United States Patent (i
Arnold et al.

US005440723A
[11] Patent Number: 5,440,723

[45] Date of Patent: Aug. 8, 1995

[54] AUTOMATIC IMMUNE SYSTEM FOR
COMPUTERS AND COMPUTER
NETWORKS

[75] Inventors: William C. Arnold, Mahopac; David
M., Chess, Mohegan Lake; Jeffrey O.
Kephart, Yorktown Heights; Steven
R. White, New York, all of N.Y.

[73] Assignee: International Business Machines
Corporation, Armonk, N.Y.

[21] Appl. No.: 4,872

[22] Filed: Jan. 19, 1993

AT T o) K GO6F 11/00
[52] U.S. Cl oo 395/181; 395/700;
395/183.09; 395/183.14
[58] Field of Search 395/575; 371/16.5, 19,
371/11.2, 8.2

[56] References Cited

U.S. PATENT DOCUMENTS

5,062,045 10/1991 Janis et al. .coccoverronececenencns 371/16.5
5,084,816 1/1992 Boeseet al.cceccecerccrnennne 395/575
5,121,345 1/1992 Lentz 364/550
5,200,958 4/1993 Hamilton et al. ... 371/16.5
5,218,605 1/1993 Low et al. ..ccooeovecerrncrnnanes 371/19
5,255,208 10/1993 Thakore et al. . 371/16.5
5,278,901 1/1994 Shieh et al. ..cocororiercecceennans 380/4

5,291,590 3/1994 Ohnishi et al. .. 371/16.5

5,297,150 3/1994 Clark 371719
5,319,776 6/1994 Hile et al. 395/575
5,359,659 10/1994 Rosenthalcccccoovmeerrmeureceenee 380/4
5,361,359 11/1994 Tajallie et al.ccceevveeneneee. 395/700

OTHER PUBLICATIONS

Qasem et al. “Al Trends in Virus Control” 1991 IEEE
Proc. of Southeaston pp. 99-103 vol. 1.

Crocker et al. “A Proposal for a Verification-Based
Virus Filler” 1989 IEEE Symposium on Security &
Privacy pp. 319-324.

Kephort et al. “Directed Graph Epidemiological Mod-
ule of Computer Viruses” 1991 IEEE Computer Soci-
ety Symposium on Research in Security & Privacy pp.
343-359.

Kumor et al. “A Generic Virus Scanner in C+ +” 1992

8th Ann. Computer Security Applications Proceedings
pp. 210-219.

Shoutkov et al. “Computer Viruses: Ways of Reproduc-
tion in MS DOS™ 25th Ann. 1991 IEEE International
Carnahan Conf. on Security Tech. pp. 168-176.

(List continued on next page.)

Primary Examiner—Robert W. Beausoliel, Jr.
Assistant Examiner—Joseph E. Palys
Attorney. Agent, or Firm—Perman & Green

[57] ABSTRACT

A method includes the following component steps, or
some functional subset of these steps: (A) periodic moni-
toring of a data processing system (10) for anomalous
behavior that may indicate the presence of an undesir-
able software entity such as a computer virus, worm, or
Trojan Horse; (B) automatic scanning for occurrences
of known types of undesirable software entities and
taking remedial action if they are discovered; (C) de-
ploying decoy programs to capture samples of un-
known types of computer viruses; (D) identifying ma-
chine code portions of the captured samples which are
unlikely to vary from one instance of the virus to an-
other; (E) extracting an identifying signature from the
executable code portion and adding the signature to a
signature database; (F) informing neighboring data pro-
cessing systems on a network of an occurrence of the
undesirable software entity; and (G) generating a dis-
tress signal, if appropriate, so as to call upon an expert
to resolve difficult cases. A feature of this invention is
the automatic execution of the foregoing steps in re-
sponse to a detection of an undesired software entity,
such as a virus or a worm, within a data processing
system. The automatic extraction of the identifying
signature, the addition of the signature to a signature
data base, and the immediate use of the signature by a
scanner provides protection from subsequent infections
of the system, and also a network of systems, by the
same or an altered form of the undesirable software
entity.

46 Claims, 7 Drawing Sheets

WONTOR SYSTEM FOR a
ANOMALOUS BEHAVIOR

ANOMALDUS BEHAVIOR
ALERT USER. | [SCAN FOR KNOWN DETECTED
ReMove virus |8t |Viuses 8

IDENTIFY INVARIANT
CODE PORTIONS OF
VIRUS SAMPLE (S)

UNKNOWH _VIRUS

BLUE COAT - EXHIBIT 1007

5,440,723
Page 2

OTHER PUBLICATIONS

S. W. Shieh et al. ““A Pattern-Oriented Intrusion-De-
tection Model and its Applications”, Proceedings of the
1991 IEEE Computer Society Symposium on Reserach
and Privacy, pp. 327-342.

H. S. Javitz et al. “The SRI IDES Statistical Anomaly
Detector”, Proceedings of the 1991 IEEE Computer
Symposium on Research in Security and Privacy, pp.
316-326.

W. Arnold et al. “System for Detecting Undesired Al-
teration of Software”, IBM TDB, vol. 32, No. 11, Apr.
1990, pp. 48-50.

S. M. Katz, “Estimation of Probabilities from Sparse
Data for the Language Model Component of a Speech
Recognizer”, IEEE Trans. ASSP-35, No. 3, Mar. 1987,
pp. 400-401.

F. Cohen, A Short Course on Computer Viruses, ASP
Press, Pittsburg, 1990, pp. 9-15.

U.S. Patent Aug. 8, 1995 |

Sheet 1 of 7 5,440,723
NETWORK
- :
NAT
12 3
BUS /
I/m 16 I PL I 24 28 1
cPU RAM TERMINAL HARD DISK FLOPPY DISK
CONTROL SYSTEM SYSTEM
NGT | 36 CONTROL CONTROL
fo N —Ta
DISPLAY] [MANUAL| [RARD DISK FLOPPY DISK
DEVICE | |INPUT DRIVE
FIG. IA u
L] u c
32" 347 O
10 /
30a
BUILD NGRAM LIST —A
CALCULATE NGRAM PROBABILITIES }—B
c EXACT- MATCH FUZZY- MATCH | ¢
! 7] CALCULATION ™ caLcULATION | ~2(¢©

COMBINE SCORES

1

REPORT RESULTS

FIG. 5

U.S. Patent Aug. 8, 1995 Sheet 2 of 7 5,440,723

TO OTHER
_PROCESSORS

K K
p2 ¥ P4
K
a i
% INFECTED

FIG. IC_

U.S. Patent

Aug. 8, 1995 Sheet 3 of 7

5,440,723

T

MONITOR SYSTEM FOR | —a
ANOMALOUS BEHAVIOR

DEPLOY DECOY PROGRAMSI c
TO CAPTURE UNKNOWN

VIRUS

[DENTIFY INVARIANT
CODE PORTIONS OF D
VIRUS SAMPLE (S)

l

FROM CODE, ADD TO
SCANNER'S DATABASE

EXTRACT SIGNATURE F
E

| ,

F

INFORM OTHER NETWORK
PROCESSORS OF VIRUS

INFECTION

GENERATE DISTRESS 6
SIGNAL, IF REQUIRED

FIG. 2

ANOMALOUS BEHAVIOR

ALERT USER, |—g. [SCAN FOR KNOWN DETECTED
REMOVE VIRUS I VIRUSES B
* KNOWN
VIRUS UNKNOWN VIRUS

Sheet 4 of 7 5,440,723

Aug. 8, 1995

U.S. Patent

ATIv0Id0Id3d JdNXO3IHD NNY

ATIVANILNOD GV A NNY

HOIH =143V 13S

! ¢

L 3svaviva
B 0L (S)3M¥NLVYNSIS aav
SdNMOVE HO AN3A 5 } 0
ONISN dN NV31D = Y
| _ (S)IUNLYNSIS LOVHLIX3 €9 4
- a
(X103L03dX3INN) “ ! N
SNOL-O34N _ 37dWVS SNYIA HOV3 40
| SNOILYOd 3009 AJILN3QI H 140d34 3.LVH3N3D
| * W d
()33 _
a3.L1934N! I _ S31dWVS 3000 SNHIA 3943W |_
_
$378WLN03X3| | _ *
1V j | SA0D3a a313IQ0W 30
NO NVOSHIA NNY NOILYOd VHIA 3LVI0SI SA093a
) | N
_ (S)A0D3a d31Iq0W
a3I14Iq0W 4 ON dI
anNNo4 NI BN TN " 43sN Ol
3 SWYH90Hd A0D3a AOd3a
SNHIA 4l oL VYNOIS GN3S 0 j JOVSS3IN mD._.<._.wm
H SNHIA NMONS
ATIVANILNOD| |
JOLSA NNY| | v_1ON dI
J : $3718v.LNO3X3
N SNYIA | G39NVHO NO NVOSHIA NNY S3IONVHD ON i
_ NMONM 3| y 4
“ S$318vLNO3IX3 SIONVHD I dNXO3HD NNY
_ Q39NVHD dI ATVWONV 41 § a
_
_
Y

WNIG3WN =1¥371v L3S

U.S. Patent

Aug. 8, 1995

Sheet 5 of 7 5,440,723

FILTER OUT PORTIONS OF VIRUS
THAT ARE OBSERVED TO VARY
FROM INSTANCE TO ANOTHER

]

FILTER OUT PORTIONS OF VIRUS
THAT ARE INTRINSICALLY THE MOST
LIKELY TO VARY FROM INSTANCE

— B

TO ANOTHER
ist INSTANCE
}32 6€E|i13 |aF|57 |9Bi9C|i4 {43|6D|5C|35/23}19|B5 }
BYTE |7 ! “BYTE n
2nd INSTANCE | |
76 loall6 DB AB|IS [8A]14 |43 |6D|5C|35|25|23 A4 }
I [
3rd INSTANCE ' | |
Q4| 42i3Aa(18 |7a [cAlDF |14 |43 6D |5C |35 |25 |10 |7D
' VARIANT I"INVARIANT" | varianT !
| PORTION | PORTION | PORTION |
FIG. 6A
BYTE |
8E DE 8C 06 O! 00 8C C6 8E DE 3! CO
31 DB 31 CO 31 D2 CB FO FB FF6F F5
BYTE 24

FIG. 6B_

U.S. Patent Aug. 8, 1995 Sheet 6 of 7 5,440,723

SEGREGATE CORPUS
INTO PROBE, TRAINING
AND TEST SETS

SELECT BYTE-STRINGS
FROM PROBE SET

USE TRAINING SET TO
ESTIMATE PROBABILITIES

COUNT FREQUENCY IN D
TEST SET

PRODUCE LIST OF
ESTIMATE PROBABILITIES

VS FREQUENCY

DETERMINE FALSE-
POSITIVE AND FALSE- F

REJECTION PROBABILTY

l

ISELECT THRESHOLD —G

FIG. 7

5,440,723

Sheet 7 of 7

Aug. 8, 1995

U.S. Patent

' 3UNLYNSIS QITVA -
89 00g*9Z 9|
8 94 ALIigvEoua [0
O11S18N3H 8 NoI 58%%__ m_ cm.n AHOW3W
0S
£]
saLavaond| | § nn ™~ Ts3a vﬁ
] WYH9-N G | WYNS0Nd je—
40 378Vl 2093d
7 Ndd
»9—]'S34HL 9L <
25 I° | swyusoudl_be 2L bl
140d 34 40 SNdH0D
34NLYNSIS 40103738 .
-] ‘OIS GIVA HOLVWILS3 [+ 130
8 H3NIGWOO ALITI8v804d "WONV
ALiNI8v80Y4d IVHO-N fe- __o¢
\ L) \ _ av
8p (S)31dWVS g9
29 HO LV SING Ty e q
—— LN3WOVHd d 5 WYH9-N PPl g | HINNVOS e
10vXx3d S 8¢ 1
L swpib-u ot W | /E.
$31Li718va08d HOLVWILS3 ﬁ
39NLVNOIS AL1718v804d H0SS3004d 938
31VaIaNYO[* 3UNIVYNOIS NVH9-N aso nw
40 1si1 31VAIaNYD 04
0s” ! ! é*z\ o_] Pa ic— N Aﬁ_
AWl As| | ™ [son i el
8§ 9% MHOM L3N

5,440,723

1

AUTOMATIC IMMUNE SYSTEM FOR
COMPUTERS AND COMPUTER NETWORKS

CROSS-REFERENCE TO A RELATED PATENT
APPLICATION

This patent application is related to commonly as-
signed U.S. patent application Ser. No. 08/004,871, filed
Jan. 19, 1993, entitled “Methods and Apparatus for
Evaluating and Extracting Signatures of Computer
Viruses and Other Undesirable Software Entities”, by
Jeffrey O. Kephart

FIELD OF THE INVENTION

This invention relates generally to digital data pro-
cessors and, in particular, to methods and apparatus for
providing computational integrity for digital data pro-
cessors and networks thereof.

BACKGROUND OF THE INVENTION

A computer virus has been defined by Frederick B.
Cohen as a program that can infect other programs by
modifying them to include a, possibly evolved, version
of itself (4 Short Course on Computer Viruses, ASP
Press, Pittsburg, 1990, page 11).

As employed herein, a computer virus is considered
to include an executable assemblage of computer in-
structions or code that is capable of attaching itself to a
computer program. The subsequent execution of the
viral code may have detrimental effects upon the opera-
tion of the computer that hosts the virus. Some viruses
have an ability to modify their constituent code, thereby
complicating the task of identifying and removing the
virus.

A worm is a program or collection of programs that
can cause a possibly evolved version of itself to be exe-
cuted on the same or possibly on a different computer.

A Trojan Horse is a block of undesired code that is
intentionally hidden within a block of desirable code.

Both computer viruses, worms, and Trojan Horses
are considered to be members of a class of undesirable
software entities, the presence of which within a data
processor, or network of data processors, is to be
avoided so as to maintain computational integrity.

A widely-used method for the detection of computer
viruses is known as a virus scanner. A virus scanner
employs short strings of bytes to identify particular
viruses in executable files, boot records, or memory.
The byte strings (referred to as signatures) for a particu-
lar virus must be chosen with care such that they always
discover the virus, if it is present, but seldom give a
“false alarm”, known as a false positive. That is, the
signature must be chosen so that the byte string is one
that is unlikely to be found in programs that are nor-
mally executed on the computer. Typically, a human
expert makes this choice by converting the binary ma-
chine code of the virus to an assembler version, analyz-
ing the assembler code, selecting sections of code that
appear to be unusual or virus-like, and identifying the
corresponding bytes in the binary machine code so as to
produce the signature. Wildcard bytes can be included
within the signature to provide a match with any code
byte appearing in a virus.

