US006092194A

United States Patent [(1] Patent Number: 6,092,194
Touboul 451 Date of Patent: *Jul. 18, 2000
[54] SYSTEM AND METHOD FOR PROTECTING 5,864,683 1/1999 Boebert et al.ccueuueeeee. 395/200.79
A COMPUTER AND A NETWORK FROM 5,892,904 4/1999 Atkinson et al.ccoeeurece 395/187.01
HOSTILE DOWNLOADABLES OTHER PUBLICATIONS
[75] Inventor: Shlomo Touboul, Kefar-Haim, Israel Web page: http://iel.ihs.com:80/cgi-bin/iel_
. T cgilse...2ehts%26 View Template %3ddocvie % 5tb%2ehts,
[73] Assignee: Finjan Software, Ltd., Netanya, Isracl Okamato, E. et al., “ID-Based Authentication System For
[*] Notice: This patent issued on a continued pros- Computer Virus Detection”, IEEE/IEE Electronic Library
ecution application filed under 37 CFR online, Electronics Letters, vol. 26, Issue 15, ISSN
153((1), and is Subject to the twenty year 0013—5194, Jul. 19, 1990, Abstract and pp. 1169-1170.
patent term provisions of 35 U.S.C. List continued .
154(a)(2). (List continued on next page.)
211 Aol No: 099630 brimay i Rebr W, Bl
[22] Filed: Nov. 6, 1997 Attorney, Agent, or Firm—Graham & James LLP
Related U.S. Application Data [57] ABSTRACT
[60] Provisional application No. 60/030,639, Nov. 8, 1996. .
A system protects a computer from suspicious Download-
7 ables. The system comprises a security policy, an interface
[S1] Int. CL7 cceecveeeceieceecerecrenin HO04L. 1/00 for receiving a Downloadable, and a comparator, coupled to
the interface, for applying the security policy to the Down-
[52] US. Clu ociecrecrerrcreccreecrseeseeseninenes 713/200 loadable to determing if the sccurity policy has been Vio-
[58] Field of Search 305/187.01, 186; lated The Downloadable tmay lnclude a Java™™ applet, an
713/200, 201, 202; 714/38, 704; 709/229 cliveA ™ conlrol, a Javascript ™" SCript, or a visual basic
script. The security policy may include a default security
[56] References Cited policy to be applied regardless of thf; client to whom the
Downloadable is addressed, or a specific security policy to
U.S. PATENT DOCUMENTS be applied based on the client or the group to which the
5,077,677 12/1991 Murphy et al. ..o 395710 client belongs. The system uses an ID generator to compute
5,361,350 11/1994 Tajalli et al. 3057700 @ Downloadable ID identifying the Downloadable,
5,485,400 1/1996 Gupta et al. coooooovooceiceevvercess 395/186 preferably, by fetching all components of the Downloadable
5,485,575 1/1996 Chess et al. .. 395/183.14 and performing a hashing function on the Downloadable
5,572,643 11/1996 JudSON ..ooeeovevveeieerenieneenreenans 395/793 including the fetched components. Further, the security
5,623,600 4/1997 Jietal . 395/187.01 policy may indicate several tests to perform, including (1) a
5,638,446 6/1997 Rubin 380725 comparison with known hostile and non-hostile Download-
5,692,047 11/1997 McManiscoooveereeeriennnennnn. 380/4 ables; (2) a comparison with Downloadables to be blocked
5,692,124 11/1997 Holden et al. 395/187.01 or allowed per administrative override; (3) a comparison of
5,720,033 2/1998 Deo - 395/186 the Downloadable security profile data against access con-
5,724,425 3/1998 C.hang et al. s 380/25 trol lists; (4) a comparison of a certificate embodied in the
5,740,248 4/1998 Fieres et al.cocoeenevivennrennnnn. 380/25 Downloadable against trusted certificates; and (5) a com-
27;2;7‘2%; 2; }ggg ‘];’an ?Oﬁ tet lal. : 3957/ ﬁ%gg parison of the URL from which the Downloadable origi-
it TESIAU €L AL oo nated against trusted and untrusted URLs. Based on these
5,784,459 7/1998 Devarakonda et al.cccoceeeuenes 380/4 . . .
5796952 8/1998 Davis et al. coorrerren. 395/200.54 E’litzk ih?]g)lgiin‘aigg;;lgan determine whether to allow or
5,805,829 9/1998 Cohen et al.ccceceeveuennee 395/200.32 :
5,832,208 11/1998 Chen et al. 395/187.01
5,850,559 12/1998 Angelo et al. ...cccovvinnnnne 395/750.03 68 Claims, 10 Drawing Sheets
f/

Receive Results from First
Gomparatar, ACL
Comparator, Certificate
Comparator and URL
Comparator

670

Pass Liownloadable ’(

Yes 866
668

Record Findings 1~

Send Substitute
Dowatoadble to
Inform The User

BLUE COAT - EXHIBIT 1009

6,092,194
Page 2

OTHER PUBLICATIONS

“Finjan Announces a Personal Java ™ Firewall For Web
Browsers—the SurfinShield™ 1.6”, Press Release of Finjan
Releases SurfinShield, Oct. 21, 1996, 2 pages.

“Finjan Software Releases SurfinBoard, Industry’s First
JAVA Security Product For the World Wide Web”, Article
published on the Internet by Finjan Software, Ltd., Jul. 29,
1996, 1 page.

“Powerful PC Security for the New World of Java™ and
Downloadables, Surfin Shield™”Article published on the
Internet by Finjan Software Ltd., 1996, 2 Pages.
“Company Profile Finjan—Safe Surfing, The Java Security
Solutions Provider” Article published on the Internet by
Finjan Software Ltd., Oct. 31, 1996, 3 pages.

“Finjan Announces Major Power Boost and New Features
for SurfinShield™ 2.0” Las Vegas Convention Center/Pa-
villion 5 P5551, Nov. 18, 1996, 3 pages.

“Java Security: Issues & Solutions” Article published on the
Internet by Finjan Software Ltd., 1996, 8 pages.

“Products™ Article published on the Internet, 7 pages.

