
0

0::
:

Q
)

(j
)

S
e

ss
io

n

M
a

n
a

g
e

r

F
IG

.1

<
Q

u
e

ry
,

R
e

so
u

rc
e

,
P

o
p

u
la

ri
ty

>

01
23

Q
u

e
ry

M

a
n

a
g

e
r

01
02

e;<
A

<S
!

O
v
~{

)
:1

 M
E

T
A

D
A

T
A

1(
;-
f~
,
0~
~

c::;
>7

'
R

A
N

K
IN

G

'(
~'

\°
'~

S

Y
S

T
E

M

.
&

\5)
0

01
00

~

-
­

;." c
 6'

 (
·

r
~ "

'<:

A
ss

o
ci

a
to

r
S

e
ss

io
n

 I
D

 +
 \

Q

1!
M

Q

ue
ry

 I ·

.
R

es
ou

rc
e

S
tr

in
g

t
~

01
14

~

I
Q

12
1

01
16

<:::

\

~
°'I ,,

.-I
Q

)
•E

LO

::J

-
,,.

-
0

C
f)

0

Q
u

e
ry

 1.,..

1

Q
.1

M

-

R
e

so
u

rc
e

 L
is

t
R

e
so

u
rc

e
 1

R

e
so

u
rc

e
 2

i

R
e

so
u

rc
e

 N

01
59

<
Q

u
e

ry
,

R
e

so
u

rc
e

,
P

o
p

u
la

ri
ty

>

01
82

Q
u

e
ry

 I
R

e
so

u
rc

e

U
p

d
a

te

R
e

q
u

e
st

01
48

Q
u

e
ry

D

a
ta

b
a

se

01
58

d • \J
J. • ~

~

.....
.

~
 =

.....
.

~

:;

~
~

N
 c c .i;
;..

'J
l =­ ~ ~
. "'""

0
.,

.i;
;..

 e rJ
'l

~a
-.

,
""

-l
lo

-"

~

~

N

.i;
;.,

~

N

3

F
IG

.
2

M
E

T
A

D
A

T
A

 R
A

N
K

IN
G

 S
Y

S
T

E
M

R
e

su
lt

R
el

ev
an

cy

02
00

A

n
a

ly
ze

r
C

a
lc

u
la

to
r

~

02
03

V

er
si

on

.
M

an
ag

er

02
06

S

e
a

rc
h

M

o
n

ito
ri

n
g

E

n
g

in
e

A

g
e

n
t

02
23

·
~

V
e

rs
io

n

S
es

si
on

R

ep
re

se
nt

at
io

n
A

dj
us

te
d

M
an

ag
er

M

an
ag

er

P
o

p
u

la
ri

ty

D
ae

m
on

Q

fi
l

02
04

P

ro
ce

ss

02
07

'
....

._
~

'-
-

__.
,

.._

~

S
ch

e
m

e

l.
.-

--

~

D
a

ta
b

a
se

(

Q
u

e
ry

02

09

1
02

22

'
-

~

Ii
-@

:\

:::_

-....

_
,

--

~

'-
..

._

~

R
a

n
ki

n
g

D

a
ta

b
a

se

02
08

- .._

~

d • \J
J. • ~

~

.....
.

~
 =

.....
.

~

:;

~
~

N
 c c .i;

;..

rF.
J. =­ ~ ~

N

0
,

.i;
;..

 e rJ'
J.

-..a
-..

""
-l

lo
-"

~

~

N

.i;
;..

~

N

4

F
IG

.
3

S
ta

rt

~

-
-
-
-
-
-
-
-
-
-
-
~
.

03
00

1
~
:

1TA
 G

E
N

E
R

A
L

 S
E

A
R

C
H

 R
A

N
K

IN
G

 P
R

O
C

E
S

S

03
01

 _
_

_
_

 __,
.

O
b

ta
in

 S
ea

rc
h

Q
u

e
ry

03
02

-
-
j

S
u

b
m

it
 S

ea
rc

h
R

e
q

u
e

st
 t

o
 S

e
a

rc
h

 E
ng

in
e

03
03

O

bt
ai

n
S

ea
rc

h
R

e
su

lts

03
04

F

o
rw

a
rd

 Q
u

e
ry

 S
tr

in
g

,
S

ea
rc

h
R

es
ul

ts
,

S
e

ss
io

n
 ID

 t
o

 Q
u

e
ry

 M
a

n
g

e
r

03
05

In

te
rr

o
g

a
te

 Q
ue

ry
 D

at
ab

as
e

fo
r

M
a

tc
h

in
g

 Q
u

e
ry

 V
e

ct
o

r

03
06

 _
_

_
 _
.
.
:
:
,
.
-
;
:
-
-
-
-
-
-
I

C
re

at
e

P
o

p
u

la
ri

ty
 V

e
ct

o
r

03
07

S

o
rt

 P
o

p
u

la
ri

ty
 V

e
ct

o
r

03
08

M

ak
e

S
o

rt
e

d
 Q

ue
ry

· v
e

c
to

r
It

em
s

A
va

ila
b

le
 f

o
r

ln
sp

e
ct

lo
n

N
le

w
ln

g

Q
u

e
ry

D

a
ta

b
a

se

03
09

 -
-s

--
-1

 In
te

rc
e

p
t S

e
a

rc
h

 V
ie

w
in

g
 R

e
q

u
e

st
s

a
n

d
 U

pd
at

e
Q

u
e

ry
 D

at
ab

as
e
1

-
-
-
-
-
-
-
-

03
10

 -
-
-
-
_
_
_
:
:
.
.
~
-
-
-
~

S
to

p

d • \J
J. • ~

~

.....
.

~
 =

.....
. >

"C
l :;

O
'I

~
 N

 c c .i;
;..

'J
l =­ ~ ~ ~ 0
,

.i;
;..

 e rJ
'l

O
'I
~

lo
-"

~

~

N

.i;
;..

~

N

5

F
IG

.
4

04
00

 -
-
-
s
-
-
-
{

S
ta

rt

M
E

T
A

D
A

T
A

 A
L

T
E

R
N

A
T

E
 S

E
A

R
C

H
 R

A
N

K
IN

G
 P

R
O

C
E

S
S

0
4

0
1

--
--

_
_

_
::

,.

O
b

ta
in

 S
ea

rc
h

Q
u

e
ry

S
u

b
m

it
 S

ea
rc

h
R

e
q

u
e

st
 to

 S
ea

rc
h

E
n

g
in

e

04
11

04
03

 -
-
-
-
-
-
1

O

b
ta

in
 S

e
a

rc
h

 R
e

su
lts

R
an

ki
ng

D

at
ab

as
e

'
'

04
04

-{

A
n

a
ly

z
e

 S
ea

rc
h

R
e

su
lts

 f
o

r
C

o
n

te
n

t
R

e
le

v
a

n
c
e

..
.-

--
--

--
;

04
05

 ~
Ca

lc
ul

at
e

R
e

le
va

n
cy

 B
a

se
d

 o
n

 V
e

rs
io

n
 A

d
ju

st
e

d
 P

o
p

u
la

ri
ty

 a
n

d
/o

r
D

o
cu

m
e

n
t

R
e

ce
n

cy

04
06

s
-
-
~
-
-
~

R
an

k
S

e
a

rc
h

 R
e

su
lts

I I

R
e

p
re

se
n

t
a

n
d

/o
r

V
ie

w
 S

ea
rc

h
R

es
ul

ts

04
08

 -
-s

--
--

lM
o

n
it

o
r

S
e

le
ct

io
n

 o
f

S
ea

rc
h

R
e

su
lts

 a
nd

 U
pd

at
e

R
a

n
ki

n
g

 D
at

ab
as

e
I
-
-
-
-
-

I
04

09
 ~
U
p
d
a
t
e
 U

R
L

V
e

rs
io

n
 o

n
D

o
cu

m
e

n
t

C
h

a
n

g
e

 a
n

d
/o

r
V

e
rs

io
n

 A
d

ju
st

e
d

 P
o

p
u

la
ri

ty

y
04

10

s
~
-
\

-

_
_

J.

d • \JJ
.

• ~

~

.....
.

~
 =

.....
.

~

:;

~
~

N
 c c .i;
;..

'J
l =- ~ ~

.i;
;..

0
,

.i;
;..

 e rJ'
J.

O
'I

':..
.l

lo-
"
~

~

N

.i;
;..

~

N

6

US 6,718,324 B2
1

METADATA SEARCH RESULTS RANKING
SYSTEM

2
engines provide graphical user interfaces (GUis) for boolean
and other advanced search techniques from their private
catalog or database of Web sites. The technology used to
build the catalog changes from site to site. The use of search This is a divisional of application Ser. No. 09/483,344,

filed Jan. 14, 2000. The entire disclosure of prior application
Ser. No. 09/483,344 is herein incorporated by reference.

