
United States Patent [191
Arnold et al.

US005440723A

Patent Number: 5,440,723
Aug. s, 1995

[11]

[45] Date of Patent:

[54] AUTOMATIC IMMUNE SYSTEM FOR
COMPUTERS AND COMPUTER
NETWORKS

[75] Inventors: William C. Arnold, Mahopac; David
M. Chess, Mohegan Lake; Jeffrey O.
Kephart, Yorktown Heights; Steven
R. White, New York, all of NY.

[73] Assignee: International Business Machines
Corporation, Armonk, NY.

[21] Appl. No.: 4,872

[22] Filed: Jan. 19, 1993

[51] Int. Cl.6 G06F 11/00

[52] US. Cl. 395/ 181; 395/700;
395/183.09; 395/183.14

[58] Field of Search 395/575; 371/ 16.5, 19,
37l/11.2, 8.2

[56] References Cited

U.S. PATENT DOCUMENTS

5,062,045 10/1991 Janis et al. 371/l6.5

5,084,816 l/1992 Boese et a1. . 395/575
5,121,345 l/1992 Lentz 364/550

5,200,958 4/1993 Hamilton et a1. 37l/16.5
5,218,605 l/l993 Low et a1. 371/19

5,255,208 10/1993 Thakore et a1. . 37l/l6.5
5,278,901 l/1994 Shieh et a1. 380/4

5,291,590 3/1994 Ohnishi et a1. .. 371/16.5
5,297,150 3/1994 Clark 371/19

5,319,776 6/1994 Hile et a1. . 395/575
5,359,659 10/1994 Rosenthal 380/4

5,361,359 11/1994 Tajallie et al. 395/700

OTHER PUBLICATIONS

Qasem et a1. “AI Trends in Virus Control” 1991 IEEE
Proc. of Southeaston pp. 99403 vol. 1.
Crocker et al. “A Proposal for a Veri?cation-Based
Virus Filler” 1989 IEEE Symposium on Security &
Privacy pp. 3l9~324.
Kephort et a1. “Directed Graph Epidemiological Mod
ule of Computer Viruses” 1991 IEEE Computer Soci
ety Symposium on Research in Security & Privacy pp.
343-359.
Kumor et al. “A Generic Virus Scanner in C+ +” 1992

8th Ann. Computer Security Applications Proceedings
pp. 210-219.
Shoutkov et a1. “Computer Viruses: Ways of Reproduc
tion in MS DOS" 25th Ann. 1991 IEEE International
Carnahan Conf. on Security Tech. pp. 168-176.

(List continued on next page.)

Primary Examiner—Robert W. Beausoliel, Jr.
Assistant Examiner-Joseph E. Palys
Attorney. Agent, or Firm—-Perman & Green

[57] ABSTRACT
A method includes the following component steps, or
some functional subset of these steps: (A) periodic moni~
toring of a data processing system (10) for anomalous
behavior that may indicate the presence of an undesir
able software entity such as a computer virus, worm, or
Trojan Horse; (B) automatic scanning for occurrences
of known types of undesirable software entities and
taking remedial action if they are discovered; (C) de
ploying decoy programs to capture samples of un
known types of computer viruses; (D) identifying ma
chine code portions of the captured samples which are
unlikely to vary from one instance of the virus to an
other; (E) extracting an identifying signature from the
executable code portion and adding the signature to a
signature database; (F) informing neighboring data pro
cessing systems on a network of an occurrence of the
undesirable software entity; and (G) generating a dis
tress signal, if appropriate, so as to call upon an expert
to resolve dif?cult cases. A feature of this invention is
the automatic execution of the foregoing steps in re
sponse to a detection of an undesired software entity,
such as a virus or a worm, within a data processing
system. The automatic extraction of the identifying
signature, the addition of the signature to a signature
data base, and the immediate use of the signature by a
scanner provides protection from subsequent infections
of the system, and also a network of systems, by the
same or an altered form of the undesirable software
entity.

46 Claims, 7 Drawing Sheets

SYEIIFOR IMTOR $7
MOIALQS IMVKIR

BLUE COAT - EXHIBIT 1007

5,440,723
Page 2

OTHER PUBLICATIONS

S. W. Shieh et al. “A Pattern-Oriented Intrusion-De
tection Model and its Applications”, Proceedings of the
1991 IEEE Computer Society Symposium on Reserach
and Privacy, pp. 327-342.
H. S. Javitz et al. “The SRI IDES Statistical Anomaly
Detector", Proceedings of the 1991 IEEE Computer
Symposium on Research in Security and Privacy, pp.
316-326.

W. Arnold et al. “System for Detecting Undesired Al
teration of Software”, IBM TDB, vol. 32, No. 11, Apr.
1990, pp. 48~50.
S. M. Katz, “Estimation of Probabilities from Sparse
Data for the Language Model Component of a Speech
Recognizer”, IEEE Trans. ASSP-35, No. 3, Mar. 1987,
pp. ‘400-401.
F. Cohen, A Short Course on Computer Viruses, ASP
Press, Pittsburg, 1990, pp. 9—l5.

US. Patent Aug. s, 1995 4 Sheet 1 of7 5,440,723

NETWORK
4————>

NA\
I2 3!

BUS / :
I/m /I6 I /l8 1/24 2a\3

CPU RAM TERMINAL HARD DISK FLOPPY DISK
CONTROL SYSTEM SYSTEM

NGT 36 CONTROL CoNTRoL

\22 IA I
DISPLAY MANUAL HARD DISK FLOPPY DISK
DEVICE INPUT DRIVE

FIG IA 'F "P
. 32/ 34/ 0

I0 /
30o

BUILD NGRAM LIsT '“A

CALCULATE NGRAM PROBABILITlES B

C \EXACT- MATCH FUZZY-MATCH C2 C
' CALCULATION —*’ CALCULATION /

COMBINE SCORES "*D

i
REPORT RESULTS "E

FIG. 5

US. Patent Aug. s, 1995 Sheet 2 of 7 5,440,723

TO OTHER
_E_ROCESSORS

élé INFECTED

FIG. IC

US. Patent Aug. s, 1995 Sheet 3 0f 7 5,440,723

MONITOR SYSTEM FOR /A
ANOMALOUS BEHAVIOR

ANOMALOUS sEDHsAvéggzrED
ALERT usER, 8 SCAN FOR KNOWN T
REMOVE vmus I VIRUSES ,_B

UNKNOWN VIRUS

TO CAPTURE UNKNOWN
VIRUS

IDENTIFY INVARIANT
CODE PORTIONS OF
VIRUS SAMPLEIS)

I
EXTRACT SIGNATURE
FROM CODE, ADD TO
SCANNER'S DATABASE

DEPLOY DECOY PROGRAMSlfC

IE
I

INFORM OTHER NETWORK
PROCESSORS OF VIRUS
INFECTION

GENERATE DISTRESS
SIGNAL, IF REQUIRED

FIG. 2

US. Patent Aug. 8, 1995 Sheet 5 of 7 5,440,723

FILTER OUT PORTIONS OF VIRUS
THAT ARE OBSERVED TO VARY /"'A
FROM INSTANCE TO ANOTHER

L
FILTER OUT PORTIONS OF VIRUS.
THAT ARE INTRINSICALLY THE MOST
LIKELY TO VARY FROM INSTANCE /‘ "B
TO ANOTHER

1st INSTANCE

I32 6E I3 AF 5? 9B 90 I4 43 60 5c 35 23 I9 85 I
BYTE I’ I ‘BYTE n

2nd INSTANCE I I

76 9A I6 DB AB I9 8A I4 43 60 5c 35 2s 23 A4}

I
3rd INSTANCE ' I

‘4| 42 3A I8 7A CA DF I4 43 60 5C 35 25 IO 7D

I VARIANT |"INvARIANT“ lVARIANT I
I PORTION | PORTION I PORTION I

FIG. 6A

BYTE I

BE DE 8C 06 OI 0O 8O C6 8E DE 3I CO

BI DB 3\ C9 3I D2 CB F9 F8 FF 6F F5

BYTE 24

FIG. 6B

US. Patent Aug. s, 1995 Sheet 6 of7 I 5,440,723

SEGREGATE CORPUS
INTO PROBE, TRAINING
AND TEST SETS

SELECT BYTE-STRINGS
FROM PROBE SET

USE TRAINING SET TO
ESTIMATE PROBABILITIES

COUNT FREQUENCY IN
TEST SET '

PRODUCE LIST OF
ESTIMATE PROBABILITIES
VS FREQUENCY

DETERMINE FALSE
POSITIVE AND FALSE- F
REJECTION PROBABILTY

I
I SELECT THRESHOLD "G

FIG. 7

5,440,723
1

AUTOMATIC IlVIlVIUNE SYSTEM FOR
COMPUTERS AND COMPUTER NETWORKS

CROSS-REFERENCE TO A RELATED PATENT
APPLICATION

This patent application is related to commonly as
signed U.S. patent application Ser. No. 08/004,871, ?led
Jan. 19, 1993, entitled “Methods and Apparatus for
Evaluating and Extracting Signatures of Computer
Viruses and Other Undesirable Software Entities”, by
Jeffrey O. Kephart

FIELD OF THE INVENTION

This invention relates generally to digital data pro
cessors and, in particular, to methods and apparatus for
providing computational integrity for digital data pro
cessors and networks thereof.