Mark LaDue, “Online Business Consultant” Article pub-
lished on the Internet, Home Page, Inc. 1996, 4 pages.

Jim K. Omura, “Novel Applications of Cryptography in
Digital Communications”, IEEE Communications Maga-
zine, p 27, May 1990.

Norvin Leach et al, “IE 3.0 applets will earn certification”,
PC Week, v13, n29, p1(2), Jul. 1996.

Microsoft Authenticode Technology, “Ensuring Account-
ability and Authenticity for Software Components on the
Internet”, Microsoft Corporation, Oct. 1996.

Frequently Asked Questions About Authenticode, Microsoft
Corporation, Feb. 1997.

U.S. Patent Jul. 18, 2000 Sheet 1 of 10 6,092,194

100

/J

105

External Computer Network

X 110

Internal Network /

Security System

130

— 115

Y

Internal Computer Network

135
120
Security /
Management
Console

FIG. 1

6,092,194

Sheet 2 of 10

Jul. 18, 2000

U.S. Patent

¢ 9ld Gl YomIBaN
Jaindwo) |eussixg
ol
WwojsAs | siasn
|/ Bunelado Y
a 09z
0s¢ | Bo7 sjuang
weiboid 7] oclL
\).\ Aunoeg sve aseqejeq
GGz \IK Aunosag soepa|
bz SUONEDIUNLUWOD
edlAeg [eusaju]
WYY abelo)g eleq
gee 0€c G¢e
\ A 4 3 Y T Y -
0cc
A Y h 4
aoepB)U|
ssoepBU| O] SUOIEDIUNWIWOY Ndo
|euo1xg
GLe oL¢e G0¢

\\.

0Ll

rd

GOl YOMISN

Jaindwo) jeussxy

wol4

6,092,194

Sheet 3 of 10

Jul. 18, 2000

U.S. Patent

4

4

1224
// 607
JuaAg
h
(————-
1
| GE¢
1
] /
_ aulbug
I Buidaay
| plooay
| Y
|
|
|
auibug
A|l_| 1es1bo
|
s|qepeojumod _ \.\
snoIdSNSUoN | ece
|
|
|
|
|
00¢

aseqejeq Aj1unoog

0se |
/ Jojesedwo) | _
Tdn |
— ove _
¥ uled |
/ |
Jojesedwon Jauueog I
\ ajeoyia) | ajeoypen ¢ _ “
P m— Jojesedwon | Japuid j0)es0URg) | !
Gye € Ujed \ 18414 Aoljod al |
_ _
Jojesedwon Jauueog \l\ \l\ I \!\ I M_Mmmmmﬁsoo
i v °poo 0z¢e LLE GlE | THN
— —F I'aresn
je |
0€€ ¢ thed cze j
I
|| 1
+—— Rt ahat ettt -
| Uled |
_
| \.L sai0lj0d Anoss _|v "
_ I
" S0€ _
_ ———— | eegasa | |
_
_ \.\ “
/ 0Lg [
I I
[
! SSJEOUILOD UMOUY S9|QBPEOJUMO(] UMOUY
_ | | — |
i \ \u\ |
~ 60€ L0€ “
vz | !
_

U.S. Patent Jul. 18, 2000 Sheet 4 of 10 6,092,194

Security Policies
305

Policy Selectors

s
AN

N
-
(@]

Access Control

Lists /'/
415
Trusted
Certificate Lists //

URL Rule Bases

Lists of Downloadables
to Allow or Block per
Administrative Override

N N
o, o

FIG. 4

U.S. Patent Jul. 18, 2000 Sheet 5 of 10

910

515

To/From
Internal Computer
Network
135
A
505
/~/ h 4 /ﬁ/
Security Event Log
: : Analysts
Policy Editor Enai
ngine
User
Notification
Engine

FIG. 5

6,092,194

120

U.S. Patent Jul. 18,2000

600

S~

Sheet 6 of 10

6,092,194

602

‘ Receive Downloadable

604

}

rGenerate Downloadable ID

606

!

| Find Security Policy

Downloadable
allowed?

Downloadable
blocked?

614

URL
comparison
required?

No

ACL
comparison

No

r_/

608

Yes

610

Yes

618

620

Compare URL required?

626

Previously
decomposed

TCL
comparison
required?

No

l Scan Certificate 1

Decompose Downloadable
into DSP data

»
L

}

Compare Certificate
with TCL

y
//{ Compare DSP with ACL]

630

FIG. 6A

624

S

Send results to
Logical Engine

End

U.S. Patent Jul. 18, 2000 Sheet 7 of 10 6,092,194

606

Security policy defined
for User-ID and
Downloadable?

Y

Fetch the generic 652 654 Fetch tft;er policy

security policy for
User ID /J \’\ User ID and

Downloadable

End

FIG. 6B

U.S. Patent Jul. 18, 2000 Sheet 8 of 10 6,092,194

{ Start)

A

Receive Results from First
Comparator, ACL
Comparator, Certificate
Comparator and URL
Comparator

4

Compare Results with
Security Policies

Security Policies
Confirm Pass?

655

660

662

664

No

End

670
666
Pass Downloadable Stop Downloadable
672
Send Substitute /
A Downloadble to
Inf Th
| 668 nform The User

Record Findings //

FIG. 6C

U.S. Patent Jul. 18,2000

(Start)

Sheet 9 of 10 6,092,194

628

_

705

Disassemble the Machine
Code

»
»

A

Resolve a Respective
Command in The Code

Is The Resolved
Command Suspect?

Decode and Register The
Command and The
Command Parameters as
DSP Data

710

715

720

A

FIG. 7

U.S. Patent

Jul. 18, 2000 Sheet 10 of 10 6,092,194

800

/

y

810

Receive a Downloadable

4

Fetch Downloadable
Components

4

L L

Include Fetched Components in
The Downloadable

y

Perform a Hashing Function on
the Downloadable to Generate
a Downloadable ID

A

(&) A
o o

Store the Downloadable 1D

End

FIG. 8

6,092,194

1

SYSTEM AND METHOD FOR PROTECTING
A COMPUTER AND A NETWORK FROM
HOSTILE DOWNLOADABLES

INCORPORATION BY REFERENCE TO
RELATED APPLICATION

This application hereby incorporates by reference related
U.S. patent application Ser. No. 08/790,097, entitled “Sys-
tem and Method for Protecting a Client from Hostile
Downloadables,” filed on Jan. 29, 1997, by inventor Shlomo
Touboul.