Currently, a number of commercial computer virus
scanners are successful in alerting users to the presence
of viruses that are known apriori. However, conven-
tional virus scanners are typically unable to detect the
presence of computer viruses which they have not been

5

15

20

25

35

40

45

50

55

60

65

2

programmed to detect explicitly. The problem of deal-
ing with new viruses has typically been addressed by
distributing updates of scanning programs and/or auxil-
iary files containing the necessary information for iden-
tifying the latest viruses. However, the increasing rate
at which new viruses are being written is widening the
gap between the number of viruses that exist and the
number of viruses that can be detected by an apprecia-
ble fraction of computer users. As a result, it is becom-
ing increasingly likely that a new virus will become
wide-spread before any remedy is generally available.

At least one mechanism to inform other computers
connected to a network of a presence of a viral infection
has been previously advanced. For example, a “net
hormones” concept has been proposed by David Sto-
dolsky, wherein every computer on a network keeps
archives of all potential virus-carrying contacts with
every other computer. When a computer finds that it is
infected with a virus, it sends a message to every com-
puter that it has ever contacted or been contacted by,
which in turn send messages to all of their contactees or
contactors, etc. However, it is believed that this ap-
proach will result in most or all computers quickly
becoming overloaded by infection messages from most
of the other computers on the network.

As such, a need has arisen to develop methods for
automatically recognizing and eradicating previously
unknown or unanalyzed viruses on individual comput-
ers and computer networks. An efficient method is also
required for informing other computers on the network
as to the existence of a computer virus within the net-
work.

It is an object of this invention to provide methods
and apparatus to automatically detect and extract a
signature from an undesirable software entity, such as a
computer virus or worm.

It is further object of this invention to provide meth-
ods and apparatus for immunizing a computer system,
and also a network of computer systems, against a sub-
sequent infection by a previously unknown and undesir-
able software entity.

SUMMARY OF THE INVENTION

The foregoing and other problems are overcome and
the objects of the invention are realized by a method
that provides computational integrity for a digital data
processor and a network of digital data processors. The
method includes the following component steps, or
some functional subset of these steps:

(A) periodic monitoring of a data processing system
for anomalous behavior that may indicate the presence
of an undesirable informational state, such as one arising
from the presence of an undesirable software entity,
such as a computer virus or worm;

(B) automatic scanning for occurrences of known
types of undesirable software entities;

(C) deploying decoy programs to capture samples of
unknown types of computer viruses;

(D) automatically identifying portions of a captured
virus sample which are likely to remain invariant from
one instance of the virus to another;

(E) extracting an identifying signature from the in-
variant portion and adding the signature to a signature
database;

(F) informing neighboring data processing systems
on a network of an occurrence of the undesirable soft-
ware entity; and

5,440,723

3

(G) generating a distress signal, if appropriate, so as
to call upon an expert to resolve difficult cases.

A feature of this invention is the automatic execution
of the foregoing steps in response to a detection of an
undesired software entity, such as a virus, worm, or
Trojan Horse, within a data processing system. Further-
more, the automatic extraction of the identifying signa-
ture, and the addition of the signature to a signature data
base, provides protection, or “immunity”, to subsequent
infections of the system, and also a network of systems,
by the same or an altered form of the undesirable soft-
ware entity.

BRIEF DESCRIPTION OF THE DRAWING

The above set forth and other features of the inven-
tion are made more apparent in the ensuing Detailed
Description of the Invention when read in conjunction
with the attached Drawing, wherein:

FIG. 1a is a block diagram of a computer system that
is suitable for use in practicing the invention;

FIG. 15 illustrates an exemplary computer network
that includes the computer system of FIG. 1a;

FIG. 1c illustrates the exemplary computer network
of FIG. 1b and the use of a kill signal that is transmitted
by infected computers to neighboring computers;

FIG. 2 is a flow chart depicting the constituent steps
of a method of the invention;

FIG. 3 is a more detailed flow chart depicting the
operation of the method of the invention;

FIG. 4 is a flow chart depicting a method for use in
segregating variant virus portions from invariant virus
portions;

FIG. 5 is a flow chart that shows the operation of a
statistically based computer virus signature extraction
method;

FIG. 6a illustrates exemplary portions of three in-
stances of a computer virus, the three portions each
including an invariant portion and variant portions;

FIG. 6b illustrates an exemplary 24-byte “invariant”
portion of a computer virus;

FIG. 7 is a flow chart that depicts a method of select-
ing a probability threshold used for accepting or reject-
ing a candidate signature; and

FIG. 8 is a block diagram of a system operable for
executing the method of the invention.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1a is a block diagram of a data processing sys-
tem 10 that is suitable for practicing the teaching of the
invention. A bus 12 is comprised of a plurality of signal
lines for conveying addresses, data, and controls be-
tween a Central Processing Unit 14 and a number of
other system bus units. A RAM 16 is coupled to the
system bus 12 and provides program instruction storage
and working memory for the CPU 12. A terminal con-
trol subsystem 18 is coupled to the system bus 12 and
provides outputs to a display device 20, typically a CRT
monitor, and receives inputs from a manual input device
22, typically a keyboard. Manual input may also be
provided from a pointing device, such as a mouse. A
hard disk control subsystem 24 bidirectionally couples a
rotating fixed disk, or hard disk 26, to the system bus 12.
The control 24 and hard disk 26 provide mass storage
for CPU instructions and data. A floppy disk control
subsystem 28 bidirectionally couples one or more
floppy disk drives 30 to the system bus 12. The floppy
disk drive 30 works in conjunction with a removable

20

25

30

35

435

55

60

65

4
floppy diskette 30a2. A network adapter (NA) 31 is pro-
vided for coupling the system 10 to a network.

The components illustrated in FIG. 1z may be em-
bodied within a personal computer, a portable com-
puter, a workstation, a minicomputer, a main frame
computer, or a supercomputer. As such, the details of
the physical embodiment of the data processing system
10, such as the structure of the bus 12 or the number of
CPUs 14 that are coupled to the bus, is not crucial to the
operation of the invention, and is not described in fur-
ther detail below.

As employed herein, the informational state of the
data processing system 10, at a given moment in time, is
considered to be defined by the contents (bytes) of all
memory or storage devices to which the system has
access. These include, but are not limited to, RAM,
registers, hard disks, floppy disks that are inserted into
floppy disk drives, and magnetic tape that is inserted
into a tape drive.

The informational state history of the system 10 is
considered to be the history of its informational state at
all moments in time.

For the case where the data processing system 10 (P1
of FIG. 1b) is connected to other data processing sys-
tems (P2-P7) via a network, such as the exemplary
network depicted in FIG. 15, an additional data proces-
sor (Pp) may be added as a dedicated decoy program
server, as described below.

The method of this invention includes the following
component steps, as illustrated in FIG. 2, or some func-
tional subset of these steps.

Step A: Periodic monitoring of the data processing
system 10 for anomalous, potentiaily virus-like behav-
ior.

Step B: Automatic scanning for occurrences of
known viruses, and removal of any which are found to
be present.

Step C: Deployment of decoy programs to capture
virus samples.

Step D: Segregation of a captured virus sample into
portions that are likely to vary from one instance of the
computer virus to another instance, and into portions
that are likely to be invariant from one instance to an-
other.

Step E: Extraction of a viral signature from the in-
variant portion(s) and the addition of the signature to a
signature database.

Step F: Informing neighboring data processing sys-
tems on a network of an occurrence of a viral infection.

Step G: Generation of a distress signal, if appropriate,
so as to call upon human experts to resolve difficult
cases.

A feature of this invention is the automatic execution
of the foregoing steps in response to a detection of an
undesired software entity, such as a virus or a worm,
within the data processing system 10.

A discussion is now made of each of the above refer-
enced Steps A-G of FIG. 2.

Step A: Anomaly Detection

The first step in the process of this invention detects
anomalous system behavior of a type that may indicate
the presence of an undesirable informational state re-
sulting from the presence of a virus or some other unde-
sirable software entity, such as a worm or a Trojan
Horse. The detection of anomalous behavior within a
computer or computer network can be accomplished
through the use of known techniques, preferably a tech-

5,440,723

5

nique that detects anomalies that may indicate a virus.
One suitable anomaly detection technique, that uses
patterns of activity undertaken by computational pro-
cesses, is described in an article entitled “A Pattern-
Orientated Intrusion-Detection Model and its Applica-
tions”, S. W. Shieh and V. D. Gligor, Proceedings of
the 1991 IEEE Computer Society Symposium on Re-
search in Security and Privacy”. Another suitable tech-
nique detects unexpected changes in executable or re-
source files. As an example, F. Cohen, 4 Short Course on
Computer Viruses, ASP Press, Pittsburg, 1990, discusses
the use of integrity shells employing modification detec-
tors. In this case, modification of files is detected by
cryptographic or non-cryptographic checksums, and
the user is notified if a modification is detected.

The method at Step A may employ any one or a
combination of these or similar techniques. The end
result is the detection by the system 10 of an anomalous
system behavior that may be indicative of the presence
of a computer virus, or some other undesirable software
entity.

The anomaly detection process or processes may be
run continually as a background task, or periodically as
a foreground task, depending on the desire of the user
and/or the nature of the underlying operating system.

Step B: Scan for Known Viruses

If preliminary evidence of virus-like activity is de-
tected, additional computational resources are devoted
to obtaining more conclusive evidence of viral infec-
tion. If a virus is present, there is a high probability that
the virus is a well-known virus that can be readily de-
tected by a virus scanner. Thus, Step A scans an infor-
mational state history of the system, that is, all relevant
media (e.g. files, boot records, memory), for known
viruses. In one implementation, a pre-existing virus
scanner is activated to search for a large set of patterns
or signatures, each of which pertains to a different virus
or virus family. It is highly desirable (but not essential)
that the virus scanner be capable of detecting slight
variations on known viruses. Many conventional scan-
ners tend to possess this capability, to a limited extent,
simply by virtue of the fact that they search based only
on short contiguous strings of bytes found in the virus.

One especially suitable virus scanner, known as VIR-
SCAN, was available from the International Business
Machines Corporation until recently, when it was in-
corporated into the IBM AntiVirus program. This virus
scanner is particularly useful for detecting variations in
known viruses because it permits a certain number of
mismatches between a string of bytes in a file being
examined and the virus signature string. This capability
reduces the chance of having to proceed to Step C
(decoy deployment), and is even more useful in the
event that the virus is completely unrelated to any
known virus, as is described below with respect to Step
E. If the anomaly is found to be due to a known virus or
some slight alteration of it, the method proceeds to Step
Bj where the user is alerted, and the virus removed
(killed) by traditional methods, such as restoration from
backup (either automatically or manually by the user)
or disinfection (removal of the virus from all of the
software it has infected.) In general, disinfection is only
acceptable if the virus is found to be an exact copy of a
known virus. This implies that the system verify the
identification made by the virus scanner. ,

15

30

40

45

60

65

6
Step C: Decoy Deployment

If no known virus is detected, the anomaly may be
due to some unknown virus. In this case, the method
employs one or more decoy programs in an attempt to
attract and obtain one or more samples of the unknown
virus. The decoy programs could be commercially-
available computer programs which are installed on
(and are capable of being executed on) the computer
system. Preferably, however, they would be special-
purpose programs which exist solely for the purpose of
capturing viruses.

For the case of a DOS-based system, a variety of
decoy programs having *.COM and * EXE extensions
(also referred to as executables) are created, executed,
read, written to, copied, etc. The use of decoy programs
for this purpose is described by W. C. Arnold and D. M.
Chess in “System for Detecting Undesired Alteration of
Software”’, IBM Technical Disclosure Bulletin, Vol. 32,
No. 11, pages 48-50, April 1990.

In operation, original copies of the decoy programs
are stored securely, by example in encrypted form or on
a separate server, along with checksums of the originals.
After a specified time interval, or after other specified
conditions are met, checksums of some or all of the
decoy programs are taken and compared directly to
their originals. Alternatively, the decoy programs are
compared directly to their originals. If none of the de-
coys are found to have changed, the user is alerted to
the fact that an anomaly of some sort was detected, but
that the system was unable to find conclusive evidence
of a virus. In this case, it is desirable to maintain the
system in a moderate state of alert for some time period,
exercising the decoy programs at a reduced priority or
less frequent intervals.

It is desirable to have a large variety of decoy pro-
grams that differ from one another in length, content,
and name. Furthermore, the decoy programs should be
placed in and run from various directories, particularly
those directories in which there are modified executa-
bles.

Some DOS viruses are known to become resident in
memory and are active until the computer is rebooted.
In such a case, the virus is able to infect any executable
at any time. Often, a resident virus will infect executa-
bles as they are brought into memory to be executed.
Thus, if several decoy programs are run, there is a rea-
sonable chance that one or more decoy programs will
be infected by such a virus. In addition to running the
decoys, the system should perform a variety of other
operations with the decoy programs, including copying
them, opening them, creating them, etc. All of these
operations increase the probability of infection by a
virus that is resident in memory.

However, some DOS viruses do not go resident, and
can infect other programs only when the host program
in which the virus is imbedded is executed. Such viruses
typically use static criteria for selecting a program to
infect, such as the program name or the directory in
which the program is located. In this case, it is more
difficult for the decoy programs to become infected. To
increase the chance of infection, decoy programs are
preferably placed in locations where they are more
likely to be selected, such as the directory of the possi-
bly-infected executable, or directories containing sys-
tem programs (e.g. the root directory) and commonly-
used utility programs. In order to infect the decoy pro-

5,440,723

7
grams, the potentially-infected executable should be run
repeatedly.

If one or more decoy programs is subsequently found
to have changed from the original, protected version, it
can be assumed that the changes are due to a virus. A
comparison of each modified decoy program with its
corresponding uninfected version enables a copy of the
virus to be isolated from each decoy.

Step D: Identification of Invariant Code Portions

In order to maximize the likelihood that a chosen
signature will appear in all or nearly all progeny of the
virus, it is preferred to filter out all portions of the virus
which are observed to or are likely to vary from one
instance of the virus to another. To achieve this, the
method employs one, or preferably both, of the tech-
niques represented as Blocks A and B in FIG. 4. The
order in which the two techniques are used can be re-
versed, and the following description is correspond-
ingly modified to accommodate the opposite ordering
of the two techniques.