CROSS-REFERENCE TO RELATED
APPLICATIONS

5 engines for keyword searches over an indexed list of docu­
ments is a popular solution to the problem of finding a small
set of relevant documents in a large, diverse corpus. On the
Internet, for example, most search engines provide a key­
word search interface to enable their users to quickly scan

Not applicable

COPYRIGHT NOTICE

10 the vast array of known documents on the Web for the
handful of documents which are most relevant to the user's
interest.

There are several examples of search engines including
tools called Internet search engines or simple search engines A portion of the disclosure of this patent document

contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

15 Yahoo (http://www.yahoo.com), AltaVista (http://
www.altavista.com), HotBot (www.hotbot.com), Infoseek
(http://www.infoseek.com), Lycos (http://www.lycos.com)
WebCrawler (www.webcrawler.com) and others. The results
of a search are displayed to a user in a hierarchically-

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to field of Internet
Search Engines, Web browsers, and resource gathering and
has special application in situations where these functions
must be implemented in extremely large networks.

20 structured subject directory. Some search engines give spe­
cial weighting to words or keywords: (I) in the title; (ii) in
subject descriptions; (iii) listed in HTML META tags, (iv) in
the position first on a page; and (iv) by counting the number
of occurrences or recurrences (up to a limit) of a word on a

2. Description of the Related Art

25 page. Because each of the search engines uses a somewhat
different indexing and retrieval scheme, which is likely to be
treated as proprietary information. Refer to online URL
http://www.whatis.com for more information on search

The World-Wide-Web ("Web") has become immensely
30

popular largely because of the ease of finding information
and the user-friendliness of today's browsers. A feature
known as hypertext allows a user to access information from
one Web page to another by simply pointing (using a
pointing device such as a mouse) at the hypertext and

35
clicking. Another feature that makes the Web attractive is
having the ability to process the information (or content) in
remote Web pages without the requirement of having a
specialized application program for each kind of content
accessed. Thus, the same content is viewed across different

40
platforms. Browser technology has evolved to enable the
running of applications that manipulate this content across
platforms.

The Web relies on an application protocol called HTML
(Hyper-Text Mark Up Language), which is an interpretative 45
scripting language, for rendering text, graphics, images,
audio, real-time video, and other types of content on a Web
compliant browser. HTML is independent of client operating
systems. Therefore, HTML renders the same content across
a wide variety of software and hardware operating plat- 50
forms. The software platforms include without limitation
Windows 3.1, Windows NT, Apple's Copeland and
Macintosh, and IBM'sAIX and OS/2, and HP Unix. Popular
compliant Web-Browsers include without limitation
Microsoft's Internet Explorer, Netscape Navigator, Lynx, 55
and Mosaic. The browser interprets links to files, images,
sound clips, and other types of content through the use of
hypertext links.

A Web site is a related collection of Web files that includes

engines.

In its simplest form, the input to keyword searches in a
search engine is a string of text that represents all the
keywords separated by spaces. When the "search" button is
selected by the user, the search engine finds all the docu­
ments which match all the keywords and returns the total
number that match, along with brief summaries of a few
such documents. There are variations on this theme that
allow for more complex boolean search expressions.

The problem present with the prior art is the inherent
difficulty for web crawlers to adequately search, process,
rank, and sort the vast amounts of information available on
the Internet. This information content is increasing at an
exponential rate, making traditional search engines inad­
equate when performing many types of searches.

At least one metadata search system ("Direct Hit"
www.directhit.com) determines the most popular and rel­
evant sites for a given Internet search request based on the
number of direct hits that the site receives. However, these
systems simply sort the results of the search based on the hits
to those results (their hit count is simply a raw hit count­
not associated with the original search query). Accordingly,
a need exists to provide a system and a method to associate
search results with a specific search query string.

As stated previously, with the volume of data available on
the Internet increasing at an exponential rate, the search
effort required to obtain meaningful results on the Internet is
also increasing exponentially, thus triggering a need for
more efficient search methodologies. Accordingly, a need
exists to provide a system and method to permit improve-

a beginning file called a home page. A Web site is located a
specific URL (Uniform Resource Locator). Web site usually
start with a home page from which a user can link to other
pages. Online URL http://www.ibm.com is one example of

60 ment in the search ranking efficiency of current web search

a home page.
Users of the Web use tools to help find, location or 65

navigate through the Web. These tools are known as Internet
search engines or simply search engines. Almost all search

engines.
General Advantages
The present invention typically provides the following ben­
efits:

Time Savings. Reading through the abstracts of a result
page is a time consuming task. The sorting mechanism of the
present invention brings the most popular resources for a

7

US 6,718,324 B2
3

particular query to the top of the list of the result page.
Because users usually start from the beginning of a list, they
save time reading abstracts. The popular ones might already

4
for further review, which look promising. The present inven­
tion examines the user's behavior by monitoring all the
hyperlinks the user clicks on. Every time the user clicks on
a hyperlink on a result page, the present invention associates be the best fit for their query and they can stop evaluating

and reading more abstracts of the result page. 5 this particular resource with User Z's original search query
and store this information (<user query, URL> pair) in a
database system.

Leveraging Human Interaction. The resources are usually
sorted by relevance (matching the original query string).
Indexing is done mostly automatically. The present inven­
tion uses the human's ability to evaluate resources and store
this information for further reuse. Users choose to access 10

result items (by clicking on a hyperlink usually) after they
evaluated the abstract of a result item and think that this
could be a good match (for the query they issued before).
This human knowledge is automatically collected and can
then be reused by other users. Therefore, resources that are 15

more often reviewed and visited will have a higher ranking.
Thus, the search quality is improved by integrating human
evaluation capabilities.

One skilled in the art will realize that these advantages
may be present in some embodiments and not in others, as 20

well as noting that other advantages may exist in the present
invention that are not specifically listed above.

SUMMARY OF THE INVENTION

Briefly, in accordance with the present invention, a 25

method for presenting to an end-user the intermediate
matching search results of a keyword search in an index list
of information. The method comprising the steps of: cou­
pling to a search engine a graphical user interface for
accepting keyword search terms for searching an indexed 30

list of information with a search engine; receiving one or
more keyword search terms with one or more separation
characters separating there between; performing a keyword
search with the one or more keyword search terms received
when a separation character is received; and presenting the 35

number of documents matching the keyword search terms to
the end-user. presenting a graphical menu item on a display.

User Y later uses the system independently using the
search features of the current invention and enters the same
query using the same search engine features as User Z. The
present invention forwards the request to the search engine,
which retrieves the matching resources. However, before
returning the matching resources to User Y, the present
invention checks to see if these resources were chosen by
User Z (which issued a similar query). If a resource was
chosen by another user (e.g., User Z) that issued a similar
query then a popularity vector is calculated. All resources
are then sorted by popularity first, then by relevance, and
then returned to User Y. Note that User Y's result page now
contains result items first that were chosen by User Z (who
performed a similar query). In summary, the present inven-
tion stores the original query of the user and associates its
further resource selection to this query.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims
at the conclusion of the specification. The foregoing and
other objects, features, and advantages of the invention will
be apparent from the following detailed description taken in
conjunction with the accompanying drawings.

FIG. 1 illustrates a system block data flow diagram of an
exemplary embodiment of the present invention.

FIG. 2 illustrates a system block data flow diagram of an
alternate exemplary embodiment of the present invention.

FIG. 3 illustrates a process flowchart of an exemplary
embodiment of the present invention. In accordance with another embodiment of the present

invention, an information processing system and computer
readable storage medium is disclosed for carrying out the
above method.

40
FIG. 4 illustrates a process flowchart of an alternate

exemplary embodiment of the present invention.

The present invention incorporates a document relevance
measure that accounts for the change in Web content and
therefore improves the quality of results returned to users. 45

Three measures are combined when calculating the overall
document relevance: (a) content relevance (e.g. matching of
query search terms to words in document), (b) version­
adjusted popularity (e.g. number of accesses to each version
of the document), and (c) recency (e.g. age and update 50

frequency of a document). With this information the present
invention provides a ranking system that performs a ranking
based on a combination of relevancy and popularity.

DETAILED DESCRIPTION OF AN
EMBODIMENT

While this invention is susceptible of embodiment in
many different forms, there is shown in the drawings and
will herein be described in detailed preferred embodiment of
the invention with the understanding that the present dis­
closure is to be considered as an exemplification of the
principles of the invention and is not intended to limit the
broad aspect of the invention to the embodiment illustrated.