PRIORITY REFERENCE TO PROVISIONAL
APPLICATION

This application claims benefit of and hereby incorporates
by reference provisional application Ser. No. 60/030,639,
entitled “System and Method for Protecting a Computer
from Hostile Downloadables,” filed on Nov. 8, 1996, by
inventor Shlomo Touboul.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to computer networks,
and more particularly provides a system and method for
protecting a computer and a network from hostile Down-
loadables.

2. Description of the Background Art

The Internet is currently a collection of over 100,000
individual computer networks owned by governments,
universities, nonprofit groups and companies, and is expand-
ing at an accelerating rate. Because the Internet is public, the
Internet has become a major source of many system dam-
aging and system fatal application programs, commonly
referred to as “viruses.”

Accordingly, programmers continue to design computer
and computer network security systems for blocking these
viruses from attacking both individual and network com-
puters. On the most part, these security systems have been
relatively successful. However, these security systems are
not configured to recognize computer viruses which have
been attached to or configured as Downloadable application
programs, commonly referred to as “Downloadables.” A
Downloadable is an executable application program, which
is downloaded from a source computer and run on the
destination computer. Downloadable is typically requested
by an ongoing process such as by an Internet browser or web
engine. Examples of Downloadables include Java™ applets
designed for use in the Java™ distributing environment
developed by Sun Microsystems, Inc., JavaScript scripts
also developed by Sun Microsystems, Inc., ActiveX™ con-
trols designed for use in the ActiveX™ distributing envi-
ronment developed by the Microsoft Corporation, and
Visual Basic also developed by the Microsoft Corporation.
Therefore, a system and method are needed to protect a
network from hostile Downloadables.

SUMMARY OF THE INVENTION

The present invention provides a system for protecting a
network from suspicious Downloadables. The system com-
prises a security policy, an interface for receiving a
Downloadable, and a comparator, coupled to the interface,
for applying the security policy to the Downloadable to
determine if the security policy has been violated. The
Downloadable may include a Java™ applet, an ActiveX™
control, a JavaScript™ script, or a Visual Basic script. The

10

15

20

25

30

40

45

55

60

65

2

security policy may include a default security policy to be
applied regardless of the client to whom the Downloadable
is addressed, a specific security policy to be applied based on
the client or the group to which the client belongs, or a
specific policy to be applied based on the client/group and on
the particular Downloadable received. The system uses an
ID generator to compute a Downloadable ID identifying the
Downloadable, preferably, by fetching all components of the
Downloadable and performing a hashing function on the
Downloadable including the fetched components.

Further, the security policy may indicate several tests to
perform, including (1) a comparison with known hostile and
non-hostile Downloadables; (2) a comparison with Down-
loadables to be blocked or allowed per administrative over-
ride; (3) a comparison of the Downloadable security profile
data against access control lists; (4) a comparison of a
certificate embodied in the Downloadable against trusted
certificates; and (5) a comparison of the URL from which the
Downloadable originated against trusted and untrusted
URLs. Based on these tests, a logical engine can determine
whether to allow or block the Downloadable.

The present invention further provides a method for
protecting a computer from suspicious Downloadables. The
method comprises the steps of receiving a Downloadable,
comparing the Downloadable against a security policy to
determine if the security policy has been violated, and
discarding the Downloadable if the security policy has been
violated.

It will be appreciated that the system and method of the
present invention may provide computer protection from
known hostile Downloadables. The system and method of
the present invention may identify Downloadables that
perform operations deemed suspicious. The system and
method of the present invention may examine the Down-
loadable code to determine whether the code contains any
suspicious operations, and thus may allow or block the
Downloadable accordingly.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a network system,
in accordance with the present invention;

FIG. 2 is a block diagram illustrating details of the
internal network security system of FIG. 1;

FIG. 3 is a block diagram illustrating details of the
security program and the security database of FIG. 2;

FIG. 4 is a block diagram illustrating details of the
security policies of FIG. 3;

FIG. 5 is a block diagram illustrating details of the
security management console of FIG. 1;

FIG. 6A is a flowchart illustrating a method of examining
for suspicious Downloadables, in accordance with the
present invention;

FIG. 6B is a flowchart illustrating details of the step for
finding the appropriate security policy of FIG. 6A;

FIG. 6C is a flowchart illustrating a method for determin-
ing whether an incoming Downloadable is to be deemed
suspicious;

FIG. 7 is a flowchart illustrating details of the FIG. 6 step
of decomposing a Downloadable; and

FIG. 8 is a flowchart illustrating a method 800 for
generating a Downloadable ID for identifying a Download-
able.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

FIG. 1 is a block diagram illustrating a network system
100, in accordance with the present invention. The network

6,092,194

3

system 100 includes an external computer network 105,
such as the Wide Area Network (WAN) commonly referred
to as the Internet, coupled via a communications channel
125 to an internal network security system 110. The network
system 100 further includes an internal computer network
115, such as a corporate Local Area Network (LAN),
coupled via a communications channel 130 to the internal
network computer system 110 and coupled via a communi-
cations channel 135 to a security management console 120.

The internal network security system 110 examines
Downloadables received from external computer network
105, and prevents Downloadables deemed suspicious from
reaching the internal computer network 115. It will be
further appreciated that a Downloadable is deemed suspi-
cious if it performs or may perform any undesirable
operation, or if it threatens or may threaten the integrity of
an internal computer network 115 component. It is to be
understood that the term “suspicious” includes hostile,
potentially hostile, undesirable, potentially undesirable, etc.
Security management console 120 enables viewing, modi-
fication and configuration of the internal network security
system 110.

