The Common Object Reguest Broker:
Architecture and Specification

Digital Equipment Corporation
Hewlett-Packard Company
Hyper Desk Corporation

NCR Corporation

Object Design, Inc.

SunSoft, Inc.

OMG Document Number 93.xx.yy

Revision 1.2
Draft 29 December 1993

BLUE COAT - EXHIBIT 1011

Copyright 1991, 1992 by Digital Equipment Corporation
Copyright 1989, 1990, 1991, 1992 by Hewlett-Packard Corporation
Copyright 1991, 1992 by HyperDesk Corporation

Copyright 1991, 1992 by NCR Corporation

Copyright 1991,1992 by Object Design, Inc.

Copyright 1991, 1992 by Sun Microsystems, Inc.

Sun Microsystems, Inc., Hewlett-Packard Company, HyperDesk Corporation, NCR Corporation, Digital Equipment
Corporation, and Object Design, Inc. hereby grant to the Object Management Group, Inc. a non-exclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute cop-
ies of the modified version.

Each of the copyright holders listed above agrees that not person shall be deemed to have infringed any copyright,
patent or any other proprietary right of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

NOTICE
The information contained in this document is subject to change without notice.

The material in this document details an Object Management Group specification in accordance with the license and
notices set forth on this page. This document does not represent a commitment to implement any portion of this spec-
ification in any companies' products.

WHILE THE INFORMATION IN THIS PUBLICATION ISBELIEVED TO BE ACCURATE,

THE OBJECT MANAGEMENT GROUP, DIGITAL EQUIPMENT CORPORATION,

HEWLETT-PACKARD COMPANY, HY PERDESK CORPORATION, NCR CORPORATION, OBJECT DESIGN,
INC., SUN MICROSY STEMS, INC., AND X/OPEN CO. LTD., MAKE NO WARRANTY OF ANY KIND WITH
REGARDS TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. The Object Management Group, Inc.,
Digital Equipment Corporation, Hewlett-Packard Company, HyperDesk Corporation, NCR Corporation, Object
Design, Inc., Sun Microsystems, Inc., and X/Open Co. Ltd. shall not be liable for errors contained herein or for inci-
dental or consequential damages in connection with the furnishing, performance or use of this material.

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its des-
ignees) is and shall tat all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these mate-
rials.

This document contains information which is protected by copyright. All Rights Reserved. No part of thiswork cov-
ered by copyright hereon may be reproduced or used in any form or by any means--graphic, el ectronic or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the
copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set
forth in subdivision (c) (2) (ii) of the Right in Technical Data and Computer Software Clause at DFARS
252.227.7013.

Hewlett-Packard Company is atrademark of Hewlett-Packard Company
HyperDesk is atrademark of HyperDesk Corporation

SunSoft is atrademark of Sun Microsystems, Inc., licensed to SunSoft, Inc.
X/Open and the " X" symbol are trademarks of X/Open Company Limited.

Preface on X/Open

X/Open is an independent, worldwide, open systems organization supported by most of the world's
largest information system suppliers, user organizations and software companies. ltsmissionisto
bring to users greater value from computing, through the practical implementation of open systems.

X/Open's strategy for achieving this goal is to combine existing and emerging standards into a com-
prehensive, integrated, high value and usable systems environment called the Common Applications
Environment (CAE).

The components of the CAE are defined in X/Open CAE specifications. These contain, among other
things, an evolving portfolio of practical application programming interfaces (API's), which signifi-
cantly enhance portability of application programs at the source code level, and definitions of, and
references to, protocols and protocol profiles, which significantly enhance the interoperability of
applications.

The X/Open CAE Specifications are supported further by an extensive set of conformance testsand a
distinct X/Open trademark - the XPG Brand - that is licensed by X/Open and may be carried only on
products that comply with the CAE specifications.

This Document

Thisdocument isajoint publication of X/Open and the Object Management Group and is
endor sed by both organizations. In termsof the X/Open family of publications, it hasthe stand-
ing as an X/Open Preliminary Specification of the Object Request Broker component of
responses. The Object Request Broker providesinteroper ability between applications on differ -
ent machinesin distributed environments.

" X/Open" and the" X" symbol are Trademarks of X/Open Company Limited.