In general, statements made in the specification of the
present application do not necessarily limit any of the
various claimed inventions. Moreover, some statements may An overall example of this present invention is now

described. User Z is looking for a particular and efficient
Quicksort algorithm. He/She uses search engines with
enhanced features to construct a complex query. The result
page contains 100 external resources (URLs), which contain
hyperlinks to various implementations of the search features

55 apply to some inventive features but not to others. In
general, unless otherwise indicated, singular elements may
be in the plural and visa versa with no loss of generality.
Definitions

Throughout the discussion in this document the following
60 definitions will be utilized: of the present invention. User Z now begins to read through

the abstracts provided and eventually chooses one result
item for closer examination. Thus, User Z selects a hyperlink
pointing to the external resource. Typically the document is
downloaded into a viewing device (e.g. a web browser) and
then User Z is able to further examine the whole document. 65

When User Z is done with reviewing the document, he/she
might also select other links to resources on the result pages

System Blocks/Procedural Steps Not Limitive-The present
invention may be aptly described in terms of exemplary
system block diagrams and procedural flowcharts. While
these items are sufficient to instruct one of ordinary skill
in the art the teachings of the present invention, they
should not be strictly construed as limiting the scope of
the present invention. One skilled in the art will be aware

8

US 6,718,324 B2
5

that system block diagrams may be combined and rear­
ranged with no loss of generality, and procedural steps
may be added or subtracted, and rearranged in order to
achieve the same effect with no loss of teaching general­
ity. Thus, it should be understood that the present inven- 5
tion as depicted in the attached exemplary system block
diagrams and procedural flowcharts is for teaching pur­
poses only and may be reworked by one skilled in the art
depending on the intended target application.

Personal Computer Not Limitive-Throughout the discus-
10

sion herein there will be examples provided that utilize
personal computer (PC) technologies to illustrate the
teachings of the present invention. The term 'personal
computer' should be given a broad meaning in this regard,
as in general any computing device may be utilized to
implement the teachings of the present invention, and the 15

scope of the invention is not limited just to personal
computer applications. Additionally, while the present
invention may be implemented to advantage using a
variety of Microsoft™ operating systems (including a
variety of Windows™ variants), nothing should be con- 20

strued to limit the scope of the invention to these particu-

6
After retrieving session information, the Session Manager

forwards (0116) the original user query string to the search
engine system (0156). Moreover, it also forwards Query and
String ID (0112) the user query to the Query Manager (0102)
component along with the retrieved session ID. When the
search engine system returns the search results (0161), it
retrieves these results, add the session information to it and
forward (0113) the results to the Popularity Sorter (0103).

The search engine (0156) may be any kind of standard
search engine. A search engine calculates the content rel­
evance as described herein, and return a list of search results
ranked based on this content relevance. The present inven­
tion does not require a specific search engine. One skilled in
the art will recognize that search engine component may be
replaced with a different search engine component, as long
as the task of calculating content relevance is performed.

Additionally the Session Manager (0101) component
receives requests (0151) from users (0154), which are
addressed to the Association (0104) (typically resource
viewing requests). These requests are from users, who want
to access a resource in the result page of a search. All user
requests will be intercepted from the Session Manager
(0101), which handles session state and associates this state
to all requests. If a request destination is for the Association,

lar software components. In particular, the system and
method as taught herein may be widely implemented in a
variety of systems, some of which may incorporate a
graphical user interface. 25 the Session Manager (0101) forwards (0114) the request and

attach a session ID to it. Internet/Intranet Not Limitive-Throughout the discussion
herein the terms Internet and Intranet will be used gen­
erally to denote any network communication system or
environment. Generally the term Intranet will denote
communications that are local to a given system or user, 30

and Internet will describe communications in a more
distant local. One skilled in the art will recognize that
these terms are arbitrary within the contexts of modern
communication networks and in no way limitive of the
scope of the present invention.

Query Manager (0102)
The Query Manager (0102) receives a user query string

(0112) along with a session ID from the Session Manager
(0101). It uses this to query the Query Database (0158)
system for the particular query string. All vector items,
<query string, resource pointer (URL), popularity>, such as
that match the user query string are returned from the Query
Database (0158) system. The Query Manager (0102) then

System
An Embodiment of the Hardware and Software Systems
Generalized Exemplary System Architecture (0100)

35 creates a list of the resources with the associated popularity
vector, and adds the session information to it. This is then
passed as a result to the Popularity Sorter (0103). If there are
no resources matching the user query, an empty list along

Referring to FIG. 1, the exemplary search ranking system
(0100) comprises of the following components: Session 40

Manager (0101); Query Manager (0102); Popularity Sorter
(0103); Association (0104); and Query Database (0158).
These system elements will now be described in detail.
Session Manager (0101)

with the session ID is passed to the Popularity Sorter (0103).
In general the popularity information is ranking information
that indicates the popularity of a given resource. The popu-
larity vector is discussed in more detail later in this docu­
ment.

Additionally, the Query Manager (0102) also stores the
original query string (0151) of the user (0154) temporarily
for later reuse. This information (user ID and associated
query), is later used by the Association (0104) component,
to associate the actions a user performed (selecting
resources) and combining these with the original query

When a user (0154) issues a search query (0155), the 45

actual query string (0151) is first passed to the Session
Manager (0101). A Session Manager is a component that
keeps track of user sessions. It uses standard web technolo­
gies to store state and session information (e.g. Cookies,
Active Server Pages, etc.). 50 string (0116).

The primary function of the Session Manager (0101) is to
interact with users. It receives search requests. It also
handles requests for external resources from a search result
page (selection of search result item). The overall task is to
identify users and manage their sessions. This is necessary 55

because the web architecture and its underlying HTTP
protocol is stateless. There are several ways to manage
sessions. For instance the Session Manager (0101) can make
use of "cookies", which is data in form of attribute-value
pair, which can be stored within the user's viewer (web 60

browser). Further requests are then identified reading the
cookie. The Session Manager (0101) decides, whether the
request is a search request or a view request. In case of a
search request, the user query is forwarded to the search
engine, which works closely together with the present inven- 65

tion. Otherwise, a view request is forwarded to the Monitor
Agent.

Popularity Sorter (0103)
Finally, the Popularity Sorter (0103) starts working when

it has two information sets available. First, there is the result
set from the search engine system (0113) that contains all the
resources (or pointer to resources, URLs), which matched
the original user query along with ranking information.
Additionally, it has the session ID, so that it will be able to
associate the result set with a particular session (user).
Second, the Popularity Sorter (0103) will receive a list of
resources (pointer to resources, URLs) (0123), along with a
popularity vector, and the session ID from the Query Man-
ager (0102) component. It then merges result items that
belong to the same session and applies a sorting algorithm.

The sorting algorithm is described in more detail later
below. Basically it sorts resources with a higher popularity
vector on top of the list, followed by the rest of the result set
resources ranked by relevance (using the provided ranking

9

US 6,718,324 B2
7

information). After the Popularity Sorter (0103) has finished,
it will generate a document containing the sorted results
(based on popularity) and return the document to the user
who issued the query.
Association (0104)

The Association (0104) is a component that monitors the
user's behavior when the user has received the document
containing the result items (result page) from the Popularity
Sorter (0103). All hyperlinks (pointer to resources) in the
result page contain a URL to the Association (0104). The
Association (0104) retrieves the user request from the Ses­
sion Manager (0101). A request consists of a session ID and
a resource URL (pointer). First, the Association (0104)
performs a query in the Query Database (0158) system, and
retrieves the original query that the user entered to query the
result set, with which the user is currently working (current
result page). It then creates a <query, resource> vector pair
by associating the original query with the resource the user
has indicated interest, and adds this new item to the Query
Database (0158) system.

When this is done, it creates a HTTP request for the
original resource in which the user has interest, waits for the
document, and returns the document back to the user. This
behavior can be described also as a proxy. The Association
(0104) is an intermediary between the user and the requested
document server.
Popularity Vector

In its simplest case, the popularity vector is a single
element vector simply keeping track of the number of times
a resource has been accessed (with regard to a particular
query). A statistic R is set to this number, representing the
relevance of the resource.