If several decoy programs are found to be infected, a
most desirable case, it is important to compare the vari-
ous versions of the isolated virus programs with one

5

10

20

another (Block A). If all versions are identical, or if 25

there is only one version, the entire virus is considered
to be “invariant”, and can be passed along to block B
Otherwise, if the various isolated computer virus pro-
grams differ, but have substantial areas in common, it
can be assumed that the virus alters itself when it repli-
cates. As a result, only the common areas are marked
for further examination by the heuristics employed in
Block B of FIG. 4. This procedure is illustrated in

FIG. 6a, in which the variant and “‘invariant” por-
tions of a virus are identified by comparing three in-
stances of it. In FIG. 6a, each byte is shown expressed
in a hexadecimal representation, and an invariant por-
tion is identified. The length of the invariant sequence
of bytes is exemplary. In practice, invariant sequences
of bytes are often considerably longer than five bytes,
and more than one such portion typically appears
within the virus. If there are no substantially similar
areas, this may indicate the presence of a relatively
sophisticated self-altering virus, or the presence of more
than one virus. In this case, each of what appear to be
different viruses are provided separately to the extrac-
tion method, which determines one or more signatures
for each. The system is also placed in a moderate state
of alert, and the user-is informed.

It is noted that a situation may arise in which the
computer is attacked by a sophisticated, unknown virus,
every instance of which looks completely different. In
this case, at the completion of Block A in FIG. 4 the
virus detector may be unable able to determine whether
there are several viruses, or one virus that appears dif-
ferent every time it is replicated. The use of a distress
signal, described below in relation to Step G, may be
appropriate for this situation.

At this point, there are one or more sections of a virus
program (or a set of different viruses) that are marked as
being substantially “invariant”. However, even if a
given section of the virus program is common to all
copies which have been obtained in Step C, this does
not guarantee that the section will appear in its entirely
in every instance of the virus. The purpose of Block B
is to filter out portions of the “invariant” sections which
by their nature are more likely to be variable. As a
general rule, non-executable “data” portions -of pro-

35

40

45

50

55

60

65

8

grams, which can include representations of numerical
constants, character strings, screen images, work areas
for computations, addresses, etc., tend to be more likely
to vary from one instance of the program to another
than “code” portions, which represent machine instruc-
tions. It may be that most or all of the “data” bytesina
given virus are the same in all instances of that virus, but
without a careful analysis this is difficult to establish
with certainty. Thus, a conservative approach assumes
that “data” bytes may change, and therefore it is desir-
able to disqualify them from being chosen as portions of
candidate signatures. Perfect classification of each byte
as being “code” or “data” is not necessary. An errone-
ous classification of “code” bytes as ‘“‘data” bytes is
more tolerable than an erroneous classification of
“data” bytes as “code” bytes.

By example, FIG. 6b illustrates a 24-byte “invariant”
portion of a virus sample that was generated at Step C.
The first 4 bytes represent machine instructions, bytes 5
and 6 represent data, bytes 7-19 represent code, and
bytes 20-24 represent data. Thus, if Block B of FIG. 4
were employed, only bytes 1-4 and 7-19 would be
passed along to Step E for signature extraction.

Suitable methods of code-data segregation include,
but are not limited to, the following techniques.

1. Conventional static disassembly techniques, such
as flow analysis.

2. Simulation of marked viral code in a virtual ma-
chine, wherein the virtual machine includes a hardware
and software model of the computer or class of comput-
ers for which the virus signature is being obtained.

3. Running the marked viral code through an inter-
preter or debugger to determine which bytes are actu-
ally executed. This method requires a “safe” environ-
ment in which to run the virus, such as the dedicated
server Ppreferred to above in the discussion of FIG. 1b.

4. Statistical classification techniques.

The second method, i.e., simulation of the marked
viral code in a virtual machine, is the safest and most
reliable, but is often the most computationally intensive.

The second and third methods each have the advan-
tage that they are capable of determining whether a
virus is self-modifying. Viruses that modify themselves
often do so for the purpose of obscuring their machine
code portions by making the code appear different from
one instance of the virus to the next. Such viruses are
often referred to as self-garblers. Self-garblers typically
consist of a short decrypting “head” portion followed
by code which is transformed in an easily-invertible
manner {e.g. XOR’ed) using a randomly-chosen de-
cryption key when the virus is replicated. Thus, the
only portion of the code which remains invariant, from
one instance of the virus to another, is the head. It is
helpful to know that a virus is self-modifying (and thus
potentially self-garbling), so that signatures will only be
drawn from the decrypting head. This information can
also be helpful in identifying cases in which what ap-
peared to be several different viruses in Step C are
actually only different instances of a single, self-garbling
virus.

At the conclusion of Step D, there exists one or more
sequences of bytes which appear in every instance of
the one or more viruses that were obtained or generated
at Step C and which, according to any heuristics em-
ployed in Block B, are deemed likely to appear in most
or all possible instances of the virus. The set of candi-
date viral signatures are all possible contiguous blocks
of S bytes found in these “probably-invariant” or “sub-

5,440,723

9

stantially invariant” byte sequences, where S is a signa-
ture length specified by the user or determined by the
system. Typically, S has a value in the range of approxi-
mately 12 bytes to 36 bytes. The “probably-invariant”
byte sequence(s) may be provided an an input file (IF
32, FIG. 1a) for subsequent processing by the signature
extraction technique described below.

There may be several viruses (or virus signatures) of
interest. As such, a record is maintained of which candi-
date signatures belong to each virus.

Step E: Signature Extraction

In general, the signature extraction method searches
through the “probably-invariant” sections of virus code
for the n best possible signatures (where n is typically
small, and perhaps 1). A “good” viral signature is one
which is statistically unlikely to generate false positives
when run on uninfected, legitimate programs, but will
always identify the virus if it is present. Depending on
the nature of the virus scanner which will employ the
resulting signature, other criteria may be combined
with this criterion to evaluate the desirability of a given
candidate signature. Another desirable property is that
the signature be flexible enough to allow for the detec-
tion of slight alterations in the viral code. This is espe-
cially useful because the decoys may not have captured
the full range of variation of a particular virus. This is
the reason that the virus scanner referred to in Step B
should be capable of detecting slightly-altered versions
of viruses. This may be accomplished by permitting
some number of mismatched bytes, or by selecting a
collection of substrings (fragments) of the signature and
requiring that some number of them be found before
declaring a virus to be present. String-matching is but
one suitable technique for detecting slight alterations.
Statistical measurements of viral code (such as n-gram
frequencies) and various transformations of them (such
as singular value decomposition) also provide a mecha-
nism to recognize close kinship between two function-
ally similar instances of a virus that would appear very
different to a string scanner.

A presently preferred method for automatically ex-
tracting viral signatures is disclosed in the above-
referenced commonly assigned U.S. patent application
Ser. No. 08/004,871, filed Jan. 19, 1993, entitled “Meth-
ods and Apparatus for Evaluating and Extracting Sig-
natures of Computer Viruses and Other Undesirable
Software Entities”, by Jeffrey O. Kephart.

Briefly stated, the technique disclosed in this com-
monly assigned U.S. Patent Application implements a
signature scoring technique which processes a large
corpus of typical programs, such as PC-DOS and OS/2
binary executables, collects statistics on n-gram fre-
quencies, and uses this information to estimate the prob-
ability of finding a given sequence of bytes (with a
specified number of allowed mismatches) in the pro-
grams of the corpus. Once the signatures have been
extracted, they are added permanently to a database
used by the virus scanner, and all relevant media are
scanned and cleaned up as in Step B.

In greater detail, the automatic signature extraction
method operates to identify one or more signatures
which have (a) estimated “false-positive” probabilities
which are below a predetermined threshold, (b) which
are among the lowest of all the candidate signatures,
and (c) which may satisfy other specified criteria as well
(for example having as the first two bytes an unusual
and rarely occurring byte combination). In that it is

10

25

35

40

45

55

60

65

10

technically impossible to verify a signature against all
programs that have ever been written or that ever will
be written, the probability estimation is preferably
based on a corpus of software programs in common use
on the particular hardware and operating system on
which the virus scanner is to be used. This corpus of
programs is used to extrapolate from a subset of the
programs in existence to the much larger set of possible
programs.

DESCRIPTION OF THE SIGNATURE
EXTRACTION PROCEDURE

In a first step, the system 10 supplies one or more
input files (IFs 32), each containing one or more sub-
stantially invariant portions of viral code from which
one or more virus signatures are to be extracted. The
input files are preferably generated by automatic cre-
ation of the files by software programs, including the
decoy deployment and code/data segregator of Steps C
and D. :

Furthermore, there is provided the corpus of soft-
ware programs in common use on the particular hard-
ware and operating system targeted by the computer
virus(es) of interest. For example, for viruses which
affect IBM PCs and compatibles running DOS (disk
operating system), the corpus includes a number of
executable programs (typically stored as files with
.COM and .EXE extensions). In the preferred embodi-
ment of the invention, the corpus of programs (CP 34 of
FIG. 1) is stored on a storage device, such as the hard
disk 26, that is accessible by the computer system on
which the method is executed. An alternative imple-
mentation, described in detail below, permits the corpus
to be stored elsewhere. In this case, a file containing a
properly digested version of the corpus is stored on a
storage device which is accessible by the computer
system on which the method is to be executed. This file
is referred to as a table of n-gram probabilities, and is
discussed in greater detail below.

Finally, the method described below can be automati-
cally invoked and executed on the data processing sys-
tem 10, or can be manually started, typically by issuing
the appropriate command via the input device 22. A
computer program that implements the method of the
invention can also be stored on the hard disk 26 or the
floppy disk 30z and, in response to an invocation of the
program is loaded from disk to the RAM 16. The CPU
14 then executes the program. It may be necessary to
supply input parameters to the method by inputting
either the parameters themselves or the name of input
files containing the parameters. These input parameters
can include, by example, a predetermined threshold
value for probability estimation and the file name(s) of
the IF 32.

It should be realized that system 10 that executes the
method of the invention need not be the same system for
which one or more valid virus signatures are being
generated for use by a virus scanner program.

Reference is now made to FIG. 5 for a general de-
scription of the steps of the method.

At Block A, a list is formed of all n-grams contained
in the IF 32 data. An n-gram is an instance of n consecu-
tive bytes, where n=1 (uni-gram) to some arbitrarily
large value. Typically n is in the range of 3 to 8. The IF
32 is comprised of sections of previously identified in-
variant portions of virus machine code.

5,440,723

. 11

At Block B the probabilities are estimated for all
n-grams in the list of n-grams by comparing the n-grams
to the CP 34.

At Block Cj, for each candidate signature, an esti-
mate is made of the probability of an exact match and-
/or at Block C; the probability is estimated of a speci-
fied set of non-exact or fuzzy matches (e.g., matches to
the signature or some contiguous fragment of it, given a
specified number of mismatches).

At Block D, the estimated exact-match and fuzzy-
match probabilities are combined to obtain an overall
evaluation of each candidate signature.

At Block E, the method reports the outcome for
some subset of the candidate signatures. The output
report can be displayed on the display device 20 and/or
stored in a file on the hard disk 26 or floppy disk 30a for
subsequent review by an operator. The report is also
provided as an input to other software programs, in
particular a virus scanner, which makes use of the sig-
nature(s) contained in the report.

The foregoing Blocks A-E are now described in
greater detail.

BUILDING A LIST OF THE REQUIRED
N-GRAMS (FIG. 5, Block A)

At this point there are one or more sections of segre-
gated virus code (binary machine code) from each of
one or more viruses. As was noted, it is desirable to
eliminate any large variable areas from these sections,
leaving only those invariant portions which represent
machine instructions.)

One suitable procedure for extracting the n-grams
and placing them into an n-gram table (NGT 36 of FIG.
1a) is expressed in the following pseudo-code.

Procedure: Build_Ngram__List

For each virus
For each section of virus code
For i=1 to length_of__section
For n=1 to naax
If (i+n—1<length__of_section)
n-gram=Dbytes i through i+n—1 of section
If (n-gram is not in n-gram_table)
Store n-gram in n-gram_table
The n-gram table 36 is maintained in, by example, the
RAM memory 16 and/or in a file stored on the hard
disk 26 or the floppy disk 30a. The term length.__of_sec-
tion is the length of a given section of virus code in

bytes, and npgax is a2 chosen maximum length, in bytes, of 5

the n-grams. Typical values for npyux are in the range of
3to08.

It is noted that under some circumstances an n-gram
may include one or more wildcards, wherein a wildcard
is considered a don’t-care byte or bytes. For example, if
the i’® byte in a signature is a wildcard, this indicates
that any byte is considered to match the i byte. Wild-
cards are included in some virus signatures to provide
greater robustness to variations in the virus, as de-
scribed below.

ESTIMATING THE N-GRAM PROBABILITIES
(FIG. 5, Block B)

Having obtained a list of all of the n-grams, the list
being stored in the n-gram table 36, the next step esti-
mates a probability of the correctness of each of the
n-grams. The signature extraction procedure uses either
of two general estimation methods.

20

25

35

40

45

60

12

Estimation Method 1

One presently preferred approach to n-gram proba-
bility estimation searches the entire corpus of programs
34 for only those n-grams that are listed in the n-gram_..
table 36. This method tallies the frequency of occur-
rence of each n-gram within the corpus 34 and inserts
the occurrence frequency into the n-gram__table 36.

More specifically, what follows is a method for col-
lecting n-gram statistics:

(a) For each n-gram B;B;. . . Byin the n-gram_table
36, record f(B1B;. . . By), the number of occurrences of
the n-gram in the corpus 34 (this can be implemented
efficiently using a hash table).

(b) Record also in the n-gram_table 36 the number of
n-grams of length n, Th.