Table of Contents

Overview 15

11
1.2

Overview 15
Typographical Conventions 17

The Object Model 19

2.1
2.2

2.3

Overview 19

Object Semantics 20

2.2.1 Objects 21

2.2.2 Requests 21

2.2.3 Object Creation and Destruction 22
2.2.4 Types 22

2.2.5 |Interfaces 24

2.2.6 Operations 24

2.2.7 Attributes 26

Object Implementation 26

2.3.1 The Execution Model: Performing Services 26
2.3.2 The Construction Model 27

The Common Object Request Broker Architecture 29

3.1

The Structure of an Object Request Broker 30

3.1.1 Object Request Broker 34
3.1.2 Clients 35
3.1.3 Object Implementations 35

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Contents

3.2

3.3
3.4
3.5
3.6

3.7

3.1.4 Object References 36

3.1.5 IDL Interface Definition Language 36
3.1.6 Programming Language Mapping 36
3.1.7 Client Stubs 37

3.1.8 Dynamic Invocation Interface 37
3.1.9 Implementation Skeleton 37

3.1.10 Object Adapters 38

3.1.11 ORB Interface 38

3.1.12 Interface Repository 38

3.1.13 Implementation Repository 39

Some Example ORBs 39

3.2.1 Client- and Implementation-resident ORB 39

3.2.2 Server-based ORB 39
3.2.3 System-based ORB 39
3.2.4 Library-based ORB 40

The Structure of aClient 40

The Structure of an Object Implementation 42

The Structure of an Object Adapter 43

Some Example Object Adapters 45

3.6.1 Basic Object Adapter 45
3.6.2 Library Object Adapter 45
3.6.3 Object-Oriented Database Adapter 45

The Integration of Foreign Object Systems 46

IDL Syntax and Semantics 47

4.1

4.2
4.3
4.4

4.5
4.6

4.7

4.8
4.9

Lexical Conventions 49

4.1.1 Tokens 52
4.1.2 Comments 52
4.1.3 Identifiers 52
4.1.4 Keywords 53
4.1.5 Literals 54

Preprocessing 56
IDL Grammar 56

IDL Specification 60

4.4.1 Module Declaration 61
4.4.2 Interface Declaration 61

Inheritance 63

Constant Declaration 65

4.6.1 Syntax 65
4.6.2 Semantics 66

Type Declaration 68

4.7.1 Basic Types 69

4.7.2 Constructed Types 70
4.7.3 Template Types 73
4.7.4 Complex Declarator 74

Exception Declaration 75

Operation Declaration 75
4.9.1 Operation Attribute 76

Vi

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Contents

4.9.2 Parameter Declarations 76
4.9.3 Raises Expressions 77
4.9.4 Context Expressions 77

4.10 Attribute Declaration 78
4.11 CORBA Module 79
4.12 Namesand Scoping 79
4.13 Differences from C++ 82
4.14 Standard Exceptions 82

C Language Stub Mapping ss

5.1 Requirementsfor alLanguage Mapping 85

5.1.1 Basic Data Types 86
5.1.2 Constructed Data Types 86
5.1.3 Constants 86

5.1.4 Objects 86

5.1.5 Invocation of Operations 87
5.1.6 Exceptions 87

5.1.7 Attributes 88

5.1.8 ORB Interfaces 88

5.1.9 Language Stub Mapping 89

5.2 Scoped Names 89

5.3 Mapping for Interfaces 90

5.4 Inheritance and Operation Names 91

5.5 Mapping for Attributes 92

5.6 Mapping for Constants 93

5.7 Mapping for Basic Data Types 93

5.8 Mapping for Structure Types 94

5.9 Mapping for Union Types 94
5.10 Mapping for Sequence Types 95
5.11 Mapping for Strings 97
5.12 Mapping for Arrays 99
5.13 Mapping for Exception Types 99
5.14 Implicit Argumentsto Operations 99
5.15 Interpretation of Functions with Empty Argument Lists 100
5.16 Argument Passing Considerations 100
5.17 Return Result Passing Considerations 101
5.18 Summary of Argument/Result Passing 102
5.19 Handling Exceptions 104
5.20 Method Routine Signatures 107
5.21 Include Files 107
5.22 Pseudo-objects 107

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION Vi

Contents

6 Dynamic Invocation Interface 109

6.1 Overview 109

6.1.1 Common Data Structures 110
6.1.2 Memory Usage 112
6.1.3 Return Statuses and Exceptions 112

6.2 Request Routines 112

6.2.1 create_request 113
6.2.2 add_arg 115

6.2.3 invoke 115

6.2.4 delete 116

6.3 Deferred Synchronous Routines 116

6.3.1 send 116

6.3.2 send_multiple_requests 117
6.3.3 get_response 117

6.3.4 get_next_response 118

6.4 List Routines 118

6.4.1 create_list 119

6.4.2 add_item 119

6.4.3 free 120

6.4.4 free_memory 120

6.4.5 get_count 120

6.4.6 create_operation_list 120

6.5 Context Objects 121

6.6 Context Object Routines 122

6.6.1 get_default_context 123
6.6.2 set_one_value 124
6.6.3 set values 124

6.6.4 get values 124

6.6.5 delete_values 125
6.6.6 create_child 125

6.6.7 delete 125

6.7 Native DataManipulation 126

7 The Interface Repository 127

7.1 Overview 127
7.2 Scope of an Interface Repository 128
7.3 Implementation Dependencies 129

7.4 Basics of the Interface Repository Interface 130

7.4.1 Names 130

7.4.2 Types and TypeCodes 130

7.4.3 Interface Objects 130

7.4.4 Structure and Navigation of Interface Objects 131

7.5 Interface Repository Interfaces 133

7.5.1 Container and Contained Interfaces 133
7.5.2 Repository 136

7.5.3 ModuleDef 137

7.5.4 InterfaceDef 138

7.5.5 AttributeDef 139

viii THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Contents

7.6

7.5.6 OperationDef 139
7.5.7 ParameterDef 140
7.5.8 TypedefDef Interface 141
7.5.9 ConstantDef Interface 141
7.5.10 ExceptionDef 142

TypeCodes 142

7.6.1 The TypeCode Interface 143
7.6.2 TypeCode Constants 145

ORB Interface 147

8.1
8.2

Converting Object Referencesto Strings 147

Object Reference Operations 149

8.2.1 Determining the Object Implementation and Interface 149
8.2.2 Duplicating and Releasing Copies of Object References 150
8.2.3 Nil Object References 150

The Basic Object Adapter 151

10

9.1
9.2

9.3

Role of the Basic Object Adapter 152

Basic Object Adapter Interface 153

9.2.1 Registration of Implementations 155

9.2.2 Activation and Deactivation of Implementations 155
9.2.3 Generation and Interpretation of Object References 158
9.2.4 Authentication and Access Control 159

9.2.5 Persistent Storage 160

C Language Mapping for Object Implementations 160

9.3.1 Operation-specific details 161
9.3.2 Method signatures 161

9.3.3 Binding Methods to Skeletons 162
9.3.4 BOA and ORB routines 162

Interoperability 165

11

10.1

The Organization of Multiple ORBs 166

10.1.1 Reference Embedding 167
10.1.2 Protocol Translation 167
10.1.3 Alternate ORBs 167

Glossary 169

Standard IDL Types 175

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Contents

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

List of Figures

FG.
FG.
FIG.
FIG.
FIG.
FIG.
FG.
FIG.
FIG.
FG.
FG.
FIG.
FG.
FG.
FIG.

