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Preface

Information retrieval (IR) has changed considerably in recent years with the expansion
of the World Wide Web and the advent of modern and inexpensive graphical user
interfaces and mass storage devices. As a result, traditional IR textbooks have become
quite out of date and this has led to the introduction of new IR books. Nevertheless, we
believe that there is still great need for a book that approaches the field in a rigorous
and complete way from a computer-science perspective (as opposed to a user-centered
perspective). This book is an effort to partially fulfill this gap and should be useful for
a first course on information retrieval as well as for a graduate course on the topic.

The book comprises two portions which complement and balance each other.
The core portion includes nine chapters authored or coauthored by the designers of
the book. The second portion, which is fully integrated with the first, is formed by
six state-of-the-art chapters written by leading researchers in their fields. The same
notation and glossary are used in all the chapters. Thus, despite the fact that several
people have contributed to the text, this book is really much more a textbook than
an edited collection of chapters written by separate authors. Furthermore, unlike a
collection of chapters, we have carefully designed the contents and organization of the
book to present a cohesive view of all the important aspects of modern information
retrieval. .

From IR models to indexing text, from IR visual tools and interfaces to the ‘Web,
from IR multimedia to digital libraries, the book provides both breadth of coverage and
richness of detail. It is our hope that, given the now clear relevance and significance of
information retrieval to modern society, the book will contribute to further disseminate
the study of the discipline at information science, computer science, and library science
departments throughout the world.

Ricardo Baeza-Yates, Santiago, Chile
Berthier Ribeiro-Neto, Belo Horizonte, Brazil
January, 1999
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Chapter 1
introduction

1.1 Motivation

Information retrieval (IR) deals with the representation, storage, organization
of, and access to information items. The representation and organization of the
information items should provide the user with easy access to the information in
which he is interested. Unfortunately, characterization of the user information
need is not a simple problem. Consider, for instance, the following hypothetical
user information need in the context of the World Wide Web (or just the Web):

- Find all the pages (documents) containing information on college ten-
-nis teams which: (1) are maintained by an university in the USA and
(2) participate in the NCAA tennis tournament. To be relevant, the
page must include information on the national ranking of the team
in the last three years and the email or phone number of the team
coach.

Clearly, this full description of the user information need cannot be used directly
to request information using the current interfaces of Web search engines. In-
stead, the user must first translate this information need into a query which can
be processed by the search engine (or IR system).

In its most common form, this translation yields a set of keywords (or index
terms) which summarizes the description of the user information need. Given the
user query, the key goal of an IR system is to retrieve information which might
be useful or relevant to the user. The emphasis is on the retrieval of information
as opposed to the retrieval of data.

1.1.1 Information versus Data Retrieval

Data retrieval, in the context of an IR system, consists mainly of determining
which documents of a collection contain the keywords in the user query which,
most frequently, is not enough to satisfy the user information need. In fact,
the user of an IR system is concerned more with retrieving information about a

1
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subject than with retrieving data which satisfies a given query. A data retrieval
language aims at retrieving all objects which satisfy clearly defined conditions
such as those in a regular expression or in a relational algebra expression. Thus,
for a data retrieval system, a single erroneous object among a thousand retrieved
objects means total failure. For an information retrieval system, however, the
retrieved objects might be inaccurate and small errors are likely to go unnoticed.
The main reason for this difference is that information retrieval usually deals
with natural language text which is not always well structured and could be
semantically ambiguous. On the other hand, a data retrieval system (such as
a relational database) deals with data that has a well defined structure and
semantics. ‘

Data retrieval, while providing a solution to the user of a database system,
does not solve the problem of retrieving information about a subject or topic.
To be effective in its attempt to satisfy the user information need, the IR system
must somehow ‘interpret’ the contents of the information items (documents)
in a collection and rank them according to a degree of relevance to the user
query. This ‘interpretation’ of a document content involves extracting syntactic
and semantic information from the document text and using this information
to match the user information need. The difficulty is not only knowing how
to extract this information but also knowing how to use it to decide relevance.
Thus, the notion of relevance is at the center of information retrieval. In fact, the
primary goal of an IR system is to retrieve all the documents which are relevant
to a user query while retrieving as few non-relevant documents as possible.

1.1.2 Information Retrieval at the Center of the Stage

In the past 20 years, the area of information retrieval has grown well beyond its
primary goals of indexing text and searching for useful documents in a collec-
tion. Nowadays, research in IR includes modeling, document classification and
categorization, systems architecture, user interfaces, data visualization, filtering,
languages, etc. Despite its maturity, until recently, IR was seen as a narrow
area of interest mainly to librarians and information experts. Such a tenden-
tious vision prevailed for many years, despite the rapid dissemination, among
users of modern personal computers, of IR tools for multimedia and hypertext
applications. In the beginning of the 1990s, a single fact changed once and for
all these perceptions — the introduction of the World Wide Web.

The Web is becoming a universal repository of human knowledge and cul-
ture which has allowed unprecedent sharing of ideas and information in a scale
never seen before. Its success is based on the conception of a standard user
interface which is always the same no matter what computational environment
is used to run the interface. As a result, the user is shielded from details of
communication protocols, machine location, and operating systems. Further,
any user can create his own Web documents and make them point to any other
‘Web documents without restrictions. This is a key aspect because it turns the
‘Web into a new publishing medium accessible to everybody. As an immediate
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consequence, any Web user can push his personal agenda with little effort and
almost at no cost. This universe without frontiers has attracted tremendous
attention from millions of people everywhere since the very beginning. Further-
more, it is causing a revolution in the way people use computers and perform
their daily tasks. For instance, home shopping and home banking are becoming
very popular and have generated several hundred million dollars in revenues.
Despite so much success, the Web has introduced new problems of its own.
Finding useful information on the Web is frequently a tedious and difficult task.
For instance, to satisfy his information need, the user might navigate the space
of Web links (i.e., the hyperspace) searching for information of interest. How-
ever, since the hyperspace is vast and almost unknown, such a navigation task is
usually inefficient. For naive users, the problem becomes harder, which might en-
tirely frustrate all their efforts. The main obstacle is the absence of a well defined
underlying data model for the Web, which implies that information definition
and structure is frequently of low quality. These difficulties have attracted re-
newed interest in IR and its techniques as promising solutions. As a result, almost
overnight, IR has gained a place with other technologies at the center of the stage.

1.1.3 Focus of the Book

Despite the great increase in interest in information retrieval, modern textbooks
on IR with a broad (and extensive) coverage of the various topics in the field
are still difficult to find. In an attempt to partially fulfill this gap, this book
presents an overall view of research in IR from a computer scientist’s perspec-
tive. This means that the focus of the book is on computer algorithms and
techniques used in information retrieval systems. A rather distinct viewpoint
is taken by librarians and information science researchers, who adopt a human-
centered interpretation of the IR problem. In this interpretation, the focus is
on trying to understand how people interpret and use information as opposed
to how to structure, store, and retrieve information automatically. While most
of this book is dedicated to the computer scientist’s viewpoint of the IR prob-
lem, the human-centered viewpoint is discussed to some extent in the last two
chapters. -

We put great emphasis on the integration of the different areas which are
closed related to the information retrieval problem and thus, should be treated
together. For that reason, besides covering text retrieval, library systems, user
interfaces, and the Web, this book also discusses visualization, multimedia re-
trieval, and digital libraries.

1.2 Basic Concepts

The effective retrieval of relevant information is directljr affected both by the user
task and by the logical view of the documents adopted by the retrieval system,
as we now discuss.
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Figure 1.1 Interaction of the user with the retrieval system through distinct tasks.

1.2.1 -The User Task

The user of a retrieval system has to translate his information need into a query
in the language provided by the system. With an information retrieval system,
this normally implies specifying a set of words which convey the semantics of
the information need. With a data retrieval system, a query expression (such as,
for instance, a regular expression) is used to convey the constraints that must
be satisfied by objects in the answer set. In both cases, we say that the user
searches for useful information executing a retrieval task.

Consider now a user who has an interest which is either poorly defined
or which is inherently broad. For instance, the user might be interested in
documents about car racing in general. In this situation, the user might use
an interactive interface to simply look around in the collection for documents
related to car racing. For instance, he might find interesting documents about
Formula 1 racing, about car manufacturers, or about the ‘24 Hours of Le Mans.’
Furthermore, while reading about the ‘24 Hours of Le Mans’, he might turn his
attention to a document which provides directions to Le Mans and, from there,
to documents which cover tourism in France. In this situation, we say that
the user is browsing the documents in the collection, not searching. It is still a
process of retrieving information, but one whose main objectives are not clearly
defined in the beginning and whose purpose might change during the interaction
with the system. -

In this book, we make a clear distinction between the different tasks the
user of the retrieval system might be engaged in. His task might be of two distinct
types: information or data retrieval and browsing. Classic information retrieval
systems normally allow information or data retrieval. Hypertext systems are
usually tuned for providing quick browsing. Modern digital library and Web
interfaces might attempt to combine these tasks to provide improved retrieval
capabilities. However, combination of retrieval and browsing is not yet a well
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established approach and is not the dominant paradigm.

Figure 1.1 illustrates the interaction of the user through the different tasks
we identify. Information and data retrieval are usually provided by most modern
information retrieval systems (such as Web interfaces). Further, such systems
might also provide some (still limited) form of browsing. While combining infor--
mation and data retrieval with browsing is not yet a common practice, it might
become so in the future.

Both retrieval and browsing are, in the language of the World Wide Web,
‘pulling’ actions. That is, the user requests the information in an interactive
manner. An alternative is to do retrieval in an automatic and permanent fashion
using software agents which push the information towards the user. For instance,
information useful to a user could be extracted periodically from a news service.
In this case, we say that the IR system is executing a particular retrieval task
which consists of filtering relevant information for later inspection by the user.
We briefly discuss filtering in Chapter 2.

1.2.2 Logical View of the Documents

Due to historical reasons, documents in a collection are frequently represented
through a set of index terms or keywords. Such keywords might be extracted
directly from the text of the document or might be specified by a human subject
(as frequently done in the information sciences arena). No matter whether these
representative keywords are derived automatically or generated by a specialist,
they provide a logical view of the document. For a precise definition of the concept
of a document and its characteristics, see Chapter 6.

Modern computers are making it possible to represent a document by its
full set of words. In this case, we say that the retrieval system adopts a full text
logical view (or representation) of the documents. With very large collections,
however, even modern computers might have to reduce the set of representa-
tive keywords. This can be accomplished through the elimination of stopwords
(such as articles and connectives), the use of stemming (which reduces distinct
words to their common grammatical root), and the identification of noun groups
(which eliminates adjectives, adverbs, and verbs). Further, compression might
be employed. These operations are called text operations (or transformations)
and are covered in detail in Chapter 7. Text operations reduce the complexity
of the document representation and allow moving the logical view from that of -
a full text to that of a set of index terms.

The full text is clearly the most complete logical view of a document but
its usage usually implies higher computational costs. A small set of categories
(generated by a human specialist) provides the most concise logical view of a
document but its usage might lead to retrieval of poor quality. Several interme-
diate logical views (of a document) might be adopted by an information retrieval
system as illustrated in Figure 1.2. Besides adopting any of the intermediate
representations, the retrieval system might also recognize the internal structure
normally present in a document (e.g., chapters, sections, subsections, etc.). This
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Figure 1.2 Logical view of a document: from full text to a set of index terms.

information on the structure of the document might be quite useful and is re-
quired by structured text retrieval models such as those discussed in Chapter 2.

As illustrated in Figure 1.2, we view the issue of logically representing
a document as a continuum in which the logical view of a document might
shift (smoothly) from a full text representation to a higher level representation
specified by a human subject.

1.3 Past, Present, and Future
1.3,1::? _;-;j!i;irly ‘Developments

For approximately 4000 years, man has organized information for later retrieval
and usage. A typical example is the table of contents of a book. Since the volume -
of information eventually grew beyond a few books, it became necessary to build
specialized data structures to ensure faster access to the stored information. An
old and popular data structure for faster information retrieval is a collection
of selected words or concepts with which are associated pointers to the related
information (or documents) — the index. In one form or another, indexes are at
the core of every modern information retrieval system. They provide faster access
to the data and allow the query processing task to be speeded up. A detailed
coverage of indexes and their usage for searching can be found in Chapter 8.
For centuries, indexes were created manually as categorization hierarchies.
In fact, most libraries still use some form of categorical hierarchy to classify
their volumes (or documents), as discussed in Chapter 14. Such hierarchies have
usually been conceived by human subjects from the library sciences field. More
recently, the advent of modern computers has made possible the construction of
large indexes automatically. Automatic indexes provide a view of the retrieval
problem which is much more related to the system itself than to the user need.
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In this respect, it is important to distinguish between two different views of the
IR problem: a computer-centered one and a human-centered one.

In the computer-centered view, the IR problem consists mainly of building
up efficient indexes, processing user queries with high performance, and devel-
oping ranking algorithms which improve the ‘quality’ of the answer set. In the
human-centered view, the IR problem consists mainly of studying the behav-
ior of the user, of understanding his main needs, and of determining how such
understanding affects the organization and operation of the retrieval system. Ac-
cording to this view, keyword based query processing might be seen as a strategy
which is unlikely to yield a good solution to the information retrieval problem
in the long run.

In this book, we focus mainly on the computer-centered view of the IR,
problem because it continues to be dominant in the market place.

1.3.2 Information Retrieval in the Library

Libraries were among the first institutions to adopt IR systems for retrieving
information. Usually, systems to be used in libraries were initially developed by
academic institutions and later by commercial vendors. In the first generation,
such systems consisted basically of an automation of previous technologies (such
as card catalogs) and basically allowed searches based on author name and ti-
tle. In the second generation, increased search functionality was added which
allowed searching by subject headings, by keywords, and some more complex
query facilities. In the third generation, which is currently being deployed, the
focus is on improved' graphical interfaces, electronic forms, hypertext features,
and open system architectures. '

Traditional library management system vendors include Endeavor Infor-
mation Systems Inc., Innovative Interfaces Inc., and EOS International. Among
systems developed with a research focus and used in academic libraries, we dis-
tinguish Okapi (at City University, London), MELVYL (at University of Califor-
nia), and Cheshire IT (at UC Berkeley). Further details on these library systems
can be found in Chapter 14.

1.3.3 The Web and Digital Libraries

If we consider the search engines on the Web today, we conclude that they
continue to use indexes which are very similar to those used by librarians a
century ago. What has changed then? o

Three dramatic and fundamental changes have occurred due to the ad-
vances in modern computer technology and the boom ‘of the Web. First, it
became a lot cheaper to have access to various sources of information. This al-
lows reaching a wider audience than ever possible before. Second, the advances
in all kinds of digital communication provided greater access to networks. This
implies that the information source is available even if distantly located and that
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the access can be done quickly (frequently, in a few seconds). Third, the freedom
to post whatever information someone judges useful has greatly contributed to
the popularity of the Web. For the first time in history, many people have free
access to a large publishing medium. :

Fundamentally, low cost, greater access, and publishing freedom have al-
lowed people to use the Web (and modern digital libraries) as a highly inter-
active medium. Such interactivity allows people to exchange messages, photos,
documents, software, videos, and to ‘chat’ in a convenient and low cost fashion.
Further, people can do it at the time of their preference (for instance, you can
buy a book late at night) which further improves the convenience of the service.
Thus, high interactivity is the fundamental and current shift in the communi-
cation paradigm. Searching the Web is covered in Chapter 13, while digital
" libraries are covered in Chapter 15.

In the future, three main questions need to be addressed. First, despite
the high interactivity, people still find it difficult (if not impossible) to retrieve
information relevant to their information needs. Thus, in the dynamic world
of the Web and of large digital libraries, which techniques will allow retrieval
of higher quality? Second, with the ever increasing demand for access, quick
response is becoming more and more a pressing factor. Thus, which techniques
will yield faster indexes and smaller query response times? Third, the quality
of the retrieval task is greatly affected by the user interaction with the system.
Thus, how will a better understanding of the user behavior affect the design and
deployment of new information retrieval strategies?

1.3.4 Practical Issues

Electronic commerce is a major trend on the Web nowadays and one which has
benefited millions of people. In an electronic transaction, the buyer usually has
to submit to the vendor some form of credit information which can be used for
charging for the product or service. In its most common form, such information
consists of a credit card number. However, since transmitting credit card num-
bers over the Internet is not a safe procedure, such data is usually transmitted
over a fax line. This implies that, at least in the beginning, the transaction
between a new user and a vendor requires executing an off-line procedure of
several steps before the actual transaction can take place. This situation can
be improved if the data is encrypted for security. In fact, some institutions and
companies already provide some form of encryption or automatic authentication
for security reasons.

However, security is not the only concern. Another issue of major interest
is privacy. Frequently, people are willing to exchange information as long as it
does not become public. The reasons are many but the most common one is
to protect oneself against misuse of private information by third parties. Thus,
privacy is another issue which affects the deployment of the Web and which has
not been properly addressed yet.

Two other very important issues are copyright and patent rights. It is far
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from clear how the wide spread of data on the Web affects copyright and patent
laws in the various countries. This is important because it affects the business
of building up and deploying large digital libraries. For instance, is a site which
supervises all the information it posts acting as a publisher? And if so, is it
responsible for a misuse of the information it posts (even if it is not the source)?

Additionally, other practical issues of interest include scanning, optical
character recognition (OCR), and cross-language retrieval (in which the query
is in one language but the documents retrieved are in another language). In this
book, however, we do not cover practical issues in detail because it is not our
main focus. The reader interested in details of practical issues is referred to the
interesting book by Lesk [501].

1.4 The Retrieval Process

At this point, we are ready to detail our view of the retrieval process. Such a
process is interpreted in terms of component subprocesses whose study yields
many of the chapters in this book.

To describe the retrieval process, we use a simple and generic software
architecture as shown in Figure 1.3. First of all, before the retrieval process can
even be initiated, it is necessary to define the text database. This is usually done
by the manager of the database, which specifies the following: (a) the documents
to be used, (b) the operations to be performed on the text, and (c) the text model
(i-e., the text structure and what elements can be retrieved). The text operations
transform the original documents and generate a logical view of them.

Once the logical view of the documents is defined, the database manager
(using the DB Manager Module) builds an index of the text. An index is a
critical data structure because- it allows fast searching over large volumes of
data. Different index structures might be used, but the most popular one is the
inverted file as indicated in Figure 1.3. The resources (time and storage space)
spent on defining the text database and building the index are amortized by
querying the retrieval system many times.

Given that the document database is indexed, the retrieval process can be
initiated.  The user first specifies a user need which is then parsed and trans-
formed by the same text operations applied to the text. Then, query operations
might be applied before the actual guery, which provides a system representation
for the user need, is generated. The query is then processed to obtain the re-
trieved documents. Fast query processing is made possible by the mdex structure
previously built.

Before been serit to the user, the retrieved documents are ranked according
to a likelihood of relevance. The user then examines the set of ranked documents
in the search for useful information. At this point, he might pinpoint a subset
of the documents seen as definitely of interest and initiate a user feedback cycle.
In such a cycle, the system uses the documents selected by the user to change
the query formulation. Hopefully, this modified query is a better representation
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Figure 1.3 The process of retrieving information (the numbers beside each box in-
dicate the chapters that cover the corresponding topic).

of the real user need.

The small numbers outside the lower right corner of various boxes in Fig-
ure 1.3 indicate the chapters in this book which discuss the respective subpro-
cesses in detail. A brief introduction to each of these chapters can be found in
section 1.5.

Consider now the user interfaces available with current information re-
trieval systems (including Web search engines and Web browsers). We first
notice that the user almost never declares his information need. Instead, he is
required to provide a direct representation for the query that the system will
execute. Since most users have no knowledge of text and query operations, the
query they provide is frequently inadequate. Therefore, it is not surprising to
observe that poorly formulated queries lead to poor retrieval (as happens so often
on the Web).

1.5 Organization of the Book

For ease of comprehension, this book has a straightforward structure in which
four main parts are distinguished: text IR, human-computer interaction (HCT)
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for IR, multimedia IR, and applications of IR. Text IR discusses the classic prob-
lem of searching a collection of documents for useful information. HCT for IR
discusses current trends in IR towards improved user interfaces and better data
visualization tools. Multimedia IR discusses how to index document images and
other binary data by extracting features from their content and how to search
them efficiently. On the other hand, document images that are predominantly
text (rather than pictures) are called textual images and are amenable to au-
tomatic extraction of keywords through metadescriptors, and can be retrieved
using text IR techniques. Applications of IR covers modern applications of IR
such as the Web, bibliographic systems, and digital libraries. Each part is divided
into topics which we now discuss.

1.5.1 Book Topics

The four parts which compose this book are subdivided into eight topics as
illustrated in Figure 1.4. These eight topics are as follows.

The topic Retrieval Models & Ewvaluation discusses the traditional models
of searching text for useful information and the procedures for evaluating an
information retrieval system. The topic Improvements on Retrieval discusses
techniques for transforming the query and the text of the documents with the
aim of improving retrieval. The topic Efficient Processing discusses indexing and
searching approaches for speeding up the retrieval. These three topics compose
the first part on Text IR..

The topic Interfaces & Visualization covers the interaction of the user with
the information retrieval system. The focus is on interfaces which facilitate the
process of specifying a query and provide a good visualization of the results.

The topic Multimedia Modeling & Searching discusses the utilization of mul-
timedia data with information retrieval systems. The focus is on modeling, index-
ing, and searching multimedia data such as voice, images, and other binary data.

TEXT IR

HUMAN-COMPUTER APPLICATIONS OF 1R

—
Retrieval Models & INTERACTION FOR IR —
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Interfaces & Bibliographic
Visualization Systems

Improvements on J
Retrieval ™ The Web
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N
: .
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[ Processing T'/] Searching g
N
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Figure 1.4 Topics Whichlcompose the book and their relationships.
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The part on applications of IR is composed of three interrelated topics:
The Web, Bibliographic Systems, and Digital Libraries. Techniques developed
for the first two applications support the deployment of the latter.
~ The eight topics distinguished above generate the 14 chapters, besides this
introduction, which compose this book and which we now briefly introduce.

1.5.2 Book Chapters

Figure 1.5 illustrates the overall structure of this book. The reasoning which
yielded the chapters from 2 to 15 is as follows.
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Figure 1.5 Structure of the book.

In the traditional keyword-based approach, the user specifies his informa-
tion need by providing sets of keywords and the information system retrieves the
documents which best approximate the user query. Also, the information system
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might attempt to rank the retrieved documents using some measure of relevance.
This ranking task is critical in the process of attempting to satisfy the user infor-
mation need and is the main goal of modeling in IR. Thus, information retrieval
models are discussed early in Chapter 2. The discussion introduces many of the
fundamental concepts in information retrieval and lays down much of the foun-
dation for the subsequent chapters. Our coverage is detailed and broad. Classic
models (Boolean, vector, and probabilistic), modern probabilistic variants (belief
network models), alternative paradigms (extended Boolean, generalized vector,
latent semantic indexing, neural networks, and fuzzy retrieval), structured text
retrieval, and models for browsing (hypertext) are all carefully introduced and
explained.

Once a new retrieval algorithm (maybe based on a new retrieval model)
is conceived, it is necessary to evaluate its performance. Traditional evaluation
strategies usually attempt to estimate the costs of the new algorithm in terms
of time and space. With an information retrieval system, however, there is the
additional issue of evaluating the relevance of the documents retrieved. For this
purpose, text reference collections and evaluation procedures based on variables
other than time and space are used. Chapter 3 is dedicated to the discussion of
retrieval evaluation.

In traditional IR, queries are normally expressed as a set of keywords which
is quite convenient because the approach is simple and easy to implement. How-
ever, the simplicity of the approach prevents the formulation of more elaborate
querying tasks. For instance, queries which refer to both the structure and the
content of the text cannot be formulated. To overcome this deficiency, more
sophisticated query languages are required. Chapter 4 discusses various types
of query languages. Since now the user  might refer to the structure of a docu-
ment in his query, this structure has to be defined. This is done by embedding
the description of a document content and of its structure in a text language
such as the Standard Generalized Markup Language (SGML). As illustrated in
Figure 1.5, Chapter 6 is dedicated to the discussion of text languages.

Retrieval based on keywords might be of fairly low quality. Two possible
reasons are as follows. First, the user query might be composed of too few
terms which usually implies that the query context is poorly characterized. This
is frequently the case, for instance, in the Web. This problem is dealt with
through transformations in the query such as query expansion and user relevance
feedback. Such query operations are covered in Chapter 5. Second, the set of
keywords generated for a given document might fail to summarize its semantic
contént properly. This problem is dealt with through transformations in the text
such as identification of noun groups to be used as keywords, stemming, and the
use of a thesaurus. Additionally, for reasons of efficiency, text compression can
be employed. Chapter 7 is dedicated to text operations.

Given the user query, the information system has to retrieve the documents
which are related to that query. The potentially large size of the document collec-
tion (e.g., the Web is composed of millions of documents) implies that specialized
indexing techniques must be used if efficient retrieval is to be achieved. Thus, to
speed up the task of matching documents to queries, proper indexing and search-
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ing techniques are used as discussed in Chapter 8. 1Additionally, query processing
can be further accelerated through the adoptiorij of parallel and distributed IR
techniques as discussed in Chapter 9.

As illustrated in Figure 1.5, all the key issues regarding Text IR, from
modeling to fast query processing, are covered in this book.

Modern user interfaces implement strategies which assist the user to form
a query. The main objective is to allow him to define more precisely the context
associated to his information need. The importance of query contextualization
is a consequence of the difficulty normally faced by users during the querying
process. Consider, for instance, the problem of quickly finding useful information
in the Web. Navigation in hyperspace is not a good solution due to the absence
of a logical and semantically well defined structure (the Web has no underlying
logical model). A popular approach for specifying a user query in the Web
consists of providing a set of keywords which are searched for. Unfortunately, the
number of terms provided by a common user is small (typically, fewer than four)
which usually implies that the query is vague. This means that new user interface
paradigms which assist the user with the query formation process are required.
Further, since a vague user query tusually retrieves hundreds of documents, the
conventional approach of displaying these documents as items of a scrolling list is
clearly inadequate. To deal with this problem, new data visualization paradigms
have been proposed in recent years. The main trend is towards visualization of
a large subset of the retrieved documents at once and direct manipulation of the
whole subset. User interfacesfor assisting the user to form his query and current
approaches for visualization of large data sets are covered in Chapter 10.

Following this, we discuss the application of IR techniques to multimedia
data. The key issue is how to model, index, and search structured documents
which contain multimedia objects such as digitized voice, images, and other
binary data. Models and query languages for office and medical information
retrieval systems are covered in Chapter 11. Efficient indezing and searching of
multimedia objects is covered in Chapter 12. Some readers may argue that the
models and techniques for multimedia retrieval are rather different from those
for classic text retrieval. However, we take into account that images and text
are usually together and that with the Web, other media types (such as video
and audio) can also be mixed in. Therefore, we believe that in the future, all
the above will be treated in a unified and consistent manner. Our book is a first
step in that direction. :

The final three chapters of the book are dedicated to applications of mod-
ern information retrieval: the Web, bibliographic systems, and digital libraries.
As illustrated in Figure 1.5, Chapter 13 presents the Web and discusses the main
problems related to the issue of searching the Web for useful information. Also,
our discussion covers briefly the most popular search engines in the Web present-
ing particularities of their organization. Chapter 14 covers commercial document
databases and online public access catalogs. Commercial document databases
are still the largest information retrieval systems nowadays. LEXIS-NEXIS, for
instance, has a database with 1.3 billion documents and attends to over 120
million query requests annually. Finally, Chapter 15 discusses modern digital
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libraries. Architectural issues, models, prototypes, and standards are all cov-
ered. The discussion also introduces the ‘53’ model (streams, structures, spaces,
scenarios and societies) as a framework for providing theoretical and practical
unification of digital libraries.

1.6 How to Use this Book

Although several people have contributed chapters for this book, it is really a
textbook. The contents and the structure of the book have been carefully de-
signed by the two main authors who also authored or coauthored nine of the
15 chapters in the book. Fuarther, all the contributed chapters have been judi-
ciously edited and integrated into a, unifying framework that provides uniformity
in structure and style, a common glossary, a common bibliography, and appro-
priate cross-references. At the end of each chapter, a discussion on research
issues, trends, and selected bibliography is included. This discussion should be
useful for graduate students as well as for researchers. Furthermore, the book is
complemented by a Web page with additional information and resources.

1.6.1 Teaching Suggestions

This textbook can be used in many different areas including computer science
(CS), information systems, and library science. The following list gives suggested
contents for different courses at the undergraduate and graduate level, based on
syllabuses of many universities around the world:

e Information Retrieval (Computer Science, undergraduate): this is the
standard course for many CS programs. The minimum content should
include Chapters 1 to 8 and Chapter 10, that is, most of the part on Text
IR complemented with the chapter on user interfaces. Some specific topics
of those chapters, such as more advanced models for IR and sophisticated
algorithms for indexing and searching, can be omitted to fit a one term
course. The chapters on Applications of IR can be mentioned briefly at the
end.

e Advanced Information Retrieval (Computer Science, graduate): sim-
ilar to the previous course but with more detailed coverage of the various
chapters particularly modeling and searching (assuming the previous course
as a requirement). In addition, Chapter 9 and Chapters 13 to 15 should
be covered completely. Emphasis on research problems and new results is
a must.

e Information Retrieval (Information Systems, undergraduate): this
course is similar to the CS course, but with a different emphasis. It should
include Chapters 1 to 7 and Chapter 10. Some notions from Chapter 8 are
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useful but not crucial. At the end, the system-oriented parts of the chap-
ters on Applications of IR, in particular those on Bibliographic Systems
and Digital Libraries, must be covered (this material can be complemented
with topics from [501]).

e Information Retrieval (Library Science, undergraduate): similar to the
previous course, but removing the more technical and advanced material of
‘Chapters 2, 5, and 7. Also, greater emphasis should be put on the chapters
on Bibliographic Systems and Digital Libraries. The course should be
complemented with a thorough discussion of the user-centered view of the
IR problem (for example, using the book by Allen [13]).

e Multimedia Retrieval (Computer Science, undergraduate or graduate):
this course should include Chapters 1 to 3, 6, and 11 to 15. The emphasis
could be on multimedia itself or on the integration of classical IR with
multimedia. The course can be complemented with one of the many books
on this topic, which are usually more broad and technical.

e Topics in IR (Computer Science, graduate): many chapters of the book
can be used for this course. It can emphasize modeling and evaluation or
user interfaces and visualization. It can also be focused on algorithms and
data structures (in that case, [275] and [825] are good complements). A
multimedia focus is also possible, starting with Chapters 11 and 12 and
using more specific books later on.

e Topics in IR (Information Systems or Library Science, graduate) similar
to the above but with emphasis on non-technical parts. For example, the
course could cover modeling and evaluation, query' languages, user inter-
faces, and visualization. The chapters on applications can also be consid-
ered. :

e Web Retrieval and Information Access (géneric, undergraduate or
graduate): this course should emphasize hypertext, concepts coming from
networks and distributed systems and multimedia. The kernel should be
the basic models of Chapter 2 followed by Chapters 3, 4, and 6. Also,
Chapters 11 and 13 to 15 should be discussed.

e Digital Libraries (generic, undergraduate or graduate): This course could
start with part of Chapters 2 to 4 and 6, followed by Chapters 10, 14, and
15. The kernel of the course could be based on the book by Lesk [501].

More bibliography useful for many of the courses above is discussed in the last
section of this chapter.

1.6.2 The Book’s Web Page

As IR is a very dynamic area nowadays, a book by itself is not enough. For that
reason (and many others), the book has a Web home page located and mirrored
in the following places (mirrors in USA and Europe are also planned):
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e Brazil: http://www.dcc.ufmg.br/irbook
e Chile: http://sunsite.dcc.uchile.cl/irbook

Comments, suggestions, contributions, or mistakes found are welcome through
email to the contact authors given on the Web page.

The Web page contains the Table of Contents, Preface, Acknowledgements,
Introduction, Glossary, and other appendices to the book. It also includes exer-
cises and teaching materials that will be increasing in volume and changing with
time. In addition, a reference collection (containing 1239 documents on Cystic
Fibrosis and 100 information requests with extensive relevance evaluation [721])
is available for experimental purposes. Furthermore, the page includes useful
pointers to IR syllabuses in different universities, IR research groups, IR pub-
lications, and other resources related to IR and this book. Finally, any new
important results or additions to the book as well as an errata will be made
publicly available there.

1.7 Bibliographic Discussion

Many other books have been written on information retrieval, and due to the
current widespread interest in the subject, new books have appeared recently.
In the following, we briefly compare our book with these previously published
works.

Classic references in the field of information retrieval are the books by van
Rijsbergen [785] and Salton and McGill [698]. Our distinction between data
and information retrieval is borrowed from the former. Our definition of the
information retrieval process is influenced by the latter. However, almost 20
years later, both books are now outdated and do not cover many of the new
developments in information retrieval.

Three more recent and also well known references in mformatlon retrieval
are the book edited by Frakes and Baeza-Yates [275], the book by Witten, Moffat,
and Bell [825], and the book by Lesk [501]. All these three books are comple-
mentary to this book. The first is focused on data structures and algorithms
for information retrieval and is useful whenever quick prototyping of a known
algorithm is desired. The second is focused on indexing and compression, and
covers images besides text. For instance, our definition of a textual image is bor-
rowed from it. The third is focused on digital libraries and practical issues such
as history, distribution, usability, economics, and property rights. On the issue
of computer-centered and user-centered retrieval, a generic book on information
systems that takes the latter view is due to Allen [13].

There are other complementary books for specific chapters. For example
there are many books on IR and hypertext. The same is true for generic or
specific multimedia retrieval, as images, audio or video. Although not an infor-
mation retrieval title, the book by Rosenfeld and Morville [682] on information
architecture of the Web, is a good complement to our chapter on searching the
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Web. The book by Menasce and Almeida [554] demonstrates how to use queue-
ing theory for predicting Web server performance. In addition, there are many
books that explain how to find information on the Web and how to use search
engines.

The reference edited by Sparck Jones and Willet [414], which was long
awaited, is really a collection of papers rather than an edited book. The co-
herence and breadth of coverage in our book makes it more appropriate as a
textbook in a formal discipline. Nevertheless, this collection is a valuable re-
search tool. A collection of papers on cross-language information retrieval was
recently edited by Grefenstette [323]. This book is a good complement to ours
for people interested in this particular topic. Additionally, a collection focused
on intelligent IR was edited recently by Maybury [550], and another collection
on natural language IR edited by Strzalkowski will appear soon [748].

The book by Korfhage [451] covers a lot less material and its coverage
is not as detailed as ours. For instance, it includes no detailed discussion of
digital libraries, the Web, multimedia, or parallel processing. Similarly, the
books by Kowalski [459] and Shapiro et al. [719] do not cover these topics in
detail, and have a different orientation. Finally, the recent book by Grossman
and Frieder [326] does not discuss the Web, digital libraries, or visual interfaces.

For people interested in research results, the main journals on IR are: Jour-
" nal of the American Society of Information Sciences (JASIS) published by Wiley
and Sons, ACM Transactions on Information Systems, Information Processing
& Management (IP&M, Elsevier), Information Systems (Elsevier), Information
Retrieval (Kluwer), and Knowledge and Information Systems (Springer). The
main conferences are: ACM SIGIR International Conference on Information Re-
trieval, ACM International Conference on Digital Libraries (ACM DL), ACM
Conference on Information Knowledge and Management (CIKM), and Text RE-
trieval Conference (TREC). Regarding events of regional influence, we would like
to acknowledge the SPIRE (South American Symposium on String Processing
and Information Retrieval) symposium.

32




Chapter 2
Modeling

2.1 Introduction

Traditional information retrieval systems usually adopt index terms to index and
retrieve documents. In a restricted sense, an index term is a keyword (or group
of related words) which has some meaning of its own (i.e., which usually has the
semantics of a noun). In its more general form, an index term is simply any
word which appears in the text of a document in the collection. Retrieval based
on index terms is simple but raises key questions regarding the information re-
trieval task. For instance, retrieval using index terms adopts as a fundamental
foundation the idea that the semantics of the documents and of the user infor-
mation need can be naturally expressed through sets of index terms. Clearly,
this is a considerable oversimplification of the problem because a lot of the se-
mantics in a document or user request is lost when we replace its text with a
set of words. Furthermore, matching between each document and the user re-
quest is attempted in this very imprecise space of index terms. Thus, it is no
surprise that the documents retrieved in response to a user request expressed
as a set of keywords are frequently irrelevant. If one also considers that most
users have no training in properly forming their queries, the problem is wors-
ened with potentially disastrous results. The frequent dissatisfaction of Web
users with the answers they normally obtain is just one good example of this
fact.

Clearly, one central problem regarding information retrieval systems is the
issue of predicting which documents are relevant and which are not. Such a
decision is usually dependent on a ranking algorithm which attempts to establish
a simple ordering of the documents retrieved. Documents appearing at the top
of this ordering are considered to be more likely to be relevant. Thus, ranking
algorithms are at the core of information retrieval systems.

A ranking algorithm operates according to basic premises regarding the
notion of document relevance. Distinct sets of premises (regarding document
relevance) yield distinct information retrieval models. The IR model adopted
determines the predictions of what is relevant and what is not (i.e., the notion of
relevance implemented by the system). The purpose of this chapter is to cover
the most important information retrieval models proposed over the years. By
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doing so, the chapter also provides a conceptual basis for most of the remaining
chapters in this book.

We first propose a taxonomy for categorizing the 15 IR models we cover.
Second, we distinguish between two types of user retrieval tasks: ad hoc and
filtering. Third, we present a formal characterization of IR models which is
useful for distinguishing the various components of a particular model. Last, we
discuss each of the IR models included in our taxonomy.

2.2 A Taxonomy of Information Retrieval Models

The three classic models in information retrieval are called Boolean, vector, and
probabilistic. In the Boolean model, documents and queries are represented
as sets of index terms. Thus, as suggested in [327], we say that the model is
set theoretic. In the vector model, documents and queries are represented as
vectors in a t-dimensional space. Thus, we say that the model is algebraic.
In the probabilistic model, the framework for modeling document and query
representations is based on probability theory. Thus, as the name indicates, we
say that the model is probabilistic.

Over the years, alternative modeling paradigms for each type of classic
model (i.e., set theoretic, algebraic, and probabilistic) have been proposed. Re-
garding alternative set theoretic models, we distinguish the fuzzy and the ex-
tended Boolean models. Regarding alternative algebraic models, we distinguish
the generalized vector, the latent semantic indexing, and the neural network
models. Regarding alternative probabilistic models, we distinguish the inference
network and the belief network models. Figure 2.1-illustrates a taxonomy of
these information retrieval models.

Besides references to the text content, the model might also allow references
to the structure normally present in written text. In this case, we say that we
have a structured model. We distinguish two models for structured text retrieval
namely, the non-overlapping lists model and the proximal nodes model.

As discussed in Chapter 1, the user task might be one of browsing (instead
of retrieval). In Figure 2.1, we distinguish three models for browsing namely,
flat, structure guided, and hypertext.

The organization of this chapter follows the taxonomy of information re-
trieval models depicted in the figure.We first discuss the three classic models.
Second, we discuss the alternative models for each type of classic model. Third,
we cover structured text retrieval models. At the end, we discuss models for
browsing.

We emphasize that the IR model (Boolean, vector, probabilistic, etc.), the
logical view of the documents (full text, set of index terms, etc.), and the user
task (retrieval, browsing) are orthogonal aspects of a retrieval system as detailed
in Chapter 1. Thus, despite the fact that some models are more appropriate for a
certain user task than for another, the same IR model can be used with distinct
document logical views to perform different user tasks. Figure 2.2 illustrates
the retrieval models most frequently associated with each one of six distinct
combinations of a document logical view and a user task.
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Figure 2.1 A taxonomy of information retrieval models.
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Figure 2.2 Retrieval models most frequently associated with distinct combinations
of a document logical view and a user task. , )

2.3 Retrieval: Ad hoc and Filtering

In a conventional information retrieval system, the documents in the collection
remain relatively static while new queries are submitted to the system. This
operational mode has been termed ad hoc retrieval in recent years and is the
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most common form of user task. A similar but distinct task is one in which the
queries remain relatively static while new documents come into the system (and
leave). For instance, this is the case with the stock market and with news wiring
services. This operational mode has been termed filtering.

In a filtering task [74], a user profile describing the user’s preferences is
constructed. Such a profile is then compared to the incoming documents in
an attempt to determine those which might be of interest to this particular
user. For instance, this approach can be used to select a news article among
thousands of articles which are broadcast each day. Other potential scenarios
for the application of filtering include the selection of preferred judicial decisions,
or the selection of articles from daily newspapers, etc.

" Typically, the filtering task simply indicates to the user the documents
which might be of interest to him. The task of determining which ones are really
relevant is fully reserved to the user. Not even a ranking of the filtered documents
is provided. A variation of this procedure is to rank the filtered documents and
show this ranking to the user. The motivation is that the user can examine
a smaller number of documents if he assumes that the ones at the top of this
ranking are more likely to be relevant. This variation of filtering is called routing
(see Chapter 3) but it is not popular.

Even if no ranking is presented to the user, the filtering task can compute
an internal ranking to determine potentially relevant documents. For instance,
documents with a ranking above a given threshold could be selected; the others
would be discarded. Any IR model can be adopted to rank the documents, but
the vector model is usually preferred due to its simplicity. At this point, we
observe that filtering is really a type of user task (or operational mode) and not
a model of information retrieval. Thus, the task of filtering and the IR model
adopted are orthogonal aspects of an IR system.

In a filtering task, the crucial step is not the ranking itself but the construc-
tion of a user profile which truly reflects the user’s preferences. Many approaches
for constructing user profiles have been proposed and here we briefly discuss a
couple of them.

A simplistic approach for constructing a user profile is to describe the pro-
file through a set of keywords and to require the user to provide the necessary
keywords. The approach is simplistic because it requires the user to do too
much. In fact, if the user is not familiar with the service which generates the
upcoming documents, he might find it fairly difficult to provide the keywords
which appropriately describe his preferences in that context. Furthermore, an
attempt by the user to familiarize himself with the vocabulary of the upcom-
ing documents might turn into a tedious and time consuming exercise. Thus,
despite its feasibility, requiring the user to precisely describe his profile might
~ be impractical. A more elaborate alternative is to collect information from the
user about his preferences and to use this information to build the user profile
dynamically. This can be accomplished as follows.

In the very beginning, the user provides a set of keywords which describe
an initial (and primitive) profile of his preferences. As new documents arrive, the
system uses this profile to select documents which are potentially of interest and
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shows them to the user. The user then goes through a relevance feedback cycle
(see Chapter 5) in which he indicates not only the documents which are really
relevant but also the documents which are non-relevant. The system uses this
information to adjust the user profile description such that it reflects the new
preferences just declared. Of course, with this procedure the profile is continually
changing. Hopefully, however, it stabilizes after a while and no longer changes
drastically (unless, of course, the user’s interests shift suddenly). Chapter 5
illustrates mechanisms Wthh can be used to dynamically update a keyword-
based profile.

From the above, it should be clear that the filtering task can be viewed as
a conventional information retrieval task in which the documents are the ones
which keep arriving at the system. Ranking can be computed as before. The
difficulty with filtering resides in describing appropriately the user’s preferences
in a user profile. The most common approaches for deriving a user profile are
based on collecting relevant information from the user, deriving preferences from
this information, and modifying the user profile accordingly. Since the number
of potential applications of filtering keeps increasing, we should see in the future
a renewed interest in the study and usage of the technique.

24 A Formal Characterization of IR Models

We have argued that the fundamental premises which form the basis for a ranking
algorithm determine the IR model. Throughout this chapter, we will discuss
different sets of such premises. However, before doing so, we should state clearly
what exactly an IR model is. Our characterization is as follows.

Definition An information retrieval model is a quadruple [D,Q, F, R(q;,d;)]
where

(1) D is a set composed of logical views (or representations) for the documents
in the collection.

(2) Q is a set composed of logical views (or representations) for the user in-
formation needs. Such representations are called queries.

(8) F is a framework for modeling document representations, queries, and their
relationships. ‘

(4) R(qi,d;) is a ranking function which associates a real number with a query
¢ € Q and a document representation d; € D. Such ranking defines an

ordering among the documents with regard to the query g;.

/

'To build a model, we think first of representations for the documents and
for the user information need. Given these representations, we then conceive the
framework in which they can be modeled. This framework should also provide
the intuition for constructing a ranking function. For instance, for the classic
Boolean model, the framework is composed of sets of documents and the standard
operations on sets. For the classic vector model, the framework is composed of a
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t-dimensional vectorial space and standard linear algebra operations on vectors.
For the classic probabilistic model, the framework is composed of sets, standard
probability operations, and the Bayes’ theorem.

In the remainder of this chapter, we discuss the various IR models shown
in Figure 2.1. Throughout the discussion, we do not explicitly instantiate the
components D, Q, F, and R(g;, d;) of each model. Such components should be
quite clear from the-discussion and can be easily inferred.

2.5 Classic Information Retrieval

In this section we briefly present the three classic models in information retrieval
namely, the Boolean, the vector, and the probabilistic “models.

2.5.1 Basic Concepts

The classic models in information retrieval consider that each document is de-
scribed by a set of representative keywords called index terms. An index term
is simply & (document) word whose semantics helps in remembering the docu-
ment’s main themes. Thus, index terms are used to index and summarize the
document contents. In general, index terms are mainly nouns because nouns
have meaning by themselves and thus, their semantics is easier to identify and
to grasp. Adjectives, adverbs, and connectives are less useful as index terms
because they work mainly as complements. However, it might be interesting
to consider all the distinct words in a document collection as index terms. For
instance, this approach is adopted by some Web search engines as discussed in
Chapter 13 (in which case, the document logical view is full text). We postpone
a discussion on the problem of how to generate index terms until Chapter 7,
where the issue is covered in detail.

Given a set of index terms for a document, we notice that not all terms
are equally useful for describing the document contents. In fact, there are index
terms which are simply vaguer than others. Deciding on the importance of a
term for summarizing the contents of a document is not a trivial issue. Despite
this difficulty, there are properties of an index term which are easily measured
and which are useful for evaluating the potential of a term as such. For instance,
consider a collection with a hundred thousand documents. A word which appears
in each of the one hundred thousand documents is completely useless as an index
term because it does not tell us anything about which documents the user might
be interested in. On the other hand, a word which appears in just five documents
is quite useful because it narrows down considerably the space of documents
which might be of interest to the user. Thus, it should be clear that distinct
index terms have varying relevance when used to describe document contents.
This effect is captured through the assignment of numerical weights to each index
term of a document.
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Let k; be an index term, d; be a document, and w;i; > 0 be a weight
associated with the pair (k;,d;). This weight quantifies the importance of the
index term for describing the document semantic contents.

Definition Lett be the number of index terms in the system and k; be a generic
index term. K = {ki,...,k} is the set of all index terms. A weight w; ; > 0
is associated with each index term k; of a document d;. For an index term
which does not appear in the document text, wi; = 0. With the document d;

is associated an index term vector ci; represented by d_; = (w1,5,W2,5,- .., Wt ;).
Further, let g; be a function that returns thg weight associated with the index
term k; in any t-dimensional vector (i.e., gi(d;) = w; ;).

As we later discuss, the index term weights are usually assumed to be mutu-
ally independent. This means that knowing the weight w; ; associated with the
pair (k;, d;) tells us nothing about the weight w;y1,; associated with the pair
(kit1,d;). This is clearly a simplification because occurrences of index terms in
a document are not uncorrelated. Consider, for instance, that the terms com-
puter and network are used to index a given document which covers the area of
computer networks. Frequently, in this document, the appearance of one of these
two words attracts the appearance of the other. Thus, these two words are corre-
lated and their weights could reflect this correlation. While mutual independence
seems to be a strong simplification, it does simplify the task of computing index
term weights and allows for fast ranking computation. Furthermore, taking ad-
vantage of index term correlations for improving the final document ranking is
not a simple task. In fact, none of the many approaches proposed in the past
has clearly demonstrated that index term correlations are advantageous (for
ranking purposes) with general collections. Therefore, unless clearly stated oth-
erwise, we assume mutual independence among index terms. In Chapter 5 we
discuss modern retrieval techniques which are based on term correlations and
which have been tested successfully with particular collections. These successes
seem to be slowly shifting the current understanding towards a more favorable
view of the usefulness of term correlations for information retrieval systems.

The above definitions provide support for discussing the three classic infor-
mation retrieval models, namely, the Boolean, the vector, and the _probabilistic
models, as we now do. -

2.5.2 Boolean Model

The Boolean model is a simple retrieval model based on set theory and Boolean
algebra. Since the concept of a set is quite intuitive, the Boolean model pro-
vides a framework which is easy to grasp by a common user of an IR system.
Furthermore, the queries are specified as Boolean expressions which have precise
semantics. Given its inherent simplicity and neat formalism, the Boolean model
received great attention in past years and was adopted by many of the early
commercial bibliographic systems.
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Figure 2.3 The three conjunctive components for the query [¢ = ka A (ko V —kc)].

Unfortunately, the Boolean model suffers from major drawbacks. First,
its retrieval strategy is based on a binary decision criterion (i.e., a document is
predicted to be either relevant or non-relevant) without any notion of a grading
scale, which prevents good retrieval performance. Thus, the Boolean model is
in reality much more a data (instead of information) retrieval model. Second,
while Boolean expressions have precise semantics, frequently it is not simple to
translate an information need into a Boolean expression. In fact, most users find
it difficult and awkward to express their query requests in terms of Boolean ex-
pressions. The Boolean expressions actually formulated by users often are quite
simple (see Chapter 10 for a more thorough discussion on this issue). Despite
these drawbacks, the Boolean model is still the dominant model with commercial
document database systems and provides a good starting point for those new to
the field.

The Boolean model considers that index terms are present or absent in a
document. As a result, the index term weights are assumed to be all binary, i.e.,
w; ; € {0,1}. A query q is composed of index terms linked by three connectives:
not, and, or.Thus, a query is essentially a conventional Boolean expression which
can be represented as a disjunction of conjunctive vectors (i.e., in disjunctive nor-
mal form — DNF). For instance, the query [q = ko A (kp V —k¢)] can be written
in disjunctive normal form as [@ans = (1,1,1) V (1,1,0) V (1,0,0)], where each of
the components is a binary weighted vector associated with the tuple (ka, kb, kc)-
These binary weighted vectors are called the conjunctive components of Jdn.f -
Figure 2.3 illustrates the three conjunctive components for the query q.

Definition  For the Boolean model, the index term weight variables are all
binary i.e., w;; € {0,1}. A query g is a conventional Boolean expression. Let
Jany be the disjunctive normal form for the query q. Further, let d-c be any of the
conjunctive components of Gany. The similarity of a document d; to the query q
is defined as

Sim(dj, q) — 1 Zf Eicc_ l (Jcc € CTdnf) /\‘(Vkm gz(d_.;) = gz(q_’cc))
0 otherwise
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If sim(d;, q) = 1 then the Boolean model predicts that the document d; is relevant
to the query q (it might not be). Otherwise, the prediction is that the document
is not relevant.