For uni-grams (n=1), the estimated probability is
simply taken to be the observed frequency:
p(B1)=f(B1)/T1. For n>>2, the estimated probability is
given by a weighted average of the observed frequency
and the probability calculated by combining together
shorter n-grams. A preferred method used to combine
two (n— 1)-gram probabilities and an (n—2)-gram prob-
ability to form an n-gram probability is:

p(BiBy ... Ba_1)p(B2B3 . . . Bp)
p(BaBy. .. By-1)

M

p(BiBy . .. Bp) =

Thus, the method for calculating n-gram probabilities
is given by:
Procedure: Calculate n-grams

fB1B2 ... By
——n—— +

P(B1By . .. By) = afB1B2...Bn) T,

p(B1B2 ... Ba_1)p(B2Bs3 . .. Br)
(Ba2B3 ... Bn—1)

(1 — ags1B2...Br))

where af(B1Bs. . . By) is a heuristic weighting function
which depends upon how many occurrences of B1Bz. .
. By, appear in the corpus 34. The weighting function
am=0 when m=0 and a,-1 when m>1 has been
found to work well in practice. In order to apply Eq. 2
for n=2, the O-gram probability is defined as unity. In
practice, the uni-gram and bi-gram (n=1 and n=2,
respectively) probabilities are tabulated first, and are
then employed to determine the tri-gram (n=3) proba-
bilities. Next, the bi-grams and tri-grams are used to
determine the 4-gram probabilities, etc., until finally
there is determined the nasgx-gram probabilities from
the (Npgax— 1)-gram and the (nagzx—2)-gram probabili-
ties.

Estimation Method 2

A second approach consults a pre-computed table 50
of n-gram probabilities (shown in FIG. 16) and places
the results in the n-gram table. The pre-computed table
is used for any set of viral code portions, and is con-
structed by making a one-time pass through the corpus
34 to determine the number of times each n-gram ap-
pears in the corpus (for each n=npsx), and dividing by
the large if nagx>2, even if n-grams which never ap-
pear in total number of n-grams of length n in the cor-
pus. However, the pre-computed table 50 could be
infeasibly the corpus are omitted.

One solution to this problem stores a chosen subset of
the n-grams and fabricates the remainder from shorter

5,440,723

13
n-grams. One suitable subset is the KX most common
n-grams. Another suitable subset is the set of n-grams
whose measured frequencies deviate by more than a
given amount from that estimated by combining, in
accordance with Equation 1, two (n—1)-grams and an
(n—2)-gram.

In the second case, Equation 1 is applied iteratively
by first using uni-gram and bi-gram probabilities to
estimate the tri-grams, then bi-grams and tri-grams to
estimate the 4-grams, etc., until finally the nppx-gram
probabilities are estimated from the (npszx— 1)-gram and
(npax—2)-gram probabilities. At each stage, only the
n-grams whose frequencies are poorly estimated by
Equation 1 are included in the pre-computed table. The
amount of computation is substantial, but is only re-
quired to be performed once, with possible periodic
updates to take into account additions to the corpus of
popular new programs compiled with new compilers.

A presently preferred method for determining the
contents of the pre-computed table 50 of n-gram proba-
bilities includes the following steps.

1. Tally the number of occurrences (the absolute
frequency) of all 1-gram and 2-grams in the corpus 34;
divided by T_.1 and T_2 respectively to obtain the
relative frequency of each 1-gram and 2-gram. Store all
l-gram and 2-gram frequencies in the pre-computed
n-gram table.

2. For k=3 to some chosen maximum k,

Determine the relative frequency of each k-gram for
which the first (k—1) bytes are a (k—1) gram in the
pre-computed n-gram table. (This condition will hold
for all 3-grams, but not necessarily for k> 3).

Divide this observed relative frequency by the esti-
mated frequency obtained from Eq. I using (k—1) and
(k—2)-grams.

If the absolute value of the logarithm of this quantity
exceeds some chosen threshold, store the k-gram and its
measured absolute frequency in the pre-computed n-
gram table 50.

It should be noted that this is but one of several suit-
able methods for deriving the contents of the pre-com-
puted table 50 of n-gram probabilities.

In general, estimation method 1 requires less storage
and is more accurate than estimation method 2, but can
require considerably more time to execute in that the
entire corpus is searched every time that new sections
of viral code are presented.

ESTIMATING THE CANDIDATE SIGNATURE
PROBABILITIES (FIG. 5, Biocks C)

Depending upon the application, it may be desirable
to estimate the probability of an exact match or a partial
match (typically fragments or mismatches) between a
candidate signature and some string of bytes in the
corpus (or any statistically similar set of programs of
comparable size). However, partial mismatch computa-
tions can be computationally expensive, and in the ex-
traction mode the set of candidate signatures can be
quite large. Therefore, depending upon the speed of the
CPU 14, it may be desirable to employ only the exact-
match probabilities to prune the set of candidate signa-
tures. This is the reason for the arrow pointing from the
exact-match calculation block (Cj) to the fuzzy-match
calculation block (C3). For example, the candidate sig-
natures having the n lowest exact-match probabilities
can be selected for further computation of fragment and
mismatch probabilities. .

40

45

65

14

As was noted above, the list of candidate signatures is
constructed from the sections of segregated viral code.
One suitable method selects some desired signature
length S and treats each contiguous block of S bytes in
each viral code section as a candidate. In this case, a
suitable procedure for probability estimation of each
candidate signature is given by the following pseudo-
code.

Procedure: X_ Probability_Extraction..Mode
For each virus

For each section of virus code

For i=1 to (length-of-section-S+ 1)

For j=1to S
Bj=byte i+j—1
Candidate signature=B;B; . .. B;
Store px (signature)=X_ Probability(BB;. . .
S,
where X denotes “Exact Match™, “Fragment”, “Mis-
match”, and possibly also some prepended qualifier
describing alternate implementations of the indicated
probability calculations.

Alternatively, S may be adjusted to the shortest
length that satisfies a predetermined probability thresh-
old.

The problem of estimating the probability that a pro-
posed signature will exactly match a string of bytes in
the corpus is next discussed, followed by a discussion of
two types of partial matches, i.e., fragments and mis-
matches.

Probability of an Exact Match to a Given Signature:

In order to calculate the exact-match probability
P Exacr-March (Signature) for a given signature, it must first
be determined whether any bytes should be replaced by
wildcards. In some processor architectures, there are
instructions which contain addresses that can poten-
tially vary from one instance of a program (in this case
a virus) to another. In order to accommodate these
potentially variable bytes, they should be replaced by
wildcards. If it is intended to use the teaching of the
invention in conjunction with a virus scanner that does
not permit wildcards, the wildcards can still be inserted
at this stage, in that the signature will be rejected at a
later stage. The positions of any wildcards that are
already present, or that were introduced at this step, are
used in the exact-match probability calculation. The
following pseudo-code describes a suitable implementa-
tion for determining the exact match probability.

Procedure: Exact_Match_Probability(signature)

Replace any potentially variable bytes in the signa-
ture with wildcards

W =number of wildcards in signature

Form list of wildcard positions: P=(P1,P3. .., Py);
P;<Pjfor i<j

PEracr-Marcn(signature) = Calculate__Sequence_.
Probability(signature; P)

Calculate__Sequence...Probability(signature; P) is a
procedure that estimates the probability p(BiB; . . .
Bg;P) of finding a byte-sequence BB . . . B; with wild-
cards in positions P=(P|P; . . py). The integers P;=S
are in monotonically increasing order, and
0=W =number of wildcards=S.

One presently preferred implementation, described in
the following pseudo-code, segregates the signature
into contiguous blocks of bytes containing no wild-
cards. The probabilities of these contiguous blocks are
then multiplied to give the exact-match probability for
the signature.

5,440,723

15 16
Procedure: Calculate_Sequence__Probability(byte- ments in the desired subset of possible fragments, and
sequence; P) the overall fragment probability is an accumulation of
Py=-—1 the individual fragment probabilities.
Pri1=5+1 Mismatches:
p (byte-sequence; P)=1 5 A further method for detecting altered versions of a
For j=0to K known virus alerts the user when a string of bytes ap-
byte-block=bytes Pj+1 through P;41—1 in byte proximately matches the signature. More precisely, all
sequence but at most M bytes in the string match the byte in the
p (byte-sequence;P)=p(byte-sequence; P)* Cal- corresponding position in the signature. In this case, an
culate_Block _Probability(byte-block) 10 estimate is required of the probability of finding a signa-
CalculateBlock_Probability(byte-block) is a proce- ture with M or fewer mismatches to the candidate sig-

dure that estimates the probability p(B1Bz. .. Bg)ofa pature B1B;. . . Bs. A reasonable approximation to the
contiguous, wildcard-free block of bytes BiB; ... Bxin M.mismatch probability is obtained by adding the prob-

the corpus. A preferred implementation is as follows: abilities of all of the combinatorial number of possible
Procedure: Calculate_Block_Probability(byte- 15 mismatch positions. For example, the probability of at
block) most two mismatched bytes in a given string of S bytes

(none of which are wildcards) is approximated by:
3

2Bi ... By if K = npax :
“ pm=2B1By ... Bs) = “
K—npax+1 20
pX P(Bi - . Biy npax—1) S—1
p(byte-block) = =1 ax . b3 s Bi_1XB;., Bi_1X:B;.
K~ pan+ 1 i K > npax iy jat PO B KB B)

i=22 PBi. .. Bitnptax—2)
where X;and X;represent what are referred to herein as
25 variable-position wildcards in positions i and j, respec-
The condition K> namx occurs when the length of tively. The sums run over all possible positions of i and
the wildcard-free block exceeds the maximal size of the ;

. J.
collected n-grams in the n_gram_table 36. If there are already wildcards (which are be referred
Fragments:) . herein as fixed-position wildcards) in the candidate
In order to enable a virus scanner to detect a slightly- 30 gjgnature BiB; . . . Bs, the situation is slightly more

altered version of a known virus, some virus scanners complex. If the number of fixed-position wildcards, W,
provide an indication when a contiguous block of F exceeds the number of allowed mismatches, M, the
bytes in a signature of length S is found in the course of gignature is invalid for M mismatches, and no further
scanning. There are (S—F+1) possible fragments of computation is necessary. If W=M, the M-mismatch
this sort. Other criteria, such as requiring that the first 35 probability is identical to the exact-match probability,
few bytes of each fragment be less probable than agiven the estimation of which has already been described. If
threshold, can reduce the total number of fragmepts to W <M, then M—W variable-position wildcards are
a smaller subset of valid fragments. The quantity of ,44ed to the W fixed-position wildcards. The probabili-
interest in this case is the probability that none of the tieq of al of the combinatorial number of possible sets of
fragments in the subset will be found in the corpus, orin 40 p__ W variable positions are added to obtain the M-mis-
a statistically-similar set of programs of comparable patch probability. The following pseudo-code provides
size. It can be shown that a readily-computed upper ; resently preferred procedure for estimating the over-
bound on this probability is the sum of the probabilities all mismatch probability, which is designated Pasis
of the individual fragments. The use of this estimated match(B1By . . . Bs;M).

upper bound, rather than an estimated probability, in- 45 ’
troduces some inaccuracy, but is generally adequate and
is much less computationally expensive than a more
exact computation. -

Thus, given a particular candidate signature B1Bz. . .
Bsthe following pseudo-code provides a procedure for
estimating the overall fragment probability (actually its me= M—W
upper bound):

Procedure: Mismatch_Probability(signature ;M)
If desired, replace any potentially variable bytes in
signature with wildcards.

50 W = number of wildcards

Procedure: Fragment_Probability(signature) If (m=0))
Replace any potentially variable bytes in signature Error: S"tlci’sil'a't'c‘sg‘sbe’ of wildcards exceeds allowed
with wildcards 55
DFragmend(Signature) =0 Else if (m=0)
Fori=1to (S—F+1) For];’=1_tovf+sl :
_ .. . _ or j=ito S+
rgmen: bt tiough (1 L —-
Biy1...Bji1
W =number of wildcards in fragment 60 pM,-:,,,a,c,,(signamre;fm=Q(o, 1J S+1)
Form list of wildcard positions in fragment: "
P=(P1,P;. . . Py); Pi<P;for i< _ Bl i O Sl
p(fragment) =Calculate__Sequence__Probability(- For j=it+m to S+1
fragment; P) O(m,ij)=0
PFragmeni(Signature) =pfragmend(Signature) +p(frag- 65 For k=i to k=j—m

If (k is not the index of any
ment) N . f fixed-position wildcard)
The above procedure is similar to that given for exact O(m.ij) = O(mij) + QOLK)*

matches, except that there is an iteration over-all frag- O(m—1,k+1)

5,440,723

17

-continued
PMismatch(signature;M)=(m,1,541)

It should be noted that when m=0, the procedure
Exact_Match__Probability is used to calculate exact-
match probabilities Q(0,1,j) of all relevant sub-sequences
of the candidate signature. Only Q(0,1,S+ 1), that is, the
probability of the subsequence which consists of the
entire signature, is required. However, the other proba-
bilities Q(0,1,j) for i=~1 and j5=S+ lare useful to calcu-
late and retain for use in calculations with m>0.

When the number of variable-position wildcards m is
non-zero, the probabilities Q(m,i,j) of all relevant sub-
sequences of the signature with m variable-position

-wildcards can be expressed in terms of probabilities of
sub-sequences of the signature with m—1, and with
zero variable-position wildcards (Q(m—1,k+1,j) and
Q(0,i,k) for all k for which the k* byte is not a fixed-
position wildcard). Again, only the probability
Q(m,1,S+1) is needed at this stage., but the other prob-
abilities Q(m,i,j) for i~1 and j5£S+-1 are useful to cal-
culate and retain for use in calculations with m replaced
by m+1.

In practice, it would be rmost efficient to invoke the
procedure Mismatch_Probability for M=W first. Note
that this yields the exact-match probability. Then, one
would invoke Mismatch_Probability for M=W 41,
then M=W+-2, etc., up to some value of M given by a
predetermined function of the signature length S, a
predetermined function of pafismarca(signature;M), or
some other criterion.

COMBINING AND REPORTING THE RESULTS
(FIG. 5, Blocks D, E)

In practice, the probability estimates for exact
matches, fragments, and mismatches are generally
somewhat inaccurate on an absolute scale, but for suffi-
ciently large nasax the correlation between the probabil-
ity estimates and the actual probabilities is good.

Depending upon the application, there are a number
of possible ways in which the results of the various
probability estimates can be combined into a final, use-
able result. One method assigns a score to a signature
based on some combination of the three probabilities
(and possibly the number of mismatches M as well), and
then employs a predetermined threshold to accept or
reject that signature.

If the signature is to be used in conjunction with a
virus scanner that only permits exact matches, a suitable
choice for the score would be just the exact-match
probability. The signature is then accepted if its score is
below some specified threshold and rejected otherwise.

If the virus scanner permits fragments and mis-
matches, a suitable choice for the score is the sum of the
fragment and mismatch probabilities. This results in a
slight overestimate of the probability of either a frag-
ment or a mismatch, since the probabilities are not com-
pletely independent, but for the purposes of this inven-
tion this technique provides a reasonable approxima-
tion. Again, a threshold may be used to reject or accept
the signature.

