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[57] ABSTRACT 
A method includes the following component steps, or 
some functional subset of these steps: (A) periodic moni~ 
toring of a data processing system (10) for anomalous 
behavior that may indicate the presence of an undesir 
able software entity such as a computer virus, worm, or 
Trojan Horse; (B) automatic scanning for occurrences 
of known types of undesirable software entities and 
taking remedial action if they are discovered; (C) de 
ploying decoy programs to capture samples of un 
known types of computer viruses; (D) identifying ma 
chine code portions of the captured samples which are 
unlikely to vary from one instance of the virus to an 
other; (E) extracting an identifying signature from the 
executable code portion and adding the signature to a 
signature database; (F) informing neighboring data pro 
cessing systems on a network of an occurrence of the 
undesirable software entity; and (G) generating a dis 
tress signal, if appropriate, so as to call upon an expert 
to resolve dif?cult cases. A feature of this invention is 
the automatic execution of the foregoing steps in re 
sponse to a detection of an undesired software entity, 
such as a virus or a worm, within a data processing 
system. The automatic extraction of the identifying 
signature, the addition of the signature to a signature 
data base, and the immediate use of the signature by a 
scanner provides protection from subsequent infections 
of the system, and also a network of systems, by the 
same or an altered form of the undesirable software 
entity. 

46 Claims, 7 Drawing Sheets 
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AUTOMATIC IlVIlVIUNE SYSTEM FOR 
COMPUTERS AND COMPUTER NETWORKS 

CROSS-REFERENCE TO A RELATED PATENT 
APPLICATION 

This patent application is related to commonly as 
signed U.S. patent application Ser. No. 08/004,871, ?led 
Jan. 19, 1993, entitled “Methods and Apparatus for 
Evaluating and Extracting Signatures of Computer 
Viruses and Other Undesirable Software Entities”, by 
Jeffrey O. Kephart 

FIELD OF THE INVENTION 

This invention relates generally to digital data pro 
cessors and, in particular, to methods and apparatus for 
providing computational integrity for digital data pro 
cessors and networks thereof. 

BACKGROUND OF THE INVENTION 

A computer virus has been de?ned by Frederick B. 
Cohen as a program that can infect other programs by 
modifying them to include a, possibly evolved, version 
of itself (A Short Course on Computer Viruses, ASP 
Press, Pittsburg, 1990, page 11). 
As employed herein, a computer virus is considered 

to include an executable assemblage of computer in 
structions or code that is capable of attaching itself to a 
computer program. The subsequent execution of the 
viral code may have detrimental effects upon the opera 
tion of the computer that hosts the virus. Some viruses 
have an ability to modify their constituent code, thereby 
complicating the task of identifying and removing the 
virus. 
A worm is a program or collection of programs that 

can cause a possibly evolved version of itself to be exe 
cuted on the same or possibly on a different computer. 
A Trojan Horse is a block of undesired code that is 

intentionally hidden within a block of desirable code. 
Both computer viruses, worms, and Trojan Horses 

are considered to be members of a class of undesirable 
software entities, the presence of which within a data 
processor, or network of data processors, is to be 
avoided so as to maintain computational integrity. 
A widely-used method for the detection of computer 

viruses is known as a virus scanner. A virus scanner 
employs short strings of bytes to identify particular 
viruses in executable ?les, boot records, or memory. 
The byte strings (referred to as signatures) for a particu 
lar virus must be chosen with care such that they always 
discover the virus, if it is present, but seldom give a 
“false alarm”, known as a false positive. That is, the 
signature must be chosen so that the byte string is one 
that is unlikely to be found in programs that are nor 
mally executed on the computer. Typically, a human 
expert makes this choice by converting the binary ma 
chine code of the virus to an assembler version, analyz 
ing the assembler code, selecting sections of code that 
appear to be unusual or virus-like, andidentifying the 
corresponding bytes in the binary machine code so as to 
produce the signature. Wildcard bytes can be included 
within the signature to provide a match with any code 
byte appearing in a virus. 

Currently, a number of commercial computer virus 
scanners are successful in alerting users to the presence 
of viruses that are known apriori. However, conven 
tional virus scanners are typically unable to detect the 
presence of computer viruses which they have not been 
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2 
programmed to detect explicitly. The problem of deal 
ing with new viruses has typically been addressed by 
distributing updates of scanning programs and/ or auxil 
iary ?les containing the necessary information for iden 
tifying the latest viruses. However, the increasing rate 
at which new viruses are being written is widening the 
gap between the number of viruses that exist and the 
number of viruses that can be detected by an apprecia 
ble fraction of computer users. As a result, it is becom 
ing increasingly likely that a new virus will become 
wide~spread before any remedy is generally available. 
At least one mechanism to inform other computers 

connected to a network of a presence of a viral infection 
has been previously advanced. For example, a “net 
hormones” concept has been proposed by David Sto 
dolsky, wherein every computer on a network keeps 
archives of all potential virus-carrying contacts with 
every other computer. When a computer ?nds that it is 
infected with a virus, it sends a message to every com 
puter that it has ever contacted or been contacted by, 
which in turn send messages to all of their contactees or 
contactors, etc. However, it is believed that this ap 
proach will result in most or all computers quickly 
becoming overloaded by infection messages from most 
of the other computers on the network. 
As such, a need has arisen to develop methods for 

automatically recognizing and eradicating previously 
unknown or unanalyzed viruses on individual comput 
ers and computer networks. An ef?cient method is also 
required for informing other computers on the network 
as to the existence of a computer virus within the net 
work. 

It is an object of this invention to provide methods 
and apparatus to automatically detect and extract a 
signature from an undesirable software entity, such as a 
computer virus or worm. 

It is further object of this invention to provide meth 
ods and apparatus for immunizing a computer system, 
and also a network of computer systems, against a sub 
sequent infection by a previously unknown and undesir 
able software entity. 

SUMMARY OF THE INVENTION 

The foregoing and other problems are overcome and 
the objects of the invention are realized by a method 
that provides computational integrity for a digital data 
processor and a network of digital data processors. The 
method includes the following component steps, or 
some functional subset of these steps: 

(A) periodic monitoring of a data processing system 
for anomalous behavior that may indicate the presence 
of an undesirable informational state, such as one arising 
from the presence of an undesirable software entity, 
such as a computer virus or worm; 

(B) automatic scanning for occurrences of known 
types of undesirable software entities; 

(C) deploying decoy programs to capture samples of 
unknown types of computer viruses; 

(D) automatically identifying portions of a captured 
virus sample which are likely to remain invariant from 
one instance of the virus to another; 

(E) extracting an identifying signature from the in 
variant portion and adding the signature to a signature 
database; 

(F) informing neighboring data processing systems 
on a network of an occurrence of the undesirable soft 
ware entity; and 
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(G) generating a distress signal, if appropriate, so as 
to call upon an expert to resolve dif?cult cases. 
A feature of this invention is the automatic execution 

of the foregoing steps in response to a detection of an 
undesired software entity, such as a virus, worm, or 
Trojan Horse, within a data processing system. Further 
more, the automatic extraction of the identifying signa 
ture, and the addition of the signature to a signature data 
base, provides protection, or “immunity”, to subsequent 
infections of the system, and also a network of systems, 
by the same or an altered form of the undesirable soft 
ware entity. 

BRIEF DESCRIPTION OF THE DRAWING 

The above set forth and other features of the inven 
tion are made more apparent in the ensuing Detailed 
Description of the Invention when read in conjunction 
with the attached Drawing, wherein: 
FIG. 1a is a block diagram of a computer system that 

is suitable for use in practicing the invention; 
FIG. 1b illustrates an exemplary computer network 

that includes the computer system of FIG. 10; 
FIG. 1c illustrates the exemplary computer network 

of FIG. 1b and the use of a kill signal that is transmitted 
by infected computers to neighboring computers; 
FIG. 2 is a flow chart depicting the constituent steps 

of a method of the invention; 
FIG. 3 is a more detailed flow chart depicting the 

operation of the method of the invention; 
FIG. 4 is a flow chart depicting a method for use in 

segregating variant virus portions from invariant virus 
portions; 
FIG. 5 is a flow chart that shows the operation of a 

statistically based computer virus signature extraction 
method; 
FIG. 6a illustrates exemplary portions of three in 

stances of a computer virus, the three portions each 
including an invariant portion and variant portions; 
FIG. 6b illustrates an exemplary 24-byte “invariant” 

portion of a computer virus; 
FIG. 7 is a flow chart that depicts a method of select 

ing a probability threshold used for accepting or reject 
ing a candidate signature; and 
FIG. 8 is a block diagram of a system operable for 

executing the method of the invention. 