The Boolean model predicts that each document is either relevant or non-
relevant. There is no notion of a partial match to the query conditions. For
instance, let d; be a document for which d_; = (0,1,0). Document d; includes
the index term k; but is considered non-relevant to the query l[g = koA (kpV—k,)].
The main advantages of the Boolean model are the clean formalism behind
the model and its simplicity. The main disadvantages are that exact matching
may lead to retrieval of too few or too many documents (see Chapter 10). Today,
it is well known that index term weighting can lead to a substantial improvement
in retrieval performance. Index term weighting brings us to the vector model.

2.5.3 Vector Model

The vector model [697, 695] recognizes that the use of binary weights is too
limiting and proposes a framework in which partial matching is possible. This
is accomplished by assigning non-binary weights to index terms in queries and
in documents. These term weights are ultimately used to compute the degree
of similarity between each document stored in the system and the user query.
By sorting the retrieved documents in decreasing order of this degree of similar-
ity, the vector model takes into consideration documents which match the query
terms only partially. The main resultant effect is that the ranked document an-
swer set is a lot more precise (in the sense that it better matches the user infor-
mation need) than the document answer set retrieved by the Boolean model.

Definition For the vector model, the weight w45 associated with a pair (k;,d;)
s positive and non-binary. Further, the index terms in the query are also
weighted. Let w; 4 be the weight associated with the pair [k;, q], where w; , > 0.

Then, the query vector q is defined as § = (Wi,q,Wa,q, ..., Ws,q) where t is the
total number of index terms in the system. As before, the vector for a document
d; is represented by d; = (w15, Waj,. .., wy ).

Therefore, a document d; and a user query q are represented as t-dimensional
vectors as shown in Figure 2.4. The vector model proposes to evaluate the degree
of similarity of the document d; with regard to the query ¢ as the correlation
between the vectors J; and ¢. This correlation can be quantified, for instance,
by the cosine of the a@gle between these two vectors. That is,

sim(dj,q) =
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\9

.
Qo
Figure 2.4 The cosine of 6 is adopted as sim(d;, q).

“where |d;| and |g] are the norms of the document and query vectors. The factor
|g] does not affect the ranking (i.e., the ordering of the documents) because it
is the same for all documents. The factor |d;| provides a normalization in the
space of the documents.

' Since w; ; > 0and w; 4 > 0, sim(q, d;) varies from 0 to +1. Thus, instead of
attempting to predict whether a document is relevant or not, the vector model
ranks the documents according to their degree of similarity to the query. A
document might be retrieved even if it matches the query only partially. For
instance, one can establish a threshold on sim(d;, q) and retrieve the documents
with a degree of similarity above that threshold. But to compute rankings we
need first to specify how index term weights are obtained.

Index term weights can be calculated in many different ways. The work by
Salton and McGill [698] reviews various term-weighting techniques. Here, we do
not discuss them in detail. Instead, we concentrate on elucidating the main idea
behind the most effective term-weighting techniques. This idea is related to the
basic principles which support clustering techniques, as follows.

Given a collection C of objects and a vague description of a set A, the goal of
a simple clustering algorithm might be to separate the collection C' of objects into
two sets: a first one which is composed of objects related to the set A and a second
one which is composed of objects not related to the set A. Vague description here
means that we do not have complete information for deciding precisely which
objects are and which are not in the set A. For instance, one might be looking
for a set A of cars which have a price comparable to that of a Lexus 400. Since it
is not clear what the term comparable means exactly, there is not a precise (and
unique) description of the set A. More sophisticated clustering algorithms might
attempt to separate the objects of a collection into various clusters (or classes)
according to their properties. For instance, patients of a doctor specializing
in cancer could be classified into five classes: terminal, advanced, metastasis,
diagnosed, and healthy. Again, the possible class descriptions might be imprecise
(and not unique) and the problem is one of deciding to which of these classes
a new patient should be assigned. In what follows, however, we only discuss
the simpler version of the clustering problem (i.e., the one which considers only
two classes) because all that is required is a decision on which documents are
predicted to be relevant and which ones are predlcted to be not relevant (with
regard to a given user query).
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To view the IR problem as one of clustering, we refer to the early work of
Salton. We think of the documents as a collection C' of objects and think of the
user query as a (vague) specification of a set A of objects. In this scenario, the
IR problem can be reduced to the problem of determining which documents are
in the set A and which ones are not (i.e., the IR problem can be viewed as a
clustering problem). In a clustering problem, two main issues have to be resolved.
First, one needs to determine what are the features which better describe the
objects in the set A. Second, one needs to determine what are the features
which better distinguish the objects in the set A from the remaining objects in
the collection C. The first set of features provides for quantification of intra-
cluster similarity, while the second set of features provides for quantification
of inter-cluster dissimilarity. The most successful clustering algorithms try to
balance these two effects. ,

In the vector model, intra-clustering similarity is quantified by measuring
the raw frequency of a term k; inside a document dj. Such term frequency is
usually referred to as the if factor and provides one measure of how well that
term describes the document contents (i.e., intra-document characterization).
Furthermore, inter-cluster dissimilarity is quantified by measuring the inverse
of the frequency of a term k; among the documents in the collection. This
factor is usually referred to as the inverse document Jrequency or the idf factor.
The motivation for usage of an idf factor is that terms which appear in many
documents are not very useful for distinguishing a relevant document from a
non-relevant one. As with good clustering algorithms, the most effective term-
weighting schemes for IR try to balance these two effects.

Definition  Let N be the total number of documents in the system and n; be
the number of documents in which the index term k; appears. Let fregq; ; be the
raw frequency of term k; in the document d; (i.e., the number of times the term
k; is mentioned in the text of the document dj). Then, the normalized frequency
fi; of term k; in document d; is given by

freg; Y
;== : 2.1
fos max; freql,j ( )

~

[N
[

where the mazimum is computed over all terms which are mentioneéd ih”the text
of the document d;. If the term k; does not appear in the document d; then
fi,; = 0. Further, let idf;, inverse document frequency for k;, be given by

N
’Ldfz = log —_— (2.2)
g
The best known term-weighting schemes use weights which are given by
N -
Wy, 5 = fi’j X)log 7’7 (2.3)

(]
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or by a variation of this formula. Such term-weighting strategies are called tf-idf
schemes.

Several variations of the above expression for the weight w; ; are described in an
interesting paper by Salton and Buckley which appeared in 1938 [696]. However,
in general, the above expression should provide a good weighting scheme for
many collections.

For the query term weights, Salton and Buckley suggest

0.5 fregiq )

max; fregq

x log N (2.4)
2

Wi,q = (0.5 +
where freg;, is the raw frequency of the term k; in the text of the information
request q. ,

The main advantages of the vector model are: (1) its term-weighting scheme
improves retrieval performance; (2) its partial matching strategy allows retrieval
of documents that approzimate the query conditions; and (3) its cosine rank-
ing formula sorts the documents according to their degree of similarity to the
query. Theoretically, the vector model has the disadvantage that index terms are
assumed to be mutually independent (equation 2.3 does not account for index
term dependencies). However, in practice, consideration of term dependencies
might be a disadvantage. Due to the locality of many term dependencies, their
indiscriminate application to all the documents in the collection might in fact
hurt the overall performance.

Despite its simplicity, the vector model is a resilient ranking strategy with
general collections. It yields ranked answer sets which are difficult to improve
upon without query expansion or relevance feedback (see Chapter 5) within the
framework of the vector model. A large variety of alternative ranking methods
have been compared to the vector model but the consensus seems to be that,
in general, the vector model is either superior or almost as good as the known
alternatives. Furthermore, it is simple and fast. For these reasons, the vector
model is a popular retrieval model nowadays.

2.5.4 Probabilistic Model

In this section, we describe the classic probabilistic model introduced in 1976
by Roberston and Sparck Jones [677] which later became known as the binary
independence retrieval (BIR) model. Our discussion is intentionally brief and
focuses mainly on highlighting the key features of the model. With this purpose
in mind, we do not detain ourselves in subtleties regarding the binary indepen-
dence assumption for the model. The section on bibliographic discussion points
to references which cover these details.

The probabilistic model attempts to capture the IR problem within a prob-
abilistic framework. The fundamental idea is as follows. Given a user query,
there is a set of documents which contains exactly the relevant documents and
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no other. Let us refer to this set of documents as the ideal answer set. Given the
description of this ideal answer set, we would have no problems in retrieving its
documents. Thus, we can think of the querying process as a process of specify-
ing the properties of an ideal answer set (which is analogous to interpreting the
IR problem as a problem of clustering). The problem is that we do not know
exactly what these properties are. All we know is that there are index terms
whose semantics should be used to characterize these properties. Since these
properties are not known at query time, an effort has to be made at initially
guessing what they could be. This initial guess allows us to generate a prelim-
inary probabilistic description of the ideal answer set which is used to retrieve
a first set of documents. An interaction with the user is then initiated with the
purpose of improving the probabilistic description of the ideal answer set. Such
interaction could proceed as follows.

The user takes a look at the retrieved documents and decides which ones
are relevant and which ones are not (in truth, only the first top documents need
to be examined). The system then uses this information to refine the description
of the ideal answer set. By repeating this process many times, it is expected
that such a description will evolve and become closer to the real description of
the ideal answer set. Thus, one should always have in mind the need to guess at
the beginning the description of the ideal answer set. Furthermore, a conscious
effort is made to model this description in probabilistic terms.

The probabilistic model is based on the following fundamental assumption.

Assumption (Probabilistic Principle) Given a user query g and a document d;
in the collection, the probabilistic model tries to estimate the probability that
the user will find the document d; interesting (i.e., relevant). The model as-
sumes that this probability of relevance depends on the query and the document
representations only. Further, the model assumes that there is a subset of all
documents which the user prefers as the answer set for the query ¢. Such an
ideal answer set is labeled R and should maximize the overall probability of rel-
evance to the user. Documents in the set R are predicted to be relevant to the
query. Documents not in this set are predicted to be non-relevant.

This assumption is quite troublesome because it does not state explicitly
how to compute the probabilities of relevance. In fact, not even the sample space
which is to be used for defining such probabilities is given.

Given a query ¢, the probabilistic model assigns to each document d;, as
a measure of its similarity to the query, the ratio P(d; relevant-to q)/P(d; non-
relevant-to ¢) which computes the odds of the document d; being relevant to the
query q. Taking the odds of relevance as the rank minimizes the probability of
an erroneous judgement [282, 785].

Definition For the probabilistic model, the index term weight variables are
all binary i.e., w;; € {0,1}, w; 4 € {0,1}. A query q is a subset of index terms.
Let R be the set of documents known (or initially guessed) to be relevant. Let R
be the complement of R (i.e., the set of non-relevant documents). Let P(R]af;)
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be the probability that the document d; is relevant to the query q and P(Rﬂ;)
be the probability that d; is non-relevant to q. The similarity sim(d;,q) of the
document d; to the query q is defined as the ratio

PRI
sl O = B R

Using Bayes’ rule,

P(d;|R) x P(R)
P(d;|R) x P(R)

sim(dj,q) =

P(J;|R) stands for the probability of randomly selecting the document d; from
the set R of relevant documents. Further, P(R) stands for the probability that a
document randomly selected from the entire collection is relevant. The meanings
attached to P (d} |R) and P(R) are analogous and complementary.

Since P(R) and P(R) are the same for all the documents in the collection,
we write,

- P(d;|R)
Sq/m,(dj s Q) P(CZ;|—R—)

Assuming independence of index terms,

<Hgi(07j)=1 P(ki|R)) x (Hgi(d})=o P(k;|R))
(Hgi(d:-)=1 P(k:|R)) % (Hgi(jj):o P(ks|R))

sim(d;, q)

P(k;|R) stands for the probability that the index term k; is present in a document
randomly selected from the set R. P(k;|R) stands for the probability that the
index term k; is not present in a document randomly selected from the set R.
The probabilities associated with the set R have meanings which are analogous
to the ones just described.

Taking logarithms, recalling that P(k;|R) + P(k;|R) = 1, and ignoring
factors which are constant for all documents in the context of the same query,
we can finally write

, : P(k;|R) 1 — P(k;|R)
sim(dj,q) ~ ;wi,q X Wy X (1og ) + log P >

which is a key expression for ranking computation in the probabilistic model.
Since we do not know the set R at the beginning, it is necessary to devise

a method for initially computing the probabilities P(k;|R) and P(k;|R). There

are many alternatives for such computation. We discuss a couple of them below.
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In the very beginning (i.e., immediately after the query specification), there
are no retrieved documents. Thus, one has to make simplifying assumptions such
as: (a) assume that P(k;|R) is constant for all index terms k; (typically, equal to
0.5) and (b) assume that the distribution of index terms among the non-relevant
documents can be approximated by the distribution of index terms among all
the documents in the collection. These two assumptions yield

P(kj]R) = 05
P([R) = %

where, as already defined, n; is the number of documents which contain the
index term k; and N is the total number of documents in the collection. Given
this initial guess, we can then retrieve documents which contain query terms and
provide an initial probabilistic ranking for them. After that, this initial ranking
is improved as follows.

Let V' be a subset of the documents initially retrieved and ranked by the
probabilistic model. Such a subset can be defined, for instance, as the top r
ranked documents where r is a previously defined threshold. Further, let V; be
the subset of V' composed of the documents in V which contain the index term
k;. For simplicity, we also use V and V; to refer to the number of elements in
these sets (it should always be clear when the used variable refers to the set or to
the number of elements in it). For improving the probabilistic ranking, we need
to improve our guesses for P(k;|R) and P(k;|R). This can be accomplished with
the following assumptions: (a) we can approximate P(k;|R) by the distribution
of the index term k; among the documents retrieved so far, and (b) we can
approximate P(k;|R) by considering that all the non-retrieved documents are
not relevant. With these assumptions, we can write,

Vi

P(k;|R) = v
= n; — V;
P(k;|R) = NV

This process can then be repeated recursively. By doing so, we are able to
improve on our guesses for the probabilities P(k;|R) and P(k;|R) without any
assistance from a human subject (contrary to the original idea). However, we
can also use assistance from the user for definition of the subset V as originally
conceived. .

The last formulas for P(k;|R) and P(k;|R) pose problems for small values
of V' and V; which arise in practice (such as V = 1 and V; = 0). To circumvent
these problems, an adjustment factor is often added in which yields

Vi+0.5

PalR) =
- ni—Vé+0.5
PoIE) = vt
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An adjustment factor which is constant and equal to 0.5 is not always satisfactory.
An alternative is to take the fraction n;/N as the adjustment factor which yields

Vit 3
PR = v

- n; — Vi + %
PR = Ny

This completes our discussion of the probabilistic model.

The main advantage of the probabilistic model, in theory, is that docu-
ments are ranked in decreasing order of their probability of being relevant. The
disadvantages include: (1) the need to guess the initial separation of documents
into relevant and non-relevant sets; (2) the fact that the method does not take
into account the frequency with which an index term occurs inside a document
(i.e., all weights are binary); and (3) the adoption of the independence assump-
tion for index terms. However, as discussed for the vector model, it is not clear
that independence of index terms is a bad assumption in practical situations.

2.5.5 Brief Comparison of Classic Models

In general, the Boolean model is considered to be the weakest classic method. Its
main problem is the inability to recognize partial matches which frequently leads
to poor performance. There is some controversy as to whether the probabilistic
model outperforms the vector model. Croft performed some experiments and
suggested that the probabilistic model provides a better retrieval performance.
However, experiments done afterwards by Salton and Buckley refute that claim.
Through several different measures, Salton and Buckley showed that the vector
model is ezpected to outperform the probabilistic model with general collections.
This also seems to be the dominant thought among researchers, practitioners,
and the Web community, where the popularity of the vector model runs high.

2.6 Alternative Set Theoretic Models

In this section, we discuss two alternative set theoretic models, namely the fuzzy
set model and the extended Boolean model.

2.6.1 Fuzzy Set Model

Representing documents and queries through sets of keywords yields descriptions
which are only partially related to the real semantic contents of the respective
documents and queries. As a result, the matching of a document to the query
terms is approximate (or vague). This can be modeled by considering that each
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query term defines a fuzzy set and that each document has degree of membership
(usually smaller than 1) in this set. This interpretation of the retrieval process
(in terms of concepts from fuzzy theory) is the basic foundation of the various
fuzzy set models for information retrieval which have been proposed over the
years. Instead of reviewing several of these models here, we focus on a particular
one whose description fits well with the models already covered in this chapter.
Thus, our discussion is based on the fuzzy set model for information retrieval
proposed by Ogawa, Morita, and Kobayashi [616]. Before proceeding, we briefly
introduce some fundamental concepts.

Fuzzy Set Theory

Fuzzy set theory [846] deals with the representation of classes whose boundaries
are not well defined. The key idea is to associate a membership function with
the elements of the class. This function takes values in the interval [0,1] with 0O
corresponding to no membership in the class and 1 corresponding to full mem-
bership. Membership values between 0 and 1 indicate marginal elements of the
class. Thus, membership in a fuzzy set is a notion intrinsically gradual instead
of abrupt (as in conventional Boolean logic).

Definition A fuzzy subset A of a universe of discourse U is characterized by
a membership function pa : U — [0, 1] which associates with each element u of
U a number pa(u) in the interval [0,1].

The three most commonly used operations on fuzzy sets are: the complement of
a fuzzy set, the union of two or more fuzzy sets, and the intersection of two or
more fuzzy sets. They are defined as follows.

Definitior_l_ Let U be the universe of discourse, A and B be two fuzzy subsets
of U, and A be the complement of A relative to U. Also, let u be an element of
U. Then,

pz(w) = 1—pa(u)
pavs(u) = maz(pa(u), pp(u))
panB(w) = min(pa(u), pp(u))

Fuzzy sets are useful for representing vagueness and imprecision and have been
applied to various domains. In what follows, we discuss their application to
information retrieval.

Fuzzy Information Retrieval

As discussed in Chaptérs 5 and 7, one additional approach to modeling the
information retrieval process is to adopt a thesaurus (which defines term re-
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lationships). The basic idea is to expand the set of index terms in the query
with related terms (obtained from the thesaurus) such that additional relevant
documents (i.e., besides the ones which would be normally retrieved) can be re-
trieved by the user query. A thesaurus can also be used to model the information
retrieval problem in terms of fuzzy sets as follows.

A thesaurus can be constructed by defining a term-term correlation ma-
triz & (called keyword connection matriz in [616]) whose rows and columns are
associated to the index terms in the document collection. In this matrix ¢, a
normalized correlation factor c;; between two terms k; and k; can be defined by

4,1

]

g+ N — Nyl

Cil =

bl

where n; is the number of documents which contain the term k;, n is the number
of documents which contain the term k;, and n,; is the number of documents
which contain both terms. Such a correlation metric is quite common and has
been used extensively with clustering algorithms as detailed in Chapter 5.

We can use the term correlation matrix & to define a fuzzy set associated to
each index term k;. In this fuzzy set, a document d; has a degree of membership
ts,; computed as

l‘l’i,j = ]_ - H (]. - Ci,l)

ki Gdj

which computes an algebraic sum (here implemented as the complement of a
negated algebraic product) over all terms in the document d;. A document d;
belongs to the fuzzy set associated to the term k; if its own terms are related to
k;. Whenever there is at least one index term k; of d; which is strongly related to
the index k; (i.e., ¢;; ~ 1), then u;; ~ 1 and the index k; is a good fuzzy index
for the document d;. In the case when all index terms of d; are only loosely
related to k;, the index k; is not a good fuzzy index for d; (i.e., pi; ~ 0). The
adoption of an algebraic sum over all terms in the document d; (instead of the
classic maz function) allows a smooth transition for the values of the y;,; factor.

The user states his information need by providing a Boolean-like query
expression. As also happens with the classic Boolean model (see the beginning
of this chapter), this query is converted to its disjunctive normal form. For
instance, the query [¢ = ko A (kb V —kc)] can be written in disjunctive normal
form as [Gyny = (1,1,1) V (1,1,0) V (1,0, 0)], where each of the components
is a binary weighted vector associated to the tuple (kq,kp,kc). These binary
weighted vectors are the conjunctive components of Ganys. Let cc; be a reference
to the i-th conjunctive component. Then,

(fdnfzccl V oeccg V ... V ey

where p is the number of conjunctive components of gans. The procedure to
compute the documents relevant to a query is analogous to the procedure adopted
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D,

qu =cc + Ccy +cc3!

Figure 2.5 Fuzzy document sets for the query [¢g = ka A (ks V —k¢)]. Each cci, %
€ {1,2,3}, is a conjunctive component. D, is the query fuzzy set.

by the classic Boolean model. The difference is that here we deal with fuzzy
(instead of crispy or Boolean) sets. We proceed with an example.

Consider again the query [¢ = k, A (ks V —k.)]. Let D, be the fuzzy
set of documents associated to the index k,. This set is composed, for instance,
by the documents d; which have a degree of membership p,, ; greater than a
predefined threshold K. Further, let D, be the complement of the set D,. The
fuzzy set D, is associated to kg, the negation of the index term k,. Analogously,
we can define fuzzy sets Dj and D, associated to the index terms k; and k.,
respectively. Figure 2.5 illustrates this example. Since the sets are all fuzzy, a
document d; might belong to the set D,, for instance, even if the text of the
document d - does not mention the index k,.

The query fuzzy set D, is a union of the fuzzy sets associated with the three
conjunctive components of @yn ¢ (which are referred to as cc1, ccz, and ccg). The
membership g, ; of a document dj; in the fuzzy answer set D, is computed as
follows.

Hq,j = Hceyteeatces,j
3
= 1—H(1—MCC‘L7.’])
=1 ~

= 1— (1~ pa,jfjle,;) x
(1= pra,ipte, i (1 — pie,5)) X (1 = pra,; (1 — po,5) (1 — fie,j))

where p; 5, i € {a, b, c}, is the membership of d; in the fuzzy set associated with
k;.

As already observed, the degree of membership in a disjunctive fuzzy set is
computed here using an algebraic sum, instead of the more common maz func-
tion. Further, the degree of membership in a conjunctive fuzzy set is computed
here using an algebraic product, instead of the more common min function. This
adoption of algebraic sums and products yields degrees of membership which
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vary more smoothly than those computed using the min and maz functions and
thus seem more appropriate to an information retrieval system.

This example illustrates how this fuzzy model ranks documents relative
to the user query. The model uses a term-term correlation matrix to compute
correlations between a document d; and its fuzzy index terms. Further, the
model adopts algebraic sums and products (instead of max and min) to compute
the overall degree of membership of a dqéument d; in the fuzzy set defined by the
user query. Ogawa, Morita, and Kobayashi [616] also discuss how to incorporate
user relevance feedback into the model but such discussion is beyond the scope
-of this chapter.

Fuzzy set models for information retrieval have been discussed mainly in the
literature dedicated to fuzzy theory and are not popular among the information
retrieval community. Further, the vast majority of the experiments with fuzzy
set models has considered only small collections which make comparisons difficult
to make at this time.

2.6.2 Extended Boolean Model

Boolean retrieval is simple and elegant. However, since there is no provision for
term weighting, no ranking of the answer set is generated. As a result, the size
of the output might be too large or too small (see Chapter 10 for details on this
issue). Because of these problems, modern information retrieval systems are no
longer based on the Boolean model. In fact, most of the new systems adopt at
their core some form of vector retrieval. The reasons are that the vector space
model is simple, fast, and yields better retrieval performance. One alternative
approach though is to extend the Boolean model with the functionality of partial
matching and term weighting. This strategy allows one to combine Boolean
query formulations with characteristics of the vector model. In what follows, we
discuss one of the various models which are based on the idea of extending the
Boolean model with features of the vector model.

The extended Boolean model, introduced in 1983 by Salton, Fox, and Wu
[703], is based on a critique of a basic assumption in Boolean logic as follows.
Consider a conjunctive Boolean query given by g = k; A ky. According to the
Boolean model, a document which contains either the term k, or the term k,
is as irrelevant as another document which contains neither of them. However,
this binary decision criteria frequently is not in accordance with common sense.
An analogous reasoning applies when one considers purely disjunctive queries.

When only two terms are considered, we can plot queries and documents
in a two-dimensional map as shown in Figure 2.6. A document d; is positioned
in this space through the adoption of weights w, ; and wy ; associated with
the pairs [k, ds] and [ky,d;], respectively. We assume that these weights are
normalized and thus lie between 0 and 1. For instance, these weights can be
computed as normalized tf-idf factors as follows.

idfz

w . = ¢ X —————
wd = Jag mazx; idf;
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(LD .1 1,1y

0,0 1.0 00 1,0

Figure 2.6 Extended Boolean logic considering the space composed of two terms ks
and ky only.

where, as defined by equation 2.3, f, ; is the normalized frequency of term k, in
document d; and idf; is the inverse document frequency for a generic term k;.
For simplicity, in the remainder of this section, we refer to the weight w, ; as
x, to the weight wy ; as y, and to the document vector d; = (wg ;,wy ;) as the
point d; = (z,y). Observing Figure 2.6 we notice two particularities. First, for
a disjunctive query gor = k; V &y, the point (0,0) is the spot to be avoided. This
suggests taking the distance from (0,0) as a measure of similarity with regard
to the query g,-. Second, for a conjunctive query ggnq = kz A ky, the point (1,1)
is the most desirable spot. This suggests taking the complement of the distance
from the point (1,1) as a measure of similarity with regard to the query ¢gnq.
Furthermore, such distances can be normalized which yields,

2 2
sim(gor,d) = \/:—c—z_t—?t

A=+ =P
1"\/ 2

Sim(Qanda d) -

If the weights are all Boolean (i.e., w; ,; € {0,1}), a document is always posi-
tioned in one of the four corners (i.e., (0,0), (0,1), (1,0), or (1,1)) and the values
for sim(gor,d) are restricted to 0, 1/4/2, and 1. Analogously, the values for
$tm(gand, d) are restricted to 0, 1 — 1/4/2, and 1.

Given that the number of index terms in a document collection is t, the
Boolean model discussed above can be naturally extended to consider Euclidean
distances in a t-dimensional space. However, a more comprehensive generaliza-
tion is to adopt the theory of vector norms as follows.

The p-norm model generalizes the notion of distance to include not only
Euclidean distances but also p-distances, where 1 < p < oo is a newly introduced
parameter whose value must be specified at query time. A generalized disjunctive
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query is now represented by
Gor = k1 VP ko VP ... VP E,,

Analogously, a generalized conjunctive query is now represented by
Gand = k1 NP ko NP .. APk

The respective query-document similarities are now given by

xﬁ’-&—xé’%—...—l—mfn)%

Sim(Qora dj) = ( m

(1—:B1,)p+(1—w2)p—|—...+(1—:cm)p)5‘l;

sim(gand, dj) = 1—( -

where each x; stands for the weight w; 4 associated to the pair [k;, d;].
The p norm as defined above enjoys a couple of interesting properties as
follows. First, when p = 1 it can be verified that

1+ ...+ Tm
m

Sim(‘]a’m dJ) = Sim(Qanda d]) -
Second, when p = oo it can be verified that

sim(gor, d;) = max(z;)
$tm(Qand, dj) = min(x;)

Thus, for p = 1, conjunctive and disjunctive queries are evaluated by a sum
of term-document weights as done by vector-based similarity formulas (which
compute the inner product). Further, for p = 0o, queries are evaluated according
to the formalism of fuzzy logic (which we view as a generalization of Boolean
logic). By varying the parameter p between 1 and infinity, we can vary the p-
norm ranking behavior from that of a vector-like ranking to that of a Boolean-like
ranking. This is quite powerful and is a good argument in favor of the extended
Boolean model.

The processing of more general queries is done by grouping the operators
in a predefined order. For instance, consider the query g = (k1 AP kp) VP k3. The
similarity sim(q,d;) between a document d; and this query is then computed as

1
( (o) +(1=22?\7 \* | o\ "
11— ( 5 ) + x5

2 (7

sim(q,d) =

This procedure can be applied recursively no matter the number of AND/OR
operators.
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One additional interesting aspect of this extended Boolean model is the
possibility of using combinations of different values of the parameter p in a same
query request. For instance, the query ‘

(k1 V2 ko) A ks

could be used to indicate that k1 and ks should be used as in a vector system
but that the presence of ks is required (i.e., the conjunction is interpreted as a
Boolean operation). Despite the fact that it is not clear whether this additional
functionality has any practical impact, the model does allow for it and does so in
a natural way (without the need for clumsy extensions to handle special cases).

We should also observe that the extended Boolean model relaxes Boolean
algebra interpreting Boolean operations in terms of algebraic distances. In this
sense, it is really a hybrid model which includes properties of both the set the-
oretic models and the algebraic models. For simplicity, we opted for classifying
the model as a set theoretic one.

The extended Boolean model was introduced in 1983 but has not been used
extensively. However, the model does provide a neat framework and might reveal
itself useful in the future.

2.7 Alternative Algebraic Models

In this section, we discuss three alternative algebraic models namely, the gener-
alized vector space model, the latent semantic indexing model, and the neural
network model.

2.7.1 Generalized Vector Space Model

As already discussed, the three classic models assume independence of index
terms. For the vector model, this assumption is normally interpreted as fol-
lows.

Definition Let Ez be a vector associated with the index term k;. Independence
of index terms in the vector model implies that the set of vectors {l?:l, Eg, ey
kt} is linearly independent and forms a basis for the subspace of interest. The.
dimension of this space is the number t of indez terms in the collection.

Frequently, independence among index terms is interpreted in a more restrictive
sense to mean pairwise orthogonality among the mdex term vectors i.e., to mean
that for each pair of index term vectors k and k we have k ® k = 0. In 1985,
however, Wong, Ziarko, and Wong [832] proposed an 1nterpretat10n in which
the index term vectors are assumed linearly independent but are not pairwise
orthogonal. Such interpretation leads to the generalized vector space model which
we now discuss.
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In the generalized vector space model, two index term vectors might be non-
orthogonal. This means-that index term vectors are not seen as the orthogonal
vectors which compose the basis of the space. Instead, they are themselves
composed of smaller components which are derived from the particular collection
at hand as follows.

Definition  Given. the set {k1, k2, ..., k:} of index terms in a collection, as
before, let w; ; be the weight associated with the term-document pair ki, d;]. If the
w; ; weights are all binary then all possible patterns of term co-occurrence (inside
documents) can be represented by a set of 2* minterms given by m1 = (0,0,. .., 0),
me = (1,0,...,0), ..., ma = (1,1,...,1). Let gi(my) return the weight {0,1} of
the index term k; in the minterm m;.

Thus, the minterm my (for which g;(m1) = 0, for all ) points to the documents
containing none of the index terms. The minterm my (for which g (mg) =1, for
i =1, and g;(mg) = 0, for i > 1) points to the documents containing solely the
index term k;. Further, the minterm mg: points to the documents containing
all the index terms. The central idea in the generalized vector space model
is to introduce a set of pairwise orthogonal vectors 7, associated with the set
of minterms and to adopt this set of vectors as the basis for the subspace of
interest.

Definition Let us define the followz'ngvset of m; vectors

i (1,0,...,0,0)
ws = (0,1,...,0,0)
Mo = (0,0,...,0,1)

where each vector 1, 18 associated with the respective mainterm m;.

Notice that m; e 7m; = 0 for all i # j and thus the set of m; vectors is, by
definition, pairwise orthogonal. This set of /m; vectors is then taken as the
orthonormal basis for the generalized vector space model.

Pairwise orthogonality among the 17; vectors does not imply independence
among the index terms. On the contrary, index terms are now correlated by
the ; vectors. For instance, the vector my4 is associated with the minterm
mg = (1,1,...,0) which points to the documents in the collection containing
the index terms ki1, k2, and no others. If such documents do exist in the collec-
tion under consideration then we say that the minterm my is active and that a
dependence between the index terms ki and ks is induced. If we consider this
point more carefully, we notice that the generalized vector model adopts as a
basic foundation the idea that co-occurrence of index terms inside documents
in the collection induces dependencies among these index terms. Since this is
an idea which was introduced many years before the generalized vector space
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model itself, novelty is not granted. Instead, the main contribution of the model
is the establishment of a formal framework in which dependencies among in-
dex terms (induced by co-occurrence patterns inside documents) can be nicely
represented.

The usage of index term dependencies to improve retrieval performance
continues to be a controversial issue. In fact, despite the introduction in the 1980s
of more effective algorithms for incorporating term dependencies (see Chapter 5),
there is no consensus that incorporation of term dependencies in the model
yields effective improvement with general collections. Thus, it is not clear that
the framework of the generalized vector model provides a clear advantage in
practical situations. Further, the generalized vector model is more complex and
computationally more expensive than the classic vector model.

To determine the index term vector k; associated with the index term k;,
we simply sum up the vectors for all minterms m, in which the term k; is in
state 1 and normalize. Thus,

" e (2.5)

b c;
vr, gi(mr)=1 ir
ci:'r = » z : w’b,j o

dj | 91(d;)=gi(ms) for all 1

These equations provide a general deﬁmtmn for the index term vector kz in
terms of the M, vectors. The term vector k collects all the M, vectors in which
the index term k; is in state 1. For each m, vector, a correlation factor c;, is
defined. -Such a correlation factor sums up the weights w; ; associated with the
index term k; and each document d; whose term occurrence pattern coincides
exactly with that of the minterm m,. Thus, a minterm is of interest (in which
case it is said to be active) only if there is at least one document in the collection
which matches its term occurrence pattern. This implies that no more than NV
minterms can be active, where N is the number of documents in the collection.
Therefore, the ranking computation does not depend on an exponential number
of minterms as equation 2.5 seems to suggest

Notice that the internal product k; e k can now be used to quantify a
degree of correlation between the index terms k; and k;. For instance,

— -
kiek; = § Ci,r X Cjr

vr | gi(ms)=1 A gj(m,)=1

which, as later discussed in Chapter 5, is a good technique for quantifying index
term correlations. '

In the classic vector model, a document d; and a user query g are expressed
by cf D v Wi g k; and 7= D vi Wig k;, respectively. In the generalized vector
space model, these representations can be directly translated to the 5pace of
minterm vectors 7, by applying equation 2.5. The resultant d and q vectors
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are then used for computing the ranking through a standard cosine similarity
function.

The ranking that results from the generalized vector space model com-
bines the standard w; ; term-document weights with the correlation factors c¢; .
However, since the usage of term-term correlations does not necessarily yield im-
proved retrieval performance, it is not clear in which situations the generalized
model outperforms the classic vector model. Furthermore, the cost of comput-
ing the ranking in the generalized model can be fairly high with large collections
because, in this case, the number of active minterms (i.e., those which have to be
considered for computing the k; vectors) might be proportional to the number
of documents in the collection. Despite these drawbacks, the generalized vector
model does introduce new ideas which are of importance from a theoretical point
of view. -

2.7.2 Latent Semantic Indexing Model

As discussed earlier, summarizing the contents of documents and queries through
a set of index terms can lead to poor retrieval performance due to two effects.
First, many unrelated documents might be included in the answer set. Second,
relevant documents which are not indexed by any of the query keywords are
not retrieved. The main reason for these two effects is the inherent vagueness
associated with a retrieval process which is based on keyword sets.

The ideas in a text are more related to the concepts described in it than
to the index terms used in its description. Thus, the process of matching doc-
uments to a given query could be based on concept matching instead of index
term matching. This would allow the retrieval of documents even when they
are not indexed by query index terms. For instance, a document could be re-
trieved because it shares concepts with another document which is relevant to
the given query. Latent semantic indexing is an approach introduced in 1988
which addresses these issues (for clustering-based approaches which also address
these issues, see Chapter 5).

The main idea in the latent semantic indexing model [287] is to map each
document and query vector into a lower dimensional space which is associated
with concepts. This is accomplished by mapping the index term vectors into this
lower dimensional space. The claim is that retrieval in the reduced space may
be superior to retrieval in the space of index terms. Before proceeding, let us
define basic terminology.

Definition As before, let t be the number of index terms in the collection and
N be the total number of documents. Define M =(M;;) as a term-document
association matriz with t rows and N columns. To each element M;; of this
malric is assigned o weight w; ; associated with the term-document pair [k;, d;].
This w; ; weight could be generated using the tf-idf weighting technigue common
in the classic vector space model. ‘
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Latent semantic indexing proposes to decompose the M association matrix in
three components using singular value decomposition as follows.

M = KSDt

The matrix K is the matrix of eigenvectors derived from the term-to-term cor-
relation matrix given by MM? (see Chapter 5). The matrix D! is the matrix
of eigenvectors derived from the transpose of the document-to-document matrix
given by M?*'M. The matrix S is an r X r diagonal matrix of singular values
where r = min(t, N) is the rank of M.

Consider now that only the s largest singular values of S are kept along with
their corresponding columns in X and D* (i.e., the remaining singular values of
S are deleted). The resultant M, matrix is the matrix of rank s which is closest
to the original matrix M in the least square sense. This matrix is given by

M, = K,8,D¢

where s, s < r, is the dimensionality of a reduced concept space. The selection
of a value for s attempts to balance two opposing effects. First, s should be large
enough to allow fitting all the structure in the real data. Second, s should be
small enough to allow filtering out all the non-relevant representational details
(which are present in the conventional index-term based representation).

The relationship between any two documents in the reduced space of di-
mensionality s can be obtained from the M. ;MS matrix given by

-’;;MS = (Esgsﬁz)tﬁsgsﬁz
D,S, KK, 3, D}
= D,S8,8.Dt
= (D:8)(D,5,)

In the above matrix, the (i,) element quantifies the relationship between doc-
uments d; and d;.

To rank documents with regard to a given user query, we simply model the
query as a pseudo-document in the original M term-document matrix. Assume
the query is modeled as the document with number 0. Then, the first row in the
matrix M, :]\23 provides the ranks of all documents with respect to this query.

Since the matrices used in the latent semantic indexing model are of rank s,
s <<t, and s << N, they form an efficient indexing scheme for the documents
in the collection. Further, they provide for elimination of noise (present in index
term-based representations) and removal of redundancy. ‘

The latent semantic indexing model introduces an interesting conceptual-
ization of the information retrieval problem based on the theory of singular value
decomposition. Thus, it has its value as a new theoretical framework. Whether it
is superior in practical situations with general collections remains to be verified.
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Query Document . Documents
Terms - Terms

Figure 2.7 A neural network model for information retrieval.

2.7.3 Neural Network Model

In an information retrieval system, document vectors are compared with query
vectors for the computation of a ranking. Thus, index terms in documents
and queries have to be matched and weighted for computing this ranking. Since
neural networks are known to be good pattern matchers, it is natural to consider
their usage as an alternative model for information retrieval.

It is now well established that our brain is composed of billions of neurons.
Each neuron can be viewed as a basic processing unit which, when stimulated
by input signals, might emit output signals as a reactive action. The signals
emitted by a neuron are fed into other neurons (through synaptic connections)
which can themselves emit new output signals. This process might repeat itself
through several layers of neurons and is usually referred to as a spread activation
process. As a result, input information is processed (i.e., analyzed and inter-
preted) which might lead the brain to command physical reactions (e.g., motor
actions) in response.

A neural network is an oversimplified graph representation of the mesh
of interconnected neurons in a human brain. The nodes in this graph are the
processing units while the edges play the role of the synaptic connections. To
simulate the fact that the strength of a synaptic connection in the human brain
changes over time, a weight is assigned to each edge of our neural network. At
each instant, the state of a node is defined by its activation level (which is a
function of its initial state and of the signals it receives as input). Depending
on its activation level, a node A might send a signal to a neighbor node B. The
strength of this signal at the node B depends on the weight associated with the
edge between the nodes A and B.

A neural network for information retrieval can be defined as illustrated
in Figure 2.7. The model depicted here is based on the work in [815]. We first
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observe that the neural network in Figure 2.7 is composed of three layers: one for
the query terms, one for the document terms, and a third one for the documents
themselves. Observe the similarity between the topology of this neural network
and the topology of the inference and belief networks depicted in Figures 2.9
and 2.10. Here, however, the query term nodes are the ones which initiate the
inference process by sending signals to the document term nodes. Following that,
the document term nodes might themselves generate signals to the document
nodes. This completes a first phase in which a signal travels from the query
term nodes to the document nodes (i.e., from the left to the right in Figure 2.7).

The neural network, however, does not stop after the first phase of sig-
nal propagation. In fact, the document nodes in their turn might generate new
signals which are directed back to the document term nodes (this is the reason
for the bidirectional edges between document term nodes and document nodes).
Upon receiving this stimulus, the document term nodes might again fire new
signals directed to the document nodes, repeating the process. The signals be-
come weaker at each iteration and the spread activation process eventually halts.
This process might activate a document d; even when such a document does not
contain any query terms. Thus, the whole process can be interpreted as the
activation of a built-in thesaurus.

To the query term nodes is assigned an initial (and fixed) activation level
equal to 1 (the maximum). The query term nodes then send signals to the
document term nodes which are attenuated by normalized query term weights
W; 4. For a vector-based ranking, these normalized weights can be derived from
the weights w; 4 defined for the vector model by equation 2.4. For instance,

Wi,g

t
Z~;=1 wi2,q

Wi,q =

where the normalization is done using the norm of the query vector.

Once the signals reach the document term nodes, these might send new
signals out directed towards the document nodes. These signals are attenuated
by normalized document term weights W; ; derived from the weights w; ; defined
for the vector model by equation 2.3. For instance,

Wi, j

Wi, =
t
D1 Wi
where the normalization is done using the norm of the document vector.
The signals which reach a document node are summed up. Thus, after
the first round of signal propagation, the activation level of the document node
associated to the document d; is given by

Wi,qg Wi,j

t ¢
I >

i,q Wi,j = n > = >
i=1 \/Zi:l Wi g X \/Zi:l wy 4
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which is exactly the ranking provided by the classic vector model.

To improve the retrieval performance, the network continues with the
spreading activation process after the first round of propagation. This modi-
fies the initial vector ranking in a process analogous to a user relevance feedback
cycle (see Chapter 5). To make the process more effective, a minimum activation
threshold might be defined such that document nodes below this threshold send
no signals out. Details can be found in [815].

There is no conclusive evidence that a neural network provides superior
retrieval performance with general collections. In fact, the model has not been
tested extensively with large document collections. However, a neural network
does present an alternative modeling paradigm. Further, it naturally allows
retrieving documents which are not initially related to the query terms — an
appealing functionality.

2.8 Alternative Probabilistic Models

One alternative which has always been considered naturally appealing for quanti-
fying document relevance is the usage of probability theory and its main streams.
One such stream which is gaining increased attention concerns the Bayesian be-
lief networks which we now discuss.

Bayesian (belief) networks are useful because they provide a clean formal-
ism for combining distinct sources of evidence (past queries, past feedback cycles,
and distinct query formulations) in support of the rank for a given document.
This combination of distinct evidential sources can be used to improve retrieval
performance (i.e., to improve the ‘quality’ of the ranked list of retrieved docu-
ments) as has been demonstrated in the work of Turtle and Croft [771].

In this chapter we discuss two models for information retrieval based on
Bayesian networks. The first model is called inference network and provides
the theoretical basis for the retrieval engine in the Inquery system [122]. Its
success has attracted attention to the use of Bayesian networks with information
retrieval systems. The second model is called belief network and generalizes the
first model. At the end, we briefly compare the two models.

Our discussion below uses a style which is quite distinct from that em-
ployed by Turtle and Croft in their original writings. Particularly, we pay more
attention to probabilistic argumentation during the development of the model.
We make a conscious effort of consistently going back to the Bayesian formalism
for motivating the major design decisions. It is our view that such an explana-
tion strategy allows for a more precise argumentation which facilitates the task
of grasping the subtleties involved.

Before proceeding, we briefly introduce Bayesian networks.

2.8.1 Bayesian Networks

Bayesian networks [630] are directed acyclic graphs (DAGs) in which the nodes
represent random variables, the arcs portray causal relationships between these
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variables, and the strengths of these causal influences are expressed by condi-
tional probabilities. The parents of a node (which is then considered as a child
node) are those judged to be direct causes for it. This causal relationship is
represented in the DAG by a link directed from each parent node to the child
node. The roots of the network are the nodes without parents.

Let z; be a node in a Bayesian network G and I'z, be the set of parent
nodes of z;. The influence of T'y, on x; can be specified by any set of functions
Fi(z;,T'z,) that satisfy

Vwi :
0 < Fi(=,I'z;) < 1

where x; also refers to the states of the random variable associated to the node Z;.
This specification is complete and consistent because the product [, Fi(z;, Ty,)
constitutes a joint probability distribution for the nodes in G.

Figure 2.8 An example of a Bayesian network.

Figure 2.8 illustrates a Bayesian network for a joint probability distribu-
tion P(x1, %2, %3, 24, Ts). In this case, the dependencies declared in the network
allow the natural expression of the joint probability distribution in terms of local
conditional probabilities (a key advantage of Bayesian networks) as follows.

P(z1, %2, %3, %4, %5) = P(21) P(2|z1) P(53]|71) P(24| T2, 23) P (75| 23)

The probability P(z1) is called the prior probability for the network and can be
used to model previous knowledge about the semantics of the application.

2.8.2 Inference Network Model

The two most traditional schools of thought in probability are based on the
Jrequentist view and the epistemological view. The frequentist view takes prob-
ability as a statistical notion related to the laws of chance. The epistemological
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Figure 2.9 Basic inference network model.

view interprets probability as a degree of belief whose specification might be de-
void of statistical experimentation. This second viewpoint is important because
we frequently refer to probabilities in our daily lives without a clear definition
of the statistical experiment which yielded those probabilities.

The inference network model (772, 771] takes an epistemological view of
the information retrieval problem. It associates random variables with the index
terms, the documents, and the user queries. A random variable associated with a,
document d; represents the event of observing that document (i.e., the model as-
sumes that documents are being observed in the search for relevant documents).
The observation of the document d; ‘asserts a belief upon the random variables
associated with its index terms. Thus, observation of a document is the cause
for an increased belief in the variables associated with its index terms.

Index term and document variables are represented as nodes in the network.
Edges are directed from a document node to its term nodes to indicate that
observation of the document yields improved belief on its term nodes.

The random variable associated with the user query models the event that
the information request specified by the query has been met. This random
variable is also represented by a node in the network. The belief in this (query)
node is a function of the beliefs in the nodes associated with the query terms.
Thus, edges are directed from the index term nodes to the query node. Figure 2.9
illustrates an inference network for information retrieval. The document d;
has ko, k;, and k; as its index terms. This is modeled by directing the edges from
the node d; to the nodes k2, k;, and k;. The query q is composed of the index
terms ki, k2, and k;. This is modeled by directing the edges from the nodes k;,
k2, and k; to the node gq. Notice that Figure 2.9 also includes three extra nodes:
g2, q1, and I. The nodes gz and ¢; are used to model an (alternative) Boolean
formulation ¢; for the query ¢ (in this case, ¢1 = (k1 A k) V k;). When such
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. (additional) information is available, the user information need I is supported
by both ¢ and g¢;.

In what follows, we concentrate our attention on the support provided to
the query node g by the observation of a document d;. Later on, we discuss the
impact of considering multiple query representations for an information need I.
This is important because, as Turtle and Croft have demonstrated, a keyword-
based query formulation (such as ¢) can be combined with a Boolean-like query
formulation (such as ¢1) to yield improved retrieval performance for the same
information need.

The complete inference network model also includes text nodes and query
concept nodes but the model discussed above summarizes the essence of the
approach.

A simplifying assumption is made which states that all random variables in
the network are binary. This seems arbitrary but it does simplify the modeling
task and is general enough to capture all the important relationships in the
information retrieval problem.

Definition Let k be a t-dimensional vector defined by k = (ki k2, ... ke)
where k1, ke, ..., k¢ are binary random variables i.e., k; € {0, 1}. These variables
define the 2t possible states for k. Further, let d; be a binary random variable
associated with a document d; and let q be a binary random variable associated
with the user query.

Notice that ¢ is used to refer to the query, to the random variable associated with
it, and to the respective node in the network. This is also the case for d; and
for each index term k;. We allow this overloading in syntax because it should
always be clear whether we are referring to either the query or to its associated
random variable.

The ranking of a document d; with respect to a query ¢ is a measure of
how much evidential support the observation of d; provides to the query q. In
an inference network, the ranking of a document d; is computed as P(g A d;)
where ¢ and d; are short representations for ¢ = 1 and d; = 1, respectively. In
general, such a ranking is given by

P(gnd;) = Y P(gAdglk) x P(k)
vk

= > P(gAd; AK)

= %P(qldj x k) x P(d; x k)

= iP(qUZ) x P(k|d;) x P(d;) (2.6)
P(ghd;) = 1Vk— P(g A dy) | |
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which is obtained by basic conditioning and the application of Bayes’ rule. Notice
that P(ql|d; X k) = P(q|k) because the k; nodes des separate the query node g from
the document node d;. Also, the notation g A dJ is a short representation for
—(g A dj).

The instantiation of a document node d; (i.e., the observation of the doc-
ument) separates its children index term nodes makmg them mutually indepen-
dent (see Bayesian theory for details). Thus, the degree of belief asserted to each
index term node k; by instantiating the document node d; can be computed sep-
arately. This implies that P (7;;’ |d;) can be computed in product form which yields
(from equation 2.6), ‘

P(gnd;) = Y Pglk) x

vk

[I Pld) < [ Pldy) | < Pd) (2.7)
Vilg: (K)=1 Vi|g:(E)=0
P(gNndj) = 1-—P(gAd;)

where P(k;|d;) = 1— P(k;|d;). Through proper specification of the probabilities
P(qlk), P(k;|d;), and P(d;), we can make the inference network cover a wide
range of useful information retrieval ranking strategies. Later on, we discuss how
to use an inference network to subsume the Boolean model and tf-idf ranking
schemes. Let us first cover the specification of the P(d;) probabilities.

Prior Probabilities for Inference Networks

Since the document nodes are the root nodes in an inference network, they receive
a prior probability distribution which is of our choosing. This prior probability
reflects the probability associated to the event of observing a given document
d; (to simplify matters, a single document node is observed at a time). Since
we have no prior preferences for any document in particular, we usually adopt
a prior probability distribution which is uniform. For instance, in the original
work on inference networks [772, 771], the probability of observing a document
d; is set to 1/N where N is the total number of documents in the system. Thus,

P(dj) = %

The choice of the value 1/N for the prior probability P(d;) is a simple
and natural specification given that our collection is composed of N documents.
However, other specifications for P(d;) might also be interesting. For instance,
in the cosine formula of the vector model, the contribution of an index term to
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the rank of the document d; is inversely proportional to the norm of the vector

' 07; The larger the norm of the document vector, the smaller is the relative
contribution of its index terms to the document final rank. This effect can be
taken into account through proper specification of the prior probabilities P(d;)
as follows. ‘

1
|d3]
P(d;) = 1-—P(d;)

P(d;) =

where Ici;l stands for the norm of the vector az; . Therefore, in this case, the larger
the norm of a document vector, the smaller its associated prior probability. Such
specification reflects a prior knowledge that we have about the behavior of vector-
based ranking strategies (which normalize the ranking in the document space).
As commanded by Bayesian postulates, previous knowledge of the application
domain should be asserted in the specification of the priors in the network, as
we have just done.

Inference Network for the Boolean Model

Here we demonstrate how an inference network can be tuned to subsume the
Boolean model. First, for the Boolean model, the prior probabilities P(d;) are all
set to 1/N because the Boolean model makes no prior distinction on documents.
Thus,

PU;) =
P(d;) = 1-—P(d;)

Regarding the conditional probabilities P(k;|d;) and P(q|k), the specification is
as follows.