BACKGROUND OF THE INVENTION

A computer virus has been de?ned by Frederick B.
Cohen as a program that can infect other programs by
modifying them to include a, possibly evolved, version
of itself (A Short Course on Computer Viruses, ASP
Press, Pittsburg, 1990, page 11).
As employed herein, a computer virus is considered

to include an executable assemblage of computer in
structions or code that is capable of attaching itself to a
computer program. The subsequent execution of the
viral code may have detrimental effects upon the opera
tion of the computer that hosts the virus. Some viruses
have an ability to modify their constituent code, thereby
complicating the task of identifying and removing the
virus.
A worm is a program or collection of programs that

can cause a possibly evolved version of itself to be exe
cuted on the same or possibly on a different computer.
A Trojan Horse is a block of undesired code that is

intentionally hidden within a block of desirable code.
Both computer viruses, worms, and Trojan Horses

are considered to be members of a class of undesirable
software entities, the presence of which within a data
processor, or network of data processors, is to be
avoided so as to maintain computational integrity.
A widely-used method for the detection of computer

viruses is known as a virus scanner. A virus scanner
employs short strings of bytes to identify particular
viruses in executable ?les, boot records, or memory.
The byte strings (referred to as signatures) for a particu
lar virus must be chosen with care such that they always
discover the virus, if it is present, but seldom give a
“false alarm”, known as a false positive. That is, the
signature must be chosen so that the byte string is one
that is unlikely to be found in programs that are nor
mally executed on the computer. Typically, a human
expert makes this choice by converting the binary ma
chine code of the virus to an assembler version, analyz
ing the assembler code, selecting sections of code that
appear to be unusual or virus-like, andidentifying the
corresponding bytes in the binary machine code so as to
produce the signature. Wildcard bytes can be included
within the signature to provide a match with any code
byte appearing in a virus.

Currently, a number of commercial computer virus
scanners are successful in alerting users to the presence
of viruses that are known apriori. However, conven
tional virus scanners are typically unable to detect the
presence of computer viruses which they have not been

15

25

40

45

55

65

2
programmed to detect explicitly. The problem of deal
ing with new viruses has typically been addressed by
distributing updates of scanning programs and/ or auxil
iary ?les containing the necessary information for iden
tifying the latest viruses. However, the increasing rate
at which new viruses are being written is widening the
gap between the number of viruses that exist and the
number of viruses that can be detected by an apprecia
ble fraction of computer users. As a result, it is becom
ing increasingly likely that a new virus will become
wide~spread before any remedy is generally available.
At least one mechanism to inform other computers

connected to a network of a presence of a viral infection
has been previously advanced. For example, a “net
hormones” concept has been proposed by David Sto
dolsky, wherein every computer on a network keeps
archives of all potential virus-carrying contacts with
every other computer. When a computer ?nds that it is
infected with a virus, it sends a message to every com
puter that it has ever contacted or been contacted by,
which in turn send messages to all of their contactees or
contactors, etc. However, it is believed that this ap
proach will result in most or all computers quickly
becoming overloaded by infection messages from most
of the other computers on the network.
As such, a need has arisen to develop methods for

automatically recognizing and eradicating previously
unknown or unanalyzed viruses on individual comput
ers and computer networks. An ef?cient method is also
required for informing other computers on the network
as to the existence of a computer virus within the net
work.

It is an object of this invention to provide methods
and apparatus to automatically detect and extract a
signature from an undesirable software entity, such as a
computer virus or worm.

It is further object of this invention to provide meth
ods and apparatus for immunizing a computer system,
and also a network of computer systems, against a sub
sequent infection by a previously unknown and undesir
able software entity.

SUMMARY OF THE INVENTION

The foregoing and other problems are overcome and
the objects of the invention are realized by a method
that provides computational integrity for a digital data
processor and a network of digital data processors. The
method includes the following component steps, or
some functional subset of these steps:

(A) periodic monitoring of a data processing system
for anomalous behavior that may indicate the presence
of an undesirable informational state, such as one arising
from the presence of an undesirable software entity,
such as a computer virus or worm;

(B) automatic scanning for occurrences of known
types of undesirable software entities;

(C) deploying decoy programs to capture samples of
unknown types of computer viruses;

(D) automatically identifying portions of a captured
virus sample which are likely to remain invariant from
one instance of the virus to another;

(E) extracting an identifying signature from the in
variant portion and adding the signature to a signature
database;

(F) informing neighboring data processing systems
on a network of an occurrence of the undesirable soft
ware entity; and

5,440,723
3

(G) generating a distress signal, if appropriate, so as
to call upon an expert to resolve dif?cult cases.
A feature of this invention is the automatic execution

of the foregoing steps in response to a detection of an
undesired software entity, such as a virus, worm, or
Trojan Horse, within a data processing system. Further
more, the automatic extraction of the identifying signa
ture, and the addition of the signature to a signature data
base, provides protection, or “immunity”, to subsequent
infections of the system, and also a network of systems,
by the same or an altered form of the undesirable soft
ware entity.

BRIEF DESCRIPTION OF THE DRAWING

The above set forth and other features of the inven
tion are made more apparent in the ensuing Detailed
Description of the Invention when read in conjunction
with the attached Drawing, wherein:
FIG. 1a is a block diagram of a computer system that

is suitable for use in practicing the invention;
FIG. 1b illustrates an exemplary computer network

that includes the computer system of FIG. 10;
FIG. 1c illustrates the exemplary computer network

of FIG. 1b and the use of a kill signal that is transmitted
by infected computers to neighboring computers;
FIG. 2 is a flow chart depicting the constituent steps

of a method of the invention;
FIG. 3 is a more detailed flow chart depicting the

operation of the method of the invention;
FIG. 4 is a flow chart depicting a method for use in

segregating variant virus portions from invariant virus
portions;
FIG. 5 is a flow chart that shows the operation of a

statistically based computer virus signature extraction
method;
FIG. 6a illustrates exemplary portions of three in

stances of a computer virus, the three portions each
including an invariant portion and variant portions;
FIG. 6b illustrates an exemplary 24-byte “invariant”

portion of a computer virus;
FIG. 7 is a flow chart that depicts a method of select

ing a probability threshold used for accepting or reject
ing a candidate signature; and
FIG. 8 is a block diagram of a system operable for

executing the method of the invention.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1a is a block diagram of a data processing sys
tem 10 that is suitable for practicing the teaching of the
invention. A bus 12 is comprised of a plurality of signal
lines for conveying addresses, data, and controls be
tween a Central Processing Unit 14 and a number of
other system bus units. A RAM 16 is coupled to the
system bus 12 and provides program instruction storage
and working memory for the CPU 12. A terminal con
trol subsystem 18 is coupled to the system bus 12 and
provides outputs to a display device 20, typically a CRT
monitor, and receives inputs from a manual input device
22, typically a keyboard. Manual input may also be
provided from a pointing device, such as a mouse. A
hard disk control subsystem 24 bidirectionally couples a
rotating ?xed disk, or hard disk 26, to the system bus 12.
The control 24 and hard disk 26 provide mass storage
for CPU instructions and data. A floppy disk control
subsystem 28 bidirectionally couples one or more
?oppy disk drives 30 to the system bus 12. The ?oppy
disk drive 30 works in conjunction with a removable

H 0

25

35

40

45

50

60

65

4
floppy diskette 30a. A network adapter (NA) 31 is pro
vided for coupling the system 10 to a network.
The components illustrated in FIG. 10 may be em

bodied within a personal computer, a portable com
puter, a workstation, a minicomputer, a main frame
computer, or a supercomputer. As such, the details of
the physical embodiment of the data processing system
10, such as the structure of the bus 12 or the number of
CPUs 14 that are coupled to the bus, is not crucial to the
operation of the invention, and is not described in fur
ther detail below.
As employed herein, the informational state of the

data processing system 10, at a given moment in time, is
considered to be de?ned by the contents (bytes) of all
memory or storage devices to which the system has
access. These include, but are not limited to, RAM,
registers, hard disks, floppy disks that are inserted into
floppy disk drives, and magnetic tape that is inserted
into a tape drive.
The informational state history of the system 10 is

considered to be the history of its informational state at
all moments in time.
For the case where the data processing system 10 (P1

of FIG. 1b) is connected to other data processing sys
tems (P2-P7) via a network, such as the exemplary
network depicted in FIG. 117, an additional data proces
sor (PD) may be added as a dedicated decoy program
server, as described below.
The method of this invention includes the following

component steps, as illustrated in FIG. 2, or some func
tional subset of these steps.