DETAILED DESCRIPTION OF THE 
INVENTION 

FIG. 1a is a block diagram of a data processing sys 
tem 10 that is suitable for practicing the teaching of the 
invention. A bus 12 is comprised of a plurality of signal 
lines for conveying addresses, data, and controls be 
tween a Central Processing Unit 14 and a number of 
other system bus units. A RAM 16 is coupled to the 
system bus 12 and provides program instruction storage 
and working memory for the CPU 12. A terminal con 
trol subsystem 18 is coupled to the system bus 12 and 
provides outputs to a display device 20, typically a CRT 
monitor, and receives inputs from a manual input device 
22, typically a keyboard. Manual input may also be 
provided from a pointing device, such as a mouse. A 
hard disk control subsystem 24 bidirectionally couples a 
rotating ?xed disk, or hard disk 26, to the system bus 12. 
The control 24 and hard disk 26 provide mass storage 
for CPU instructions and data. A floppy disk control 
subsystem 28 bidirectionally couples one or more 
?oppy disk drives 30 to the system bus 12. The ?oppy 
disk drive 30 works in conjunction with a removable 
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4 
floppy diskette 30a. A network adapter (NA) 31 is pro 
vided for coupling the system 10 to a network. 
The components illustrated in FIG. 10 may be em 

bodied within a personal computer, a portable com 
puter, a workstation, a minicomputer, a main frame 
computer, or a supercomputer. As such, the details of 
the physical embodiment of the data processing system 
10, such as the structure of the bus 12 or the number of 
CPUs 14 that are coupled to the bus, is not crucial to the 
operation of the invention, and is not described in fur 
ther detail below. 
As employed herein, the informational state of the 

data processing system 10, at a given moment in time, is 
considered to be de?ned by the contents (bytes) of all 
memory or storage devices to which the system has 
access. These include, but are not limited to, RAM, 
registers, hard disks, floppy disks that are inserted into 
floppy disk drives, and magnetic tape that is inserted 
into a tape drive. 
The informational state history of the system 10 is 

considered to be the history of its informational state at 
all moments in time. 
For the case where the data processing system 10 (P1 

of FIG. 1b) is connected to other data processing sys 
tems (P2-P7) via a network, such as the exemplary 
network depicted in FIG. 117, an additional data proces 
sor (PD) may be added as a dedicated decoy program 
server, as described below. 
The method of this invention includes the following 

component steps, as illustrated in FIG. 2, or some func 
tional subset of these steps. 

Step A: Periodic monitoring of the data processing 
system 10 for anomalous, potentially virus-like behav 
ior. 

Step B: Automatic scanning for occurrences of 
known viruses, and removal of any which are found to 
be present. 

Step C: Deployment of decoy programs to capture 
virus samples. 

Step D: Segregation of a captured virus sample into 
portions that are likely to vary from one instance of the 
computer virus to another instance, and into portions 
that are likely to be invariant from one instance to an 
other. 

Step E: Extraction of a viral signature from the in 
variant portion(s) and the addition of the signature to a 
signature database. 

Step F: Informing neighboring data processing sys 
tems on a network of an occurrence of a viral infection. 

Step G: Generation of a distress signal, if appropriate, 
so as to call upon human experts to resolve dif?cult 
cases. 

A feature of this invention is the automatic execution 
of the foregoing steps in response to a detection of an 
undesired software entity, such as a virus or a worm, 
within the data processing system 10. 
A discussion is now made of each of the above refer 

enced Steps A-G of FIG. 2. 

Step A: Anomaly Detection 

The ?rst step in the process of this invention detects 
anomalous system behavior of a type that may indicate 
the presence of an undesirable informational state re 
sulting from the presence of a virus or some other unde 
sirable software entity, such as a worm or a Trojan 
Horse. The detection of anomalous behavior within a 
computer or computer network can be accomplished 
through the use of known techniques, preferably a tech 
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nique that detects anomalies that may indicate a virus. 
One suitable anomaly detection technique, that uses 
patterns of activity undertaken by computational pro 
cesses, is described in an article entitled “A Pattern 
Orientated Intrusion-Detection Model and its Applica 
tions”, S. W. Shieh and V. D. Gligor, Proceedings of 
the 1991 IEEE Computer Society Symposium on Re 
search in Security and Privacy”. Another suitable tech 
nique detects unexpected changes in executable or re 
source ?les. As an example, F. Cohen, A Short Course on 
Computer Viruses, ASP Press, Pittsburg, 1990, discusses 
the use of integrity shells employing modi?cation detec 
tors. In this case, modi?cation of ?les is detected by 
cryptographic or non-cryptographic checksums, and 
the user is noti?ed if a modi?cation is detected. 
The method at Step A may employ any one or a 

combination of. these or similar techniques. The end 
result is the detection by the system 10 of an anomalous 
system behavior that may be indicative of the presence 
of a computer virus, or some other undesirable software 
entity. 
The anomaly detection process or processes may be 

run continually as a background task, or periodically as 
a foreground task, depending on the desire of the user 
and/ or the nature of the underlying operating system. 

Step B: Scan for Known Viruses 

If preliminary evidence of virus-like activity is de 
tected, additional computational resources are devoted 
to obtaining more conclusive evidence of viral infec 
tion. If a virus is present, there is a high probability that 
the virus is a well-known virus that can be readily de 
tected by a virus scanner. Thus, Step A scans an infor 
mational state history of the system, that is, all relevant 
media (eg ?les, boot records, memory), for known 
viruses. In one implementation, a pre-existing virus 
scanner is activated to search for a large set of patterns 
or signatures, each of which pertains to a different virus 
or virus family. It is highly desirable (but not essential) 
that the virus scanner be capable of detecting slight 
variations on known viruses. Many conventional scan 
ners tend to possess this capability, to a limited extent, 
simply by virtue of the fact that they search based only 
on short contiguous strings of bytes found in the virus. 
One especially suitable virus scanner, known as VIR 

SCAN, was available from the International Business 
Machines Corporation until recently, when it was in 
corporated into the IBM AntiVirus program. This virus 
scanner is particularly useful for detecting variations in 
known viruses because it permits a certain number of 
mismatches between a string of bytes in a ?le being 
examined and the virus signature string. This capability 
reduces the chance of having to proceed to Step C 
(decoy deployment), and is even more useful in the 
event that the virus is completely unrelated to any 
known virus, as is described below with respect to Step 
E. If the anomaly is found to be due to a known virus or 
some slight alteration of it, the method proceeds to Step 
B1 where the user is alerted, and the virus removed 
(killed) by traditional methods, such as restoration from 
backup (either automatically or manually by the user) 
or disinfection (removal of the virus from all of the 
software it has infected.) In general, disinfection is only 
acceptable if the virus is found to be an exact copy of a 
known virus. This implies that the system verify the 
identi?cation made by the virus scanner. . 
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Step C: Decoy Deployment 
If no known virus is detected, the anomaly may be 

due to some unknown virus. In this case, the method 
employs one or more decoy programs in an attempt to 
attract and obtain one or more samples of the unknown 
virus. The decoy programs could be commercially 
available computer programs which are installed on 
(and are capable of being executed on) the computer 
system. Preferably, however, they would be special 
purpose programs which exist solely for the purpose of 
capturing viruses. 
For the case of a DOS-based system, a variety of 

decoy programs having *.COM and *.EXE extensions 
(also referred to as executables) are created, executed, 
read, written to, copied, etc. The use of decoy programs 
for this purpose is described by W. C. Arnold and D. M. 
Chess in “System for Detecting Undesired Alteration of 
Software”, IBM Technical Disclosure Bulletin, Vol. 32, 
No. 11, pages 48-50, April 1990. 