N L if gi(d;) =1
P(kild;) = { 0 otherwise

P(kild;) = 1— P(k|d;)

which basically states that, when the document d; is being observed, only the
nodes associated with the index terms of the document d; are active (i.e., have
an induced probability greater than 0). For instance, observation of a document
node d; whose term vector is composed of exactly the index terms kz, k;, and k;
(see Figure 2.9) activates the index term nodes {k2,ki,k:} and no others.

Once the beliefs in the index term nodes have been computed, we can use
them to compute the evidential support they provide to the user query ¢ as
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follows.
o 1A 3G | (@ € Tang) A (Ve gi(R) = 9i(Gec))
P(qlk) = { 0 otherwise
P(glk) = 1-—P(qlk)

where G, and Guny are as defined for the classic Boolean model. The above
equation basically states that one of the conjunctive components of the user
query (expressed in disjunctive normal form) must be matched by the set of
active terms in & (in this case, thosé activated by the document observed) exactly.

Substituting the above definitions for P(g|k), P(k;|d;), and P(d;) into
equation 2.7, it can be easily shown that the set of documents retrieved is exactly
the set of documents returned by the Boolean model as defined in section 2.5.2.
Thus, an inference network can be used to subsume the Boolean model without
difficulties.

Inference Network for tf-idf Ranking Strategies

For tf-idf ranking strategies (i.e., those related to the vector model), we adopt
prior probabilities which reflect our prior knowledge of the importance of docu-
ment normalization. Thus, we set the prior P(d;) to 1/ ]d | as follows.
L
|d;]
P@) = 1-P(d)

Further, we have to decide where to introduce the tf (term-frequency) and the
idf (inverse-document-frequency) factors in the network. For that purpose, we
consider that the tf and idf factors are normalized (as in equation 2.1) and that
these normalized factors are strictly smaller than 1.

We first focus on capturing the impact of the tf factors in the network.
Normalized tf factors are taken into account through the beliefs asserted upon
the index term nodes as follows.

P(ki|ld;) = fij (2.9)
P(k:|d;) 1 — P(k;|d;)

I

These equations simply state that, according to the observed document d;, the
relevance of a term k; is determined by its normalized term-frequency factor.

We are now in a position to consider the influence of idf factors. They are

taken into account through the specification of the impact of index term nodes
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~on the query node. Define a vector /;:; given by,
ki=k | (9i(k) =1 A Yz g;(k) =0)

The vector k; is a reference to the state of the vector k in which the node k; is
active and all others are inactive. The motivation is that tf-ldf ranking strategies
sum up the individual contributions of index terms and k allows us to consider
the influence of the term %; in isolation. We are now ready to define the influence
of the index term nodes in the query node ¢ as

P(glk) = 1-—P(q|F)

where idf; here is a normalized version of the idf factor defined in equation 2.2.
By applying equations 2.8, 2.9, and 2.10 to equation 2.7, we can then write

P(gAd;) = > Palks) x P(kilds) x | [] P(aldy) | x P(d;)
Vi Y 1#4
— = 1
= (I PEld;) | x Pdy) x > P(ki|d;) x P(qlki) X —=——
Vg - P(kzldj)
? VEk;
1 ; 1
= ij—(;l_.—x Z fi’jXdeixl—f--
] Vilgi (dj)=1Agi(q)=1 7
PlgAd;) = 1-P(gAdy)

which provides a tf-idf-like ranking. Unfortunately, C; depends on a product
of the various probabilities P(k;|d;) which vary from document to document
and thus the ranking is distinct from the one provided by the vector model.
Despite this peculiarity in the tf-idf ranking generated, it has been shown that
an inference network is able to provide good retrieval performance with general
collections. The reason is that the network allows us to consistently combine
evidence from distinct evidential sources to improve the final ranking, as we now
discuss.

Combining Evndentual Sources

In Figure 2.9, the first query node q is the standard keyword-based query for-
mulation for the user information need I. The second query g; is a Boolean-like
query formulation for the same information need (i.e., an additional evidential
source collected from a specialist). The joint support these two query formu-
lations provide to the information need node I can be modeled through, for
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instance, an OR operator (i.e., I = ¢V g1). In this case, the ranking provided
by the inference network is computed as,

P(Ind;) = > PUIE) x P(kld;) x P(dy)
k
= > (- P(@@k) P@lF)) x Pkld;) x P(d;)
k

which might yield a retrieval performance which surpasses the retrieval per-
formance obtained with each of the query nodes in isolation as demonstrated
in [771].

2.8.3 Belief Network Model

The belief network model, introduced in 1996 by Ribeiro-Neto and Muntz [674],
is also based on an epistemological interpretation of probabilities. However, it
departs from the inference network model by adopting a clearly defined sample
space. As a result, it yields a slightly different network topology which provides
a separation between the document and the query portions of the network. This
is the main difference between the two models and one which has theoretical
implications.

The Probability Space

The probability space adopted was first introduced by Wong and Yao [830] and
works as follows. All documents in the collection are indexed by index terms and
the universe of discourse U is the set K of all index terms.

Definition The set K = {k1,...,k} is the universe of discourse and defines
the sample space for the belief network model. Let u C K be a subset of K. To
each subset u is associated a vector k such that g;(k) = 1 <= k; € u.

The introduction of the vector & is useful to keep the notation compatible with
the one which has been used throughout this chapter.

Each index term is viewed as an elementary concept and K as a concept
space. A concept u is a subset of K and might represent a document in the
collection or a user query. In a belief network, set relationships are specified
using random variables as follows.

Definition To each index term k; is associated a binary random variable which
is also referred to as k;. The random variable k; is set to 1 to indicate that the
index k; is a member of a concept/set represented by k. '
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This association of concepts with subsets is useful because it allows us to express
the logical notions of conjunction, disjunction, negation, and implication as the
more familiar set-theoretic notions of intersection, union, complementation, and
inclusion. Documents and user queries can be defined as concepts in the sample
space K as follows.

Definition A document d; in the collection is represented as a concept (i.e., a
set) composed of the terms which are used to index d;. Analogously, a user query
q is represented as a concept composed of the terms which are used to index q.

A probability distribution P is defined over K as follows. Let ¢ be a generic
concept in the space K representing a document or user query. Then,

P(e) = > P(clu) x P(u) (2.11)
Pu) = @) (2.12)

Equation 2.11 defines P(c) as the degree of coverage of the space K by c. Such a
coverage is computed by contrasting each of the concepts in K with ¢ (through
P(c|u)) and by summing up the individual contributions. This sum is weighted
by the probability P(u) with which v occurs in K. Since at the beginning
the system has no knowledge of the probability with which a concept w occurs
in the space K, we can assume that each v is equally likely which results in
equation 2.12.

Belief Network Model

In the belief network model, the user query g is modeled as a network node to
which is associated a binary random variable (as in the inference network model)
which is also referred to as ¢g. This variable is set to 1 whenever ¢ completely
covers the concept space K. Thus, when we assess P(q) we compute the degree of
coverage of the space K by ¢. This is equivalent to assessing the degree of belief
associated with the following proposition: Is it true that g completely covers all
possible concepts in K7 , . :

A document d; is modeled as a network node with which is associated a
binary random variable which is also referred to as d;. This variable is 1 to
indicate that d; completely covers the concept space K. When we assess P(d;),
we compute the degree of coverage of the space K by d;.” This is equivalent to
assessing the degree of belief associated with the following proposition: Is it true
that d; completely covers all possible concepts in K?

According to the above formalism, the user query and the documents in
the collection are modeled as subsets of index terms. Each of these subsets is
interpreted as a concept embedded in the concept space K. which works as a
common sample space. Furthermore, user queries and documents are modeled
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Figure 2.10 Basic belief network model.

identically. This is an important observation because it defines the topology of
the belief network.

Figure 2.10 illustrates our belief network model. As in the inference network
model, a query g is modeled as a binary random variable which is pointed to
by the index term nodes which compose the query concept. Documents are
treated analogously to user queries (i.e., both are concepts in the space K).
Thus, contrary to the inference network model, a document node is pointed to
by the index term nodes which compose the document. This is the topological
difference between the two models and one which has more implications than it
seems at first glance.

The ranking of a document d; relative to a given query g is interpreted as
a concept matching relationship and reflects the degree of coverage provided to
the concept d; by the concept g.

Assumption In the belief network model, P(d;|q) is adopted as the rank of the
document d; with respect to the query gq.

By the application of Bayes’ theorem, we can write P(d;|q) = P(d; A q)/P(q).
Since P(q) is a constant for all documents in the collection, we can write P(d;|q)
~ P(d; A q) i.e., the rank assigned to a document d; is directly proportional to
P(d; A g). This last probability is computed through the application of equa-
tion 2.11 which yields

P(djlg) ~ Y P(djAqlu)x P(u)
Yu

In the belief network of Figure 2.10, instantiation of the index term variables
logically separates the nodes ¢ and d making them mutually independent (i.e.,
the document and query portions of the network are logically separated by in-
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stantiation of the index term nodes). Therefore,
P(djlg) ~ > P(djlu) x P(qlu) x P(u)
Yu

which can be rewritten as

P(djla) ~ > P(ds|k) x P(q|k) x P(R) | (2.13)
vE

To complete the behef network we need to specify the conditional probabil-
ities P(q|k) and P(d; |k). Distinct specifications of these probabilities allow the
modeling of different ranking strategies (corresponding to different TR, models).
We now discuss how to specify these probabilities to subsume the vector model.

For the vector model, the probabilities P(q|k) and P(d; |k) are specified as
follows. Let,

Bi=F | (g:(F)=1 A ¥z g;(F) = 0)

as before. Also,

. ———:5‘-‘1— iszEiAgi(q)zl

P(qlk) = D imi Wi

0 otherwise
P(glk) = 1—P(qlk)

Further, define
P(dlk) = 2 i i
0 otherwise

P(djlk) = 1-P(dj|k)

Then, the ordering of the retrieved documents (i.e., the ranking) defined by
P(d;|q) coincides with the ordering generated by the vector model as specified
in section 2.5.3. Thus, the belief network model can be tuned to subsume the
vector model which cannot be accomplished with the inference network model.

2.8.4 Comparison of Bayesian Network Models

There is a close resemblance between the belief network model and the inference
network model. However, this resemblance hides important differences between
the two models. First, the belief network model is based on a set-theoretic view

73




60 MODELING

of the IR ranking problem and adopts a clearly defined sample space. The in-
ference network model takes a purely epistemological view of the IR problem
which is more difficult to grasp (because, for instance, the sample space is not
clearly defined). Second, the belief network model provides a separation be-
tween the document and the query portions of the network which facilitates the
modeling of additional evidential sources such as past queries and past relevance
information. Third, as a result of this document-query space separation, the
belief network model is able to reproduce any ranking strategy generated by the
inference network model while the converse is not true.

To see that the belief network ranking subsumes any ranking generated
by an inference network, compare equations 2.6 and 2.13. The key distinction
is between the terms P(d;|k) and P(k|d;). For the latter, instantiation of the
document node d; separates the index term nodes making them mutually in-
dependent. Thus, the joint probability P(Eldj) can always be computed as the
product of the individual probabilities P(k;|d;). However, the computation of

P(djfl;) might be non-decomposable in a product of term-based probabilities.

As a result, P(d;|k) can express any probability function defined with P(k|dy)
while the converse is not true.

One should not infer from the above comparison that the inference network
model is not a good model. On the contrary, it has been shown in the literature
that the inference network model allows top retrieval performance to be accom-
plished with general collections. Further, it is the retrieval model used by the
Inquery system. The point of the comparison is that, from a theoretical point
of view, the belief network model is more general. Also, it provides a separation
between the document space and the query space which simplifies the modeling
task.

2.8.5 Computational Costs of Bayesian Networks

In the inference network model, according to equation 2.6, only the states which
have a single document active node are considered. Thus, the cost of computing
the ranking is linear on the number of documents in the collection. As with
conventional collections, index structures such as inverted files (see Chapter 8)
are used to restrict the ranking computation to those documents which have
terms in common with the query. Thus, the cost of computing an _inference
network ranking has the same complexity as the cost of computing a vectorial
ranking.

In the belief network model, according to equation 2.13, the only states
(of the roots nodes) considered (for computing the rank of a document d;) are
the ones in which the active nodes are exactly those associated with the query
terms. Thus, again, the cost of computing the ranking is linear on the number of
documents in the collection. If index structures are used, the cost of computing
a belief network ranking has the same complexity as the cost of computing a
vectorial ranking. ’
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Therefore, the Bayesian network models discussed here do not impose sig-
~ nificant additional costs for ranking computation. This is so because the net-
works presented do not include cycles, which implies that belief propagation can
be done in a time proportional to the number of nodes in the network.

2.8.6 The Impact of Bayesian Network Models

The classic Boolean model is based on a neat formalism but is not very effective
for information retrieval. The classic vector model provides improved answer
sets but lacks a more formal framework. Many attempts have been made in the
past to combine the best features of each model. The extended Boolean model
and the generalized vector space model are two well known examples. These past
attempts are grounded in the belief that the combination of selected properties
from distinct models is a promising approach towards improved retrieval.

. Bayesian network models constitute modern variants of probabilistic rea-
soning whose major strength (for information retrieval) is a framework which
allows the neat combination of distinct evidential sources to support a relevance
judgement (i.e., a numerical rank) on a given document. In this regard, belief
networks seem more appropriate than previous approaches and more promis-
ing. Further, besides allowing the combination of Boolean and vector features, a,
belief network can be naturally extended to incorporate evidential information
derived from past user sessions [674] and feedback cycles [332].

The inference network model has been successfully implemented in the
Inquery retrieval system [122] and compares favorably with other retrieval sys-
tems. However, despite these promises, whether Bayesian networks will become
popular and widely used for information retrieval remains to be seen.

2.9 Structured Text Retrieval Models

Consider a user with a superior visual memory. Such a user might then recall
that the specific document he is interested in contains a page in which the string
‘atomic holocaust’ appears in italic in the text surrounding a Figure whose label
contains the word ‘earth.” With a classic information retrieval model, this query
could be expressed as [‘atomic holocaust’ and ‘earth’] which retrieves all the
documents containing both strings. Clearly, however, this answer contains many
more documents than desired by this user. In this particular case, the user would
like to express his query through a richer expression such as

same-page (near (‘atomic holocaust,” Figure (label (‘earth’))))
which conveys the details in his visual recollection. Further, the user might be
interested in an advanced interface which simplifies the task of specifying this

(now complex) query. This example illustrates the appeal of a query language
which allows us to combine the specification of strings (or patterns) with the
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specification of structural components of the document. Retrieval models which
combine information on text content with information on the document structure
are called structured text retrieval models.

For a query such as the one illustrated above, a structured text retrieval
system searches for all the documents which satisfy the query. Thus, there is
no notion of relevance attached to the retrieval task. In this sense, the cur-
rent structured text retrieval models are data (instead of information) retrieval
models. However, the retrieval system could search for documents which match
the query conditions only partially: In this situation, the matching would be ap-
proximate and some ranking would have to be used for ordering the approximate
answers. Thus, a structured text retrieval algorithm can be seen as an informa-
tion retrieval algorithm for which the issue of appropriate ranking is not well
established. In fact, this is an actual, interesting, and open research problem.

At the end of the 1980s and throughout the 1990s, various structured text
retrieval models have appeared in the literature, Usually, the more expressive
the model, the less efficient is its query evaluation strategy. Thus, selection
of a structured model for a given application must be exercised with care. A
good policy is to select the most efficient model which supports the functionality
required by the application in view.

Here, we do not survey all the structured text retrieval models. Instead,
we briefly discuss the main features of two of them, namely, a model based on
non-overlapping lists and a model based on prozimal nodes. These two models
should provide a good overview of the main issues and tradeoffs in structured
text retrieval.

We use the term match point to refer to the position in the text of a sequence
of words which matches (or satisfies) the user query. Thus, if the user specifies the
simple query [‘atomic holocaust in Hiroshima’] and this string appears in three
positions in the text of a document dj, we say that the document d; contains
three match points. Further, we use the term region to refer to a contiguous
portion of the text and the term node to refer to a structural component of the
document such as a chapter, a section, a subsection, etc. Thus, a node is a region
with predefined topological properties which are known both to the author of
the document and to the user who searches the document system.

2.9.1 Model Based on Non-Overlapping Lists

Burkowski [132, 133] proposes to divide the whole text of each document in non-
overlapping text regions which are collected in a list. Since there are multiple
ways to divide a text in non-overlapping regions, multiple lists are generated.
For instance, we might have a list of all chapters in the document, a second
list of all sections in the document, and a third list of all subsections in the
document. These lists are kept as separate and distinct data structures. While
the text regions in the same (flat) list have no overlapping, text regions from
distinct lists might overlap. Figure 2.11 illustrates four separate lists for the
same document.
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Figure 2.11 Representation of the structure in the text of a document through four
separate (flat) indexing lists.

To allow searching for index terms and for text regions, a single inverted file
(see Chapter 8 for a definition of inverted files) is built in which each structural
component stands as an entry in the index. Associated with each entry, there
is a list of text regions as a list of occurrences. Moreover, such a list could be
easily merged with the traditional inverted file for the words in the text. Since
the text regions are non-overlapping, the types of queries which can be asked are
simple: (a) select a region which contains a given word (and does not contain
other regions); (b) select a region A which does not contain any other region B
(where B belongs to a list distinct from the list for A); (c) select a region not
contained within any other region, etc.

2.9.2 Model Based on Proximal Nodes

Navarro and Baeza-Yates [41, 589, 590] propose a model which allows the def-
inition of independent hierarchical (non-flat) indexing structures over the same
document text. Each of these indexing structures is a strict hierarchy composed
of chapters, sections, paragraphs, pages, and lines which are called nodes (see
Figure 2.12). To each of these nodes is associated a text region. Further, two
distinct hierarchies might refer to overlapping text regions.

Given a user query which refers to distinct hierarchies, the compiled answer
is formed by nodes which all come from only one of them. Thus, an answer cannot
be composed of nodes which come from two distinct hierarchies (which allows for
faster query processing at the expense of less expressiveness). Notice, however,
that due to the hierarchical structure, nested text regions (coming from the same
hierarchy) are allowed in the answer set.

Figure 2.12 illustrates a hierarchical indexing structure composed of four

77



64 MODELING
@ © Chapter

® Sections

®
[ ]
[}

Stuibsections

®

e—ee ® @ o @& ® ’‘e—e@e-@ Subsubsections

o .
[rclocaust o [10]—{256]—» oo
H

Figure 2.12 Hierarchical index for structural components and flat index for words.

levels (corresponding to a chapter, sections, subsections, and subsubsections of
the same document) and an inverted list for the word ‘holocaust.” The entries in
this inverted list indicate all the positions in the text of the document in which
the word ‘holocaust’ occurs. In the hierarchy, each node indicates the position
in the text of its associated structural component (chapter, section, subsection,
or subsubsection).

The query language allows the specification of regular expressions (to search
for strings), the reference to structural components by name (to search for chap-
ters, for instance), and a combination of these. In this sense, the model can be
viewed as a compromise between expressiveness and efficiency. The somewhat
limited expressiveness of the query language allows efficient query processing by
first searching for the components which match the strings specified in the query
and, subsequently, evaluating which of these components satisfy the structural
part of the query.

Consider, for instance, the query [(*section) with (‘holocaust’)] which
searches for sections, subsections, or subsubsections which contain the word
‘holocaust.” A simple query processing strategy is to traverse the inverted list
for the term ‘holocaust’ and, for each entry in the list (which indicates an occur-
rence of the term ‘holocaust’ in the text), search the hierarchical index looking
for sections, subsections, and subsubsections containing that occurrence of the
term. A more sophisticated query processing strategy is as follows. For the first
entry in the list for ‘holocaust,” search the hierarchical index as before. This
implies traversing down the hierarchy until no more successful matches occur
(or the bottom of the hierarchy is reached). Let the last matching structural
component be referred to as the innermost matching component. Once this first
search is concluded, do not start all over again for the following entry in the
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inverted list. Instead, verify whether the innermost matching component also
- matches the second entry in the list. If it does, we immediately conclude that
the larger structural components above it (in the hierarchy) also do. Proceed
then to the third entry in the list, and so on. Notice that the query processing
is accelerated because only the nearby (or proximal) nodes in the list need to be
searched at each time. This is the reason for the label prozimal nodes.

The model based on proximal nodes allows us to formulate queries which
are more complex than those which can be formulated in the model based on non-
overlapping lists. To speed up query processing, however, only nearby (proximal)
nodes are looked at which imposes restrictions on the answer set retrieved (all
nodes must come from the same hierarchy). More complex models for structured
retrieval have been proposed in the literature as discussed in [41, 590].

2.10 Moeodels for Browsing

As already observed, the user might not be interested in posing a specific query
to the system. Instead, he might be willing to invest some time in exploring
the document space looking for interesting references. In this situation, we say
that the user is browsing the space instead of searching. Both with browsing and
searching, the user has goals which he is pursuing. However, in general, the goal
of a searching task is clearer in the mind of the user than the goal of a browsing
task. As is obvious, this is not a distinction which is valid in all scenarios. But,
since it is simple and provides a clear separation between the tasks of searching
and browsing, it is adopted here. We distinguish three types of browsing namely,
flat, structure guided, and hypertext.

2.10.1 Flat Browsing

The idea here is that the user explores a document space which has a flat orga-
nization. For instance, the documents might be represented as dots in a (two-
dimensional) plan or as elements in a (single dimension) list. The user then
glances here and there looking for information within the documents visited.
For instance, he might look for correlations among neighbor documents or for
keywords which are of interest to him: Such keywords could then be added to
the original query in an attempt to provide better contextualization. This is a
process called relevance feedback which is discussed in detail in Chapter 5. Also,
the user could explore a single -document in a flat manner. For example, he
could use a browser to look into a Web page, using the arrows and the scroll
bar. One disadvantage is that in a given page or screen there may not be any
indication about the context where the user is. For example, if he opens a novel
at a random page, he might not know in which chapter that page is.

Web search engines such as “Yahoo!’ provide, besides the standard search
interface, a hierarchical directory which can be used for browsing (and frequently,
for searching). However, the organization is not flat as discussed below.
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2.10.2 Structure Guided Browsing

To facilitate the task of browsing, the documents might be organized in a struc-
ture such as a directory. Directories are hierarchies of classes which group doc-
uments covering related topics. Such hierarchies of classes have been used to
classify document collections for many centuries now. Thus, it seems natural
to adapt them for use with modern browsing interfaces. In this case, we say
that the user performs a structure guided type of browsing. The same idea can
be applied to a single document. For example, if we are browsing an electronic
book, a first level of content could be the chapters, the second level, all sections,
and so on. The last level would be the text itself (flat). A good user interface
could go down or up those levels in a focused manner, assisting the user with
the task of keeping track of the context. '

Besides the structure which directs the browsing task, the interface can also
include facilities such as a history map which identifies classes recently visited.
This might be quite useful for dealing with very large structures — an issue
discussed in Chapters 10 and 13. When searching, the occurrences can also be
displayed showing just the structure (for example, using the table of contents).
This allows us to see the occurrences in a global context instead of in a page of
text that may have no indication of where we are.

2.10.3 The Hypertext Model

One fundamental concept related to the task of writing down text is the notion
of sequencing. Written text is usually conceived to be read sequentially. The
reader should not expect to fully understand the message conveyed by the writer
by randomly reading pieces of text here and there. One might rely on the text
structure to skip portions of the text but this might result in miscommunication
between reader and writer. Thus, a sequenced organizational structure lies un-
derneath most written text. When the reader fails to perceive such a structure
and abide by it, he frequently is unable to capture the essence of the writer’s
message.

Sometimes, however, we are looking for information which is subsumed by
the whole text but which cannot be easily captured through sequential reading.
For instance, while glancing at a book about the history of the wars fought by
man, we might be momentarily interested solely in the regional wars in Europe.
We know that this information is in the book, but we might have a hard time
finding it because the writer did not organize his writings with this purpose (he
might have organized the wars chronologically). In such a situation, a different
organization of the text is desired. However, there is no point in rewriting the
whole text. Thus, the solution is to define a new organizational structure besides
the one already in existence. One way to accomplish such a goal is through the
design of a hypertext.
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Hypertext Definition and the Navigational Task

A hypertezt is a high level interactive navigational structure which allows us to
browse text non-sequentially on a computer screen. It consists basically of nodes
which are correlated by directed links in a graph structure.

To each node is associated a text region which might be a chapter in a
book, a section in an article, or a Web page. Two nodes A and B might be
connected by a directed link [ 45 which correlates the texts associated with these
two nodes. In this case, the reader might move to the node B while reading the
text associated with the node A. .

In its most conventional form, a hypertext link l45 is attached to a spe-
cific string inside the text for node A. Such a string is marked specially (for
instance, its characters might appear in a different color or underlined) to indi-
cate the presence of the underlying link. While reading the text, the user might
come across a marked string. If the user clicks on that string, the underlying
directed link is followed, and a new text region (associated with the node at the
destination) is displayed on the screen.

The process of navigating the hypertext can be understood as a traversal of
a directed graph. The linked nodes of the graph represent text nodes which are
semantically related. While traversing this graph the reader visualizes a flow of
information which was conceived by the designer of the hypertext. Consider our
previous example regarding a book on the wars fought by man. One might design
a hypertext composed of two distinct webs (here, a web is simply a connected
component formed by a subset of all links in the hypertext). While the first
web might be designed to provide access to the local wars fought in Europe
in chronological order, the second web might be designed to provide access to
the local wars fought by each European country. In this way, the user of this
hypertext can access the information according to his particular need.

When the hypertext is large, the user might lose track of the organizational
structure of the hypertext. The effect is that the user might start to take bad
navigational decisions which might sidetrack him from his main goal (which
usually consists of finding a piece of information in the hypertext). When this
happens, the user is said to be lost in hyperspace [604]. To avoid this problem,
it is desirable that the hypertext include a hypertext map which shows where
the user is at all times. In its simplest form, this map is a directed graph which
displays the current node being visited. Additionally, such a map could include
information on the paths the user has traveled so far. ..This can be used to remind
the user of the uselessness of following paths which have been explored already.

While navigating a hypertext, the user is restricted to the intended flow of
information previously conceived by the hypertext designer. Thus, the task of
designing a hypertext should take into account the needs of its potential users.
This implies the execution of a requirement analysis phase before starting the
actual implementation of the hypertext. Such a requirement analysis is critically
important but is frequently overlooked.

Furthermore, during the hypertext navigation, the user might find it dif-
ficult to orient himself. This difficulty arises even in the presence of a guiding
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tool such as the hypertext map discussed above. One possible reason is an exces-
sively complex hypertext organization with too many links which allow the user
to travel back and forth. To avoid this problem, the hypertext can have a simpler
structure which can be quickly remembered by the user at all times. For instance, -
the hypertext can be organized hierarchically to facilitate the navigational task.

Definition of the structure of the hypertext should be accomplished in a
domain modeling phase (done after a requirement analysis phase). Further, after
the modeling of the domain, a user interface design should be concluded prior
to implementation. Only then, can we say that we have a proper hypertext
structure for the application at hand. In the Web, however, pages are usually
implemented with no attention paid to requirement analysis, domain modeling,
and user interface design. As a result, Web pages are frequently poorly conceived
and often fail to provide the user with a proper hypertext structure for assistance
with the information seeking task.

With large hypertexts, it might be difficult for the user to position himself
in the part of the whole graph which is of most interest to him. To facilitate this
initial positioning step, a search based on index terms might be used. In [540],
Manber discusses the advantages of this approach.

Hypertexts provided the basis for the conception and design of the hy-
pertext markup language (HTML) and the hypertext transfer protocol (HTTP)
which originated the World Wide Web (which we simply refer to as the Web). In
Chapter 13, we discuss the Web in detail. We briefly discuss some of its features -
below.

About the Web

When one talks about the Web, the first concept which comes to mind is that
of a hypertext. In fact, we frequently think of the Web as a huge distributed
hypertext domain. However, the Web is not exactly a proper hypertext because
it lacks an underlying data model, it lacks a navigational plan, and it lacks
a consistently designed user interface. Each one of the millions of Web page
designers devises his own interface with its own peculiar characteristics. Many
times we visit a Web site simply looking for a phone number and cannot find it
because it is buried in the least expected place of the local hypertext structure.
Thus, the Web user has no underlying metaphor to assist him in the search for
information of interest. .

Instead of saying that the Web is a hypertext, we prefer to say that it is
a pool of (partially) interconnected webs. Some of these webs might be charac-
terized as a local hypertext (in the sense that they have an underlying structure
which enjoys some consistency) but others might be simply a collection of pages
~ designed separately (for instance, the web of a university department whose pro-
fessors design their own pages). Despite not being exactly a hypertext, the Web
has provided us with a new dimension in communication functionality because
it is easily accessible world wide at very low cost. And maybe most important,
the Web has no control body setting up regulations and censorship rules. As a
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. result, for the first time in the history of mankind, any one person can publish
his writings through a large medium without being subjected to the filtering of
an editorial board.

For a more thorough discussion of these and many other issues related to
the Web, the user is referred to Chapter 13.

2.11 Trends and Research Issues

There are three main types of products and systems which can benefit directly
from research in models for information retrieval: library systems, specialized
retrieval systems, and the Web.

Regarding library systems, there is currently much interest in cognitive and
behavioral issues oriented particularly at a better understanding of which criteria,
the users adopt to judge relevance. From the point of view of the computer
scientist, a main question is how this knowledge about the user affects the ranking
strategies and the user interface implemented by the system. A related issue is
the investigation of how models other than the Boolean model (which is still
largely adopted by most large commercial library systems) affect the user of a
library.

A specialized retrieval system is one which is developed with a particu-
lar application in mind. For instance, the LEXIS-NEXIS retrieval system (see
Chapter 14), which provides access to a very large collection of legal and busi-
ness documents, is a good example of a specialized retrieval system. In such a
system, a key problem is how to retrieve (almost) all documents which might
be relevant to the user information need without also retrieving a large number
of unrelated documents. In this context, sophisticated ranking algorithms are
highly desirable. Since ranking based on single evidential sources is unlikely to
provide the appropriate answers, research on approaches for combining several
evidential sources seems highly relevant (as demonstrated at the various TREC
conferences, see Chapter 3 for details).

In the Web, the scenario is quite distinct and unique. In fact, the user
of the Web frequently does not know what he wants or has great difficulty in
properly formulating his request. Thus, research in advanced user interfaces is
highly desirable. From the point of view of the ranking engine, an interesting
problem is to study how the paradigm adopted for the user interface affects the
ranking. Furthermore, it is now well established that the indexes maintained by
the various Web search engines are almost disjoint (e.g., the ten most popular
search engines have indexes whose intersection corresponds to less than 2% of
the total number of pages indexed). In this scenario, research on meta-search
engines (i.e., engines which work by fusing the rankings generated by other search
engines) seems highly promising.

2.12 Bibliographic Discussion

Early in 1960, Maron and Kuhns [547] had already discussed the issues of rel-
evance and probabilistic indexing in information retrieval. T'wenty-three years
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later, Salton and McGill wrote a book [698] which became a classic in the field.
The book provides a thorough coverage of the three classic models in information
retrieval namely, the Boolean, the vector, and the probabilistic models. Another
landmark reference is the book by van Rijsbergen [785] which, besides also cover-
ing the three classic models, presents a thorough and enjoyable discussion on the
probabilistic model. The book edited by Frakes and Baeza-Yates [275] presents
several data structures and algorithms for IR and is more recent. Further, it
includes a discussion of ranking algorithms by Harman [340] which provides in-
teresting insights into the history of information retrieval from 1960 to 1990.

Boolean operations and their implementation are covered in [803]. The
inadequacy of Boolean queries for information retrieval was characterized early
on by Verhoeff, Goffman, and Belzer [786]. The issue of adapting the Boolean
formalism to operate with other frameworks received great attention. Book-
stein discusses the problems related with merging Boolean and weighted re-
trieval systems [101] and the implications of Boolean structure for probabilistic
retrieval [103]. Losee and Bookstein [522] cover the usage of Boolean queries with
probabilistic retrieval. Anick et al. [21] propose an interface based on natural
language for Boolean retrieval. A thesaurus-based Boolean retrieval system is
proposed in [493]. ‘

The vector model is maybe the most popular model among the research
community in information retrieval. Much of this popularity is due to the long-
term research of Salton and his associates [697, 704]. Most of this research re-
volved around the SMART retrieval system developed at Cornell University [695,
842, 696]. Term weighting for the vector model has also been investigated thor-
oughly. Simple term weighting was used early on by Salton and Lesk [697].
Sparck Jones introduced the idf factor [409, 410] and Salton and Yang verified
its effectiveness for improving retrieval [704]: Yu and Salton [842] further stud-
ied the effects of term weighting in the final ranking. Salton and Buckley [696]
summarize 20 years of experiments in term weighting with the SMART system.
Raghavan and Wong [665] provide a critical analysis of the vector model.

The probabilistic model was introduced by Robertson and Sparck Jones
[677] and is thoroughly discussed in [785]. Experimental studies with the model
were conducted by Sparck Jones [411, 412] which used feedback from the user to
estimate the initial probabilities. Croft and Harper [199] proposed a method to
estimate these probabilities without feedback from the user. Croft [198] later on
added within-document frequency weights into the model. Fuhr discusses proba-
bilistic indexing through polynomial retrieval functions [281, 284]. Cooper, Gey,
and Dabney [186] and later on Gey [295] propose the use of logistic regression
with probabilistic retrieval. Lee and Kantor [494] study the effect of inconsistent
expert judgements on probabilistic retrieval. Fuhr [282] reviews various vari-
ants of the classic probabilistic model. Cooper [187], in a seminal paper, raises
troubling questions on the utilization of the probabilistic ranking principle in
information retrieval.

The inference network model was introduced by Turtle and Croft [772, 771]
in 1990. Haines and Croft [332] discuss the utilization of inference networks for .
user relevance feedback (see Chapter 5). Callan, Lu, and Croft [139] use an
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inference network to search distributed document collections. Callan [138], in
" his turn, discusses the application of inference networks to information filtering.
The belief network model, due to Ribeiro-Neto and Muntz [674], generalizes the
inference network model. :

The extended Boolean model was introduced by Salton, Fox, and Wu [703]. .
Lee, Kim, Kim, and Lee [496] discuss the evaluation of Boolean operators with
the extended Boolean model, while properties of the model are discussed in [495].
The generalized vector space model was introduced in 1985 by Wong, Ziarko, and
Wong [832, 831]. Latent semantic indexing was introduced in 1988 by Furnas,
Deerwester, Dumais, Landauer, Harshman, Streeter, and Lochbaum [287]. In a
subsequent paper, Bartell, Cottrell, and Belew [62] show that latent semantic
indexing can be interpreted as a special case of multidimensional scaling.

Regarding neural network models for information retrieval, our discussion
in this book is based mainly on the work by Wilkinson and Hingston [815].
But we also benefited from the writings of Kwok on the subject and related
topics [466, 467, 469, 468]. \

The fuzzy set model (for information retrieval) covered in this book is due
to Ogawa, Morita, and Kobayashi [616]. The utilization of fuzzy theory in infor-
mation retrieval goes back to the 1970s with the work of Radecki [658, 659, 660,
661}, of Sachs [691], and of Tahani [755]. Bookstein [102] proposes the utilization
of fuzzy operators to deal with weighted Boolean searches. Kraft and Buel [461]
utilize fuzzy sets to generalize a Boolean system. Miyamoto, Miyake, and
Nakayama [567] discuss the generation of a pseudothesaurus using co-occurrences
and fuzzy operators. Subsequently, Miyamoto and Nakayama [568] discuss the
utilization of this thesaurus with information retrieval systems.

Our discussion on structured text is based on the survey by [41]. An-
other survey of interest (an older one though) is the work by MacLeod [533].
Burkowski [132, 133] proposed a model based on non-overlapping regions.
Clarke, Cormack, and Burkowski [173] extended this model with overlapping
capabilities. The model based on proximal nodes was proposed by Navarro and
Baeza-Yates [589, 590]. In [534], MacLeod introduced a model based on a sin-
gle hierarchy which also associates attributes with nodes in the hierarchy (for
database-like querying) and hypertext links with pairs of nodes. Kilpelainen and
Mannila [439] discuss the retrieval from hierarchical texts through the specifica-
tion of partial patterns. In [183], Consens and Milo discuss algebras for querying
text regions.

A classic reference on hypertexts is the book by Nielsen [604]. Another
popular reference is the book by Shneiderman and Kearsley [727]. Conklin [181]
presents an introductory survey of the area. The Communications of the ACM
dedicated an special edition [177] to hypermedia which discusses in detail the
Dexter model — a reference standard on the terminology and semantics of basic
hypermedia concepts. A subsequent edition [178] was dedicated to the presen-
tation of various models for supporting the design of hypermedia applications.

-y
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Chapter 4
Query Languages

with Gonzalo Navarro

4.1 Intfroduction

We cover in this chapter the different kinds of queries normally posed to text
retrieval systems. This is in part dependent on the retrieval model the system
adopts, i.e., a full-text system will not answer the same kinds of queries as those
answered by a system based on keyword ranking (as Web search engines) or on a
hypertext model. In Chapter 8 we explain how the user queries are solved, while
in this chapter we show which queries can be formulated. The type of query the
user might formulate is largely dependent on the underlying information retrieval
model. The different models for text retrieval systems are covered in Chapter 2.

As in previous chapters, we want to distinguish between information re-
trieval and data retrieval, as we use this dichotomy to classify different query
languages. We have chosen to distinguish first languages that allow the answer
to be ranked, that is, languages for information retrieval. As covered in Chapter
2, for the basic information retrieval models, keyword-based retrieval is the main
type of querying task. For query languages not aimed at information retrieval,
the concept of ranking cannot be easily defined, so we consider them as languages
for data retrieval. Furthermore, some query langusges are not intended for final
users and can be viewed as languages that a higher level software package should
use to query an on-line database or a CD-ROM archive. In that case, we talk
about protocols rather than query languages. Depending on the user experience,
a different query language will be used. For example, if the user knows exactly
what he wants, the retrieval task is easier and ranking may not even be needed.

An important issue is that most query languages try to use the content
(i-e., the semantics) and the structure of the text (i.e., the text syntax) to
ﬁnd relevant documents. In that sense, the system may fall to find the relevant
answers (see Chapter 3). Tor this reason, a number of techniques meant to
enhance the usefulness of the queries exist. Examples include the expansion of
a word to the set of its synonyms or the use of a thesaurus and stemming to
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put together all the derivatives of the same word. Moreover, some words which
are very frequent and do not carry meaning (such as ‘the’), called stopwords,
may be removed. This subject is covered in Chapter 7. Here we assume that
all the query preprocessing has already been done. Although these operations
are usually done for information retrieval, many of them can also be useful in
a data retrieval context. When we want to emphasize the difference between
words that can be retrieved by a query and those which cannot, we call the
former ‘keywords.’

Orthogonal to the kind of queries that can be asked is the subject of the
retrieval unit the information system adopts. The retrieval unit is the basic ele-
ment which can be retrieved as an answer to a query (normally a set of such basic
elements is retrieved, sometimes ranked by relevance or other criterion). The re-
trieval unit can be a file, a document, a Web page, a paragraph, or some other
structural unit which contains an answer to the search query. From this point
on, we will simply call those retrieval units ‘documents,” although as explained
this can have different meanings (see also Chapter 2).

This chapter is organized as follows. We first show the queries that can be
formulated with keyword-based query languages. They are aimed at information
retrieval, including simple words and phrases as well as Boolean operators which
manipulate sets of documents. In the second section we cover pattern matching,
which includes more complex queries and is generally aimed at complementing
keyword searching with more powerful data retrieval capabilities. Third, we
cover querying on the structure of the text, which is more dependent on the
particular text model. Finally, we finish with some standard protocols used on
the Internet and by CD-ROM publishers.

4.2 Keywon:d—Based Querying

A query is the formulation of a user information need. In its simplest form, a
query is composed of keywords and the documents containing such keywords are
searched for. Keyword-based queries are popular because they are intuitive, easy
to express, and allow for fast ranking. Thus, a query can be (and in many cases
is) simply a word, although it can in general be a more complex combination of
operations involving several words.

In the rest of this chapter we will refer to single-word and multiple-word
queries as basic queries. Patterns, which are covered in section 4.3, are also
considered as basic queries.

4.2.1 Single-Word Queries

The most elementary query that can be formulated in a text retrieval system is
a word. Text documents are assumed to be essentially long sequences of words.
Although some models present a more general view, virtually all models allow us
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to see the text in this perspective and to search words. Some models are also able
to see the internal division of words into letters. These latter models permit the
searching of other types of patterns, which are covered in section 4.3. The set of
words retrieved by these extended queries can then be fed into the word-treating
machinery, say to perform thesaurus expansion or for ranking purposes.

A word is normally defined in a rather simple way. The alphabet is spht
into ‘letters’ and ‘separators,” and a word is a sequence of letters surrounded by
separators. More complex models allow us to specify that some characters are
not letters but do not split a word, e.g. the hyphen in ‘on-line.” It is good
practice to leave the choice of what is a letter and what is a separator to the
manager of the text database.

The division of the text into words is not arbitrary, since words carry a
lot of meaning in natural language. Because of that, many models (such as the
vector model) are completely structured on the concept of words, and words are
the only type of queries allowed (moreover, some systems only allow a small set
of words to be extracted from the documents). The result of word queries is
the set of documents containing at least one of the words of the query. Further,
the resulting documents are ranked according to a degree of similarity to the
query. To support ranking, two common statistics on word occurrences inside
texts are commonly used: ‘term frequency’ which counts the number of times a
word appears inside a document and ‘inverse document frequency’ which counts
the number of documents in which a word appears. See Chapter 2 for more
details. '

Additionally, the exact positions where a word appears in the text may be
required for instance, by an interface which highlights each occurrence of that
word.

4.2.2 Context Queries

Many systems complement single-word queries with the ability to search words
in a given context, that is, near other words. Words which appear near each
other may signal a higher likelihood of relevance than if they appear apart. For
instance, we may want to form phrases of words or find words which are proximal
in the text. Therefore, we distinguish two types of queries:

e Phrase is a sequence of single-word queries. An occurrence of the phrase
is a sequence of words. For instance, it is possible to search for the word
‘enhance,” and then for the word ‘retrieval.” In phrase queries it is
normally understood that the separators in the text need not be the same
as those in the query (e.g., two spaces versus one space), and uninteresting
words are not considered at all. For instance, the previous example could
match a text such as ‘...enhance the retrieval...’. Although the notion of a
phrase is a very useful feature in most cases, not all systems implement it.

e Proximity A more relaxed-version of the phrase query is the proximity
query. In this case, a sequence of single words or phrases is given, together
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AND

translation OR

syntax syntactic

Figure 4.1 An example of a query syntax tree. It will retrieve all the documents
which contain the word ‘translation’ as well as either the word ‘syntax’ or the word
‘syntactic’.

with a maximum allowed distance between them. For instance, the above
example could state that the two words should occur within four words, and
therefore a match could be ‘...enhance the power of retrieval....’
This distance can be measured in characters or words depending on the
system. The words and phrases may or may not be required to appear in
the same order as in the query.

Phrases can be ranked in a fashion somewhat analogous to single words
(see Chapters 2 and 5 for details). Proximity queries’ can be ranked in the same
way if the parameters used by the ranking technique do not depend on physical
proximity. Although it is not clear how to do better ranking, physical proximity
has semantic value. This is because in most cases the proximity means that the
words are in the same paragraph, and hence related in some way.

4.2.3 Boolean Queries

The oldest (and still heavily used) form of combining keyword queries is to use
Boolean operators. A Boolean query has a syntax composed of atoms (i.e.,
basic queries) that retrieve documents, and of Boolean operators which work
on their operands (which are sets of documents) and deliver sets of documents.
Since this scheme is in general compositional (i.e., operators can be composed
over the results of other operators), a query syntaz tree is naturally defined,
where the leaves correspond to the basic queries and the internal nodes to the
operators. The query syntax tree operates on an algebra over sets of documents
(and the final answer of the query is also a set of documents). This is much as,
for instance, the syntax trees of arithmetic expressions where the numbers and
variables are the leaves and the operations form the internal nodes. Figure 4.1
shows an example.

The operators most commonly used, given two basic queries or Boolean
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subexpressions e; and ey, are:

e OR The query (e; OR e3) selects all documents which satisfy e1 or es.
Duplicates are eliminated.

e AND The query (e; AND e3) selects all documents which satisfy both e
and es. ‘

e BUT The query (e; BUT ey) selects all documents which satisfy e; but
not ez. Notice that classical Boolean logic uses a NOT operation, where
(NOT e3) is valid whenever ey is not. In this case all documents not
satisfying es should be delivered, which may retrieve a huge amount of
text and is probably not what the user wants. The BUT operator, instead,
restricts the universe of retrievable elements to the result of e;.}

Besides selecting the appropriate documents, the IR system may also sort
the documents by some criterion, highlight the occurrences within the documents
of the words mentioned in the query, and allow feedback by taking the answer
set as a basis to reformulate the query.

With classic Boolean systems, no ranking of the retrieved documents is
normally provided. A document either satisfies the Boolean query (in which
case it is retrieved) or it does not (in which case it is not retrieved). This is quite
a limitation because it does not allow for partial matching between a document
and a user query. To overcome this limitation, the condition for retrieval must
be relaxed. For instance, a document which partially satisfies an AND condition
might be retrieved.

In fact, it is widely accepted that users not trained in mathematics find
the meaning of Boolean operators difficult to grasp. With this problem in mind,
a ‘fuzzy Boolean’ set of operators has been proposed. The idea is that the
meaning of AND and OR can be relaxed, such that instead of forcing an element
to appear in all the operands (AND) or at least in one of the operands (OR),
they retrieve elements appearing in some operands (the AND may require it to
appear in more operands than the OR). Moreover, the documents are ranked
higher when they have a larger number of elements in common with the query
(see Chapter 2).

4.2.4 Natural Language

Pushing the fuzzy Boolean model even further, the distinction between AND and
OR can be completely blurred, so that a query becomes simply an enumeration
of words and context queries. All the documents matching a portion of the user
query are retrieved. Higher ranking is assigned to those documents matching
more parts of the query. The negation can be handled by letting the user express

1 Notice that the same problem arises in the relational calculus, which is shown similar to the
relational algebra only when ‘unsafe’ expressions are avoided. Unsafe expressions are those
that make direct or indirect reference to a universe of elements, as NOT does.
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that some words are not desired, so that the documents containing them are
penalized in the ranking computation. A threshold may be selected so that the
documents with very low weights are not retrieved. Under this scheme we have
completely eliminated any reference to Boolean operations and entered into the
field of natural language queries. In fact, one can consider that Boolean queries
are a simplified abstraction of natural language queries.

A number of new issues arise once this model is used, especially those
related to the proper way to rank an element with respect to a query. The
search criterion can be re‘expressed using a different model, where documents
and queries are considered just as a vector of ‘term weights’ (with one coordi-
nate per interesting keyword or even per existing text word) and queries are
considered in exactly the same way (context queries are not considered in this
case). Therefore, the query is now internally converted into a vector of term
weights and the aim is to retrieve all the vectors (documents) which are close to
the query (where closeness has to be defined in the model). This allows many
interesting possibilities, for instance a complete document can be used as a query
(since it is also a vector), which naturally leads to the use of relevance feedback
techniques (i.e., the user can select a document from the result and submit it as
a new query to retrieve documents similar to the selected one). The algorithms
for this model are totally different from those based on searching patterns (it is
even possible that not every text word needs to be searched but only a small set
of hopefully representative keywords extracted from each document). Natural
language querying is also covered in Chapter 14.

4.3 Pattern Matching

In this section we discuss more specific query formulations (based on the concept
of a pattern) which allow the retrieval of pieces of text that have some property.
These data retrieval queries are useful for linguistics, text statistics, and data
extraction. Their result can be fed into the composition mechanism described
above to form phrases and proximity queries, comprising what we have called
basic queries. Basic queries can be combined using Boolean expressions. In
" this sense we can view these data retrieval capabilities as enhanced tools for
information retrieval. However, it is more difficult to rank the result of a pattern
matching expression.

A pattern is a set of syntactic features that must occur in a text seg-
ment. Those segments satisfying the pattern specifications are said to ‘match’
the pattern. We are interested in documents containing segments which match
a given search pattern. Each system allows the specification of some types of
patterns, which range from very simple (for example, words) to rather complex
(such as regular expressions). In general, as more powerful is the set of patterns
allowed, more involved are the queries that the user can formulate and more
complex is the implementation of the search. The most used types of patterns
are:
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Words A string (sequence of characters) which must be a word in the text
(see section 4.2). This is the most basic pattern.

Prefixes A string which must form the beginning of a text word. For
instance, given the prefix ‘comput’ all the documents containing words such
as ‘computer,” ‘computation,’ ‘computing,’ etc. are retrieved.

Suffixes A string which must form the termination of a text word. For
instance, given the suffix ‘ters’ all the documents containing words such
as ‘computers,’ ‘testers,’ ‘painters,’ etc. are retrieved.

Substrings A string which can appear within a text word. For instance,
given the substring ‘tal’ all the documents containing words such as
‘coastal,” ‘talk,’” ‘metallic,” etc. are retrieved. This query can be re-
stricted to find the substrings inside words, or it can go further and search
the substring anywhere in the text (in this case the query is not restricted
to be a sequence of letters but can contain word separators). For instance,
a search for ‘any flow’ will match in the phrase ‘.. .many flowers....’

Ranges A pair of strings which matches any word lying between them in
lexicographical order. Alphabets are normally sorted, and this induces an
order into the strings which is called lezicographical order (this is indeed the
order in which words in a dictionary are listed). For instance, the range
between words ‘held’ and ‘hold’ will retrieve strings such as ‘hoax’ and
‘hissing.’

Allowing errors A word together with an error threshold. This search
pattern retrieves all text words which are ‘similar’ to the given word. The
concept of similarity can be defined in many ways. The general concept is
that the pattern or the text may have errors (coming from typing, spelling,
or from optical character recognition software, among others), and the
query should try to retrieve the given word and what are likely to be its
erroneous variants. Although there are many models for similarity among
words, the most generally accepted in text retrieval is the Levenshtein dis-
tance, or simply edit distance. The edit distance between two strings is
the minimum number of charactér insertions, deletions, and replacements
needed to make them equal (see Chapter 6). Therefore, the query specifies
the maximum number of allowed errors for a word to match the pattern
(i.e., the maximum allowed edit distance). This model can also be extended
to search substrings (not only words), retrieving any text segment which is
at the allowed edit distance from the search pattern. Under this extended
model, if a typing error splits ‘flower’ into ‘flo wer’ it could still be found
with one error, while in the restricted case of words it could not (since nei-
ther ‘f1o’ nor ‘wer’ are at edit distance 1 from ‘flower’). Variations on
this distance model are of use in computational biology for searching on
DNA or protein sequences as well as in signal processing. :

Regular expressions Some text retrieval systems allow searching for
regular expressions. A regular expression is a rather general pattern built
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up by simple strings (which are meant to be matched as substrings) and
the following operators:

— union: if e; and e, are regular expressions, then (e;|ez) matches what
e1 or es matches. -

— concatenation: if e; and ey are regular expressions, the occurrences
of (e1 e2) are formed by the occurrences of e; immediately followed
by those of ey (therefore simple strings can be thought of as a con-
catenation of their individual letters).

— repetition: if e is a regular expression, then (e*) matches a sequence
of zero or more contiguous occurrences of e.