Step A: Periodic monitoring of the data processing
system 10 for anomalous, potentially virus-like behav
ior.

Step B: Automatic scanning for occurrences of
known viruses, and removal of any which are found to
be present.

Step C: Deployment of decoy programs to capture
virus samples.

Step D: Segregation of a captured virus sample into
portions that are likely to vary from one instance of the
computer virus to another instance, and into portions
that are likely to be invariant from one instance to an
other.

Step E: Extraction of a viral signature from the in
variant portion(s) and the addition of the signature to a
signature database.

Step F: Informing neighboring data processing sys
tems on a network of an occurrence of a viral infection.

Step G: Generation of a distress signal, if appropriate,
so as to call upon human experts to resolve dif?cult
cases.

A feature of this invention is the automatic execution
of the foregoing steps in response to a detection of an
undesired software entity, such as a virus or a worm,
within the data processing system 10.
A discussion is now made of each of the above refer

enced Steps A-G of FIG. 2.

Step A: Anomaly Detection

The ?rst step in the process of this invention detects
anomalous system behavior of a type that may indicate
the presence of an undesirable informational state re
sulting from the presence of a virus or some other unde
sirable software entity, such as a worm or a Trojan
Horse. The detection of anomalous behavior within a
computer or computer network can be accomplished
through the use of known techniques, preferably a tech

5,440,723
5

nique that detects anomalies that may indicate a virus.
One suitable anomaly detection technique, that uses
patterns of activity undertaken by computational pro
cesses, is described in an article entitled “A Pattern
Orientated Intrusion-Detection Model and its Applica
tions”, S. W. Shieh and V. D. Gligor, Proceedings of
the 1991 IEEE Computer Society Symposium on Re
search in Security and Privacy”. Another suitable tech
nique detects unexpected changes in executable or re
source ?les. As an example, F. Cohen, A Short Course on
Computer Viruses, ASP Press, Pittsburg, 1990, discusses
the use of integrity shells employing modi?cation detec
tors. In this case, modi?cation of ?les is detected by
cryptographic or non-cryptographic checksums, and
the user is noti?ed if a modi?cation is detected.
The method at Step A may employ any one or a

combination of. these or similar techniques. The end
result is the detection by the system 10 of an anomalous
system behavior that may be indicative of the presence
of a computer virus, or some other undesirable software
entity.
The anomaly detection process or processes may be

run continually as a background task, or periodically as
a foreground task, depending on the desire of the user
and/ or the nature of the underlying operating system.

Step B: Scan for Known Viruses

If preliminary evidence of virus-like activity is de
tected, additional computational resources are devoted
to obtaining more conclusive evidence of viral infec
tion. If a virus is present, there is a high probability that
the virus is a well-known virus that can be readily de
tected by a virus scanner. Thus, Step A scans an infor
mational state history of the system, that is, all relevant
media (eg ?les, boot records, memory), for known
viruses. In one implementation, a pre-existing virus
scanner is activated to search for a large set of patterns
or signatures, each of which pertains to a different virus
or virus family. It is highly desirable (but not essential)
that the virus scanner be capable of detecting slight
variations on known viruses. Many conventional scan
ners tend to possess this capability, to a limited extent,
simply by virtue of the fact that they search based only
on short contiguous strings of bytes found in the virus.
One especially suitable virus scanner, known as VIR

SCAN, was available from the International Business
Machines Corporation until recently, when it was in
corporated into the IBM AntiVirus program. This virus
scanner is particularly useful for detecting variations in
known viruses because it permits a certain number of
mismatches between a string of bytes in a ?le being
examined and the virus signature string. This capability
reduces the chance of having to proceed to Step C
(decoy deployment), and is even more useful in the
event that the virus is completely unrelated to any
known virus, as is described below with respect to Step
E. If the anomaly is found to be due to a known virus or
some slight alteration of it, the method proceeds to Step
B1 where the user is alerted, and the virus removed
(killed) by traditional methods, such as restoration from
backup (either automatically or manually by the user)
or disinfection (removal of the virus from all of the
software it has infected.) In general, disinfection is only
acceptable if the virus is found to be an exact copy of a
known virus. This implies that the system verify the
identi?cation made by the virus scanner. .

45

65

6

Step C: Decoy Deployment
If no known virus is detected, the anomaly may be

due to some unknown virus. In this case, the method
employs one or more decoy programs in an attempt to
attract and obtain one or more samples of the unknown
virus. The decoy programs could be commercially
available computer programs which are installed on
(and are capable of being executed on) the computer
system. Preferably, however, they would be special
purpose programs which exist solely for the purpose of
capturing viruses.
For the case of a DOS-based system, a variety of

decoy programs having *.COM and *.EXE extensions
(also referred to as executables) are created, executed,
read, written to, copied, etc. The use of decoy programs
for this purpose is described by W. C. Arnold and D. M.
Chess in “System for Detecting Undesired Alteration of
Software”, IBM Technical Disclosure Bulletin, Vol. 32,
No. 11, pages 48-50, April 1990.

In operation, original copies of the decoy programs
are stored securely, by example in encrypted form or on
a separate server, along with checksums of the originals.
After a speci?ed time interval, or after other speci?ed
conditions are met, checksums of some or all of the
decoy programs are taken and compared directly to
their originals. Alternatively, the decoy programs are
compared directly to their originals. If none of the de
coys are found to have changed, the user is alerted to
the fact that an anomaly of some sort was detected, but
that the system was unable to find conclusive evidence
of a virus. In this case, it is desirable to maintain the
system in a moderate state of alert for some time period,
exercising the decoy programs at a reduced priority or
less frequent intervals.

It is desirable to have a large variety of decoy pro
grams that differ from one another in length, content,
and name. Furthermore, the decoy programs should be
placed in and run from various directories, particularly
those directories in which there are modi?ed executa
bles.
Some DOS viruses are known to become resident in

memory and are active until the computer is rebooted.
In such a case, the virus is able to infect any executable
at any time. Often, a resident virus will infect executa
bles as they are brought into memory to be executed.
Thus, if several decoy programs are run, there is a rea
sonable chance that one or more decoy programs will
be infected by such a virus. In addition to running the
decoys, the system should perform a variety of other
operations with the decoy programs, including copying
them, opening them, creating them, etc. All of these
operations increase the probability of infection by a
virus that is resident in memory.
However, some DOS viruses do not go resident, and

can infect other programs only when the host program
in which the virus is imbedded is executed. Such viruses
typically use static criteria for selecting a program to
infect, such as the program name or the directory in
which the program is located. In this case, it is more
dif?cult for the decoy programs to become infected. To
increase the chance of infection, decoy programs are
preferably placed in locations where they are more
likely to be selected, such as the directory of the possi
blydnfected executable, or directories containing sys
tem programs (e.g. the root directory) and commonly
used utility programs. In order to infect the decoy pro

5,440,723
7

grams, the potentially-infected executable should be run
repeatedly.

If one or more decoy programs is subsequently found
to have changed from the original, protected version, it
can be assumed that the changes are due to a virus. A
comparison of each modi?ed decoy program with its
corresponding uninfected version enables a copy of the
virus to be isolated from each decoy.

Step D: Identi?cation of Invariant Code Portions

In order to maximize the likelihood that a chosen
signature will appear in all or nearly all progeny of the
virus, it is preferred to ?lter out all portions of the virus
which are observed to or are likely to vary from one
instance of the virus to another. To achieve this, the
method employs one, or preferably both, of the tech
niques represented as Blocks A and B in FIG. 4. The
order in which the two techniques are used can be re
versed, and the following description is correspond
ingly modi?ed to accommodate the opposite ordering
of the two techniques.