In operation, original copies of the decoy programs 
are stored securely, by example in encrypted form or on 
a separate server, along with checksums of the originals. 
After a speci?ed time interval, or after other speci?ed 
conditions are met, checksums of some or all of the 
decoy programs are taken and compared directly to 
their originals. Alternatively, the decoy programs are 
compared directly to their originals. If none of the de 
coys are found to have changed, the user is alerted to 
the fact that an anomaly of some sort was detected, but 
that the system was unable to find conclusive evidence 
of a virus. In this case, it is desirable to maintain the 
system in a moderate state of alert for some time period, 
exercising the decoy programs at a reduced priority or 
less frequent intervals. 

It is desirable to have a large variety of decoy pro 
grams that differ from one another in length, content, 
and name. Furthermore, the decoy programs should be 
placed in and run from various directories, particularly 
those directories in which there are modi?ed executa 
bles. 
Some DOS viruses are known to become resident in 

memory and are active until the computer is rebooted. 
In such a case, the virus is able to infect any executable 
at any time. Often, a resident virus will infect executa 
bles as they are brought into memory to be executed. 
Thus, if several decoy programs are run, there is a rea 
sonable chance that one or more decoy programs will 
be infected by such a virus. In addition to running the 
decoys, the system should perform a variety of other 
operations with the decoy programs, including copying 
them, opening them, creating them, etc. All of these 
operations increase the probability of infection by a 
virus that is resident in memory. 
However, some DOS viruses do not go resident, and 

can infect other programs only when the host program 
in which the virus is imbedded is executed. Such viruses 
typically use static criteria for selecting a program to 
infect, such as the program name or the directory in 
which the program is located. In this case, it is more 
dif?cult for the decoy programs to become infected. To 
increase the chance of infection, decoy programs are 
preferably placed in locations where they are more 
likely to be selected, such as the directory of the possi 
blydnfected executable, or directories containing sys 
tem programs (e.g. the root directory) and commonly 
used utility programs. In order to infect the decoy pro 
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grams, the potentially-infected executable should be run 
repeatedly. 

If one or more decoy programs is subsequently found 
to have changed from the original, protected version, it 
can be assumed that the changes are due to a virus. A 
comparison of each modi?ed decoy program with its 
corresponding uninfected version enables a copy of the 
virus to be isolated from each decoy. 

Step D: Identi?cation of Invariant Code Portions 

In order to maximize the likelihood that a chosen 
signature will appear in all or nearly all progeny of the 
virus, it is preferred to ?lter out all portions of the virus 
which are observed to or are likely to vary from one 
instance of the virus to another. To achieve this, the 
method employs one, or preferably both, of the tech 
niques represented as Blocks A and B in FIG. 4. The 
order in which the two techniques are used can be re 
versed, and the following description is correspond 
ingly modi?ed to accommodate the opposite ordering 
of the two techniques. 

If several decoy programs are found to be infected, a 
most desirable case, it is important to compare the vari 
ous versions of the isolated virus programs with one 

20 

another (Block A). If all versions are identical, or if 25 
there is only one version, the entire virus is considered 
to be “invariant”, and can be passed along to block B 
Otherwise, if the various isolated computer virus pro 
grams differ, but have substantial areas in common, it 
can be assumed that the virus alters itself when it repli 
cates. As a result, only the common areas are marked 
for further examination by the heuristics employed in 
Block B of FIG. 4. This procedure is illustrated in 
FIG. 6a, in which the variant and “invariant” por 

tions of a virus are identi?ed by comparing three in 
stances of it. In FIG. 6a, each byte is shown expressed 
in a hexadecimal representation, and an invariant por 
tion is identi?ed. The length of the invariant sequence 
of bytes is exemplary. In practice, invariant sequences 
of bytes are often considerably longer than ?ve bytes, 
and more than one such portion typically appears 
within the virus. If there are no substantially similar 
areas, this may indicate the presence of a relatively 
sophisticated self-altering virus, or the presence of more 
than one virus. In this case, each of what appear to be 
different viruses are provided separately to the extrac 
tion method, which determines one or more signatures 
for each. The system is also placed in a moderate state 
of alert, and the user- is informed. 

It is noted that a situation may arise in which the 
computer is attacked by a sophisticated, unknown virus, 
every instance of which looks completely different. In 
this case, at the completion of Block A in FIG. 4 the 
virus detector may be unable able to determine whether 
there are several viruses, or one virus that appears dif 
ferent every time it is replicated. The use of a distress 
signal, described below in relation to Step G, may be 
appropriate for this situation. 
At this point, there are one or more sections of a virus 

program (or a set of different viruses) that are marked as 
being substantially “invariant”. However, even if a 
given section of the virus program is common to all 
copies which have been obtained in Step C, this does 
not guarantee that the section will appear in its entirely 
in every instance of the virus. The purpose of Block B 
is to ?lter out portions of the “invariant” sections which 
by their nature are more likely to be variable. As a 
general rule, non-executable “data” portions of pro 
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8 
grams, which can include representations of numerical 
constants, character strings, screen images, work areas 
for computations, addresses, etc., tend to be more likely 
to vary from one instance of the program to another 
than “code” portions, which represent machine instruc 
tions. It may be that most or all of the “data” bytes in a 
given virus are the same in all instances of that virus, but 
without a careful analysis this is dif?cult to establish 
with certainty. Thus, a conservative approach assumes 
that “data” bytes may change, and therefore it is desir 
able to disqualify them from being chosen as portions of 
candidate signatures. Perfect classi?cation of each byte 
as being “code” or “data” is not necessary. An errone 
ous classi?cation of “code” bytes as “data” bytes is 
more tolerable than an erroneous classi?cation of 
“data” bytes as “code” bytes. 
By example, FIG. 6b illustrates a 24-byte “invariant” 

portion of a virus sample that was generated at Step C. 
The ?rst 4 bytes represent machine instructions, bytes 5 
and 6 represent data, bytes 7-19 represent code, and 
bytes 20-24 represent data. Thus, if Block B of FIG. 4» 
were employed, only bytes 1~4 and 7-19 would be 
passed along to Step E for signature extraction. 

Suitable methods of code-data segregation include, 
but are not limited to, the following techniques. 

1. Conventional static disassembly techniques, such 
as flow analysis. 

2. Simulation of marked viral code in a virtual ma~ 
chine, wherein the virtual machine includes a hardware 
and software model of the computer or class of comput 
ers for which the virus signature is being obtained. 

3. Running the marked viral code through an inter 
preter or debugger to determine which bytes are actu 
ally executed. This method requires a “safe” environ 
ment in which to run the virus, such as the dedicated 
server PD referred to above in the discussion of FIG. 1b. 

4. Statistical classi?cation techniques. 
The second method, i.e., simulation of the marked 

viral code in a virtual machine, is the safest and most 
reliable, but is often the most computationally intensive. 
The second and third methods each have the advan 

tage that they are capable of determining whether a 
virus is self-modifying. Viruses that modify themselves 
often do so for the purpose of obscuring their machine 
code portions by making the code appear different from 
one instance of the virus to the next. Such viruses are 
often referred to as self-garblers. Self-garblers typically 
consist of a short decrypting “head” portion followed 
by code which is transformed in an easily-invertible 
manner (e.g. XOR’ecl) using a randomly-chosen de 
cryption key when the virus is replicated. Thus, the 
only portion of the code which remains invariant, from 
one instance of the virus to another, is the head. It is 
helpful to know that a virus is self-modifying (and thus 
potentially self-garbling), so that signatures will only be 
drawn from the decrypting head. This information can 
also be helpful in identifying cases in which what ap 
peared to be several different viruses in Step C are 
actually only different instances of a single, self-garblin g 
virus. 
At the conclusion of Step D, there exists one or more 

sequences of bytes which appear in every instance of 
the one or more viruses that were obtained or generated 
at Step C and which, according to any heuristics em— 
ployed in Block B, are deemed likely to appear in most 
or all possible instances of the virus. The set of candi 
date viral signatures are all possible contiguous blocks 
of S bytes found in these “probably-invariant” or “sub 
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stantially invariant” byte sequences, where S is a signa 
ture length speci?ed by the user or determined by the 
system. Typically, S has a value in the range of approxi 
mately 12 bytes to 36 bytes. The “probably-invariant” 
byte sequence(s) may be provided an an input ?le (IF 
32, FIG. 1a) for subsequent processing by the signature 
extraction technique described below. 
There may be several viruses (or virus signatures) of 

interest. As such, a record is maintained of which candi 
date signatures belong to each virus. 