For instance, consider a query like ‘pro (blem | tein) (s | &) (0 | 1 |
2)*’ (where € denotes the empty string). It will match words such as
‘problem02’ and ‘proteins.. As in previous cases, the matches can be
restricted to comprise a whole word, to occur inside a word, or to match
an arbitrary text segment. This can also be combined with the previous
type of patterns to search a regular expression allowing errors.

e Extended patterns It is normal to use a more user-friendly query lan-
guage to represent some cominon cases of regular expressions. Extended
patterns are subsets of the regular expressions which are expressed with
a simplér syntax. The retrieval system can internally convert extended
patterns into regular expressions, or search them with specific algorithms.
Each system supports its own set of extended patterns, and therefore no
formal definition exists. Some examples found in many new systems are:

— classes of characters, i.e. one or more positions within the pattern
are matched by any character from a pre-defined set. This involves
features such as case-insensitive matching, use of ranges of characters
(e.g., specifying that some character must be a digit), complements
(e.g., some character must not be a letter), enumeration (e.g., a char-
acter must be a vowel), wild cards (i.e., a position within the pattern
matches with anything), among others.

— conditional expressions, i.e., a part of the pattern may or may not
appear.

— wild characters which match any sequence in the text, e.g. any word
which starts as ‘flo’ and ends with ‘ers,” which matches ‘flowers’
as well as ‘flounders.’

— combinations that allow some parts of the pattern to match exactly
and other parts with errors.

4.4 Structural Queries

Up to now we have considered the text collection as a set of documents which
can be queried with regard to their text content. This model is unable to take
advantage of novel text features which are becoming commonplace, such as the
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Figure 4.2 The three main structures: (a) form-like fixed structure, (b) hypertext
structure, and (¢) hierarchical structure.

text structure. The text collections tend to have some structure built into them,
and allowing the user to query those texts based on their structure (and not
only their content) is becoming attractive. The standardization of languages to
represent structured texts such as HTML has pushed forward in this direction
(see Chapter 6).

As discussed in Chapter 2, mixing contents and structure in queries allows
us to pose very powerful queries, which are much more expressive than each query
mechanism by itself. By using a query language that integrates both types of
queries, the retrieval quality of textual databases can be improved.

This mechanism is built on top of the basic queries, so that they select
a set of documents that satisfy certain constraints on their content (expressed
using words, phrases, or patterns that the documents must contain). On top of
this, some structural constraints can be expressed using containment, proximity,
or other restrictions on the structural elements (e.g., chapters, sections, etc.)
present in the documents. The Boolean queries can be built on top of the
structural queries, so that they combine the sets of documents delivered by
those queries. In the Boolean syntax tree (recall the example of Figure 4.1) the
structural queries form the leaves of the tree. On the other hand, structural
queries can themselves have a complex syntax.

We divide this section according to the type of structures found in text
databases. Figure 4.2 illustrates them. Although structured query languages
should be amenable for ranking, this is still an open problem.

In what follows it is important to distinguish the difference between the
structure that a text may have and what can be queried about that structure.
In general, natural language texts may have any desired structure. However,
different models -allow the querying of only some aspects of the real structure.
When we say that the structure allowed is restricted in some way, we mean that
only the aspects which follow this restriction can be queried, albeit the text may
have more structural information. For instance, it is possible that an article has
a nested structure of sections and subsections, but the query model does not
accept recursive structures. In this case we will not be able to query for sections
included in others, although this may be the case in the texts documents under
consideration. :
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4.4.1 Fixed Structure

The structure allowed in texts was traditionally quite restrictive. The documents
had a fixed set of fields, much like a filled form. Each field had some text inside.
Some fields were not present in all documents. Only rarely could the fields
appear in any order or repeat across a document. A document could not have
text not classified under any field. Fields were not allowed to nest or overlap.
The retrieval activity allowed on them was restricted to specifying that a given
basic pattern was to be found only in a given field. Most current commercial
_systems use this model.

This model is reasonable when the text collection has a fixed structure.
For instance, a mail archive could be regarded as a set of mails, where each mail
has a sender, a receiver, a date, a subject, and a body field. The user can thus
search for the mails sent to a given person with ‘football’ in the subject field.
However, the model is inadequate to represent the hierarchical structure present
in an HTML document, for instance.

If the division of the text into fields is rigid enough, the content of some
fields can even be interpreted not as text but as numbers, dates, etc. thereby
allowing different queries to be posed on them (e.g., month ranges in dates). It
is not hard to see that this idea leads naturally to the relational model, each field
corresponding to a column in the database table. Looking at the database as a
text allows us to query the textual fields with much more power than is common
in relational database systems. On the other hand, relational databases may
make better use of their knowledge on the data types involved to build specialized
and more efficient indices. A number of approaches towards combining these
trends have been proposed in recent years, their main problem being that they
do not achieve optimal performance because the text is usually stored together
with other types of data. Nevertheless, there are several proposals that extend
SQL (Structured Query Language) to allow full-text retrieval. Among them we
can mention proposals by leading relational database vendors such as Oracle and
Sybase, as well as SFQL, which is covered in section 4.5.

4.4.2 Hypertext

Hypertexts probably represent the maximum freedom with respect to structuring
power. A hypertext is a directed graph where the nodes hold some text and the
links represent connections between nodes or between positions inside the nodes
(see Chapter 2). Hypertexts have received a lot of attention since the explosion
of the Web, which is indeed a gigantic hypertext-like database spread across the
world.

However, retrieval from a hypertext began as a merely navigational activity.
That is, the user had to manually traverse the hypertext nodes following links
to search what he wanted. It was not possible to query the hypertext based on
its structure. Even in the Web one can search by the text contents of the nodes,
but not by their structural connectivity.
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An interesting proposal to combine browsing and searching on the Web is
WebGlimpse. Tt allows classical navigation plus the ability to search by content
in the neighborhood of the current node. Currently, some query tools have
appeared that achieve the goal of querying hypertexts based on their content
and their structure. This problem is covered in detail in Chapter 13.

4.4.3 Hierarchical Structure

An intermediate structuring model which lies between fixed structure and hy-
pertext is the hierarchical structure. This model represents a recursive decom-
position of the text and is a natural model for many text collections (e.g., books,
articles, legal documents, structured programs, etc.). Figure 4.3 shows an exam-
ple of such a hierarchical structure.

The simplification from hypertext to a hierarchy allows the adoption of
faster algorithms to solve queries. As a general rule, the more powerful the
model, the less efficiently it can be implemented.

Our aim in this section is to analyze and discuss the different approaches
presented by the hierarchical models. We first present a selection of the most
representative models and then .discuss the main subjects of this area.

Chapter 4

4.1 Introduction

We cover in this chapter -
the different kinds of ...

4.4 Structural Queries
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Figure 4.3 An example of a hierarchical structure: the page of a book, its schematic
view, and a parsed query to retrieve the figure. '
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A Sample of Hierarchical Models

PAT Ezpressions

These are built on the same index as the text index, i.e. there is no special
separate index on the structure. The structure is assumed to be marked in the
text by tags (as in HTML), and therefore is defined in terms of initial and final
tags. This allows a dynamic scheme where the structure of interest is not fixed
but can be determined at query time. For instance, since tags need not to be
especially designed as normal tags, one can define that the end-of-lines are the
marks in order to define a structure on lines. This also allows for a very efficient
implementation and no additional space overhead for the structure.

Each pair of initial and final tags defines a region, which is a set of con-
tiguous text areas. Externally computed regions are also supported. However,
the areas of a region cannot nest or overlap, which is quite restrictive. There is
no restriction on areas of different regions.

Apart from text searching operations, it is possible to select areas contain-
ing (or not) other areas, contained (or not) in other areas, or followed (or not)
by other areas.

A disadvantage is that the algebra mixes regions and sets of text positions
which are incompatible and force complex conversion semantics. For instance, if
the result of a query is going to generate overlapping areas (a fact that cannot
be determined beforehand) then the result is converted to positions. Also, the
dynamic definition of regions is flexible but requires the structure to be express-
able using tags (also called ‘markup’, see Chapter 6), which for instance does
not occur in some structured programming languages.

~

Overlapped Lists
These can be seen as an evolution of PAT Expressions. The model allows for the
areas of a region to overlap, but not to nest. This elegantly solves the problems of
mixing regions and sets of positions. The model considers the use of an inverted
list (see Chapter 8) where not only the words but also the regions are indexed.
Apart from the operations of PAT Expressions, the model allows us to
perform set union, and to combine regions. Combination means selecting the
minimal text areas which include any two areas taken from two regions. A
‘followed by’ operator imposes the additional restriction that the first area must
be before the second one. An ‘n words’ operator generates the region of all
(overlapping) sequences of n words of the text (this is further used to retrieve
elements close to each other). If an operation produces a region with nested
areas, only the minimal areas are selected. An example is shown in Figure 2.11.
The implementation of this model can also be very efficient. It is not
clear, however, whether overlapping is good or not for capturing the structural
properties that information has in practice. A new proposal allows the structure
to be nested and overlapped, showing that more interesting operators can still
be implemented.
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Lists of References

These are an attempt to make the definition and querying of structured text uni-
form, using a common language. The language goes beyond querying structured
text, so we restrict our attention to the subset in which we are interested.

The structure of documents is fixed and hierarchical, which makes it im-
possible to have overlapping results. All possible regions are defined at indexing
time. The answers delivered are more restrictive, since nesting is not allowed
(only the top-level elements qualify) and all elements must be of the same type,
e.g. only sections, or only paragraphs. In fact, there are also hypertext links but
these cannot be queried (the model also has navigational features).

A static hierarchical structure makes it possible to speak in terms of direct
ancestry of nodes, a concept difficult to express when the structure is dynamic.
The language allows for querying on ‘path expressions,” which describe paths in
the structure tree.

Answers to queries are seen as lists of ‘references.” A reference is a pointer
to a region of the database. This integrates in an elegant way answers to queries
and hypertext links, since all are lists of references.

Prozximal Nodes

This model tries to find a good compromise between expressiveness and efficiency.
It does not define a specific language, but a model in which it is shown that a
number of useful operators can be included achieving good efficiency.

The structure is fixed and hierarchical. However, many independent struc-
tures can be defined on the same text, each one being a strict hierarchy but
allowing overlaps between areas of different hierarchies. An example is shown in
Figure 2.12.

A query can relate different hierarchies, but returns a subset of the nodes
of one hierarchy only (i.e., nested elements are allowed in the answers, but no
overlaps). Text matching queries are modeled as returning nodes from a special
‘text hierarchy.’

The model specifies a fully compositional language where the leaves of the
query syntax tree are formed by basic queries on contents or names of structural
elements (e.g., all chapters). The internal nodes combine results. For efficiency,
the operations defined at the internal nodes must be implementable looking at
the identity and text areas of the operands, and must relate nodes which are
close in the text. A

It has been shown that many useful operators satisfy this restriction: se-
lecting elements that (directly or trarfsitively) include or are included in others;
that are included at a given position (e.g., the third paragraph of each chapter);
that are shortly before or after others; set manipulation; and many powerful vari-
ations. Operations on content elements deliver a set of regions with no nesting,
and those results can be fully integrated into any query. This ability to integrate
the text into the model is very useful. On the other hand, some queries requiring
non-proximal operations are not allowed, for instance semijoins. An example of
a semijoin is ‘give me the titles of all the chapters referenced in this chapter.’
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Tree Matching

This model relies on a single primitive: tree inclusion, whose main idea is as
follows. Interpreting the structure both of the text database and of the query
(which is defined as a pattern on the structure) as trees, determine an embed-
ding of the query into the database which respects the hierarchical relationships
between nodes of the query.

Two variants are studied. Ordered inclusion forces the embedding to re-
spect the left-to-right relations among siblings in the query, while unordered
inclusion does not. The leaves of the query can be not only structural elements
but also text patterns, meaning that the ancestor of the leaf must contain that
pattern.

Simple querles return the roots of the matches. The language is enriched
by Prolog-like variables, which can be used to express requirements on equal-
ity between parts of the matched substructure and to retrieve another part of
the match, not only the root. Logical variables are also used for union and
intersection of queries, as well as to emulate tuples and join capabilities.

Although the language is set oriented, the algorithms work by sequentially
obtaining each match. The use of logical variables and unordered inclusion makes
the search problem intractable (NP-hard in many cases). Even the good cases
have an inefficient solution in practice.

Discussion

A survey of the main hierarchical models raises a number of interesting issues,
most of them largely unresolved up to now. Some of them are listed below.

Static or dynamic structure

As seen, in a static structure there are one or more explicit hlerarchles (which
can be queried, e.g., by ancestry), while in a dynamic structure there is not really
a hierarchy, but the required elements are built on the fly. A dynamic structure
is implemented over a normal text index, while a static one may or may not be.
A static structure is independent of the text markup, while a dynamic one is
more flexible for building arbitrary structures.

Restrictions on the structure

The text or the answers may have restrictions about nesting and/or overlapping.
In some cases these restrictions exist for efficiency reasons. In other cases, the
query language is restricted to avoid restricting the structure. This choice is
largely dependent on the needs of each application.

Integration with text

In many structured models, the text content is merely seen as a secondary source
of information which is used only to restrict the matches of structural elements.
In classic IR models, on the other side, information on the structure is the
secondary element which is used only to restrict text matches. For an effective
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integration of queries on text content with queries on text structure, the query
language must provide for full expressiveness of both types of queries and for
effective means of combining them.

Query language

Typical queries on structure allow the selection of areas that contain (or not)
other areas, that are contained (or not) in other areas, that follow (or are followed
by) other areas, that are close to other areas, and set manipulation. Many of
them are implemented in most models, although each model has unique features.
Some kind of standardization, expressiveness taxonomy, or formal categorization
would be highly desirable but does not exist yet.

4.5 Query Protocols

In this section we briefly cover some query languages that are used automatically
by software applications to query text databases. Some of them are proposed as
standards for querying CD-ROM:s or as intermediate languages to query library
systems. Because they are not intended for human use, we refer to them as
protocols rather than languages. More information on protocols can be found in
Chapters 14 and 15. The most important query protocols are:

e 7Z39.50 is a protocol approved as a standard in 1995 by ANSI and NISO.
This protocol is intended to query bibliographical information using a stan-
dard interface between the client and the host database manager which is
independent of the client user interface and of the query database language
at the host. The database is assumed to be a text collection with some fixed
fields (although it is more flexible than usual). The Z39.50 protocol is used
broadly and is part, for instance, of WAIS (see below). The protocol does
not only specify the query language and its semantics, but also the way
in which client and server establish a session, communicate and exchange
information, etc. Although originally conceived only to operate on bib-
liographical information (using the Machine Readable Cataloging Record
(MARCQ) format), it has been extended to query other types of information
as well. '

o WAIS (Wide Area Information Service) is a suife of protocols that was
popular at the beginning of the 1990s before the boom of the Web. The
goal of WAIS was to be a network publishing protocol and to be able to
query databases through the Internet.

In the CD-ROM publishing arena, there are several proposals for query
protocols. The main goal of these protocols is to provide ‘disk interchangeability.’
This means more flexibility in data communication between primary information
providers and end users. It also enables significant cost savings since it allows
access to diverse information without the need to buy, install, and train users for
different data retrieval applications. We briefly cover three of these proposals:
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e CCL (Common Command Language) is a NISO proposal (Z39.58 or ISO
8777) based on Z39.50. It defines 19 commands that can be used interac-
tively. It is more popular in Europe, although very few products use it. It
is based on the classical Boolean model.

e CD-RDx (Compact Disk Read only Data exchange) uses a client-server
architecture and has been implemented in most platforms. The client is
generic while the server is designed and provided by the CD-ROM publisher
who includes it with the database in the CD-ROM. It allows fixed-length
fields, images, and audio, and is supported by such US national agencies
as the CIA, NASA, and GSA.

e SFQL (Structured Full-text Query Language) is based on SQL and also
has a client-server architecture. SFQL has been adopted as a standard by
the aerospace community (the Air Transport Association/Aircraft Industry
Association). Documents are rows in a relational table and can be tagged
using SGML. The language defines the format of the answer, which has a
header and a variable length message area. The language does not define
any specific formatting or markup. For example, a query in SFQL is:

Select abstract from journal.papers where title
contains "text search"

The language supports Boolean and logical operators, thesaurus, proximity
operations, and some special characters such as wild cards and repetition.
For example:

where paper contains "retrieval" or like "info
pap
%" and date > 1/1/98

Compared with CCL or CD-RDx, SFQL is more general and flexible, al-
though it is based on a relational model, which is not always the best choice
for a document database.

4.6 Trends and Research lIssues

We reviewed in this chapter the main aspects of the query languages that retrieve
information from textual databases. Our discussion covered from the most classic
tools to the most novel capabilities that are emerging, from searching words to
extended patterns, from the Boolean model to querying structures. Table 4.1
shows the different basic queries allowed in the different models. Although the
probabilistic and the Bayesian belief network (BBN) models are based on word
queries, they can incorporate set operations.

We present in Figure 4.4 the types of operations we covered and how they
can be structured (not all of them exist in all models and not all of them have
to be used to form a query). The figure shows, for instance, that we can form a
query using Boolean operations over phrases (skipping structural queries), which
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Model Queries allowed
Boolean word, set operations
Vector words

Probabilistic words

BBN words

Table 4.1 Relationship between types of queries and models.

can be formed by words and by regular expressions (skipping the ability to allow
errors).

Boolean queries
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Figure 4.4 The types of queries covered and how they are structured.

The area of query languages for text databases is definitely moving towards
higher flexibility. While text models are moving towards the goal of achieving
a better understanding of the user needs (by providing relevance feedback, for
instance), the query languages are allowing more and more power in the specifica-
tion of the query. While extended patterns and searching allowing errors permit
us to find patterns without complete knowledge of what is wanted, querying on
the structure of the text (and not only on its content) provides greater expres-
siveness and increased functionality.

Another important research topic is v1sua1 query languages. Visual meta-
phors can help non-experienced users to pose complex Boolean queries. Also, a
visual query language can include the structure of the document. This topic is
related to user interfaces and visualization and is covered in Chapter 10.
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4.7 Bibliographic Discussion

The material on classical query languages (most simple patterns, Boolean model,
and fixed structure) is based on current commercial systems, such as Fulcrum,
Verity, and others, as well as on non-commercial systems such as Glimpse [540]
and Igrep [26].

The fuzzy Boolean model is described in [703]. The Levenshtein distance

is described in [504] and [25]. Soundex is explained in [445]. A comparison of
the effectiveness of different similarity models is given in [595]. A good source on
regular expressions is [375]. A rich language on extended patterns is described
in [837]. | ,
A classical reference on hypertext is [181]. The WebGlimpse system is pre-
sented in [539]. The discussion of hierarchical text is partially based on [41]. The
original proposals are: PAT Expressions [693], Overlapped Lists [173] and the
new improved proposal [206], Lists of References [534], Proximal Nodes [590],
and Tree Matching [439]. PAT Expressions are the basic model of the PAT Text
Searching System [309]. A simple structured text model is presented in [36] and
a visual query language that includes structure is discussed in [44].

More information on Z39.50 can be obtained from [23]. More information
on WALIS is given in [425]. For details on SFQL see [392].
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Chapter 5
Query Operations

5.1 Introduction

Without detailed knowledge of the collection make-up and of the retrieval envi-
ronment, most users find it difficult to formulate queries which are well designed
for retrieval purposes. In fact, as observed with Web search engines, the users
might need to spend large amounts of time reformulating their queries to accom-
plish effective retrieval. This difficulty suggests that the first query formulation
should be treated as an initial (naive) attempt to retrieve relevant information.
Following that, the documents initially retrieved could be examined for relevance
and new improved query formulations could then be constructed in the hope of
retrieving additional useful documents. Such query reformulation involves two
basic steps: expanding the original query with new terms and reweighting the
terms in the expanded query.

In this chapter, we examine a variety of approaches for improving the ini-
tial query formulation through query expansion and term reweighting. These
approaches are grouped in three categories: (a) approaches based on feedback
information from the user; (b) approaches based on information derived from
the set of documents initially retrieved (called the local set of documents); and
(c) approaches based on global information derived from the document collec-
tion. In the first category, user relevance feedback methods for the vector and
probabilistic models are discussed. In the second category, two approaches for
local analysis (i.e., analysis based on the set of documents initially retrieved)
are presented. In the third category, two approaches for global analysis are
covered.

Our discussion is not aimed at completely covering the area, neither does
it intend to present an exhaustive survey of query operations. Instead, our dis-
cussion is based on a selected bibliography which, we believe, is broad enough
to allow an overview of the main issues and tradeoffs involved in query opera-~
tions. Local and global analysis are highly dependent on clustering algorithms.
Thus, clustering is covered throughout our discussion. However, there is no in-
tention of providing a complete survey of clustering algorithms for information
retrieval.
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5.2 User Relevance Feedback

Relevance feedback is the most popular query reformulation strategy. In a rele-
vance feedback cycle, the user is presented with a list of the retrieved documents
and, after examining them, marks those which are relevant. In practice, only the
top 10 (or 20) ranked documents need to be examined. The main idea consists of
selecting important terms, or expressions, attached to the documents that have
been identified as relevant by the user, and of enhancing the importance of these
terms in a new query formulation. The expected effect is that the new query
will be moved towards the relevant documents and away from the non-relevant
ones.

Early experiments using the Smart system [695] and later experiments us-
ing the probabilistic weighting model [677] have shown good improvements in
precision for small test collections when relevance feedback is used. Such im-
provements come from the use of two basic techniques: query expansion (addi-
tion of new terms from relevant documents) and term reweighting (modification
of term weights based on the user relevance judgement).

Relevance feedback presents the following main advantages over other query
reformulation strategies: (a) it shields the user from the details of the query
reformulation process because all the user has to provide is a relevance judgement
on documents; (b) it breaks down the whole searching task into a sequence of
small steps which are easier to grasp; and (c) it provides a controlled process
designed to emphasize some terms (relevant ones) and de-emphasize others (non-
relevant ones).

In the following three subsections, we discuss the usage of user relevance
feedback to (a) expand queries with the vector model, (b) reweight query terms
with the probabilistic model, and (c) reweight query terms with a variant of the
probabilistic model. '

5.2.1 Query Expansion and Term Reweighting for the Vector Model

The application of relevance feedback to the vector model considers that the term-
weight vectors of the documents identified as relevant (to a given query) have
similarities among themselves (i.e., relevant documents resemble each other).
Further, it is assumed that non-relevant documents have term-weight vectors
which are dissimilar from the ones for the relevant documents. The basic idea is
to reformulate the query such that it gets closer to the term-weight vector space
of the relevant documents.

Let us define some additional terminology regarding the processing of a
given query q as follows,

D,.: set of relevant documents, as identified by the user, among the
retrieved documents;

D,,: set of non-relevant documents among the retrieved documents;
C: set of relevant documents among all documents in the collection;
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|Dy|, | Dyl,|Cr|: number of documents in the sets D,, D,,, and C,,
respectively;
a, B,~: tuning constants.

Consider first the unrealistic situation in which the complete set C, of relevant
documents to a given query ¢ is known in advance. In such a situation, it
can be demoustrated that the best query vector for distinguishing the relevant
documents from the non-relevant documents is given by,

1 , 1 .
7 = - — 3 4 | 1
Tort =10, DR STek 7 (5-1)

vd; eC, vd; ¢C,

QU

The problem with this formulation is that the relevant documents which compose
the set C). are not known a priori. In fact, we are looking for them. The natural
way to avoid this problem is to formulate an initial query and to incrementally
change the initial query vector. This incremental change is accomplished by
restricting the computation to the documents known to be relevant (according
to the user judgement) at that point. There are three classic and similar ways
to calculate the modified query @, as follows,

Standard_Rochio: g, = o + b Z d; — 7 Z d;

|Dy| [Dn|
vd;eD, vd;eD,,
Ide_Regular : Gm =ad + Z cz; — Z
vd;eD, vd;eD.,
Ide_Dec Hi: @, =ad + Ié] Z J; — mamnon_relewm(cfj)
Vd; €D,

where Mmaz,on—relevant (CZ;) is a reference to the highest ranked non-relevant doc-
ument. Notice that now D, and D,, stand for the sets of relevant and non-
relevant documents (among the retrieved ones) according to the user judgement,
respectively. In the original formulations, Rochio [678] fixed @ = 1 and Ide [391]
fixed « = B =~ =1. The expressions above are modern variants. The current
understanding is that the three techniques yield similar results (in the past, Ide
Dec-Hi was considered slightly better).

The Rochio formulation is basically a direct adaptation of equation 5.1
in which the terms of the original query are added in. The motivation is that
in practice the original query ¢ may contain important information. Usually,
the information contained in the relevant documents is more important than
the information provided by the non-relevant documents [698]. This suggests
making the constant v smaller than the constant 8. An alternative approach is
to set v to 0 which yields a positive feedback strategy.

The main advantages of the above relevance feedback techniques are sim-
plicity and good results. The simplicity is due to the fact that the modified term
weights are computed directly from the set of retrieved documents. The good
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results are observed experimentally and are due to the fact that the modified
query vector does reflect a portion of the intended query semantics. The main
disadvantage is that no optimality criterion is adopted.

5.2.2 Term Reweighting for the Probabilistic Model

The probabilistic model dynamically ranks documents similar to a query q ac-
cording to the probabilistic ranking principle. From Chapter 2, we already know
that the similarity of a document d; to a query g can be expressed as

o ~ e (10g P EIR) L= P(ki|R)
sy, @) & D Wi Wi (o8 T Bk 15 P ) ©2

where P(k;|R) stands for the probability of observing the term k; in the set R
of relevant documents and P(k;|R) stands for the probability of observing the
term k; in the set R of non-relevant documents.

Initially, equation 5.2 cannot be used because the probabilities P(k;|R)
and P(k;|R) are unknown. A number of different methods for estimating these
probabilities automatically (i.e., without feedback from the user) were discussed
in Chapter 2. With user feedback information, these probabilities are estimated
in a slightly different way as follows. '

For the initial search (when there are no retrieved documents yet), assump-
tions often made include: (a) P(k;|R) is constant for all terms k; (typically 0.5)
and (b) the term probability distribution P(k;|R) can be approximated by the
distribution in the whole collection. These two assumptions yield:

P(k;|R) = 05
— n;
P(ki|R) = N

where, as before, n; stands for the number of documents in the collection which
contain the term k;. Substituting into equation 5.2, we obtain

N—ni
n;

t
$iMinitial(ds, @) = Y, Wiq Wi log
7

For the feedback searches, the accumulated statistics related to the rele-
vance or non-relevance of previously retrieved documents are used to evaluate
the probabilities P(k;|R) and P(k;|R). As before, let D, be the set of relevant
retrieved documents (according to the user judgement) and D.; be the sub-
set of D, composed of the documents which contain the term k;. Then, the
probabilities P(k;|R) and P(k;|R) can be approximated by

D, ; = i — |Drs
P(ki|R) = Drl, P(ki|R) = *‘N—_“*lfl—'

TN (5.3)
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Using these approximations, equation 5.2 can rewritten as

b | Dy n; — | Dyl
Sim d,q — Wi Wi i ].O [ (X3 - 2 5% j‘
(d;,9) ; i,qg Wi,j 108 |Dy| — |Dyi| © N —|D,| — (n; — |Dy;l)

Notice that here, contrary to the procedure in the vector space model, no query
expansion occurs. The same query terms are being reweighted using feedback
information provided by the user.

Formula 5.3 poses problems for certain small values of |D,| and |D, ;| that
frequently arise in practice (|D,| = 1,[D, ;| = 0). For this reason, a 0.5 adjust-
ment factor is often added to the estimation of P(k;|R) and P(k;|R) yielding

|D'r‘,’i| + 0'5.
| Dyl +1 7

ni — |.D7-,z| + 0-5
N —|D;[+1

P(k;|R) = P(ki|R) = (5.4)
This 0.5 adjustment factor may provide unsatisfactory estimates in some cases,
and alternative adjustments have been proposed such as n;/N or (n; — |Dy;|)
/(N — |D,|) [843]. Taking n;/N as the adjustment factor (instead of 0.5), equa-

tion 5.4 becomes

n; — | Dy + ~
N —|D.|+1

P(k:|R) =

D'r"i L -
!_;UTN; P(ki|R) =

|Dr| +

The main advantages of this relevance feedback procedure are that the
feedback process is directly related to the derivation of new weights for query
terms and that the term reweighting is optimal under the assumptions of term
independence and binary document indexing (w;, € {0,1} and w;; € {0,1}).
The disadvantages include: (1) document term weights are not taken into account
during the feedback loop; (2) weights of terms in the previous query formulations
are also disregarded; and (3) no query expansion is used (the same set of index
terms in the original query is reweighted over and over again). As a result
of these disadvantages, the probabilistic relevance feedback methods do not in
general operate as effectively as the conventional vector modification methods.

To extend the probabilistic model with query expansion capabilities, differ-
ent approaches have been proposed in the literature ranging from term weighting
for query expansion to term clustering techniques based on spanning trees. All
of these approaches treat probabilistic query expansion separately from proba-
bilistic term reweighting. While we do not discuss them here, a brief history of
research on this issue and bibliographical references can be found in section 5.6.

5.2.3 A Variant of Probabilistic Term Reweighting

The discussion above on term reweighting is based on the classic probabilis-
tic model introduced by Robertson and Sparck Jones in 1976. In 1983, Croft
extended this weighting scheme by suggesting distinct initial search methods

108




122 QUERY OPERATIONS

and by adapting the probabilistic formula to include within-document frequency
weights. This variant of probabilistic term reweighting is more flexible (and also
more powerful) and is briefly reviewed in this section.

The formula 5.2 for probabilistic ranking can be rewritten as

sim(dj,q) o § , Wi,q Wi, Fijq

where Fj ;. is interpreted as a factor which depends on the triple [k;, d;, q]. In
the classic formulation, F} ;4 is computed as a function of P(k;|R) and P(ks |R)
(see equation 5.2). In his variant, Croft proposed that the initial search and the
feedback searches use distinct formulatlons

For the initial search, he suggested

Fijq = (CH+idfs) fi;
fi; = K+(Q0+K)

1’7‘7

fij
ma:v(fi,j)

where f; j is a normalized within-document frequency. The parameters C' and
K should be adjusted according to the collection. For automatically indexed
collections, C should be initially set to O.

For the feedback searches, Croft suggested the following formulation for
Fija '

P(k;|R) + log

| 1— P(kﬂﬁ)) —
F o= log ———————F+=< T o P
Ja <C+ 81T P(k;|R) P(k;|R)

fig

where P(k;|R) and P(k;|R) are computed as in equation 5.4.

This variant of probabilistic term reweighting has the following advantages:
(1) it takes into account the within-document frequencies; (2) it adopts a nor-
malized version of these frequencies; and (3) it introduces the constants C' and
K which provide for greater flexibility. However, it constitutes a more complex
formulation and, as before, it operates solely on the terms originally in the query
(without query expansion).

5.2.4 Evaluation of Relevance Feedback Strategies

Consider the modified query vector G, generated by the Rochio formula and as-
sume that we want to evaluate its retrieval performance. A simplistic approach
is to retrieve a set of documents using g, to rank them using the vector formula,
and to measure recall-precision figures relative to the set of relevant documents
(provided by the experts) for the original query vector q. In general, the re-
sults show spectacular improvements. Unfortunately, a significant part of this
improvement results from the higher ranks assigned to the set R of documents
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already identified as relevant during the feedback process [275]. Since the user
has seen these documents already (and pointed them as relevants), such evalua-
tion is unrealistic. Further, it masks any real gains in retrieval performance due
to documents not seen by the user yet.

A more realistic approach is to evaluate the retrieval performance of the
modified query vector g, considering only the residual collection i.e., the set-
of all documents minus the set of feedback documents provided by the user.
Because highly ranked documents are removed from the collection, the recall-
precision figures for ¢, tend to be lower than the figures for the original query
vector g. This is not a limitation because our main purpose is to compare the
performance of distinct relevance feedback strategies (and not to compare the
performance before and after feedback). Thus, as a basic rule of thumb, any
experimentation involving relevance feedback strategies should always evaluate
recall-precision figures relative to the residual collection.

5.3 Automatic Local Analysis

In a user relevance feedback cycle, the user examines the top ranked documents
and separates them into two classes: the relevant ones and the non-relevant
ones. This information is then used to select new terms for query expansion.
The reasoning is that the expanded query will retrieve more relevant documents.
Thus, there is an underlying notion of clustering supporting the feedback strat-
egy. According to this notion, known relevant documents contain terms which
can be used to describe a larger cluster of relevant documents. In this case, the
description of this larger cluster of relevant documents is built interactively with
assistance from the user.

A distinct approach is to attempt to obtain a description for a larger cluster
of relevant documents automatically. This usually involves identifying terms
which are related to the query terms. Such terms might be synonyms, stemming
variations, or terms which are close to the query terms in the text (i.e., terms
with a distance of at most & words from a query term). Two basic types of
strategies can be attempted: global ones and local ones.

In a global strategy, all documents in the collection are used to determine a
global thesaurus-like structure which defines term relationships. This structure is
then shown to the user who selects terms for query expansion. Global strategies
are discussed in section 5.4. .

In a local strategy, the documents retrieved for a given query g are exam-
ined at query time to determine terms for query expansion. This is similar to
a relevance feedback cycle but might be done without assistance from the user
(i-e., the approach might be fully automatic). Two local strategies are discussed
below: local clustering and local context analysis. The first is based on the work
done by Attar and Fraenkel in 1977 and is used here to establish many of the
fundamental ideas and concepts regarding the usage of clustering for query ex-
pansion. The second is a recent work done by Xu and Croft in 1996 and illustrates
the advantages of combining techniques from both local and global analysis.
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5.3.1 Query Expansion Through Local Clustering -

Adoption of clustering techniques for query expansion is a basic approach which
has been attempted since the early years of information retrieval. The standard
approach is to build global structures such as association matrices which quantify
term correlations (for instance, number of documents in which two given terms
co-occur) and to use correlated terms for query expansion. The main problem
with this strategy is that there is not consistent evidence that global structures
can be used effectively to improve retrieval performance with general collections.
One main reason seems to be that global structures do not adapt well to the local
context defined by the current query. One approach to deal with this effect is
to devise strategies which aim at optimizing the current search. Such strategies
are based on local clustering and are now discussed. Our discussion is based on
the original work by Attar and Fraenkel which appeared in 1977.
We first define basic terminology as follows.

Definition Let V(s) be a non-empty subset of words which are grammatical
variants of each other. A canonical form s of V (s) is called a stem. For instance,
if V(8) ={polish,polishing,polished} then s=polish.

For a detailed discussion on stemming algorithms see Chapter 7. While stems
are adopted in our discussion, the ideas below are also valid for non-stemmed
keywords. We proceed with a characterization of the local nature of the strategies
covered here.

Definition For a given query q, the set D; of documents retrieved is called the
local document set. Further, the set Vi of all distinct words in the local document
set is called the local vocabulary. The set of all distinct stems derived from the
set V; is referred to as Sj.

We operate solely on the documents retrieved for the current query. Since it
is frequently necessary to access the text of such documents, the application of
local strategies to the Web is unlikely at this time. In fact, at a client machine,
retrieving the text of 100 Web documents for local analysis would take too long,
reducing drastically the interactive nature of Web interfaces and the satisfaction
of the users. Further, at the search engine site, analyzing the text of 100 Web
documents would represent an extra spending of CPU time which is not cost
effective at this time (because search engines depend on processing a high number
of queries per unit of time for economic survival). However, local strategies might
be quite useful in the environment of intranets such as, for instance, the collection
of documents issued by a large business company. Further, local strategies might
also be of great assistance for searching information in specialized document
collections (for instance, medical document collections).

Local feedback strategies are based on expanding the query with terms
correlated to the query terms. Such correlated terms are those present in lo-
cal clusters built from the local document set. Thus, before we discuss local
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query expansion, we discuss strategies for building local clusters. Three types of
clusters are covered: association clusters, metric clusters, and scalar clusters.

Association Clusters

An association cluster is based on the co-occurrence of stems (or terms) inside
documents. The idea is that stems which co-occur frequently inside documents
have a synonymity association. Association clusters are generated as follows.

Definition The frequency of a stem s; in a document d;, d; € Dy, is referred to
as fs;,5- Let m=(m;;) be an association matriz with |S;| rows and |D;| columns,
where m;;=fo, ;. Let m* be the transpose of m. The matriz §=mm’ is a local
stem-stem association matriz. FEach element s,, in § expresses a correlation
Cu,v between the stems s, and s, namely,

D Foui X Faid (5.5)

d;eD;

The correlation factor c,,, quantifies the absolute frequencies of co-occurrence
and is said to be unnormalized. Thus, if we adopt

Su,v = Cy,v ) (5.6)

then the association matrix § is said to be unnormalized. An alternative is to
normalize the correlation factor. For instance, if we adopt

. Cup
Syy = : 5.7
“ Cu,u + Cv,’u - Cu,v ( )

then the association matrix 3 is said to be normalized. The adoption of normal-
ization yields quite distinct associations as discussed below.

Given a local association matrix §, we can use it to build local association
clusters as follows.

Definition  Consider the u-th row in the association matriz § (i.e., the row
with all the associations for the stem s, ). Let S,(n) be a function which takes
the u-th row and returns the set of n largest values s, ., where v varies over
the set of local stems and v # u. Then S,(n) defines a local association cluster
around the stem s,. If sy, s given by equation 5.6, the association cluster is
said to be unnormalized. If s, is gwen by equation 5.7, the association cluster
1s said to be normalized.

Given a query g, we are normally interested in finding clusters only for the |g]

query terms. Further, it is desirable to keep the size of such clusters small. This
means that such clusters can be computed efficiently at query time.
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Despite the fact that the above clustering procedure adopts stems, it can
equally be applied to non-stemmed keywords. The procedure remains unchanged
except for the usage of keywords instead of stems. Keyword-based local cluster-
ing is equally worthwhile trying because there is controversy over the advantages
of using a stemmed vocabulary, as discussed in Chapter 7.

Metric Clusters

Association clusters are based on the frequency of co-occurrence of pairs of terms
in documents and do not take into account where the terms occur in a document.
Since two terms which occur in the same sentence seem more correlated than
two terms which occur far apart in a document, it might be worthwhile to factor
in the distance between two terms in the computation of their correlation factor.
Metric clusters are based on this idea.

Definition Let the distance r(k;, k;) between two keywords k; and k; be given
by the number of words between them in a same document. If k; and k; are
in distinct documents we take r(k;, k;) = co. A local stem-stem metric correla-
tion matriz § is defined as follows. Fach element s, ., of § expresses a metric
correlation ¢, ., between the stems s, and s, namely,

1
= 2 2 k)

ki €V (su) k; €V (sy)

In this expression, as already defined, V(s,) and V(s,) indicate the sets of
keywords which have s, and s, as their respective stems. Variations of the above
expression for ¢, , have been reported in the literature (such as 1/r%(k;, k;)) but
the differences in experimental results are not remarkable.

The correlation factor ¢, , quantifies absolute inverse distances and is said
to be unnormalized. Thus, if we adopt

Su,p = Cuv (5.8)

then the association matrix § is said to be unnormalized. An alternative is to
normalize the correlation factor. For instance, if we adopt

S0 = T x [V (30) (5.9)

~ then the association matrix § is said to be normalized.
Given a local metric matrix &, we can use it to build local metric clusters
as follows.

Definition  Consider the u-th row in the metric correlation matriz § (i.e., the
row with all the associations for the stem s,). Let S,(n) be a function which
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takes the u-th row and returns the set of n largest values s,,, where v varies
over the set of local stems and v = w. Then S, (n) defines a local metric cluster
around the stem s,. If s, , is given by equation 5.8, the metric cluster is said to
be unnormalized. If s, . is given by equation 5.9, the metric cluster is said to be
normalized.

Scalar Clusters

One additional form of deriving a synonymity relationship between two local
stems (or terms) s, and s, is by comparing the sets S, (n) and S,(n). The idea
is that two stems with similar neighborhoods have some synonymity relationship.
In this case we say that the relationship is indirect or induced by the neigh-
borhood. One way of quantifying such neighborhood relationships is to arrange
all correlation values s, ; in a vector §,, to arrange all correlation values s, ;
in another vector §,, and to compare these vectors through a scalar measure.
For instance, the cosine of the angle between the two vectors is a popular scalar
similarity measure.

Definition Let 8y = (su,1,5u,2,-+-35un) 0nd 8y = (Sy,1,80,2,- -, Sv,n) be two
vectors of correlation values for the stems s, and s,. Further, let § = (8y..) be
a scalar association matriz. Then, each s, , can be defined as

— —
Su'sv

REAEIEA (5:10)

Su,u

The correlation matrix § is said to be induced by the neighborhood. Using it, a
scalar cluster is then defined as follows.

Definition Let S,(n) be a function which returns the set of n largest values
Suw, U # u, defined according to equation 5.10. Then, Sy,(n) defines a scalar
cluster around the stem s,.

interactive Search Formulation

Stems (or terms) that belong to clusters associated to the query stems (or terms)
can be used to expand the original query. Such stems are called neighbors (of
the query stems) and are characterized as follows.

A stem s, which belongs to a cluster (of size m) associated to another
stem s, (i.e., s, € Sy(n)) is said to be a neighbor of s,. Sometimes, s, is also
called a searchonym of s, but here we opt for using the terminology neighbor.
While neighbor stems are said to have a synonymity relationship, they are not
necessarily synonyms in the grammatical sense. Often, neighbor stems represent
distinct keywords which are though correlated by the current query context. The
local aspect of this correlation is reflected in the fact that the documents and
stems considered in the correlation matrix are all local (i.e., d; € Dy, 5,4, € V7).

114




128 QUERY OPERATIONS

Figure 5.1 Stem s, as a neighbor of the stem s,.

Figure 5.1 illustrates a stem (or term) s,, which is located within a neighborhood
S,(n) associated with the stem (or term) s,. In its broad meaning, neighbor
stems are an important product of the local clustering process since they can
be used for extending a search formulation in a promising unexpected direction,
rather than merely complementing it with missing synonyms.

Consider the problem of expanding a given user query g with neighbor
stems (or terms). One possibility is to expand the query as follows. For each
stem s, € g, select m neighbor stems from the cluster S,(n) (which might be
of type association, metric, or scalar) and add them to the query. Hopefully,
the additional neighbor stems will retrieve new relevant documents. To cover a
broader neighborhood, the set S, (n) might be composed of stems obtained using
correlation factors (i.e., cy,) normalized and unnormalized. The qualitative
interpretation is that an unnormalized cluster tends to group stems whose ties
are due to their large frequencies, while a normalized cluster tends to group
stems which are more rare. Thus, the union of the two clusters provides a better
representation of the possible correlations.

Besides the merging of normalized and unnorinalized clusters, one can also
use information about correlated stems to improve the search. For instance,
as before, let two stems s, and s, be correlated with a correlation factor cy, -
If ¢y, is larger than a predefined threshold then a neighbor stem of s, can
also be interpreted as a neighbor stem of s, and vice versa. This provides
greater flexibility, particularly with Boolean queries. To illustrate, consider the
expression (s, + S,) where the + symbol stands for disjunction. Let s, be a
neighbor stem of s,,. Then, one can try both (s, +$,) and (s, + S./) as synonym
search expressions, because of the correlation given by cy 4.

115




AUTOMATIC LOCAL ANALYSIS 129

Experimental results reported in the literature usually support the hypoth-
esis of the usefulness of local clustering methods. Furthermore, metric clusters
seem to perform better than purely association clusters. This strengthens the
hypothesis that there is a correlation between the association of two terms and
the distance between them.

We emphasize that all the qualitative arguments in this section are explic--
itly based on the fact that all the clusters are local (i.e., derived solely from the
documents retrieved for the current query). In a global context, clusters are de-
rived from all the documents in the collection which implies that our qualitative
argumentation might not stand. The main reason is that correlations valid in
the whole corpora might not be valid for the current query.

5.3.2 Query Expansion Through Local Context Analysis

The local clustering techniques discussed above are based on the set of documents
retrieved for the original query and use the top ranked documents for clustering
neighbor terms (or stems). Such a clustering is based on term (stems were
considered above) co-occurrence inside documents. Terms which are the best
neighbors of each query term are then used to expand the original query ¢q. A
distinct approach is to search for term correlations in the whole collection — an
approach called global analysis. Global techniques usually involve the building of
a thesaurus which identifies term relationships in the whole collection. The terms
are treated as concepts and the thesaurus is viewed as a concept relationship
structure. Thesauri are expensive to build but, besides providing support for
query expansion, are useful as a browsing tool as demonstrated by some search
engines in the Web. The building of a thesaurus usually considers the use of small
contexts and phrase structures instead of simply adopting the context provided
by a whole document. Furthermore, with modern variants of global analysis,
terms which are closest to the whole query (and not to individual query terms)
are selected for query expansion. The application of ideas from global analysis
(such as small contexts and phrase structures) to.the local set of documents
retrieved is a recent idea which we now discuss.

Local context analysis [838] combines global and local analysis and works
as follows. First, the approach is based on the use of noun groups (i.e., a single
noun, two adjacent nouns, or three adjacent nouns i the text), instead of simple
keywords, as document concepts. For query expansion, concepts are selected
from the top ranked documents (as in local analysis) based on their co-occurrence
with query terms (no stemming). However, instead of documents, passages (i.e.,
a text window of fixed size) are used for determining co-occurrence (as in global
analysis).

More specifically, the local context analysis procedure operates in three
steps.

e First, retrieve the top n ranked passages using the original query. This
is accomplished by breaking up the documents initially retrieved by the
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query in fixed length passages (for instance, of size 300 words) and ranking
these passages as if they were documents.

e Second, for each concept ¢ in the top ranked passages, the similarity
sim(q, c) between the whole query ¢ (not individual query terms) and the
concept ¢ is computed using a variant of tf-idf ranking.

e Third, the top m ranked concepts (according to sim(q,c)) are added to
the original query g. To each added concept is assigned a weight given by
1 — 0.9 x i/m where i is the position of the concept in the final concept
ranking. The terms in the original query ¢ mlght be stressed by assigning
a weight equal to 2 to each of them.

Of these three steps, the second one is the most complex and the one which we
now discuss.
The similarity szm(q, c¢) between each related concept ¢ and the original

query ¢ is computed as follows.
7

o c, k;) X idfe idf
Sim(q,c):H <5+1g(f(,k)>< df))

logn
ki;€q &

where n is the number of top ranked passages considered. The function fle, kq)
quantifies the correlation between the concept ¢ and the query term k; and is
given by

Fle ki) =D pfij X Dfej

Jj=1

where pf; ; is the frequency of term k; in the j-th passage and pfc; is the
frequency of the concept ¢ in the j-th passage. Notice that this is the stan-
dard correlation measure defined for association clusters (by Equation 5.5) but
adapted for passages. The inverse document frequency factors are computed as

idf; = ma=(1, ————————IOglo é\f/ npi)
idf, = mas(l, 2810/ "Pe év /npe

where N is the number of passages in the collection, np; is the number of passages
containing the term k;, and np. is the number of passages containing the concept
c. The factor & is a constant parameter which avoids a value equal to zero
for sim(q,c) (which is useful, for instance, if the approach is to be used with
probabilistic frameworks such as that provided by belief networks). Usually, ¢ is
a small factor with values close to 0.1 (10% of the maximum of 1). Finally, the
idf; factor in the exponent is introduced to emphasize infrequent query terms.
The procedure above for computing sim(g, ¢) is a non-trivial variant of tf-
idf ranking. Furthermore, it has been adjusted for operation with TREC data
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and did not work so well with a different collection. Thus, it is important to have
in mind that tuning might be required for operation with a different collection.

We also notice that the correlation measure adopted with local context
analysis is of type association. However, we already know that a correlation
of type metric is expected to be more effective. Thus, it remains to be tested
whether the adoption of a metric correlation factor (for the function f(c,k;))
makes any difference with local context analysis.

5.4 Automatic Global Analysis

The methods of local analysis discussed above extract information from the local
set of documents retrieved to expand the query. It is well accepted that such
a procedure yields improved retrieval performance with various collections. An
alternative approach is to expand the query using information from the whole
set of documents in the collection. Strategies based on this idea are called global
analysis procedures. Until the beginning of the 1990s, global analysis was consid-
ered to be a technique which failed to yield consistent improvements in retrieval
performance with general collections. This perception has changed with the
appearance of modern procedures for global analysis. In the following, we dis-
cuss two of these modern variants. Both of them are based on a thesaurus-like
structure built using all the documents in the collection. However, the approach
taken for building the thesaurus and the procedure for selecting terms for query
expansion are quite distinct in the two cases.

5.4.1 Query Expansion based on a Similarity Thesaurus

In this section we discuss a query expansion model based on a global similarity
thesaurus which is constructed automatically [655]. The similarity thesaurus is
based on term to term relationships rather than on a matrix of co-occurrence (as
discussed in section 5.3). The distinction is made clear in the discussion below.
Furthermore, special attention is paid to the selection of terms for expansion
and to the reweighting of these terms. In contrast to previous global analysis
approaches, terms for expansion are selected based on their similarity to the
whole query rather than on their similarities to individual query terms.

A similarity thesaurus is built considering term to term relationships. How-
ever, such relationships are not derived directly from co-occurrence of terms in-
side documents. Rather, they are obtained by considering that the terms are
concepts in a concept space. In this concept space, each term is indexed by the
documents in which it appears. Thus, terms assume the original role of doc-
uments while documents are interpreted as indexing elements. The following
definitions establish the proper framework.

Definition As before (see Chapter 2), let t be the number of terms in the col-
lection, N be the number of documents in the collection, and f; ; be the frequency
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of occurrence of the term k; in the document d;. Further, let t; be the number of
distinct index terms in the document d; and- zt f7 be the inverse term frequency
for document d;. Then,

t
J

analogously to the definition of inverse document frequency.

Within this framework, to each term k; is associated a vector 751 given by
ki = (w1, W2, -+ -, Wi, N)

where, as in Chapter 2, w; ; is a weight associated to the index-document pair
[k;,d;]. Here, however, these weights are computed in a rather distinct form as
follows.

(05 + 055724 itf;
VI 05+ 05Ty it f2

Wi,5 = (5.11)

where maxz;(f; ;) computes the maximum of all factors f;; for the i-th term
(i.e., over all documents in the collection). We notice that the expression above
is a variant of tf-idf weights but one which considers inverse term frequencies
instead. ‘

The relationship between two terms k,, and &, is computed as a correlation
factor c,,, given by

Cu,w = Eu : Ev = Z Wy,j X Wy,j - (5.12)

‘We notice that this is a variation of the correlation measure used for comput-
ing scalar association matrices (defined by Equation 5.5). The main difference
is that the weights are based on interpreting documents as indexing elements
instead of repositories for term co-occurrence. The global similarity thesaurus
is built through the computation of the correlation factor ¢, , for each pair of
indexing terms [k, k] in the collection (analogously to the procedure in sec-
tion 5.3). Of course, this is computationally expensive. However, this global
similarity thesaurus has to be computed only once and can be updated incre-
mentally. :

Given the global similarity thesaurus, query expansmn is done in three
steps as follows.

e First, represent the query in the concept space used for representation of
the index terms.
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e Second, based on the global similarity thesaurus, compute a similarity
sim(q, ky) between each term k, correlated to the query terms and the
whole query q.

e Third, expand the query with the top r ranked terms according to
sim(q, k).