If several decoy programs are found to be infected, a
most desirable case, it is important to compare the vari
ous versions of the isolated virus programs with one

20

another (Block A). If all versions are identical, or if 25
there is only one version, the entire virus is considered
to be “invariant”, and can be passed along to block B
Otherwise, if the various isolated computer virus pro
grams differ, but have substantial areas in common, it
can be assumed that the virus alters itself when it repli
cates. As a result, only the common areas are marked
for further examination by the heuristics employed in
Block B of FIG. 4. This procedure is illustrated in
FIG. 6a, in which the variant and “invariant” por

tions of a virus are identi?ed by comparing three in
stances of it. In FIG. 6a, each byte is shown expressed
in a hexadecimal representation, and an invariant por
tion is identi?ed. The length of the invariant sequence
of bytes is exemplary. In practice, invariant sequences
of bytes are often considerably longer than ?ve bytes,
and more than one such portion typically appears
within the virus. If there are no substantially similar
areas, this may indicate the presence of a relatively
sophisticated self-altering virus, or the presence of more
than one virus. In this case, each of what appear to be
different viruses are provided separately to the extrac
tion method, which determines one or more signatures
for each. The system is also placed in a moderate state
of alert, and the user- is informed.

It is noted that a situation may arise in which the
computer is attacked by a sophisticated, unknown virus,
every instance of which looks completely different. In
this case, at the completion of Block A in FIG. 4 the
virus detector may be unable able to determine whether
there are several viruses, or one virus that appears dif
ferent every time it is replicated. The use of a distress
signal, described below in relation to Step G, may be
appropriate for this situation.
At this point, there are one or more sections of a virus

program (or a set of different viruses) that are marked as
being substantially “invariant”. However, even if a
given section of the virus program is common to all
copies which have been obtained in Step C, this does
not guarantee that the section will appear in its entirely
in every instance of the virus. The purpose of Block B
is to ?lter out portions of the “invariant” sections which
by their nature are more likely to be variable. As a
general rule, non-executable “data” portions of pro

35

40

45

55

65

8
grams, which can include representations of numerical
constants, character strings, screen images, work areas
for computations, addresses, etc., tend to be more likely
to vary from one instance of the program to another
than “code” portions, which represent machine instruc
tions. It may be that most or all of the “data” bytes in a
given virus are the same in all instances of that virus, but
without a careful analysis this is dif?cult to establish
with certainty. Thus, a conservative approach assumes
that “data” bytes may change, and therefore it is desir
able to disqualify them from being chosen as portions of
candidate signatures. Perfect classi?cation of each byte
as being “code” or “data” is not necessary. An errone
ous classi?cation of “code” bytes as “data” bytes is
more tolerable than an erroneous classi?cation of
“data” bytes as “code” bytes.
By example, FIG. 6b illustrates a 24-byte “invariant”

portion of a virus sample that was generated at Step C.
The ?rst 4 bytes represent machine instructions, bytes 5
and 6 represent data, bytes 7-19 represent code, and
bytes 20-24 represent data. Thus, if Block B of FIG. 4»
were employed, only bytes 1~4 and 7-19 would be
passed along to Step E for signature extraction.

Suitable methods of code-data segregation include,
but are not limited to, the following techniques.

1. Conventional static disassembly techniques, such
as flow analysis.

2. Simulation of marked viral code in a virtual ma~
chine, wherein the virtual machine includes a hardware
and software model of the computer or class of comput
ers for which the virus signature is being obtained.

3. Running the marked viral code through an inter
preter or debugger to determine which bytes are actu
ally executed. This method requires a “safe” environ
ment in which to run the virus, such as the dedicated
server PD referred to above in the discussion of FIG. 1b.

4. Statistical classi?cation techniques.
The second method, i.e., simulation of the marked

viral code in a virtual machine, is the safest and most
reliable, but is often the most computationally intensive.
The second and third methods each have the advan

tage that they are capable of determining whether a
virus is self-modifying. Viruses that modify themselves
often do so for the purpose of obscuring their machine
code portions by making the code appear different from
one instance of the virus to the next. Such viruses are
often referred to as self-garblers. Self-garblers typically
consist of a short decrypting “head” portion followed
by code which is transformed in an easily-invertible
manner (e.g. XOR’ecl) using a randomly-chosen de
cryption key when the virus is replicated. Thus, the
only portion of the code which remains invariant, from
one instance of the virus to another, is the head. It is
helpful to know that a virus is self-modifying (and thus
potentially self-garbling), so that signatures will only be
drawn from the decrypting head. This information can
also be helpful in identifying cases in which what ap
peared to be several different viruses in Step C are
actually only different instances of a single, self-garblin g
virus.
At the conclusion of Step D, there exists one or more

sequences of bytes which appear in every instance of
the one or more viruses that were obtained or generated
at Step C and which, according to any heuristics em—
ployed in Block B, are deemed likely to appear in most
or all possible instances of the virus. The set of candi
date viral signatures are all possible contiguous blocks
of S bytes found in these “probably-invariant” or “sub

5,440,723
stantially invariant” byte sequences, where S is a signa
ture length speci?ed by the user or determined by the
system. Typically, S has a value in the range of approxi
mately 12 bytes to 36 bytes. The “probably-invariant”
byte sequence(s) may be provided an an input ?le (IF
32, FIG. 1a) for subsequent processing by the signature
extraction technique described below.
There may be several viruses (or virus signatures) of

interest. As such, a record is maintained of which candi
date signatures belong to each virus.

Step E: Signature Extraction
In general, the signature extraction method searches

through the “probably-invariant” sections of virus code
for the n best possible signatures (where n is typically
small, and perhaps 1). A “good” viral signature is one
which is statistically unlikely to generate false positives
when run on uninfected, legitimate programs, but will
always identify the virus if it is present. Depending on
the nature of the virus scanner which will employ the
resulting signature, other criteria may be combined
with this criterion to evaluate the desirability of a given
candidate signature. Another desirable property is that
the signature be ?exible enough to allow for the detec
tion of slight alterations in the viral code. This is espe
cially useful because the decoys may not have captured
the full range of variation of a particular virus. This is
the reason that the virus scanner referred to in Step B
should be capable of detecting slightly-altered versions
of viruses. This may be accomplished by permitting
some number of mismatched bytes, or by selecting a
collection of substrings (fragments) of the signature and
requiring that some number of them be found before
declaring a virus to be present. String-matching is but
one suitable technique for detecting slight alterations.
Statistical measurements of viral code (such as n-gram
frequencies) and various transformations of them (such
as singular value decomposition) also provide a mecha
nism to recognize close kinship between two function
ally similar instances of a virus that would appear very
different to a string scanner.
A presently preferred method for automatically ex

tracting viral signatures is disclosed in the above—
referenced commonly assigned US. patent application
Ser. No. 08/004,871, ?led Jan. 19, l993, entitled “Meth
ods and Apparatus for Evaluating and Extracting Sig
natures of Computer Viruses and Other Undesirable
Software Entities”, by Jeffrey O. Kephart.
Brie?y stated, the technique disclosed in this com

monly assigned US. Patent Application implements a
signature scoring technique which processes a large
corpus of typical programs, such as PC-DOS and OS/ 2
binary executables, collects statistics on n-gram fre
quencies, and uses this information to estimate the prob
ability of ?nding a given sequence of bytes (with a
speci?ed number of allowed mismatches) in the pro
grams of the corpus. Once the signatures have been
extracted, they are added permanently to a database
used by the virus scanner, and all relevant media are
scanned and cleaned up as in Step B.

In greater detail, the automatic signature extraction
method operates to identify one or more signatures
which have (a) estimated “false-positive” probabilities
which are below a predetermined threshold, (b) which
are among the lowest of all the candidate signatures,
and (c) which may satisfy other speci?ed criteria as well
(for example having as the ?rst two bytes an unusual
and rarely occurring byte combination). In that it is

10

25

35

40

45

50

55

60

65

10
technically impossible to verify a signature against all
programs that have ever been written or that ever will
be written, the probability estimation is preferably
based on a corpus of software programs in common use
on the particular hardware and operating system on
which the virus scanner is to be used. This corpus of
programs is used to extrapolate from a subset of the
programs in existence to the much larger set of possible
programs.

DESCRIPTION OF THE SIGNATURE
EXTRACTION PROCEDURE

In a ?rst step, the system 10 supplies one or more
input ?les (IFs 32), each containing one or more sub
stantially invariant portions of viral code from which
one or more virus signatures are to be extracted. The
input ?les are preferably generated by automatic cre
ation of the ?les by software programs, including the
decoy deployment and code/ data segregator of Steps C
and D. ‘

Furthermore, there is provided the corpus of soft
ware programs in common use on the particular hard
ware and operating system targeted by the computer
virus(es) of interest. For example, for viruses which
affect IBM PCs and compatibles running DOS (disk
operating system), the corpus includes a number of
executable programs (typically stored as ?les with
.COM and .EXE extensions). In the preferred embodi
ment of the invention, the corpus of programs (CP 34 of
FIG. 1) is stored on a storage device, such as the hard
disk 26, that is accessible by the computer system on
which the method is executed. An alternative imple
mentation, described in detail below, permits the corpus
to be stored elsewhere. In this case, a ?le containing a
properly digested version of the corpus is stored on a
storage device which is accessible by the computer
system on which the method is to be executed. This ?le
is referred to as a table of n-gram probabilities, and is
discussed in greater detail below.