More sophisticated strategies can also be employed.
For example, the fragment and M-mismatch probabili-
ties are separately compared to a fragment threshold
and to a M-mismatch threshold. If the fragment score is
acceptable but the M-mismatch score is not, the virus

25

30

35

45

60

65

18

scanner may allow matches on fragments but not M-
mismatches, and vice versa.

Furthermore, instead of rejecting the M-mismatch
score outright for some predetermined value of M, the
procedure can determine the largest M for a given sig-
nature such that the M-mismatch probability is less than
a given threshold. This approach requires some itera-
tive interaction between this step and the mismatch
calculation described previously.

If a threshold probability is employed, a presently
preferred approach to choosing an appropriate thresh-
old is shown in the flow chart of FIG. 7 and is described
as follows.

First, at Block A the corpus 34 is segregated into
three components: a probe set, a training set, and a test
set. This can be done by randomly assigning programs
in the corpus 34 to one of the three sets. The probe set
may be relatively small; the training and test sets are
preferably larger and approximately comparable to one
another in size. At Block B the procedure randomly
selects several (preferably several thousand or more)
byte-strings from the probe set, each of the byte strings
having alength comparable to a typical signature length
S. Treating just the training set as the corpus, at Block
C use the set of procedures described in detail above to
estimate exact-match and the typical set of fuzzy-match
probabilities for each signature. At Block D, count the
frequency of each signature and each of the appropriate
fuzzy matches to that signature in the test set.

At Block E, produce lists of, for each signature in the
probe set, the estimated probability (obtained from the
training set) vs. the measured relative frequency (ob-
tained from the test set) for exact matches and for all of
the desired types of fuzzy matches (e.g. fragments, 1-
mismatches, 2-mismatches, etc.). To establish a reason-
able probability threshold for each type of match, Block
F performs the following calculations. First, for each of
many (typically several dozen) closely-spaced probabil-
ity thresholds T(), it tallies Spad(7), the total number of
signatures with estimated probabilities below T()
which appeared one or more time in the test set. Next,
for each of the specified probability thresholds T(i), it
tallies Syi(7), the total number of signatures with esti-
mated probabilities below T. The false-positive proba-
bility for the threshold T is then given by

FP (T)=Sgad(1y/Stotal (7).

Then, the total number of signatures Sggoq from the
probe set which never appeared in the test set (referred
to as “good” signatures) is tallied. Next, for each T, the
fraction GoodSigs(T) of “good” signatures with esti-
mated probabilities less than or equal to T is calculated.
At Block G there is selected (either automatically using
set criteria or by the user) a threshold T for which the
false-positive probability FP(T) is acceptably small
(typically much less than 1%), but for which the frac-
tion of signatures which are expected to be accepted by
the threshold GoodSigs(T) is sufficiently large (i.e. 5%
to 25% or more) to virtually guarantee that a valid
signature can be found somewhere in the viral code.

To establish a reasonable probability threshold for
each type of match, Block F calculates the percentage
of signatures, with estimated probabilities below a spec-
ified threshold, which appeared in the test set one or
more times. This yields the false positive probability for
that threshold. At Block G there is selected a threshold
which gives an acceptably small false-positive probabil-
ity, but that does not exclude a significant number of the
signatures.

5,440,723

19

To allow for the fact that the number of programs
that exist or could exist exceeds the number of programs
in the corpus 34 by a considerable margin, it may be
desirable to diminish.the threshold probability by a
factor of 10 or 100. In practice this may be overly con-
servative, in that virus code tends to be written in as-
sembler, and not the high-level languages in which most
modern software applications are written. Thus, selec-
tion of thresholds based upon studies of probes taken
from the corpus itself can be overly pessimistic for
viruses, which are somewhat atypical software. In prac-
tice, even when the safety factor of 10 to 100 is not
included, it is rare for the procedures of the invention to
produce signatures yielding false positives.

In the described signature extraction procedure, there
can be selected for each virus one or more candidate
signatures having the best score(s). In this case, it may
be desirable for the score to reward larger values of M,
so that the chosen signatures capture the greatest possi-
ble amount of variation.

Other criteria for signature selection might be
brought into play as well. In particular, it may be desir-
able favor signatures which increase the efficiency of
the scanner that employs them. For example, the search
methods used by some scanners can benefit if signatures
are chosen in which the first few bytes are uncommon.
One might therefore bias the scores of signatures to
favor those which possess attributes that are deemed to
be desriable.

The end result is the generation of a valid virus signa-
ture if the estimated probability of the occurrence of the
candidate virus signature is less than a threshold proba-
bility, wherein the threshold probability has a value
selected to minimize an occurrence of a false positive
indication during the subsequent use of the valid virus
signature by a virus scanner or similar virus identifica-
tion technique.

As was noted above, the signature report(s) may be
displayed on the display device 20 and/or are written to
a database for use by the virus scanner. As soon as the
signature for the previously unknown virus has been
extracted, the scanner of Step B uses the signature to
search for all instances of the virus in the system.

FIG. 2 Step F: Informing Neighboring. Computers

It has been demonstrated that informing one’s neigh-
bors if one is infected is highly effective in limiting or
prevent viral spread. As seen in FIG. 1¢, for the case
where an infected computer is connected to others via a
network, a “kill signal” (K) is transmitted from an in-
fected computer to neighboring computers on the net-
work. As employed herein, a neighboring computer is
considered to be one or more with whom the infected
computer communicates or exchanges software most
frequently. This differs from the above referenced pro-
posal that all computers with which the infected com-
puter has ever communicated be notified.

The kill signal may take a variety of forms and pro-
vide as little or as much information as is appropriate or
practical. For example, in one embodiment the infected
computer simply sends an “I’m infected” signal (one bit
of information) to its neighbor(s) whenever it enters
Step B (Scan for Known Viruses), thereby inducing all
of the neighbors to also enter Step B themselves. In
another embodiment, the infected computer sends an
“I’m infected” signal after it has cleaned itself up (com-
pleted Step B successfully), and also sends the name of
the virus (if it was previously known) and-its sig-

15

20

25

30

35

40

45

50

535

60

65

20

nature(s), whether the virus was previously known or
not. The signature(s) may have been determined in Step
E. In a further embodiment, the infected computer
sends an “I’m infected” signal when it enters Step C,
i.e., after it fails to identify the anomaly as a known
virus, thereby inducing its neighbors to enter Steps B
and C. Other strategies may also be used, other than
those specifically detailed above. In all cases, the end
result is that other computers on the network are alerted
to the presence of an anomaly, which may be a known
or an unknown virus, within the network.

It is noted that precautions are taken to ensure that
the propagation of the kill signal itself does not become
an epidemic in its own right. For example, a data pro-
cessor that has received a kill signal from one or more of
its neighbors sends a kill signal to its neighbors only if it
is sufficiently certain that it is also infected. As seen in
FIG. 1c the kill signals propagate only as far as the
non-infected computers P4 and P5 and, as a result, P6
and P7 are not made aware of the virus infecting P1, P2
and P3.

Step G: Generation of Distress Signal

No virus detector can detect every conceivable virus,
as shown by F. Cohen through a simple adaptation of
the halting problem contradiction in the above-
referenced A Short Course on Computer Viruses. Thus,
under certain circumstances the method of this inven-
tion may be required to inform the user that it is having
difficulty. In the case of a computer network a mecha-
nism is also provided for automatically alerting an ex-
pert as well.

An example of such a situation is one in which the
computer is attacked by a sophisticated, unknown virus,
every instance of which looks completely different. In
this case, at the completion of Step C the virus detector
may be unable able to determine whether there are
several viruses or one virus that appears different every
time it is replicated. The virus detector may operate on
the assumption that there are really several different
viruses, create signatures for each at Step E, then return
to Step B to clean up. This approach may be suitable
even if the decoy programs were infected by different
instances of the same virus. However, it is more likely
that the decoy programs will not have captured the full
set of viral progeny, or even the full range of the subset
of progeny which has infected the computer. In this
case, anomalous behavior is again detected at Step A.

If the full set of possible progeny is sufficiently small
(as it is even for the “Whale” virus, which takes a few
dozen different forms), several passes through the
method illustrated in FIG. 2 will eventually eradicate
the virus and provide full immunity to any future at-
tacks, in that the data base of virus signatures obtained
from Step E will include a signature for each of the
progeny of the virus. However, if the set of progeny is
too large, the computer will suffer recurrent infections,
and an appreciable fraction of its computational re-
sources will be diverted almost solely to virus identifi-
cation and eradication.

As such, the use of the distress signal is appropriate to
alert the user and/or an expert to the existence of a
confusing, potentially dangerous situation. The distress
signal provides all pertinent details of the viral infec-
tion, such as the set of signatures extracted thus far, so
that an expert, either human or software program, can
identify the problem as quickly as possible.

5,440,723

21

The invention has been described thus far in the con-
text of identifying and eliminating computer viruses
from computers and networks of computers. However,
the teaching of the invention can also be employed,
with minor modification, for combatting worms. As
employed herein, worms are considered to be self-
replicating programs or collections of programs which
are self-sufficient, and do not require a host program to
infect.

In that a worm does not attach itself to an existing
program, at least one component of the worm must be
active in memory at any given moment. Thus, a most
likely target of a worm is a network of multi-tasking
computers, through which the worm propagates by
spawning processes from one machine to another. For
the case of worm detection and eradication, the teach-
ing of the invention is modified as follows.

In Step A, i.e., periodic monitoring of the system for
anomalous behavior, anomaly detection by behavioral
patterns is the preferred method. However, even
though worms do not necessarily rely upon modifica-
tion of other executables, modification detection tech-
niques may still be employed for detecting attempts by
the worm to modify login or startup scripts to include
invocations of itself. The user is informed of suspicious
activity and given a choice as to whether to continue
running or to suspend the offending process (and/or the
family tree of processes to which it is related) pending
further investigation.

If the user chooses to suspend the process, the
method proceeds to Step B, in which that process, all
parents or children of that process, and perhaps all
other processes in memory, are scanned for known
worms. Cleanup involves killing active worm processes
(determined by tracing the process tree), and deleting
worm executables and auxiliary files from storage me-
dia. Backup of files is not likely to be as necessary in this
case, as it is for viruses, since a worm typically does not
alter other executables. However, restoration of files
may be necessary if the worm modifies scripts in order
to invoke itself, or causes damage to other executable or
data files.

Step C, decoy deployment, is not relevant in the case
of worms in that the anomaly detector of Step A will
have identified the suspicious processes and their parent
and child processes.

Steps D and E, invariant code identification and auto-
matic signature extraction, function in a manner as de-
scribed above.

The use of the kill signal of Step F is especially valu-
able when combatting worms, in that worms are intrin-
sically capable of propagating through a computer net-
work at higher speeds than a virus. This is because
transmission of a worm between machines is initiated
intentionally by a process, while a virus is typically
transmitted unwittingly by a human being. Thus, the
use of an automatic kill signal that is transmitted be-
tween machines is important to stop a rapidly-spreading
worm.

The distress signal of Step G is also especially valu-
able when combatting worms, due to the high speed
with which a worm can propagate over a network.
Quickly bringing into play the abilities of a human or
software expert to deal with novel situations is thus
critical to stopping the spread of the worm.

Having described in detail the operation of the
method of the invention, reference is now made to FIG.
3 for showing in greater detail a preferred embodiment

20

25

35

40

45

50

55

60

65

22

of the method of the invention for combatting viruses
within a computer network. The method is suitable for
use under DOS, but a presently preferred technique
employs a multi-tasking operating system such as 0S/2.

The ensuing description refers to programs (VSTOP,
CHECKUP, and VIRSCAN) that were available as
separate components from the International Business
Machines Corporation, and that have now been inte-
grated into an AntiVirus program. In other embodi-
ments of the invention other software modules having
similar functionality may be employed.

Block A: Run VSTOP continually

VSTOP runs as a TSR (Terminate and Stay Resi-
dent) process under DOS (or a DOS session under
0S/2). When a program makes a system service re-
quest, VSTOP obtains control, and checks the calling
program for signatures of known viruses. If a virus is
detected the user is informed as to which virus is pres-
ent. The user is also enabled to run the program (bypass-
ing the imbedded virus).

When employed with the automatic immune system
of this invention, if VSTOP detects a virus it also initi-
ates Block G, which runs VIRSCAN on all executables.
If the machine is connected to other machines (e.g. ona
LAN), a kill signal is sent to a chosen subset of the other
machines (Block H).

Block B: Run CHECKUP periodically

When CHECKUP is initially installed it calculates a
checksum of each executable file in the system, based
upon some keyword supplied by the user. Later, at the
instigation of the user or another computational pro-
cess, CHECKUP uses the same keyword to recalculate
the checksum of specified (one or more or even all)
executable files. A change in the checksum of a file
indicates that it has been modified.

When used in the automatic immune system of this
invention, CHECKUP is run on all executables at inter-
vals determined both by the user and/or by feedback
from other components of the immune system. If some
other components indicate that there is an increased risk
of present or imminent viral infection the level of alert-
ness is adjusted upwards, and the interval between suc-
cessive executions of CHECKUP is decreased. This
will occur in response to, by example, a virus-like activ-
ity detector (VLAD, described below) observing virus-
like behavior (Block C), CHECKUP detecting a modi-
fication (Blocks B or D), VIRSCAN identifying an
infected file or files, or a kill signal being received from
an infected neighboring computer on the network
(Block H on the neighboring machine). As time passes,
the level of alertness is decreased towards some baseline
level, unless a new alert signal is received from some
other component of the immune system. The receipt of
a new alert signal may either preempt the current alert
state or instead cause the current level of the alert state
to be adjusted upwards.

If at any point CHECKUP detected a change in one
or more executables, VIRSCAN is invoked and run on
all changed executables (Block F).

Block C: Run VLAD continually

There are patterns of system activity that are com-
monly observed when a virus infects a program, but
which are rarely observed, if at all, when a legitimate
(non-infected) program is being executed. The VLAD
monitors system activity to detect a pattern of activity
that is indicative of the presence of a virus, and gener-
ates an alert signal when virus-like behavior is detected.

5,440,723

23

Under DOS, VLAD can be run as a TSR (Terminate
and Stay Resident) process; while under OS/2 VLAD
can be run continuously, monitoring all system activity.

If VLAD detects virus-like anomalous behavior, it
invokes CHECKUP (Block D).