For the first step, the query is represented in the concept space of index term
vectors as follows.

Definition 7o the query q is associated a vector q in the term-concept space
given by :

§=_ wigk

ki€q

where w; 4 s a weight associated to the index-query pair [k;,q]. This weight is .
computed analogously to the index-document weight formula in equation 5.11.

For the second step, a similarity sim(q, k,) between each term k, (correlated to
the query terms) and the user query ¢ is computed as

sim(q, ky) = @+ ky = Z Wy,q X Cyp
ku€Q

where ¢, , is the correlation factor given in equation 5.12. As illustrated in
Figure 5.2, a term might be quite close to the whole query while its distances to
individual query terms are larger. This implies that the terms selected here for
query expansion might be distinct from those selected by previous global analysis
methods (which adopted a similarity to individual query terms for deciding terms
for query expansion).

For the third step, the top r ranked terms according to sim(q, k,) are added
to the original query q to form the expanded query q'. To each expansion term
k, in the query q/ is assigned a weight w, ./ given by

_ sim(q, ky)

;7 =
v,q .
’ ZkMEq wuaq

w,

The expanded query q' is then used to retrieve new documents to the user. This
completes the technique for query expansion based on a similarity thesaurus.
Contrary to previous global analysis approaches, this technique has yielded im-
proved retrieval performance (in the range of 20%) with three different collec-
tions. ‘

It is worthwhile making one final observation. Consider a document d;
which is represented in the term-concept space by cz; = D ried; wi,j%i. Further,
assume that the original query ¢ is expanded to include all the ¢ index terms
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K;

P
-

Q= {Ka, Kb}

Figure 5.2 The distance of a given term k, to the query centroid Q. might be quite
distinct from the distances of k, to the individual query terms.

(properly weighted) in the collection. Then, the similarity sim(q, d;) between
the document d; and the query g can be computed in the term-concept space by

S,I’m(q7 d]) 84 : : Z : wvnj X wuyq X cu':v

k’UedJ kueq

Such an expression is analogous to the formula for query-document similarity
in the generalized vector space model (see Chapter 2). Thus, the generalized
vector space model can be interpreted as a query expansion technique. The
main differences with the term-concept idea are the weight computation and the
fact that only the top r ranked terms are used for query expansion with the
term-concept technique.

5.4.2 Query Expansion based on a Statistical Thesaurus

In this section, we discuss a query expansion technique based on a global statisti-
cal thesaurus [200]. Despite also being a global analysis technique, the approach
is quite distinct from the one described above which is based on a similarity
thesaurus. :

The global thesaurus is composed of classes which group correlated terms
in the context of the whole collection. Such correlated terms can then be used
to expand the original user query. To be effective, the terms selected for expan-
sion must have high term discrimination values [699] which implies that they
must be low frequency terms. However, it is difficult to cluster low frequency
terms effectively due to the small amount of information about them (they oc-
cur in few documents). To circumvent this problem, we cluster documents into
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classes instead and use the low frequency terms in these documents to define
our thesaurus classes. In this situation, the document clustering algorithm must
produce small and tight clusters.

A document clustering algorithm which produces small and tight clusters
is the complete link algorithm which works as follows (naive formulation).

(1) Initially, place each document in a distinct cluster.

(2) Compute the similarity between all pairs of clusters.

(3) Determine the pair of clusters [C,, C,] with the highest inter-cluster simi-
larity. v

(4) Merge the clusters C,, and C,,.

(5) Verify a stop criterion. If this criterion is not met then go back to step 2.

(6) Return a hierarchy of clusters. '

The similarity between two clusters is defined as the minimum of the similarities
between all pairs of inter-cluster documents (i.e., two documents not in the same
cluster). To compute the similarity between documents in a pair, the cosine
formula of the vector model is used. As a result of this minimality criterion, the
resultant clusters tend to be small and tight.

Consider that the whole document collection has been clustered using the
complete link algorithm. Figure 5.3 illustrates a small portion of the whole
cluster hierarchy in which sim(C,, C,) = 0.15 and sim(Cytv, C-) = 0.11 where
Cu+v 1s a reference to the cluster which results from merging C,, and C,,. Notice
that the similarities decrease as we move up in the hierarchy because high level
clusters include more documents and thus represent a looser grouping. Thus,
the tightest clusters lie at the bottom of the clustering hierarchy.

Given the document cluster hierarchy for the whole collection, the terms
that compose each class of the global thesaurus are selected as follows.

e Obtain from the user three parameters: threshold class (TC), number of

Figure 5.3 Hierarchy of three clusters (inter-cluster similarities indicated in the
ovals) generated by the complete link algorithm.
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documents in a class (NDC), and minimum inverse document frequency
(MIDF).

e Use the parameter T'C as a threshold value for determining the document
clusters that will be used to generate thesaurus classes. This threshold has
to be surpassed by sim/(C,,, C,) if the documents in the clusters C,, and C,
are to be selected as sources of terms for a thesaurus class. For instance, in
Figure 5.3, a value of 0.14 for TC returns the thesaurus class Cy, while a
value of 0.10 for TC returns the classes Cyq, and Cyqyqz-

e Use the parameter NDC as a limit on the size of clusters (number of doc-
uments) to be considered. For instance, if both Cy4, and Cyyyy. are
preselected (through the parameter TC) then the parameter NDC might
be used to decide between the two. A low value of NDC might restrict the
selection to the smaller cluster Cuiv-

e Consider the set of documents in each document cluster preselected above
(through the parameters TC and NDC). Only the lower frequency docu-
ments are used as sources of terms for the thesaurus classes. The parameter
MIDF defines the minimum value of inverse document frequency for any
term which is selected to participate in a thesaurus class. By doing so,
it is possible to ensure that only low frequency terms participate in the
thesaurus classes generated (terms too generic are not good synonyms).

QGiven that the thesaurus classes have been built, they can be used for query
expansion. For this, an average term weight wtc for each thesaurus class C' is
computed as follows.

ey - oL Wic
IC]

where |C| is the number of terms in the thesaurus class C' and w; ¢ is a pre-
computed weight associated with the term-class pair [k;, C]. This average term
weight can then be used to compute a thesaurus class weight we as

witco

— x 0.5
IC|

we =

The above weight formulations have been verified through experimentation and
have yielded good results.

Experiments with four test collections (ADI, Medlars, CACM, and ISI; see
Chapter 3 for details on these collections) indicate that global analysis using a
- thesaurus built by the complete link algorithm might yield consistent improve-
ments in retrieval performance.

The main problem with this approach is the initialization of the parameters
TC, NDC, and MIDF. The threshold value TC depends on the collection and can
be difficult to set properly. Inspection of the cluster hierarchy is almost always
necessary for assisting with the setting of T'C. Care must be exercised because a
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high value of TC might yield classes with too few terms while a low value of TC
might yield too few classes. The selection of the parameter NDC can be decided
more easily once TC has been set. However, the setting of the parameter MIDF
might be difficult and also requires careful consideration.

5.5 Trends and Research Issues

The relevance feedback strategies discussed here can be directly applied to the
graphical interfaces of modern information systems. However, since interactivity
is now of greater importance, new techniques for capturing feedback information
from the user are desirable. For instance, there is great interest in graphical
interfaces which display the documents in the answer set as points in a 2D or 3D
space. The motivation is to allow the user to quickly identify (by visual inspec-
tion) relationships among the documents in the answer. In this scenario, a rather
distinct strategy for quantifying feedback information might be required. Thus,
relevance strategies for dealing with visual displays are an important research
problem.

In the past, global analysis was viewed as an approach which did not yield
good improvements in retrieval performance. However, new results obtained
at the beginning of the 1990s changed this perception. Further, the Web has
provided evidence that techniques based on global analysis might be of interest
to the users. For instance, this is the case with the highly popular ‘Yahoo!’
software which uses a manually built hierarchy of concepts to assist the user
with forming the query. This suggests that investigating the utilization of global
analysis techniques in the Web is a promising research problem.

Local analysis techniques are interesting because they take advantage of
the local context provided with the query. In this regard, they seem more appro-
priate than global analysis techniques. Furthermore, many positive results have
been reported in the literature. The application of local analysis techniques to
the Web, however, has not been explored and is a promising research direction.
The main challenge is the computational burden imposed on the search engine
site due to the need to process document texts at query time. Thus, a related
research problem of relevance is the development of techniques for speeding up
query processing at the search engine site. In truth, this problem is of inter-
est even if one considers only the normal processing of the queries because the
search engines depend on processing as many queries as possible for economic
survival.

The combination of local analysis, global analysis, visual displays, and in-
teractive interfaces is also a current and important research problem. Allowing
the user to visually explore the document space and providing him with clues
which assist with the query formulation process are highly relevant issues. Pos-
itive results in this area might become a turning point regarding the design of
user interfaces and are likely to attract wide attention.
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5.6 Bibliographic Discussion

Query expansion methods have been studied for a long time. While the success
of expansion methods throughout the years has been debatable, more recently
researchers have reached the consensus that query expansion is a useful and little
explored (commercially) technique. Useful because its modern variants can be
used to consistently improve the retrieval performance with general collections.
Little explored because few commercial systems (and Web search engines) take
advantage of it.

Early work suggesting the expansion of a user query with closely related
terms was done by Maron and Kuhns in 1960 [547]. The classic technique for
combining query expansion with term reweighting in the vector model was stud-
ied by Rocchio in 1965 (using the Smart system [695] as a testbed) and published
later on [678]. Ide continued the studies of Rocchio and proposed variations to
the term reweighting formula [391].

The probabilistic model was introduced by Robertson and Sparck Jones
[677] in 1976. A thorough and entertaining discussion of this model can be found
in the book by van Rijsbergen [785]. Croft and Harper [199] suggested that the
initial search should use a distinct computation. In 1983, Croft [198] proposed
to extend the probabilistic formula to include within-document frequencies and
introduced the C and K parameters.

Since the probabilistic model does not prov1de means of expanding the
query, query expansion has to be done separately. In 1978, Harper and van
Rijsbergen [345] used a term-term clustering technique based on a maximum
spanning tree to select terms for probabilistic query expansion. T'wo years later,
they also introduced a new relevance weighting scheme, called EMIM [344], to be -
used with their query expansion technique. In 1981, Wu and Salton [835] used
relevance feedback to reweight terms (using a probabilistic formula) extracted
from relevant documents and used these terms to expand the query. Empirical
results showed improvements in retrieval performance.

Our discussion on user relevance feedback for the vector and probabilistic
models in section 5.2 is based on four sources: a nice paper by Salton and Buck-
ley [696], the book by van Rijsbergen [785], the book by Salton and McGill [698],
and two book chapters by Harman [340, 339].

Regarding automatic query expansion, Lesk [500] tried variations of term-
term clustering in the Smart system without positive results. Following that,
Sparck Jones and Barber [413] and Minker, Wilson and Zimmerman [562] also
observed no improvements with query expansion based on term-term global clus-
tering. These early research results left the impression that query expansion
based on global analysis is not an effective technique. However, more recent
results show that this is not the case. In fact, the research results obtained by
Vorhees [793], by Crouch and Yang [200], and by Qiu and Frei [655] indicate
that query expansion based on global analysis can consistently yield improved
retrieval performance.

Our discussion on query expansion through local clustering is based on
early work by Attar and Fraenkel [35] from 1977. The idea of local context
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analysis is much more recent and was introduced by Xu and Croft [838] in 1996.
The discussion on query expansion using a global similarity thesaurus is based
on the work by Qiu and Frei [655]. Finally, the discussion on query expansion
using a global statistical thesaurus is based on the work of Crouch and Yang [200]
which is influenced by the term discrimination value theory introduced by Salton,
Yang, and Yu [699] early in 1975.

Since query expansion frequently is based on some form of clustering, our
discussion covered a few clustering algorithms. However, our aim was not to
provide a thorough review of clustering algorithms for information retrieval. Such
a review can be found in the work of Rasmussen [668].
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Chapter 8
Indexing and Searching

with Gonzalo Navarro

8.1 Introduction

Chapter 4 describes the query operations that can be performed on text
databases. In this chapter we cover the main techniques we need to implement
those query operations. ‘

We first concentrate on searching queries composed of words and on report-
ing the documents where they are found. The number of occurrences of a query
in each document and even its exact positions in the text may also be required.
Following that, we concentrate on algorithms dealing with Boolean operations.
We then consider sequential search algorithms and pattern matching. Finally,
we consider structured text and compression techniques. - ‘

An obvious option in searching for a basic query is to scan the text se-
quentially. Sequential or online text searching involves finding the occurrences
of a pattern in a text when the text is not preprocessed. Online searching is
appropriate when the text is small (i.e., a few megabytes), and it is the only
choice if the text collection is very volatile (i.e., undergoes modifications very
frequently) or the index space overhead cannot be afforded.

A second option is to build data structures over the text (called indices)
to speed up the search. It is worthwhile building and maintaining an index when
the text collection is large and semi-static. Semi-static collections can be up-
dated at reasonably regular intervals (e.g., daily) but they are not deemed to
support thousands of insertions of single words per second, say. This is the case
for most real text databases, not only dictionaries or other slow growing literary
works. For instance, it is the case for Web search engines or journal archives.

Nowadays, the most successful techniques for medium size databases (say
up to 200Mb) combine online and indexed searching.

‘We cover three main indexing techniques: inverted files, suffix arrays, and
signature files: Keyword-based search is discussed first. We emphasize inverted
files, which are currently the best choice for most applications. Suffix trees
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and arrays are faster for phrase searches and other less common queries, but
are harder to build and maintain. Finally, signature files were popular in the
1980s, but nowadays inverted files outperform them. For all the structures we
pay attention not only to their search cost and space overhead, but also to the
cost of building and updating them.

We assume that the reader is familiar with basic data structures, such as
sorted arrays, binary search trees, B-trees, hash tables, and tries. Since tries are
heavily used we give a brief and simplified reminder here. Tries, or digital search
trees, are multiway trees that store sets of strings and are able to retrieve any
string in time proportional to its length (independent of the number of strings
stored). A special character is added to the end of the string to ensure that no
string is a prefix of another. Every edge of the tree is labeled with a letter. To
search a string in a trie, one starts at the root and scans the string character-
wise, descending by the appropriate edge of the trie. This continues until a leaf
is found (which represents the searched string) or the appropriate edge to follow
does not exist at some point (i.e., the string is not in the set). See Figure 8.3
for an example of a text and a trie built on its words.

Although an index must be built prior to searching it, we present these tasks
in the reverse order. We think that understanding first how a data structure is
used makes it clear how it is organized, and therefore eases the understanding
of the construction algorithm, which is usually more complex.

Throughout this chapter we make the following assumptions. We call n
the size of the text database. Whenever a pattern is searched, we assume that
it is of length m, which is much smaller than n. We call M the amount of main
memory available. We assume that the modifications which a text database
undergoes are additions, deletions, and replacements (which are normally made
by a deletion plus an addition) of pieces of text of size n’ < n.

We give experimental measures for many “algorithms to give the reader a
grasp of the real times involved. To do this we use a reference architecture
throughout the chapter, which is representative of the power of today’s comput-
ers. We use a 32-bit Sun UltraSparc-1 of 167 MHz with 64 Mb of RAM, running
Solaris. The code is written in C and compiled with all optimization options.
For the text data, we use collections from TREC-2, specifically WSJ, DOE, FR,
ZIFF and AP. These are described in more detail in Chapter 3.

8.2 Inverted Files

An inverted file (or inverted index) is a word-oriented mechanism for indexing a
text collection in order to speed up the searching task. The inverted file structure
is composed of two elements: the vocabulary and the occurrences. The vocabulary
is the set of all different words in the text. For each such word a list of all the text
positions where the word appears is stored. The set of all those lists is called the
‘occurrences’ (Figure 8.1 shows an example). These positions can refer to words
or characters. Word positions (i.e., position % refers to the i-th word) simplify
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1 6 9 11 17 19 24 28 33 40 46 50 55 60
This is a text. A text has many words. Words are made from letters.
Text

Vocabulary Occurrences
letters 60...
made 50...
many 28...
text 11, 19... Inverted index
words 33, 40...

Figure 8.1 A sample text and an inverted index built on it. The words are converted
to lower-case and some are not indexed. The occurrences point to character positions
in the text.

phrase and proximity queries, while character positions (i.e., the position i is the
i-th character) facilitate direct access to the matching text positions.

Some authors make the distinction between inverted files and inverted lists.
In an inverted file, each element of a list points to a document or file name, while
inverted lists match our definition. We prefer not to make such a distinction
because, as we will see later, this is a matter of the addressing granularity,
which can range from text positions to logical blocks.

The space required for the voéabulary is rather small. According to Heaps’
law (see Chapter 6) the vocabulary grows as O(nf), where g is a constant
between 0 and 1 dependent on the text, being between 0.4 and 0.6 in practice.
For instance, for 1 Gb of the TREC-2 collection the vocabulary has a size of
only 5 Mb. This may be further reduced by stemming and other normalization
techniques as described in Chapter 7.

The occurrences demand much more space. Since each word appearing
in the text is referenced once in that structure, the extra space is O(n). Even
omitting stopwords (which is the default practice when words are indexed), in
practice the space overhead of the occurrences is between 30% and 40% of the
text size.

To reduce space requirements, a technique called block addressing is used.
The text is divided in blocks, and the occurrences point to the blocks where
the word appears (instead of the exact positions). The classical indices which
point to the exact occurrences are called ‘full inverted indices.’” By using block
addressing not only can the pointers be smaller because there are fewer blocks
than positions, but also all the occurrences of a word inside a single block are
collapsed to one reference (see Figure 8.2). Indices of only 5% overhead over the
text size are obtained with this technique. The price to pay is that, if the exact
occurrence positions are required (for in’étance, for a proximity query), then an
online search over the qualifying blocks has to be performed. For instance, block
addressing indices with 256 blocks stop working well with texts of 200 Mb.

Table 8.1 presents the projected space taken by inverted indices for texts of
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Block 1 Block 2 Block 3 i Block 4
fThis is a text.| A text has many |words. Words are |[made from letters.
. Text
Vocabulary Occurrences
letters 4...
made 4...
many 2.
Inverted Index

text 1, 2...
words 3...

Figure 8.2 The sample text split into four blocks, and an inverted index using block
addressing built on it. The occurrences denote block numbers. Notice that both
occurrences of ‘words’ collapsed into one.

different sizes, with and without the use of stopwords. The full inversion stands
for inverting all the words and storing their exact positions, using four bytes per
pointer. The document addressing index assumes that we point to documents
which are of size 10 Kb (and the necessary number of bytes per pointer, i.e.
one, two, and three bytes, depending on text size). The block addressing index
assumes that we use 256 or 64K blocks (one or two bytes per pointer) indepen-
dently of the text size. The space taken by the pointers can be significantly
reduced by using compression. We assume that 45% of all the words are stop-
words, and that there is one non-stopword each 11.5 characters. Our estimation
for the vocabulary is based on Heaps’ law with parameters V = 30n%-5. All these
decisions were taken according to our experience and experimentally validated.

The blocks can be of fixed size (imposing a logical block structure over
the text database) or they can be defined using the natural division of the text
collection into files, documents, Web pages, or others. The division into blocks
of fixed size improves efficiency at retrieval time, i.e. the more variance in the
block sizes, the more amount of text sequentially traversed on average. This is
because larger blocks match queries more frequently and are more expensive to
traverse.

Alternatively, the division using natural cuts may eliminate the need for
online traversal. For example, if one block per retrieval unit is used and the
exact match positions are not required, there is no need to traverse the text for
single-word queries, since it is enough to know which retrieval units to report.
But if, on the other hand, many retrieval units are packed into a single block,
the block has to be traversed to determine which units to retrieve.

It is important to notice that in order to use block addressing, the text
must be readily available at search time. This is not the case for remote text (as
in Web search engines), or if the text is in a CD-ROM that has to be mounted,
for instance. Some restricted queries not needing exact positions can still be
solved if the blocks are retrieval units.
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Index Small collection Medium collection Large collection
(1 Mb) (200 Mb) (2 Gb)
Addressing
words 45% 73% 36% 64% 35% 63%
Addressing
documents 19% 26% 18% 32% 26% 47%
Addressing
64K blocks 27% 41% 18% 32% 5% 9%
Addressing
256 blocks 18% 25% 1.7% 2.4% 0.5% 0.7%

Table 8.1 Sizes of an inverted file as approximate percentages of the size the whole
text collection. Four granularities and three collections are considered. For each collec-
tion, the right column considers that stopwords are not indexed while the left column
considers that all words are indexed.

8.2.1 Searching

The search algorithm on an inverted index follows three general steps (some may
be absent for specific queries):

e Vocabulary search VThe words and patterns present in the query are
isolated and searched in the vocabulary. Notice that phrases and proximity
queries are split into single words.

e Retrieval of occurrences The lists of the occurrences of all the words
found are retrieved.

e Manipulation of occurrences The occurrences are processed to solve
phrases, proximity, or Boolean operations. If block addressing is used it
may be necessary to directly search the text to find the information missing
from the occurrences (e.g., exact word positions to form phrases).

Hence, searching on an inverted index always starts in the vocabulary.
Because of this it is a good idea to have it in a separate file. It is possible that
this file fits in main memory even for large text collections.

Single-word queries can be scarched using any suitable data structure to
speed up the search, such as hashing, tries, or B-trees. The first two give O(m)
search cost (independent of the text size). However, simply storing the words in
lexicographical order is cheaper in space and very competitive in performance,
since the word can be binary searched at O(logn) cost. Prefix and range queries
can also be solved with binary search, tries, or B-trees, but not with hashing.
If the query is formed by single words, then the process ends by delivering the
list of occurrences (we may need to make a union of many lists if the pattern
matches many words).
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Context queries are more difficult to solve with inverted indices. Each el-
ement must be searched separately and a list (in increasing positional order)
generated for each one. Then, the lists of all elements are traversed in synchro-
nization to find places where all the words appear in sequence (for a phrase) or
appear close enough (for proximity). If one list is much shorter than the others,
it may be better to binary search its elements into the longer lists instead of
performing a linear merge. It is possible to prove using Zipf’s law that this is
normally the case. This is important because the most time-demanding opera-
tion on inverted indices is the merging or intersection of the lists of occurrences.

If the index stores character positions the phrase query cannot allow the
separators to be disregarded, and the prox1m1ty has to be defined in terms of
character distance.

Finally, note that if block addressing is used it is necessary to traverse the
blocks for these queries, since the position information is needed. It is then better
to intersect the lists to obtain the blocks which contain all the searched words
and then sequentially search the context query in those blocks as explained in
section 8.5. Some care has to be exercised at block boundaries, since they can
split a match. This part of the search, if present, is also quite time consuming.

Using Heaps’ and the generalized Zipf’s laws, it has been demonstrated
that the cost of solving queries is sublinear in the text size, even for complex
queries involving list merging. The time complexity is O(n?®), where o depends
on the query and is close to 0.4..0.8 for queries with reasonable selectivity.

Ewven if block addressing is used and the blocks have to be traversed, it is
possible to select the block size as an increasing function of n, so that not only
does the space requirement keep sublinear but also the amount of text traversed
in all useful queries is also sublinear.

Practical figures show, for instance, that both the space requirement and
the amount of text traversed can be close to O(n°®%). Hence, inverted indices
allow us to have sublinear search time at sublinear space requirements. This is
not possible on the other indices. :

Search times on our reference machine for a full inverted index built on 250
Mb of text give the following results: searching a simple word took 0.08 seconds,
while searching a phrase took 0.25 to 0.35 seconds (from two to five words).

8.2.2 Construction

Building and maintaining an inverted index is a relatively low cost task. In
principle, an inverted index on a text of n characters can be built in O(n) time.
All the vocabulary known up to now is kept in a trie data structure, storing for
. each word a list of its occurrences (text positions). Each word of the text is read
and searched in the trie. If it is not found, it is added to the trie with an empty
list of occurrences. Once it is in the trie, the new position is added to the end
of its list of occurrences. Figure 8.3 illustrates this process.

Once the text is exhausted, the trie is written to disk together with the
list of occurrences. It is good practice to split the index into two files. In the
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1 6 9 11 17 19 24 28 33 40 46 50 55 60

[This is a text. A text has many words. Words are made from letters.

Text

Vocabulary trie
text: 11, 19

words: 33, 40

Figure 8.3 Building an inverted index for the sample text.

first file, the lists of occurrences are stored contiguously. In this scheme, the file
is typically called a ‘posting file’. In the second file, the vocabulary is stored in
lexicographical order and, for each word, a pointer to its list in the first file is
also included. This allows the vocabulary to be kept in memory at search time
in many cases. Further, the number of occurrences of a word can be immediately
known from the vocabulary with little or no space overhead.

We analyze now the construction time under this scheme. Since in the
trie O(1) operations are performed per text character, and the positions can be
inserted at the end of the lists of occurrences in O(1) time, the overall process
is O(n) worst-case time.

However, the above algorithm is not practical for large texts where the
index does not fit in main memory. A paging mechanism will severely degrade
the performance of the algorithm. We describe an alternative which is faster in
practice.

The algorithm already described is used until the main memory is ex-
hausted (if the trie takes up too much space it can be replaced by a hash table
or other structure). When no more memory is available, the partial index I;
obtained up to now is written to disk and erased from main memory before
continuing with the rest of the text.

Finally, a number of partial indices I; exist on disk. These indices are then
merged in a hierarchical fashion. Indices I; and I, are merged to obtain the
index I o; I3 and Iy prodube I3, 4; and so on. The resulting partial indices are
now approximately twice the size. When all the indices at this level have been
merged in this way, the merging procéeds at the next ievel, joining the index
I, o with the index Is 4 to form I 4. This is continuéd until there is just one
index comprising the whole text, as illustrated in Figure 8.4.

Merging two indices consists of merging the sorted vocabularies, and when-
ever the same word appears in both indices, merging both lists of occurrences.
By construction, the occurrences of the smaller-numbered index are before those
of the larger-numbered index, and therefore the lists are just concatenated. This
is a very fast process in practice, and its complexity is O(ny +ng2), where n; and
no are the sizes of the indices.
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Figure 8.4 Merging the partial indices in a binary fashion. Rectangles represent
partial indices, while rounded rectangles represent merging operations. The numbers
inside the merging operations show a possible merging order.

The total time to generate the partial indices is O(n) as before. The number
of partial indices is O(n/M). Each level of merging performs a linear process over
the whole index (no matter how it is split into partial indices at this level) and
thus its cost is O(n). To merge the O(n/M) partial indices, log,(n/M) merging
levels are necessary, and therefore the cost of this algorithm is O(nlog(n/M)).

More than two indices can be merged at once. Although this does not
change the complexity, it improves efficiency since fewer merging levels exist.
On the other hand, the memory buffers for each partial index to merge will be
smaller and hence more disk seeks will be performed. In practice it is a good
idea to merge even 20 partial indices at once.

Real times to build inverted indices on the reference machine are between
4-8 Mb/min for collections of up to 1 Gb (the slowdown factor as the text grows is
barely noticeable). Of this time, 20-30% is spent on merging the partial indices.

To reduce build-time space requirements, it is possible to perform the merg-
ing in-place. That is, when two or more indices are merged, write the result in
the same disk blocks of the original indices instead of on a new file. It is also a
good idea to perform the hierarchical merging as soon as the files are generated
(e.g., collapse I; and Iy into I1 2 as soon as I is produced). This also reduces
space requirements because the vocabularies are merged and redundant words
are eliminated (there is no redundancy in the occurrences). The vocabulary can
be a significative part of the smaller partial indices, since they represent a small
text.

This algorithm changes very little if block addressing is used. Index main-
tenance is also cheap. Assume that a new text of size n’ is added to the database.
The inverted index for the new text is built and then both indices are merged
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as is done for partial indices. This takes O(n + n/log(n’/M)). Deleting text can
be done by an O(n) pass over the index eliminating the occurrences that point
inside eliminated text areas (and eliminating words if their lists of occurrences
disappear in the process).

8.3 Other Indices for Text
8.3.1 Suffix Trees and Suffix Arrays

Inverted indices assume that the text can be seen as a sequence of words. This
restricts somewhat the kinds of queries that can be answered. Other queries
such as phrases are expensive to solve. Moreover, the concept of word does not
exist in some applications such as genetic databases.

In this section we present suffix arrays. Suffix arrays are a space efficient
implementation of suffix trees. This type of index allows us to answer efficiently
more complex queries. Its main drawbacks are its costly construction process,
that the text must be readily available at query time, and that the results are
not delivered in text position order. This structure can be used to index only
words (without stopwords) as the inverted index as well as to index any text
character. This makes it suitable for a wider spectrum of applications, such as
genetic databases. However, for word-based applications, inverted files perform
better unless complex queries are an important issue.

This index sees the text as one long string. Each position in the text is
considered as a text suffiz (i.e., a string that goes from that text position to the
end of the text). It is not difficult to see that two suffixes starting at different
positions are lexicographically different (assume that a character smaller than all
the rest is placed at the end of the text). Each suffix is thus uniquely identified
by its position. '

Not all text positions need to be indexed. Index points are selected from the
text, which point to the beginning of the text positions which will be retrievable.
For instance, it is possible to index only word beginnings to have a functionality
similar to inverted indices. Those elements which are not index points are not
retrievable (as in an inverted index it is not possible to retrieve the middle of a
word). Figure 8.5 illustrates this.

Structure

In essence, a suffix tree is a trie data structure built over all the suffixes of
the text. The pointers to the suffixes are stored at the leaf nodes. To improve
space utilization, this trie is compacted into a Patricia tree. This involves
compressing unary paths, i.e. paths where each node has just one child. An
indication of the next character position to consider is stored at the nodes which
root a compressed path. Once unary paths are not present the tree has O(n)
nodes instead of the worst-case O(n?) of the trie (see Figure 8.6).
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This is a text. A text has many words. Words are made from letters.

ISR A A A A A

text. A text has many words. Words are made from letters.

text has many words. Words are made from letters.
many words. Words are made from letters.
words. Words are made from letters.
Words are made from letters. -
Suffixes

made from letters.

letters.

Figure 8.5 The sample text with the index points of interest marked. Below, the
suffixes corresponding to those index points.

1 6 9 11 17 19 24 28 33 40 46 50 55 60

This is a text. A text has many words. Words are made from letters.
Text
Suffix Trie Suffix Tree

Figure 8.6 The suffix trie and suffix tree for the sample text.

The problem with this structure is its space. Depending on the implemen-
tation, each node of the trie takes 12 to 24 bytes, and therefore even if only word
beginnings are indexed, a space overhead of 120% to 240% over the text size is
produced.

Suffix arrays provide essentially the same functionality as suffix trees with
much less space requirements. If the leaves of the suffix tree are traversed in
left-to-right order (top to bottom in our figures), all the suffixes of the text are
retrieved in lexicographical order. A suffix array is simply an array containing all
the pointers to the text suffixes listed in lexicographical order, as shown in Fig-
ure 8.7. Since they store one pointer per indexed suffix, the space requirements
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This is a text. A text has many words. Words are made from letters.j

Text

{60 [50 [28 [19 | 11 [ 40 [ 33 | Suffix Array

Figure 8.7 The suffix array for the sample text.

1 6 9 11 17 19 24 28 33 40 46 50 55 60

This is a text. A text has many words. Words are made from letters.

Text

[ et | [text | | word | | Supra-Index

[60 50 [ 28 | 19 [ 11 [ 40 [ 33 | Suffix Array

Figure 8.8 A supra-index over our suffix array. One out of three entries are sampled,
keeping their first four characters. The pointers (arrows) are in fact unnecessary.

are almost the same as those for inverted indices (disregarding compression tech-
niques), i.e. close to 40% overhead over the text size.

Suffix arrays are designed to allow binary searches done by comparing the
contents of each pointer. If the suffix array is large (the usual case), this binary
search can perform poorly because of the number of random disk accesses. To
remedy this situation, the use of supra-indices over the suffix array has been
proposed. The simplest supra-index is no more than a sampling of one out of b
suffix array entries, where for each sample the first ¢ suffix characters are stored
in the supra-index. This supra-index is then used as a first step of the search to
reduce external accesses. Figure 8.8 shows an example.

This supra-index does not in fact need to take samples at fixed intervals,
nor to take samples of the same length. For word-indexing suffix arrays it has
been suggested that a new sample could be taken each time the first word of the
suffix changes, and to store the word instead of ¢ characters. This is exactly the
same as having a vocabulary of the text plus pointers to the array. In fact, the
only important difference between this structure and an inverted index is that
the occurrences of each word in an inverted index are sorted by text position,
while in a suffix array they are sorted lexicographically by the text following the
word. Figure 8.9 illustrates this relationship.

The extra space requirements of supra-indices are modest. In particular, it
is clear that the space requirements of the suffix array with a vocabulary supra-
index are exactly the same as for inverted indices (except for compression, as we
see later).
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1 6 9 11 1719 24 28 33 40 46 50 55 60

IThis is a text. A text has many words. Words are made from letters. J

Text
rleﬂers ‘ \ l made l | | many | | text | I words I I
| Vocabulary
" Supra-index
[eo |50 [ 28 [ 19 [ 11 |40 | s | SuffixArray
" [eo [s0 [ 28 {11 [1e |88 | 40] Inverted List

Figure 8.9 Relationship between our inverted list and suffix array with vocabulary
supra-index.

Searching

If a suffix tree on the text can be afforded, many basic patterns such as words,
prefixes, and phrases can be searched in O(m) time by a simple trie search.
However, suffix trees are not practical for large texts, as explained. Suffix arrays,
on the other hand, can perform the same search operations in O(logn) time by
doing a binary search instead of a trie search.

This is achieved as follows: the search pattern originates two ‘limiting
patterns’ P; and Ps, so that we want any suffix S such that P, < § < P,. We
binary search both limiting patterns in the suffix array. Then, all the elements
lying between both positions point to exactly those suffixes that start like the
original pattern (i.e., to the pattern positions in the text). For instance, in our
example of figure 8.9, in order to find the word ‘text’ we search for ‘text’ and
‘texu’, obtaining the portion of the array that contains the pointers 19 and 11.

All these queries retrieve a subtree of the suffix tree or an interval of the
suffix array. The results have to be collected later, which may imply sorting
them in ascending text order. This is a complication of suffix trees or arrays
with respect to inverted indices. o

Simple phrase searching is a good case for these indices. A simple phrase
of words can be searched as if it was a simple pattern. This is because the suffix
tree/array sorts with respect to the complete suffixes and not only their first
word. A proximity search, on the other hand, has to be solved element-wise.
The matches for each element must be collected and sorted and then they have
to be intersected as for inverted files.

The binary search performed on suffix arrays, unfortunately, is done on
disk, where the accesses to (random) text positions force a seek operation which
spans the disk tracks containing the text. Since a random seek is O(n) in size,
this makes the search cost O(nlogn) time. Supra-indices are used as a first step
in any binary search operation to alleviate this problem. To avoid performing
O(log n) random accesses to the text on disk (and to the suffix array on disk), the
search starts in the supra-index, which usually fits in main memory (text samples
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included). After this search is completed, the suffix array block which is between
the two selected samples is brought into memory and the binary search is com-
pleted (performing random accesses to the text on disk). This reduces disk search
times to close to 25% of the original time. Modified binary search techniques
that sacrifice the exact partition in the middle of the array taking into account
the current disk head position allow a further reduction from 40% to 60%.

Search times in a 250 Mb text in our reference machine are close to 1 sec-
ond for a simple word or phrase, while the part corresponding to the accesses
to the text sums up 0.6 seconds. The use of supra-indices should put the total
time close to 0.3 seconds. Note that the times, although high for simple words,
do not degrade for long phrases as with inverted indices.

Construction in Main Memory

A suffix tree for a text of n characters can be built in O(n) time. The algorithm,
however, performs poorly if the suffix tree does not fit in main memory, which
is especially stringent because of the large space requirements of the suffix trees.
We do not cover the linear algorithm here because it is quite complex and only
of theoretical interest.

We concentrate on direct suffix array construction. Since the suffix array
is no more than the set of pointers lexicographically sorted, the pointers are
collected in ascending text order and then just sorted by the text they point to.
Note that in order to compare two suffix array entries the corresponding text
positions must be accessed. These accesses are basically random. Hence, both
the suffix array and the text must be in main memory. This algorithm costs
O(nlogn) string comparisons. '

An algorithm to build the suffix array in O(nlogn) character comparisons
follows. All the suffixes are bucket-sorted in O(n) time according to the first
letter only. Then, each bucket is bucket-sorted again, now according to their
first two letters. At iteration ¢, the suffixes begin already sorted by their 2¢—1
first letters and end up sorted by their first 2° letters. As at each iteration the
total cost of all the bucket sorts is O(n), the total time is O(nlogn), and the
average is O(nloglogn) (since O(logn) comparisons are necessary on average to
distinguish two suffixes of a text). This algorithm accesses the text only in the
first stage (bucket sort for the first letter).

In order to sort the strings in the i-th iteration, notice that since all suffixes
are sorted by their first 2°~! letters, to sort the text positions T, . and T3, in
the suffix array (assuming that they are in the same bucket, i.e., they share
their first 2071 letters), it is enough to determine the relative order between text
positions T, 9:—1 and T 5i—1 in the current stage of the search. This can be
done in constant time by storing the reverse permutation. We do not enter here
into further detail.

Construction of Suffix Arrays for Large Texts

There is still the problem that large text databases will not fit in main memory.
It could be possible to apply an external memory sorting algorithm. However,
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each comparison involves accessing the text at random positions on the disk.
This will severely degrade the performance of the sorting process.

We explain an algorithm especially designed for large texts. Split the text
into blocks that can be sorted in main memory. Then, for each block, build its
suffix array in main memory and merge it with the rest of the array already built
for the previous text. That is:

e build the suffix array for the first block,

e build the suffix array for the second block,

e merge both suffix arrays,

e build the suffix array for the third block,

e merge the new suffix array with the previous one,
e build the suffix array for the fourth block,

e merge the new suffix array with the previous one,

@ ... and so on.

The difficult part is how to merge a large suffix array (already built) with
the small suffix array (just built). The merge needs to compare text positions
which are spread in a large text, so the problem persists. The solution is to first
determine how many elements of the large array are to be placed between each
pair of elements in the small array, and later use that information to merge the
arrays without accessing the text. Hence, the information that we need is how
many suffixes of the large text lie between each pair of positions of the small
suffix array. We compute counters that store this information.

The counters are computed without using the large suffix array. The text
corresponding to the large array is sequentially read into main memory. Each
suffix of that text is searched in the small suffix array (in main memory). Once
we find the inter-element position where the suffix lies, we just increment the
appropriate counter. Figure 8.10 illustrates this process.

We analyze this algorithm now. If there is O(M) main memory to index,
then there will be O(n/M) text blocks. Each block is merged against an array
of size O(n), where all the O(n) suffixes of the large text are binary searched in
the small suffix array. This gives a total CPU complexity of O(n?log(M)/M).

Notice that this same algorithm can be used for index maintenance. If
a new text of size n’ is added to the database, it can be split into blocks
as before and merged block-wise into the current suffix array. This will take
O(nn’ log(M)/M). To delete some text it suffices to perform an O(n) pass over
the array eliminating all the text positions which lie in the deleted areas.

As can be seen, the construction process is in practice more costly for suffix
arrays than for inverted files. The construction of the supra-index consists of a
fast final sequential pass over the suffix array.

Indexing times for 250 Mb of text are close to 0.8 Mb/min on the reference
machine. This is five to ten times slower than the construction of inverted indices.
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Figure 8.10 A step of the suffix array construction for large texts: (a) the local suffix
array is built, (b) the counters are computed, (c) the suffix arrays are merged.

8.3.2 Signature Files

Signature files are word-oriented index structures based on hashing. They pose
a low overhead (10% to 20% over the text size), at the cost of forcing a sequen-
tial search over the index. However, although their search complexity is linear
(instead of sublinear as with the previous approaches), its constant is rather
low, which makes the technique suitable for not very large texts. Nevertheless,
inverted files outperform signature files for most applications.

Structure

A signature file uses a hash function (or ‘signature’) that maps words to bit
masks of B bits. It divides the text in blocks of b words each. To each text block
of size b, a bit mask of size B will be assigned. This mask is obtained by bitwise
ORing the signatures of all the words in the text block. Hence, the signature file
is no more than the sequence of bit masks of all blocks (plus a pointer to each
block). The main idea is that if a word is present in a text block, then all the
bits set in its signature are also set in the bit mask of the text block. Hence,
whenever a bit is set in the mask of the query word and not in the mask of the
text block, then the word is not present in the text block. Figure 8.11 shows an
example. :

However, it is possible that all the corresponding bits are set even though
the word is not there. This is called a false drop. The most delicate part of the
design of a signature file is to ensure that the probability of a false drop is low
enough while keeping the signature file as short as possible.

"The hash function is forced to deliver bit masks which have at least ¢ bits
set. A good model assumes that £ bits are randomly set in the mask (with
possible repetition). Let o = £/B. Since each of the b words sets £ bits at
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Block 1 Block 2 Block 3 Block 4
I This is a text.l A text has many ]words. Words are lmade from letters.
\ \\ f / Text
[ oooi0r [ | 110101 | ] 100100 | '] 101101 | ‘] Textsignature

h(text) =000101
h(many) = 110000
h(words) = 100100 Signature function
h(made) =001100
h(letters) = 100001

Figure 8.11 A signature file for our sample text cut into blocks.

random, the probability that a given bit of the mask is set in a word signature
is 1 — (1 —1/B)% ~ 1 — e~®*. Hence, the probability that the £ random bits set
in the query are also set in the mask of the text block is

(1 _ e—ba)aB

which is minimized for o = In(2)/b. The false drop probability under the optimal
selection ¢ = B1In(2)/bis (1/22(2)B/b =1 /2%,

Hence, a reasonable proportion B/b must be determined. The space over-
head of the index is approximately (1/80) x (B/b) because B is measured in bits
and b in words. Then, the false drop probability is a function of the overhead
to pay. For instance, a 10% overhead implies a false drop probability close to
2%, while a 20% overhead errs with probability 0.046%. This error probability
corresponds to the expected amount of sequential searching to perform while
checking if a match is a false drop or not.

Searching

Searching a single word is carried out by hashing it to a bit mask W, and then
comparing the bit masks B; of all the text blocks. Whenever (W & B; = W),
where & is the bitwise AND, all the bits set in W are also set in B; and therefore
the text block may contain the word. Hence, for all candidate text blocks, an
online traversal must be performed to verify if the word is actually there. This
traversal cannot be avoided as in inverted files (except if the risk of a false drop
is accepted).

No other types of patterns can be searched in this scheme. On the other
hand, the scheme is more efficient to search phrases and reasonable proximity
queries. This is because all the words must be present in a block in order for
that block to hold the phrase or the proximity query. Hence, the bitwise OR
of all the query masks is searched, so that all their bits must be present. This
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reduces the probability of false drops. This is the only indexing scheme which
improves in phrase searching.

Some care has to be exercised at block boundaries, however, to avoid miss-
ing a phrase which crosses a block limit. To allow searching phrases of 7 words
or proximities of up to j words, consecutive blocks must overlap in 7 words.

If the blocks correspond to retrieval units, simple Boolean conjunctions
involving words or phrases can also be improved by forcing all the relevant words
to be in the block. :

We were only able to find real performance estimates from 1992, run on a
Sun 3/50 with local disk. Queries on a small 2.8 Mb database took 0.42 seconds.
Extrapolating to today’s technology, we find that the performance should be
close to 20 Mb/sec (recall that it is linear time), and hence the example of 250
Mb of text would take 12 seconds, which is quite slow.

Construction

The construction of a signature file is rather easy. The text is simply cut in
blocks, and for each block an entry of the signature file is generated. This entry
is the bitwise OR of the signatures of all the words in the block.

Adding text is also easy, since it is only necessary to keep adding records
to the signature file. Text deletion is carried out by deleting the appropriate bit
masks. : :

Other storage proposals exist apart from storing all the bit masks in se-
quence. For instance, it is possible to make a different file for each bit of the
mask, i.e. one file holding all the first bits, another file for all the second bits,
etc. This reduces the disk times to search for a query, since only the files corre-
sponding to the £ bits which are set in the query have to be traversed.

8.4 Boolean Queries

We now cover set manipulation algorithms. These algorithms are used when
operating on sets of results, which is the case in Boolean queries. Boolean queries
are described in Chapter 4, where the concept of query syntax tree is defined.

Once the leaves of the query syntax tree are solved (using the algorithms to
find the documents containing the basic queries given), the relevant documents
must be worked on by composition operators. Normally the search proceeds in
three phases: the first phase determines which documents classify, the second
determines the relevance of the classifying documents so as to present them
appropriately to the user, and the final phase retrieves the exact positions of the
matches to highlight them in those documents that the user actually wants to see.

This scheme avoids doing unnecessary work on documents which will not
classify at last (first phase), or will not be read at last (second phase). However,
some phases can be merged if doing the extra operations is not expensive. Some
phases may not be present at all in some scenarios.
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Figure 8.12 Processing the internal nodes of the query syntax tree. In (a) full
evaluation is used. In (b) we show lazy evaluation in more detail.

Once the leaves of the query syntax tree find the classifying sets of docu-
ments, these sets are further operated by the internal nodes of the tree. It is pos-
sible to algebraically optimize the tree using identities such as a OR (a ANDb) =
_a, for instance, or sharing common subexpressions, but we do not cover this issue
here.

As all operations need to pair the same document in both their operands,
it is good practice to keep the sets sorted, so that operations like intersection,
union, etc. can proceed sequentially on both lists and also generate a sorted list.
Other representations for sets not consisting of the list of matching documents
(such as bit vectors) are also possible.

Under this scheme, it is possible to evaluate the syntax tree in full or lazy
form. In the full evaluation form, both operands are first completely obtained and
then the complete result is generated. In lazy evaluation, results are delivered
only when required, and to obtain that result some data is recursively required
to both operands.

Full evaluation allows some optimizations to be performed because the sizes
of the results are known in advance (for instance, merging a very short list against
a very long one can proceed by binary searching the elements of the short list
in the long one). Lazy evaluation, on the other hand, allows the application to
control when to do the work of obtaining new results, instead of blocking it for a
long time. Hybrid schemes are possible, for example obtain all the leaves at once
and then proceed in lazy form. This may be useful, for instance, to implement
some optimizations or to ensure that all the accesses to the index are sequential
(thus reducing disk seek times). Figure 8.12 illustrates this.

The complexity of solving these types of queries, apart from the cost of
obtaining the results at the leaves, is normally linear in the total size of all the
intermediate results. This is why this time may dominate the others, when there
are huge intermediate results. This is more noticeable to the user when the final
result is small.
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Figure 8.13 Brute-force search algorithm for the pattern ‘abracadabra.’ Squared
areas show the comparisons performed.

8.5 Sequential Searching

We now cover the algorithms for text searching when no data structure has been
built on the text. As shown, this is a basic part of some indexing techniques as
well as the only option in some cases. We cover exact string matching in this
section. Later we cover matching of more complex patterns. Our exposition
is mainly conceptual and the implementation details are not shown (see the
Bibliographic Discussion at the end of this chapter for more information).

The problem of exact string matching is: given a short pattern P of length
m and a long text T of length n, find all the text positions where the pattern
occurs. With minimal changes this problem subsumes many basic queries, such
as word, prefix, suffix, and substring search. '

This is a classical problem for which a wealth of solutions exists. We
sketch the main algorithms, and leave aside a lot of the theoretical work that
is not competitive in practice. For example, we do not include the Karp-Rabin
algorithm, which is a nice application of hashing to string searching, but is
not practical. We also briefly cover multipattern algorithms (that search many
patterns at once), since a query may have many patterns and it may be more
efficient to retrieve them all at once. Finally, we also mention how to do phrases
and proximity searches. '

We assume that the text and the pattern are sequences of characters drawn
from an alphabet of size o, whose first character is at position 1. The average-
case analysis assumes random text and patterns.

8.5.1 Brute Force

The brute-force (BF) algorithm is the simplest possible one. It consists of merely
trying all possible pattern positions in the text. For each such position, it verifies
whether the pattern matches at that position. See Figure 8.13.

Since there are O(n) text positions and each one is examined at O(m) worst-
case cost, the worst-case of brute-force searching is O(mn). However, its average
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case is O(n) (since on random text a mismatch is found after O(1) comparisons
on average). This algorithm does not need any pattern preprocessing.

Many algorithms use a modification of this scheme. There is a window
of length m which is slid over the text. It is checked whether the text in the
window is equal to the pattern (if it is, the window position is reported as a
match). Then, the window is shifted forward. The algorithms mainly differ in
the way they check and shift the window.

8.5.2 Knuth—Mowis-Pratt

The KMP algorithm was the first with linear worst-case behavior, although on
average it is not much faster than BF. This algorithm also slides a window over
the text. However, it does not try all window positions as BF does. Instead it
reuses information from previous checks.

After the window is checked, whether it matched the pattern or not, a num-
ber of pattern letters were compared to the text window, and they all matched
except possibly the last one compared. Hence, when the window has to be
shifted, there is a prefiz of the pattern that matched the text. The algorithm
takes advantage of this information to avoid trying window positions which can
be deduced not to match.

The pattern is preprocessed in O(m) time and space to build a table called
next. The nexttable at position j says which is the longest proper prefix of Py ;1
which is also a suffix and the characters following prefix and suffix are different.
Hence j —next[j]+ 1 window positions can be safely skipped if the characters up
to j — 1 matched, and the j-th did not. For instance, when searching the word
‘abracadabra,’ if a text window matched up to ‘abracab,’ five positions can be
safely skipped since next[7] = 1. Figure 8.14 shows an example.

The crucial observation is that this information depends only on the pat-
tern, because if the text in the window matched up to position j — 1, then that
text is equal to the pattern. '

The algorithm moves a window over the text and a pointer inside the
window. Each time a character matches, the pointer is advanced (a match is
reported if the pointer reaches the end of the window). Each time a character
is not matched, the window is shifted forward in the text, to the position given
by next, but the pointer position in the text does not change. Since at each
text comparison the window or the pointer advance by at least one position, the
algorithm performs at most 2n comparisons (and at least n).

The Aho-Corasick algorithm can be regarded as an extension of KMP in
matching a set of patterns. The patterns are arranged in a trie-like data struc-
ture. Each trie node represents having matched a prefix of some pattern(s).
The next function is replaced by a more general set of failure transitions. Those
transitions go between nodes of the trie. A transition leaving from a node rep-
resenting the prefix z leads to a node representing a prefix y, such that y is the
longest prefix in the set of patterns which is also a proper suffix of z. Figure 8.15
illustrates this.
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Figure 8.14 KMP algorithm searching ‘abracadabra.’” On the left, an illustration of
the next function. Notice that after matching ‘abracada’ we do not try to match the
last ‘@’ with the first one since what follows cannot be a ‘b.” On the right, a search
example. Grayed areas show the prefix information reused.

Figure 8.15 Aho-Corasick trie example for the set ‘hello,” ‘elbow’ and ‘eleven’
showing only one of all the failure transitions.

This trie, together with its failure transitions, is built in O(m) time and
space (where m is the total length of all the patterns). Its search time is O(n)
no matter how many patterns are searched. Much as KMP, it makes at most 2n
inspections.