An extension of this concept is to add a second element

8
Alternate Exemplary System Architecture (0200)

Referring to FIG. 2, an alternate embodiment of the
search ranking system (0200) may comprise the following
components: Session Manager (0201); Result Analyzer

5 (0202); Relevancy Calculator (0203); Representation Man­
ager (0204); Monitor Agent (0205); Version Manager
(0206); Daemon Process for calculating the version-adjusted
popularity (0207); and Ranking Database (0208); Scheme
Database for Search Engine interaction (0209). These sys-

10 tern elements will now be discussed in detail.
Session Manager (0201)

First, the Session Manager (0201) will interact with users.
It receives search requests. Additionally, it handles requests
for external resources from a search result page (selection of

15 search result item). The overall task is to identify users and
manage their sessions. This is necessary because the web
architecture and its underlying HTTP protocol is stateless.
There are several ways to manage sessions. For instance the
Session Manager can make use of"cookies" (data in form of

20 attribute-value pair) that can be stored within the user's
viewer (web browser). Further requests can then be identi­
fied reading the cookie. The Session Manager will decide,
whether the request is a search request or a view request. In
case of a search request, the user query is forwarded to the

25 search engine, which works closely together with the inven­
tion. Otherwise a view request is forwarded to the Monitor
Agent (0205).

The search engine can be any kind of standard search
engine. A search engine essentially will calculate the content

30 relevance (more details see below), and return a list of
search results ranked based on this content relevance. This

to the popularity vector, representing the number of times
the resource has been shown to the user but ignored. The R 35

statistic is now computed as the weighted square sum of the

invention does not require a specific search engine. One
skilled in the art could replace the search engine component
with a different search engine component as long as the task
of calculating content relevance is performed.
Result Analyzer (0202)

two components, i.e.

where the weights W 1 and W 2 describe the importance of the
two vector elements V 1 and V 2 . Observe that W 2 is negative,
and thus when a resource is ignored the relevance of the
resource is decreased accordingly. A frequent feature of
search engines is to be able to associate a ranking with each
resource returned by a query. The ranking simply specifies
an estimation of how well the resource matches the query,
and can typically be expressed in percent. A third extension
of the popularity vector concept is to add this number to the
popularity vector, i.e.

Using this technique, the system can handle any number
quantifiers for resource relevance or irrelevance. Of course,
any number of vector metrics may be applied to the system

The search engine returns search results based on the
original query. These search results are typically sorted
ascending or descending based on content relevance. The

40 search result list contains unique identifiers for search result
items (e.g., URL), along with some abstract and additional
information for each search result item. To identify all the
data properly, the Result Analyzer (0202) will use a scheme
description from the Scheme Database (e.g. a DTD) (0209).

45 The scheme describes the search result list and how to
interpret it. The scheme can be obtained from the search
engine provider or has to be created manually once. As a
result the Result Analyzer (0202) will generate a list data
structure, containing the search result items, along with their

50 content relevance. This generated list will then be passed to
the Relevancy Calculator (0203).
Relevancy Calculator (0203)

The Relevancy Calculator (0203) component receives a
list of search result items along with an associated content

55 relevancy ranking value from the Result Analyzer (0202).
to generate an appropriate popularity vector statistic R. See
David G. Luenberger, OPTIMIZATION BY VECTOR
SPACE METHODS (LOC 68-8716 SEN 471 55359x,
1969); L. E. Franks, SIGNAL THEORY (ISBN 0-941052-
00-7, 1981); Erwin Kreyszig, ADVANCED ENGINEER- 60

ING MATHEMATICS (ISBN 0-471-85824-2, 1988).
Popularity Sort Algorithm

The Relevancy Calculator (0203) will then query the Rank­
ing Database (0207) for each search result item to determine
the value of: (a) Version Adjusted Popularity, and (b) Docu-
ment Recency.

After this has been accomplished for each search result
item the value of the content relevance is obtained, along
with the value of the version adjusted popularity and the
document recency. Note that the age of the document is
dynamically calculated from the retrieved data in the Rank-

Resources are sorted using a fairly simple algorithm. Each
resource returned has an associated popularity vector. For
each popularity vector, a relevance statistic R is computed as
described previously. The resources are then sorted on the
result form from the highest relevance to the lowest.

65 ing Database (0207). With this information, the Relevancy
Calculator (0203) is able to compute a ranking of the search
result items using the algorithm described below. As a result

10

US 6,718,324 B2
9 10

Ranking Database (0208) the Relevancy Calculator (0203) will associate a ranking
number to each search result item, and forward this list to the
Representation Manager (0204).
Representation Manager (0204)

The Representation Manager (0204) generates a client
side representation of the search results. It receives a list of
ranked search result items from the Relevancy Calculator
(0203) along with additional data of each search result item.
Depending on the client's viewer capabilities, a search result
page is generated. For instance, if the client uses a web
browser from Microsoft (e.g. IES), an optimized version for
this particular web browser is generated and returned to the
user.

The Ranking Database (0208) contains all the data the
present invention needs to calculate the version adjusted
popularity and the document recency. One table within this

5 database uses the URL and the version number (0 to N) as
a primary key. The value for each record is the number of
hits used to count the popularity.

A second table only uses the URL as a primary key. One
value to store is the time stamp (when the document was

10 created). This is used to calculate the document recency.
Exemplary General Ranking Method

Monitor Agent (0205)
The Monitor Agent (0205) component monitors the user's

selections of search results. Every time the user selects a
search result item for further viewing from the list of results,
the Session Manager (0201) receives this request and passes
it to the Monitor Agent (0205). The Monitor Agent (0205)
will then update the Ranking Database (0207) in the fol­
lowing manner.

An exemplary general present invention method may best
be understood by referencing the system diagrams of FIG. 1
and the exemplary flowchart of FIG. 3. These diagrams will

15 now be discussed in detail.

The Monitor Agent (0205) uses the selected URL together
with the most recent version (number zero) as a primary key
to update the counter for the popularity of the most recent
version of the URL. Note the most recent version of a

20

document has version number zero, followed by version 1 to 25

N, where N is the oldest version. The record set is modeled
like a stack (First In-Last Out). Only the popularity counter
of the top most version of a URL is increased. An example
of a record set illustrates this concept:

30

URL Version Popularity Count

http://www.ibm.com/myfile.htm 0 49
http://www.ibm.com/myfile.htm 178 35
http://www.ibm.com/myfile.htm 2 290
http://www.ibm.com/myfile.htm 3 122

The URL here in this record set is the same for all four 40

records. The document itself has 4 different versions, where
version 0 is the most recent one. The popularity count shows
how many times a particular version of a document was
visited by a user. The Monitor Agent (0205) will increase
only the popularity counter of version zero, if a user selects 45

the specified URL in the search result list. Document
changes that will add additional versions to a document, are
handled by the Version Manager (0206) component.
Version Manager (0206)

Every time a document change is detected by the search 50

engine (0223), the Version Manager (0206) receives a noti­
fication of this change. Note that there are several ways of
how a search engine (0223) can detect document changes.
These will not be described in more detail, because different
search engines may use different approaches to accomplish 55

this task. Once the Version Manager (0206) knows that a
particular URL was changed, it updates the existing record
set of the URL by increasing each version number by one,
starting with the highest version number first. Finally, a new
record with version number zero is created, which represents 60

the most recent version.
Version Adjusted Popularity Daemon Process (0207)

A Version Adjusted Popularity Daemon Process (0207)
calculates the version-adjusted popularity offline and stores
it in a data field within the Ranking Database (0208). This 65

background processing is done for efficiency reasons, and is
not a mandatory component of the system.

Referencing FIG. 3, the exemplary general search ranking
method (0300) involves the following steps:

Obtaining a search request query string (typically from a
user) (0301) and submitting the search request to a
session manager.

Submitting the search request to a search engine (0302).
Obtaining search results from the search engine (0303).
Forwarding the query string, search results, and session

ID to a query manger (0304).
Using query manager data to interrogate a query database

(0311) for matching query vector items (0305).
Creating a popularity vector (0306).
Sorting the popularity vector (0307).
Making the sorted query vector items available to the user

(0308).
Intercepting search viewing requests and updating a query

database (0311) based on session ID and resource
associations (0309).

One skilled in the art will recognize that these steps may
be rearranged and/or augmented with no loss of generality in
the teachings of the present invention.
Exemplary Alternate Ranking Method

An exemplary alternate present invention method may
best be understood by referencing the system diagrams of
FIG. 2 and the exemplary flowchart of FIG. 4. These
diagrams will now be discussed in detail.
Referencing FIG. 4, the exemplary alternate search ranking
method (0400) involves the following steps:

1. Obtaining a search request query string (typically from
a user) (0401) and submitting the search request to a
session manager.

2. Submitting the search request to a search engine
(0402).

3. Obtaining search results from the search engine (0403).
4. Analyzing the search results for content relevance

(0404) using a ranking database (0411).
5. Calculating relevancy based on version adjusted popu­

larity and/or document recency (0405).
6. Ranking the search results based on relevancy (0406).
7. Representing and/or viewing the ranked search results

(0407).
8. Monitoring selection of ranked search results and

updating the ranking database accordingly (0408).
9. Updating URL version numbers within the ranking

database (0411) when there are detected document
changes and/or updates to version adjusted popularity
information (0409).