FIG. 2 is a block diagram illustrating details of the
internal network security system 110, which includes a
Central Processing Unit (CPU) 205, such as an Intel Pen-
tium® microprocessor or a Motorola Power PC®
microprocessor, coupled to a signal bus 220. The internal
network security system 110 further includes an external
communications interface 210 coupled between the com-
munications channel 125 and the signal bus 220 for receiv-
ing Downloadables from external computer network 105,
and an internal communications interface 225 coupled
between the signal bus 220 and the communications channel
130 for forwarding Downloadables not deemed suspicious
to the internal computer network 115. The external commu-
nications interface 210 and the internal communications
interface 225 may be functional components of an integral
communications interface (not shown) for both receiving
Downloadables from the external computer network 105 and
forwarding Downloadables to the internal computer network
115.

Internal network security system 110 further includes
Input/Output (I/O) interfaces 215 (such as a keyboard,
mouse and Cathode Ray Tube (CRT) display), a data storage
device 230 such as a magnetic disk, and a Random-Access
Memory (RAM) 235, each coupled to the signal bus 220.
The data storage device 230 stores a security database 240,
which includes security information for determining
whether a received Downloadable is to be deemed suspi-
cious. The data storage device 230 further stores a users list
260 identifying the users within the internal computer net-
work 115 who may receive Downloadables, and an event log
245 which includes determination results for each Down-
loadable examined and runtime indications of the internal
network security system 110. An operating system 250
controls processing by CPU 205, and is typically stored in
data storage device 230 and loaded into RAM 235 (as
illustrated) for execution. A security program 255 controls
examination of incoming Downloadables, and also may be
stored in data storage device 230 and loaded into RAM 235
(as illustrated) for execution by CPU 205.

FIG. 3 is a block diagram illustrating details of the
security program 255 and the security database 240. The
security program 255 includes an ID generator 315, a policy
finder 317 coupled to the ID generator 315, and a first
comparator 320 coupled to the policy finder 317. The first
comparator 320 is coupled to a logical engine 333 via four

10

15

20

25

30

35

40

45

50

55

60

65

4

separate paths, namely, via Path 1, via Path 2, via Path 3 and
via Path 4. Path 1 includes a direct connection from the first
comparator 320 to the logical engine 333. Path 2 includes a
code scanner coupled to the first comparator 320, and an
Access Control List (ACL) comparator 330 coupling the
code scanner 325 to the logical engine 333. Path 3 includes
a certificate scanner 340 coupled to the first comparator 320,
and a certificate comparator 345 coupling the certificate
scanner 340 to the logical engine 333. Path 4 includes a
Uniform Resource Locator (URL) comparator 350 coupling
the first comparator 320 to the logical engine 3330. A
record-keeping engine 335 is coupled between the logical
engine 333 and the event log 245.

The security program 255 operates in conjunction with
the security database 240, which includes security policies
305, known Downloadables 307, known Certificates 309
and Downloadable Security Profile (DSP) data 310 corre-
sponding to the known Downloadables 307. Security poli-
cies 305 includes policies specific to particular users 260 and
default (or generic) policies for determining whether to
allow or block an incoming Downloadable. These security
policies 305 may identify specific Downloadables to block,
specific Downloadables to allow, or necessary criteria for
allowing an unknown Downloadable. Referring to FIG. 4,
security policies 305 include policy selectors 405, access
control lists 410, trusted certificate lists 415, URL rule bases
420, and lists 425 of Downloadables to allow or to block per
administrative override.

Known Downloadables 307 include lists of Download-
ables which Original Equipment Manufacturers (OEMs)
know to be hostile, of Downloadables which OEMs know to
be non-hostile, and of Downloadables previously received
by this security program 255. DSP data 310 includes the list
of all potentially hostile or suspicious computer operations
that may be attempted by each known Downloadable 307,
and may also include the respective arguments of these
operations. An identified argument of an operation is
referred to as “resolved.” An unidentified argument is
referred to as “unresolved.” DSP data 310 is described below
with reference to the code scanner 325.

The ID generator 315 receives a Downloadable (including
the URL from which it came and the userID of the intended
recipient) from the external computer network 105 via the
external communications interface 210, and generates a
Downloadable ID for identifying each Downloadable. The
Downloadable ID preferably includes a digital hash of the
complete Downloadable code. The ID generator 315 pref-
erably prefetches all components embodied in or identified
by the code for Downloadable ID generation. For example,
the ID generator 315 may prefetch all classes embodied in
or identified by the Java™ applet bytecode to generate the
Downloadable ID. Similarly, the ID generator 315 may
retrieve all components listed in the .INF file for an
ActiveX™ control to compute a Downloadable ID.
Accordingly, the Downloadable ID for the Downloadable
will be the same each time the ID generator 315 receives the
same Downloadable. The ID generator 315 adds the gener-
ated Downloadable ID to the list of known Downloadables
307 (if it is not already listed). The ID generator 315 then
forwards the Downloadable and Downloadable ID to the
policy finder 317.

The policy finder 317 uses the userID of the intended user
and the Downloadable ID to select the specific security
policy 305 that shall be applied on the received Download-
able. If there is a specific policy 305 that was defined for the
user (or for one of its super groups) and the Downloadable,
then the policy is selected. Otherwise the generic policy 305

6,092,194

5

that was defined for the user (or for one of its super groups)
is selected. The policy finder 317 then sends the policy to the
first comparator 320.

The first comparator 320 receives the Downloadable, the
Downloadable ID and the security policy 305 from the
policy finder 317. The first comparator 320 examines the
security policy 305 to determine which steps are needed for
allowing the Downloadable. For example, the security
policy 305 may indicate that, in order to allow this
Downloadable, it must pass all four paths, Path 1, Path 2,
Path 3 and Path 4. Alternatively, the security policy 305 may
indicate that to allow the Downloadable, it must pass only
one of the paths. The first comparator 320 responds by
forwarding the proper information to the paths identified by
the security policy 305.