Step E: Signature Extraction 
In general, the signature extraction method searches 

through the “probably-invariant” sections of virus code 
for the n best possible signatures (where n is typically 
small, and perhaps 1). A “good” viral signature is one 
which is statistically unlikely to generate false positives 
when run on uninfected, legitimate programs, but will 
always identify the virus if it is present. Depending on 
the nature of the virus scanner which will employ the 
resulting signature, other criteria may be combined 
with this criterion to evaluate the desirability of a given 
candidate signature. Another desirable property is that 
the signature be ?exible enough to allow for the detec 
tion of slight alterations in the viral code. This is espe 
cially useful because the decoys may not have captured 
the full range of variation of a particular virus. This is 
the reason that the virus scanner referred to in Step B 
should be capable of detecting slightly-altered versions 
of viruses. This may be accomplished by permitting 
some number of mismatched bytes, or by selecting a 
collection of substrings (fragments) of the signature and 
requiring that some number of them be found before 
declaring a virus to be present. String-matching is but 
one suitable technique for detecting slight alterations. 
Statistical measurements of viral code (such as n-gram 
frequencies) and various transformations of them (such 
as singular value decomposition) also provide a mecha 
nism to recognize close kinship between two function 
ally similar instances of a virus that would appear very 
different to a string scanner. 
A presently preferred method for automatically ex 

tracting viral signatures is disclosed in the above— 
referenced commonly assigned US. patent application 
Ser. No. 08/004,871, ?led Jan. 19, l993, entitled “Meth 
ods and Apparatus for Evaluating and Extracting Sig 
natures of Computer Viruses and Other Undesirable 
Software Entities”, by Jeffrey O. Kephart. 
Brie?y stated, the technique disclosed in this com 

monly assigned US. Patent Application implements a 
signature scoring technique which processes a large 
corpus of typical programs, such as PC-DOS and OS/ 2 
binary executables, collects statistics on n-gram fre 
quencies, and uses this information to estimate the prob 
ability of ?nding a given sequence of bytes (with a 
speci?ed number of allowed mismatches) in the pro 
grams of the corpus. Once the signatures have been 
extracted, they are added permanently to a database 
used by the virus scanner, and all relevant media are 
scanned and cleaned up as in Step B. 

In greater detail, the automatic signature extraction 
method operates to identify one or more signatures 
which have (a) estimated “false-positive” probabilities 
which are below a predetermined threshold, (b) which 
are among the lowest of all the candidate signatures, 
and (c) which may satisfy other speci?ed criteria as well 
(for example having as the ?rst two bytes an unusual 
and rarely occurring byte combination). In that it is 
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10 
technically impossible to verify a signature against all 
programs that have ever been written or that ever will 
be written, the probability estimation is preferably 
based on a corpus of software programs in common use 
on the particular hardware and operating system on 
which the virus scanner is to be used. This corpus of 
programs is used to extrapolate from a subset of the 
programs in existence to the much larger set of possible 
programs. 

DESCRIPTION OF THE SIGNATURE 
EXTRACTION PROCEDURE 

In a ?rst step, the system 10 supplies one or more 
input ?les (IFs 32), each containing one or more sub 
stantially invariant portions of viral code from which 
one or more virus signatures are to be extracted. The 
input ?les are preferably generated by automatic cre 
ation of the ?les by software programs, including the 
decoy deployment and code/ data segregator of Steps C 
and D. ‘ 

Furthermore, there is provided the corpus of soft 
ware programs in common use on the particular hard 
ware and operating system targeted by the computer 
virus(es) of interest. For example, for viruses which 
affect IBM PCs and compatibles running DOS (disk 
operating system), the corpus includes a number of 
executable programs (typically stored as ?les with 
.COM and .EXE extensions). In the preferred embodi 
ment of the invention, the corpus of programs (CP 34 of 
FIG. 1) is stored on a storage device, such as the hard 
disk 26, that is accessible by the computer system on 
which the method is executed. An alternative imple 
mentation, described in detail below, permits the corpus 
to be stored elsewhere. In this case, a ?le containing a 
properly digested version of the corpus is stored on a 
storage device which is accessible by the computer 
system on which the method is to be executed. This ?le 
is referred to as a table of n-gram probabilities, and is 
discussed in greater detail below. 

Finally, the method described below can be automati 
cally invoked and executed on the data processing sys 
tem 10, or can be manually started, typically by issuing 
the appropriate command via the input device 22. A 
computer program that implements the method of the 
invention can also be stored on the hard disk 26 or the 
?oppy disk 30a and, in response to an invocation of the 
program is loaded from disk to the RAM 16. The CPU 
14 then executes the program. It may be necessary to 
supply input parameters to the method by inputting 
either the parameters themselves or the name of input 
?les containing the parameters. These input parameters 
can include, by example, a predetermined threshold 
value for probability estimation and the ?le name(s) of 
the IF 32. 

It should be realized that system 10 that executes the 
method of the invention need not be the same system for 
which one or more valid virus signatures are being 
generated for use by a virus scanner program. 

Reference is now made to FIG. 5 for a general de 
scription of the steps of the method. 
At Block A, a list is formed of all n-grams contained 

in the IF 32 data. An n-gram is an instance of n consecu 
tive bytes, where n=l (uni-gram) to some arbitrarily 
large value. Typically 11 is in the range of 3 to 8. The IF 
32 is comprised of sections of previously identi?ed in 
variant portions of virus machine code. 
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At Block B the probabilities are estimated for all 
n-grams in the list of n-grams by comparing the n-grams 
to the CP 34. 
At Block C1, for each candidate signature, an esti 

mate is made of the probability'of an exact match and 
/ or at Block C; the probability is estimated of a speci 
?ed set of non-exact or fuzzy matches (e.g., matches to 
the signature or some contiguous fragment of it, given a 
speci?ed number of mismatches). 
At Block D, the estimated exact-match and fuzzy 

match probabilities are combined to obtain an overall 
evaluation of each candidate signature. 
At Block E, the method reports the outcome for 

some subset of the candidate signatures. The output 
report can be displayed on the display device 20 and/ or 
stored in a ?le on the hard disk 26 or ?oppy disk 30a for 
subsequent review by an operator. The report is also 
provided as an input to other software programs, in 
particular a virus scanner, which makes use of the sig 
nature(s) contained in the report. 
The foregoing Blocks A-E are now described in 

greater detail. 

BUILDING A LIST OF THE REQUIRED 
N-GRAMS (FIG. 5, Block A) 

At this point there are one or more sections of segre 
gated virus code (binary machine code) from each of 
one or more viruses. As was noted, it is desirable to 
eliminate any large variable areas from these sections, 
leaving only those invariant portions which represent 
machine instructions. ' 

One suitable procedure for extracting the n-grams 
and placing them into an n-gram table (NGT 36 of FIG. 
1a) is expressed in the following pseudo-code. 

Procedure: Build_Ngram__List 

For each virus 
For each section of virus code 
For i=1 to length_of_section 
For n=l to nMax 

If (i + n — l < length_of_section) 
n-gramzbytes i through i+n——l of section 

If (n-gram is not in n-gram_table) 
Store n-gram in n-gram_table 

The n-gram table 36 is maintained in, by example, the 
RAM memory 16 and/or in a ?le stored on the hard 
disk 26 or the ?oppy disk 30a. The term length__of_sec 
tion is the length of a given section of virus code in 
bytes, and nMax is a chosen maximum length, in bytes, of r 
the n-grams. Typical values for nMax are in the range of 
3 to 8. 