One skilled in the art will recognize that these steps may
be rearranged and/or augmented with no loss of generality in
the teachings of the present invention.

11

US 6,718,324 B2
11 12

Query Association Metrics (QAM)
A significant aspect of various embodiments of the

present invention is that of Query Association Metrics
(QAM) that may be spoken of in terms of the Association
(0104) in FIG. 1 and the Relevancy Calculator (0203) of 5
FIG. 2. In both of these examples a variety of information
associated with the search query must be evaluated to
determine a ranking score that is then used to sort the search
results list(s). The general mathematical principles of pro­
jective metrics, orthogonal basis vector decomposition, and 10
vector norms are applicable here. See David G. Luenberger,
OPTIMIZATION BY VECTOR SPACE METHODS (LOC
68-8716 SEN 471 55359x, 1969); L. E. Franks, SIGNAL
THEORY (ISBN 0-941052-00-7, 1981); Erwin Kreyszig,
ADVANCED ENGINEERING MATHEMATICS (ISBN 15
0-471-85824-2, 1988).

preference to reorder the list. This technique will statistically
improve the chance that better fit pages are on the top of the
list.

How can this be achieved? In the simplest approach, when
receiving a query Q and a list of answers R from the search
engine, it is instructive to examine whether Q has been asked
before. If it has, then it is instructive to incorporate the
information from the previous choices (which indicates the
preference of the previous users) to reorder the list R.

However, very often users do not make the exactly the
same query. Some previous queries are more similar to the
current query Q than some others, but maybe none is exactly
the same. For example, "how is the weather in SF?" is a
closely related query to "SF & Weather", but they are not
exactly the same. So the questions to be asked are:

How to measure the similarity among queries?
1. How to use the history of the choices for one query to

improve the answer of a similar query?
While there are a plethora of potential QAM methodolo­

gies that are applicable to the present invention, some
particular schemes are worthy of note as they have wide
application to the problems associated with Internet web 20
searches. The following discussion explains how these par­
ticular techniques may be used to advantage within the

An example is instructive at this point. Suppose a user
made a query (cats G) dogs) and received a ranked list of
web pages given in their URLs. In this context a ranked list
means that the web pages are given in a sorted order
according to the scoring function of the search engine.
Suppose, in addition, the user or some other users had
already made a query on (cats EB dogs), and had already

present invention.
Exemplary Application Background

In applying the present invention to the problem of
Internet Search engine technology, it will be observed that
users typically enter keywords into an electronic form of a
Internet Search Engine. Additionally, some electronic forms
provide the possibility to enter complex Boolean queries.
Before the query gets submitted to the Internet Search
engine, the user input will be parsed and processed, in order
that the search engine is able to understand the query
command.

System such as "SearchScope" for instance rely on moni­
toring users query behavior, selections users have made, etc.
These user choices are typically stored in a database, using
the query string as a key. To enhance search accuracy,
however, it is important to be able to compare similarity of
queries. What is the difference of a query, issued by User A
who queried "CATS and DOGS", and then selected a set of
specific search result items, and User B, who queries
"DOGS and CATS"? Systems that are comparing similar
queries currently rely on parsing the original query string.
Although this approach works for a specific sort of query
expressions (e.g. Boolean queries), it is difficult to handle
different query types. Standard search engines support typi­
cally three different query types:

Boolean query (e.g., "CATS and DOGS");
Natural Language query (e.g. "How is the weather in

Seattle?"); and
Vector space query (weighted strings) ("CATS[60],

DOGS[40]").
The present invention utilizing QAM provides a way of

comparing the similarity of search queries from these
categories, thus providing a comprehensive scheme of
detecting similarity of search queries. This knowledge is
then used to enhance the ranking algorithm of a search
engine.
QAM Methodology

In an information system, users make queries and a search
engine replies with an ordered list of web pages to each
query. The users then make choices to determine which of
these pages are more preferable. These choices can often be
traced and stored to enhance the answer to future queries.
One way to enhance a search engine upon receiving a query
is to first use the search engine to find its ordered list of web
pages for the query, then use the previous data on the

25 ranked the list of the web pages according to the relevancy
to (cats EB dogs). How can the user-ranked list for (cats EB
dogs) be used to further enhance the order of the list given
by the search engine for (cats G) dogs)? What is the
similarity between the queries (cats EB dogs) and (cats G)

30 dogs)?
Suppose URLl, URL2, URL3, and URL4 are ranked in

the order of the best interests for (cats EB dogs), and URL4
and URL2 are returned by the search engine for (cats G)
dogs) according to its own scoring. Then it can be

35 concluded, according to the previous data for (cats EB dogs),
that URL2 may be more preferred than URL4. Here is an
argument: A web page satisfying (cats G) dogs) must also
satisfy (cats EB dogs). Hence, the lists of web pages that
satisfy (cats G) dogs) is a logical projection and a subset of

40 the list of web pages that satisfy (cats EB dogs). In this
projective sense, URL2 is more preferred than URL4, when
the user ranked the query result for (cats EB dogs). Even
though URL3 is ranked in between URL2 and URL4 in the
list for (cats EB dogs), the relative ranking provided with

45 URL2 and URL4 are correct in a logical projection sense
(assuming a monotonic mapping metric) for the query (cats
G) dogs). So the projective ordering given for (cats EB dogs)
could be used fully for (cats G) dogs).

It is now instructive to look at the searching problem from
50 the other direction. Suppose a user has a ranked list of URLs

for query (cats G) dogs) as URL4 and URL2. Suppose then
a new query (cats G) dogs) is issued and the user obtained
an ordered list from the search engine as {URLl, URL2,
URL3, URL4}. How much information for (cats G) dogs)

55 can be used in this case? Clearly, there is no additional
information provided between URLl and URL2 or URLl
and URL4. But in the projective sense, URL4 is more
preferred than URL2, and should move up the list. But there
is no justification to move URL4 over URLl. Thus, a

60 reasonable reordering for (cats EB dogs) is {URLl, URL4,
URL2, URL3}. URL4 is moved above URL3 because by the
scoring result of the search engine, URL2 is morey_referred
than URL3, while by the previous data for (cats (20 dogs),
URL4 is more preferred than URL2, and hence may be more

65 preferred than URL3.
As the result above indicates, the impact of (cats G)

dogs) to (cats EB dogs) is much weaker than that of (cats EB

12

US 6,718,324 B2
13

dogs) to (cats G) dogs). Therefore, the similarity between
queries is not symmetric. This will be verified by the
projective similarity example given below.
QAM Partitioning Example

As an example of this technique, consider two queries Ql 5
and Q2. How should the previous data for Ql be used to
enhance the ordering for a list of returned pages for Q2?
Here a method based on the projective similarity between
Ql and Q2 is presented.

The two queries divide the space of web pages into four
10

sets: {A}: the set of pages that satisfy Ql but not Q2.

1. {B}: the set of pages that satisfy both Ql and Q2.
2. { C}: the set of pages that satisfy Q2 but not Ql.
3. {D }: the set of pages that neither satisfy Ql nor Q2.

So {B} is the only common sub-set for both Ql and Q2.
The set {B} will be referred to as the projective sub-set
between Ql and Q2 (Ql onto Q2), and denote it as
QamProjection(Ql,Q2).

15

14
It is assumed that a primitive function s(w,c) is given

which maps a pair of real number to a real number.
Intuitively, s(w(r[i]),c(r[i])) computes the degree of prefer­
ence of the web page w[i] given the matching weight w(r[i])
returned by the search engine and preference weight c(r[i])
given by the previous searches. In practice, s(w,c) is mono-
tonically increasing in both of its parameters.

The component QamPermute can now be defined as the
following:

QamPermute(R,c)
1. Compute s(w(r[i]),c(r[i])).
2. Sort R in a decreasing order according to s(w(r[i]),c(r

[i])).
Suppose the search engine has been queried with Q and a

list of web pages R(Q) has been obtained. We have selected
some subset of R(Q) as to be the most fifting ones. The

The set {A} will be referred to as QamPages(Ql) and set
{ C} as QamPages(Q2). The degree of projective similarity
from Q2 to Ql is then

IQamProjection{Q2, Ql)I
QamSimilarit){Q2--+ QI)= -------­

IQamPages(Ql)I

(1)

history of these selections was recorded in c. Suppose now
some new user comes and queries the search engine with Q
as well, we will then return QamPermute(R(Q),c). QamPer­
mute allows enhancement of a list of returned web pages by

20 the previous data for the exactly same query. However, in
general, it is more beneficial to enhance the output based on
previous data on similar by not exactly the same queries.
Here the idea of projection and projection similarity is
utilized.