Finally, the method described below can be automati
cally invoked and executed on the data processing sys
tem 10, or can be manually started, typically by issuing
the appropriate command via the input device 22. A
computer program that implements the method of the
invention can also be stored on the hard disk 26 or the
?oppy disk 30a and, in response to an invocation of the
program is loaded from disk to the RAM 16. The CPU
14 then executes the program. It may be necessary to
supply input parameters to the method by inputting
either the parameters themselves or the name of input
?les containing the parameters. These input parameters
can include, by example, a predetermined threshold
value for probability estimation and the ?le name(s) of
the IF 32.

It should be realized that system 10 that executes the
method of the invention need not be the same system for
which one or more valid virus signatures are being
generated for use by a virus scanner program.

Reference is now made to FIG. 5 for a general de
scription of the steps of the method.
At Block A, a list is formed of all n-grams contained

in the IF 32 data. An n-gram is an instance of n consecu
tive bytes, where n=l (uni-gram) to some arbitrarily
large value. Typically 11 is in the range of 3 to 8. The IF
32 is comprised of sections of previously identi?ed in
variant portions of virus machine code.

5,440,723
. 11

At Block B the probabilities are estimated for all
n-grams in the list of n-grams by comparing the n-grams
to the CP 34.
At Block C1, for each candidate signature, an esti

mate is made of the probability'of an exact match and
/ or at Block C; the probability is estimated of a speci
?ed set of non-exact or fuzzy matches (e.g., matches to
the signature or some contiguous fragment of it, given a
speci?ed number of mismatches).
At Block D, the estimated exact-match and fuzzy

match probabilities are combined to obtain an overall
evaluation of each candidate signature.
At Block E, the method reports the outcome for

some subset of the candidate signatures. The output
report can be displayed on the display device 20 and/ or
stored in a ?le on the hard disk 26 or ?oppy disk 30a for
subsequent review by an operator. The report is also
provided as an input to other software programs, in
particular a virus scanner, which makes use of the sig
nature(s) contained in the report.
The foregoing Blocks A-E are now described in

greater detail.

BUILDING A LIST OF THE REQUIRED
N-GRAMS (FIG. 5, Block A)

At this point there are one or more sections of segre
gated virus code (binary machine code) from each of
one or more viruses. As was noted, it is desirable to
eliminate any large variable areas from these sections,
leaving only those invariant portions which represent
machine instructions. '

One suitable procedure for extracting the n-grams
and placing them into an n-gram table (NGT 36 of FIG.
1a) is expressed in the following pseudo-code.

Procedure: Build_Ngram__List

For each virus
For each section of virus code
For i=1 to length_of_section
For n=l to nMax

If (i + n — l < length_of_section)
n-gramzbytes i through i+n——l of section

If (n-gram is not in n-gram_table)
Store n-gram in n-gram_table

The n-gram table 36 is maintained in, by example, the
RAM memory 16 and/or in a ?le stored on the hard
disk 26 or the ?oppy disk 30a. The term length__of_sec
tion is the length of a given section of virus code in
bytes, and nMax is a chosen maximum length, in bytes, of r
the n-grams. Typical values for nMax are in the range of
3 to 8.

It is noted that under some circumstances an n-gram
may include one or more wildcards, wherein a wildcard
is considered a don’t-care byte or bytes. For example, if
the im byte in a signature is a wildcard, this indicates
that any byte is considered to match the i’h byte. Wild
cards are included in some virus signatures to provide
greater robustness to variations in the virus, as de
scribed below.

ESTIMATING THE N-GRAM PROBABILITIES

(FIG. 5, Block B)
Having obtained a list of all of the n-grams, the list

being stored in the n-gram table 36, the next step esti
mates a probability of the correctness of each of the
n-grams. The signature extraction procedure uses either
of two general estimation methods.

20

25

35

40

45

55

60

12

Estimation Method 1

One presently preferred approach to n-gram proba
bility estimation searches the entire corpus of programs
34 for only those n-grams that are listed in the n-gram_.
table 36. This method tallies the frequency of occur
rence of each n-gram within the corpus 34 and inserts
the occurrence frequency into the n-gram__table 36.
More speci?cally, what follows is a method for col

lecting n-gram statistics:
(a) For each n-gram B1B2. . . B” in the n-gram_table

36, record f(B1B2. . . B”), the number of occurrences of
the n-gram in the corpus 34 (this can be implemented
efficiently using a hash table).

(b) Record also in the n-gram_table 36 the number of
n-grams of length n, T,,.
For uni-grams (n: l), the estimated probability is

simply taken to be the observed frequency:
p(B1)=f(B1)/T1. For n> 2, the estimated probability is
given by a weighted average of the observed frequency
and the probability calculated by combining together
shorter n-grams. A preferred method used to combine
two (n— l)-gram probabilities and an (n—2)-gram prob~
ability to form an n-gram probability is:

l
M8182 - - ‘ Bn) :7 ()

Thus, the method for calculating n-gram probabilities
is given by:

Procedure: Calculate n-grams

(2)
1103152 - r - B”) = a/(B1B2...Bn)

(1 _ (1118182 B)) M3132 - t ‘ Bn—l)P(B2B3 - ~ - B")

” P(B2B3---Bn_1)

where af(B1B2. . . B") is a heuristic weighting function
which depends upon how many occurrences of B1B; . .
. B” appear in the corpus 34. The weighting function
am=O when m=O and am=l when m>l has been
found to work well in practice. In order to apply Eq. 2
for n=2, the O-gram probability is de?ned as unity. In
practice, the uni-gram and bi-gram (n=1 and n=2,
respectively) probabilities are tabulated ?rst, and are
then employed to determine the tri-gram (n=3) proba
bilities. Next, the bi-grams and tri-grams are used to
determine the 4-gram probabilities, etc., until ?nally
there is determined the nMax-gram probabilities from
the (nMax-— l)-gram and the (nMax—2)-gram probabili
ties.

Estimation Method 2

A second approach consults a pre-computed table 50
of n-gram probabilities (shown in FIG. 1b) and places
the results in the n-gram table. The pre-computed table
is used for any set of viral code portions, and is con
structed by making a one-time pass through the corpus
34 to determine the number of times each n-gram ap
pears in the corpus (for each nénMax), and dividing by
the large if nMax> 2, even if n-grams which never ap
pear in total number of n-grams of length n in the cor
pus. However, the pre-computed table 50 could be
infeasibly the corpus are omitted.
One solution to this problem stores a chosen subset of

the n-grams and fabricates the remainder from shorter

5,440,723
13

n-grams. One suitable subset is the K most common
n-grams. Another suitable subset is the set of n-grams
whose measured frequencies deviate by more than a
given amount from that estimated by combining, in
accordance with Equation 1, two (n- l)-grams and an
(n—2)-gram.

In the second case, Equation 1 is applied iteratively
by ?rst using uni-gram and bi-gram probabilities to
estimate the tri-grams, then bi-grams and tri-grams to
estimate the 4-grams, etc., until ?nally the nMax-gram
probabilities are estimated from the (nMax— l)-gram and
(nMax—2)-gram probabilities. At each stage, only the
n-grams whose frequencies are poorly estimated by
Equation 1 are included in the pre~computed table. The
amount of computation is substantial, but is only re
quired to be performed once, with possible periodic
updates to take into account additions to the corpus of
popular new programs compiled with new compilers.
A presently preferred method for determining the

contents of the pre-computed table 50 of n-gram proba
bilities includes the following steps.

1. Tally the number of occurrences (the absolute
frequency) of all l-gram and Z-grams in the corpus 34;
divided by T_.l and T'_2 respectively to obtain the
relative frequency of each l-gram and Z-gram. Store all
l-gram and 2-gram frequencies in the pre-computed
n-gram table.

2. For k=3 to some chosen maximum k,
Determine the relative frequency of each k-gram for

which the ?rst (k-l) bytes are a (k-l) gram in the
pre-computed n-gram table. (This condition will hold
for all 3-grams, but not necessarily for k> 3).

Divide this observed relative frequency by the esti
mated frequency obtained from Eq. 1 using (k- l) and
(k—2)-grams.