Path 1

In path 1, the first comparator 320 checks the policy
selector 405 of the security policy 305 that was received
from the policy finder 317. If the policy selector 405 is either
“Allowed” or “Blocked,” then the first comparator 320
forwards this result directly to the logical engine 333.
Otherwise, the first comparator 320 invokes the comparisons
in path 2 and/or path 3 and/or path 4 based on the contents
of policy selector 405. It will be appreciated that the first
comparator 320 itself compares the Downloadable ID
against the lists of Downloadables to allow or block per
administrative override 425. That is, the system security
administrator can define specific Downloadables as
“Allowed” or “Blocked.”

Alternatively, the logical engine 333 may receive the
results of each of the paths and based on the policy selector
405 may institute the final determination whether to allow or
block the Downloadable. The first comparator 320 informs
the logical engine 333 of the results of its comparison.
Path 2

In path 2, the first comparator 320 delivers the
Downloadable, the Downloadable ID and the security policy
305 to the code scanner 325. If the DSP data 310 of the
received Downloadable is known, the code scanner 325
retrieves and forwards the information to the ACL compara-
tor 330. Otherwise, the code scanner 325 resolves the DSP
data 310. That is, the code scanner 325 uses conventional
parsing techniques to decompose the code (including all
prefetched components) of the Downloadable into the DSP
data 310. DSP data 310 includes the list of all potentially
hostile or suspicious computer operations that may be
attempted by a specific Downloadable 307, and may also
include the respective arguments of these operations. For
example, DSP data 310 may include a READ from a specific
file, a SEND to an unresolved host, etc. The code scanner
325 may generate the DSP data 310 as a list of all operations
in the Downloadable code which could ever be deemed
potentially hostile and a list of all files to be accessed by the
Downloadable code. It will be appreciated that the code
scanner 325 may search the code for any pattern, which is
undesirable or suggests that the code was written by a
hacker.

An Example List of Operations Deemed Potentially Hostile

File operations: READ a file, WRITE a file;

Network operations: LISTEN on a socket, CONNECT to

a socket, SEND data, RECEIVE data, VIEW INTRA-
NET;

Registry operations: READ a registry item, WRITE a

registry item;

Operating system operations: EXIT WINDOWS, EXIT

BROWSER, START PROCESS/THREAD, KILL

10

15

20

25

30

35

40

45

50

55

60

65

6

PROCESS/THREAD, CHANGE PROCESS/
THREAD PRIORITY, DYNAMICALLY LOAD A
CLASS/LIBRARY, etc.; and
Resource usage thresholds: memory, CPU, graphics, etc.
In the preferred embodiment, the code scanner 325 performs
a full-content inspection. However, for improved speed but
reduced security, the code scanner 325 may examine only a
portion of the Downloadable such as the Downloadable
header. The code scanner 325 then stores the DSP data into
DSP data 310 (corresponding to its Downloadable ID), and
sends the Downloadable, the DSP data to the ACL com-
parator 330 for comparison with the security policy 305.
The ACL comparator 330 receives the Downloadable, the
corresponding DSP data and the security policy 305 from the
code scanner 325, and compares the DSP data against the
security policy 305. That is, the ACL comparator 330
compares the DSP data of the received Downloadable
against the access control lists 410 in the received security
policy 305. The access control list 410 contains criteria
indicating whether to pass or fail the Downloadable. For
example, an access control list may indicate that the Down-
loadable fails if the DSP data includes a WRITE command
to a system file. The ACL comparator 330 sends its results
to the logical engine 333.
Path 3
In path 3, the certificate scanner 340 determines whether
the received Downloadable was signed by a certificate
authority, such as VeriSign, Inc., and scans for a certificate
embodied in the Downloadable. The certificate scanner 340
forwards the found certificate to the certificate comparator
345. The certificate comparator 345 retrieves known certifi-
cates 309 that were deemed trustworthy by the security
administrator and compares the found certificate with the
known certificates 309 to determine whether the Download-
able was signed by a trusted certificate. The certificate
comparator 345 sends the results to the logical engine 333.
Path 4
In path 4, the URL comparator 350 examines the URL
identifying the source of the Downloadable against URLs
stored in the URL rule base 420 to determine whether the
Downloadable comes from a trusted source. Based on the
security policy 305, the URL comparator 350 may deem the
Downloadable suspicious if the Downloadable comes from
an untrustworthy source or if the Downloadable did not
come from a trusted source. For example, if the Download-
able comes from a known hacker, then the Downloadable
may be deemed suspicious and presumed hostile. The URL
comparator 350 sends its results to the logical engine 333.
The logical engine 333 examines the results of each of the
paths and the policy selector 405 in the security policy 305
to determine whether to allow or block the Downloadable.
The policy selector 405 includes a logical expression of the
results received from each of the paths. For example, the
logical engine 333 may block a Downloadable if it fails any
one of the paths, i.e., if the Downloadable is known hostile
(Path 1), if the Downloadable may request suspicious opera-
tions (Path 2), if the Downloadable was not signed by a
trusted certificate authority (Path 3), or if the Downloadable
came from an untrustworthy source (Path 4). The logical
engine 333 may apply other logical expressions according to
the policy selector 405 embodied in the security policy 305.
If the policy selector 405 indicates that the Downloadable
may pass, then the logical engine 333 passes the Download-
able to its intended recipient. Otherwise, if the policy
selector 405 indicates that the Downloadable should be
blocked, then the logical engine 333 forwards a non-hostile
Downloadable to the intended recipient to inform the user

6,092,194

7

that internal network security system 110 discarded the
original Downloadable. Further, the logical engine 333
forwards a status report to the record-keeping engine 335,
which stores the reports in event log 245 in the data storage
device 230 for subsequent review, for example, by the MIS
director.

FIG. 5 is a block diagram illustrating details of the
security management console 120, which includes a security
policy editor 505 coupled to the communications channel
135, an event log analysis engine 510 coupled between
communications channel 135 and a user notification engine
515, and a Downloadable database review engine 520
coupled to the communications channel 135. The security
management console 120 further includes computer com-
ponents similar to the computer components illustrated in
FIG. 2.