8.5.3 Boyer-Moore Family

BM algorithms are based on the fact that the check inside the window can
proceed backwards. When a match or mismatch is determined, a suffiz of the
pattern has been compared and found equal to the text in the window. This can
be used in a way very similar to the next table of KMP, i.e. compute for every
pattern position j the next-to-last occurrence of P; ., inside P. This is called
the ‘match heuristic.’

This is combined with what is called the ‘occurrence heuristic.” It states
that the text character that produced the mismatch (if a mismatch occurred)
has to be aligned with the same character in the pattern after the shift. The
heuristic which gives the longest shift is selected.

For instance, assume that ‘abracadabra’ is searched in a text which starts
with ‘abracababra.” After matching the suffix ‘abra’ the underlined text char-
acter ‘b’ will cause a mismatch. The match heuristic states that since ‘abra’
was matched a shift of 7 is safe. The occurrence heuristic states that since the
underlined ‘D’ must match the pattern, a shift of 5 is safe. Hence, the pattern is
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abriaclabriaciadabra

Figure 8.16 BM algorithm searching ‘abracadabra.’ Squared areas show the com-
parisons performed. Grayed areas have already been compared (but the algorithm
compares them again). The dashed box shows the match heuristic, which was not
chosen.

shifted by 7. See Figure 8.16.

The preprocessing.tinie and space of this algorithm is O(m+ o). Its search
time is O(nlog(m)/m) on average, which is ‘sublinear’ in the sense that not all
characters are inspected. On the other hand, its worst case is O(mn) (unlike
KMP, the old suffix information is not kept to avoid further comparisons).

Further simplifications of the BM algorithm lead to some of the fastest
algorithms on average. The Simplified BM algorithm uses only the occurrence
heuristic. This obtains almost the same shifts in practice. The BM-Horspool
(BMH) algorithm does the same, but it notices that it is not important any
more that the check proceeds backwards, and uses the occurrence heuristic on
the last character of the window instead of the one that caused the mismatch.
This gives longer shifts on average. Finally, the BM-Sunday (BMS) algorithm
modifies BMH by using the character following the last one, which i 1mproves the
shift especially on short patterns.

The Commentz-Walter algorithm is an extension of BM to multipattern
search. It builds a trie on the reversed patterns, and instead of a backward
window check, it enters into the trie with the window characters read backwards.
A shift function is computed by a natural extension of BM. In general this
algorithm improves over Aho-Corasick for not too many patterns.

8.5.4 Shift-Or

Shift-Or is based on bit-parallelism. This technique involves taking advantage of
the intrinsic parallelism of the bit operations inside a computer word (of w bits).
By cleverly using this fact, the number of operations that an algorithm performs
can be cut by a factor of at most w. Since in current architectures w is 32 or 64,
the speedup is very significant in practice. '

The Shift-Or algorithm uses bit-parallelism to simulate the operation of
a non-deterministic automaton that searches the pattern in the text (see Fig-
ure 8.17). As this automaton is simulated in time O(mn), the Shift-Or algorithm
achieves O(mn/w) worst-case time (optimal speedup).

The algorithm first builds a table B which for each character stores a
bit mask b,,...b;. The mask in B[c] has the i-th bit set to zero if and only if
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Blal= 1 0 0 1 0 1 0 1 0 0 1
Blpl= O 1 0 0 0 0 0 0 1 0 0
B[ri= O 0 1 0 0 0 0 0 0 1 0
Blcl= O 0 0 0 1 0 0 0 0 0 0
Bldl= O 0 0 0 0 0 1 0 0 0 0
Bi*1= 0 0 0 0 0 0 0 0 0 0 0

Figure 8.17 Non-deterministic automaton that searches ‘abracadabra,” and the as-
sociated B table. The initial self-loop matches any character. Fach table column
corresponds to an edge of the automaton.

pi = c (see Figure 8.17). The state of the search is kept in a machine word
D = dy,...dy, where d; is zero whenever the state numbered i in Figure 8.17 is
active. Therefore, a match is reported whenever d,, is zero. In the following, we
use ‘|’ to denote the bitwise OR and ‘&’ to denote the bitwise AND.

D is set to all ones originally, and for each new text character T;, D is
updated using the formula

D'~ (D<<1) | BT

(where ‘<<’ means shifting all the bits in D one position to the left and setting
the rightmost bit to zero). It is not hard to relate the formula to the movement
that occurs in the non-deterministic automaton for each new text character.

For patterns longer than the computer word (i.e., m > w), the algorithm
uses [m/w]| computer words for the simulation (not all them are active all the
time). The algorithm is O(n) on average and the preprocessing is O(m+ o) time
and O(o) space.

It is easy to extend Shift-Or to handle classes of characters by manipulating
the B table and keeping the search algorithm unchanged.

This paradigm also can search a large set of extended patterns, as well as
multiple patterns (where the complexity is the same as before if we consider that
m is the total length of all the patterns).

8.5.5 Suffix Automaton

The Backward DAWG matching (BDM) algorithm is based on a suffix automa-
ton. A suffiz automaton on a pattern P is an automaton that recognizes all
the suffixes of P. The non-deterministic version of this automaton has a very
regular structure and is shown in Figure 8.18.

The BDM algorithm converts this automaton to deterministic. The size
and construction time of this-automaton is O(m). This is basically the prepro-
cessing effort of the algorithm. Each path from the initial node to any internal
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Figure 8.18 A non-deterministic suffix automaton. Dashed lines represent e-
transitions (i.e., they occur without consuming any input). I is the initial state of
the automaton.

a,byria cabracadabra,

L X X|
| X X X|

Figure 8.19 The BDM algorithm for the pattern ‘abracadabra.’ The rectangles
represent elements compared to the text window. The Xs show the positions where a
pattern prefix was recognized.

node represents a substring of the pattern. The final nodes represent pattern
suffixes.

To search a pattern P, the suffix automaton of P (the reversed pattern) is
built. The algorithm searches backwards inside the text window for a substring of
the pattern P using the suffix automaton. Each time a terminal state is reached
before hitting the beginning of the window, the position inside the window is
remembered. This corresponds to finding a prefiz of the pattern equal to a suffix
of the window (since the reverse suffixes of P" are the prefixes of P). The last
prefix recognized backwards is the longest prefix of P in the window. A match is
found if the complete window is read, while the check is abandoned when there
is no transition to follow in the automaton. In either case, the window is shifted
to align with the longest prefix recognized. See Figure 8.19.

This algorithm is'O(mmn) time in the worst case and O(n log(m)/m) on aver-
age. There exists also a multipattern version of this algorithm called MultiBDM,
which is the fastest for many patterns or very long patterns.

BDM rarely beats the best BM algorithms. However, a recent bit-parallel
implementation called BNDM improves over BM in a wide range of cases. This
algorithm simulates the non-deterministic suffix automaton using bit-parallelism.
The algorithm supports some extended patterns and other applications men-
tioned in Shift-Or, while keeping more efficient than Shift-Or.

8.5.6 Practical Comparison

Figure 8.20 shows a practical comparison between string matching algorithms
run on our reference machine. The values are correct within 5% of accuracy with
a 95% confidence interval. We tested English text from the TREC collection,
DNA (corresponding to ‘h.influenzae’) and random text uniformly generated over
64 letters. The patterns were randomly selected from the text except for random
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text, where they were randomly generated. We tested over 10 Mb of text and
measured CPU time. We tested short patterns on English and random text and
long patterns on DNA, which are the typical cases.

We first analyze the case of random text, where except for very short pat-
terns the clear winners are BNDM (the bit-parallel implementation of BDM)
and the BMS (Sunday) algorithm. The more classical Boyer-Moore and BDM
algorithms are also very close. Among the algorithms that do not improve with
the pattern length, Shift-Or is the fastest, and KMP is much slower than the
naive algorithm.

The picture is similar for English text, except that we have included the
Agrep software in this comparison, which worked well only on English text.
Agrep turns out to be much faster than others. This is not because of using a
special algorithm (it uses a BM-family algorithm) but because the code is care-
fully optimized. This shows the importance of careful coding as well as using
good algorithms, especially in text searching where a few operations per text
character are performed. '

Longer patterns are shown for a DNA text. BNDM is the fastest for mod-
erate patterns, but since it does not improve with the length after m > w, the
classical BDM finally obtains better times. They are much better than the Boyer-
Moore family because the alphabet is small and the suffix automaton technique
makes better use of the information on the pattern.

We have not shown the case of extended patterns, that is, where flexibility
plays a role. For this case, BNDM is normally the fastest when it can be applied
(e.g., it supports classes of characters but not wild cards), otherwise Shift-Or is
the best option. Shift-Or is also the best option when the text must be accessed
sequentially and it is not possible to skip characters.

8.5.7 Phrases and Proximity

If a sequence of words is searched to appear in the text exactly as in the pattern
(i.e., with the same separators) the problem is similar to that of exact search of
a single pattern, by just forgetting the fact that there are many words. If any
separator between words is to be allowed, it is possible to arrange it using an
extended pattern or regular expression search.

The best way to search a phrase element-wise is to search for the element
which is less frequent or can be searched faster (both criteria normally match).
For instance, longer patterns are better than shorter ones; allowing fewer errors is
better than allowing more errors. Once such an element is found, the neighboring
words are checked to see if a complete match is found.

A similar algorithm can be used to search a proximity query.

8.6 Pattern Matching

We present in this section the main techniques to deal with complex patterns.
We divide it into two main groups: searching allowing errors and searching for
extended patterns.
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Figure 8.20 Practical comparison among algorithms. The upper left plot is for short
patterns on English text. The upper right one is for long patterns on DNA. The lower
plot is for short patterns on random text (on 64 letters). Times are in tenths of seconds
per megabyte.

8.6.1 String Matching Allowing Errors

This problem (called ‘approximate string matching’) can be stated as follows:
given a short pattern P of length m, a long text T of length n, and a maximum
allowed number of errors k, find all the text positions where the pattern occurs
with at most k errors. This statement corresponds to the Levenshtein distance.
With minimal modifications it is adapted to searching whole words matching the
pattern with k£ errors.

This problem is newer than exact string matching, although there are al-
ready a number of solutions. We sketch the main approaches.

Dynamic Programming

The classical solution to approximate string matching is based on dynamic pro-
gramming. A matrix C[0..m,0..n] is filled column by column, where Cz,j]
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represents the minimum number of errors needed to match P; ; to a suffix of
Ti. ;. This is computed as follows

C[0,5] = 0
Cli,0] = i
Cli,j] = if (Pi=T;) then Cli— 1,5 — 1]

else 1 + min(C[i — 1,5],Cli,j — 1],Cli — 1,5 — 1))

where a match is reported at text positions j such that C[m,j] < k (the final
positions of the occurrences are reported).

Therefore, the algorithm is O(mn) time. Since only the previous column
of the matrix is needed, it can be implemented in O(m) space. Its preprocessing
time is O(m) . Figure 8.21 illustrates this algorithm.

In recent years several algorithms have been presented that achieve O(kn)
time in the worst case or even less in the average case, by taking advantage of
the properties of the dynamic programming matrix (e.g., values in neighbor cells
differ at most by one).

Automaton

It is interesting to note that the problem can be reduced to a non-deterministic
finite automaton (NFA). Consider the NFA for k = 2 errors shown in Figure 8.22.
Each row denotes the number of errors seen. The first one 0, the second one
1, and so on. Every column represents matching the pattern up to a given
position. At each iteration, a new text character is read and the automaton
changes its states. Horizontal arrows represent matching a character, vertical
arrows represent insertions into the pattern, solid diagonal arrows represent re-
placements, and dashed diagonal arrows represent deletions in the pattern (they
are e-transitions). The automaton accepts a text position as the end of a match

<Gio|<|H|sln

o ol i wi | =] o
] BN RJUTR ) Y Hewl Ran) /)
N Rolrlola
W N = O =~ O R
o[ D] r=] = D[ = OO0
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Mo O pof of = o K
| W W] W N =] O

Figure 8.21 The dynamic programming algorithm search ‘survey’ in the text
‘surgery’ with two errors. Bold entries indicate matching positions.
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2 errors

Figure 8.22 An NFA for approximate string matching of the pattern ‘survey’ with
two errors. The shaded states are those active after reading the text ‘surgery’. Unla-
belled transitions match any character.

with k errors whenever the (k + 1)-th rightmost state is active.

It is not hard to see that once a state in the automaton is active, all the
states of the same column and higher rows are active too. Moreover, at a given
text character, if we collect the smallest active rows at each column, we obtain the
current column of the dynamic programming algorithm. Figure 8.22 illustrates
this (compare the figure with Figure 8.21).

One solution is to make this automaton deterministic (DFA). Although the
search phase is O(n), the DFA can be huge. An alternative solution is based on
bit-parallelism and is explained next.

Bit-Parallelism

Bit-parallelism has been used to parallelize the computation of the dynamic
programming matrix (achieving average complexity O(kn/w)) and to parallelize
the computation of the NFA (without converting it to deterministic), obtaining
O(kmn/w) time in the worst case. Such algorithms achieve O(n) search time
for short patterns and are currently the fastest ones in many cases, running at 6
to 10 Mb per second on our reference machine.

Filtering

Finally, other approaches first filter the text, reducing the area where dynamic
programming needs to be used. These algorithms achieve ‘sublinear’ expected
time in many cases for low error ratios (i.e., not all text characters are inspected,
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O(knlog,(m)/m) is a typical figure), although the filtration is not effective for
more errors. Filtration is based on the fact that some portions of the pattern
must appear with no errors even in an approximate occurrence.

The fastest algorithm for low error levels is based on filtering: if the pattern
is split into k-1 pieces, any approximate occurrence must contain at least one of
the pieces with no errors, since k errors cannot alter all the k + 1 pieces. Hence,
the search begins with a multipattern exact search for the pieces and it later
verifies the areas that may contain a match (using another algorithm).

8.6.2 Regular Expressions and Extended Patterns

General regular expressions are searched by building an automaton which finds
all their occurrences in a text. This process first builds a non-deterministic fi-
nite automaton of size O(m), where m is the length of the regular expression.
The classical solution is to convert this automaton to deterministic form. A
deterministic automaton can search any regular expression in O(n) time. How-
ever, its size and construction time can be exponential in m, i.e. O(m2™). See
Figure 8.23. Excluding preprocessing, this algorithm runs at 6 Mb/sec in the
reference machine.

Recently the use of bit-parallelism has been proposed to avoid the con-
struction of the deterministic automaton. The non-deterministic automaton is
simulated instead. One bit per automaton state is used to represent whether the
state is active or not. Due to the algorithm used to build the non-deterministic
automaton, all the transitions move forward except for e-transitions. The idea
is that for each text character two steps are carried out. The first one moves
forward, and the second one takes care of all the e-transitions. A function E
from bit masks to bit masks is precomputed so that all the corresponding bits
are moved according to the e-transitions. Since this function is very large (i.e.,
2™ entries) its domain is split in many functions from 8- or 16-bit submasks to
m-bit masks. This is possible because E(B;...B;) = E(B)|...|E(B;), where B;

L (.00 "OnoRy
P o GO

Figure 8.23 The non-deterministic (a) and deterministic (b) automata for the regular
expression b b* (b | b*a).

(a) b
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are the submasks. Hence, the scheme performs [m/8] or [m/16] operations per
text character and needs [m/8]28[m/w] or [m/16]26[m/w] machine words of
memory.

Extended patterns can be rephrased as regular expressions and solved as
before. However, in many cases it is more efficient to give them a specialized so-
lution, as we saw for the extensions of exact searching (bit-parallel algorithms).
Moreover, extended patterns can be combined with approximate search for maxi-
mum flexibility. In general, the bit-parallel approach is the best equipped to deal
with extended patterns. _

Real times for regular expressions and extended- pattern searching using
this technique are between 2-8 Mb/sec. :

8.6.3 Pattern Matching Using Indices

We end this section by explaining how the indexing techniques we presented for
simple searching of words can in fact be extended to search for more complex
patterns. '

Inverted Files

As inverted files are word-oriented, other types of queries such as suffix or sub-
string queries, searching allowing errors and regular expressions, are solved by a
sequential (i.e., online) search over the vocabulary. This is not too bad since the
size of the vocabulary is small with respect to the text size. :

After either type of search, a list of vocabulary words that matched the
query is obtained. All their lists of occurrences are now merged to retrieve a list
of documents and (if required) the matching text positions. If block addressing
is used and the positions are required or the blocks do not coincide with the
retrieval unit, the search must be completed with a sequential search over the
blocks.

Notice that an inverted index is word-oriented. Because of that it is not
surprising that it is not able to efficiently find approximate matches or regular
expressions that span many words. This is a restriction of this scheme. Variations
that are not subject to this restriction have been proposed for languages which
do not have a clear concept of word, like Finnish. They collect text samples or n-
grams, which are fixed-length strings picked at regular text intervals. Searching
is in general more powerful but more expensive.

In a full-inverted index, search times for simple words allowing errors on
250 Mb of text took our reference machine from 0.6 to 0.85 seconds, while very
complex expressions on extended patterns took from 0.8 to 3 seconds. As a
comparison, the same collection cut in blocks of 1 Mb size takes more than 8
seconds for an approximate search with one error and more than 20 for two
€rrors. ' /
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Suffix Trees and Suffix Arrays

If the suffix tree indexes all text positions it can search for words, prefixes,
suffixes and substrings with the same search algorithm and cost described for
word search. However, indexing all positions makes the index 10 to 20 times the
text size for suffix trees.

Range queries are easily solved too, by just searching both extremes in the
trie and then collecting all the leaves which lie in the middle. In this case the
cost is the height of the tree, which is O(logn) on average (excluding the tasks
of collecting and sorting the leaves).

Regular expressions can be searched in the suffix tree. The algorithm sim-
ply simulates sequential searching of the regular expression. It begins at the
root, since any possible match starts there too. For each child of the current
node labeled by the character ¢, it assumes that the next text character is ¢
and recursively enters into that subtree. This is done for each of the children of
the current node. The search stops only when the automaton has no transition
to follow. It has been shown that for random text only O(n®polylog(n)) nodes
are traversed (for 0 < @ < 1 dependent on the regular expression). Hence, the
search time is sublinear for regular expressions without the restriction that they
must occur inside a word. Extended patterns can be searched in the same way
by taking them as regular expressions.

Unrestricted approximate string matching is also possible using the same
idea. We present a simplified version here. Imagine that the search is online and
traverse the tree recursively as before. Since all suffixes start at the root, any
match starts at the root too, and therefore do not allow the match to start later.
The search will automatically stop at depth m + k at most (since at that point
more than k errors have occurred). This implies constant search time if n is large
enough (albeit exponential on m and k). Other problems such as approximate
search of extended patterns can be solved in the same way, using the appropriate
online algorithm.

Suffix trees are able to perform other complex searches that we have not
considered in our query language (see Chapter 4). These are specialized oper-
ations which are useful in specific areas. Some examples are: find the longest
substring in the text that appears more than once, find the most common sub-
string of a fixed size, etc.

If a suffix array indexes all text positions, any algorithm that works on
suffix trees at C(n) cost will work on suffix arrays at O(C(n)logn) cost. This
is because the operations performed on the suffix tree consist of descending to
a child node, which is done in O(1) time. This operation can be simulated in
the suffix array in O(logn) time by binary searching the new boundaries (each
suffix tree node corresponds to a string, which can be mapped to the suffix
array interval holding all suffixes starting with that string). Some patterns can
be searched directly in the suffix array in O(logn) total search time without
simulating the suffix tree. These are: word, prefix, suffix and subword search, as
well as range search. g

However, again, indexing all text positions normally makes the suffix array
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size four times or more the text size. A different alternative for suffix arrays is
to index only word beginnings and to use a vocabulary supra-index, using the
same search algorithms used for the inverted lists. .

8.7 Structural Queries

The algorithms to search on structured text (see Chapter 4) are largely dependent
on each model. We extract their common features in this section.

A first concern about this problem is how to store the structural informa-
tion. Some implementations build an ad hoc index to store the structure. This is
potentially more efficient and independent of any consideration about the text.
However, it requires extra development and maintenance effort.

Other techniques assume that the structure is marked in the text using
‘tags’ (i.e., strings that identify the structural elements). This is the case with
HTML text but not the case with C code where the marks are implicit and are
inherent to C. The technique relies on the same index to query content (such as
inverted files), using it to index and search those tags as if they were words.
In many cases this is as efficient as an ad hoc index, and its integration into an
existing text database is simpler. Moreover, it is possible to define the structure
dynamically, since the appropriate tags can be selected at search time. For that
goal, inverted files are better since they naturally deliver the results in text order,
which makes the structure information easier to obtain. On the other hand, some
queries such as direct ancestry are hard to answer without an ad hoc index.

Once the content and structural elements have been found by using some
index, a set of answers is generated. The models allow further operations to be
applied on those answers, such as ‘select all areas in the left-hand argument which
contain an area of the right-hand argument.’” This is in general solved in a way
very similar to the set manipulation techniques already explained in section 8.4.
However, the operations tend to be more complex, and it is not always possible
to find an evaluation algorithm which has linear time with respect to the size of
the intermediate results.

It is worth mentioning that some models use completely different algo-
rithms, such as exhaustive search techniques for tree pattern matching. Those
problems are NP-complete in many cases.

8.8 Compression

In this section we discuss the issues of searching compressed text directly and of
searching compressed indices. Compression is important when available storage
is a limiting factor, as is the case of indexing the Web.

Searching and compression were traditionally regarded as exclusive opera-
tions. Texts which were not to be searched could be compressed, and to search

~
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a compressed text it had to be decompressed first. In recent years, very effi-
cient compression techniques have appeared that allow searching directly in the
compressed text. Moreover, the search performance is improved, since the CPU
times are similar but the disk times are largely reduced. This leads to a win-win
situation. ~ ,

Discussion on how common text and lists of numbers can be compressed
has been covered in Chapter 7.

8.8.1 Sequential Searching

A few approaches to directly searching compressed text exist. One of the most
successful techniques in practice relies on Huffman coding taking words as sym-
bols. That is, consider each different text word as a symbol, count their frequen-
cies, and generate a Huffman codefor the words. Then, compress the text by
replacing each word with its code. To improve compression/decompression effi-
ciency, the Huffman code uses an alphabet of bytes instead of bits. This scheme
compresses faster and better than known commercial systems, even those based
on Ziv-Lempel coding.

Since Huffman coding needs to store the codes of each symbol, this scheme
has to store the whole vocabulary of the text, i.e. the list of all different text
words. This is fully exploited to efficiently search complex queries. Although
according to Heaps’ law the vocabulary (i.e., the alphabet) grows as O(nf) for
0 < B < 1, the generalized Zipf’s law shows that the distribution is skewed
enough so that the entropy remains constant (i.e., the compression ratio will not
degrade as the text grows). Those laws are explained in Chapter 6.

Any single-word or pattern query is first searched in the vocabulary. Some
queries can be binary searched, while others such as approximate searching or
regular expression searching must traverse sequentially all the vocabulary. This
vocabulary is rather small compared to the text size, thanks to Heaps’ law. No-
tice that this process is exactly the same as the vocabulary searching performed
by inverted indices, either for simple or complex pattern matching,.

Once that search is complete, the list of different words that match the
query is obtained. The Huffman codes of all those words are collected and they
are searched in the compressed text. One alternative is to traverse byte-wise the
compressed text and traverse the Huffman decoding tree in synchronization, so
that each time that a leaf is reached, it is checked whether the leaf (i.e., word)
was marked as ‘matching’ the query or not. This is illustrated in Figure 8.24.
Boyer-Moore filtering can be used to speed up the search.

Solving phrases is a little more difficult. Each element is searched in the
vocabulary. For each word of the vocabulary we define a bit mask. We set the
i-th bit in the mask of all words which match with the i-th element of the phrase
query. This is used together with the Shift-Or algorithm. The text is traversed
byte-wise, and only when a leaf is reached, does the Shift-Or algorithm consider
that a new text symbol has been read, whose bit mask is that of the leaf (see
Figure 8.24). This algorithm is surprisingly simple and efficient.
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Figure 8.24 On the left, searching for the simple pattern ‘rose’ allowing one error.
On the right, searching for the phrase ‘ro* rose is,” where ‘ro*’ represents a prefix
search.

This scheme is especially fast when it comes to solving a complex query
(regular expression, extended pattern, approximate search, etc.) that would be
slow with a normal algorithm. This is because the complex search is done only
in the small vocabulary, after which the algorithm is largely insensitive to the
complexity of the originating query. Its CPU times for a simple pattern are
slightly higher than those of Agrep (briefly described in section 8.5.6). However,
if the I/O times are considered, compressed searching is faster than all the online
algorithms. For complex queries, this scheme is unbeaten by far.

On the reference machine, the CPU times are 14 Mb/sec for any query,
while for simple queries this improves to 18 Mb/sec if the speedup technique is
used. Agrep, on the other hand, runs at 15 Mb/sec on simple searches and at
1-4 Mb/sec for complex ones. Moreover, I/O times are reduced to one third on
the compressed text.

8.8.2 Compressed Indices
Inverted Files

Inverted files are quite amenable to compression. This is because the lists of
occurrences are in increasing order of text position. Therefore, an obvious choice
is to represent the differences between the previous position and the current one.
These differences can be represented using less space by using techniques that
favor small numbers (see Chapter 7). Notice that, the longer the lists, the smaller
the differences. Reductions in 90% for block-addressing indices with blocks of 1
- Kb size have been reported.

It is important to notice that compression does not necessarily degrade
time performance. Most of the time spent in answering a query is in the disk
transfer. Keeping the index compressed allows the transference of less data, and
it may be worth the CPU work of decompressing. Notice also that the lists of
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occurrences are normally traversed in a sequential manner, which is not affected
by a differential compression. Query times on compressed or decompressed in-
dices are reported to be roughly similar.

The text can also be compressed independently of the index. The text will
be decompressed only to display it, or to traverse it in case of block addressing.
Notice in particular that the online search technique described for compressed
text in section 8.8.1 uses a vocabulary. It is possible to integrate both techniques
(compression and indexing) such that they share the same vocabulary for both
tasks and they do not decompress the text to index or to search.

Suffix Trees and Suffix Arrays

Some efforts to compress suffix trees have been pursued. Important reductions
of the space requirements have been obtained at the cost of more expensive
searching. However, the reduced space requirements happen to be similar to
those of uncompressed suffix arrays, which impose much smaller performance
penalties.

Suffix arrays are very hard to compress further. This is because they rep-
resent an almost perfectly random permutation of the pointers to the text.

However, the subject of building suffix arrays on compressed text has been
pursued. Apart from reduced space requirements (the index plus the com-
pressed text take less space than the uncompressed text), the main advantage
is that both index construction and querying almost double their performance.
Construction is faster because more compressed text fits in the same memory
space, and therefore fewer text blocks are needed. Searching is faster because
a large part of the search time is spent in disk seek operations over the text
area to compare suffixes. If the text is smaller, the seeks reduce proportion-
ally.

A compression technique very similar to that shown in section 8.8.1 is used.
However, the Huffman code on words is replaced by a Hu-Tucker coding. The
Hu-Tucker code respects the lexicographical relationships between the words,
and therefore direct binary search over the compressed text is possible (this is
necessary at construction and search time). This code is suboptimal by a very
small percentage (2-3% in practice, with an analytical upper bound of 5%).

Indexing times for 250 Mb of text on the reference machine are close to 1.6
Mb/min if compression is used, while query times are reduced to 0.5 seconds in
total and 0.3 seconds for the text alone. Supra-indices should reduce the total
search time to 0.15 seconds. :

Signature Files

There are many alternative ways to compress signature files. All of them are
based on the fact that only a few bits are set in the whole file. It is then possible
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to use efficient methods to code the bits which are not set, for instance run-length
encoding. Different considerations arise if the file is stored as a sequence of bit
masks or with one file per bit of the mask. They allow us to reduce space and
hence disk times, or alternatively to increase B (so as to reduce the false drop
probability) keeping the same space overhead. Compression ratios near 70% are
reported.

8.9 Trends and Reseaé:ch Issues

In this chapter we covered extensively the current techniques of dealing with text
retrieval. We first covered indices and then online searching. We then reviewed
set manipulation, complex pattern matching and finally considered compression
techniques. Figure 8.25 summarizes the tradeoff between the space needed for
the index and the time to search one single word.

Space Complexity
Suffix tries
Indezed search
Suffix trees
n Suffix arrays
Hybrid
solutions
(full
inversion)
0.1n Signature files
ot / (block addressing)
Inverted files i
Sequential search
m Boyer-Moore and BDM families
m ’ — KMP
4+ Shift-or
1 ——— Brute force
m mlogn n? "I°——mgﬁ 0.1n n mn Time

Complexity

Figure 8.25 Tradeoff of index space versus word searching time.
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Probably the most adequate indexing technique in practice is the inverted
file. As we have shown throughout the chapter, many hidden details in other
structures make them harder to use and less efficient in practice, as well as less
flexible for dealing with new types of queries. These structures, however, still
find application in restricted areas such as genetic databases (for suffix trees
and arrays, for the relatively small texts used and their need to pose specialized
queries) or some office systems (for signature files, because the text is rarely
queried in fact). '

The main trends in indexing and searching textual databases today are

e Text collections are becoming huge. This poses more demanding re-
quirements at all levels, and solutions previously affordable are not any
more. On the other hand, the speed of the processors and the relative
slowness of external devices have changed what a few years ago were rea-
sonable options (e.g., it is better to keep a text compressed because reading
less text from disk and decompressing in main memory pays off).

e Searching is becoming more complex. As the text databases grow
and become more heterogeneous and error-prone, enhanced query facilities
are required, such as exploiting the text structure or allowing errors in
the text. Good support for extended queries is becoming important in the
evaluation of a text retrieval system.

e Compression is becoming a star in the field. Because of the changes
mentioned in the time cost of processors and external devices, and because
of new developments in the area, text retrieval and compression are no
longer regarded as disjoint activities. Direct indexing and searching on
compressed text provides better (sometimes much better) time performance
and less space overhead at the same time. Other techniques such as block
addressing trade space for processor time.

8.10 Bibliographic Discussion

A detailed explanation of a full inverted index and its construction and querying
process can be found in [26]. This work also includes an analysis of the algo-
rithms on inverted lists using the distribution of natural language. The in-place
construction is described in [572]. Another construction algorithm is presented
in [341]. ,

The idea of block addressing inverted indices was first presented in a system
called Glimpse [540], which also first exposed the idea of performing complex
pattern matching using the vocabulary of the inverted index. Block addressing
indices are analyzed in [42], where some performance improvements are proposed.
The variant that indexes sequences instead of words has been implemented in a
system called Grampse, which is described in [497].

Suffix arrays were presented in [538] together with the algorithm to build
them in O(nlogmn) character comparisons. They were independently discovered
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by [309] under the name of ‘PAT arrays.” The algorithm to build large suffix
arrays is presented in [311]. The use of supra-indices over suffix array is proposed
in [37], while the modified binary search techniques to reduce disk seek time are
presented in [56]. The linear-time construction of suffix trees is described in
[780]. )

The material on signature files is based on [243]. The different alternative
ways of storing the signature file are explained in [242].

The original references for the sequential search algorithms are: KMP [447],
BM [110], BMH [376], BMS [751], Shift-Or [39], BDM [205] and BNDM [592].
The multipattern versions are found in [9, 179], and MultiBDM in [196]. Many
enhancements of bit-parallelism to support extended patterns and allow errors
are presented in [837]. Many ideas from that paper were implemented in a widely
distributed software for online searching called Agrep [836].

The reader interested in more details about sequential searching algorithms
may look for the original references or in good books on algorithms such as [310,
196].

One source for the classical solution to approximate string matching is
[716]. An O(kn) worst-case algorithm is described in [480]. The use of a DFA is
proposed in [781]. The bit-parallel approach to this problem started in [837], al-
though currently the fastest bit-parallel algorithms are [583] and [43]. Among all
the filtering algorithms, the fastest one in practice is based on an idea presented
in [837], later enhanced in [45], and finally implemented in [43].

A good source from which to learn about regular expressions and building
a DFA is [375]. The bit-parallel implementation of the NFA is explained in [837].
Regular expression searching on suffix trees is described in [40], while searching
allowing errors is presented in [779]. 7

The Huffman coding was first presented in [386], while the word-oriented
alternative is proposed in [571]. Sequential searching on text compressed using
that technique is described in [577]. Compression used in combination with
inverted files is described in [850], with suffix trees in [430], with suffix arrays
n [575], and with signature files in [243, 242]. A good general reference on
compression is [78]. ‘
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Chapter 10
User Interfaces and Visualization

by Marti A. Hearst

10.1 Introduction

This chapter discusses user interfaces for communication between human
information seekers and information retrieval systems. Information seeking is
an imprecise process. When users approach an information access system they
often havé‘i‘oflly a fuzzy understanding of how they can achieve their goals. Thus
the user interface should aid in the understanding and expression of information
needs. It should also help users formulate their queries, select among available
information sources, understand search results, and keep track of the progress of
their search.

The human-computer interface is less well understood than other aspects of
information retrieval, in part because humans are more complex than computer
systems, and their motivations and behaviors are more difficult to measure and
characterize. The area is also undergoing rapid change, and so the discussion in
this chapter will emphasize recent developments rather than established wisdom.

The chapter will first outline the human side of the information seeking
process and then focus on the aspects of this process that can best be supported
by the user interface. Discussion will encompass current practice and technology,
recently proposed innovative ideas, and suggestions for future areas of develop-
ment.

Section 10.2 outlines design principles for human-computer interaction and
introduces notions related to information visualization. section 10.3 describes
information seeking models, past and present. The next four sections describe
user interface support for starting the search process, for query specification, for
viewing retrieval results in context, and for interactive relevance feedback. The
last major section, section 10.8, describes user interface techniques to support
the information access process as a whole. Section 10.9 speculates on future
developments and Section 10.10 provides suggestions for further reading. Figure
10.1 presents the flow of the chapter contents. .
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Introduction
HCI Background

[The Information Access Process }

o Starting Points

Query Specification

Using Relevance Judoements

Interface Support

Figure 10.1 The flow of this chapter’s contents.

10.2 Human-Computer Interaction

What makes an effective human-computer interface? Ben Shneiderman, an ex-
pert in the field, writes [725, p.10]:

Well designed, effective computer systems generate positive feelings
of success, competence, mastery, and clarity in the user community.
When an interactive system is well-designed, the interface almost dis-
appears, enabling users to concentrate on their work, exploration, or
pleasure.

As steps towards achieving these goals, Shneiderman lists principles for
design of user interfaces. Those which are particularly important for informa-
tion access include (slightly restated): provide informative feedback, permit easy
reversal of actions, support an internal locus of control, reduce working mem-
ory load, and provide alternative interfaces for novice and expert users. Each
of these principles should be instantiated differently depending on the particu-
lar interface application. Below we discuss those principles that are of special
interest to information access systems. :

10.2.1 Design Principles

Offer informative feedback. This principle is especially important for information
access interfaces. In this chapter we will see current ideas about how to provide
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users with feedback about the relationship between their query specification and
documents retrieved, about relationships among retrieved documents, and about
relationships between retrieved documents and metadata describing collections.
If the user has control of how and when feedback is provided, then the system
provides an internal locus of control.

Reduce working memory load. Information access is an iterative process,
the goals of which shift and change as information is encountered. One key way
information access interfaces can help with memory load is to provide mech-
anisms for keeping track of choices made during the search process, allowing
users to return to temporarily abandoned strategies, jump from one strategy to
the next, and retain information and context across search sessions. Another
memory-aiding device is to provide browsable information that is relevant to
the current stage of the information access process. This includes suggestions of
related terms or metadata, and search starting points including lists of sources
and topic lists.

Provide alternative interfaces for novice and expert users. An important
tradeoff in all user interface design is that of simplicity versus power. Simple
interfaces are easier to learn, at the expense of less flexibility and sometimes
less efficient use. Powerful interfaces allow a knowledgeable user to do more
and have more control over the operation of the interface, but can be time-
consuming to learn and impose a memory burden on people who use the system
only intermittently. A common solutlon is to use a ‘scaffolding’ technique [684].
The novice user is presented with a simple interface that can be learned quickly
and that provides the basic functionality of the application, but is restricted
in power and flexibility. Alternative interfaces are offered for more experienced
users, giving them more control, more options, and more features, or potentially
even entirely different interaction models. Good user interface design provides
intuitive bridges between the simple and the advanced interfaces.

Information access interfaces must contend with special kinds of simplic-
ity /power tradeoffs. One such tradeoff is the amount of information shown about
the workings of the search system itself. Users who are new to a system or to
a particular collection may not know enough about the system or the domain
associated with the collection to make choices among complex features. They
may not know how best to weight terms, or in the case of relevance feedback,
not know what the effects of reweighting terms would be. On the other hand,
users that have worked with a system and gotten a feeling for a topic are likely
to be able to choose among suggested terms to add to their query in an informed
manner. Determining how much information to show the user of the system is
a major design choice in information access interfaces.

10.2.2 The Role of Visualization

The tools of computer interface design are familiar to most computer users to-
day: windows, menus, icons, dialog boxes, and so on. These make use of bit-
mapped display and computer graphics to provide a more accessible interface
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than command-line-based displays. A less familiar but growing area is that of
information visualization, which attempts to provide visual depictions of very
large information spaces.

Humans are highly attuned to images and visual information [769, 456,
483]. Pictures and graphics can be captivating and appealing, especially if well
designed. A visual representation can communicate some kinds of information
much more rapidly and effectively than any other method. Consider the differ-
ence between a written description of a person’s face and a photograph of it, or
the difference between a table of numbers containing a correlation and a scatter
plot showing the same information.

The growing prevalence of fast graphics processors and high resolution color
monitors is increasing interest in information visualization. Scientific visualiza-
tion, a rapidly advancing branch of this field, maps physical phenomena onto
two- or three-dimensional representations [433]. An example of scientific visu-
alization is a colorful image of the pattern of peaks and valleys on the ocean
floor; this provides a view of physical phenomena for which a photograph cannot
(currently) be taken. Instead, the image is constructed from data that represent
the underlying phenomena.

Visualization of inherently abstract information is more difficult, and visu-
alization of textually represented information is especially challenging. Language
is our main means of communicating abstract ideas for which there is no obvious
physical manifestation. What does a picture look like that describes negotiations
over a trade agreement in which one party demands concessions on environmen-
tal policies while the other requires-help in strengthening its currency?

Despite the difficulties, researchers are attempting to represent aspects of
the information access process using information visualization techniques. Some
of these will be described later in this chapter. Aside from using icons and
color highlighting, the main information visualization techniques include brushing
and linking [233, 773], panning and zooming [T1], focus-plus-context [502], magic
lenses [95], and the use of animation to retain context and help make occluded
information visible [676, 143]. These techniques support dynamic, interactive
use. Interactivity seems to be an especially important property for visualizing
abstract information, although it has not played as large a role within scientific
visualization.

Brushing and linking refers to the connecting of two or more views of the
same data, such that a change to the representation in one view affects the
representation in the other views as well. For example, say a display consists of
two parts: a histogram and a list of titles. The histogram shows, for a set of
documents, how many documents were published each year. The title list shows
the titles for the corresponding documents. Brushing and linking would allow
the user to assign a color, say red, to one bar of the histogram, thus causing the
titles in the list display that were published during the corresponding year to
also be highlighted in red. 7

Panning and zooming refers to the actions of a movie camera that can scan
sideways across a scene (panning) or move in for a closeup or back away to get
a wider view (zooming). For example, text clustering can be used to show a
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top-level view of the main themes in a document collection (see Figures 10.7 and
10.8). Zooming can be used to move ‘closer,” showing individual documents as
icons, and then zoom in closer still to see the text associated with an individual
document.

When zooming is used, the more detail that is visible about a particular
item, the less can be seen about the surrounding items. Focus-plus-context is
used to partly alleviate this effect. The idea is to make one portion of the view —
the focus of attention — larger, while simultaneously shrinking the surrounding
objects. The farther an object is from the focus of attention, the smaller it is
made to appear, like the effect seen in a fisheye camera lens (also in some door
peepholes).

Magic lenses are directly manipulable transparent windows that, when
overlapped on some other data type, cause a transformation to be applied to
the underlying data, thus changing its appearance (see Figure 10.13). The most
straightforward application of magic lenses is for drawing tasks, and it is espe-
cially useful if used as a two-handed interface. For example, the left hand can
be used to position a color lens over a drawing of an object. The right hand is
used to mouse-click on the lens, thus causing the appearance of the underlying
object to be transformed to the color specified by the lens.

Additionally, there are a large number of graphical methods for depicting
trees and hierarchies, some of which make use of animation to show nodes that
would otherwise be occluded (hidden from view by other nodes) [286, 364, 407,
478, 676]. )

It is often useful to combine these techniques into an interface layout con-
sisting of an overview plus details [321, 644]. An overview, such as a table-of-
contents of a large manual, is shown in one window. A mouse-click on the title of
the chapter causes the text of the chapter itself to appear in another window, in
a linking action (see Figure 10.19). Panning and zooming or focus-plus-context
can be used to change the view of the contents within the overview window.

10.2.3 Evaluating Interactive Systems

From the viewpoint of user interface design, people have widely differing abili-
ties, preferences, and predilections. Important differences for information access
interfaces include relative spatial ability and memory, reasoning abilities, verbal
aptitude, and (potentially) personality differences [227, 725]. Age and cultural
differences can contribute to acceptance or rejection of interface techniques [557].
An interface innovation can be useful and pleasing for some users, and foreign
and cumbersome for others. Thus software design should allow for flexibility in
interaction style, and new features should not be expected to be equally helpful
for all users.

An important aspect of human-computer interaction is the methodology for
evaluation of user interface techniques. Precision and recall measures have been
widely used for comparing the ranking results of non-interactive systems, but are
less appropriate for assessing interactive systems [470]. The standard evaluations
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emphasize high recall levels; in the TREC tasks systems are compared to see
how well they return the top 1000 documents (see chapter 3). However, in many
interactive settings, users require only a few relevant documents and do not care
about high recall to evaluate highly interactive information access systems, useful
metrics beyond precision and recall include: time required to learn the system,
time required to achieve goals on benchmark tasks, error rates, and retention of
the use of the interface over time: Throughout this chapter, empirical results of
user studies are presented whenever they are available.

Empirical data involving human users is time consuming to gather and
difficult to draw conclusions from. This is due in part to variation in users’ char-
acteristics and motivations, and in part to the broad scope of information access
activities. Formal psychological studies usually only uncover narrow conclusions
within restricted contexts. For example, quantities such as the length of time
it takes for a user to select an item from a fixed menu under various conditions
have been characterized empirically [142], but variations in interaction behavior
for complex tasks like information access are difficult to account for accurately.
Nielsen [605] advocates a more informal evaluation approach (called heuristic
evaluation) in which user interface affordances are assessed in terms of more
general properties and without concern about statistically significant results.

10.3 The Information Access Procgss

A person engaged in an information seeking process has one or more goals in
mind and uses a search system as a tool to help achieve those goals. Goals
requiring information access can range quite widely, from finding a plumber
to keeping informed about a business competitor, from writing a publishable
scholarly article to investigating an allegation of fraud.

Information access tasks are used to achieve these goals. These tasks span
the spectrum from asking specific questions to exhaustively researching a topic.
Other tasks fall between these two extremes. A study of business analysts [614]
found three main kinds of information seeking tasks: monitoring a well known
topic over time (such as researching competitors’ activities each quarter), fol-
lowing a plan or stereotyped series of searches to achieve a particular goal (such
as keeping up to date on good business practices), and exploring a topic in an
undirected fashion (as when getting to know an unfamiliar industry). Although
the goals differ, there is a common core revolving around the information seeking
component, which is our focus here.

10.3.1 Models of Interaction

Most accounts of the information access process assume an interaction cycle
consisting of query specification, receipt and examination of retrieval results,
and then either stopping or reformulating the query and repeating. the process
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until a perfect result set is found [700, 726]. In more detail, the standard process
can be described according to the following sequence of steps (see Figure 10.2):

(1) Start with an information need.

(2) Select a system and collections to search on.

(3) Formulate a query.

(4) Send the query to the system.

(5) Receive the results in the form of information items.
(6) Scan, evaluate, and interpret the results.

(7) Either stop, or,

(8) Reformulate the query and go to step 4.

This simple interaction model (used by Web search engines) is the only
model that most information seekers see today. This model does not take into
account the fact that many users dislike being confronted with a long disor-
ganized list of retrieval results that do not directly address their information
needs. It also contains an underlying assumption that the user’s information
need is static and the information seeking process is one of successively refining
a query until it retrieves all and only those documents relevant to the original
information need. .

—

[ Inf;)nnation Need ]

( Send to System J
¥

L Receive Results }

Reformulate v

» ( Evaluate Results )

Figure 10.2 A simplified diagram of the standard model of the information access
processes. ’
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In actuality, users learn during the search process. They scan information,
read the titles in result sets, read the retrieved documents themselves, viewing
lists of topics related to their query terms, and navigating within hyperlinked
Web sites. The recent advent of hyperlinks as a pivotal part of the information
seeking process makes it no longer feasible to ignore the role of scanning and
navigation within the search process itself. In particular, today a near-miss is
much more acceptable than it was with bibliographic search, since an information
seeker using the Web can navigate hyperlinks from a near-miss in the hopes that
a useful page will be a few links away.

The standard model also downplays the interaction that takes place when
the user scans terms suggested as a result of relevance feedback, scans the-
saurus structures, or views thematic overviews of document collections. It de-
emphasizes the role of source selection, which is increasingly important now that,
for the first time, tens of thousands of information collections are immediately
reachable for millions of people.

Thus, while useful for describing the basics of information access systems,
this simple interaction model is being challenged on many fronts {65, 614, 105,
365, 192]. Bates [65] proposes the ‘berry-picking’ model of information seeking,
which has two main points. The first is that, as a result of reading and learning
from the information encountered throughout the search process, the users’ in-
formation needs, and consequently their queries, continually shift. Information
encountered at one point in a search may lead in"a new, unanticipated direction.
The original goal may become partly fulfilled, thus lowering the priority of one
goal in favor of another. This is posed in contrast to the assumption of ‘standard’
information retrieval that the user’s information need remains the same through-
out the search process. The second point is that users’ information needs are
not satisfied by a single, final retrieved set of documents, but rather by a series
of selections and bits of information found along the way. This is in contrast to
the assumption that the main goal of the search process is to hone down the set
of retrieved documents into a perfect match of the original information need.

The berry-picking model is supported by a number of observational studies
[236, 105], including that of O’Day and Jeffries [614]. They found that the
information seeking process consisted of a series of interconnected but diverse
searches on one problem-based theme. They also found that search results for a
goal tended to trigger new goals, and hence search in new directions, but that
the context of the problem and the previous searches was carried from one stage
of search to the next. They also found that the main value of the search resided
in the accumulated learning and acquisition of information that occurred during
the search process, rather than in the final results set.

Thus, a user interface for information access should allow users to reassess
their goals and adjust their search strategy accordingly. A related situation
occurs when users encounter a ‘trigger’ that causes them to pursue a different
strategy temporarily, perhaps to return to the current unfinished activity at a
later time. An implication of these observations is that the user interface should
support search strategies by making it easy to follow trails with unanticipated re-
sults. This can be accomplished in part by supplying ways to record the progress
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of the current strategy and to-store, find, and reload intermediate results, and
by supporting pursuit of multiple strategies simultaneously.

The user interface should also support methods for monitoring the status
of the current strategy in relation to the user’s current task and high-level goals.
One way to cast the activity of monitoring the progress of a search strategy
relative to a goal or subgoal is in terms of a cost/benefit analysis, or an analysis
of diminishing returns [690]. This kind of analysis assumes that at any point
in the search process, the user is pursuing the strategy that has the highest
expected utility. If, as a consequence of some local tactical choices, another
strategy presents itself as being of higher utility than the current one, the current
one is (temporarily or permanently) abandoned in favor of the new strategy:.

There are a number of theories and frameworks that contrast browsing,
querying, navigating, and scanning along several dimensions [75, 159, 542, 804].
Here we assume that users scan information structure, be it titles, thesaurus
terms, hyperlinks, category labels, or the results of clustering, and then either
select a displayed item for some purpose (to read in detail, to use as input to a
query, to navigate to a new page of information) or formulate a query (either by
recalling potential words or by selecting categories or suggested terms that have
been scanned). In both cases, a new set of information is then made viewable for
scanning. Queries tend to produce new, ad hoc collections of information that
have not been gathered together before, whereas selection retrieves information
that has already been composed or organized. Navigation refers to following
a chain of links, switching from one view to another, toward some goal, in a
sequence of scan and‘select operations.. Browsing refers to the casual, mainly
undirected exploration of information structures, and is usually done in tandem
with selection, although queries can also be used to create subcollections to
browse through. An important aspect of the interaction process is that the
output of one action should be easily used as the input to the next.

10.3.2 WNon-Search Parts Qf the Information Access Process

The O’Day and Jeffries study [614] found that information seeking is only one
part of the full work process their subjects were engaged in. In between searching
sessions many different kinds of work was done with the retrieved information,
including reading and annotating [617] and analysis. O’Day and Jeffries exam-
ined the analysis steps in more detail, finding that 80%. of this work fell into
six main types: finding trends, making comparisons, aggregating information,
identifying a critical subset, assessing, and interpreting. The remaining 20%
consisted of cross-referencing, summarizing, finding evocative visualizations for
reports, and miscellaneous activities. The Sensemaking work of Russell et al.
[690] also discusses information work as a process in which information retrieval
plays only a small part. They observe that most of the effort made in Sensemak-
ing is in the synthesis of a good representation, or ways of thinking about, the
problem at hand. They describe the process of formulating and crystallizing the
important concepts for a given task.
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From these observations it is convenient to divide the entire information ac-
cess process into two main components: search/retrieval, and analysis/synthesis
of results. User interfaces should allow both kinds of activity to be tightly inter-
woven. However, analysis/synthesis are activities that can be done independently
of information seeking, and for our purposes it is useful to make a distinction
between the two types of activities.

10.3.3 Earlier Interface s;xudies

The bulk of the literature on studies of human-computer information seeking
behavior concerns information intermediaries using online systems consisting of
bibliographic records (e.g., [646, 707, 104]), sometimes with costs assessed per
time unit. Unfortunately, many of the assumptions behind those studies do not
reflect the conditions of modern information access [335, 222]. The differences
include the following:

e The text being searched now is often full text rather than bibliographic
citations. Because users have access to full téxt, rather than document
surrogates, it is more likely that simple queries will find relevant answers
directly as part of the search process.

e Modern systems use statistical ranking (which is more effective when ab-
stracts and full text are available than when only titles and citations are
available) whereas most studies were performed on Boolean systems.

e Much of modern searching is done by end users, many new to online search-
ing, rather than professional intermediaries, which were the focus of many
of the earlier studies. “

e Tens of thousands of sources are now available online on networked infor-
mation systems, and many are tightly coupled via hyperlinks, as opposed
to being stored in separate collections owned by separate services. Ear-
lier studies generally used systems in which moving from one collection to
another required prior knowledge of the collections and considerable time
and effort to switch. A near miss is much more useful in this hyperlinked
environment than in earlier systems, since hyperlinks allow users to nav-
igate from the near miss directly to the source containing information of
interest. In a card catalog environment, where documents are represented
as isolated units, a near miss consists of finding a book in the general area
of interest and then going to the bookshelf in the library to look for related
books, or obtaining copies of many issues of a journal and scanning for
related articles.

e Finally, most users have access to bit-mapped displays allowing for direct
manipulation, or at least form fillin. Most earlier studies and bibliographic
systems were implemented on TTY displays, which require command-line
based syntax and do a poor job of retaining context.
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Despite these significant differences, some general information seeking
strategies have been identified that seem to transfer across systems. Addition-
ally, although modern systems have remedied many of the problems of earlier
online public access catalogs, they also introduce new problems of their own.