Block D: Run CHECKUP

When initiated by VLAD (Block C), CHECKUP
determines whether any executables have been recently
modified. If so, VIRSCAN is run on all changed execu-
tables (Block F). If there are no changed executables,
the user is informed that there was an anomaly detected
by VLAD, but no executables were modified (Block E).

Block E: Status message to user

If initiated by Block D, the user is informed that there
was an anomaly detected by VLAD, but no executables
were modified. If initiated by Block J, the user is in-
formed that, although CHECKUP detected one or
more changed executables, the decoy programs failed
to capture a virus. In either case, a moderate-level alert
is issued to Block B, thereby increasing the frequency at
which CHECKUP is executed.

Block F: Run VIRSCAN on changed executables

VIRSCAN employs a database of signatures consist-
ing of byte sequences which are known to be contained
in known viruses. If any of these byte sequences are
found in an executable file, the probability is high that
the file is infected with the corresponding virus.

If CHECKUP (Blocks B or D) indicates that some
executables have been modified, VIRSCAN is run on
all of the changed executables to determine whether the
change can be attributed to a known virus, i.e., one
contained in the VIRSCAN signature database.

If VIRSCAN finds that one or more of the modified
executables are infected with a known virus, it then
checks all executables on the system for infection
(Block G). If the computer is connected to other com-
puters (e.g., via a LAN), a kill signal is sent to some
subset (possibly all) of the other computers (Block H).

If VIRSCAN fails to identify any of the changes to
the executables as a known virus, the user is informed of
the situation. In a partially manual mode of operation,
and at the user’s request, the immune system attempts to
capture a copy of any unknown virus that might be in
the system by using decoy programs (Blocks J). In a
fully automatic mode of operation Block J is immedi-
ately invoked by the immune system software.

Block G: Run VIRSCAN on all executables

There are several conditions under which VIRSCAN
is run on all executables in the system. These include the
following five cases.

1. During the installation of the immune system on a
new machine.

2. When VSTOP (Block A) detects a virus signature
in a program that is just about to be executed.

3. When a previous run of VIRSCAN on modified
executables (Block F) discovers one or more infections.

4. When a new, previously-unknown virus has been
analyzed by other components of the immune system,
resulting in the addition of a new signature to the VIR-
SCAN signature database (Block O).

5. When a kill signal from a neighboring machine on
the network indicates that a virus has been detected
(Block H on the neighboring machine).

For case (1), the full VIRSCAN signature database is
used on all executables. For cases (2)-(5) either the full
VIRSCAN signature database can be employed or, for
greater speed, a subset of the signature database that

—

5

40

45

55

60

65

24
contains only those signatures corresponding to viruses
which have been identified by Blocks A, F, O, or H.

If, in running VIRSCAN on all executables, addi-
tional viral strains are discovered which were not iden-
tified by Blocks A, F, or O (if any of these Blocks initi-
ated the operation of Step G), a kill signal is sent to
neighboring machines to inform them of the infection
(Block H).

If there are any infected files, cleanup is initiated
(Block I). If no infections are found, the user may be
provided a message so indicating.

If Block G is initiated by VSTOP (Block A), at least
one virus is assumed to be active in the system. A warn-
ing message is generated if VIRSCAN fails to find the
virus, and a high alert state is entered. If Block G is
initiated by Block F, there will be at least one infected
file, specifically a modified executable that was found to
be infected by Block F. If Block G was initiated by
Block O, a copy of the virus can be expected to have
been found in some executable other than the decoy
program that captured it. However, polymorphic vi-
ruses (which can completely change their form from
one instance to another) may result in a failure by VIR-
SCAN to find another instance of the derived signature.
In this case, the user receives a warning message to this
effect, and the high alert state is entered. If Block G is
initiated by Block H, i.e., the receipt of a kill signal from
another computer on the network, then a possibility
exists that no files are infected, and thus in this case no
alert is issued.

Block H: Send kill signal to neighboring machines

If VIRSCAN (Block G) identifies one or more in-
fected files, and if the computer that executed VIR-
SCAN is connected to other computers (e.g. via a
LAN), the kill signal is sent to some subset (possibly all)
of the other computers (Block H). As described above,
the kill signal is sent to neighboring computers and
includes information about the viruses responsible for
the infection (which is delivered to Block G on neigh-
boring machines), along with associated identifying
signatures (which is delivered to Block O of the neigh-
boring machines).

Block I: Clean up using VERV or backups

If VIRSCAN (Block G) has identified one or more
infected files, an attempt is made to restore each in-
fected file to an uninfected condition. VERYV is capable
of removing many of the most common viruses from
infected files by determining whether the virus is an
exact copy of one that it is capable of removing. If so,
VERV removes the virus. If the virus cannot be re-
moved by VERV, an automatic restore from a tape
backup or from a read-only directory on a server, or
from another machine on the network is attempted. If
an automatic restoration of the infected file cannot be
accomplished, the user receives a message describing
the situation, with instructions for manually restoring
the file from backup.

VERV can also be employed for the purposes of this
invention to remove minor variants of known viruses by
treating them as if they were exactly the same as the
known version. The resulting disinfected file is then
checked by running CHECKUP (Block B) and deter-
mining whether the checksum of the file matches the
value it had prior to infection. If not, automatic or man-
ual restoration of the original file can be attempted.

Block J: Deploy decoy programs

If CHECKUP (Blocks B or D) has detected one or
more modified executables, but VIRSCAN (Block F) is

5,440,723

25

unable to attribute the modification to a known virus,
the modification may be due to an unknown virus. A
variety of decoy programs are then run in an attempt to
capture copies of the virus. After each run, CHECKUP
(Block B) is employed to check for modified executa-
bles. If a decoy program has been modified, then there
exists a high probability that an unknown virus is con-
tained within the system. Comparison of the modified
decoy program with the securely-stored original yields
a copy of the virus program (Block K). If some other
program has been modified, there is strong evidence for
an unknown virus. In such a case, in order to increase
the chances of capturing the virus, the newly-modified
program is temporarily re-named, a decoy program
with the same name is created and placed in the same
directory, and the originally-modified executable is run
again in an attempt to infect the decoy program.

If there is an unknown virus in the system, it is impos-
sible to know in advance whether the virus goes resi-
dent, and what criteria it may employ to choose pro-
grams to infect. As was described above, the decoy
programs are preferably placed in a variety of likely
places and run, copied, opened, and created frequently
(interspersed with running the originally-modified exe-
cutable). Another method to further enhance the
chances of infecting the decoy program is to start a
resident process which temporarily presents an artificial
environment to a virus, and in which the file system
appears to contain only those programs which are
decoy programs.

If a predetermined amount of time has elapsed and no
virus samples have been captured by decoy programs,
the user can receive a message (Block E) to the effect
that an executable was modified, but that no further
evidence of a virus was discovered. If no virus samples
have been captured, but other executables were modi-
fied during the course of executing Block J, the user
receives a message indicating that there is strong evi-
dence of a virus, but that the immune system has as yet
been unable to capture a sample. A high alert state is
entered, and the Distress Signal generated at Block G
(FIG. 3) can instruct the user to contact an expert. If
desired, the user could instruct the immune system to
continue the attempt to capture a sample of the virus.

If a decoy program(s) captures a virus sample, the
immune system may remain in Block J in an attempt to
capture additional samples of the virus. After a prede-
termined period of time, or after a predetermined num-
ber of virus samples have been captured, control passes
to Block K.

If the computer on which the immune system is in-
stalled is part of a network (e.g. a LAN), the decoy
programs may be deployed on another machine, prefer-
ably the dedicated processor Ppof FIG. 15. In this case,
any modified executables are sent over the network
from the infected computer to the decoy server Pp,
which performs the functions described above. It is thus
assumed that the decoy server Ppis reachable from and
by all processors connected to the network. The decoy
server Pp sends the results back to the infected com-
puter over the network. By running the decoy pro-
grams on the physically distinct decoy server Pp the
risk of creating further copies of the virus on the in-
fected machine is reduced.

The decoy server could return control to the infected
machine at a number of points (after Blocks K, L, M, or
N), but preferably the decoy processor performs Blocks

15

25

30

35

45

50

55

60

65

26
J, K, L, M, and N so as to reduce the risk of further
contamination of the infected machine.

Block K: Isolate viral portion of modified decoys

If one or more virus samples are captured by the
decoy programs (Block J) each modified decoy pro-
gram is compared with a securely-stored original to
yield a sample of the virus (or viruses). Control is then
passed to Block L.

Block L: Merge virus samples

If there is more than one virus sample identified at
Block K, there is a high probability that they were
generated by the same virus. A technique, similar to
that used in the UNIX operating system’s diff com-
mand, may be used to establish which parts of each
possible pair of samples are similar. If the similarity
between a given pair is sufficiently large, the two are
merged into a single virus code sample, with areas of
dissimilarity marked. For example, areas in which the
number of bytes is the same, but the bytes are different
between the two samples, are marked with question
marks; dissimilar areas with different lengths are re-
placed with the notation #n#, where n is the length of
the shorter area.

Merging continues until it no longer possible. If there
remains more than one virus code sample, there are
either several different viruses or, more likely, the virus
is polymorphic. This situation is noted in the report at
Block P.

Having obtained one or more samples, the results are
passed to Block M for code/data segregation.

Block M: Identify code portions of virus sample(s)

In order to determine which sections of each virus
sample are machine code, each virus sample is executed
on a simulator of the operating system calls. This simu-
lator can be executed by the infected computer, or can
be executed by the dedicated processor Pp. The exe-
cuted viral code portions (possibly including portions
that would be executed if all conditionals were satisfied)
are left as is, and the data portions are specially marked.
By example, sections identified as data are replaced
with special symbols such as periods or question marks.
Control is then passed to Block N.

If for any reason the invariant portions of the virus
sample cannot be identified, a failure message is added
to the report (Block P).

Block N: Extract virus signatures

The automatic procedure for extracting signatures
from the virus code samples has been described in detail
above. Having obtained one or more signatures for each
virus code sample, the immune system outputs them to
the VIRSCAN virus signature database (Block O).

Block O: Add signature to VIRSCAN database

The signature(s) extracted at Block N are added to
the VIRSCAN virus signature database. VIRSCAN is
then run on all executables (Block G), and the kill mes-
sage containing the new virus signatures is sent to any
neighboring processors (Block H).

Another pathway by which signatures are added to
the VIRSCAN database is by receiving a kill signal
from a neighboring infected processor, wherein the kill
signal contains virus signature information (Block H). If
the signature in the received kill message is not already
in the VIRSCAN database, the signature is added at
Block O.

Block P: Generate report

Results of each stage of the progress from initial cap-
ture of an unknown virus to the extraction of a signature
for the captured virus (Blocks J through N) are re-

5,440,723

27

corded in a report. If the user is on a network, the report
is sent to a network server, and a message is sent to alert
the network administrator to the generated report. The
administrator preferably forwards the report to a virus
expert so that the newly identified virus can be analyzed
further and the signature distributed with a next release
of the immune system software.

In particular, the report includes encrypted versions
of the decoy programs, in both their original and virus-
modified forms, the merged virus code samples, and the
extracted signature. If difficulties are encountered at
any stage, for example, code portions of the signature
could not be identified, or more than one merged virus
code sample exists (indicating possible polymorphism),
these conditions are also ncted in the report.

Having described the method of the invention in the
context of the data processing system 10 of FIG. 1a,
reference is now made to the block diagram of FIG. 8.
A description is first provided of the signature extrac-
tion components.

The IF 32, corpus 34, and n-gram__table 36 function
as in FIG. 1¢ and are numbered accordingly. An n-gram
processor 40 has an input that is connected to a code/-
data segregator block 38 and receives sections of virus
code therefrom. The n-gram processor 40 operates in
accordance with the procedure Build_Ngram_ List.
The block LOS 44 provides the length_of section
information. The block nas,x 46 provides a value that is
typically in the range of 3-8. The n-gram processor 40
is coupled to the n-gram__table 36 for storing the unique
n-grams therein.

Coupled to an output of the n-gram_table 36 is an
n-gram probability estimator 48. The estimator 48 oper-
ates in accordance with Equations 1 and 2 for either
Method 1 or Method 2. When operating in Method 1
the estimator 48 receives n-grams from the table 36 and
also byte strings from the corpus of programs 34. When
operating in Method 2, the estimator 48 is coupled in-
stead to a table of n-gram probabilities 50. Estimator 48
receives a value for alpha from the block 52 and pro-
vides to the n-gram__table 36 the values for f, T, and p,
as described above.

The system also includes a candidate signature proba-
bility estimator 54 that operates in accordance with the
procedures and equations:

X__Probability_Extraction_Mode,

Exact-Match__Probability(signature),

Calculate_Sequence__Probability(byte-sequence;P),

Calculate_Block__Probability(byte-block)-(Equation

3)’

Fragment_.Probability(signature),

Equation 4, and

Mismatch._Probability(signature;M).

The estimator 54 receives inputs from blocks 56 and
58, the inputs being expressive of the signature length
(S) and the number of allowed mismatches (M), respec-
tively. The list Q and other required storage elements
are internally maintained by the estimator 54. An output
of estimator 54 is coupled to a memory providing stor-
age for a list of candidate signature probabilities 60, and
provides the values for pExact, DFragment and pMismatch
thereto.

Coupled to an output of the list 60 is a probability
combiner and valid signature selector 62. Block 62 op-
erates in accordance with Blocks D and E of FIG. 5
and, if required, the flowchart of FIG. 7. Coupled to the
combiner and selector block 62 is a threshold block 64.
Threshold block 64 provides a current threshold value

15

20

25

30

40

45

50

S5

60

65

28

to the combiner and selector block 62. The combiner
and selector 62 also receives an input from the corpus of
programs 34 when operating in accordance with the
flowchart of FIG. 7. The output of the combiner and
selector 62 is the signature report. This output can be
provided to a suitable display device and/or as a file for
inputting to, for example, a virus scanner program.