The security policy editor 505 uses an I/O interface
similar to I/O interface 215 for enabling authorized user
modification of the security policies 305. That is, the secu-
rity policy editor 505 enables the authorized user to modify
specific security policies 305 corresponding to the users 260,
the default or generic security policy 305, the Download-
ables to block per administrative override, the Download-
ables to allow per administrative override, the trusted cer-
tificate lists 415, the policy selectors 405, the access control
lists 410, the URLs in the URL rule bases 420, etc. For
example, if the authorized user learns of a new hostile
Downloadable, then the user can add the Downloadable to
the Downloadables to block per system override.

The event log analysis engine 510 examines the status
reports contained in the event log 245 stored in the data
storage device 230. The event log analysis engine 510
determines whether notification of the user (e.g., the security
system manager or MIS director) is warranted. For example,
the event log analysis engine 510 may warrant user notifi-
cation whenever ten (10) suspicious Downloadables have
been discarded by internal network security system 110
within a thirty (30) minute period, thereby flagging a poten-
tial imminent security threat. Accordingly, the event log
analysis engine 510 instructs the user notification engine 515
to inform the user. The user notification engine 515 may
send an e-mail via internal communications interface 220 or
via external communications interface 210 to the user, or
may display a message on the user’s display device (not
shown).

FIG. 6A is a flowchart illustrating a method 600 for
protecting an internal computer network 115 from suspi-
cious Downloadables. Method 600 begins with the ID
generator 315 in step 602 receiving a Downloadable. The ID
generator 315 in step 604 generates a Downloadable ID
identifying the received Downloadable, preferably, by gen-
erating a digital hash of the Downloadable code (including
prefetched components). The policy finder 317 in step 606
finds the appropriate security policy 305 corresponding to
the userID specifying intended recipient (or the group to
which the intended recipient belongs) and the Download-
able. The selected security policy 305 may be the default
security policy 305. Step 606 is described in greater detail
below with reference to FIG. 6B.

The first comparator 320 in step 608 examines the lists of
Downloadables to allow or to block per administrative
override 425 against the Downloadable ID of the incoming
Downloadable to determine whether to allow the Down-
loadable automatically. If so, then in step 612 the first
comparator 320 sends the results to the logical engine 333.
If not, then the method 600 proceeds to step 610. In step 610,
the first comparator 620 examines the lists of Download-

10

15

20

25

30

35

40

45

50

55

60

65

8

ables to block per administrative override 425 against the
Downloadable ID of the incoming Downloadable for deter-
mining whether to block the Downloadable automatically. If
s0, then the first comparator 420 in step 612 sends the results
to the logical engine 333. Otherwise, method 600 proceeds
to step 614.

In step 614, the first comparator 320 determines whether
the security policy 305 indicates that the Downloadable
should be tested according to Path 4. If not, then method 600
jumps to step 618. If so, then the URL comparator 350 in
step 616 compares the URL embodied in the incoming
Downloadable against the URLs of the URL rules bases 420,
and then method 600 proceeds to step 618.

In step 618, the first comparator 320 determines whether
the security policy 305 indicates that the Downloadable
should be tested according to Path 2. If not, then method 600
jumps to step 620. Otherwise, the code scanner 235 in step
626 examines the DSP data 310 based on the Downloadable
ID of the incoming Downloadable to determine whether the
Downloadable has been previously decomposed. If so, then
method 600 jumps to step 630. Otherwise, the code scanner
325 in step 628 decomposes the Downloadable into DSP
data. Downloadable decomposition is described in greater
detail with reference to FIG. 7. In step 630, the ACL
comparator 330 compares the DSP data of the incoming
Downloadable against the access control lists 410 (which
include the criteria necessary for the Downloadable to fail or
pass the test).

In step 620, the first comparator 320 determines whether
the security policy 305 indicates that the Downloadable
should be tested according to Path 3. If not, then method 600
returns to step 612 to send the results of each of the test
performed to the logical engine 333. Otherwise, the certifi-
cate scanner 622 in step 622 scans the Downloadable for an
embodied certificate. The certificate comparator 345 in step
624 retrieves trusted certificates from the trusted certificate
lists (TCL) 415 and compares the embodied certificate with
the trusted certificates to determine whether the Download-
able has been signed by a trusted source. Method 600 then
proceeds to step 612 by the certificate scanner 345 sending
the results of each of the paths taken to the logical engine
333. The operations of the logical engine 333 are described
in greater detail below with reference to FIG. 6C. Method
600 then ends.

One skilled in the art will recognize that the tests may be
performed in a different order, and that each of the tests need
not be performed. Further, one skilled in the art will recog-
nize that, although path 1 is described in FIG. 6A as an
automatic allowance or blocking, the results of Path 1 may
be another predicate to be applied by the logical engine 333.
Further, although the tests are shown serially in FIG. 6A, the
tests may be performed in parallel as illustrated in FIG. 3.

FIG. 6B is a flowchart illustrating details of step 606 of
FIG. 6A (referred to herein as method 606). Method 606
begins with the policy finder 317 in step 650 determining
whether security policies 305 include a specific security
policy corresponding to the userID and the Downloadable.
If so, then the policy finder 317 in step 654 fetches the
corresponding specific policy 305. If not, then the policy
finder 317 in step 652 fetches the default or generic security
policy 305 corresponding to the userID. Method 606 then
ends.

FIG. 6C is a flowchart illustrating details of a method 655
for determining whether to allow or to block the incoming
Downloadable. Method 655 begins with the logical engine
333 in step 660 receiving the results from the first compara-
tor 320, from the ACL comparator 330, from the certificate

6,092,194

9

comparator 345 and from the URL comparator 350. The
logical engine 333 in step 662 compares the results with the
policy selector 405 embodied in the security policy 305, and
in step 664 determines whether the policy selector 405
confirms the pass. For example, the policy selector 405 may
indicate that the logical engine 333 pass the Downloadable
if it passes one of the tests of Path 1, Path 2, Path 3 and Path
4. If the policy selector 405 indicates that the Downloadable
should pass, then the logical engine 333 in step 666 passes
the Downloadable to the intended recipient. In step 668, the
logical engine 333 sends the results to the record-keeping
engine 335, which in turn stores the results in the event log
245 for future review. Method 655 then ends. Otherwise, if
the policy selector 405 in step 664 indicates that the Down-
loadable should not pass, then the logical engine 333 in step
670 stops the Downloadable and in step 672 sends a non-
hostile substitute Downloadable to inform the user that the
incoming Downloadable has been blocked. Method 655 then
jumps to step 668.