© 0 N o o M WODN PP

P~ S Y S T
a » W N R O

Legal Values 23

A Request Being Sent Through the Object Request Broker 30
The Structure of Object Request Broker Interfaces 31

A Client using the Stub or Dynamic Invocation Interface 32
An Object Implementation Receiving a Request 33

Interface and Implementation Repositories 34

The Structure of aTypical Client 41

The Structure of a Typical Object Implementation 42

The Structure of a Typical Object Adapter 44

Different Ways to Integrate Foreign Object Systems 46

Legal Multiple Inheritance Example 64

Interface Repository Object Containment 132

The Structure and Operation of the Basic Object Adapter 153
Implementation Activation Policies 157

Multiple ORBs 166

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Xi

Figures

Xii THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

List of Tables

TBL.
TBL.
TBL.
TBL.
TBL.
TBL.
TBL.
TBL.
TBL.
TBL.
TBL.
TBL.
TBL.
TBL.
TBL.
TBL.
TBL.
TBL.
TBL.
TBL.

© 0 N o o b~ WODN B

R e el e e L i o =
©Q © O N O Ul D WN R O

IDL EBNF Format 48

The 114 Alphabetic Characters (Letters) 49
Decimal Digits 50

The 65 Graphic Characters 50

The Formatting Characters 52

Keywords 53

Punctuation Characters 53

Preprocessor Tokens 54

Escape Sequences 54

Case Label Matching 72

Data Type Mappings 93

Argument and Result Passing 102

Client Argument Storage Responsibilities 103
Argument Passing Cases 103

C TypelLengths 111

Legal TypeCode Kinds and Parameters 144
Types Defined by IDL 175

Pseudo-objects 176

Interface Repository Types 176

Minimal Typesfor Any 177

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Xiii

Tables

Xiv THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

1

Overview

1.1 Overview

As defined by the Object Management Group (OMG), the Object Request Broker (ORB)
provides the mechanisms by which objects transparently make requests and receive
responses. The ORB providesinteroperability between applications on different machines
in hetero?eneous distributed environments and seamlessly interconnects multiple object
systems.

The Common Object Request Broker Architecture and Specification described in this doc-
ument represents the adopted Object Request Broker (ORB) technology of the Object

1. From Object Management Architecture Guide, Revision 1.0, OMG TC Document 90.9.1.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 15

Overview

Management Group. This specification was adopted from ajoint proposal of the following
companies.

* Digital Equipment Corporation

» Hewlett-Packard Company

* HyperDesk Corporation

* NCR Corporation

* Object Design, Inc.

* SunSoft, Inc.

The Common ORB Architecture and Specification defines aframework for different ORB
implementations to provide common ORB services and interfaces to support portable cli-
ents and implementations of objects.

This document is organized as follows:

Chapter 1: Overview
Overview of the document and status.

Chapter 2: The Object Model
The concrete object model for the Common ORB Architecture.

Chapter 3: The Common Object Request Broker Architecture
The overall ORB architecture and interface description.

Chapter 4: IDL Syntax and Semantics
The specification of the Interface Definition Language.

Chapter 5: C Language Stub Mapping
The mapping provided for the C programming language.

Chapter 6: Dynamic Invocation Interface
The dynamic request invocation interface.

Chapter 7: The Interface Repository
The interface (i.e., type) definition repository.

Chapter 8: ORB Interface
The direct interface to the ORB.

Chapter 9: The Basic Object Adapter
The Basic Object Adapter interface.

16

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Typographical Conventions

Chapter 10: Interoperability
A discussion of interoperability between ORBs.

Chapter 11: Glossary

Appendix A: Standard IDL Types
Type definitions available in every ORB.

1.2 Typographical Conventions

The type styles shown below are used in this document to distinguish programming state-
ments from ordinary English. However, these conventions are not used in tables or section
headings, where no distinction is necessary, nor are the type styles used in text where their
density would be distracting.

Helvetica bold IDL language and syntax elements
Times bold Pseudo-IDL language elements
Courier bold C language elements

Code examples written in pseudo-1DL and C are further identified by means of a com-
ment; unidentified examples are written in IDL.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 17

Overview

18 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

2

The Object Model

2.1

This chapter describes the concrete object model which underlies the Common ORB
Architecture. The model is derived from the abstract object model defined by the Object
Management Group?.,

Overview

The object model provides an organized presentation of object concepts and terminology.
It defines a partial model for computation that embodies the key characteristics of objects
asrealized by the submitted technologies.

The OMG object model isabstract inthat it is not directly realized by any particular tech-
nology. The model described here is a concrete object model. A concrete object model
may differ from the abstract object model in several ways.

1. Object Management Architecture Guide 1.0, Chapter 4, OMG TC Document 90.9.1, Object Manage-
ment Group, Inc., 492 Old Connecticut Path, Framingham, MA 01701, November 1990.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 19

The Object Model

* it may elaborate the abstract object model by making it more specific, for example, by
defining the form of request parameters or the language used to specify types

* it may populate the model by introducing specific instances of entities defined by the
model, for example, specific objects, specific operations, or specific types

* it may restrict the model by eliminating entities or placing additional restrictions on
their use

An object system is acollection of objects that isolates the requestors of services (clients)
from the providers of services by a well-defined encapsulating interface. In particular, cli-
ents are isolated from the implementations of services as data representations and execut-
able code.

The object model first describes concepts that are meaningful to clients, including such
concepts as object creation and identity, requests and operations, types and signatures. It
then describes concepts related to object implementations, including such concepts as
methods, execution engines, and activation.