Blocks 66 and 68 are employed for the case where the
threshold probability is being determined. Block 66
operates in accordance with Blocks E and F of FIG. 7
and receives inputs from blocks 48, 54 and 68. Block 66
provides an output to block 64. Treating byte sequences
taken from the probe set as candidate signatures, and
treating the training set as the corpus, block 48 provides
the information required by block 54 to calculate proba-
bility estimates. These probability estimates are input to
block 66. In addition, treating the same byte sequences
as candidate signatures and using the test set as the
corpus, block 48 tallies the frequency of each “‘candi-
date signature” and feeds the frequencies (f) to block 66.
At block 66, the probability estimates and the tallied
frequencies are combined, as described previously with
respect to blocks E and F-of FIG. 7, to calculate the
false-positive and false-rejection probabilities as a func-
tion of the threshold. Block 68 represents, in one em-
bodiment, a heuristic for making a reasonable trade off
between the need to minimize both of these quantities.
In another embodiment, block 68 represents user inter-
active input. For this latter embodiment the user is
provided a display of false-positive and false-rejection
curves and inputs a choice of threshold based on this
information. In either case, the threshold is stored in
block 64 for use by block 62.

The blocks 40, 48, 54, 62 and 66 can be implemented
as separate dedicated processing devices, or by a single
processing device that operates in accordance with the
method of the invention. The blocks 32, 34, 36, 50, and
60 can be implemented with separate memory devices
or with a single memory device, such as a RAM or a
disk. Blocks 44, 46, 52, 56, 58, and 64 may be imple-
mented with registers or as locations within a memory
device.

The system further includes a management unit 70 for
controlling the operation of the system in accordance
with the above-described flow charts of FIGS. 2 and 3.
The system memory 16, 26, 30q is bidirectionally cou-
pled to the CPU 14. Coupled to the CPU 14 is an anom-
aly detector 72 (VLAD) that monitors the operation of
the CPU 14 to detect anomalous behavior thereof. The
anomalous behavior may be the result of an undesirable
software entity that is located within the memory. Upon
detecting anomalous behavior, the anomaly detector 72
notifies the MU 70 via an anomaly detected signal
(AD). In response, the MU 70 initiates the operation of
a scanner 74 which has an associated signature database
(SDB 74a). Scanner 74 operates to detect, if present, an
occurrence of a known type of undesirable software
entity. This detection is accomplished by comparing
valid signatures from the SDB 74a with programs
stored in the memory. The scanner 74 provides an out-
put to the MU 70 indicating success or failure in detect-
ing an undesirable software entity.

In response to a successful detection by the scanner
74, the MU 70 operates to remove the undesirable soft-
ware entity from the memory in the manner described
above. The MU 70 also transmits the kill signal (KS) via
the network adapter (NA) 31 to neighboring data pro-
cessors that are connected to the network.

5,440,723

29

In response to a failure of the anomaly detector 72 to
detect a known type of undesirable software entity, the
MU 70 initiates the operation of a decoy program unit
76. The decoy program unit 76 has an associated secure
decoy program database (DPDB) 76a. The decoy pro-
gram unit 76 operates in the manner described above to
execute, open, etc. one or more decoy programs (DPs)
within the memory. The DPs are periodically com-
pared to the secured copies stored within the DPDB
76a so as to detect a modification thereof. If a modifica-
tion is detected, the DPU 76 isolates the undesirable
software entity and provides one or more samples of the
isolated undesirable software entity to the code/data
segregator 38. The invariant code identifier 38 operates
to identify invariant code portions of the sample(s) and
to provide the invariant code portions to the n-gram
processor 40 as candidate signatures.

After processing the candidate signatures in the man-
ner described above, a valid signature for the previously
unknown type of undesirable software entity is stored
within the SDB 74a for subsequent use by the scanner
74.

If difficulties arise, the MU 70 is also enabled to trans-
mit the distress signal (DS) to, for example, the network
adapter 31 and thence to the network.

A feature of this invention is the taking of remedial
action in the event that a known or unknown signature
of an undesirable software entity is identified or ex-
tracted. Remedial action includes killing or removing
the undesirable software entity, and also possibly in-
forming neighboring data processors of the existence
and signature of the entity. Possible methods for remov-
ing the undesirable software entity include, but are are
not limited to, (a) replacing an infected file with a
stored, secured, uninfected version of the file; (b) repair
mechanisms designed for specific known types of unde-
sirable software entities; and (c) heuristic repair mecha-
nisms which are designed for classes of undesirable
software entities.

This invention has been particularly shown and de-
scribed with respect to preferred embodiments thereof.
However, it will be understood by those skilled in the
art that changes in form and details may be made

5

10

15

25

35

40

therein without departing from the scope and spirit of 45

the invention.

Having thus described our invention, what we claim
as new, and desire to secure by Letters Patent is:

1. A method for providing computational integrity
for a digital data processing system, comprising the
computer-executed steps of:

detecting, with a data processor, an anomalous be-

havior of a digital data processing system during
program execution, the anomalous behavior being

50

indicative of an undesirable informational state of 55

the digital data processing system that may result
from the presence of an undesirable software en-
tity;

scanning, with the data processor, one or more por-
tions of an informational state history of the digital
data processing system to detect, if present, at least
one known type of undesirable software entity;

in response to the detection of a known type of unde-
sirable software entity, taking remedial action;

else, if a known type of undesirable software entity is
not detected by the step of scanning, detecting,
with the data processor, a previously unknown
type of undesirable software entity;

60

65

30

extracting, with the data processor, an identifying
signature from the detected undesirable software
entity;

storing the identifying signature so as to enable a

future detection of the undesirable software entity
as a known type of undesirable software entity; and
taking remedial action; wherein

the step of extracting includes the data processor

executed steps of obtaining at least one sequence of
bytes from the detected undesirable software en-
tity, determining likelihoods that the at least one
sequence of bytes is also found in program code
that may be run on a digital data processing system
which is to be protected from the undesirable soft-
ware entity, and selecting as the extracted identify-
ing signature a plurality of bytes from the at least
one sequence that have a high likelihood of reliably
identifying a future occurrence of the undesirable
software entity.

2. A method for providing computational integrity
for a digital data processing system, comprising the
computer-executed steps of:

detecting, with a data processor, an anomalous be-

havior of a digital data processing system during
program execution, the anomalous behavior being
indicative of an undesirable informational state of
the digital data processing system that may result
from the presence of an undesirable software en-
tity;

scanning, with the data processor, one or more por-

tions of an informational state history of the digital
data processing system to detect, if present, at least
one known type of undesirable software entity;
in response to the detection of a known type of unde-
sirable software entity, taking remedial action;

else, if a known type of undesirable software entity is
not detected by the step of scanning, detecting,
with the data processor, a previously unknown
type of undesirable software entity;

extracting, with the data processor, an identifying

signature from the detected undesirable software
entity;

storing the identifying signature so as to enable a

future detection of the undesirable software entity

as a known type of undesirable software entity; and

taking remedial action;

wherein the step of extracting includes a preliminary
step of analyzing the undesirable software entity to
identify a portion thereof that remains substantially
invariant from a first instance of the undesirable soft-
ware entity to a second instance of the undesirable soft-
ware entity, wherein the step of extracting extracts the
identifying signature from the identified substantially
invariant portion; and wherein

the step of extracting includes the steps of obtaining a

sequence of bytes from the identified substantially
invariant portion of the undesirable software en-
tity, decomposing the sequence of bytes into sub-
sequences, determining likelihoods that the sub-
sequences are also found in program code that may
be run on a digital data processing system which is
to be protected from the undesirable software en-
tity, and selecting as the extracted identifying sig-
nature a plurality of bytes that have a high likeli-
hood of reliably identifying a future occurrence of
the undesirable software entity.

3. A method as set forth in claim 1 wherein the step of
storing stores the identifying signature into a data base

5,440,723

31

of identifying signatures for use during the step of scan-

ning.

4. A method as set forth in claim 1 and, in response to

the detection of a known type of undesirable software

entity, further including a step of operating a data com- 5
munications means of the digital data processing system
for notifying at least one other digital data processing
system of the presence of the undesirable software en-

tity.

—

5. A method as set forth in claim 1 and, in response to 10
detecting a previously unknown type of undesirable
software entity, further including a step of operating a
data communications means of the digital data process-
ing system for notifying at least one other digital data

processing system of the presence of the undesirable

software entity.

6. A method as set forth in claim 5 and further includ-
ing a step of operating the data communications means
of the digital data processing system for providing the
at least one other digital data processing system with
the identifying signature of the undesirable software

20

entity.

7. A method as set forth in claim 1 wherein the unde-
sirable software entity is a computer virus, wherein the
step of detecting includes a step of obtaining at least one
instance of a computer virus; and wherein the step of
extracting extracts the identifying signature from the

25

obtained at least one instance of the computer virus.

8. A method as set forth in claim 1 wherein the unde-

sirable software entity is a computer virus, and wherein

the step of detecting includes the steps of:

operating at least one decoy program.with the digital
data processing system; and

comparing the decoy program to a secure copy of the
decoy program so as to identify a modification of 35
the decoy program, wherein a modification of the
decoy program is indicative of an infection of the
decoy program by the computer virus.-

9. A method for prov1dmg computational mtegrlty

for a digital data processing system, comprising the

computer-executed steps of:

detecting, with a data processor, an anomalous be-
havior of a digital data processing system during
program execution, the anomalous behavior being
indicative of an undesirable informational state of 45
the digital data processing system that may result
from the presence of an undesirable software en-
tity;

scanning, with the data processor, one or more por-
tions of an informational state history of the digital
data processing system to detect, if present, at least
one known type of undesirable software entity;

in response to the detection of a known type of unde-
sirable software entity, taking remedial action;

else, if a known type of undesirable software entity is
not detected by the step of scanning, detecting,
with the data processor, a previously unknown
type of undesirable software entity;

extracting, with the data processor, an identifying
signature from the detected undesirable software
entity;

storing the identifying signature so as to enable a
future detection of the undesirable software entity
as a known type of undesirable software entity; and

taking remedial action;

wherein the step of extracting includes the steps of:

obtaining at least one candidate signature of the unde-
sirable software entity from at least one sample of

40

60

65

32
the undesirable software entity, the at least one
sample including a sequence of bytes of the unde-
sirable software entity that is likely to remain in-
variant from a first instance of the undesirable soft-
ware entity to a second instance of the undesirable
software entity;
constructing a list of unique n-grams from the se-
quence of bytes, each of the unique n-grams being
comprised of from one to some maximal number.of
sequential bytes contained in the sequence of bytes;

for each of the unique n-grams, estimating a probabil-
ity of an occurrence of a unique n-gram within
sequences of bytes obtained from a corpus of com-
puter programs of a type that may be executed by
the digital data processing system;

for each candidate signature that is comprised of one

or more of the unique n-grams, wherein each can-
didate signature includes all possible sequences of
the unique n-grams in the at least one sample which
satisfy a predetermined criterion, estimating a
probability of an occurrence of the candidate signa-
ture within the sequences of bytes obtained from
the corpus of computer programs; and

accepting a candidate signature as a valid signature at

least if the estimated probability of the occurrence
of the candidate signature is less than a threshold
probability, the threshold probability having a
value selected to reduce a likelihood of an occur-
rence of a false positive indication during a subse-
quent execution of the step of scanning.

10. A method as set forth in claim 9 wherein the step
of obtaining includes the initial steps of:

obtaining one or more instances of the undesirable

software entity; and

evaluating the one or more instances to identify at

least one portion that includes a sequence of bytes
that represent machine code instructions of the
undesirable software entity that appear in each of
the one or more instances.

11. A method as set forth in claim 9 wherein the step
of estimating a probability of an occurrence of a unique
n-gram includes a step of recording a frequency of oc-
currence of the n-gram within the sequences of bytes
obtained from the corpus of computer programs.

12. A method as set forth in claim 11 wherein for
uni-grams (n= 1), the estimated probability is given by
the recorded frequency divided by a total number of
n-grams of length equal to one; and for n-grams (n=2)
the estimated probability is given by a weighted average
of the recorded frequency and a probability determined
by combining together shorter n-grams.

13. A method as set forth in claim 12 wherein two
(n—1)-gram probabilities and an (n—2)-gram probabil-
ity are combined to form an n-gram probability (p) in
accordance with the expression:

p(B1Ba . .. Bp_1)p(B2B3 ... Bp)

p(BaB3 ... By-1)

p(B1By ... By) =

where B to B, are sequentially occurring bytes.

14. A method as set forth in claim 9 wherein the step
of estimating a probability of an occurrence of a unique
n-gram includes a step of looking up the n-gram, or
some smaller constituent of the n-gram, within a prede-
termined table of probabilities that represents occur-
rences of n-grams within the sequences of bytes ob-
tained from the corpus of computer programs.

5,440,723

33

15. A method as set forth in claim 9 wherein the step
of estimating a probability of an occurrence of the can-
didate signature includes the step of estimating a proba-
bility of an exact match between the candidate signature
and the sequences of bytes obtained from the corpus of
computer programs.

16. A method as set forth in claim 15 wherein the step
of estimating a probability of an exact match includes an
initial step of replacing any bytes that may potentially
vary, from a first instance of the undesirable software
entity to a second instance, with a wildcard symbo] that
has an exact match with every byte in the sequences of
bytes obtained from the corpus of computer programs.

17. A method as set forth in claim 16 wherein the step
of estimating a probability of an exact match includes a
second initial step of segregating the candidate signa-
ture into one or more contiguous blocks of bytes each of
which contains no wildcard bytes, and wherein the
exact match probability is found by multiplying to-
gether probabilities of each of the segregated one or
more contiguous blocks of bytes.

18. A method as set forth in claim 9 wherein the step
of estimating a probability of an occurrence of the can-
didate signature includes the step of estimating a proba-
bility of a partial match between the candidate signature
and the sequences of bytes obtained from the corpus of
computer programs.

19. A method as set forth in claim 18 wherein the step
of estimating a probability of a partial match includes an
initial step of replacing any bytes that may potentially
vary, from a first instance of the undesirable software
entity to a second instance, with a wildcard symbol that
has an exact match with every byte in the sequences of
bytes obtained from the corpus of computer programs.

20. A method as set forth in claim 18 wherein the step
of estimating a probability of an occurrence of the par-
tial match includes the step of estimating a probability
of a fragment of the candidate signature matching the
sequences of bytes obtained from the corpus of com-
puter programs.

21. A method as set forth in claim 18 wherein the step
of estimating a probability of an occurrence of the par-
tial match includes the step of estimating a probability
of all but M bytes of a sequence of bytes obtained from
the corpus of computer programs not matching a byte
in a corresponding position of the candidate signature.

22. A method as set forth in claim 1 wherein the steps
of taking remedial action each include a step of remov-
ing the undesirable software entity.

23. A method as set forth in claim 1 wherein the step
of taking remedial action after the step of storing in-
cludes a step of scanning one or more portions of the
informational state history of the digital data processing
system to detect, if present, at least one further instance
of the undesirable software entity; and, in response to
detecting at least one further instance of the undesirable
software entity, the method includes a step of taking
further remedial action.