If the absolute value of the logarithm of this quantity
exceeds some chosen threshold, store the k-gram and its
measured absolute frequency in the pre-computed n
gram table 50.

It should be noted that this is but one of several suit
able methods for deriving the contents of the pre-com
puted table 50 of n-gram probabilities.

In general, estimation method 1 requires less storage
and is more accurate than estimation method 2, but can
require considerably more time to execute in that the
entire corpus is searched every time that new sections
of viral code are presented.

ESTIMATING THE CANDIDATE SIGNATURE
PROBABILITIES (FIG. 5, Blocks C)

Depending upon the application, it may be desirable
to estimate the probability of an exact match or a partial
match (typically fragments or mismatches) between a
candidate signature and some string of bytes in the
corpus (or any statistically similar set of programs of
comparable size). However, partial mismatch computa
tions can be computationally expensive, and in the ex
traction mode the set of candidate signatures can be
quite large. Therefore, depending upon the speed of the
CPU 14, it may be desirable to employ only the exact
match probabilities to prune the set of candidate signa
tures. This is the reason for the arrow pointing from the
exact-match calculation block (C1) to the fuzzy-match
calculation block (C2). For example, the candidate sig
natures having the n lowest exact-match probabilities
can be selected for further computation of fragment and
mismatch probabilities. -

35

45

55

65

14
As was noted above, the list of candidate signatures is

constructed from the sections of segregated viral code.
One suitable method selects some desired signature
length S and treats each contiguous block of S bytes in
each viral code section as a candidate. In this case, a
suitable procedure for probability estimation of each
candidate signature is given by the following pseudo
code.

Procedure: X_Probability_Extraction_._Mode
For each virus
For each section of virus code
For i=1 to (length-o?section-S-t- 1)
For j=l to S
Bj=byte i+j~1

Candidate signature=B1B2 . . . BS

Store p X (signature)=X_Probability(B1B2. . .

S

where X denotes “Exact Match”, “Fragment”, “Mis~
match”, and possibly also some prepended quali?er
describing alternate implementations of the indicated
probability calculations.

Alternatively, S may be adjusted to the shortest
length that satis?es a predetermined probability thresh
old.
The problem of estimating the probability that a pro

posed signature will exactly match a string of bytes in
the corpus is next discussed, followed by a discussion of
two types of partial matches, i.e., fragments and mis
matches.

Probability of an Exact Match to a Given Signature:
In order to calculate the exact-match probability

pExgcpMan-h (signature) for a given signature, it must ?rst
be determined whether any bytes should be replaced by
wildcards. In some processor architectures, there are
instructions which contain addresses that can poten
tially vary from one instance of a program (in this case
a virus) to another. In order to accommodate these
potentially variable bytes, they should be replaced by
wildcards. If it is intended to use the teaching of the
invention in conjunction with a virus scanner that does
not permit wildcards, the wildcards can still be inserted
at this stage, in that the signature will be rejected at a
later stage. The positions of any wildcards that are
already present, or that were introduced at this step, are
used in the exact-match probability calculation. The
following pseudo-code describes a suitable implementa
tion for determining the exact match probability.

Procedure: Exact_Match_Probability(signature)
Replace any potentially variable bytes in the signa

ture with wildcards
W=number of wildcards in signature
Fonn list of wildcard positions: P=(P1,P2. . . , PW);

Pi<Pj for i< j
P Exact. Ma ,¢h(si gnature) = Calculate__Sequence_.

Probability(signature; P)
Calculate_Sequence._Probability(signature; P) is a

procedure that estimates the probability p(B1B2 . . .

BS;P) of ?nding a byte-sequence B1B; . . . B, with wild
cards in positions P=(P1P2 _ v , ,pw). The integers Pigs
are in monotonically increasing order, and
0 § W = number of wildcards 2 S.
One presently preferred implementation, described in

the following pseudo-code, segregates the signature
into contiguous blocks of bytes containing no wild
cards. The probabilities of these contiguous blocks are
then multiplied to give the exact-match probability for
the signature.

5,440,723 '
15 16

Procedure: Calculate_Sequence_Probability(byte- ments in the desired subset of possible fragments, and
sequence; P) the overall fragment probability is an accumulation of
P0: —1 the individual fragment probabilities.
Pk+1= S + l Mismatches:
p (byte-sequence; P)=l 5 A further method for detecting altered versions of a
For j=0 to K known virus alerts the user when a string of bytes ap
byte'block=bytes Pj+1 through Pj+1—1 in byte proximately matches the signature. More precisely, all

sequence but at most M bytes in the string match the byte in the
P (byte'sequence;p)=P(byte—5equence; P)* cal‘ corresponding position in the signature. In this case, an

C111ate—B10°k—PY0babi1itYQJWC'bIOCk) 10 estimate is required of the probability of ?nding a signa
ca1°“1ate—'Bl°°k—Pr obabiliiy?byte'block) is a Prom?‘ ture with M or fewer mismatches to the candidate sig

dure_that estlrflates the Probablhty P031132 ~ - - BK) of? nature B1B; . . . B5. A reasonable approximation to the
Contlguous, wlldcard'free block of bytes B1BZ~ - - Bk "1 M-mismatch probability is obtained by adding the prob
the Corpus- A Preferred implementation is as?onowsi abilities of all of the combinatorial number of possible

Procedure: calculate—B1Ock—probablhty(byte' 15 mismatch positions. For example, the probability of at
blOck) most two mismatched bytes in a given string of S bytes

(none of which are wildcards) is approximated by:
_ (3)

p(B1 . . . BK) ifK é nMax

where X,- and Xj represent what are referred to herein as
25 variable-position wildcards in positions i and j, respec

The Condition K>nMax Occurs when the length of tively. The sums run over all possible positions of i and
the wildcard-free block exceeds the maximal size of the '

. J

Collected n‘grams 1" the n—g1'am-—tab1e 36- If there are already wildcards (which are be referred
Fragments! _ _ herein as fixed-position wildcards) in the candidate
In order to enable a VII‘LIS scanner to detect a slightly- 30 signature B132 _ _ _ BS’ the situation is slightly moi-6

altered version of a known virus, some virus scanners complex_ If the number of ?xed_position wildcards’ W’
provide an indication when a contiguous block of F exceeds the number of allowed mismatches, M’ the
bytes ‘in a Signature of length S is founfl in the Course of signature is invalid for M mismatches, and no further
Scannmg‘ There are (S*F+1) posslble fragments of computation is necessary. If W=M, the M-mismatch
this sort. Other criteria, such as requiring that the ?rst 35 probability is identical to the exact_match probability,
few bytes of each fragment be less probable than a given the estimation of which has already been described. If
threshold, can reduce the total number of fragments to W <M’ then M_W variable_position wildcards are
f‘ Smalls? subset of _vahd fragme?ts' The quanmy of added to the W ?xed-position wildcards. The probabili
mterest 1“ ,thls case 15 th? probablhty that “one of the ties of all of the combinatorial number of possible sets of
fragments in the subset Wlll be found in the corpus, or 111 40 M _W variable positions are added to Obtain the M_mis_
2*, statistically'sim?ar set of programs of comparable match probability. The following pseudo-code provides
Slze' It can ,be Show? that a really-Computed ‘iPPer a presently preferred procedure for estimating the over
bound on this probability is the sum of the probabilities an mismatch probability, which is designated PMS’
of the individual fragments. The use of this estimated WICKBIBL _ _ B SM)
upper bound, rather than an estimated probability, in- 45 ’
troduces some inaccuracy, but is generally adequate and
is much less computationally expensive than a more
exact computation. T

Thus, given a particular candidate signature B1B2. . .
B5 the following pseudo-code provides a procedure for
estimating the overall fragment probability (actually its m = M_ W

Procedure: Mismatch_Probability(signature ;M)
If desired, replace any potentially variable bytes in

signature with wildcards.