The object model is most specific and prescriptive in defining concepts meaningful to cli-
ents. The discussion of object implementation is more suggestive, with the intent of allow-
ing maximal freedom for different object technologies to provide different ways of
implementing objects. See Chapter 9 for more information on implementation rules for
objects which are managed by the Basic Object Adapter.

There are some other characteristics of object systemsthat are outside the scope of the
object model. Some of these concepts are aspects of application architecture, some are
associated with specific domainsto which object technology is applied. Such concepts are
more properly dealt with in an architectural reference model. Examples of excluded con-
cepts are compound objects, links, copying of objects, change management, and transac-
tions. Also outside the scope of the object model isthe model of control and execution.

This object model is an example of a classical object model, where a client sends a mes-
sage to an object. Conceptually, the object interprets the message to decide what service to
perform. In the classical model, a message identifies an object and zero or more actual
parameters. Asin most classical object models, a distinguished first parameter isrequired,
which identifies the operation to be performed; the interpretation of the message by the
object involves selecting a method based on the specified operation. Operationally, of
course, method selection could be performed either by the object or the ORB.

2.2 Object Semantics

An object system provides servicesto clients. A client of aservice isany entity capable of
requesting the service.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Object Semantics

221

2.2.2

This section defines the concepts associated with object semantics, i.e. the concepts rele-
vant to clients.

Objects

An object system includes entities known as objects. An object is an identifiable, encapsu-
lated entity that provides one or more services that can be requested by a client.

Requests

Clients request services by issuing requests. A request is an event, i.e. something that
occurs at a particular time. The information associated with arequest consists of an opera-
tion, atarget object, zero or more (actual) parameters, and an optional request context.

A request formisadescription or pattern that can be evaluated or performed multiple
times to cause the issuing of requests. Asdescribed in Chapter 4, request forms are defined
by particular language bindings. An alternative request form consists of callsto the
dynamic invocation interface to create an invocation structure, add arguments to the invo-
cation structure, and to issue the invocation.?

A value is anything that may be a legitimate (actual) parameter in arequest. A value may
identify an object, for the purpose of performing the request. A value that identifies an
object is called an object name. More particularly, avalueis an instance of an IDL (Inter-
face Definition Language, defined in Chapter 4) datatype.

An object referenceis an object name that reliably denotes a particular object. Specificaly,
an object reference will identify the same object each time the referenceisused in a
request (subject to certain pragmatic limits of space and time). An object may be denoted
by multiple, distinct object references.

A request may have parameters that are used to pass data to the target object; it may also
have arequest context which provides additional information about the request.

A reguest causes a service to be performed on behalf of the client. One outcome of per-
forming a service is returning to the client the results, if any, defined for the request.

If an abnormal condition occurs during the performance of arequest, an exception is
returned. The exception may carry additional return parameters particular to that excep-
tion.

2. Descriptions of these request forms may be found in Chapter 5 for the C-language binding for IDL and
Chapter 6 for the dynamic invocation interface.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 21

The Object Model

2.2.3

224

Therequest parameters are identified by position. A parameter may be an input parameter,
an output parameter, or an input-output parameter. A request may also return asingle
result value, as well as any output parameters.

The following semantics hold for all requests:

» any aliasing of parameter valuesis neither guaranteed removed nor guaranteed pre-
served

» theorder in which aliased output parameters are written is not guaranteed

e any output parameters are undefined if an exception is returned

» thevalueswhich may be returned in an input-output parameter may be constrained by
the value which was input

Descriptions of the permitted values in requests and the permitted exceptions may be
found in 82.2.4 on page 22, and 82.2.6.3 on page 25.

Object Creation and Destruction

Objects can be created and destroyed. From a client’s point of view, there is no specia
mechanism for creating or destroying an object. Objects are created and destroyed as an
outcome of issuing requests. The outcome of object creationis revealed to the client in the
form of an object reference that denotes the new object.

Types

A typeisanidentifiable entity with an associated predicate (a single-argument mathemati-
cal function with aboolean result) defined over values. A value satisfies atype if the pred-
icate istrue for that value. A value that satisfies atypeis called a member of the type.

Types are used in signatures to restrict a possible parameter or to characterize a possible
result.

The extension of a typeis the set of values that satisfy the type at any particular time.

An object type is atype whose members are objects (literally, values that identify objects).
In other words, an object type is satisfied only by (values that identify) objects.

Datatypesin this model are constrained as follows:

Basic types:
e 16-bit and 32-bit signed and unsigned 2's complement integers
o 32-bit and 64-hit IEEE floating point numbers

22

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Object Semantics

characters, as defined in 1SO Latin-1 (8859.1)
a boolean type taking the values TRUE and FALSE

an 8-hit opague datatype, guaranteed to not undergo any conversion during transfer
between systems

enumerated types consisting of ordered sequences of identifiers

astring type which consists of a variable-length array of characters; the length of the
string is available at runtime

atype “any” which can represent any possible basic or constructed type

Constructed types:

arecord type (called struct), consisting of an ordered set of (name,value) pairs

adiscriminated union type, consisting of a discriminator followed by an instance of a
type appropriate to the discriminator value

aseguence type which consists of avariable-length array of asingletype; the length of
the sequence is available at runtime

an array type which consists of afixed-length array of asingletype

an interface type, which specifies the set of operations which an instance of that type
must support

Valuesin areguest are constrained to values which satisfy these type constraints. The legal
values are shown in FIG. 1 on page 23. No particular representation for values is defined.