It is noted that under some circumstances an n-gram 
may include one or more wildcards, wherein a wildcard 
is considered a don’t-care byte or bytes. For example, if 
the im byte in a signature is a wildcard, this indicates 
that any byte is considered to match the i’h byte. Wild 
cards are included in some virus signatures to provide 
greater robustness to variations in the virus, as de 
scribed below. 

ESTIMATING THE N-GRAM PROBABILITIES 

(FIG. 5, Block B) 
Having obtained a list of all of the n-grams, the list 

being stored in the n-gram table 36, the next step esti 
mates a probability of the correctness of each of the 
n-grams. The signature extraction procedure uses either 
of two general estimation methods. 
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Estimation Method 1 

One presently preferred approach to n-gram proba 
bility estimation searches the entire corpus of programs 
34 for only those n-grams that are listed in the n-gram_. 
table 36. This method tallies the frequency of occur 
rence of each n-gram within the corpus 34 and inserts 
the occurrence frequency into the n-gram__table 36. 
More speci?cally, what follows is a method for col 

lecting n-gram statistics: 
(a) For each n-gram B1B2. . . B” in the n-gram_table 

36, record f(B1B2. . . B”), the number of occurrences of 
the n-gram in the corpus 34 (this can be implemented 
efficiently using a hash table). 

(b) Record also in the n-gram_table 36 the number of 
n-grams of length n, T,,. 
For uni-grams (n: l), the estimated probability is 

simply taken to be the observed frequency: 
p(B1)=f(B1)/T1. For n> 2, the estimated probability is 
given by a weighted average of the observed frequency 
and the probability calculated by combining together 
shorter n-grams. A preferred method used to combine 
two (n— l)-gram probabilities and an (n—2)-gram prob~ 
ability to form an n-gram probability is: 

l 
M8182 - - ‘ Bn) :7 () 

Thus, the method for calculating n-gram probabilities 
is given by: 

Procedure: Calculate n-grams 

(2) 
1103152 - r - B”) = a/(B1B2...Bn) 

(1 _ (1118182 B )) M3132 - t ‘ Bn—l)P(B2B3 - ~ - B") 

” P(B2B3---Bn_1) 

where af(B1B2. . . B") is a heuristic weighting function 
which depends upon how many occurrences of B1B; . . 
. B” appear in the corpus 34. The weighting function 
am=O when m=O and am=l when m>l has been 
found to work well in practice. In order to apply Eq. 2 
for n=2, the O-gram probability is de?ned as unity. In 
practice, the uni-gram and bi-gram (n=1 and n=2, 
respectively) probabilities are tabulated ?rst, and are 
then employed to determine the tri-gram (n=3) proba 
bilities. Next, the bi-grams and tri-grams are used to 
determine the 4-gram probabilities, etc., until ?nally 
there is determined the nMax-gram probabilities from 
the (nMax-— l)-gram and the (nMax—2)-gram probabili 
ties. 

Estimation Method 2 

A second approach consults a pre-computed table 50 
of n-gram probabilities (shown in FIG. 1b) and places 
the results in the n-gram table. The pre-computed table 
is used for any set of viral code portions, and is con 
structed by making a one-time pass through the corpus 
34 to determine the number of times each n-gram ap 
pears in the corpus (for each nénMax), and dividing by 
the large if nMax> 2, even if n-grams which never ap 
pear in total number of n-grams of length n in the cor 
pus. However, the pre-computed table 50 could be 
infeasibly the corpus are omitted. 
One solution to this problem stores a chosen subset of 

the n-grams and fabricates the remainder from shorter 
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n-grams. One suitable subset is the K most common 
n-grams. Another suitable subset is the set of n-grams 
whose measured frequencies deviate by more than a 
given amount from that estimated by combining, in 
accordance with Equation 1, two (n- l)-grams and an 
(n—2)-gram. 

In the second case, Equation 1 is applied iteratively 
by ?rst using uni-gram and bi-gram probabilities to 
estimate the tri-grams, then bi-grams and tri-grams to 
estimate the 4-grams, etc., until ?nally the nMax-gram 
probabilities are estimated from the (nMax— l)-gram and 
(nMax—2)-gram probabilities. At each stage, only the 
n-grams whose frequencies are poorly estimated by 
Equation 1 are included in the pre~computed table. The 
amount of computation is substantial, but is only re 
quired to be performed once, with possible periodic 
updates to take into account additions to the corpus of 
popular new programs compiled with new compilers. 
A presently preferred method for determining the 

contents of the pre-computed table 50 of n-gram proba 
bilities includes the following steps. 

1. Tally the number of occurrences (the absolute 
frequency) of all l-gram and Z-grams in the corpus 34; 
divided by T_.l and T'_2 respectively to obtain the 
relative frequency of each l-gram and Z-gram. Store all 
l-gram and 2-gram frequencies in the pre-computed 
n-gram table. 

2. For k=3 to some chosen maximum k, 
Determine the relative frequency of each k-gram for 

which the ?rst (k-l) bytes are a (k-l) gram in the 
pre-computed n-gram table. (This condition will hold 
for all 3-grams, but not necessarily for k> 3). 

Divide this observed relative frequency by the esti 
mated frequency obtained from Eq. 1 using (k- l) and 
(k—2)-grams. 

If the absolute value of the logarithm of this quantity 
exceeds some chosen threshold, store the k-gram and its 
measured absolute frequency in the pre-computed n 
gram table 50. 

It should be noted that this is but one of several suit 
able methods for deriving the contents of the pre-com 
puted table 50 of n-gram probabilities. 

In general, estimation method 1 requires less storage 
and is more accurate than estimation method 2, but can 
require considerably more time to execute in that the 
entire corpus is searched every time that new sections 
of viral code are presented. 

ESTIMATING THE CANDIDATE SIGNATURE 
PROBABILITIES (FIG. 5, Blocks C) 

Depending upon the application, it may be desirable 
to estimate the probability of an exact match or a partial 
match (typically fragments or mismatches) between a 
candidate signature and some string of bytes in the 
corpus (or any statistically similar set of programs of 
comparable size). However, partial mismatch computa 
tions can be computationally expensive, and in the ex 
traction mode the set of candidate signatures can be 
quite large. Therefore, depending upon the speed of the 
CPU 14, it may be desirable to employ only the exact 
match probabilities to prune the set of candidate signa 
tures. This is the reason for the arrow pointing from the 
exact-match calculation block (C1) to the fuzzy-match 
calculation block (C2). For example, the candidate sig 
natures having the n lowest exact-match probabilities 
can be selected for further computation of fragment and 
mismatch probabilities. - 
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As was noted above, the list of candidate signatures is 

constructed from the sections of segregated viral code. 
One suitable method selects some desired signature 
length S and treats each contiguous block of S bytes in 
each viral code section as a candidate. In this case, a 
suitable procedure for probability estimation of each 
candidate signature is given by the following pseudo 
code. 

Procedure: X_Probability_Extraction_._Mode 
For each virus 
For each section of virus code 
For i=1 to (length-o?section-S-t- 1) 
For j=l to S 
Bj=byte i+j~1 

Candidate signature=B1B2 . . . BS 

Store p X (signature)=X_Probability(B1B2. . . 

S 

where X denotes “Exact Match”, “Fragment”, “Mis~ 
match”, and possibly also some prepended quali?er 
describing alternate implementations of the indicated 
probability calculations. 

Alternatively, S may be adjusted to the shortest 
length that satis?es a predetermined probability thresh 
old. 
The problem of estimating the probability that a pro 

posed signature will exactly match a string of bytes in 
the corpus is next discussed, followed by a discussion of 
two types of partial matches, i.e., fragments and mis 
matches. 

Probability of an Exact Match to a Given Signature: 
In order to calculate the exact-match probability 

pExgcpMan-h (signature) for a given signature, it must ?rst 
be determined whether any bytes should be replaced by 
wildcards. In some processor architectures, there are 
instructions which contain addresses that can poten 
tially vary from one instance of a program (in this case 
a virus) to another. In order to accommodate these 
potentially variable bytes, they should be replaced by 
wildcards. If it is intended to use the teaching of the 
invention in conjunction with a virus scanner that does 
not permit wildcards, the wildcards can still be inserted 
at this stage, in that the signature will be rejected at a 
later stage. The positions of any wildcards that are 
already present, or that were introduced at this step, are 
used in the exact-match probability calculation. The 
following pseudo-code describes a suitable implementa 
tion for determining the exact match probability. 