50 W = number of wildcards

upper bound):
Procedure: Fragment_Probability(signature) If (méo) ~
Replace any potentially variable bytes in signature Em" sntl‘i’spm'a't'c‘ggber °f “"ldmds exceeds ‘*"Owed

with wildcards 55
PFragment(5ignatl1fe)=O Else if (mV=O)
For i=1 to (S—F+l) Forlé=liovf+sl 1

_ -- - _ or 1:1 0 +

saga?1363;522:153;F ‘> = . . ~+1 - A - 1-1

W=number of wlldcards 1n fragment '60 pMixmamhgignamegin=Q(0,1,5+1)
Form list of wildcard positions in fragment: _

P=(P1,P2. . . PW); P,-<Pj for i< j _ Else ‘2221201) to S+l_m
p(fragment):Calculate_Sequence_Probabil1ty(- For 1-: i+m to 5+1

fragment; P) QWIZD=O
' si nature : si nature fra - 65 For k=i to k=j—m

W512i’? g) pFmgmen‘ g)+p(g If (k is not the index of any
. . . . ?xed- osition wildcard)

The above procedure is similar to that given for exact QWJ-S) : Qbn'm + god-‘10*
matches, except that there is an iteration overall frag- Q(m-1,k+1,1)

5,440,723
17

-continued
pMimmh(signamre;M) = Q(m. 1,S+ 1)

It should be noted that when m=0, the procedure
Exact__Match__Probability is used to calculate exact
match probabilities Q(O,i, j) of all relevant sub-sequences
of the candidate signature. Only Q(O,1,S+ 1), that is, the
probability of the subsequence which consists of the
entire signature, is required. However, the other proba
bilities Q(0,i,j) for i¢1 and j¢S+1are useful to calcu
late and retain for use in calculations with m>O.
When the number of variable-position wildcards m is

non-zero, the probabilities Q(m,i,j) of all relevant sub
sequences of the signature with m variable-position
‘wildcards can be expressed in terms of probabilities of
sub-sequences of the signature with m- l, and with
zero variable-position wildcards (Q(m—l,k+l,j) and
Q(0,i,k) for all k for which the k’h byte is not a ?xed
position wildcard). Again, only the probability
Q(m,1,S+ l) is needed at this stage, but the other prob
abilities Q(m,i,j) for i¢l and j-,+_S+l are useful to cal
culate and retain for use in calculations with m replaced
by rn+ 1.

In practice, it would be most ef?cient to invoke the
procedure Mismatch_Probability for M=W ?rst. Note
that this yields the exact~match probability. Then, one
would invoke Mismatch_Probability for M=W+ 1,
then M=W+2, etc., up to some value of M given by a
predetermined function of the signature length S, a
predetermined function of pMgmatch(signature;M), or
some other criterion.

COMBINING AND REPORTING THE RESULTS
(FIG. 5, Blocks D, E)

In practice, the probability estimates for exact
matches, fragments, and mismatches are generally
somewhat inaccurate on an absolute scale, but for suf?
ciently large nMax the correlation between the probabil
ity estimates and the actual probabilities is good.
Depending upon the application, there are a number

of possible ways in which the results of the various
probability estimates can be combined into a ?nal, use
able result. One method assigns a score to a signature
based on some combination of the three probabilities
(and possibly the number of mismatches M as well), and
then employs a predetermined threshold to accept or
reject that signature.

If the signature is to be used in conjunction with a
virus scanner that only permits exact matches, a suitable
choice for the score would be just the exact-match
probability. The signature is then accepted if its score is
below some speci?ed threshold and rejected otherwise.

If the virus scanner permits fragments and mis
matches, a suitable choice for the score is the sum of the
fragment and mismatch probabilities. This results in a
slight overestimate of the probability of either a frag
ment or a mismatch, since the probabilities are not com
pletely independent, but for the purposes of this inven
tion this technique provides a reasonable approxima
tion. Again, a threshold may be used to reject or accept
the signature.
More sophisticated strategies can also be employed.

For example, the fragment and M-mismatch probabili
ties are separately compared to a fragment threshold
and to a M-mismatch threshold. If the fragment score is
acceptable but the M-mismatch score is not, the virus

25

35

45

60

65

18
scanner may allow matches on fragments but not M
mismatches, and vice versa.

Furthermore, instead of rejecting the M-mismatch
score outright for some predetermined value of M, the
procedure can determine the largest M for a given sig
nature such that the M-mismatch probability is less than
a given threshold. This approach requires some itera
tive interaction between this step and the mismatch
calculation described previously.

If a threshold probability is employed, a presently
preferred approach to choosing an appropriate thresh
old is shown in the ?ow chart of FIG. 7 and is described
as follows.

First, at Block A the corpus 34 is segregated into
three components: a probe set, a training set, and a test
set. This can be done by randomly assigning programs
in the corpus 34 to one of the three sets. The probe set
may be relatively small; the training and test sets are
preferably larger and approximately comparable to one
another in size. At Block B the procedure randomly
selects several (preferably several thousand or more)
byte-strings from the probe set, each of the byte strings
having a length comparable to a typical signature length
S. Treating just the training set as the corpus, at Block
C use the set of procedures described in detail above to
estimate exact-match and the typical set of fuzzy-match
probabilities for each signature. At Block D, count the
frequency of each signature and each of the appropriate
fuzzy matches to that signature in the test set.
At Block E, produce lists of, for each signature in the

probe set, the estimated probability (obtained from the
training set) vs. the measured relative frequency (ob
tained from the test set) for exact matches and for all of
the desired types of fuzzy matches (e.g. fragments, l
mismatches, 2-mismatches, etc.). To establish a reason
able probability threshold for each type of match, Block
F performs the following calculations. First, for each of
many (typically several dozen) closely-spaced probabil
ity thresholds T(i), it tallies Sbadg), the total number of
signatures with estimated probabilities below T(i)
which appeared one or more time in the test set. Next,
for each of the speci?ed probability thresholds T(i), it
tallies Smmm), the total number of signatures with esti
mated probabilities below T. The false-positive proba
bility for the threshold T is then given by

Then, the total number of signatures Sgmd from the
probe set which never appeared in the test set (referred
to as “good” signatures) is tallied. Next, for each T, the
fraction GoodSigs(T) of “good” signatures with esti
mated probabilities less than or equal to T is calculated.
At Block G there is selected (either automatically using
set criteria or by the user) a threshold T for which the
false-positive probability FP(T) is acceptably small
(typically much less than 1%), but for which the frac
tion of signatures which are expected to be accepted by
the threshold GoodSigs(T) is suf?ciently large (i.e. 5%
to 25% or more) to virtually guarantee that a valid
signature can be found somewhere in the viral code.
To establish a reasonable probability threshold for

each type of match, Block F calculates the percentage
of signatures, with estimated probabilities below’a spec
i?ed threshold, which appeared in the test set one or
more times. This yields the false positive probability for
that threshold. At Block G there is selected a threshold
which gives an acceptably small false-positive probabil
ity, but that does not exclude a signi?cant number of the
signatures.

5,440,723
19

To allow for the fact that the number of programs
that exist or could exist exceeds the number of programs
in the corpus 34 by a considerable margin, it may be
desirable to diminish . the threshold probability by a
factor of 10 or 100. In practice this may be overly con
servative, in that virus code tends to be written in as
sembler, and not the high-level languages in which most
modern software applications are written. Thus, selec
tion of thresholds based upon studies of probes taken
from the corpus itself can be overly pessimistic for
viruses, which are somewhat atypical software. In prac
tice, even when the safety factor of 10 to 100 is not
included, it is rare for the procedures of the invention to
produce signatures yielding false positives.

In the described signature extraction procedure, there
can be selected for each virus one or more candidate
signatures having the best score(s). In this case, it may
be desirable for the score to reward larger values of M,
so that the chosen signatures capture the greatest possi
ble amount of variation.

Other criteria for signature selection might be
brought into play as well. In particular, it may be desir
able favor signatures which increase the ef?ciency of
the scanner that employs them. For example, the search
methods used by some scanners can bene?t if signatures
are chosen in which the ?rst few bytes are uncommon.
One might therefore bias the scores of signatures to
favor those which possess attributes that are deemed to
be desriable.
The end result is the generation of a valid virus signa

ture if the estimated probability of the occurrence of the
candidate virus signature is less than a threshold proba
bility, wherein the threshold probability has a value
selected to minimize an occurrence of a false positive
indication during the subsequent use of the valid virus
signature by a virus scanner or similar virus identi?ca
tion technique.
As was noted above, the signature report(s) may be

displayed on the display device 20 and/ or are written to
a database for use by the virus scanner. As soon as the
signature for the previously unknown virus has been
extracted, the scanner of Step B uses the signature to
search for all instances of the virus in the system.