FIG. 1

Legal Values

Value

Object Reference Constructed Value

Basic Value Struct Sequence Union Array

Short Long UShort Ulong Float Double Char String Boolean Octal Enum Any

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 23

The Object Model

2.2.5

2.2.6

Interfaces

Aninterfaceis adescription of a set of possible operations that a client may request of an
object. An object satisfies an interface if it can be specified as the target object in each
potential request described by the interface.

Aninterfacetypeisatypethat is satisfied by any object (literally, any value that identifies
an object) that satisfies a particular interface.

Interfaces are specified in IDL. Interface inheritance provides the composition mechanism
for permitting an object to support multiple interfaces. The principal interfaceis simply
the most-specific interface that the object supports, and consists of all operationsin the
transitive closure of the interface inheritance graph.

Operations

An operation is an identifiable entity that denotes a service that can be requested.

An operation isidentified by an operation identifier. An operation is not a value.

An operation has a signature that describes the legitimate val ues of request parameters and
returned results. In particular, a signature consists of:

» asgpecification of the parameters required in requests for that operation

* asgpecification of the result of the operation

» asgpecification of the exceptions that may be raised by a request for the operation and
the types of the parameters accompanying them

» asgpecification of additional contextual information that may affect the request

» anindication of the execution semanticsthe client should expect from arequest for the
operation

Operations are (potentially) generic, meaning that a single operation can be uniformly
requested on objects with different implementations, possibly resulting in observably dif-
ferent behavior. Genericity is achieved in this model viainterface inheritancein IDL and
the total decoupling of implementation from interface specification.

The general form for an operation signature is:

[oneway] <op_type_spec> <identifier> (parami, ..., paramL)
[raises(exceptl,...,exceptN)] [context(namel, ..., nameM)]

24

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Object Semantics

2.26.1

2.2.6.2

2.2.6.3

2.2.6.4

2.2.6.5

where;

» the optiona oneway keyword indicates that best-effort semantics are expected of
requests for this operation; the default semantics are exactly-once if the operation suc-
cessfully returns results or at-most-once if an exception is returned

» the<op_type_spec> isthetype of the return result
» the<identifier> provides a name for the operation in the interface.

» the operation parameters needed for the operation; they are flagged with the modifiers
in, out, or inout to indicate the direction in which the information flows (with respect to
the object performing the request)

» the optional raises expression indicates which user-defined exceptions can be sig-
nalled to terminate a request for this operation; if such an expression is not provided,
no user-defined exceptions will be signalled

» the optional context expression indicates which request context information will be
available to the object implementation; no other contextual information is required to
be transported with the request

Parameters

A parameter is characterized by its mode and its type. The mode indicates whether the
value should be passed from client to server (in), from server to client (out), or both
(inout). The parameter’s type constrains the possible value which may be passed in the
direction[s] dictated by the mode.

Return Result
The return result is a distinguished out parameter.

Exceptions

An exception isan indication that an operation request was not performed successfully. An
exception may be accompanied by additional, exception-specific information.

The additional, exception-specific information is a specialized form of record. Asarecord,
it may consist of any of the types described in §2.2.4 on page 22.

All signatures implicitly include the standard exceptions described in 84.14 on page 82.

Contexts

A request context provides additional, operation-specific information that may affect the
performance of arequest.

Execution Semantics
Two styles of execution semantics are defined by the object model:

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 25

The Object Model

2.2.7

2.3

» at-most-once: if an operation request returns successfully, it was performed exactly
once; if it returns an exception indication, it was performed at-most-once;

» best-effort: a best-effort operation is arequest-only operation, i.e. it cannot return any
results and the requester never synchronizes with the completion, if any, of the request.

The execution semantics to be expected is associated with an operation. This prevents a
client and object implementation from assuming different execution semantics.

Note that aclient is able to invoke an at-most-once operation in a synchronous or
deferred-synchronous manner.

Attributes

An interface may have attributes. An attribute islogically equivalent to declaring apair of
accessor functions: one to retrieve the value of the attribute and one to set the value of the
attribute.

An attribute may be read-only, in which case only the retrieval accessor functionis
defined.

Object Implementation

2.3.1

This section defines the concepts associated with object implementation, i.e. the concepts
relevant to realizing the behavior of objectsin a computational system.

The implementation of an object system carries out the computational activities needed to
effect the behavior of requested services. These activities may include computing the
result of the request and updating the system state. In the process, additional requests may
be issued.

Theimplementation model consists of two parts. the execution model and the construction
model. The execution model describes how services are performed. The construction
model describes how services are defined.

The Execution Model: Performing Services

A requested service is performed in a computational system by executing code that oper-
ates upon some data. The data represents a component of the state of the computational
system. The code performs the requested service, which may change the state of the sys-
tem.

26

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Object Implementation

2.3.2

Code that is executed to perform a service is called a method. A method is an immutable
description of acomputation that can be interpreted by an execution engine. A method has
an immutable attribute called a method format that defines the set of execution engines
that can interpret the method. An execution engine is an abstract machine (not a program)
that can interpret methods of certain formats, causing the described computations to be
performed. An execution engine defines a dynamic context for the execution of a method.
The execution of a method is called a method activation.

When a client issues a request, a method of the target object is called. The input parame-
ters passed by the requestor are passed to the method and the output parameters and return
value (or exception and its parameters) are passed back to the requestor.

Performing a requested service causes a method to execute that may operate upon an
object’s persistent state. If the persistent form of the method or state is not accessible to the
execution engine, it may be necessary to first copy the method or state into an execution
context. This processis called activation; the reverse processis called deactivation.

The Construction Model

A computational object system must provide mechanisms for realizing behavior of
requests. These mechanismsinclude definitions of object state, definitions of methods, and
definitions of how the object infrastructureisto select the methods to execute and to select
the relevant portions of object state to be made accessible to the methods. Mechanisms
must also be provided to describe the concrete actions associated with object creation,
such as association of the new object with appropriate methods.