Procedure: Exact_Match_Probability(signature) 
Replace any potentially variable bytes in the signa 

ture with wildcards 
W=number of wildcards in signature 
Fonn list of wildcard positions: P=(P1,P2. . . , PW); 

Pi<Pj for i< j 
P Exact. Ma ,¢h(si gnature) = Calculate__Sequence_. 

Probability(signature; P) 
Calculate_Sequence._Probability(signature; P) is a 

procedure that estimates the probability p(B1B2 . . . 

BS;P) of ?nding a byte-sequence B1B; . . . B, with wild 
cards in positions P=(P1P2 _ v , ,pw). The integers Pigs 
are in monotonically increasing order, and 
0 § W = number of wildcards 2 S. 
One presently preferred implementation, described in 

the following pseudo-code, segregates the signature 
into contiguous blocks of bytes containing no wild 
cards. The probabilities of these contiguous blocks are 
then multiplied to give the exact-match probability for 
the signature. 
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Procedure: Calculate_Sequence_Probability(byte- ments in the desired subset of possible fragments, and 
sequence; P) the overall fragment probability is an accumulation of 
P0: —1 the individual fragment probabilities. 
Pk+1= S + l Mismatches: 
p (byte-sequence; P)=l 5 A further method for detecting altered versions of a 
For j=0 to K known virus alerts the user when a string of bytes ap 
byte'block=bytes Pj+1 through Pj+1—1 in byte proximately matches the signature. More precisely, all 

sequence but at most M bytes in the string match the byte in the 
P (byte'sequence;p)=P(byte—5equence; P)* cal‘ corresponding position in the signature. In this case, an 

C111ate—B10°k—PY0babi1itYQJWC'bIOCk) 10 estimate is required of the probability of ?nding a signa 
ca1°“1ate—'Bl°°k—Pr obabiliiy?byte'block) is a Prom?‘ ture with M or fewer mismatches to the candidate sig 

dure_that estlrflates the Probablhty P031132 ~ - - BK) of? nature B1B; . . . B5. A reasonable approximation to the 
Contlguous, wlldcard'free block of bytes B1BZ~ - - Bk "1 M-mismatch probability is obtained by adding the prob 
the Corpus- A Preferred implementation is as?onowsi abilities of all of the combinatorial number of possible 

Procedure: calculate—B1Ock—probablhty(byte' 15 mismatch positions. For example, the probability of at 
blOck) most two mismatched bytes in a given string of S bytes 

(none of which are wildcards) is approximated by: 
_ (3) 

p(B1 . . . BK) ifK é nMax 

where X,- and Xj represent what are referred to herein as 
25 variable-position wildcards in positions i and j, respec 

The Condition K>nMax Occurs when the length of tively. The sums run over all possible positions of i and 
the wildcard-free block exceeds the maximal size of the ' 

. J 

Collected n‘grams 1" the n—g1'am-—tab1e 36- If there are already wildcards (which are be referred 
Fragments! _ _ herein as fixed-position wildcards) in the candidate 
In order to enable a VII‘LIS scanner to detect a slightly- 30 signature B132 _ _ _ BS’ the situation is slightly moi-6 

altered version of a known virus, some virus scanners complex_ If the number of ?xed_position wildcards’ W’ 
provide an indication when a contiguous block of F exceeds the number of allowed mismatches, M’ the 
bytes ‘in a Signature of length S is founfl in the Course of signature is invalid for M mismatches, and no further 
Scannmg‘ There are (S*F+1) posslble fragments of computation is necessary. If W=M, the M-mismatch 
this sort. Other criteria, such as requiring that the ?rst 35 probability is identical to the exact_match probability, 
few bytes of each fragment be less probable than a given the estimation of which has already been described. If 
threshold, can reduce the total number of fragments to W <M’ then M_W variable_position wildcards are 
f‘ Smalls? subset of _vahd fragme?ts' The quanmy of added to the W ?xed-position wildcards. The probabili 
mterest 1“ ,thls case 15 th? probablhty that “one of the ties of all of the combinatorial number of possible sets of 
fragments in the subset Wlll be found in the corpus, or 111 40 M _W variable positions are added to Obtain the M_mis_ 
2*, statistically'sim?ar set of programs of comparable match probability. The following pseudo-code provides 
Slze' It can ,be Show? that a really-Computed ‘iPPer a presently preferred procedure for estimating the over 
bound on this probability is the sum of the probabilities an mismatch probability, which is designated PMS’ 
of the individual fragments. The use of this estimated WICKBIBL _ _ B SM) 
upper bound, rather than an estimated probability, in- 45 ’ 
troduces some inaccuracy, but is generally adequate and 
is much less computationally expensive than a more 
exact computation. T 

Thus, given a particular candidate signature B1B2. . . 
B5 the following pseudo-code provides a procedure for 
estimating the overall fragment probability (actually its m = M_ W 

Procedure: Mismatch_Probability(signature ;M) 
If desired, replace any potentially variable bytes in 

signature with wildcards. 

50 W = number of wildcards 

upper bound): 
Procedure: Fragment_Probability(signature) If (méo) ~ 
Replace any potentially variable bytes in signature Em" sntl‘i’spm'a't'c‘ggber °f “"ldmds exceeds ‘*"Owed 

with wildcards 55 
PFragment(5ignatl1fe)=O Else if (mV=O) 
For i=1 to (S—F+l) Forlé=liovf+sl 1 

_ -- - _ or 1:1 0 + 

saga?1363;522:153;F ‘> = . . ~+1 - A - 1-1 

W=number of wlldcards 1n fragment '60 pMixmamhgignamegin=Q(0,1,5+1) 
Form list of wildcard positions in fragment: _ 

P=(P1,P2. . . PW); P,-<Pj for i< j _ Else ‘2221201) to S+l_m 
p(fragment):Calculate_Sequence_Probabil1ty(- For 1-: i+m to 5+1 

fragment; P) QWIZD=O 
' si nature : si nature fra - 65 For k=i to k=j—m 

W512i’? g ) pFmgmen‘ g )+p( g If (k is not the index of any 
. . . . ?xed- osition wildcard) 

The above procedure is similar to that given for exact QWJ-S) : Qbn'm + god-‘10* 
matches, except that there is an iteration overall frag- Q(m-1,k+1,1) 
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-continued 
pMimmh(signamre;M) = Q(m. 1,S+ 1) 

It should be noted that when m=0, the procedure 
Exact__Match__Probability is used to calculate exact 
match probabilities Q(O,i, j) of all relevant sub-sequences 
of the candidate signature. Only Q(O,1,S+ 1), that is, the 
probability of the subsequence which consists of the 
entire signature, is required. However, the other proba 
bilities Q(0,i,j) for i¢1 and j¢S+1are useful to calcu 
late and retain for use in calculations with m>O. 
When the number of variable-position wildcards m is 

non-zero, the probabilities Q(m,i,j) of all relevant sub 
sequences of the signature with m variable-position 
‘wildcards can be expressed in terms of probabilities of 
sub-sequences of the signature with m- l, and with 
zero variable-position wildcards (Q(m—l,k+l,j) and 
Q(0,i,k) for all k for which the k’h byte is not a ?xed 
position wildcard). Again, only the probability 
Q(m,1,S+ l) is needed at this stage, but the other prob 
abilities Q(m,i,j) for i¢l and j-,+_S+l are useful to cal 
culate and retain for use in calculations with m replaced 
by rn+ 1. 

In practice, it would be most ef?cient to invoke the 
procedure Mismatch_Probability for M=W ?rst. Note 
that this yields the exact~match probability. Then, one 
would invoke Mismatch_Probability for M=W+ 1, 
then M=W+2, etc., up to some value of M given by a 
predetermined function of the signature length S, a 
predetermined function of pMgmatch(signature;M), or 
some other criterion. 