10.4 Starting Points

Search interfaces must provide users with good ways to get started. An empty
screen or a blank entry form does not provide clues to help a user decide how to
start the search process. Users usually do not begin by creating a long, detailed
expression of their information need. Studies show that users tend to start out
with very short queries, inspect the results, and then modify those queries in
an incremental feedback cycle [22]. The initial query can be seen as a kind of
‘testing the water’ to see what kinds of results are returned and get an idea of
how to reformulate the query [804, 65]. Thus, one task of an information access
interface is to help users select the sources and collections to search on.

For example, there are many different information sources associated with
cancer, and there are many different kinds of information a user might like to
know about cancer. Guiding the user to the right set of starting points can
help with the initial problem formulation.: Iraditional bibliographic search as-
sumes that the user begins by looking through a list of names of sources and
choosing which collections to search on, while Web search engines obliterate the
distinctions between sources and plunge the user into the middle of a Web site
with little information about the relationship of the search hit to the rest of the
collection. In neither case is the interface to the available sources particularly
helpful.

In this section we will discuss four main types of starting points: lists,
overviews, examples, and automated source selection.

10.4.1 Lists of Collections

Typical online systems such as LEXIS-NEXIS require users to begin any inquiry
with a scan through a long list of source names and guess which ones will be of
interest. Usually little information beyond the name of the collection is provided
online for these sources (see Figure 10.3). If the user is not satisfied with the
results on one collection, they must reissue the query on another collection.
Frequent searchers eventually learn a set of sources that are useful for their
domains of interest, either through experience, formal training, or recommen-
dations from friends and colleagues. Often-used sources can be stored on a
‘favorites’ list, also known as a bookmark list or a hotlist on the Web. Recent
research explores the maintenance of a personalized information profile for users
or work groups, based on the kinds of information they’ve used in the past [277].
However, when users want to search outside their domains of expertise, a
list of familiar sources is not sufficient. Professional searchers such as librarians
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Figure 10.3 The LEXIS-NEXIS source selection screen.

learn through experience and years of training which sources are appropriate
for various information needs. The restricted nature of traditional interfaces
to information collections discourages exploration and discovery of new useful
sources. However, recently researchers have devised a number of mechanisms to
help users understand the contents of collections as a way of getting started in
their search.

10.4.2 Overviews

Faced with a large set of text collections, how can a user choose which to begin
with? One approach is to study an overview of the contents of the collections.
An overview can show the topic domains represented within the collections, to
help users select or eliminate sources from consideration. An overview can help
users get started, directing them into general neighborhoods, after which they
can navigate using more detailed descriptions. Shneiderman [724] advocates an
interaction model in which the user begins with an overview of the information
to be worked with, then pans and zooms to find areas of potential interest, and
then view details. The process is repeated as often as necessary.

Three types of overviews are discussed in this subsection. The first is dis-
play and navigation of large topical category hierarchies associated with the doc-
uments of a collection. The second is automatically derived overviews, usually
created by unsupervised clustering techniques on the text of documents, that at-
tempt to extract overall characterizing themes from collections. The third type
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of overview is that created by applying a variant of co-citation analysis on con-
nections or links between different entities within a collection. Other kinds of
overviews are possible, for example, showing graphical depictions of bookshelves
or piles of books [681, 46].

Category or Directory Overviews

There exist today many large online text collections to which category labels have
been assigned. Traditional online bibliographic systems have for decades assigned
subject headings to books and other documents [752]. MEDLINE, a large col-
lection of biomedical articles, has associated with it Medical Subject Headings
(MeSH) consisting of approximately 18,000 categories [523]. The Association
for Computing Machinery (ACM) has developed a hierarchy of approximately
1200 category (keyword) labels.f Yahoo![839]; one of the most popular search
sites on the World Wide Web, organizes Web pages into a hierarchy consisting
of thousands of category labels.

The popularity of Yahoo! and other Web directories suggests that hier-
archically structured categories are useful starting points for users seeking in-
formation on the Web. This popularity may reflect a preference to begin at a
logical starting point, such as the home page for a set of information, or it may
reflect a desire to avoid having to guess which words will retrieve the desired
information. (It may also reflect the fact that directory services attempt to cull
out low quality Web sites.)

The meanings of category labels differ somewhat among collections. Most
are designed to help organize the documents and to aid in query specification.
Unfortunately, users of online bibliographic catalogs rarely use the available sub-
ject headings [335, 222]. Hancock-Beaulieu and Drabenstott and Weller, among
others, put much of the blame on poor (command line-based) user interfaces
which provide little aid for selecting subject labels and require users to scroll
through long alphabetic lists. Even with graphical Web interfaces, finding the
appropriate place within a category hierarchy can be a time-consuming task,
and once a collection has been found using such a representation, an alternative
means is required for searching within the site itself.

Most interfaces that depict category hierarchies graphically do so by asso-
ciating a document directly with the node of the category hierarchy to which it
has been assigned. For example, clicking on a category link in Yahoo! brings up
a list of documents that have been assigned that category label. Conceptually,
the document is stored within the category label. When navigating the results
of a search in Yahoo!, the user must look through a list. of category labels and
guess which one is most likely to contain references to the topic of interest. A
wrong path requires backing up and trying again, and remembering which pages
contain which information. ‘If the desired information is deep in the hierarchy, or

1 http://www.acm.org/class
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Figure 10.4 The MeSHBrowse interface for viewing category labels hierarchically
[453].

not available at all, this can be a time-consuming and frustrating process. Be-
cause documents are conceptually stored ‘inside’ categories, users cannot create
queries based on combinations of categories using this interface.

It is difficult to design a good interface to integrate category selection into
query specification, in part because display of category hierarchies takes up large
amounts of screen space. For example, Internet Grateful Med] is a Web-based
service that allows an integration of search with display and selection of MeSH
category labels. After the user types in the name of a potential category label,
a long list of choices is shown in a page. To see more information about a given
label, the user selects a link (e.g., Radiation Injuries). The causes the context of
the query to disappear because a new Web page appears showing the ancestors of
the term and its immediate descendants. If the user attempts to see the siblings
of the parent term (Wounds and Injuries) then a new page appears that changes
the context again. Radiation Injuries appears as one of many siblings and its
children can no long be seen. To go back to the query, the illustration of the
category hierarchy disappears.

The MeSHBrowse system [453] allows users to interactively browse a subset
of semantically associated links in the MeSH hierarchy. From a given starting
point, clicking on a category causes the associated categories to be displayed
in a two-dimensional tree representation. Thus only the relevant subset of the

f http://igm.nlm.nih.gov:80/
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Figure 10.5 The HiBrowse interface for viewing category labels hierarchically and
according to facets [646].

hierarchy is shown at one time, making browsing of this very large hierarchy a
more tractable endeavor. The interface has the space limitations inherent in a
two-dimensional hierarchy display and does not provide mechanisms for search
over an underlying document collection. See Figure 10.4.

The HiBrowse system [646] represents category metadata more efficiently
by allowing users to display several different subsets of category metadata si-
multaneously. The user first selects which attribute type (or facet, as attributes
are called in this system) to display. For example, the user may first choose the
‘physical disease’ value for the Disease facet. The categories that appear one
level below this are shown along with the number of documents that contain
each category. The user can then select other attribute types, such as Therapy
and Groups (by age). The number of documents that contain attributes from
all three types are shown. If the user now selects a refinement of one of the
categories, such as.the ‘child’ value for the Groups attribute, then the number
of documents that contain all three selected facet types are shown. At the same
time, the number of documents containing the subcategories found below ‘phys-
ical disease’ and ‘therapy (general)’ are updated to reflect this more restricted
specification. See Figure 10.5. A problem with the HiBrowse system is that it
requires users to navigate through the category hierarchy, rather than specify
queries directly. In other words, query specification is not tightly coupled with
display of category metadata. As a solution to some of these problems, the
Cat-a-Cone interface [358] will be described in section 10.8.
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Automatically Derived Collection Overviews

Many attempts to display overview information have focused on automatically
extracting the most common general themes that occur within the collection.
These themes are derived via the use of unsupervised analysis methods, usually
variants of document clustering. Clustering organizes documents into groups
based on similarity to one another; the centroids of the clusters determine the
themes in the collections.

The Scatter/Gather browsing paradigm [203, 202] clusters documents into
topically-coherent groups, and presents descriptive textual summaries to the
user. The summaries consist of topical terms that characterize each cluster
generally, and a set of typical titles that hint at the contents of the cluster.
Informed by the summaries, the user may select a subset of clusters that seem to
be of most interest, and recluster their contents. Thus the user can examine the
contents of each subcollection at progressively finer granularity of detail. The
reclustering is computed on-the-fly; different themes are produced depending on
the documents contained in the subcollection to which clustering is applied. The
choice of clustering algorithm influences what clusters are produced, but no one
algorithm has been shown to be particularly better than the rest when producmg
the same number of clusters [816].

A user study [640] showed that the use of Scatter/Gather on a large text
collection successfully conveys some of the content and structure of the corpus.
However, that study also showed that Scatter/ Gather without a search facility
was less effective than a standard similarity search for finding relevant documents
for a query. That is, subjects allowed only to navigate, not to search over, a
hierarchical structure of clusters covering the entire collection were less able to
find documents relevant to the supplied query than subjects allowed to write
queries and scan through retrieval results.

It is possible to integrate Scatter/ Gather with conventional search tech-
nology by applying clustering on the results of a query to organize the retrieved
documents (see Figure 10.6). An offline experiment [359] suggests that clustering
may be more effective if used in this manner. The study found that documents
relevant to the query tend to fall mainly into one or two out of five clusters, if
the clusters are generated from the top-ranked documents retrieved in response
to the query. The study also showed that precision and recall were higher within
the best cluster than within the retrieval results as a whole. The implication is
that a user might save time by looking at the contents of the cluster with the
highest proportion of relevant documents and at the same time avoiding those
clusters with mainly non-relevant documents. Thus, clustering of retrieval re-
sults may be useful for helping direct users to a subset of the retrieval results
that contain a large proportion of the relevant documents.

General themes do seem to arise from document clustering, but the themes
are highly dependent on the makeup of the documents within the clusters [359,
357]. The unsupervised nature of clustering can result in a display of topics at
varying levels of description. For example, clustering a collection of documents
about computer science might result in clusters containing documents about
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Figure 10.6 Display of Scatter/Gather clustering retrieval results [203].

artificial intelligence, computer theory, computer graphics, computer architec-
ture, programming languages, government, and legal issues. The latter two
themes are more general than the others, because they are about topics out-
side the general scope of computer science. Thus clustering can results in the
juxtaposition of very different levels of deSCI‘lptIOI’l within a single display.

Scatter/Gather shows a textual representation of document clusters. Re-
searchers have developed several approaches to map documents from their high
dimensional representation in document space into a 2D representation in which
each document is represented as a small glyph or icon on a map or within an
abstract 2D space. The functions for transforming the data into the lower di-
mensional space differ, but the net effect is that each document is placed at
one point in a scatter-plot-like representation of the space. Users are meant
to detect themes or clusters in the arrangement of the glyphs. Systems em-
ploying such graphical displays include BEAD [156], the Galaxy of News [671],
and ThemeScapes [821]. The ThemeScapes view imposes a three-dimensional
representation on the results of clustering (see Figure 10.7). The layout makes
use of ‘negative space’ to help emphasize the areas of concentration where the
clusters occur. Other systems display inter-document similarity hierarchically
[629, 14], while still others display retrieved documents in networvks' based on
inter-document similarity [262, 761].

Kohonen’s feature map algorithm has been used to create maps that graph-
ically characterize the overall content of a document collection: or subcollection
[520, 163] (see Figure 10.8). The regions of the 2D map vary in size and shape cor-
responding to how frequently documents assigned to the corresponding themes
occur within the collection. Regions are characterized by single words or phrases,
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and adjacency of regions is meant to reflect semantic relatedness of the themes
within the collection. A cursor moved over a document region causes the titles
of the documents most strongly associated with that region to be displayed in a
pop-up window. Documents can be associated with more than one region.

Evaluations of Graphical Overviews

Although intuitively appealing, graphical overviews of large document spaces
have yet to be shown to be useful and understandable for users. In fact, eval-
uations that have been conducted so far provide negative evidence as to their
usefulness. Omne study found that for non-expert users the results of clustering
were difficult to use, and that graphical depictions (for example, representing
clusters with circles and lines connecting documents) were much harder to use
than textual representations (for example, showing titles and topical words, as
in Scatter/Gather), because documents’ contents are difficult to discern without
actually reading some text [443].

Another recent study compared the Kohonen feature map overview rep-
resentation on a browsing task to that of Yahoo! [163]. For one of the tasks,
subjects were asked to find an ‘interesting’ Web page within the entertainment
category of Yahoo! and of an organization of the same Web pages into a Ko-
honen map layout. The experiment varied whether subjects started in Yahoo!
or in the graphical map. After completion of the browing task, subjects were
asked to attempt to repeat the browse using the other tool. For the subjects that

182



STARTING POINTS 275

+FAQ [@55 ] ~CRIE] a-e] +LYRICS (1946 ISUITRR (1282 +5Tﬂql¢ 232>

+TY @zsg - HIETURL [<110S +30HGS (f433),
& DOPREH? (586D -

L] +STER TR 348>

+TOUR 16607
+RADIO 24asn 3
4BEER foeds | +scfics =

SLOVE €235 +PEOPLE (€p49)

HOVIE (14]7)

+STORY J<€13>

+HOVIE PATRSARE (25> CIASTRRY @) _#PIOTUEES 2181)

HIRCAZTHE] (1835 ;
Riem.

+CONICS {1254
el 100y +DIGEST
+R 28

+ANERICAN (1633
+THYEAD 422

frisT 330

22 J+RRTIBT (B! b
hens | «21eq)
scoucet cresa

FAFCHIVE (€45 1PASS 1S
FUOLHE 1790

+DEAD (TR +0

FIL8 a7ke

+hUSIC <118%2)

+EULLETIN BOARD. <2326 1
SLIVE 4230

B AP

“VEAR'S GECAR  (S48)

T = 2 3 =
ET-lsp TOP LEVEL

Figure 10.8 A two-dimensional overview created using a Kohonen feature map
learning algorithm on Web pages having to do with the topic Entertainment [163].

began with the Kohonen map visualization, 11 out of 15 found an interesting
page within ten minutes. Eight of these were able to find the same page using
Yahoo!. Of the subjects who started with Yahoo!, 14 out of 16 were able to find
interesting home pages. However, only two of the 14 were able to find the page
in the graphical map display! This is strong evidence against the navigability of
the display and certainly suggests that the simple label view provided by Yahoo!
is more useful. However, the map display may be more useful if the system is
modified to tightly integrate querying with browsing.

The subjects did prefer some aspects of the map representation. In partic-
ular, some liked the ease of being able to jump from one area to another without
having to back up as is required in Yahoo!, and some liked the fact that the
maps have varying levels of granularity. The subjects disliked several aspects of
the display. The experimenters found that some subjects expressed a desire for
a visible hierarchical organization, others wanted an ability to zoom in on a sub-
area to get more detail, and some users disliked having to look through the entire
map to find a theme, desiring an alphabetical ordering instead. Many found the
single-term labels to be misleading, in part because they were ambiguous (one
region called ‘BILL’ was thought to correspond to a person’s name rather than
countirig money). 7

The authors concluded that this interface is more appropriate for casual
browsing than for search. In general, unsupervised thematic overviews are per-
haps most useful for giving users a ‘gist’ of the kinds of information that can be
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found within the document collection, but generally have not been shown to be
helpful for use in the information access process.

Co-citation Clustering for Overviews

Citation analysis has long been recognized as a way to show an overview of the
contents of a collection [812]. The main idea is to determine ‘centrally-located’
documents based on co-citation patterns. There are different ways to determine
citation patterns: one method is to measure how often two articles are cited
together by a third. Anothér alternative is to pair articles that cite the same
third article. In both cases the assumption is that the paired articles share some
commonalities. After a matrix of co-citations is built, documents are clustered
based on the similarity of their co-citation patterns. The resulting clusters are
interpreted to indicate dominant themes within the collection. Clustering can
focus on the authors of the documents rather than the contents, to attempt to
identify central authors within afield. This idea has recently been implemented
using Web-based documents in the Referral Web project [432]. The idea has also
been applied to Web pages, using Web link structure to identify major topical
themes among Web pages [485, 639]. A similar idea, but computed a different
way, is used to explicitly identify pages that act as good starting points for
particular topics (called ‘authority pages’ by Kleinberg [444]).

10.4.3 Examples, Dialogs, and Wizards

Another way to help users get started is to start them off with an example of
interaction with the system. This technique is also known as retrieval by re-
formulation. An early version of this idea is embodied in the Rabbit system
[818] which provides graphical representations of example database queries. A
general framework for a query is shown to the user who then modifies it to
construct a partially complete description of what they want. The system then
shows an example of the kind of information available that matches this partial
description. For instance, if a user searching a computer products database indi-
cates an interest in disks, an example item is retrieved with its disk descriptors
filled in. The user can use or modify the displayed descriptors, and iterate the
procedure. oo

The idea of retrieval by reformulation has been developed further and ex-
tended to the domains of user interface development [581] and software engi-
neering [669]. The Helgon system [255] is a modern variant of this idea applied
to bibliographic database information. In Helgon, users begin by navigating a
hierarchy of topics from which they select structured examples, according to
their interests. If a feature of an example is inappropriately set, the user can
modify the feature to indicate how it would appear in the desired information.
Unfortunately, in tests with users, the system was found to be problematic.
Users had problems with the organization of the hierarchy, and found that search-
ing for a useful example by critiquing an existing one to be tedious. This result
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underscores an unfortunate difficulty with examples and dialogues: that of get-
ting the user to the right starting dialogue or the right example strategy becomes
a search problem in itself. (How to index prior examples is studied extensively
in the case-based reasoning (CBR) literature (492, 449].)

A more dynamic variation on this theme is the interactive dialog. Dialog-
based interfaces have been explored since the early days of information retrieval
research, in an attempt to mimic the interaction provided by a human search
intermediary (e.g., a reference librarian). Oddy did early work in the THOMAS
system, which provided a question and answer session within a command-line-
based interface [615]. More recently, Belkin et al. have defined quite elaborate
dialog interaction models [75] although these have not been assessed empirically
to date.

The DLITE system interface [192] uses an animated focus-plus-context
dialog as a way to acquaint users with standard sequences of operations within
the system. Initially an outline of all of the steps of the dialog is shown as a
list. The user can expand the explanation of any individual step by clicking on
its description. The user can expand out the entire dialog to see what questions
are coming next, and then collapse it again in order to focus on the current
tactic.

A more restricted form of dialog that has become widely used in com-
mercial products is that of the wizard. This tool helps users in time-limited
tasks, but does not attempt to overtly teach the processes required to complete
the tasks. The wizard presents a step-by-step shortcut through the sequence of
menu choices (or tactics) that a user would normally perform in order to get a
job done, reducing user input to just a few choices with default settings [636]. A
recent study [145] found wizards to be useful for goals that require many steps,
for users who lack necessary domain knowledge (for example, a restaurant owner
installing accounting software), and when steps must be completed in a fixed
sequence (for example, a procedure for hiring personnel). Properties of success-
ful wizards included allowing users to rerun a wizard and modify their previous
work, showing an overview of the supported functions, and providing lucid de-
scriptions and understandable outcomes for choices. Wizards were found not to
be helpful when the interface did not solve a problem effectively (for example, a
commercial wizard for setting up a desktop search index requests users to specify
how large to make the index, but supplies no information about how to make
this decision). Wizards were also found not to be helpful when the goal was to
teach the user how to use the interface, and when the wizard was not user-tested.
- It maybe the case that information access is too variable a process for the use of
wizards. )

A guided tour leads a user through a sequence of navigational choices
through hypertext links, presenting the nodes in a logical order for some goal.
In a dynamic tour, only relevant nodes are displayed, as opposed to the static
case where the author decides what is relevant before the users have even for-
mulated their queries [329]. A recent application is the Walden Paths project
which enables teachers to define instructionally useful paths through pages found
on the Web [289]. This approach has not been commonly used to date for
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information access but could be a promising direction for acquainting users with
search strategies in large hyperlinked systems.

10.4.4 Automated Source Selection

Human-computer interfaces for helping guide users to appropriate sources is a
wide open area for research. It requires both eliciting the information need from
users and understanding which needs can be satisfied by which sources. An
ambitious approach is to build a model of the source and of the information
need of the user and try to determine which fit together best. User modeling
systems and intelligent tutoring systems attempt to do this both for general
domains [204, 814] and for online help systems [378].

A simpler alternative is to create a representation of the contents of in-
formation sources and match this representation against the query specification.
This approach is taken by GIOSS, a system which tries to determine in advance
the best bibliographic database to send a search request to, based on the terms
in the query [765]. The system uses a simple analysis of the combined frequencies
of the query words within the individual collections. The SavvySearch system
[383] takes this idea a step further, using actions taken by users after a query to
decide how to decrease or increase the ranking of a search engine for a particular
query (see also Chapter 13).

The flip side to automatically selecting the best source for a query is to
automatically send a query to multiple sources and then combine the results from
the various systems in some way. Many metasearch engines exist on the Web.
How to combine the results effectively is an active area of research, sometimes
known as collection fusion [63, 767, 388].

10.5 Query Specification

To formulate a query, a user must select collections, metadata descriptions, or
information sets against which the query is to be matched, and must specify
words, phrases, descriptors, or other kinds of information that can be compared
to or matched against the information in the collections. As a result, the system
creates a set of documents, metadata, or other information type that match the
query specification in some sense and displays the results to the user in some
form.

Shneiderman [725] identifies five primary human-computer interaction
styles. These are: command language, form fillin, menu selection, direct manip-
ulation, and natural language.§ Each technique has been used in query specifica-
tion interfaces and each has advantages and disadvantages. These are described
below in the context of Boolean query specification.

§ This list omits non-visual modalities, such as audio.
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10.5.1 Boolean Queries

In modern information access systems the matching process usually employs a
statistical ranking algorithm. However, until recently most commercial full-text
systems and most bibliographic systems supported only Boolean queries. Thus
the focus of many information access studies has been on the problems users
have in specifying Boolean queries. Unfortunately, studies have shown time and
again that most users have great difficulty specifying queries in Boolean format
and often misjudge what the results will be [111, 322, 558, 841].

Boolean queries are problematic for several reasons. Foremost among these
is that most people find the basic syntax counter-intuitive. Many English-
speaking users assume everyday semantics are associated with Boolean oper-
ators when expressed using the English words AND and OR, rather than their
logical equivalents. To inexperienced users, using AND implies the widening of
the scope of the query, because more kinds of information are being requested.
For instance, ‘dogs and cats’ may imply a request for documents about dogs
and documents about cats, rather than documents about both topics at once.
‘Tea or coffee’ can imply a mutually exclusive choice in everyday language. This
kind of conceptual problem is well documented [111, 322, 558, 841]. In addi-
tion, most query languages that incorporate Boolean operators also require the
user to specify complex syntax for other kinds of connectors and for descriptive
metadata. Most users are not familiar with the use of parentheses for nested
evaluation, nor with the notions associated with operator precedence.

By serving a massive audience possessing little query-specification expe-
rience, the designers of World Wide Web search engines have had to come up
with more intuitive approaches to query specification. Rather than forcing users
to specify complex combinations of ANDs and ORs, they allow users to choose
from a selection of common simple ways of combining query terms, including ‘all
the words’ (place all terms in a conjunction) and ‘any of the words’ (place all
terms in a disjunction).

Another Web-based solution is to allow syntactically-based query specifica-
tion, but to provide a simpler or more intuitive syntax. The ‘+’ prefix operator
gained widespread use with the advent of its use as a mandatory specifier in the
Altavista Web search engine. Unfortunately, users can be misled to think it is
an infix AND rather than a prefix mandatory operator, and thus assume that
‘cat + dog’ will only retrieve articles containing both terms (where in fact this
query requires dog but allows cat to be optional).

Another problem with pure Boolean systems is they do not rank the re-
trieved documents according to their degree of match to the query. In the pure
Boolean framework a document either satisfies the query or it does not. Com-
mercial systems usually resort to ordering documents according to some kind of
descriptive metadata, usually in reverse chronological order. (Since these sys-
tems usually index timely data corresponding to newspaper and news wires, date
of publication is often one of the most salient features of the document.) Web-
based systems usually rank order the results of Boolean queries using statistical
algorithms and Web-specific heuristics.
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10.5.2 From Command Lines to Forms and Menus

Aside from conceptual misunderstandings of the logical meaning of AND and
OR, another part of the problem with pure Boolean query specification in online
bibliographic systems is the arbitrariness of the syntax and the contextlessness
nature of the TTY-based interface in which they are predominantly available.
Typically input is typed at a prompt and is of a form something like the following:

COMMAND ATTRIBUTE value {BOOLEAN-OPERATOR AT-
TRIBUTE value}*

e.g.,

FIND PA darwin AND TW species OR TW descent

or

FIND TW Mt St. Helens AND DATE 1981

(These examples are derived from the syntax of the telnet interface to
the University of California Melvyl system [526].) The user must remember the
commands and attribute names, which are easily forgotten between usages of the
system [553]. Compounding this problem, despite the fact that the command
languages for the two main online bibliographic systems at UC Berkeley have
different but very similar syntaxes, after more than ten years one of the systems
still reports an error if the author field is specified as PA instead of PN, as is
done in the other system. This lack of flexibility in the syntax is characteristic
of interfaces designed to suit the system rather than its users.

The new Web-based version of Melvyl|| provides form fillin and menu se-
lection so the user no longer has to remember the names and types of attributes
available. Users select metadata types from listboxes and attributes are shown
explicitly, allowing selection as an alternative to specification. For example, the
‘search type’ field is adjacent to an entry form in which users can enter keywords,
and a choice between AND and NOT is provided adjacent to a list of the avail-
able document types (editorial, feature, etc.). Only the metadata associated
with a given collection is shown in the context of search over that collection.
(Unfortunately the system is restricted to searching over only one database at a
time. It does however provide a mechanism for applying a previously executed
search to a new database.) See Figure 10.9.

The Web-based version of Melvyl also allows retention of context between
searches, storing prior results in tables and hyperlinking these results to lists
containing the retrieved bibliographic information. Users can also modify any of
the previously submitted queries by selecting a checkbox beside the record of the
query. The graphical display makes explicit and immediate many of the powerful
options of the system that most users would not learn using the command-line
version of the interface.

Bit-mapped displays are an improvement over command-line interface, but
do not solve all the problems. For example, a blank entry form is in some ways

|| http://www.melvyl.ucop.edu/
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Figure 10.9 A view of query specification in the Web-based version of the Melvyl
bibliographic catalog. Copyright (© 1998, The Regents of the University of California.

not much better than a TTY prompt, because it does not provide the user with
clues about what kinds of terms should be entered.

10.5.3 Faceted Queries

Yet another problem with Boolean queries is that their strict interpretation tends
to yield result sets that are either too large, because the user includes many terms
in a disjunct, or are empty, because the user conjoins terms in an effort to reduce
the result set. This problem occurs in large part because the user does not know
the contents of the collection or the role of terms within the collection.

A common strategy for dealing with this problem, employed in systems
with command-line-based interfaces like DIALOGs, is to create a series of short
queries, view the number of documents returned for each, and combine those
queries that produce a reasonable number of results. For example, in DIALOG,
each query produces a resulting set of documents that is assigned an identifying
name. Rather than returning a list of titles themselves, DIALOG shows the
set number with a listing of the number of matched documents. Titles can be
shown by specifying the set number and issuing a command to show the titles.
Document sets that are not empty can be referred to by a set name and combined
with AND operations to produce new sets. If this set in turn is too small, the
user can back up and try a different combination of sets, and this process is
repeated in pursuit of producing a reasonably sized document set. ‘

This kind of query formulation is often called a faceted query, to indicate
that the user’s query is divided into topics or facets, each of which should be
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present in the retrieved documents [553, 348]. For example, a query on drugs
for the prevention of osteoporosis might consist of three facets, indicated by the
disjuncts

(osteoporosis OR ‘bone loss’)
(drugs OR pharmaceuticals)
(prevention OR. cure)

This query implies that the user would like to view documents that contain all
three topics.

A technique to impose an ordering on the results of Boolean queries is
what is known as post-coordinate or quorum-level ranking [700, Ch. 8]. In this
approach, documents are ranked according to the size of the subset of the query
terms they contain. So given a query consisting of ‘cats,’ ‘dogs,’” ‘fish,” and ‘mice,’
the system would rank a document with at least one instance of ‘cats,” ‘dogs,’
and ‘fish’ higher than a document containing 30 occurrences of ‘cats’ but no
occurrences of the other terms.

Combining faceted queries with quorum ranking yields a-situation inter-
mediate between full Boolean syntax and free-form natural language queries.
An interface for specifying this kind of interaction can consist of a list of entry
lines. The user enters one topic per entry line, where each topic consists of a list
of semantically related terms that are combined in a disjunct. Documents that
contain at least one term from each facet are ranked higher than documents con-
taining terms only from one or a few facets. This helps ensure that documents
which contain discussions of several of the user’s topics are ranked higher than
those that contain only one topic. By only requiring that one term from each
facet be matched, the user can specify the same concept in several different ways
in the hopes of increasing the likelihood of a match. If combined with graphical
feedback about which subsets of terms matched the document, the user can see
the results of a quorum ranking by topic rather than by word. Section 10.6
describes the TileBars interface which provides this type of feedback.

This idea can be extended yet another step by allowing users to weight
each facet. More likely to be readily usable, however, is a default weighting in
which the facet listed highest is assigned the most weight, the second facet is
assigned less weight, and so on, according to some distribution over weights.

10.5.4 Graphical Approaches to Query Specification

Direct manipulation interfaces provide an alternative to command-line syntax.
The properties of direct manipulation are [725, p.205]: (1) continuous represen-
tation of the object of interest, (2) physical actions or button presses instead of
complex syntax, and (3) rapid incremental reversible operations whose impact
on the object of interest is immediately visible. Direct manipulation interfaces
often evoke enthusiasm from users, and for this reason alone it is worth exploring
their use. Although they are not without drawbacks, they are easier to use than
other methods for many users in many contexts.
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Figure 10.10 The VQuery Venn diagram visualization for Boolean query specifica-
tion [417].

Several variations of graphical interfaces, both directly manipulable and
static, have been developed for simplifying the specification of Boolean syntax.
User studies tend to reveal that these graphical interfaces are more effective in
terms of accuracy and speed than command-language counterparts. Three such
approaches are described below.

Graphical depictions of Venn diagrams have been proposed several times as
a way to improve Boolean query specification. A query term is associated with
a ring or circle and intersection of rings indicates conjunction of terms. Typi-
cally the number of documents that satisfy the various conjuncts are displayed
within the appropriate segments of the diagram. Several studies have found
such interfaces more effective than their command-language-based syntax [417,
368, 558]. Hertzum and Frokjaer found that a simple Venn diagram represen-
tation produced faster and more accurate results than a Boolean query syntax.
However, a problem with this format is the limitations on the complexity of
the expression. For example, a maximum of three query terms can be ANDed
together in a standard Venn diagram. Innovations have been designed to get
around this problem, as seen in the VQuery system [417] (see Figure 10.10). In
VQuery, a direct manipulation interface allows users to assign any number of
query terms to ovals. If two or more ovals are placed such that they overlap
with one another, and if the user selects the area of their intersection, an AND
is implied among those terms. (In Figure 10.10, the term ‘Query’ is conjoined-
with ‘Boolean’.) If the user selects outside the area of intersection but within
- the ovals, an OR is implied among the corresponding terms. A NOT operation
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Figure 10.11  The filter-flow visualization for Boolean query specification [841].

is associated with any term whose oval appears in the active area of the display
but which remains unselected (in the figure, NOT ‘Ranking’ has been specified).
An active area indicates the current query; all groups of ovals within the active
area are considered part of a conjunction. Ovals containing query terms can be
moved out of the active area for later use.

Young and Shneiderman [841] found improvements over standard Boolean
syntax by providing users with a direct manipulation filter-flow model. The user
is shown a scrollable list of attribute types on the left-hand side and selects at-
tributes from another list of attribute types shown across the top of the screen.
Clicking on an attribute name causes a listbox containing values for those at-
tributes to be displayed in the main portion of the screen. The user then selects
which values of the attributes to let the flow go through. Placing two or more of
these attributes in sequence creates the semantics of a conjunct over the selected
values. Placing two or more of these in parallel creates the semantics of a dis-
junct. The number of documents that match the query at each point is indicated
by the width of the ‘water’ flowing from one attribute to the next. (See Figure
10.11.) A conjunct can reduce the amount of flow. The items that match the full
query are shown on the far right-hand side. A user study found that fewer er-
rors were made using the filter flow model than a standard SQL database query.
However, the examples and study pertain only to database querying rather than
information access, since the possible query terms for information access cannot
be represented realistically in a scrollable list. This interface could perhaps be
modified to better suit information access applications by having the user supply
initial query terms, and using the attribute selection facility to show those terms
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Figure 10.12 A block-oriented diagram visualization for Boolean query specification
[21].

that are conceptually related to the query terms. Another alternative is to use
this display as a category metadata selection interface (see Section 10.4).

Anick et al. [21] describe another innovative direct manipulation interface
for Boolean queries. Initially the user types a natural language query which is
automatically converted to a representation in which each query term is rep-
resented within a block. The blocks are arranged into rows and columns (See
Figure 10.12). If two or more blocks appear along the same row they are con-
sidered to be ANDed together. Two or more blocks within the same column are
ORed. Thus the user can represent a technical term in multiple ways within the
same query, providing a kind of faceted query interface. For example, the terms
‘version 5, ‘version 5.0°, and ‘v5’ might be shown in the same column. Users can
quickly experiment with different combinations of terms within Boolean queries
simply by activating and deactivating blocks. This facility also allows users to
have multiple representations of the same term in different places throughout the
display, thus allowing rapid feedback on the consequences of specifying various
combinations of query terms. Informal evaluation of the system found that users
were able to learn to manipulate the interface quickly and enjoyed using it. It
was not formally compared to other interaction techniques [21].

This interface provides a kind of query preview: a low cost, rapid turnaround
visualization of the results of many variations on a query [643]. Another example
of query previewing can be found in some help systems, which show all the words
in the index whose first letters match the characters that the user has typed so
far. The more characters typed, the fewer possible matches become available.
The HiBrowse system described above [646] also provides a kind of preview for
viewing category hierarchies and facets, showing how many documents would be
matched if a category one level below the current one were selected. It perhaps
could be improved by showing the consequences of more combinations of cate-
gories in an animated manner. If based on prior action and interests of the user,
query previewing may become more generally applicable for information access
interfaces.
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Figure 10.13 A magic lens interface for query specification (courtesy of Ken
Fishkin).

A final example of a graphical approach to query specification is the use
of magic lenses. Fishkin and Stone have suggested an extension to the usage of
this visualization tool for the specification of Boolean queries [256]. Information
is represented as lists or icons within a 2D space. Lenses act as filters on the
document set. (See Figure 10.13.) For example, a word can be associated with a
transparent lens. When this lens is placed over an iconic representation of a set
of documents, it can cause all documents that do not contain a given word to
disappear. If a second lens representing another word is then laid over the first,
the lenses combine to act as a conjunction of the two words with the document
set, hiding any documents that do not contain both words. Additional informa-
tion can be adjusted dynamically, such as a minimum threshold for how often
the term occurs in the documents, or an on-off switch for word stemming. For
example, Figure 10.13 shows a disjunctive query that finds cities with relatively
low housing prices or high annual salaries. One lens ‘calls out’ a clump of south-
ern California cities, labeling each. Above that is a lens screening for cities with
average house price below $194,321 (the data is from 1990), and above this one is
a lens screening for cities with average annual pay above $28,477. This approach,
while promising, has not been evaluated in an information access setting.

10.5.5 Phrases and Proximity

In general, proximity information can be quite effective at improving precision of
searches. On the Web, the difference between a single-word query and a two-word
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exact phrase match can mean the difference between an unmanageable mess of
retrieved documents and a short list"with mainly relevant documents.

A large number of methods for specifying phrases have been developed.
The syntax in LEXIS-NEXIS requires the proximity range to be specified with
an infix operator. For example, ‘white w/3 house’ means ‘white within 3 words
of house, independent of order.” Exact proximity of phrases is specified by simply
listing one word beside the other, separated by a space. A popular method used
by Web search engines is the enclosure of the terms between quotation marks.
Shneiderman et al. [726] suggest providing a list of entry labels, as suggested
above for specifying facets. The difference is, instead of a disjunction, the terms
on each line are treated as a phrase. This is suggested as a way to guide users
to more precise query specification.

The disadvantage of these methods is that they require exact match of
phrases, when it is often the case (in English) that one or a few words comes
between the terms of interest. For example, in most cases the user probably
wants ‘president’ and ‘lincoln’ to be adjacent, but still wants to catch cases of
the sort ‘President Abraham Lincoln.” Another consideration is whether or not
stemming is performed on the terms included in the phrase. The best solution
may be to allow users to specify exact phrases but treat them as small proximity
ranges, with perhaps an exponential fall-off in weight in terms of distance of
the terms. This has been shown to be a successful strategy in non-interactive
ranking algorithms [174]. It has also been shown that a combination of quorum
ranking of faceted queries with the restriction that the facets occur within a
small proximity range can dramatically improve precision of results [356, 566].

10.5.6 Natural Language and Free Text Queries

Statistical ranking algorithms have the advantage of allowing users to specify
queries naturally, without having to think about Boolean or other operators. But
they have the drawback of giving the user less feedback about and control over
the results. Usually the result of a statistical ranking is the listing of documents
and the association of a score, probability, or percentage beside the title. Users
are given little feedback about why the document received the ranking it did and
what the roles of the query terms are. This can be especially problematic if the
user is particularly interested in one of the qﬁery terms being present.

One search strategy that can help with this particular problem with sta-
tistical ranking algorithms is the specification of ‘mandatory’ terms within the
natural language query. This in effect helps the user control which terms are
considered important, rather than relying on the ranking algorithm to correctly
weight the query terms. But knowing to include a mandatory specification re-
quires the user to know about a particular command and how it works.

The preceding discussion assumes that a natural language query entered
by the user is treated as a bag of words, with stopwords removed, for the pur-
poses of document match. However, some systems attempt to parse natural
language queries in order to extract concepts to match against concepts in the
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text collection [399, 552, 748]. )

Alternatively, the natural language syntax of a question can be used to at-
tempt to answer the question. (‘Question answering in information access is dif-
ferent than that of database management systems, since the information desired
is encoded within the text of documents rather than specified by the database
schema.) The.Murax system [463] determines from the syntax of a question if
the user is asking for a person, place, or date. It then attempts to find sen-
tences within encyclopedia articles that contain noun phrases that appear in the
question, since these sentences are likely to contain the answer to the question.
For example, given the question “Who was the Pulitzer Prize-winning novelist
that ran for mayor of New York City?,” the system extracts the noun phrases
‘Pulitzer Prize,” ‘winning novelist,” ‘mayor,” and ‘New York City.” It then looks
for proper nouns representing people’s names (since this is a ‘who’ question) and
finds, among others, the following sentences:

The Armies of the Night (1968), a personal narrative of the 1967
peace march on the Pentagon, won Mailer the Pulitzer Prize and
the National Book Award.

In 1969 Mailer ran unsuccessfully as an independent candidate for
mayor of New York City.

Thus the two sentences link together the relevant noun phrases and the
system hypothesizes (correctly) from the title of the article in which the sentences
appear that Norman Mailer is the answer.

Another approach to automated question answering is the FAQ finder sys-
tem which matches question-style queries against question-answer pairs on var-
ious topics [130]. The system uses a standard IR search to find the most likely
FAQ (frequently asked questions) files for the question and then matches the
terms in the question against the question portion of the question-answer pairs.

A less automated approach to question answering can be found in the Ask
Jeeves system [34]. This system makes use of hand-picked Web sites and matches
these to a predefined set of question types. A user’s query is first matched against
the question types. The user selects the most accurate rephrase of their question
and this in turn is linked to suggested Web sites. For example, the question ‘Who
is the leader of Sudan?’ is mapped into the question type ‘Who is the head of
state of X (Sudan)?’ where the variable is replaced by a listbox of choices, with
Sudan the selected choice in this case. This is linked to a Web page that lists
current heads of state. The system also automatically substitutes in the name
‘Sudan’ in a query against that Web page, thus bringing the answer directly to
the user’s attention. The question is also sent to standard Web search engines.
However, a system is only as good as its question templates. For example a
question ‘Where can I find reviews of spas in Calistoga?’ matches the question
‘Where can I find X (reviews) of activities for children aged Y (1)?’ and ‘Where
can I find a concise encyclopedia article on X (hot springs)?’
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10.6 Context

This section discusses interface techniques for placing the current document set in
the context of other information types, in order to make the document set more
understandable. This includes showing the relationship of the document set
to query terms, collection overviews, descriptive metadata, hyperlink structure,
document structure, and to other documents within the set.

10.6.1 Document Surrogates

The most common way to show results for a query is to list information about
documents in order of their computed relevance to the query. Alternatively, for
pure Boolean ranking, documents are listed according to a metadata attribute,
such as date. Typically the document list consists of the document’s title and
a subset of important metadata, such as date, source, and length of the article.
In systems with statistical ranking, a numerical score or percentage is also often
shown alongside the title, where the score indicates a computed degree of match
or probability of relevance. This kind of information is sometimes referred to as
a document surrogate. See Figure 10.14 from [824].

Some systems provide users with a choice between a short and a detailed
view. The detailed view typically contains a summary or abstract. In biblio-
graphic systems, the author-written or service-written abstract is shown. Web
search engines automatically generate excerpts, usually extracting the first few
lines of non-markup text in the Web page.

In most interfaces, clicking on the document’s title or an iconic representa-
tion of the document shown beside the title will bring up a view of the document
itself, either in another window on the screen, or replacing the listing of search re-
sults. (In traditional bibliographic systems, the full text was unavailable online,
and only bibliographic records could be readily viewed.)

10.6.2 Query Term Hits Within Document Content

In systems in which the user can view the full text of a retrieved document, it is
often useful to highlight the occurrences of the terms or descriptors that match
those of the user’s query. It can also be useful for the system to scroll the view of
the document to the first passage that contains one or more of the query terms,
and highlight the matched terms in a contrasting color or reverse video. This
display is thought to help draw the user’s attention to the parts of the document
most likely to be relevant to the query. Highlighting of query terms has been
found time and again to be a useful feature for information access interfaces
[481],[542, p.31]. Color highlighting has also recently been found to be useful for
scanning lists of bibliographic records [52].
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Figure 10.14 An example of a ranked list of titles and other document surrogate
information [824].

KWIC

A facility related to highlighting is the keyword-in-context (KWIC) document
surrogate. Sentence fragments, full sentences, or groups of sentences that contain
query terms are extracted from the full text and presented for viewing along with
other kinds of surrogate information (such as document title and abstract). Note
that a KWIC listing is different than an abstract. An abstract summarizes the
main topics of the document but might not contain references to the terms within
the query. A KWIC extract shows sentences that summarize the ways the query
terms are used within the document. This display can show not only which
subsets of query terms occur in the retrieved documents, but also the context
they appear in with respect to one another.

Tradeoff decisions must be made between how many lines of text to show
and which lines to display. It is not known which contexts are best selected
for viewing but results from text summarization research suggest that the best
fragments to show are those that appear near the beginning of the document and
that contain the largest subset of query terms [464]. If users have specified which
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terms are more important than others, then those fragments containing impor-
tant terms should be shown before those that contain only less important terms.
However, to help retain coherence of the excerpts, selected sentences should be
shown in order of their occurrence in the original document, independent of how
many search terms they contain.

The KWIC facility is usually not shown in Web search result display, most
likely because the system must have a copy of the original document available
from which to extract the sentences containing the search terms. Web search en-
gines typically only retain the index without term position information. Systems
that index individual Web sites can show KWIC information in the document
list display. :

TileBars

A more compact form of query term hit display is made available through the
TileBars interface. The user enters a query in a faceted format, with one topic
per line. After the system retrieves documents (using a quorum or statistical
ranking algorithm), a graphical bar is displayed next to the title of each doc-
ument showing the degree of match for each facet. TileBars thus illustrate at
a glance which passages in each article contain which topics — and moreover,
how frequently each topic is mentioned (darker squares represent more frequent
matches).

Each document is represented by a rectangular bar. Figure 10.15 shows an
example. The bar is subdivided into-rows that correspond to the query facets.
The top row of each TileBar corresponds to ‘osteoporosis,” the second row to
‘prevention,” and the third row to ‘research.’ The bar is also subdivided into
columns, where each column refers to a passage within the document. Hits that
overlap within the same passage are more likely to indicate a relevant document
than hits that are widely dispersed throughout the document [356]. The pat-
terns are meant to indicate whether terms from a facet occur as a main topic
throughout the document, as a subtopic, or are just mentioned in passing.

The darkness of each square corresponds to the number of times the query
occurs in that segment of text; the darker the square the greater the number of
hits. White indicates no hits on the query term. Thus, the user can quickly see
if some subset of the terms overlap in the same segment of the document. (The
segments for this version of the interface are fixed blocks of 100 tokens each.)

The first document can be seen to have considerable overlap among the
topics of interest towards the middle, but not at the beginning or the end (the
actual end is cut off). Thus it most likely discusses topics in addition to research
into osteoporosis. The second through fourth documents, which are considerably
shorter, also have overlap among all terms of interest, and so are also probably of
interest to the user. (The titles help to verify this.) The next three documents are
all long, and from the TileBars we can tell they discuss research and prevention,
but do not even touch on osteoporosis, and so probably are not of interest.

Because the TileBars interface allows the user to specify the query in terms
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Figure 10.15 An example of the TileBars retrieval results visualization [355].

of facets, where the terms for each facet are listed on an entry line, a color can
be assigned to each facet. When the user displays a document with query term
hits, the user can quickly ascertain what proportion of search topics appear in
a passage based only on how many different highlight colors are visible. Most
systems that use highlighting use only a single color to bring attention to all of
the search terms.

It would be difficult for users to specify in advance which patterns of term
hits they are interested in. Instead, TileBars allows users to scan graphic rep-
resentations and recognize which documents are and are not of interest. It may
be the case that TileBars may be most useful for helping users discard mislead-
ingly interesting documents, but only preliminary studies have been conducted
to date. Passages can correspond to paragraphs or sections, fixed sized units of
arbitrary length, or to automatically determined multiparagraph segments [355].

SeeSoft

The SeeSoft visualization [232] represents text in a manner resembling columns
of newspaper text, with one ‘line’ of text on each horizontal line of the strip.
(See Figure 10.16.) The representation is compact and aesthetically pleasing.
Graphics are used to abstract away the details, providing an overview showing
the amount and shape of the text. Color highlighting is used to pick out various
attributes, such as where a particular word appears in the text. Details of a
smaller portion of the display can be viewed via a pop-up window; the overview
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shows more of the text but in less detail.
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Figure 10.16 An example of the SeeSoft visualization for showing locations of char-
acters within a text [232].

SeeSoft was originally designed for software development, in which a line
of text is a meaningful unit of information. (Programmers tend to place each
individual programming statement on one line of text.) Thus SeeSoft shows
attributes relevant to the programming domain, such as which lines of code
were modified by which programmer, and how often particular lines have been
modified, and how many days have elapsed since the lines were last modified.
The SeeSoft developers then experimented with applying this idea to the display
of text, although this has not been integrated into an information access system.
Color highlighting is used to show which characters appear where in a book of
fiction, and which passages of the Bible contain references to particular people
and items. Note the use of the abstraction of an entire line to stand for a single
word such as a character’s name (even though though this might obscure a tightly
interwoven conversation between two characters).

10.6.3 Query Term Hits Between Documents

Other visualization ideas have been developed to show a different kind of infor-
mation about the relationship between query terms and retrieved documents.
Rather than showing how query terms appear within individual documents, as
is done in KWIC interfaces and TileBars, these systems display an overview or
summary of the retrieved documents according to which subset of query terms
they contain. The following subsections describe variations on this idea.
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Figure 10.17 A sketch of the InfoCrystal retrieval results display [738].

InfoCrystal

The InfoCrystal shows how many documents contain each subset of query terms
[738]. This relieves the user from the need to specify Boolean ANDs and ORs
in their query, while still showing which combinations of terms actually appear
in documents that were ordered by a statistical ranking (although beyond four
terms the interface becomes difficult to understand). The InfoCrystal allows vi-
sualization of all possible relations among NV user-specified ‘concepts’ (or Boolean
keywords). The InfoCrystal displays, in a clever extension of the Venn diagram
paradigm, the number of documents retrieved that have each possible subset
of the IV concepts. Figure 10.17 shows a sketch of what the InfoCrystal might
display as the result of a query against four keywords or Boolean phrases, la-
beled A, B, C, and D. The diamond in the center indicates that one document
was discovered that contains all four keywords. The triangle marked with ‘12’
indicates that 12 documents were found containing attributes A, B, and D, and
SO on.

The InfoCrystal does not show proximity among the terms within the doc-
uments, nor their relative frequency. So a document that contains dozens of hits
on ‘volcano’ and ‘lava’ and one hit on ‘Mars’ will be grouped with documents
that contain mainly hits on ‘Mars’ but just one mention each of ‘volcano’ and
‘lava.’
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Figure 10.18 An example of the VIBE retrieval results display [452].

VIBE and Lyberworld

Graphical presentations that operate on similar principles are VIBE [452] and
Lyberworld [363]. In these displays, query terms are placed in an abstract graph-
ical space. After the search, icons are created that indicate how many documents
contain each subset of query terms. The subset status of each group of docu-
ments is indicated by the placement of the icon. For example, in VIBE a set
‘of documents that contain three out of five query terms are shown on an axis
connecting these three terms, at a point midway between the representations of
the three query terms in question. (See Figure 10.18.) Lyberworld presents a
3D version of this idea.

Lattices

Several researchers have employed a graphical depiction of a mathematical lat-
tice for the purposes of query formulation, where the query consists of a set of
constraints on a hierarchy of categories (actually, semantic attributes in these
systems) [631, 147]. This is one solution to the problem of displaying documents
in terms of multiple attributes; a document containing terms A, B, C, and D
could be placed at a point in the lattice with these four categories as parents.
However, if such a representation were to be applied to retrieval results instead
of query formulation, the lattice layout would in most cases be too complex to
allow for readability.

None of the displays discussed in this subsection have been evaluated for effec-
tiveness at improving query specification or understandmg of retrieval results,
but they are intriguing ideas and perhaps are useful in conjunction with other
displays.

203



296 USER INTERFACES AND VISUALIZATION

P8 ~|m Lates

T i 5
4h fereredired Floa,
k 4 Ehplhasa Bwifaiez ag Thaea Dimessrom

278 PRV F Fof Bty seadgsin sod Gyapagn
Fiol

¢ ne fresniiane

I

|
!
|

4:3

25 SMELEIRT bn

Laviesl §orunczhicns cre

cuch tha daspley b sistsiex
g ¢ 8 Fonctyom oF e bl Ta farar

|
!