An object implementation—or implementation, for short—isadefinition that providesthe
information needed to create an object and to allow the object to participate in providing
an appropriate set of services. An implementation typically includes, among other things,
definitions of the methods that operate upon the state of an object. It also typically
includes information about the intended type of the object.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 27

The Object Model

28 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

3 The Common Object Request
Broker Architecture

The Common Object Request Broker Architecture (CORBA) is structured to allow inte-
gration of awide variety of object systems. The motivation for some of the features may
not be apparent at first, but as we discuss the range of implementations, policies, optimiza-
tions, and usages we expect to encompass, the value of the flexibility should become more
clear.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 29

The Common Object Request Broker Architecture

FIG. 2 A Request Being Sent Through the Object Request Broker

Client Object Implementation

ORB

3.1 The Structure of an Object Request Broker

FIG. 2 on page 30 shows arequest being sent by a client to an object implementation.The
Client isthe entity that wishesto perform an operation on the object and the Object Imple-
mentation is the code and data that actually implements the object. The ORB is responsi-
blefor all of the mechanisms required to find the object implementation for the request, to
prepare the object implementation to receive the request, and to communicate the data
making up the request. The interface the client sees is completely independent of where
the object islocated, what programming language it isimplemented in, or any other aspect
which is not reflected in the object’s interface.

30 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

The Structure of an Object Request Broker

FIG. 3 The Structure of Object Request Broker Interfaces
Client Q ; Object Implementation
L2127y iy XX R LDNBYLY; X
ER%Y ’/ ‘ﬂ s '1{1;":'.»13 7]
Dynamic ORB IDL Object
Invocation Interface Skeleton Adapter
|

———— ——— — —— — —————

ORB Core

Interface identical for all ORB implementations .
Up-call interface
There may be multiple object adapters

There are stubs and a skeleton for each object type Normal call interface
ORB-dependent interface

FIG. 3 on page 31 shows the structure of an individual Object Request Broker (ORB). The
interfaces to the ORB are shown by striped boxes, and the arrows indicate whether the
ORB iscalled or performs an up-call across the interface.

To make arequest, the Client can use the Dynamic Invocation interface (the same inter-
face independent of the interface of the target object) or an IDL stub (the specific stub
depending on the interface of the target object). The Client can aso directly interact with
the ORB for some functions.

The Object Implementation receives a request as an up-call through the IDL generated
skeleton. The Object Implementation may call the Object Adapter and the ORB while pro-
cessing arequest or at other times.

Definitions of the interfaces to objects can be defined in two ways. Interfaces can be
defined statically in an interface definition language, herein called the Interface Definition

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 31

The Common Object Request Broker Architecture

Language (IDL). This language defines the types of objects according to the operations
that may be performed on them and the parametersto those operations. Alternatively, or in
addition, interfaces can be added to an Interface Repository service; this service represents
the components of an interface as objects, permitting runtime access to these components.
In any ORB implementation, the Interface Definition Language (which may be extended
beyond its definition in this document) and the Interface Repository have equivalent
expressive powe.

FIG. 4

A Client using the Stub or Dynamic Invocation Interface

Client

ORB Core

Interface identical for all ORB implementations
There are stubs and a skeleton for each object type

e —

ORB-dependent interface

The client performs areguest by having access to an Object Reference for an object and
knowing the type of the object and the desired operation to be performed. The client ini-
tiates the request by calling stub routines that are specific to the object or by constructing
the request dynamically (see FIG. 4 on page 32).

The dynamic and stub interface for invoking a request satisfy the same request semantics,
and the receiver of the message cannot tell how the request was invoked.

32

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

The Structure of an Object Request Broker

FIG. 5 An Object Implementation Receiving a Request

Object Implementation

A BYY Y AIAIRAIA
LSBT NONSNSNSN
i gt AT AT
ORB IDL Object
Interface Skeleton

ORB Core

Interface identical for all ORB implementations
There may be multiple object adapters
There are stubs and a skeleton for each object type

=———= ORB-dependent interface

The ORB locates the appropriate implementation code, transmits parameters and transfers
control to the Object Implementation through an IDL skeleton (see FIG. 5 on page 33).
Skeletons are specific to the interface and the object adapter. In performing the request, the
object implementation may obtain some services from the ORB through the Object
Adapter. When the request is complete, control and output values are returned to the cli-
ent.

The Object Implementation may choose which Object Adapter to use. Thisdecision is
based on what kind of services the Object Implementation requires.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 33

The Common Object Request Broker Architecture

FIG. 6 Interface and Implementation Repositories
IDL Implementation
Definitions Installation

Implementation
Stubs Skeletons Repolsitory

Interface
Repository

Client Object Implementation

FIG. 6 on page 34 shows how interface and implementation information is made available
to clients and object implementations. The interface isdefined in IDL and/or in the Inter-
face Repository; the definition is used to generate the client Stubs and the object imple-
mentation Skeletons.

The Object Implementation information is provided at installation time and is stored in the
Implementation Repository for use during request delivery.

3.1.1 Object Request Broker
In the architecture, the ORB is not required to be implemented as a single component, but
rather it is defined by itsinterfaces. Any ORB implementation that provides the appropri-
ate interface is acceptable. The interface is organized into three categories:
1. those operations that are the same for all ORB implementations,
2. those operations that are specific to particular types of objects, and
3. those operations that are specific to particular styles of object implementations.

34 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

The Structure of an Object Request Broker

3.1.2

3.1.3

Different ORBs may make quite different implementation choices, and, together with the
IDL compilers, repositories, and various Object Adapters, provide a set of servicesto cli-
ents and implementations of objects that have different properties and qualities.