25 Enhancement with Previous Data for a Similar Query

and the degree of projective similarity from Ql to Q2 is then

IQamProjection{QI, Q2)1
QamSimilarit){QI --+ Q2) = --------

1 QamPages(Q2)1

This section describes a method for enhancing the order­
ing of a list of returned web pages with previous data on a
similar query. We first discuss one of its components, called
QamPartialPermute. It has three parameters:

(2)
30 The first parameter is R=(r[l], ... , r[T]), returned by the

search engine and its weight vector w(). Again R=(r[l], ... ,
r[T]) is sorted according to w.

For example,

while

QamSimilarity ((catsEEI dogs)~(cats@ dogs))=l

1
QamSimilarit){(cats@dogs)--+ (catsEJ)dogs)) = 3

35

(3)

(4) 40

This is the reason why the impact of (cats@ dogs) to
(catsEB dogs) is much weaker than that of (catsEB dogs) to 45

(cats@dogs).
Enhancement with Previous Data for the Same Query
The basic method for using prior data to enhance a

returned list of search results will now be discussed. Fol-
lowing this discussion a few practical modifications of this 50

method will be presented.
It is instructive to first illustrate how to use the previous

selections of the same query to improve its future ordering.
The algorithm has several components. The basic QAM
component is called QamPermute. It takes two parameters: 55

The first parameter is R=(r[l], ... , r[t]), which is an ordered
list of web pages returned by the search engine. There is a
weight value w(r[i]) associated with the web page r[i],
measuring the degree of match and is calculated by the
search engine. In otherwords, R=(r[l], ... , r[t]) is sorted 60

according to w.
The second parameter is a t-place vector c, measuring the
selection weight given by the previous data. For example
c(r[i]) can be the number of times that the web page r[i] had
been selected (with 0 indicating that it has never been 65

chosen), or some kind of weight to measure the degree of
preference of r[i] in the history.

1. The second parameter is a T-place vector m, called the
mask, whose entries are either 0 or 1. We use the mask
vector to encode the projection from one query to
another.

2. The third parameter is again a T-place vector c, mea­
suring the selection weight given by the previous data.
Technically, c(r[i]) is meaningful only if m(i)=l. Again,
we assume to be given a function s(w,c).

An example of this function follows:
QamPartialPermute(R,m,c)
1. for each i such that m(i)=l, compute s(w(r[i]),c(r[i])).
2. compute the sorted order of s(w(r[i]),c(r[i]))'s with

m(i)=l in an increasing order. Call this order
p(l),p(2), ... , p(L), where L is the number of the
marked entries.

3. following the order given in step 2, for j=2 to L,
1. let h=pG) and g=pQ-1)
2. if r[h] is higher in R than r[g], then move r[h] just in

front of r[g].
4. return R.
An application example is in order. Suppose R=(r[l], r[2],

r[3], r[4], r[5], r[6], r[7], r[8]) and m=[O 1010101], and
the sorting in the second step results p(1)=4, p(2)=8, p(3)=2,
and p(4)=6. The first sub-step of step 3 moves r[8] above r[4]
(given by p(l)), the second sub-step did not move r[2], and
the last sub step move r[6] above r[2]. Hence we have (r[l],
r[6], r[2], r[3], r[8], r[4], r[5], r[7]). In other words, Qam­
PartialPermute properly moves up a marked entry so that the
marked entry are properly sorted according to s(w(r[i]),c(r
[i])).

Suppose Q[l] is a query that we would like to use to
enhance R(Q). The mask vector m is then given as the
characteristic vector for the intersection of R(Q) and
projection(Ql,Q). The vector c hence measures the selection

13

US 6,718,324 B2
15

weight given by the previous data with query Ql. The
procedure QamEnhance(Q,Q[l]) first computes the mask
vector, and then applies QamPartialPermute.

QamEnhance(Q,Q[l])

16
Suppose now the user asks another query Q and the search

engine returns a list of web pages. Again weighed by the
matching scores. Let R[T(Q)] be the set of tape T pages that
we would like to enhance. Then the similarity factor will be

1. compute the mast vector m from R(Q) and R(Q[l]) 5 approximated as
2. retrieve the selection vector c for pages in R(Q[l])
3. return QamPartialPermute(R(Q),m,c).
So the basic idea behind QamEnhance is to first find the

subset of common web pages between Q and Q[l], referred

IS(Q[l] n R[T(Q)])I
QAMsimilarity(Q[!] --+ Q)" ------

1 R[T(Q)]I

(5)

as the projection from Q[l] to Q, and then use the previous 10

data of Q[l] to improve the ordering of this projective
sub-lists. The mask vector will simply be the vector of character­

istics of S(Q[l]) in R[T(Q)]. So to use Q[l] to improve Q,
we only reorder among the set of pages in common with

15 S(Q) and R[T(Q)].

Enhancement with Previous Data for Similar Queries
Suppose we have already made k queries with Q[l],

Q_2, ... , Q[k], with ordered web pages R(Q[l]), ... ,
R(Q[k]), respectively. Suppose we are making a new query
Q. Let R be the returned result from the search engine. We
iteratively enhance the quality of the list of R(Q) as follow­
ing.

With this sampling based approximation, we are able to
support the algorithm QamEnhance efficiently. We now
discuss the details below. Associate with each query, let S(Q)
be the sample maintained for query Q. For each web page p

QamEnhance(R(Q),[R(Q[l]), ... , R(Q[k])])
1. Compute s[l]=QamSimilarity(Ql->Q), ... , s[k]=

QamSimilarity(Q[k }>Q).

20 in S(Q), let c(p) denote the weight of preference of the page
p in S(Q). Let R[T(Q)] and R[t(Q)] be the top T and t,
respectively, pages returned by the search engine.

2. Sort { s[l], ... , s[k]) in the increasing order, wlog,
assume { s[l], ... , s[k]} is already sorted.

3. For i=l to k,

This following procedure masking vector computes the
mask vector m and the number of common pages in S(Q[l])

25 and R[T(Q)].

1. R(Q)=QamEnhance(R(Q),R(Q[i]));
4. Return R(Q).
We improve the ordering of R(Q) by a list of queried

results from the weakest projective similarity to the stron-
30

gest projective similarity.
Score Enhancing Methods: Sampling for Practical Imple­
mentations

We have presented a theoretical version of the score-
enhancing algorithm.

35
However, there are several difficulties in implementing this
algorithm:

1. The computation of QamSimilarity.
2. The computation of the mask vector QamMaskVector.
3. The potentially large number of the queries.
In this section, we will address these issues and design

more practically suitable approximations of our theoretical
version of the algorithm.

40

This basic idea we will use here is sampling. We will use
the results from the search engine to help the approximation 45

of the similarities and mask vectors. We will use two
parameters in the following method:
The first parameter is T, which is the number of the pages
that we could like to reorder. In other words, after obtain a
list of web pages from the search engine; we will only 50

reorder the top T pages.

[common,m]=QamMaskingVector(Q,Ql,1)
1. common=O;
2. Initialize the mask vector m as a T-place all zeros

vector.
3. for i=l to T, enumerate the page in R[T(Q)],

1. if the ith page is in S(Q[l]), then m[i]=l;
2. if the ith page is not in S(Q[l]), then m[i]=O;

4. common=common+l;
5. Return common and m.
QamScoreEnhance(R[T(Q)],Q[l], T, t,m)
1. Assume R[T(Q)]=(r[l], ... , r[T]), in the order returned

by the search engine.
2. for i=l to T,

1. for each i such that m(i)=l, compute s(w(r[i]),c(r
[i])), where c(r[i]) is given in S(Q[l]);

3. Compute the sorted order of s(w(r[i]),c(r[i]))'s with
m(i)=l in an increasing order. Call this order
p(l),p(2), ... , p(L), where L is the number of the
marked entries.

4. QamPartialPermute: following the order given in step
2, for j=2 to L,
1. let h=pG) and g=pQ-1)
2. if r[h] is higher in R[T(Q)] than r[g], then move r[h]

just in front of r[g].
5. Return R[T(Q)].

1. The second parameter is t, which is the number of web
pages that we will use as the sample of a query.

In practice tis around 25 and t<T. But in this discussion, we
will use a parameter rather than a fixed constant.