COMBINING AND REPORTING THE RESULTS 
(FIG. 5, Blocks D, E) 

In practice, the probability estimates for exact 
matches, fragments, and mismatches are generally 
somewhat inaccurate on an absolute scale, but for suf? 
ciently large nMax the correlation between the probabil 
ity estimates and the actual probabilities is good. 
Depending upon the application, there are a number 

of possible ways in which the results of the various 
probability estimates can be combined into a ?nal, use 
able result. One method assigns a score to a signature 
based on some combination of the three probabilities 
(and possibly the number of mismatches M as well), and 
then employs a predetermined threshold to accept or 
reject that signature. 

If the signature is to be used in conjunction with a 
virus scanner that only permits exact matches, a suitable 
choice for the score would be just the exact-match 
probability. The signature is then accepted if its score is 
below some speci?ed threshold and rejected otherwise. 

If the virus scanner permits fragments and mis 
matches, a suitable choice for the score is the sum of the 
fragment and mismatch probabilities. This results in a 
slight overestimate of the probability of either a frag 
ment or a mismatch, since the probabilities are not com 
pletely independent, but for the purposes of this inven 
tion this technique provides a reasonable approxima 
tion. Again, a threshold may be used to reject or accept 
the signature. 
More sophisticated strategies can also be employed. 

For example, the fragment and M-mismatch probabili 
ties are separately compared to a fragment threshold 
and to a M-mismatch threshold. If the fragment score is 
acceptable but the M-mismatch score is not, the virus 
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18 
scanner may allow matches on fragments but not M 
mismatches, and vice versa. 

Furthermore, instead of rejecting the M-mismatch 
score outright for some predetermined value of M, the 
procedure can determine the largest M for a given sig 
nature such that the M-mismatch probability is less than 
a given threshold. This approach requires some itera 
tive interaction between this step and the mismatch 
calculation described previously. 

If a threshold probability is employed, a presently 
preferred approach to choosing an appropriate thresh 
old is shown in the ?ow chart of FIG. 7 and is described 
as follows. 

First, at Block A the corpus 34 is segregated into 
three components: a probe set, a training set, and a test 
set. This can be done by randomly assigning programs 
in the corpus 34 to one of the three sets. The probe set 
may be relatively small; the training and test sets are 
preferably larger and approximately comparable to one 
another in size. At Block B the procedure randomly 
selects several (preferably several thousand or more) 
byte-strings from the probe set, each of the byte strings 
having a length comparable to a typical signature length 
S. Treating just the training set as the corpus, at Block 
C use the set of procedures described in detail above to 
estimate exact-match and the typical set of fuzzy-match 
probabilities for each signature. At Block D, count the 
frequency of each signature and each of the appropriate 
fuzzy matches to that signature in the test set. 
At Block E, produce lists of, for each signature in the 

probe set, the estimated probability (obtained from the 
training set) vs. the measured relative frequency (ob 
tained from the test set) for exact matches and for all of 
the desired types of fuzzy matches (e.g. fragments, l 
mismatches, 2-mismatches, etc.). To establish a reason 
able probability threshold for each type of match, Block 
F performs the following calculations. First, for each of 
many (typically several dozen) closely-spaced probabil 
ity thresholds T(i), it tallies Sbadg), the total number of 
signatures with estimated probabilities below T(i) 
which appeared one or more time in the test set. Next, 
for each of the speci?ed probability thresholds T(i), it 
tallies Smmm), the total number of signatures with esti 
mated probabilities below T. The false-positive proba 
bility for the threshold T is then given by 

Then, the total number of signatures Sgmd from the 
probe set which never appeared in the test set (referred 
to as “good” signatures) is tallied. Next, for each T, the 
fraction GoodSigs(T) of “good” signatures with esti 
mated probabilities less than or equal to T is calculated. 
At Block G there is selected (either automatically using 
set criteria or by the user) a threshold T for which the 
false-positive probability FP(T) is acceptably small 
(typically much less than 1%), but for which the frac 
tion of signatures which are expected to be accepted by 
the threshold GoodSigs(T) is suf?ciently large (i.e. 5% 
to 25% or more) to virtually guarantee that a valid 
signature can be found somewhere in the viral code. 
To establish a reasonable probability threshold for 

each type of match, Block F calculates the percentage 
of signatures, with estimated probabilities below’a spec 
i?ed threshold, which appeared in the test set one or 
more times. This yields the false positive probability for 
that threshold. At Block G there is selected a threshold 
which gives an acceptably small false-positive probabil 
ity, but that does not exclude a signi?cant number of the 
signatures. 
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To allow for the fact that the number of programs 
that exist or could exist exceeds the number of programs 
in the corpus 34 by a considerable margin, it may be 
desirable to diminish . the threshold probability by a 
factor of 10 or 100. In practice this may be overly con 
servative, in that virus code tends to be written in as 
sembler, and not the high-level languages in which most 
modern software applications are written. Thus, selec 
tion of thresholds based upon studies of probes taken 
from the corpus itself can be overly pessimistic for 
viruses, which are somewhat atypical software. In prac 
tice, even when the safety factor of 10 to 100 is not 
included, it is rare for the procedures of the invention to 
produce signatures yielding false positives. 

In the described signature extraction procedure, there 
can be selected for each virus one or more candidate 
signatures having the best score(s). In this case, it may 
be desirable for the score to reward larger values of M, 
so that the chosen signatures capture the greatest possi 
ble amount of variation. 

Other criteria for signature selection might be 
brought into play as well. In particular, it may be desir 
able favor signatures which increase the ef?ciency of 
the scanner that employs them. For example, the search 
methods used by some scanners can bene?t if signatures 
are chosen in which the ?rst few bytes are uncommon. 
One might therefore bias the scores of signatures to 
favor those which possess attributes that are deemed to 
be desriable. 
The end result is the generation of a valid virus signa 

ture if the estimated probability of the occurrence of the 
candidate virus signature is less than a threshold proba 
bility, wherein the threshold probability has a value 
selected to minimize an occurrence of a false positive 
indication during the subsequent use of the valid virus 
signature by a virus scanner or similar virus identi?ca 
tion technique. 
As was noted above, the signature report(s) may be 

displayed on the display device 20 and/ or are written to 
a database for use by the virus scanner. As soon as the 
signature for the previously unknown virus has been 
extracted, the scanner of Step B uses the signature to 
search for all instances of the virus in the system. 

FIG. 2 Step F: Informing Neighboring. Computers 

It has been demonstrated that informing one’s neigh 
bors if one is infected is highly effective in limiting or 
prevent viral spread. As seen in FIG. 10, for the case 
where an infected computer is connected to others via a 
network, a “kill signal” (K) is transmitted from an in 
fected computer to neighboring computers on the net 
work. As employed herein, a neighboring computer is 
considered to be one or more with whom the infected 
computer communicates or exchanges software most 
frequently. This differs from the above referenced pro 
posal that all computers with which the infected com 
puter has ever communicated be noti?ed. 
The kill signal may take a variety of forms and pro 

vide as little or as much information as is appropriate or 
practical. For example, in one embodiment the infected 
computer simply sends an “I’m infected” signal (one bit 
of information) to its neighbor(s) whenever it enters 
Step B (Scan for Known Viruses), thereby inducing all 
of the neighbors to also enter Step B themselves. In 
another embodiment, the infected computer sends an 
“I’m infected” signal after it has cleaned itself up (com 
pleted Step B successfully), and also sends the name of 
the virus (if it was previously known) and - its sig 
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nature(s), whether the virus was previously known or 
not. The signature(s) may have been determined in Step 
E. In a further embodiment, the infected computer 
sends an “I’m infected” signal when it enters Step C, 
i.e., after it fails to identify the anomaly as a known 
virus, thereby inducing its neighbors to enter Steps B 
and C. Other strategies may also be used, other than 
those speci?cally detailed above. In all cases,.the end 
result is that other computers on the network are alerted 
to the presence of an anomaly, which may be a known 
or an unknown virus, within the network. 