There may be multiple ORB implementations (also described as multiple ORBs) which
have different representations for object references and different means of performing
invocations. It may be possible for a client to simultaneously have access to two object
references managed by different ORB implementations. When two ORBs are intended to
work together, those ORBs must be able to distinguish their object references. It is not the
responsibility of the client to do so.

The ORB Coreisthat part of the ORB that providesthe basic representation of objects and
communication of requests. CORBA is designed to support different object mechanisms,

and it does so by structuring the ORB with components above the ORB Core, which pro-
vide interfaces that can mask the differences between ORB Cores.

Clients

A client of an object has access to an object reference for the object, and invokes opera-
tions on the object. A client knows only the logical structure of the object according to its
interface and experiences the behavior of the object through invocations. Although we
will generally consider aclient to be a program or processinitiating requests on an object,
it isimportant to recognize that something isa client relative to a particular object. For
example, the implementation of one object may be a client of other objects.

Clients generally see objects and ORB interfaces through the perspective of alanguage
mapping, bringing the ORB right up to the programmer’s level. Clients are maximally
portable and should be able to work without source changes on any ORB that supportsthe
desired language mapping with any object instance that implements the desired interface.
Clients have no knowledge of the implementation of the object, which object adapter is
used by the implementation, or which ORB is used to accessit.

Object Implementations

An object implementation provides the semantics of the object, usually by defining data
for the object instance and code for the object’s methods. Often the implementation will
use other objects or additional software to implement the behavior of the object. In some
cases, the primary function of the object isto have side-effects on other things that are not
objects.

A variety of object implementations can be supported, including separate servers, librar-
ies, aprogram per method, an encapsulated application, an object-oriented database, etc.
Through the use of additional object adapters, it is possible to support virtually any style
of object implementation.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 35

The Common Object Request Broker Architecture

Generally, object implementations do not depend on the ORB or how the client invokes
the object. Object implementations may select interfaces to ORB-dependent services by
the choice of Object Adapter. Object implementations are portable across any ORB that
supports the desired language mapping and implements the desired Object Adapter.

3.1.4 Object References

3.1.5

3.1.6

An Object Reference is the information needed to specify an object within an ORB. Both
clients and object implementations have an opague notion of object references according
to the language mapping, and thus are insulated from the actual representation of them.
Two ORB implementations may differ in their choice of Object Reference representations.

The representation of an object reference handed to aclient isonly valid for the lifetime of
that client.

All ORBs must provide the same language mapping to an object reference (usually
referred to as an Object) for a particular programming language. This permits a program
written in a particular language to access object references independent of the particular
ORB. The language mapping may also provide additional waysto access object references
in atyped way for the convenience of the programmer.

Thereis a distinguished object reference, guaranteed to be different from all object refer-
ences, that denotes no object.

IDL Interface Definition Language

The IDL Interface Definition Language defines the types of objects by specifying their
interfaces. An interface consists of a set of named operations and the parameters to those
operations. Note that although IDL provides the conceptual framework for describing the
objects manipulated by the ORB, it is not necessary for there to be IDL source code avail-
ablefor the ORB to work. Aslong as the equivalent information isavailable in the form of
stub routines or a runtime interface repository, a particular ORB may be able to function
correctly.

IDL isthe means by which a particular object implementation tellsits potential clients
what operations are available and how they should be invoked. From the IDL definitions,
it is possible to map CORBA objectsinto particular programming languages or object sys-
tems.

Programming Language Mapping

Different object-oriented or non-object-oriented programming languages may prefer to
access CORBA objectsin different ways. For object-oriented languages, it may be desir-
able to see CORBA objects as programming language objects. Even for non-object-ori-

36

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

The Structure of an Object Request Broker

3.1.7

3.1.8

3.1.9

ented languages, it is a good ideato hide the exact ORB representation of the object
reference, method names, etc. A particular language mapping to CORBA should be the
same for all ORB implementations; however, language mappings for languages other than
C are not currently part of the specification. The language mapping includes definition of
the language-specific data types and procedure interfaces to access objects through the
ORSB. It includes the structure of the client stub interface, the dynamic invocation inter-
face, the implementation skeleton, the object adapters, and the direct ORB interface.

The language mapping also defines the interaction between object invocations and the
threads of control in the client or implementation. The most common mappings provide
synchronous calls, in that the routine returns when the object operation completes. Addi-
tional mappings may be provided to allow acall to beinitiated and control returned to the
program. In such cases, additional language-specific routines must be provided to syn-
chronize the program’s threads of control with the object invocation.

Client Stubs

For a particular language mapping, there will be a programming interface to the stubs for
each interface type. Generally, the stubs will present access to the IDL-defined operations
on an object in away that is easy for programmers to predict once they are familiar with
IDL and the language mapping for the particular programming language. The stubs make
calls on the rest of the ORB using interfaces that are private to, and presumably optimized
for, the particular ORB Core. If more than one ORB is available, there may be different
stubs corresponding to the different ORBSs. In this case, it is hecessary for the ORB and
language mapping to cooperate to associate the correct stubs with the particular object ref-
erence.

Dynamic Invocation Interface

Aninterface is also available that allows the dynamic construction of object invocations,
that is, rather than calling a stub routine that is specific to a particular operation on a par-
ticular object, a client may specify the object to be invoked, the operation to be performed,
and the set of parameters for the operation through a call or sequence of calls. The client
code must supply information about the operation to be performed and the types of the
parameters being passed (perhaps obtaining it from an Interface Repository or other run-
time source). The nature of the dynamic invocation interface may vary substantially from
one programming language mapping to another.