24. A method as set forth in claim 9 wherein the step
of accepting a candidate signature as a valid signature
further employs a criterion that an estimated false-posi-
tive probability of the candidate signature has a value
that is among the lowest of estimated false-positive
probability values of all candidate signatures.

25. A method as set forth in claim 9 wherein the step
of estimating a probability of an occurrence of the can-
didate signature includes the steps of:

5

10

(V]

5

45

50

55

60

65

34

estimating a first probability of an exact match be-
tween the candidate signature and the sequences of
bytes obtained from the corpus of computer pro-
grams;

estimating a second probability of a fragment of the

candidate signature matching the sequences of
bytes obtained from the corpus of computer pro-
grams; and

estimating a third probability of at most M bytes of a

sequence of bytes obtained from the corpus of
computer programs not matching a byte in the
candidate signature.

26. A method as set forth in claim 25 and further
comprising the steps of:

combining the first, second, and third probability

estimates to arrive at a final probability estimate;
and

comparing the final probability estimate to the thresh-

old probability.

27. A method as set forth in claim 26 and further
comprising a step of reporting an identity of the valid
signature.

28. A method as set forth in claim 1 wherein the step
of detecting includes a step of deploying at least one
decoy program to obtain a sample of the undesirable
software entity.

29. A method for providing computational integrity
for a network of digital data processing systems, com-
prising the computer-executed steps of:

detecting, with a data processor, an anomalous be-

havior of a digital data processing system during
program execution, the anomalous behavior being
indicative of the presence of an undesirable soft-
ware entity within the digital data processing sys-
tem that exhibits the anomalous behavior;
scanning, with the data processor, one or more por-
tions of an informational state history of the digital
data processing system to detect, if present, at least
one known type of undesirable software entity;
in response to the detection of a known type of unde-
sirable software entity, taking remedial action; and

operating the data processor for notifying at least one
other digital data processing system on the net-
work of the presence of the known type of undesir-
able software entity;

else, if a known type of undesirable software entity is

not detected by the step of scanning, locating, with
the data processor, a previously unknown type of
undesirable software entity;

extracting, with the data processor, an identifying

signature from the located previously unknown
type of undesirable software entity;

storing the identifying signature so as to enable a

future detection of the previously unknown type of
undesirable software entity as a known type of
undesirable software entity;

using the extracted identifying signature and the data

processor to scan one or more portions of an infor-
mational state of the data processing system to
detect other instances of the previously unknown
type of undesirable software entity;

if another instance of the previously unknown type of

undesirable software entity is detected using the
extracted identifying signature, taking remedial
action; and

operating the data processor for notifying at least one

other digital data processing system on the net-

5,440,723

35
work of the presence of the previously unknown
type of undesirable scftware entity.

30. A method as set forth in claim 29 wherein at least
the second step of notifying includes a step of providing
the at least one other digital data processing system on
the network with the identifying signature of the previ-
ously unknown type of undesirable software entity.

31. A method as set forth in claim 29 and including a
further step of generating a distress signal if the digital
data processing system if the step of locating fails to
locate a previously unknown type of undesirable soft-
ware entity.

32. A method for providing computational integrity
for a network of digital data processing systems, com-
prising the computer-executed steps of:

detecting, with a data processor, an anomalous be-

havior of a digital data processing system during
program execution, the anomalous behavior being
indicative of the presence of an undesirable soft-
ware entity within the digital data processing sys-
tem that exhibits the anomalous behavior;
scanning, with the data processor, one or more por-
tions of an informational state history of the digital
data processing system to detect, if present, at least
one known type of undesirable software entity;
in response to the detection of a known type of unde-
sirable software entity, taking remedial action; and

operating the data processor for notifying at least one
other digital data processing system on the net-
work of the presence of the known type of undesir-
able software entity;

else, if a known type of undesirable software entity is

not detected by the step of scanning, locating, with
the data processor, a previously unknown type of
undesirable software entity;

extracting, with the data processor, an identifying

signature from the located previously unknown
type of undesirable software entity;

storing the identifying signature so as to enable a

future detection of the previously unknown type of
undesirable software entity as a known type of
undesirable software entity;

using the extracted identifying signature and the data

processor to scan one or more portions of an infor-
mational state of the data processing system to
detect other instances of the previously unknown
type of undesirable software entity;

if another instance of the previously unknown type of

undesirable software entity is detected using the
extracted identifying signature, taking remedial
action; and

operating the data processor for notifying at least one

other digital data processing system on the net-

work of the presence of the previously unknown

type of undesirable software entity;
wherein the step of extracting includes a preliminary
step of analyzing the previously unknown type of unde-
sirable software entity to identify a substantially invari-
ant portion thereof, and wherein the step of extracting
extracts the identifying signature from the substantially
invariant portion.

33. A method as set forth in claim 29 wherein the step
of storing stores the identifying signature into a data
base of identifying signatures for use during the step of
scanning.

34. A method as set forth in claim 29 wherein the
undesirable software entity is a previously unknown
type of computer virus, and wherein the step of locating

5

10

15

20

25

35

40

45

55

60

65

36

includes a step of generating, with a digital data pro-
cessing system, one or more instances of the unknown
type of computer virus to increase a size of a sample
population of the unknown type of computer virus; and
wherein the step of extracting extracts the identifying
signature from the one or more instances of the un-
known type of computer virus.

35. A method as set forth in claim 29 wherein the
undesirable software entity is a computer virus, and
wherein the step of detecting includes the steps of:

deploying at least one decoy program with the digital

data processing system; and

comparing the at least one decoy program to a secure

copy of the decoy program so as to identify a modi-
fication of the decoy program during the step of
deploying, wherein a modification of the decoy
program is indicative of an infection of the decoy
program by the computer virus.

36. A method for providing computational integrity
for a network of digital data processing systems, com-
prising the computer-executed steps of:

detecting, with a data processor, an anomalous be-

havior of a digital data processing system during
program execution, the anomalous behavior being
indicative of the presence of an undesirable soft-
ware entity within the digital data processing sys-
tem that exhibits the anomalous behavior;
scanning, with the data processor, one or more por-
tions of an informational state history of the digital
data processing system to detect, if present, at least
one known type of undesirable software entity;
in response to the detection of a known type of unde-
sirable software entity, taking remedial action; and

operating the data processor for notifying at least one
other digital data processing system on the net-
work of the presence of the known type of undesir-
able software entity;

else, if a known type of undesirable software entity is

not detected by the step of scanning, locating, with
the data processor, a previously unknown type of
undesirable software entity;

extracting, with the data processor, an identifying

signature from the located previously unknown
type of undesirable software entity;

storing the identifying signature so as to enable a

future detection of the previously unknown type of
undesirable software entity as a known type of
undesirable software entity;

using the extracted identifying signature and the data

processor to scan one or more portions of an infor-
mational state of the data processing system to
detect other instances of the previously unknown
type of undesirable software entity;

if another instance of the previously unknown type of

undesirable software entity is detected using the
extracted identifying signature, taking remedial
action; and

operating the data processor for notifying at least one

other digital data processing system on the net-
work of the presence of the previously unknown
type of undesirable software entity;
wherein the undesirable software entity is a previously
unknown type of computer virus, and wherein the step
of extracting includes the steps of:
obtaining at least one sample of the previously un-
known type of computer virus, the at least one
sample including a sequence of bytes of the com-
puter virus that remains substantially invariant

5,440,723

37

from a first instance of the computer virus to a
second instance;

constructing a list of unique n-grams from the se-
quence of bytes, each of the unique n-grams being
comprised of from one to n sequential bytes of the
sequence of bytes;

for each of the unique n-grams, estimating a probabil-
ity of an occurrence of a unique n-gram within
sequences of bytes obtained from a corpus of com-
puter programs of a type that may be executed by
the digital data processing system;

for a candidate computer virus signature that is com-
prised of one or more of the unique n-grams, esti-
mating a probability of an occurrence of the candi-
date computer virus signature within the sequences
of bytes obtained from the corpus of computer
programs; and

accepting the candidate computer virus signature as a
valid computer virus signature at least if the esti-
mated probability of the occurrence of the candi-
date computer virus signature is less than a thresh-
old probability, the threshold probability having a
value selected to reduce a likelihood of an occur-
rence of a false positive indication during a subse-
quent execution of the step of scanning.

37. A system providing computational integrity for a

digital data processing system, comprising:

means for detecting an anomalous behavior of a digi-
tal data processing system during program execu-
tion, the anomalous behavior being indicative of
the presence of an undesirable software entity that
may be detrimental to the computational integrity
of the digital data processing system,;

means, responsive to the operation of said detecting
means, for scanning one or more computer pro-
grams executed by the digital data processing sys-
tem to detect, if present, at least one known type of
undesirable software entity;

means, responsive to the detection of a known type of
undesirable software entity, for removing a de-
tected known type of undesirable software entity
from the digital data processing system;

means, responsive to a failure to detect a known type
of undesirable software entity, for locating a previ-
ously unknown type undesirable software entity
that has associated itself with one or more pro-
grams that are executed by the digital data process-
ing system;

means for extracting an identifying signature from the
located previously unknown type of undesirable
software entity;

means for removing the located previously unknown
type of undesirable software entity from the digital
data processing system; and

means for storing the identifying signature so as to
enable a future detection of the previously un-
known type of undesirable software entity as a
known type of undesirable software entity.

38. A system providing computational integrity for a

digital data processing system, comprising:

means for detecting an anomalous behavior of a digi-
tal data processing system during program execu-
tion, the anomalous behavior being indicative of
the presence of an undesirable software entity that
may be detrimental to the computational integrity
of the digital data processing system;

means, responsive to the operation of said detecting
means, for scanning one or more computer pro-

—

0

20

25

30

35

40

45

50

55

60

65

38
grams executed by the digital data processing sys-
tem to detect, if present, at least one known type of
undesirable software entity;

means, responsive to the detection of a known type of

undesirable software entity, for removing a de-
tected known type of undesirable software entity
from the digital data processing system;

means, responsive to a failure to detect a known type

of undesirable software entity, for locating a previ-
ously unknown type undesirable software entity
that has associated itself with one or more pro-
grams that are executed by the digital data process-
ing system;

means for extracting an identifying signature from the

located previously unknown type of undesirable
software entity;

means for removing the located previously unknown

type of undesirable software entity from the digital
data processing system; and

means for storing the identifying signature so as to

enable a future detection of the previously un-

known type of undesirable software entity as a

known type of undesirable software entity;
wherein the means for extracting is coupled to means
for analyzing the located previously unknown type of
undesirable software entity to identify a substantially
invariant portion thereof, and wherein the means for
extracting extracts the identifying signature from the
substantially invariant portion.

39. A system as set forth in claim 37 and further in-
cluding means, responsive to the detection of a known
type of undesirable software entity, and further respon-
sive to the extraction of an identifying signature from an
unknown type of undesirable software entity, for notify-
ing at least one other digital data processing system of
the presence of the known or unknown type of undesir-
able software entity.

40. A system as set forth in claim 37 wherein the
undesirable software entity is a computer virus, and
wherein the means for detecting includes:

means for deploying at least one decoy program

within the digital data processing system;

means for subsequently comparing the deployed

decoy program to a secure copy of the decoy pro-
gram so as to identify a modification of the decoy
program, wherein a modification of the decoy pro-
gram is indicative of an infection of the decoy
program by the computer virus; and

means for obtaining a sample of the computer virus

from the deployed decoy program and for provid-
ing the sample to said extracting means.

41. A method for operating a network comprised of a
plurality of data processors so as to provide protection
from infection by an undesirable software entity, com-
prising the computer-executed steps of:

in response to a detection of an anomalous operation

of a first one of the data processors of the network,
operating the data processor to detect, within the
data processor, an unknown type of undesirable
software entity;

in response to detecting an unknown type of undesir-

able software entity, extracting, with the data pro-
cessor, an identifying signature from the unknown
type of undesirable software entity;

storing, within a first memory means that is accessible
from the data processor, the identifying signature
for subsequent use by the data processor in recog-

5,440,723

39

nizing a subsequent occurrence of the undesirable
software entity;

transmitting the identifying signature from the data

processor to at least one other data processor that
is connected to the network; and

storing, within a second memory means that is acces-

sible by the at least one other data processor, the
identifying signature for subsequent use by the at
least one other data processor in recognizing an
occurrence of the undesirable software entity.

42. A method as set forth in claim 41 wherein the
unknown type of undesirable software entity is a worm.

43. A method as set forth in claim 41 wherein the
unknown type of undesirable software entity is a com-
puter virus.

44. A method for operating a network comprised of a
plurality of data processors so as to provide protection
from infection by an undesirable software entity, com-
prising the computer-executed steps of:

in response to a detection of an anomalous operation

of a first one of the data processors of the network,
operating the data processor to detect, within the
data processor, an unknown type of undesirable
software entity;

in response to detecting an unknown type of undesir-

able software entity, extracting, with the data pro-
cessor, an identifying signature from the unknown
type of undesirable software entity;

storing, within a first memory means that is accessible

from the data processor, the identifying signature
for subsequent use by the data processor in recog-
nizing a subsequent occurrence of the undesirable
software entity;

5

15

25

30

35

40

45

50

55

60

65

40
transmitting the identifying signature from the data
processor to at least one other data processor that
is connected to the network; and
storing, within a second memory means that is acces-
sible by the at least one other data processor, the
identifying signature for subsequent use by the at
least one other data processor in recognizing an
occurrence of the undesirable software entity;
wherein the step of extracting includes the steps of:

analyzing the unknown type of undesirable software
entity to identify at least one portion thereof that
remains substantially invariant from a first instance
of the unknown type of undesirable software entity
to a second instance of the unknown type of unde-
sirable software entity;

segregating the substantially invariant portion from

other portions; and

performing the step of extracting on the segregated,

substantially invariant portion.

45. A method as set forth in claim 44 wherein the step
of analyzing includes the initial steps of:

deploying at least one decoy program to capture a

sample of the unknown type of undesirable soft-
ware entity; and

replicating the captured sample to provide at least

one further instance of the unknown type of unde-
sirable software entity.

46. A method as set forth in claim 41 and, further in
response to the detection of anomalous operation of the
first one of the data processors, performing a step of
raising an alert state of the data processor so as to peri-
odically monitor the data processor to detect, if present,

a known type of undesirable software entity.
* * * * £