FIG. 2 Step F: Informing Neighboring. Computers

It has been demonstrated that informing one’s neigh
bors if one is infected is highly effective in limiting or
prevent viral spread. As seen in FIG. 10, for the case
where an infected computer is connected to others via a
network, a “kill signal” (K) is transmitted from an in
fected computer to neighboring computers on the net
work. As employed herein, a neighboring computer is
considered to be one or more with whom the infected
computer communicates or exchanges software most
frequently. This differs from the above referenced pro
posal that all computers with which the infected com
puter has ever communicated be noti?ed.
The kill signal may take a variety of forms and pro

vide as little or as much information as is appropriate or
practical. For example, in one embodiment the infected
computer simply sends an “I’m infected” signal (one bit
of information) to its neighbor(s) whenever it enters
Step B (Scan for Known Viruses), thereby inducing all
of the neighbors to also enter Step B themselves. In
another embodiment, the infected computer sends an
“I’m infected” signal after it has cleaned itself up (com
pleted Step B successfully), and also sends the name of
the virus (if it was previously known) and - its sig

20

25

30

55

60

65

20
nature(s), whether the virus was previously known or
not. The signature(s) may have been determined in Step
E. In a further embodiment, the infected computer
sends an “I’m infected” signal when it enters Step C,
i.e., after it fails to identify the anomaly as a known
virus, thereby inducing its neighbors to enter Steps B
and C. Other strategies may also be used, other than
those speci?cally detailed above. In all cases,.the end
result is that other computers on the network are alerted
to the presence of an anomaly, which may be a known
or an unknown virus, within the network.

It is noted that precautions are taken to ensure that
the propagation of the kill signal itself does not become
an epidemic in its own right. For example, a data pro
cessor that has received a kill signal from one or more of
its neighbors sends a kill signal to its neighbors only if it
is suf?ciently certain that it is also infected. As seen in
FIG. 1c, the kill signals propagate only as far as the
non-infected computers P4 and P5 and, as a result, P6
and P7 are not made aware of the virus infecting P1, P2
and P3.

Step G: Generation of Distress Signal

No virus detector can detect every conceivable virus,
as shown by F. Cohen through a simple adaptation of
the halting problem contradiction in the above
referenced A Short Course on Computer Viruses. Thus,
under certain circumstances the method of this inven
tion may be required to inform the user that it is having
difficulty. In the case of a computer network a mecha
nism is also provided for automatically alerting an ex
pert as well.
An example of such a situation is one in which the

computer is attacked by a sophisticated, unknown virus,
every instance of which looks completely different. In
this case, at the completion of Step C the virus detector
may be unable able to determine whether there are
several viruses or one virus that appears different every
time it is replicated. The virus detector may operate on
the assumption that there are really several different
viruses, create signatures for each at Step E, then return
to Step B to clean up. This approach may be suitable
even if the decoy programs were infected by different
instances of the same virus. However, it is more likely
that the decoy programs will not have captured the full
set of viral progeny, or even the full range of the subset
of progeny which has infected the computer. In this
case, anomalous behavior is again detected at Step A.

If the full set of possible progeny is suf?ciently small
(as it is even for the “Whale” virus, which takes a few
dozen different forms), several passes through the
method illustrated in FIG. 2 will eventually eradicate
the virus and provide full immunity to any future at
tacks, in that the data base of virus signatures obtained
from Step B will include a signature for each of the
progeny of the virus. However, if the set of progeny is
too large, the computer will suffer recurrent infections,
and an appreciable fraction of its computational re
sources will be diverted almost solely to virus identi?»
cation and eradication.
As such, the use of the distress signal is appropriate to

alert the user and/or an expert to the existence of a
confusing, potentially dangerous situation. The distress
signal provides all pertinent details of the viral infec
tion, such as the set of signatures extracted thus far, so
that an expert, either human or software program, can
identify the problem as quickly as possible.

5,440,723
21

The invention has been described thus far in the con
text of identifying and eliminating computer viruses
from computers and networks of computers. However,
the teaching of the invention can also be employed,
with minor modi?cation, for combatting worms. As
employed herein, worms are considered to be self
replicating programs or collections of programs which
are self-sufficient, and do not require a host program to
infect.

In that a worm does not attach itself to an existing
program, at least one component of the worm must be
active in memory at any given moment. Thus, a most
likely target of a worm is a network of multi-tasking
computers, through which the worm propagates by
spawning processes from one machine to another. For
the case of worm detection and eradication, the teach
ing of the invention is modi?ed as follows.

In Step A, i.e., periodic monitoring of the system for
anomalous behavior, anomaly detection by behavioral
patterns is the preferred method. However, even
though worms do not necessarily rely upon modi?ca
tion of other executables, modi?cation detection tech
niques may still be employed for detecting attempts by
the worm to modify login or startup scripts to include
invocations of itself. The user is informed of suspicious
activity and given a choice as to whether to continue
running or to suspend the offending process (and/or the
family tree of processes to which it is related) pending
further investigation.

If the user chooses to suspend the process, the
method proceeds to Step B, in which that process, all
parents or children of that process, and perhaps all
other processes in memory, are scanned for known
worms. Cleanup involves killing active worm processes
(determined by tracing the process tree), and deleting
worm executables and auxiliary ?les from storage me
dia. Backup of ?les is not likely to be as necessary in this
case, as it is for viruses, since a worm typically does not
alter other executables. However, restoration of ?les
may be necessary if the worm modi?es scripts in order
to invoke itself, or causes damage to other executable or
data ?les.

Step C, decoy deployment, is not relevant in the case
of worms in that the anomaly detector of Step A will
have identi?ed the suspicious processes and their parent
and child processes.

Steps D and E, invariant code identi?cation and auto
matic signature extraction, function in a manner as de
scribed above.
The use of the kill signal of Step F is especially valu

able when combatting worms, in that worms are intrin
sically capable of propagating through a computer net
work at higher speeds than a virus. This is because
transmission of a worm between machines is initiated
intentionally by a process, while a virus is typically
transmitted unwittingly by a human being. Thus, the
use of an automatic kill signal that is transmitted be
tween machines is important to stop a rapidly-spreading
worm.

The distress signal of Step G is also especially valu
able when combatting worms, due to the high speed
with which a worm can propagate over a network.
Quickly bringing into play the abilities of a human or
software expert to deal with novel situations is thus
critical to stopping the spread of the worm.
Having described in detail the operation of the

method of the invention, reference is now made to FIG.
3 for showing in greater detail a preferred embodiment

25

40

45

55

65

22
of the method of the invention for combatting viruses
within a computer network. The method is suitable for
use under DOS, but a presently preferred technique
employs a multi-tasking operating system such as 05/ 2.
The ensuing description refers to programs (VSTOP,

CHECKUP, and VIRSCAN) that were available as
separate components from the International Business
Machines Corporation, and that have now been inte
grated into an AntiVirus program. In other embodi
ments of the invention other software modules having
similar functionality may be employed.

Block A: Run VSTOP continually
VSTOP runs as a TSR (Terminate and Stay Resi

dent) process under DOS (or a DOS session under
OS/2). When a program makes a system service re
quest, VSTOP obtains control, and checks the calling
program for signatures of known viruses. If a virus is
detected the user is informed as to which virus is pres
ent. The user is also enabled to run the program (bypass
ing the imbedded virus).
When employed with the automatic immune system

of this invention, if VSTOP detects a virus it also initi
ates Block G, which runs VIRSCAN on all executables.
If the machine is connected to other machines (e. g. on a
LAN), a kill signal is sent to a chosen subset of the other
machines (Block H).
Block B: Run CHECKUP periodically
When CHECKUP is initially installed it calculates a

checksum of each executable ?le in the system, based
upon some keyword supplied by the user. Later, at the
instigation of the user or another computational pro
cess, CHECKUP uses the same keyword to recalculate
the checksum of speci?ed (one or more or even all)
executable ?les. A change in the checksum of a ?le
indicates that it has been modi?ed.
When used in the automatic immune system of this

invention, CHECKUP is run on all executables at inter
vals determined both by the user and/or by feedback
from other components of the immune system. If some
other components indicate that there is an increased risk
of present or imminent viral infection the level of alert
ness is adjusted upwards, and the interval between suc
cessive executions of CHECKUP is decreased. This
will occur in response to, by example, a virus-like activ
ity detector (V LAD, described below) observing virus
like behavior (Block C), CHECKUP detecting a modi
?cation (Blocks B or D), VIRSCAN identifying an
infected ?le or ?les, or a kill signal being received from
an infected neighboring computer on the network
(Block H on the neighboring machine). As time passes,
the level of alertness is decreased towards some baseline
level, unless a new alert signal is received from some
other component of the immune system. The receipt of
a new alert signal may either preempt the current alert
state or instead cause the current level of the alert state
to be adjusted upwards.

If at any point CHECKUP detected a change in one
or more executables, VIRSCAN is invoked and run on
all changed executables (Block F).
Block C: Run VLAD continually
There are patterns of system activity that are com

monly observed when a virus infects a program, but
which are rarely observed, if at all, when a legitimate
(non-infected) program is being executed. The VLAD
monitors system activity to detect a pattern of activity
that is indicative of the presence of a virus, and gener
ates an alert signal when virus-like behavior is detected. ‘