‘dodyp | Serdy T

Iz st

{2 smrem {11

dgrT

Fisatrz, RS
Fapd e dmrsion, Sreesses dmenseng

i - —
i [ s o,

Figure 10.19 The SuperBook interface for showing retrieval results on a large man-
ual in context [481]. .

10.6.4 SuperBook: Context via Table of Contents

The SuperBook system [481, 229, 230] makes use of the structure of a large
document to display query term hits in context. The table of contents (TOC)
for a book or manual are shown in a hierarchy on the left-hand side of the display,
and full text of a page or section is shown on the right-hand side. The user can
manipulate the table of contents to expand or contract the view of sections and
subsections. A focus-plus-context mechanism is used to expand the viewing area
of the sections currently being looked at and compress the remaining sections.
When the user moves the cursor to another part of the TOC, the display changes
dynamically, making the new focus larger and shrinking down the previously
observed sections.

After the user specifies a query on the book, the search results are shown
in the context of the table of contents hierarchy. (See Figure 10.19.) Those
sections that contain search hits are made larger and the others are compressed.
The query terms that appear in chapter or section names are highlighted in
reverse video. When the user selects a page from the table of contents view, the
page itself is displayed on the right-hand side and the query terms within the
page are highlighted in reverse video.

The SuperBook designers created innovative techniques for evaluating its
special features. Subjects were compared using this system against using pa-
per documentation and against a more standard online information access Sys-
tem. Subjects were also compared on different kinds of carefully selected tasks:
browsing topics of interest, citation searching, searching to answer questions,
and searching and browsing to write summary essays. For most of the tasks

204



CONTEXT 297

SuperBook subjects were faster and more accurate or equivalent in speed and
accuracy to a standard system. When differences arose between SuperBook and
the standard system, the investigators examined the logs carefully and hypothe-
sized plausible explanations. After the initial studies, they modified SuperBook
according to these hypotheses and usually saw improvements as a result [481].

The user studies on the improved system showed that users were faster and
more accurate at answering questions in which some of the relevant terms were
within the section titles themselves, but they were also faster and more accurate
at answering questions in which the query terms fell within the full text of the
document only, as compared both to a paper manual and to an interface that did
not provide such contextualizing information. SuperBook was not faster than
paper when the query terms did not appear in the document text or the table
of contents. This and other evidence from the SuperBook studies suggests that
query term highlighting is at least partially responsible for improvements seen
in the system.

10.6.5 Categories for Results Set Context

In section 10.4 we saw the use of category or directory information for providing
overviews of text collection content. Category metadata can also be used to
place the results of a query in context.

For example, the original formulation of SuperBook allowed navigation
within a highly structured document, a computer manual. The CORE project
extended the main idea to a collection of over 1000 full-text chemistry articles.
A study of this representation demonstrated its superiority to a standard search
system on a variety of task types [228]. Since a table of contents is not available
for this collection, context is provided by placing documents within a category
hierarchy containing terms relevant to chemistry. Documents assigned a category
are listed when that category is selected for more detailed viewing, and the
categories themselves are organized into a hierarchy, thus providing a hierarchical
view on the collection.

Another approach to using predefined categories to provide context for
retrieval results is demonstrated by the DynaCat system [650]. The DynaCat
system organizes retrieved documents according to which types of categories, se-
lected from the large MeSH taxonomy, are known in advance to be important for
a given query type. DynaCat begins with a set of query types known to be useful
for a given user population and collection. One query type can encompass many
different queries. For example, the query type ‘Treatment-Adverse Effects’ covers
queries such as ‘What are the complications of a mastectomy?’ as well as “‘What
are the side-effects of aspirin?’ Documents are organized according to a set of cri-
teria associated with each query type. These criteria specify which types of cate-
gories that are acceptable to use for organizing the documents and consequently,
which categories should be omitted from the display. Once categories have been
assigned to the retrieved documents, a hierarchy is formed based on where the
categories exist within MeSH. The algorithm selects only a subset of the category
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Figure 10.20 The DynaCat interface for viewing category labels that correspond
to query types [650).

labels that might be assigned to the document to be used in the organization.

Figure 10.20 shows the results for a query on breast cancer prevention. The
interface is tiled into three windows. The top window displays the user’s query
and the number of documents found. The left window shows the categories in
the first two levels of the hierarchy, providing a table of contents view of the
organization of search results. The right pane displays all the categories in the
hierarchy and the titles of the documents that belong in those categories.

An obstacle to using category labels to organize retrieval results is the re-
quirement of precompiled knowledge about which categories are of interest for a,
particular user or a particular query type. The SONIA system [692] circumvents
this problem by using a combination of unsupervised and supervised methods
to organize a set of documents. The unsupervised method (document clustering
similar to Scatter/Gather) imposes an initial organization on a user’s personal
information collection or on a set of documents retrieved as the result of a query.
The user can then invoke a direct manipulation interface to make adjustments
to this initial clustering, causing it to align more closely with their preferences
(because unsupervised methods do not usually produce an organization that
corresponds to a human-derived category structure [357]). The resulting orga-
nization is then used to train a supervised text categorization algorithm which
automatically classifies any new documents that are added to the collection. As
the collection grows it can be periodically reorganized by rerunning the clustering
algorithm and redoing the manual adjustments.
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10.6.6 Using Hyperlinks to Organize Retrieval Results

Although the SuperBook authors describe it as a hypertext system, it is actu-
ally better thought of as a means of showing search results in the context of a
structure that users can understand and view all at once. The hypertext com-
ponent was not analyzed separately to assess its importance, but it usually is
not mentioned by the authors when describing what is successful about their
design. In fact, it seems to be responsible for one of the main problems seen
with the revised version of the system — that users tend to wander off (often
unintentionally) from the pages they are reading, thus causing the time spent
on a given topic to be longer for SuperBook in some cases. (Using completion
time to evaluate users on browsing tasks can be problematic, however, since by
definition browsing is a casual, unhurried process [804].)

This wandering may occur in part because SuperBook uses a non-standard
kind of hypertext, in which any word is automatically linked to occurrences of
the same word in other parts of the document. This has not turned out to be
how hypertext links are created in practice. Today, hyperlinked help systems
and hyperlinks on the Web make much more discriminating use of hyperlink
connections (in part since they are usually generated by an author rather than
automatically). These links tend to be labeled in a somewhat meaningful manner
by their surrounding context. Back-of-the-book indexes often do not contain
listings of every occurrence of a word, but rather to the more important uses or
the beginnings of series of uses. Automated hypertext linking should perhaps be
based on similar principles. Additionally, at least one study showed that users
formed better mental models of a small hypertext system that was organized
hierarchically than one that allowed more flexible access [226]. Problems relating
to navigation of hypertext structure have long been suspected and investigated
in the hypertext literature [181, 551, 440, 334].

More recent work has made better use of hyperlink information for provid-
ing context for retrieval results. Some of this work is described below.

Cha-Cha: SuperBogk on the Web

The Cha-Cha intranet search system [164] extends the SuperBook idea to a
large heterogeneous Web site such as might be found in an organization’s in-
tranet. Figure 10.21 shows an example. This system differs from SuperBook in
several ways. On most Web sites there is nio existing real table of contents or
category structure, and an intranet like those found at large universities or large
corporations is usually not organized by one central unit. Cha-Cha uses link
structure present within the site to create what is intended to be a meaningful
organization on top of the underlying chaos. After the user issues a query, the
shortest paths from the root page to each of the search hits are recorded and
a subset of these are selected to be shown as a hierarchy, so that each hit is
shown only once. (Users can begin with a query, rather than with a table of con-
tents view.) If a user does not know to use the term ‘health center’ but instead
queries on ‘medical center,” if ‘medical’ appears as a term in a document within
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Figure 10.21 The Cha-Cha interface for showing Web intranet search results in
context displaying results on the query ‘medical centre’[164].

the health center part of the Web, the home page (or starting point) of this
center will be presented as well as the more specific hits. Users can then either
query or navigate within a subset of sites if they wish. The organization pro-
duced by this simple method is surprisingly comprehensible on the UC Berkeley
site. It seems especially useful for providing the information about thé sources
(the Web server) associated with the search hits, whose titles are often cryptic.

The AMIT system [826] also applies the basic ideas behind SuperBook to
the Web, but focuses on a single-topic Web site, which is likely to have a more
reasonable topic structure than a complex intranet. The link structure of the
Web site is used as contextualizing information but all of the paths to a given
document are shown and focus-plus-context is used to emphasize subsets of the
document space. The WebTOC system [585] is similar to AMIT but focuses on
showing the structure and number of documents within each Web subhierarchy,
and is not tightly coupled with search.
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Figure 10.22 Example of a Web subset visualized by Mapuccino (courtesy of M.
Jacovi, B. Shaul and Y. Maarek).

Mapuccino: Grabhical Depiction of Link Structure

The Mapuccino system (formerly WebCutter) [527] allows the user to issue a
query on a particular Web site. The system crawls the site in real-time, checking
each encountered page for relevance to the query. When a relevant page is found,
the weights on that page’s outlinks are increased. Thus, the search is based partly
on an assumption that relevant pages will occur near one .another in the Web
site. The subset of the Web site that has been crawled is depicted graphically
in a nodes-and-links view (see Figure 10.22). This kind of display does not
provide the user with information about what the contents of the pages are, but
rather only shows their link structure. Other researchers have also investigated
spreading activation among hypertext links as a way to guide an information
retrieval system, e.g., [278, 555].

10.6.7 Tables

Tabular display is another approach for showing relationships among retrieval
documents. The Envision system [273] allows the user to organize results accord-
ing to metadata such as author or date along the X and Y-axes, and uses graphics
to show values for attributes associated with retrieved documents within each
cell (see Figure 10.23). Color, shape, and size of an iconic representation of a
document are used to show the computed relevance, the type of document, or
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Figure 10.23 The Envision tabular display for graphlcally organizing retrieved doc-
uments [270].

other attributes. Clicking on an icon brings up more information about the doc-
ument in another window. Like the WebCutter system, this view provides few
cues about how the documents are related to one another in terms of their con-
tent or meaning. The SenseMaker system also allows users to group documents
into different views via a table-like display [51], including a Scatter/Gather [203]
style view. Although tables are appealing, they cannot show the intersections
of many different attributes; rather they are better for pairwise comparisons.
Another problem with tables for display of textual information is that very little
information can be fitted on a screen at a time, making comparisons difficult.

The Table Lens [666] is an innovative interface for viewing and interac-
tively reorganizing very large tables of information (see Figure 10.24). It uses
focus-plus-context to fit hundreds of rows of information in a space occupied
by at most two dozen rows in standard spreadsheets. And because it allows for
rapid reorganization via sorting of columns, users can quickly switch from a view
focused around one kind of metadata to another. For example, first sorting doc-
uments by rank and then by author name can show the relative ranks of different
articles by the same author. A re-sort by date can show patterns in relevance
scores with respect to date of publication. This rapid re-sorting capability helps
circumvent the problems associated Wlth the fact that tables cannot show many
simultaneous intersections.

Another variation on the table theme is that seen in the Perspective Wall
[630] in which a focus-plus-context display is used to center information currently
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Figure 10.24 The TableLens visualization [666].

of interest in the middle of the display, compressing less important information
into the periphery on the sides of the wall. The idea is to show in detail the cur-
rently most important information while at the same time retaining the context
of the rest of the information. For example, if viewing documents in chronolog-
ical order, the user can easily tell if they are currently looking at documents in
the beginning, middle, or end of the time range.

These interfaces have not been applied to information access tasks. The
problem with such displays when applied to text is that they require an attribute
that can be shown according to an underlying order, such as date. Unfortunately,
information useful for organizing text content, such as topic labels, does not
have an inherent meaningful order. Alphabetical order is useful for looking up
individual items, but not for seeing patterns across items according to adjacency,
as in the case for ordered data types like dates and size.

10.7 Using Relevance Judgements

An important part of the information access process is query reformulation, and
a proven effective technique for query reformulatiqn is relevance feedback. In its
original form, relevance feedback refers to an interaction cycle in which the user
selects a small set of documents that appear to.be relevant to the query, and the
system then uses features derived from these selected relevant documents to re-
vise the original query. This revised query is then executed and a new set of docu-
ments is returned. Documents from the original set can appear in the new results
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list, although they are likely to appear in a different rank order. Relevance feed-
back in its original form has been shown to be an effective mechanism for improv-
ing retrieval results in a variety of studies and settings [702, 343, 127]. In recent
years the scope of ideas that can be classified under this term has widened greatly.

Relevance feedback introduces important design choices, including which
operations should be performed automatically by the system and which should be
user initiated and controlled. Bates discusses this issue in detail [66], asserting
that despite the emphasis in modern systems to try to automate the entire
process, an intermediate approach in which the system helps automate search at
a strategic level is preferable. Bates suggests an analogy of an automatic camera
versus one with adjustable lenses and shutter speeds. On many occasions, a
quick, easy method that requires little training or thought is appropriate. At
other times the user needs more control over the operation of the machinery,
while still not wanting to know about the low level details of its operation.

A related idea is that, for any interface, control should be described in
terms of the task being doné, not in terms of how the machine can be made to
accomplish the task [607]. Continuing the camera analogy, the user should be
able to control the mood created by the photograph, rather than the adjustment
of the lens. In information access systems, control should be over the kind
of information returned, not over which terms are used to modify the query.
Unfortunately it is often quite difficult to build interfaces to complex systems
that behave in this manner.

10.7.1 Interfaces for Standard Relevance Feedback

- A standard interface for relevance feedback consists of a list of titles with check-
boxes beside the titles that allow the user to mark relevant documents. This
can imply either that unmarked documents are not relevant or that no opinion
has been made about unmarked documents, depending on the system. Another
option is to provide a choice among several checkboxes indicating relevant or
not relevant (with no selection implying no opinion). In some cases users are al-
lowed to indicate a value on a relevance scale [73]. Standard relevance feedback
algorithms usually do not perform better given negative relevance judgement
evidence [225], but machine learning algorithms can take advantage of negative
feedback [629, 460].

After the user has made a set of relevance judgemerits and issued a search
command, the system can either automatically reweight the query and re-execute
the search, or generate a list of terms for the user to select from in order to
augment the original query. (See Figure 10.25, taken from [448].) Systems
usually do not suggest terms to remove from the query.

After the query is re-executed, a new list of titles is shown. It can be
helpful to retain an indicator such as a marked checkbox beside the documents
that the user has already judged. A difficult design decision concerns whether or
not to show documents that the user has already viewed towards the top of the
ranked list [1]. Repeatedly showing the same set of documents at the top may
inconvenience a user who is trying to create a large set of relevant documents,
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Four-cylinder Quad 4 engine have fuel llnes that could crack
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Figure 10.25 An example of an interface for relevance feedback [448].

but at the same time, this can serve as feedback indicating that the revised
query does not downgrade the ranking of those documents that have been found
especially important. One solution is to retain a separate window that shows the
rankings of only the documents that have not been retrieved or ranked highly
previously. Amnother solution is to use smaller fonts or gray-out color for the
titles of documents already seen.

Creating multiple relevance judgements is an effortful task, and the notion
of relevance feedback is unfamiliar to most users. To circumvent these prob-
lems, Web-based search engines have adopted the terminology of ‘more like this’
as a simpler way to indicate that the user is requesting documents similar to
the selected one. This ‘one-click’ interaction method is simpler than standard
relevance feedback dialog which requires users to rate a small number of doc-
uments and then request a reranking. Unfortunately, in most cases relevance
feedback requires many relevance judgements in order to work well. To partly
alleviate this problem, Aalbersberg [1] proposes incremental relevance feedback
which works well given only one relevant document at a time and thus can be
used to hide the two-step procedure from the user.

10.7.2 'Studies of User Interaction with Relevance Feedback Systems

Standard relevance feedback assumes the user is involved in the interaction by
specifying the relevant documents. In some interfaces users are also able to
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select which terms to add to the query. However, most ranking and reweighting
algorithms are difficult to understand or predict (even for the creators of the
algorithms!) and so it might be the case that users have difficulties controlling
a relevance feedback system explicitly.

A recent study was conducted to investigate directly to what degree user
control of the feedback process is beneficial. Koenemann and Belkin [448] mea-
sured the benefits of letting users ‘under the hood’ during relevance feedback.
They tested four cases using the Inquery system [772]:

e Control No relevance feedback; the subjects could only reformulate the
query by hand. '

e Opaque The subjects simply selected relevant documents and saw the
revised rankings.

e Transparent The subjects could see how the system reformulated the
queries (that is, see which terms were added — the system did not reweight
the subjects’ query terms) and the revised rankings.

e Penetrable The system is stopped midway through the reranking process.
The subjects are shown the terms that the system would have used for
opaque and transparent query reformulation. The subjects then select
which, if any, of the new terms to add to the query. The system then
presents the revised rankings.

The 64 subjects were much more effective (measuring precision at a cut-
off of top 5, top 10, top 30, and top 100 documents) with relevance feedback
than without it. The penetrable group performed significantly better than the
control, with the opaque and transparent performances falling between the two
in effectiveness. Search times did not differ significantly among the conditions,
but there were significant differences in the number of feedback iterations. The
subjects in the penetrable group required significantly fewer iterations to achieve
better queries (an average of 5.8 cycles in the penetrable group, 8.2 cycles in the
control group, 7.7 cycles in the opaque group, and surprisingly, the transparent
group required more cycles, 8.8 on average). The average number of documents
marked relevant ranged between 11 and 14 for the three conditions. All subjects
preferred relevance feedback over the baseline system, and several remarked that
they preferred the ‘lazy’ approach of selecting suggested terms over having to
think up their own.

An observational study on a TTY-based version of an online catalog system
[338] also found that users performed better using a relevance feedback mech-
anism that allowed manual selection of terms. However, a later observational
study did not find overall success with this form of relevance feedback [337]. The
authors attribute these results to a poor design of a new graphical interface.
These results may also be due to the fact that users often selected only one rel-
evant document before performing the feedback operation, although they were
using a system optimized from multiple document selection.
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10.7.3 Fetching Relevant Information in the Background

Standard relevance feedback is predicated on the goal of improving an ad hoc
query or building a profile for a routing query. More recently researchers have
begun developing systems that monitor users’ progress and behavior over long-
interaction periods in an attempt to predict which documents or actions the user
is likely to want in future. These systems are called semi-automated assistants
or recommender ‘agents,” and often make use of machine learning techniques
[665]. Some of these systems require explicit user input in the form of a goal
statement [406] or relevance judgements [629], while others quietly record users’
actions and try to make inferences based on these actions.

A system developed by Kozierok and Maes [460, 536] makes predictions
about how users will handle email messages (what order to read them in, where
to file them) and how users will schedule meetings in a calendar manager ap-
plication. The system ‘looks over the shoulder’ of the users, recording every
relevant action into a database. After enough data has been accumulated, the
system uses a nearest-neighbors method [743] to predict a user’s action based
on the similarity of the current situation to situations already encountered. For
example, if the user almost always saves email messages from a particular per-
son into a particular file, the system can offer to automate this action the next
time a message from that person arrives [536]. This system integrates learning
from both implicit and explicit user feedback. If a user ignores the system’s
suggestion, the system treats this as negative feedback, and accordingly adds
the overriding action to the action database. After certain types of incorrect
predictions, the system asks the user questions that allow it to adjust the weight
of the feature that caused the error. Finally, the user can explicitly train the
system by presenting it with hypothetical examples of input-action pairs.

Another system, Syskill and Webert [629], attempts to learn a user profile
based on explicit relevance judgements of pages explored while browsing the
Web. In a sense this is akin to standard relevance feedback, except the user
judgements are retained across sessions and the interaction model differs: as the
user browses a new Web page, the links on the page are automatically annotated
as to whether or not they should be relevant to the user’s interest.

A related system is Letizia [518], whose goal is to bring to the user’s atten-
tion a percentage of the available next moves that are most likely to be of interest,
given the user’s earlier actions. Upon request, Letizia provides recommendations
for further action on the user’s part, usually in the form of suggestions of links to
follow when the user is unsure what to do next. The system monitors the user’s
behavior while navigating and reading Web pages, and concurrently evaluates
the links reachable from the current page. The system uses only implicit feed-
back. Thus, saving a page as a bookmark is taken as strong positive evidence for
the terms in the corresponding Web page. Links skipped are taken as negative
support for the information reachable from the link. Selected links can indicate
positive or negative evidence, depending on how much time the user spends on
the resulting page and whether or not the decision to leave a page quickly is later
reversed. Additionally, the evidence for user interest remains persistent across
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browsing sessions. Thus, a user who often reads kayaking pages is at another
time reading the home page of a professional contact and may be alerted to
the fact that the colleague’s personal interests page contains a link to a shared
hobby. The system uses a best-first search strategy and heuristics to determine
which pages to recommend most strongly.

A more user-directed approach to prefetching potentially relevant informa-
tion is seen in the Butterfly system [531]. This interface helps the user follow
a series of citation links from a given reference, an important information seek-
ing strategy [66]. The system automatically examines the document the user is
currently reading and prefetches the bibliographic citations it refers to. It also
retrieves lists of articles that cite the focus document. The underlying assump-
tion is that the services from which the citations are requested do not respond
immediately. Rather than making the user wait during the delay associated with
each request, the system handles many requests in parallel and the interface uses
graphics and animations to show the incrementally growing list of available ci-
tations. The system does not try to be clever about which cites to bring first;
rather the user can watch the ‘organically’ growing visualization of the document
and its citations, and based on what looks relevant, direct the system as to which
parts of the citation space to spend more time on.

10.7.4 Group Relevance Judgements

Recently there has been much interest in using relevance judgements from a
large number of different users to rate or rank information of general interest
[672]. Some variations of this social recommendation approach use only simi-
larity among relevance judgements by people with similar tastes, ignoring the
representation of the information being judged altogether. This has been found
highly effective for rating information in which taste plays a major role, such as
movie and music recommendations [720]. More recent work has combined group
relevance judgements with content information [64].

10.7.5 Pseudo-Relevance Feedback

At the far end of the system versus user feedback spectrum is what is informally
known as pseudo-relevance feedback. In this method, rather than relying on the
user to choose the top k relevant documents, the system simply assumes that its
top-ranked documents are relevant, and uses these documents to augment the
query with a relevance feedback ranking algorithm. This procedure has been
found to be highly effective in some settings [760, 465, 12], most likely those in
which the original query statement is long and precise. An intriguing extension
to this idea is to use the output of clustering of retrieval results as‘the input to
a relevance feedback mechanism, either by having the user or the system select
the cluster to be used [359], but this idea has not yet been evaluated.
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10.8 Interface Support for the Search Process

The user interface designer must make decisions about how to arrange various
kinds of information on the computer screen and how to structure the possi-
ble sequences of interactions. This design problem is especially daunting for
a complex activity like information access. In this section we discuss design
choices surrounding the layout of information within complex information sys-
tems, and illustrate the ideas with examples of existing interfaces. We begin
with a discussion of very simple search interfaces, those used for string search
in ‘find’ operations, and then progress to multiwindow interfaces and sophisti-
cated workspaces. This is followed by a discussion of the integration of scanning,
selecting, and querying within information access interfaces and concludes with
interface support for retaining the history of the search process.

10.8.1 Interfaces for String Matching

A common simple search need is that of the “find’ operation, typically run over
the contents of a document that is currently being viewed. Usually this function
does not produce ranked output, nor allow Boolean combinations of terms; the
main operation is a simple string match (without regular expression capabilities).
Typically a special purpose search window is created, containing a few simple
controls (e.g., case-sensitivity, search forward or backward). The user types the
query string into an entry form and string matches are highlighted in the target
document (see Figure 10.26).

The next degree of complexity is the ‘find’ function for searching across
small collections, such as the files on a personal computer’s hard disk, or the
history list of a Web browser. This type of function is also usually implemented
as a simple string match. Again, the controls and parameter settings are shown
at the top of a special purpose search window and the various options are set via
checkboxes and entry forms. The difference from the previous example is that a
results list is shown within the search interface itself (see Figure 10.27).

A common problem arises even in these very simple interfaces. An ambigu-
ous state ‘occurs in which the results for an earlier search are shown while the
user is entering a new query or modifying the previous one. If the user types in

Find what:  [information  Find Next

¢ Difection - -+ Cancel

[ Maich gase " Up & Down |

Figure 10.26 An example of a simple interface for string matching, from Netscape
Communicator 4.05. :
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Figure 10.27 An example of an string matching over a list, in this case, a history
of recently viewed Web pages, from Netscape Communicator 4.05.

new terms and but then does not activate the search, the interface takes on a
potentially misleading state, since a user could erroneously assume that the old
search hits shown correspond to the newly typed-in query. One solution for this
problem is to clear the results list as soon as the user begins to type in a new
query.

However, the user may want to refer to terms shown in the search results to
help reformulate the query, or may decide not to issue the new query and instead
continue with the previous results. These goals would be hampered by erasing
the current result set as soon as the new query is typed. Another solution is to
bring up a new window for every new query. However, this requires the user to
execute an additional command and can lead to ‘a proliferation of windows. A
third, probably more workable solution, is to automatically ‘stack’ the queries
and results lists in a compact format and allow the user to move back and forth
among the stacked up prior searches. .

Simple interfaces like these can be augmented with functionality that can
greatly aid initial query formulation. Spelling errors are a major cause of void
result sets. A spell-checking function that suggests alternatives for query terms
that have low frequency in the collection might be useful at this stage. Another
option is to suggest thesaurus terms associated with the quéfy terms at the time
the query terms are entered. Usually these kinds of information are shown after
the query is entered and documents have beén retrieved, but an alternative is to
provide this information as the user enters the query, in a form of query preview.
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10.8.2 Window Management -

For search tasks more complex than the simple string matching find operations
described above, the interface designer must decide how to lay out the various
choices and information displays within the interface.

As discussed above, traditional bibliographic search systems use TTY-
based command-line interfaces or menus. When the system responds to a com-
mand, the new results screen obliterates the contents of the one before it, requir-
ing the user to remember the context. For example, the user can usually see only
one level of a subject hierarchy at a time, and must leave the subject view in
order to see query view or the document view. The main design choices in such
a system are in the command or menu structure, and the order of presentation
of the available options.

In modern graphical interfaces, the windowing system can be used to divide
functionality into different, simultaneously displayed views [582]. In information
access systems, it is often useful to link the information from one window to the
information in another, for example, linking documents to their position in a ta-
ble of contents, as seen in SuperBook. Users can also use the selection to cut and
paste information from one window into another, for example, copy a word from
a display of thesaurus terms and paste the word into the query specification form.

When arranging information within windows, the designer must choose be-
tween a monolithic display, in which all the windows are laid out in predefined
positions and are all simultaneously viewable, tiled windows, and overlapping
windows. User studies have been conducted comparing these options when ap-
plied to various tasks [725, 96]. Usually the results of these studies depend on the
domain in which the interface is used, and no clear guidelines have yet emerged
for information access interfaces.

The monolithic interface has several advantages. It allows the designer
to control the organization of the various options, makes all the information
simultaneously viewable, and places the features in familiar positions, making
them easier to find. But monolithic interfaces have disadvantages as well. They
often work best if occupying the full viewing screen, and the number of views is
inherently limited by the amount of room available on the screen (as opposed to
overlapping windows which allow display of more information than can fit on the
screen at once). Many modern work-intensive applications adopt a monolithic
design, but this can hamper the integration of information access with other work
processes such as text editing and data analysis. Plaisant et al. [644] discuss
issues relating to coordinating information across different windows to providing
overview plus details.

A problem for any information access interface is an inherent limit in how
many kinds of information can be shown at once. Information access systems
must always reserve room for a text display area, and this must take up a signif-
icant proportion of screen space in order for the text to be legible. A tool within
a paint program, for example, can be made quite small while nevertheless re-
maining recognizable and usable. For legibility reasons, it is difficult to compress
many of the information displays needed for an information access system (such
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as lists of thesaurus terms, query specifications, and lists of saved titles) in this
manner. Good layout, graphics, and font design can improve the situation; for
example, Web search results can look radically different depending on spacing,
font, and other small touches [580].

Overlapping windows provide flexibility in arrangement, but can quickly
lead to a crowded, disorganized display. Researchers have observed that much
user activity is characterized by movement from one set of functionally related
windows to another. Bannon et al. [54] define the notion of a workspace — the
grouping together of sets of windows known to be functionally related to some
activity or goal — arguing that this kind of organization more closely matches
users’ goal structure than individual windows [96]. Card et al. [140] also found
that window usage could be categorized according to a ‘working set’ model. They
looked at the relationship between the demands of the task and the number of
windows in use, and found the largest number of individual windows were in use
when users transitioned from one task to another.

Based on these and other .observations, Henderson and Card [420] built a
system intended to make it easier for users to move between ‘multiple virtual
workspaces’ [96]. The system uses a 3D spatial metaphor, where each workspace
is a ‘room,’ and users transition between workspaces by ‘moving’ through virtual
doors. By ‘traveling’ from one room to the next, users can change from one work
context to another. In each work context, the application programs and data
files that are associated with that work context are visible and readily available
for reopening and perusal. The workspace notion as developed by Card et al.
also emphasizes the importance of having sessions persist across time. The user
should be able to leave a room dedicated to some task, work on another task,
and three days later return to the first room and see all of the applications still in
the same state as before. This notion of bundling applications and data together
for each task has since been widely adopted by window manager software in
workstation operating system interfaces.

Elastic windows [428] is an extension to the workspace or rooms notion to
the organization of 2D tiled windows. The main idea is to make the transition
easier from one role or task to another, by adjusting how much of the screen real
estate is consumed by the current role. The user can enlarge an entire group of
windows with a simple gesture, and this resizing automatically causes the rest of
the workspaces to reduce in size so they all still fit on the screen without overlap.

10.8.3 Example Systems

The following sections describe the information layout and management ap-

proaches taken by several modern information access interfaces.
¢

The InfoGrid Layout

The InfoGrid system [667] is a typical example of a monolithic layout for an
information access interface. The layout assumes a large display is available
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Figure 10.28 Diagrams of monolithic layouts for information access interfaces.

and is divided into a left-hand and right-hand side (see Figure 10.28). The left-
hand side is further subdivided into an area at the top that contains structured
entry forms for specifying the properties of a query, a column of iconic controls
lining the left side, and an area for retaining documents of interest along the
bottom. The main central area is used for the viewing of retrieval results, either
as thumbnail representations of the original documents, or derived organizations
of the documents, such as Scatter/Gather-style cluster results. Users can select
documents from this area and store them in the holding area below or view
them in the right-hand side. Most of the right-hand side of the display is used for
viewing selected documents, with the upper portion showing metadata associated
with the selected document. The area below the document display is intended
to show a graphical history of earlier interactions.

Designers must make decisions about which kinds of information to show
in the primary view(s). If InfoGrid were used on a smaller display, either the
document viewing area or the retrieval results viewing area would probably have
to be shown via a pop-up overlapping window; otherwise the user would have
to toggle between the two views. If the system were to suggest terms for rele-
vance feedback, one of the existing views would have to be supplanted with this
information or a pop-up window would have to be used to display the candidate
terms. The system does not provide detailed information for source selection,
although this could be achieved in a very simple way with a pop-up menu of
choices from the control panel.

The SuperBook Layout

The layout of the InfoGrid is quite similar to that of SuperBook (see section
10.6). The main difference is that SuperBook retains the table of contents-like
display in the main left-hand pane, along with indicators of how many documents
containing search hits occur in each level of the outline. Like InfoGrid, the
main pane of the right-hand side is used to display selected documents. Query
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formulation is done just below the table of contents view (although in earlier
versions this appeared in a separate window). Terms related to the user’s query
are shown in this window as well. Large images appear in pop-up overlapping
windows.

The SuperBook layout is the result of several cycles of iterative design
[481]. Earlier versions used overlapping windows instead of a monolithic layout,
allowing users to sweep out a rectangular area on the screen in order to create a
new text box. This new text box had its own set of buttons that allowed users to
jump to occurrences of highlighted words in other documents or to the table of
contents. SuperBook was redesigned after noting results of experimental studies
[350, 532] showing that users can be more efficient if given fewer, well chosen
interaction paths, rather than allowing wide latitude (A recent study of auditory
interfaces found that although users were more efficient with a more flexible
interface, they nevertheless preferred the more rigid, predictable interface [801]).
The designers also took careful note of log files of user interactions. Before the
redesign, users had to choose to view the overall frequency of a hit, move the
mouse to the table of contents window, click the button and wait for the results
to be updated. Since this pattern was observed to occur quite frequently, in the
next version of the interface, the system was redesigned to automatically perform
this sequence of actions immediately after a search was run.

The SuperBook designers also attempted a redesign to allow the interface
to fit into smaller displays. The redesign made use of small, overlapping windows.
Some of the interaction sequences that were found useful in this more constrained
environment were integrated into later designs for large monolithic displays.

The DLITE Interface

The DLITE system [193, 192] makes a number of interesting design choices. It
splits functionality into two parts: control of the search process and display of
results . The control portion is a graphical direct manipulation display with an-
imation (see Figurel0.29). Queries, sources, documents, and groups of retrieved
documents are represented as graphical objects. The user creates a query by
filling out the editable fields within a query constructor object. The system
manufactures a query object, which is represented by a small icon which can be
dragged and dropped onto iconic representations of collections or search services.
If a service is active, it responds by creating an empty results set object and at-
taching the query to this. A set of retrieval results is represented as a circular
pool, and documents within the result set are represented as icons distributed
along the perimeter of the pool. Documents can be dragged out of the results
set pool and dropped into other services, such as a document summarizer or a
lahguage translator. Meanwhile, the user can make a copy of the query icon and
drop it onto another search service. Placing the mouse over the iconic represen-
tation of the query causes a ‘tool-tips’ window to pop up to show the contents
of the underlying query. Queries can be stored and reused at a later time, thus
facilitating retention of previously successful search strategies.
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Figure 10.29 The DLITE interface [193].

A flexible interface architecture frees the user from the restriction of a rigid
order of commands. On the other hand, as seen in the SuperBook discussion,
such an architecture must provide guidelines, to help get the user started, give
hints about valid ways to proceed, and prevent the user from making errors. The
graphical portion of the DLITE interface makes liberal use of animation to help
guide the user. For example, if the user attempts to drop a query in the document
summarizer icon — an illegal operation — rather than failing and giving the user
an accusatory error message [185], the system takes control of the object being
dropped, refusing to let it be placed on the representation for the target appli-
cation, and moves the object left, right, and left again, mimicking a ‘shake-the-
head-no’ gesture. Animation is also used to help the user understand the state of
the system, for example, in showing the progress of the retrieval of search results
by moving the result set object away from the service from which it was invoked.

DLITE uses a separate Web browser window for the display of detailed
information about the retrieved documents, such as their bibliographic citations
and their full text. The browser window is also used to show Scatter/Gather-
style cluster results and to allow users to select documents for relevance feedback.
Earlier designs of the system attempted to incorporate text display into the di-
rect manipulation portion, but this was found to be infeasible because of the
space required [192]. Thus, DLITE separates the control portion of the infor-
mation access process from the scanning and reading portion. This separation
allows for reusable query construction and service selection, while at the same
time allowing for a legible view of documents and relationships among retrieved
documents. The selection in the display view is linked to the graphical control
portion, so a document viewed in the display could be used as part of a query
in a query constructor.
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DLITE also incorporates the notion of a workspace, or ‘workcenter,” as it
is known in this system. Different workspaces are created for different kinds of
tasks. For example, a workspace for buying computer software can be equipped
with source icons representing good sources of reviews of computer software,
good Web sites to search for price information and link to the user’s omline
credit service.

The SketchTrieve Interface

The guiding principle behind the SketchTrieve interface [365] is the depiction
of information access as an informal process, in which half-finished ideas and
partly explored paths can be retained for later use, saved and brought back to
compare to later interactions, and the results can be combined via operations on
graphical objects and connectors between them. It has been observed [584, 722]
that users use the physical layout of information within a spreadsheet to organize
information. This idea motivates the design of SketchTrieve, which allows users
to arrange retrieval results in a side-by-side manner to facilitate comparison and
recombination (see Figure 10.30).

The notion of a canvas or workspace for the retention of the previous con-
text should be adopted more widely in future. Many issues are not easily solved,
such as how to show the results of a set of interrelated queries, with minor
modifications based on query expansion, relevance feedback, and other forms of
modification. One idea is to show sets of related retrieval results as a stack of
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Figure 10.30 The SketchTrieve interface [365].
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cards within a folder and allow the user to extract subsets of the cards and view
them side by side, as is done in SketchTrieve, or compare them via a difference
operation. '

10.8.4 Examples of Poor Use of Overlapping Windows

Sometimes conversion from a command-line-based interface to a graphical dis-
play can cause problems. Hancock-Beaulieu et al. [337] describe poor design de-
cisions made in an overlapping windows display for a bibliographic system. (An
improvement was found with a later redesign of the system that used a mono-
lithic interface [336].) Problems can also occur when designers make a ‘literal’
transformation from a TTY interface to a graphical interface. The consequences
can be seen in the current LEXIS-NEXIS interface, which does not make use of
the fact that window systems allow the user to view different kinds of informa-
tion simultaneously. Instead, despite the fact that it occupies the entire screen,
the interface does not retain window context when the user switches from one
function to another. For example, viewing a small amount of metadata about
a list of retrieved titles causes the list of results to disappear, rather than over-
laying the information with a pop-up window or rearranging the available space
with resizable tiles. Furthermore, this metadata is rendered in poorly-formatted
ASCII instead of using the bit-map capabilities of a graphical interface. When a
user opts to see the full text view of a document, it is shown in a small space, a
few paragraphs at a time, instead of expanding to fill the entire available space.

10.8.5 Retaining Search History

Section 10.3 discusses information seeking strategies and behaviors that have
been observed by researchers in the field. This discussion suggests that the user
interface should show what the available choices are at any given point, as well
as what moves have been made in the past, short-term tactics as well as longer-
term strategies, and allow the user to annotate the choices made and information
found along the way. Users should be able to bundle search sessions as well as
save individual portions of a given search session, and flexibly access and modify
each. There is also increasing interest in incorporating personal preference and
usage information both into formulation of queries and use of the results of search
[277].

For the most part these strategies are not supported well in current user
interfaces; however some mechanisms have been introduced that begin to address
these needs. In particular, mechanisms to retain prior history of the search
are useful for these tasks. Some kind of history mechanism has been made
available in most search systéms in the past. Usually these consist of a list
of the commands’ executed earlier. More recently, graphical history has been
introduced, that allows tracking of commands and results as well. Kim and Hirtle
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Figure 10.31 The VISAGE interaction history visuyalization [685].

[440] present a summary of graphical history presentation mechanisms. Recently,
a graphical interface that displays Web page access history in a hierarchical
structure was found to require fewer page accesses and require less time when
returning to pages already visited [370]. -

An innovation of particular interest for information access interfaces is
exemplified by the saving of state in miniature form in a ‘slide sorter’ view as
exercised by the VISAGE system for information visualization [685] (see Figure
10.31). The VISAGE application has the added advantage of being visual in
nature and so individual states are easier to recognize. Although intended to be
used as a presentation creation facility, this interface should also be useful for
retaining search action history.

10.8.6 Integrating Scanning, Selection, and Querying

User interfaces for information access in general do not do a good job of sup-
porting strategies, or even of sequences of movements from one operation to the
next. Even something as simple as taking the output of retrieval results from
one query and using them as input to another query executed in a later search
session is not well supported in most interfaces.

Hertzum and Frokjaer [368] found that users preferred an integration of
scanning and query specification in their user interfaces. They did not, however,
observe better results with such interactions. They hypothesized that if interac-
tions are too unrestricted this can lead to erroneous or wasteful behavior, and
interaction between two different modes requires more guidance. This suggests
that more flexibility is needed, but within constraints (this argument was also
made in the discussion of the SuperBook system in section 10.6).

There are exceptions. The new Web version of the Melyvl system provides
ways to take the output of one query and modify it later for re-execution (see
Figure 10.32). The workspace-based systems such as DLITE and Rooms allow
storage and reuse of previous state. However, these systems do not integrate
the general search process well with scanning and selection of information from
auxiliary structures. Scanning, selection, and querying needs to be better inte-
grated in general. This discussion will conclude with an example of an interface
that does attempt to tightly couple querying and browsing.
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Figure 10.32 A view of query history revision in the Web-based version of the Melvyl
bibliographic catalog. Copyright (©, The Regents of the University of California.

The Cat-a-Cone interface integrates querying and browsing of very large
category hierarchies with their associated text collections. The prototype system
uses 3D-+animation interface components from the Information Visualizer [144],
applied in a novel way, to support browsing and search of text collections and
their category hierarchies. See Figure 10.33. A key component of the interface is
the separation’ of the graphical representation of the category hierarchy from the
graphical representation of the documents. This separation allows for a fluid,
flexible interaction between browsing and search, and between categories and
documents. It also provides a mechanism by which a set of categories associated
with a document can be viewed along with their hierarchical context.

Another key component of the design is assignment of first-class status
to the representation of text content. The retrieved documents are stored in
a 3D-+animation book representation [144] that allows for compact display of
moderate numbers of documents. Associated with each retrieved document is a
page of links to the category hierarchy and a page of text showing the document
contents. The user can ‘ruffle’ the pages of the book of retrieval results and see
corresponding changes in the category hierarchy, which is also represented in
3D+animation. All and only those parts of the category space that reflect the
semantics of the retrieved document are shown with the document.

The system allows for several different kinds of starting points. Users can
start by typing in a name of a category and seeing which parts of the category
hierarchy match it. For example, Figure 10.34 shows the results of searching on
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Figure 10.33 The Cat-a-Cone interface for integrating category and text scanning
and search [358]. '

‘Radiation’ over the MeSH terms in this subcollection. The word appears un-
der four main headings (Physical Sciences, Diseases, Diagnostics, and Biological
Sciences). The hierarchy immediately shows why ‘Radiation’ appears under Dis-
eases — as part of a subtree on occupational hazards. Now the user can select
one or more of these category labels as input to a query specification.

Another way the user can start is by simply typing in a free text query into
an entry label. This query is matched against the collection. Relevant documents
are retrieved and placed in the book format. When the user ‘opens’ the book to
a retrieved document, the parts of the category hierarchy that correspond to the
retrieved documents are shown in the hierarchical representation. Thus, multiple
intersecting categories can be shown simultaneously, in their hierarchical context.
Thus, this interface fluidly combines large, complex metadata, starting points,
scanning, and querying into one interface. The interface allows for a kind of
relevance feedback, by suggesting additional categories that are related to the
documents that have been retrieved. This interaction model is similar to that
proposed by [5]. ]

Recall the evaluation of the Kohonen feature map representation discussed
in section 10.4. The experimenters found that some users expressed a desire
for a visible hierarchical organization, others wanted an ability to zoom in on
a subarea to get more detail, and some users disliked having to look through
the entire map to find a theme, desiring an alphabetical ordering instead. The
subjects liked the ease of being able to jump from one area to another without
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Figure 10.34  An interface for a starting point for searching over category labels
[358].

having to back up (as is required in Yahoo!) and liked the fact that the maps
have varying levels of granularity.

These results all support the design decisions made in the Cat-a-Cone.
Hierarchical representation of term meanings is supported, so users can choose
which level of description is meaningful to them. Furthermore, different levels
of description can be viewed simultaneously, so more familiar concepts can be
viewed in more detail, and less familiar at a more general level. An alphabetical
ordering of the categories coupled with a regular expression search mechanism
allows for straightforward location of category labels. Retrieved documents are
represented as first-class objects, so full text is visible, but in a compact form.
Category labels are disambiguated by their ancestor/descendant/sibling repre-
sentation. Users can jump easily from one category to another and can in addi-
tion query on multiple categories simultaneously (something that is not a natural ,
feature of the maps). The Cat-a-Cone has several additional advantages as well,
such as allowing a document to be placed at the intersection of several categories,
and explicitly linking document contents with the category representation.

10.9 Trends and Research lIssues

The importance of human computer interaction is receiving increasing recogni-
tion within the field of computer science [587]. As should be evident from the
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contents of this chapter, the role of the user interface in the information access
process has only recently begun to receive the attention it deserves. Research
in this area can be expected to increase rapidly, primarily because of the rise
of the Web. The Web has suddenly made vast quantities of information avail-
able globally, leading to an increase in interest in the problem of information
access. This has lead to the creation of new information access paradigms, such
as the innovative use of relevance feedback seen in the Amazon.com interface.
Because the Web provides a platform-independent user interface, investment in
better user interface design can have an impact on a larger user population than
before.

Another trend that can be anticipated is an amplified interest in organi-
zation and search over personal information collections. Many researchers are
proposing that in future a person’s entire life will be recorded using various me-
dia, from birth to death. One motivation for this scenario is to enable searching
over everything a person has ever read or written. Another motivation is to
allow for searching using contextual clues, such as ‘find the article I was reading
in the meeting I had on May 1st with Pam and Hal’. If this idea is pursued,
it will require new, more sophisticated interfaces for searching and organizing a
huge collection of personal information.

There is also increasing interest in leveraging the behavior of individuals
and groups, both for rating and assessing the quality of information items, and for
suggesting starting points for search within information spaces. Recommender
systems can be expected to increase in prevalence and diversity. User interfaces
will be needed to guide users to appropriate recommended items based on their
information needs.

The field of information visualization needs some new ideas about how to
display large, abstract information spaces intuitively. Until this happens, the
role of visualization in information access will probably be primarily confined
to providing thematic overviews of topic collections and displaying large cate-
gory hierarchies dynamically. Breakthroughs in information visualization can be
expected to have a strong impact on information access systems.

10.10 Bibliographic Discussion

The field of human-computer interaction is a broad one, and this chapter touches
on only a small subset of pertinent issues. For further information, see the
excellent texts on user interface design by Shneiderman [725], information seeking
behavior by Marchionini [542], and digital libraries by Lesk [501]. An excellent
book on visual design is that of Mullet and Sano [580]. Tufte has written thought-
provoking and visually engaging books on the power of information visualization
[769, 770] and a collection of papers on information visualization has been edited
by Card et al. [141].

This chapter has discussed many ideas for improving the human-computer
interaction experience for information seekers. This is the most rapidly
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developing area of information access today, and improvements in the interface
are likely to lead the way toward better search results and better-enabled infor-
mation creators and users. Research in the area of human-computer interaction
is difficult because the field is relatively new, and because it can be difficult to
obtain strong results when running user studies. These challenges should simply
encourage those who really want to influence the information access systems of
tomorrow.

Acknowledgements

The author gratefully acknowledges the generous and helpful comments on the
contents of this chapter by Gary Marchionini and Ben Shneiderman, the excellent
administrative assistance of Barbara Goto, and the great faith and patience of
Ricardo Baeza-Yates and Berthier Ribeiro-Neto.

231




380 SEARCHING THE WEB

The user can also refine the query by constructing more complex queries based
on the previous answer.

The Web pages retrieved by the search engine in response to a user query
are ranked, usually using statistics related to the terms in the query. In some
cases this may not have any meaning, because relevance is not fully correlated
with statistics about term occurrence within the collection. Some search engines
also taking into account terms included in metatags or the title, or the popularity
of a Web page to improve the ranking. This topic is covered next.

13.4.4 Ranking

Most search engines use variations of the Boolean or vector model (see Chapter 2)
to do ranking. As with searching, ranking has to be performed without accessing
the text, just the index. There is not much public information'about the specific
ranking algorithms used by current search engines. Further, it is difficult to
compare fairly different search engines given their differences, and continuous
improvements. More important, it is almost impossible to measure recall, as the
number of relevant pages can be quite large for simple queries. Some inconclusive
studies include [327, 498].

Yuwono and Lee [844] propose three ranking algorithms in addition to the
classical tf-idf scheme (see Chapter 2). They are called Boolean spread, vector
spread, and most-cited. The first two are the normal ranking algorithms of the
Boolean and vector model extended to include pages pointed to by a page in
the answer or pages that point to a page in the answer. The third, most-cited,
is based only on the terms included in pages having a link to the pages in the
answer. A comparison of these techniques considering 56 queries over a collection
of 2400 Web pages indicates that the vector model yields a better recall-precision
curve, with an average precision of 75%.

Some of the new ranking algorithms also use hyperlink information. This
is an important difference between the Web and normal IR databases. The
number of hyperlinks that point to a page provides a measure of its popularity
and quality. Also, many links in common between pages or pages referenced
by the same page often indicates a relationship between those pages. We now
present three examples of ranking techniques that exploit these facts, but they
differ in that two of them depend on the query and the last does not.

The first is WebQuery [148], which also allows visual browsing of Web
pages. WebQuery takes a set of Web pages (for example, the answer to a query)
and ranks them based on how connected each Web page is. Additionally, it
extends the set by finding Web pages that are highly connected to the original
set. A related approach is presented by Li [512].

A better idea is due to Kleinberg [444] and used in HITS (Hypertext In-
duced Topic Search). This ranking scheme depends on the query and considers
the set of pages S that point to or are pointed by pages in the answer. Pages
that have many links pointing to them in S are called authorities (that is, they
should have relevant content). Pages that have many outgoing links are called
hubs (they should point to similar content). A positive two-way feedback exists:
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better authority pages come from incoming edges from good hubs and better
hub pages come from outgoing edges to good authorities. Let H(p) and A(p) be
the hub and authority value of page p. These values are defined such that the
following equations are satisfied for all pages p:

Hp)= 3 AW, A@)= Y HE)

uwES | p—u vES | vop

where H (p) and A(p) for all pages, are normalized (in the original paper, the sum
of the squares of each measure is set to one). These values can be determined
through an iterative algorithm, and they converge to the principal eigenvector
of the link matrix of S. In the case of the Web, to avoid an explosion of the size
of S, a maximal number of pages pointing to the answer can be defined. This
technique does not work with non-existent, repeated, or automatically generated
links. One solution is to weight each link based on the surrounding content. A
second problem is that the topic of the result can become diffused. For example,
a particular query is enlarged by a more general topic that contains the original
answer. One solution to this problem is to analyze the content of each page
and assign a score to it, as in traditional IR ranking. The link weight and the
page score can be included on the previous formula multiplying each term of the
summation [154, 93, 153]. Experiments show that the recall and precision on
the first ten answers increases significantly [93]. The order of the links can also
be used by dividing the links into subgroups and using the HITS algorithm on
those subgroups instead of the original Web pages [153].

The last example is PageRank, which is part of the ranking algorithm used
by Google [117]. PageRank simulates a user navigating randomly in the Web
who jumps to a random page with probability ¢ or follows a random hyperlink
(on the current page) with probability 1 — q. It is further assumed that this
user never goes back to a previously visited page following an already traversed
hyperlink backwards. This process can be modeled with a Markov chain, from
where the stationary probability of being in each page can be computed. This
value is then used as part of the ranking mechanism of Google. Let C(a) be the
number of outgoing links of page a and suppose that page a is pointed to by
pages p1 to p,.. Then, the PageRank, PR(a) of a is defined as

PR(a)=q+(1—q) Y PR(p)/C(p:)
i=1

where ¢ must be set by the system (a typical value is 0.15). Notice that the
ranking (weight) of other pages is normalized by the number of links in the
page. PageRank can be computed using an iterative algorithm, and corresponds
to the principal eigenvector of the normalized link matrix of the Web (which
is the transition matrix of the Markov cham) Crawling the Web using this
ordering has been shown to be better than other crawling schemes [168] (see
next section).
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