FIG. 7 is a flowchart illustrating details of step 628 of
FIG. 6A (referred to herein as method 628) for decomposing
a Downloadable into DSP data 310. Method 628 begins in
step 705 with the code scanner 325 disassembling the
machine code of the Downloadable. The code scanner 325
in step 710 resolves a respective command in the machine
code, and in step 715 determines whether the resolved
command is suspicious (e.g., whether the command is one of
the operations identified in the list described above with
reference to FIG. 3). If not, then the code scanner 325 in step
725 determines whether it has completed decomposition of
the Downloadable, i.e., whether all operations in the Down-
loadable code have been resolved. If so, then method 628
ends. Otherwise, method 628 returns to step 710.

Otherwise, if the code scanner 325 in step 715 determines
that the resolved command is suspect, then the code scanner
325 in step 720 decodes and registers the suspicious com-
mand and its command parameters as DSP data 310. The
code scanner 325 in step 720 registers the commands and
command parameters into a format based on command class
(e.g., file operations, network operations, registry
operations, operating system operations, resource usage
thresholds). Method 628 then jumps to step 725.

FIG. 8 is a flowchart illustrating a method 800 for
generating a Downloadable ID for identifying a Download-
able. Method 800 begins with the ID generator 315 in step
810 receiving a Downloadable from the external computer
network 105. The ID generator 315 in step 820 may fetch
some or all components referenced in the Downloadable
code, and in step 830 includes the fetched components in the
Downloadable code. The ID generator 315 in step 840
performs a hashing function on at least a portion of the
Downloadable code to generate a Downloadable ID. The ID
generator 315 in step 850 stores the generated Download-
able ID in the security database 240 as a reference to the
DSP data 310. Accordingly, the Downloadable ID will be the
same for the identical Downloadable each time it is encoun-
tered.

The foregoing description of the preferred embodiments
of the invention is by way of example only, and other
variations of the above-described embodiments and methods
are provided by the present invention. For example,
although the invention has been described in a system for
protecting an internal computer network, the invention can
be embodied in a system for protecting an individual com-
puter. Components of this invention may be implemented
using a programmed general purpose digital computer, using
application specific integrated circuits, or using a network of

10

15

20

25

30

35

40

45

50

55

60

65

10

interconnected conventional components and circuits. The
embodiments described herein have been presented for
purposes of illustration and are not intended to be exhaustive
or limiting. Many variations and modifications are possible
in light of the foregoing teaching. The system is limited only
by the following claims.
What is claimed is:
1. A computer-based method, comprising the steps of:
receiving an incoming Downloadable addressed to a
client, by a server that serves as a gateway to the client;

comparing, by the server, Downloadable security profile
data pertaining to the Downloadable, the Download-
able security profile data includes a list a suspicious
computer operations that may be attempted by the
Downloadable, against a security policy to determine if
the security policy has been violated; and

preventing execution of the Downloadable by the client if

the security policy has been violated.

2. The method of claim 1, further comprising the step of
decomposing the Downloadable into the Downloadable
security profile data.

3. The method of claim 2, wherein the security policy
includes an access control list and further comprising the
step of comparing the Downloadable security profile data
against the access control list.

4. The method of claim 1, further comprising the steps of
scanning for a certificate and comparing the certificate
against a trusted certificate.

5. The method of claim 1, further comprising the step of
comparing the URL from which the Downloadable origi-
nated against a known URL.

6. The method of claim 5, wherein the known URL is a
trusted URL.

7. The method of claim 5, wherein the known URL is an
untrusted URL.

8. The method of claim 1, wherein the Downloadable
includes a Java™ applet.

9. The method of claim 1, wherein the Downloadable
includes an ActiveX™ control.

10. The method of claim 1, wherein the Downloadable
includes a JavaScript™ script.

11. The method of claim 1, wherein the Downloadable
includes a Visual Basic script.

12. The method of claim 1, wherein

the security policy includes a default security policy to be

applied regardless of the client to whom the Down-
loadable is addressed.

13. The method of claim 1, wherein

the security policy includes a specific security policy

corresponding to the client to whom the Downloadable
is addressed.

14. The method of claim 1, wherein

the client belongs to a particular group; and

the security policy includes a specific security policy

corresponding to the particular group.

15. The method of claim 1, further comprising, after
preventing execution of the Downloadable, the step of
sending a substitute non-hostile Downloadable to the client
for informing the client.

16. The method of claim 1, further comprising, after
preventing execution of the Downloadable, the step of
recording the violation in an event log.

17. The method of claim 1, further comprising the step of
computing a Downloadable ID to identify the Download-
able.

18. The method of claim 16, further comprising the steps
of fetching components identified by the Downloadable and
including the fetched components in the Downloadable.

6,092,194

11

19. The method of claim 18, further comprising the step
of performing a hashing function on the Downloadable to
compute a Downloadable ID to identify the Downloadable.

20. The method of claim 18, further comprising the step
of fetching all components identified by the Downloadable.

21. The method of claim 1 further comprising the step of
examining the intended recipient userID to determine the
appropriate security policy.

22. The method of claim 20, wherein the appropriate
security policy includes a default security policy.

23. The method of claim 1, further comprising the step of
examining the Downloadable to determine the appropriate
security policy.

24. The method of claim 1, further comprising the step of
comparing the Downloadable against a known Download-
able.

25. The method of claim 24, wherein the known Down-
loadable is hostile.

26. The method of claim 24, wherein the known Down-
loadable is non-hostile.

27. The method of claim 24, further comprising the step
of including a previously received Downloadable as a
known Downloadable.

28. The method of claim 27, wherein the security policy
identifies a Downloadable to be blocked per administrative
override.

29. The method of claim 28, wherein the security policy
identifies a Downloadable to be allowed per administrative
override.