Suppose we have already made k queries with Q[l],
Q_2, ... , Q[k]. Suppose we are making a new query Q. Let
R(Q) be the returned result from the search engine. We

55
iteratively enhance the quality of the list of RO as follows: When a user asks a query Q[l], the search engine returns

a list of web pages weighted by the matching scores com­
puted by the search engine. Let R[t(Q[l])] be the top t
pages. The user will make some selections, either from the
top t pages or beyond. Let S(Q[l]) be the union of R[t(Q[l])] 60

and the set of pages selected by the user. S(Q[l]) is the
sampled space of web pages for query Q[l]. For each web
page in S(Q[l]), we maintain its selection weight. The
weight is 0 if a web page in S(Q[l]) which is not selected.
Otherwise, for a web page in S(Q[l]) that is selected, this 65

weight is the degree of preference. This gives the c() vector
for the selected and sampled pages.

QamEnhance(R(Q),[Q[l], ... , Q[k]])
1. for i=l to k;

1. [common[i], m[i]]=QamMaskingVector(Q,Ql,1)
2. Sort { common[l], ... , common[k]} in the increasing

order, so wlog, assume it is already sorted.
3. R(Q)=R[T(Q)];
4. For i=l to k,

1. R(Q)=QamScoreEnhance(R(Q),Q[i],T,t,m[i]);
5. Return R(Q).
In practice, we do not need to use all of the previous

queries to improve the current query. We only need to use the

14

US 6,718,324 B2
17

top few (perhaps) five queries with the highest similarity. We
will discuss this issue in the implementation section.
Types Queries and Practical Justification of Projection and
Sampling

The sampling based projection scheme developed effec- 5

tively combines the power of a search engine and the
preference given by users' selection. Our method does not
depend on the format of the query and treat the search engine
as a black box. For example, the enhancing method does not
need to know how the search engine processes a query such 10

as "How is the weather in SF?". The similarity between two
queries, such as "How is the weather in SF?" and (Weather

Word Symbol

parentheses 0

18

-continued

Description

By default, AND
has a higher
precedence than
OR. To change
the precedence
order, use the
parentheses.

For Example

return pages with the
words used in a
different order, such
as "Virtual Machine
Java".
When searching for
terms like jit, "Just In
Time" and Symantec.
One possible query
would be: (jit OR "Just
In Time") AND
Symantec

Wildcard Character

& SF), is surely a function of the search engine. If the search
engine only look for document, which exactly contains the
sentence "How is the weather in SF?", then the similarity 15

between these two queries will be very small. On the other
hand, if the search engine interprets the query "How is the
weather in SF?" as (current & weather & SF), then the
similarity between these two queries will be much larger.
However, as a post-process mechanism, it is more effective

jCentral allows the use of the asterisk (*) as a wildcard
20 character in searches. The following table describes how this

in practice to have a plug-in method, a method does not need
to know the semantic of the search engine. Below, we survey
the types of queries supported by the search engine for the
IBM jCentral site.

An important feature of our method is that it does not need 25

to processor the query in a semantic way in order to improve
the quality of the search results. It treats the query as an
explicit set given by a proper sample from the search engine
and user's selections.
Exemplary Search Syntax 30

Boolean Operators
The concept of projective similarity allows us to make use

character can be used to expand searches:

Use the
To search for . . . Symbol format ... For example ...

Keywords with
the same prefix

Words based on
the same stem
word

prefix*

stem**

Proximity (Near) Operator

program*, yields search
results containing words that
have the prefix "program",
such as "programs",
"programming'',
"programmer", and so on
try**, yields search results
containing words based on
the stem word "try", such as
"trying", "tried", "tries", and so
on

of the previous results on closely related queries, with too
much additional cost in processing these queries. The basic
principle of our approach is the proper combination of the 35

weighting score from the search engine as well as the
selection data for previous queries. We will illustrate these
points after giving the detailed discussion of these queries.
Boolean Operators

One of the main reasons of using the projective similarity
and sampling as the means to enhance a list of Boolean
Operators.

40
jCentral allows searches based on the proximity of word

or strings. The following table describes this feature:

Word

AND

OR

NOT

Query
Modifiers

quotation
marks

Symbol

&
+

! -

Description For Example

AND or & or+ bubble AND sort returns
returns pages pages that contain both of
containing all the the terms; that is, the term sort
query terms. and the term bubble.
OR or I returns all applet OR "source code" re-
pages that have
either query term.

NOT or! or -
returns pages that
do not contain the
query term that
follows.

Quotation marks
("") are used to
denote exact
phrases.

turns pages containing one or
both terms; that is, pages that
include only applet, pages
that include only "source
code" and pages that include
applet and "source code".
tree NOT binary returns any
pages that include tree, but
don't include binary.

A search on "Java
Virtual Machine" only
matches documents
containing the exact
phrase. It doesn't

45 To search for ...
Use the

Symbol format ... For example ...

50

Two words or
strings in the same
file, close together

near string1 near database near tool, yields
string2 search results in which
or the word "database" is
wordl - word2 near the word "tool"

The near operator returns a match if both of the words
being searched for are in the same file. The ranking of the

55 match depends on the proximity of the searched-for words.
That is, the ranking of a file in which the searched-for words
are closer together is greater than or equal to the ranking of
a file in which the words are farther apart. If the searched-for
words are more than 50 words apart, they are not considered

60 near enough, and the page is assigned a ranking of zero.

Weighted Strings

jCentral allows a web searcher to assign a numerical
weight to a word or string to influence the ranking of the

65 search results (Vector Space queries). The greater the weight
you assign, the higher the matching results are ranked. The
following table describes this feature:

15

US 6,718,324 B2

To search for . . .

Pages that contain
specific words

Pages that contain
weighted prefixes,
words, and phrases

Search Examples

This search
string ...

quick sort
"quick sort"
algorithm, sort*

multi* near thread*

play**

19

Use the format ...

word1, word2

prefix,
word[weight],
phrase[weight]

Yields ...

For example ...

Java resources with words that
best match the words being
searched for
remote*, method[50],
data[20], "procedure call"
[200] yields search results
that contain words prefixed
by remote, the words method,
data, and the phrase procedure
call (the terms are weighted)

Search results that contain both quick and sort
Search results that contain the phrase "quick sort"
Search results that contain the word "algorithm" or
words with the prefix "sort".
Search results that contain words starting with
"multi" appearing near words starting with "thread"
Search results that contain the words "play",
"player", "playing", "played", and so on

20
2. Current query Q: a user entered query.

3. Search result R(Q): a sorted list of web pages (given in
URLs) returned by the search engine.

The search result R(Q) is can be stored in an array or a
5 linked list. Every element contains the URL and its weight

(thew vector) given the search engine. The history part is a
tabulate data. Each entry has

10

1. The query.
2. The list or an array of sampled web page in which every

element contains the URL and its selection weights (the
c vector).

To compute the similarity and the mask vector, we need
a data structure to determine, given an URL, which query in

15
the history table contains the URL as well as the selection
weight in the sample of that entry. We will use a hash table
HASH to support this operation. In HASH the key is the
URL. If the URL is not in the history, then the content entry
is an empty list; otherwise, the content entry a list of the

20
entries in the history table to indicate the collection of
queries whose samples contains the URL. Therefore, given
an URL, we are able to locate quickly the list of previous
queries whose samples contain the URL.

We now introduce another hash table, QamHash to help

25
the computation of the mask vector and the projective
similarities. The key entry is the id for previous queries. The
content entry contains a variable called common, and
T-place vector, m, for the mask, and a T-place vector, c, for
the preference value.

Search results are ranked using percentages. The higher 30
the percentage given, the more closely the result matched the
search criteria. (100% is the highest ranking.)

1. let R[T(Q)]=(r[l], ... , q[T]) be the set of top T pages
for query Q.