It is noted that precautions are taken to ensure that 
the propagation of the kill signal itself does not become 
an epidemic in its own right. For example, a data pro 
cessor that has received a kill signal from one or more of 
its neighbors sends a kill signal to its neighbors only if it 
is suf?ciently certain that it is also infected. As seen in 
FIG. 1c, the kill signals propagate only as far as the 
non-infected computers P4 and P5 and, as a result, P6 
and P7 are not made aware of the virus infecting P1, P2 
and P3. 

Step G: Generation of Distress Signal 

No virus detector can detect every conceivable virus, 
as shown by F. Cohen through a simple adaptation of 
the halting problem contradiction in the above 
referenced A Short Course on Computer Viruses. Thus, 
under certain circumstances the method of this inven 
tion may be required to inform the user that it is having 
difficulty. In the case of a computer network a mecha 
nism is also provided for automatically alerting an ex 
pert as well. 
An example of such a situation is one in which the 

computer is attacked by a sophisticated, unknown virus, 
every instance of which looks completely different. In 
this case, at the completion of Step C the virus detector 
may be unable able to determine whether there are 
several viruses or one virus that appears different every 
time it is replicated. The virus detector may operate on 
the assumption that there are really several different 
viruses, create signatures for each at Step E, then return 
to Step B to clean up. This approach may be suitable 
even if the decoy programs were infected by different 
instances of the same virus. However, it is more likely 
that the decoy programs will not have captured the full 
set of viral progeny, or even the full range of the subset 
of progeny which has infected the computer. In this 
case, anomalous behavior is again detected at Step A. 

If the full set of possible progeny is suf?ciently small 
(as it is even for the “Whale” virus, which takes a few 
dozen different forms), several passes through the 
method illustrated in FIG. 2 will eventually eradicate 
the virus and provide full immunity to any future at 
tacks, in that the data base of virus signatures obtained 
from Step B will include a signature for each of the 
progeny of the virus. However, if the set of progeny is 
too large, the computer will suffer recurrent infections, 
and an appreciable fraction of its computational re 
sources will be diverted almost solely to virus identi?» 
cation and eradication. 
As such, the use of the distress signal is appropriate to 

alert the user and/or an expert to the existence of a 
confusing, potentially dangerous situation. The distress 
signal provides all pertinent details of the viral infec 
tion, such as the set of signatures extracted thus far, so 
that an expert, either human or software program, can 
identify the problem as quickly as possible. 
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The invention has been described thus far in the con 
text of identifying and eliminating computer viruses 
from computers and networks of computers. However, 
the teaching of the invention can also be employed, 
with minor modi?cation, for combatting worms. As 
employed herein, worms are considered to be self 
replicating programs or collections of programs which 
are self-sufficient, and do not require a host program to 
infect. 

In that a worm does not attach itself to an existing 
program, at least one component of the worm must be 
active in memory at any given moment. Thus, a most 
likely target of a worm is a network of multi-tasking 
computers, through which the worm propagates by 
spawning processes from one machine to another. For 
the case of worm detection and eradication, the teach 
ing of the invention is modi?ed as follows. 

In Step A, i.e., periodic monitoring of the system for 
anomalous behavior, anomaly detection by behavioral 
patterns is the preferred method. However, even 
though worms do not necessarily rely upon modi?ca 
tion of other executables, modi?cation detection tech 
niques may still be employed for detecting attempts by 
the worm to modify login or startup scripts to include 
invocations of itself. The user is informed of suspicious 
activity and given a choice as to whether to continue 
running or to suspend the offending process (and/or the 
family tree of processes to which it is related) pending 
further investigation. 

If the user chooses to suspend the process, the 
method proceeds to Step B, in which that process, all 
parents or children of that process, and perhaps all 
other processes in memory, are scanned for known 
worms. Cleanup involves killing active worm processes 
(determined by tracing the process tree), and deleting 
worm executables and auxiliary ?les from storage me 
dia. Backup of ?les is not likely to be as necessary in this 
case, as it is for viruses, since a worm typically does not 
alter other executables. However, restoration of ?les 
may be necessary if the worm modi?es scripts in order 
to invoke itself, or causes damage to other executable or 
data ?les. 

Step C, decoy deployment, is not relevant in the case 
of worms in that the anomaly detector of Step A will 
have identi?ed the suspicious processes and their parent 
and child processes. 

Steps D and E, invariant code identi?cation and auto 
matic signature extraction, function in a manner as de 
scribed above. 
The use of the kill signal of Step F is especially valu 

able when combatting worms, in that worms are intrin 
sically capable of propagating through a computer net 
work at higher speeds than a virus. This is because 
transmission of a worm between machines is initiated 
intentionally by a process, while a virus is typically 
transmitted unwittingly by a human being. Thus, the 
use of an automatic kill signal that is transmitted be 
tween machines is important to stop a rapidly-spreading 
worm. 

The distress signal of Step G is also especially valu 
able when combatting worms, due to the high speed 
with which a worm can propagate over a network. 
Quickly bringing into play the abilities of a human or 
software expert to deal with novel situations is thus 
critical to stopping the spread of the worm. 
Having described in detail the operation of the 

method of the invention, reference is now made to FIG. 
3 for showing in greater detail a preferred embodiment 
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22 
of the method of the invention for combatting viruses 
within a computer network. The method is suitable for 
use under DOS, but a presently preferred technique 
employs a multi-tasking operating system such as 05/ 2. 
The ensuing description refers to programs (VSTOP, 

CHECKUP, and VIRSCAN) that were available as 
separate components from the International Business 
Machines Corporation, and that have now been inte 
grated into an AntiVirus program. In other embodi 
ments of the invention other software modules having 
similar functionality may be employed. 

Block A: Run VSTOP continually 
VSTOP runs as a TSR (Terminate and Stay Resi 

dent) process under DOS (or a DOS session under 
OS/2). When a program makes a system service re 
quest, VSTOP obtains control, and checks the calling 
program for signatures of known viruses. If a virus is 
detected the user is informed as to which virus is pres 
ent. The user is also enabled to run the program (bypass 
ing the imbedded virus). 
When employed with the automatic immune system 

of this invention, if VSTOP detects a virus it also initi 
ates Block G, which runs VIRSCAN on all executables. 
If the machine is connected to other machines (e. g. on a 
LAN), a kill signal is sent to a chosen subset of the other 
machines (Block H). 
Block B: Run CHECKUP periodically 
When CHECKUP is initially installed it calculates a 

checksum of each executable ?le in the system, based 
upon some keyword supplied by the user. Later, at the 
instigation of the user or another computational pro 
cess, CHECKUP uses the same keyword to recalculate 
the checksum of speci?ed (one or more or even all) 
executable ?les. A change in the checksum of a ?le 
indicates that it has been modi?ed. 
When used in the automatic immune system of this 

invention, CHECKUP is run on all executables at inter 
vals determined both by the user and/or by feedback 
from other components of the immune system. If some 
other components indicate that there is an increased risk 
of present or imminent viral infection the level of alert 
ness is adjusted upwards, and the interval between suc 
cessive executions of CHECKUP is decreased. This 
will occur in response to, by example, a virus-like activ 
ity detector (V LAD, described below) observing virus 
like behavior (Block C), CHECKUP detecting a modi 
?cation (Blocks B or D), VIRSCAN identifying an 
infected ?le or ?les, or a kill signal being received from 
an infected neighboring computer on the network 
(Block H on the neighboring machine). As time passes, 
the level of alertness is decreased towards some baseline 
level, unless a new alert signal is received from some 
other component of the immune system. The receipt of 
a new alert signal may either preempt the current alert 
state or instead cause the current level of the alert state 
to be adjusted upwards. 

If at any point CHECKUP detected a change in one 
or more executables, VIRSCAN is invoked and run on 
all changed executables (Block F). 
Block C: Run VLAD continually 
There are patterns of system activity that are com 

monly observed when a virus infects a program, but 
which are rarely observed, if at all, when a legitimate 
(non-infected) program is being executed. The VLAD 
monitors system activity to detect a pattern of activity 
that is indicative of the presence of a virus, and gener 
ates an alert signal when virus-like behavior is detected. ‘ 






