30. The method of claim 1, further comprising the step of
informing a user upon detection of a security policy viola-
tion.

31. The method of claim 1, further comprising the steps
of recognizing the incoming Downloadable, and obtaining
the Downloadable security profile data for the incoming
Downloadable from memory.

32. A system for execution by a server that serves as a
gateway to a client, the system comprising:

a security policy;

an interface for receiving an incoming Downloadable
addressed to a client;

a comparator, coupled to the interface, for comparing
Downloadable security profile data pertaining to the
Downloadable, the Downloadable security profile data
includes a list a suspicious computer operations that
may be attempted by the Downloadable, against the
security policy to determine if the security policy has
been violated; and

a logical engine for preventing execution of the Down-
loadable by the client if the security policy has been
violated.

33. The system of claim 32, wherein the Downloadable

includes a Java™ applet.

34. The system of claim 32, wherein the Downloadable
includes ActiveX™ control.

35. The system of claim 32, wherein the Downloadable
includes a JavaScript™ script.

36. The system of claim 32, wherein the Downloadable
includes a Visual Basic script.

37. The system of claim 32, wherein

the security policy includes a default security policy to be
applied regardless of the client to whom the Down-
loadable is addressed.

38. The system of claim 32, wherein

the security policy includes a specific security policy
corresponding to the client to whom the Downloadable
is addressed.

10

15

20

25

35

40

45

50

55

60

65

12

39. The system of claim 32, wherein

the client belongs to a particular group; and

the security policy includes a specific security policy

corresponding to the particular group.

40. The system of claim 32, further comprising an ID
generator coupled to the interface for computing a Down-
loadable ID identifying the Downloadable.

41. The system of claim 40, wherein the ID generator
prefetches all components of the Downloadable and uses all
components to compute the Downloadable ID.

42. The system of claim 41, wherein the ID generator
computes the digital hash of all the prefetched components.

43. The system of claim 32, further comprising a policy
finder for finding the security policy.

44. The system of claim 43, wherein the policy finder
finds the security policy based on the user.

45. The system of claim 43 wherein the policy finder finds
the security policy based on the user and the Downloadable.

46. The system of claim 43, wherein the policy finder
obtains the default security policy.

47. The system of claim 32 wherein the comparator
examines the security policy to determine which tests to
apply.

48. The system of claim 47 wherein the comparator
compares the Downloadable against a known Download-
able.

49. The system of claim 48, wherein the known Down-
loadable is hostile.

50. The system of claim 48, wherein the known Down-
loadable is non-hostile.

51. The system of claim 32, wherein the security policy
identifies a Downloadable to be blocked per administrative
override.

52. The system of claim 32, wherein the security policy
identifies a Downloadable to be allowed per administrative
override.

53. The system of claim 32, wherein

the comparator sends a substitute non-hostile Download-

able to the client for informing the client.

54. The system of claim 32, further comprising a code
scanner coupled to the comparator for decomposing the
Downloadable into the Downloadable security profile data.

55. The system of claim 54, further comprising an ACL
comparator coupled to the code scanner for comparing the
Downloadable security profile data against an access control
list.

56. The system of claim 32, further comprising a certifi-
cate scanner coupled to the comparator for examining the
Downloadable for a certificate.

57. The system of claim 56, further comprising a certifi-
cate comparator coupled to the certificate scanner for com-
paring the certificate against a trusted certificate.

58. The system of claim 32, further comprising a URL
comparator coupled to the comparator for comparing the
URL from which the Downloadable originated against a
known URL.

59. The system of claim 58, wherein the known URL
identifies an untrusted URL.

60. The system of claim 58, wherein the known URL
identifies a trusted URL.

61. The system of claim 31, wherein the logical engine
responds according to the security policy.

62. The system of claim 31, further comprising a record-
keeping engine coupled to the comparator for recording
results in an event log.

63. The system of claim 32, further comprising memory
storing the Downloadable security profile data for the
incoming Downloadable.

6,092,194

13

64. A system for execution on a server that serves as a
gateway to a client, comprising:

means for receiving an incoming Downloadable

addressed to a client;

means for comparing Downloadable security profile data

pertaining to the Downloadable, the Downloadable
security profile data includes a list a suspicious com-
puter operations that may be attempted by the
Downloadable, against a security policy to determine if
the security policy has been violated; and

means for preventing execution of the Downloadable by

the client if the security policy has been violated.

65. A computer-readable storage medium storing program
code for causing a server that serves as a gateway to a client
to perform the steps of:

receiving an incoming Downloadable addressed to a

client;
comparing Downloadable security profile data pertaining
to the Downloadable against a security policy to deter-
mine if the security policy has been violated; and

preventing execution of the Downloadable by the client if
the security policy has been violated.

66. A method, comprising:

receiving a Downloadable;

decomposing the Downloadable into Downloadable secu-
rity profile data; the Downloadable security profile data
includes a list a suspicious computer operations that
may be attempted by the Downloadable,

comparing the Downloadable security profile data against
a security policy; and

preventing execution of the Downloadable if the Down-
loadable security profile data violates the security
policy.

10

15

20

25

30

14
67. The method of claim 66, further comprising:

fetching all components referenced by the Downloadable;

performing a hashing function of the Downloadable and
the components fetched to compute a Downloadable
ID; and

storing the Downloadable security profile data and the
Downloadable ID in memory.

68. A method, comprising:

providing memory storing known-Downloadable security
profile data and a that includes a list a suspicious
computer operations that may be attempted by a Down-
loadable known-Downloadable ID corresponding to
the Downloadable security profile data;

receiving an incoming Downloadable;

fetching all components referenced by the incoming
Downloadable;

performing a hashing function of the Downloadable and
the components to compute an incoming-
Downloadable 1D,

comparing the known-Downloadable ID against the
incoming-Downloadable ID;
retrieving the Downloadable security profile data if the

known-Downloadable ID and the incoming-
Downloadable ID match; and

comparing the Downloadable security profile data against
a security policy to determine if the incoming Down-
loadable violates the security policy.

ok ok k%