2. for i=l to T,
Set Approach: Approximating Queries with Samples

An important feature of our method is that it does not need
1. let p* be the list of previous queries that contains r[i];

p* can be obtained from HASH.
to process the query in a semantic way in order to improve 35

the quality of the search results. It treats the query as an
explicit set given by a proper sample from the search engine
and user's selections. This provides a uniform treatment of

2. for each query in p*, we update its entry in Qam­
Hash: we add 1 to its common, assign the ith entry
of its m vector 1, and assign the ith entry of its c
vector properly.

all kinds of queries without too much overhead, and allows
us to measure the similarity between queries such as

1. sorting[50], selection[lO], binary _search[30]

2. sorting[SO], selection[l], binary _search[19]

3. quick and sort
4. binary _search, data base, sort*

5. "quick sort"
using the guessing semantic logic of a search engine. In
doing so, it does put a lot of trust and faith in the quality of
the search engine. For example, for a search engine that does
not handle weighted vector query, (sorting [80] and binary_
search[20]) may be treated as the same query as (sorting[SO]
and binary_search[20]). In this case, based on our set
approach with sampling, the similarity between them is
greater than the similarity measured when we use a search
engine that processes the weighted query. In any practical
sense, our projective approach provided a proper treatment
of the query result returned by a search engine, proportional
to the internal semantics of the search engine. In other
words, the search engine itself provided the proper distri­
bution for the measurement of the similarity between queries
and hence the impact in the reordering.
Data Structures and Implementation Details

We now address the implementation details of our method
with the focus on the data structures. The method has three
data components:

1. History: recording the queries processed before and its
samples and their preference value.

40

45

3. return QamHash.
QamHash contains all the previous queries that has a

non-empty overlap in web pages with R[T(Q)]. For each
such a query, we also compute its mask vector and the
degree of similarity.
Summary

While there are a wide variety of existing methodologies
that attempt to standardize the original query string to detect
similarity between search queries, the present invention does
not depend on the semantic parsing of the search string to
achieve this standardize ranking information. Instead, it

50 utilizes the search result set itself to detect similarity which
is a different approach from the prior art and provides a
variety of advantages as described above.
Computer Software

As would be known by one skilled in the art and as
55 indicated in FIGS. 1-4, the system and method described

herein and generally illustrated in FIGS. 1-4 may be reduced
to computer instruction codes and embodied on a computer
readable storage means. This may take the form of a wide
variety of storage media well known in the art and/or

60 contemplated for future use. Thus, the present invention
specifically anticipates the incorporation of the system and
methods discussed herein in the form of tangible computer
software products.

Furthermore, while not limiting the scope of the present
65 invention, the present invention specifically anticipates that

one or more components of the present invention may be
implemented using the Microsoft™ Windows™ operating

16

US 6,718,324 B2
21

environment in all its variations or its equivalent commercial
embodiments, including but not limited to any system incor­
porating a graphical user interface.

A metadata search results ranking system and method
have been disclosed wherein popularity and/or recency may 5

be utilized to improve search results as compared to the prior
art. The present invention's use of adaptive human interac­
tion to improve future search results provides for a self­
correcting nature that both improves future search results
and permits current search results to be more easily inter- 10

preted and filtered by the interactive user.
Although a specific embodiment of the invention has been

disclosed, it will be understood by those having skill in the
art that changes can be made to this specific embodiment
without departing from the spirit and scope of the invention. 15

The scope of the invention is not to be restricted, therefore,
to the specific embodiment, and it is intended that the
appended claims cover any and all such applications,
modifications, and embodiments within the scope of the
present invention.

What is claimed is:
1. A metadata search ranking system comprising:
a session manager;
a result analyzer;
a relevancy calculator;
a representation manager;
a monitoring agent;
a version manager;
a version adjusted popularity daemon process;
a ranking database; and
a scheme database;
wherein

20

25

30

said session manager applies search requests to a search
engine and forwards search requests to said monitoring 35

agent;

22
5. A metadata search ranking system comprising:

a session manager means;

a result analyzer means;
a relevancy calculator means;

a representation manager means;

a monitoring agent means;

a version manager means;

a version adjusted popularity daemon process means;

a ranking database means; and

a scheme database means;

wherein

said session manager means applies search requests to a
search engine and forwards search requests to said
monitoring agent means;

said monitoring agent means uses selections indicated by
said session manager means to update the popularity
counter in said ranking database means for the URL of
said search request;

said version manager means takes detected changes in
URLs subject to said search requests and updates said
ranking database means to indicate said changes;

said result analyzer means retrieves said search engine
results and interprets said results based on said scheme
database means to generate a content relevance;

said relevancy calculator means takes said content rel­
evance from said result analyzer and version adjusted
popularity or document recency from said ranking
database means and generates one or more metadata
ranking value;

said representation manager means takes said ranking
value and permits viewing or interrogation of said
search results based on said ranking value; and

said version adjusted popularity daemon process means
calculates the version-adjusted popularity and stores it
within said ranking database means.

said monitoring agent uses selections indicated by said
session manager to update the popularity counter in
said ranking database for the URL of said search
request;

said version manager takes detected changes in URLs
subject to said search requests and updates said ranking
database to indicate said changes;

6. The metadata search ranking system of claim 5 wherein
40 one or more components of said system is implemented on

a personal computer (PC).

said result analyzer retrieves said search engine results 45
and interprets said results based on said scheme data­
base to generate a content relevance;

said relevancy calculator takes said content relevance
from said result analyzer and at least one of a version
adjusted popularity and a document recency from said 50
ranking database and generates one or more metadata
ranking value;

said representation manager takes said ranking value and
permits at least one of viewing and interrogation of said
search results based on said ranking values; and

said version adjusted popularity daemon process calcu­
lates the version-adjusted popularity and stores it
within said ranking database.

55

2. The metadata search ranking system of claim 1 wherein
one or more components of said system is implemented on 60

a personal computer (PC).
3. The metadata search ranking system of claim 2 wherein

said personal computer (PC) utilizes a graphical user inter­
face.

4. The metadata search ranking system of claim 3 wherein 65

said graphical user interface utilizes a Microsoft™ Win­
dows™ operating environment.

7. The metadata search ranking system of claim 6 wherein
said personal computer (PC) utilizes a graphical user inter­
face.

8. The metadata search ranking system of claim 7 wherein
said graphical user interface utilizes a Microsoft™ Win­
dows™ operating environment.

9. A metadata search ranking method comprising:

obtaining a search request query string and submitting
said search request to a session manager;

submitting said search request to a search engine;

obtaining search results from said search engine;

analyzing said search results for content relevance using
a ranking database;

calculating relevancy based on at least one vers10n
adjusted popularity and document recency;

ranking said search results based on relevancy;
performing at least one of representing and viewing said

ranked search results;
monitoring selection of said ranked search results and

updating said ranking database accordingly; and
updating URL version numbers within said ranking data­

base when there are at least one of detected document
changes and updates to version adjusted popularity
information;

17

US 6,718,324 B2
23 24

a version adjusted popularity daemon process; 16. The metadata search ranking method of claim 15
said version adjusted popularity daemon process calcu- wherein said graphical user interface utilizes a Microsoft™

lates the version-adjusted popularity and stores it Windows™ operating environment.
within said ranking database. 17. A computer usable medium having computer-readable

10. The metadata search ranking method of claim 9 5 program code means providing metadata search ranking,
wherein one or more steps is implemented on a personal said computer-readable program means comprising:
computer (PC).

11. The metadata search ranking method of claim 10
wherein said personal computer (PC) utilizes a graphical
user interface.

12. The metadata search ranking method of claim 11
wherein said graphical user interface utilizes a Microsoft™
Windows™ operating environment.

13. A metadata search ranking method comprising:

10

means for obtaining a search request query string and 15

submitting said search request to a session manager;

means for submitting said search request to a search
engine;

means for obtaining search results from said search 20
engine;

means for analyzing said search results for content rel­
evance using a ranking database;

means for calculating relevancy based on at least one of
a version adjusted popularity and document recency;

means for ranking said search results based on relevancy;

means for performing at least one of representing and
viewing said ranked search results;

25

means for monitoring selection of said ranked search 30
results and updating said ranking database accordingly;
and

means for updating URL version numbers within said
ranking database when there are detected at least one of
document changes and updates to version adjusted 35

popularity information;

a version adjusted popularity daemon process:

said version adjusted popularity daemon process calcu­
lates the version-adjusted popularity and stores it
within said ranking database. 40

14. The metadata search ranking method of claim 13
wherein one or more steps is implemented on a personal
computer (PC).

15. The metadata search ranking method of claim 14
wherein said personal computer (PC) utilizes a graphical
user interface.

45

computer program code means for obtaining a search
request query string and submitting said search request
to a session manager;

computer program code means for submitting said search
request to a search engine;

computer program code means for obtaining search
results from said search engine;

computer program code means for analyzing said search
results for content relevance using a ranking database;

computer program code means for calculating relevancy
based on at least one of version adjusted popularity and
document recency;

computer program code means for ranking said search
results based on relevancy;

computer program code means for performing at least one
of representing and viewing said ranked search results;

computer program code means for monitoring selection of
said ranked search results and updating said ranking
database accordingly;

and computer program code means for updating URL
version numbers within said ranking database when
there are detected at least one of document changes and
updates to version adjusted popularity information;

a version adjusted popularity daemon process;

said version adjusted popularity daemon process calcu­
lates the version-adjusted popularity and stores it
within said ranking database.

18. The computer usable medium of claim 17 wherein
said medium is compatible with a personal computer (PC).

19. The computer usable medium of claim 18 wherein
said computer code means utilizes a graphical user interface.

20. The computer usable medium of claim 19 wherein
said graphical user interface utilizes a Microsoft™ Win­
dows™ operating environment.

* * * * *

18