Implementation Skeleton

For a particular language mapping, and possibly depending on the object adapter, there
will be an interface to the methods that implement each type of object. The interface will
generally be an up-call interface, in that the object implementation writes routines that
conform to the interface and the ORB calls them through the skeleton.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 37

The Common Object Request Broker Architecture

3.1.10

3.1.11

3.1.12

The existence of a skeleton does not imply the existence of a corresponding client stub
(clients can also make requests via the dynamic invocation interface).

It is possible to write an object adapter that does not use skeletons to invoke implementa-
tion methods. For example, it may be possible to create implementations dynamically for
languages such as Smalltalk.

Object Adapters

An object adapter is the primary way that an object implementation accesses services pro-
vided by the ORB. There are expected to be afew object adapters that will be widely
available, with interfaces that are appropriate for specific kinds of objects. Services pro-
vided by the ORB through an Object Adapter often include: generation and interpretation
of object references, method invocation, security of interactions, object and implementa-
tion activation and deactivation, mapping object references to implementations, and regis-
tration of implementations.

The wide range of object granularities, lifetimes, policies, implementation styles, and
other properties make it difficult for the ORB Coreto provide asingle interface that is
convenient and efficient for all objects. Thus, through Object Adapters, it is possible for
the ORB to target particular groups of object implementations that have similar require-
ments with interfaces tailored to them.

ORB Interface

The ORB Interface is the interface that goes directly to the ORB which is the same for all
ORBs and does not depend on the object’s interface or object adapter. Because most of the
functionality of the ORB is provided through the object adapter, stubs, skeleton, or
dynamic invocation, there are only afew operations that are common across all objects.
These operations are useful to both clients and implementations of objects.

Interface Repository

The Interface Repository is a service that provides persistent objects that represent the
IDL information in aform available at runtime. The Interface Repository information may
be used by the ORB to perform requests. Moreover, using the information in the Interface
Repository, it is possible for a program to encounter an object whose interface was not
known when the program was compiled, yet, be able to determine what operations are
valid on the object and make an invocation on it.

In addition to itsrole in the functioning of the ORB, the Interface Repository isacommon
place to store additional information associated with interfaces to ORB objects. For exam-

38

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Some Example ORBs

3.1.13

3.2

ple, debugging information, libraries of stubs or skeletons, routines that can format or
browse particular kinds of objects, etc., might be associated with the Interface Repository.

Implementation Repository

The Implementation Repository contains information that allows the ORB to locate and
activate implementations of objects. Although most of the information in the Implementa-
tion Repository is specific to an ORB or operating environment, the I mplementation
Repository is the conventional place for recording such information. Ordinarily, installa-
tion of implementations and control of policies related to the activation and execution of
object implementations is done through operations on the |mplementation Repository.

In addition to itsrole in the functioning of the ORB, the Implementation Repository isa
common place to store additional information associated with implementations of ORB
objects. For example, debugging information, administrative control, resource allocation,
security, etc., might be associated with the |mplementation Repository.

Some Example ORBs

3.2.1

3.2.2

3.2.3

There are awide variety of ORB implementations possible within the Common ORB
Architecture. This section will illustrate some of the different options. Note that a particu-
lar ORB might support multiple options and protocols for communication.

Client- and Implementation-resident ORB

If there is a suitable communi cation mechanism present, an ORB can be implemented in
routines resident in the clients and implementations. The stubsin the client either use a
location-transparent | PC mechanism or directly access alocation service to establish com-
munication with the implementations. Code linked with the implementation is responsible
for setting up appropriate databases for use by clients.

Server-based ORB

To centralize the management of the ORB, all clients and implementations can communi-
cate with one or more servers whose job it isto route requests from clients to implementa-
tions. The ORB could be anormal program as far as the underlying operating systemis
concerned, and normal IPC could be used to communicate with the ORB.

System-based ORB

To enhance security, robustness, and performance, the ORB could be provided as a basic
service of the underlying operating system. Object references could be made unforgeable,
reducing the expense of authentication on each request. Because the operating system

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 39

The Common Object Request Broker Architecture

3.24

3.3

could know the location and structure of clients and implementations, it would be possible
for avariety of optimizationsto be implemented, for example, avoiding marshalling when
both are on the same machine.

Library-based ORB

For objectsthat are light-weight and whose implementations can be shared, the implemen-
tation might actually be in alibrary. In this case, the stubs could be the actual methods.
Thisassumesthat it is possible for a client program to get accessto the datafor the objects
and that the implementation trusts the client not to damage the data.

The Structure of a Client

A client of an object has an object reference that refersto that object. An object reference
isatoken that may be invoked or passed as a parameter to an invocation on a different
object. Invocation of an object involves specifying the object to be invoked, the operation
to be performed, and parameters to be given to the operation or returned fromit.

The ORB manages the control transfer and data transfer to the object implementation and
back to the client. In the event that the ORB cannot compl ete the invocation, an exception
response is provided. Ordinarily, a client calls aroutine in its program that performs the
invocation and returns when the operation is complete.

Clients access object-type-specific stubs aslibrary routinesin their program (see FIG. 7 on
page 41). The client program thus sees routines callable in the normal way in its program-
ming language. All implementations will provide alanguage-specific datatype to useto
refer to objects, often an opague pointer. The client then passes that object reference to the
stub routines to initiate an invocation. The stubs have access to the object reference repre-
sentation and interact with the ORB to perform the invocation. (See 85.1 on page 85 for
more details on language mapping of object references.)

40

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

The Structure of a Client

FIG. 7

The Structure of a Typical Client

CLIENT PROGRAM

Language-dependent object references

O O

ORB object references

Library routines

Dynamic Invocation Stubs for Stubs for
Interface Interface A Interface B

An alternative set of library code is available to perform invocations on objects, for exam-
ple when the object was not defined at compile time. In that case, the client program pro-
vides additional information to name the type of the object and the method being invoked,
and performs a sequence of calls to specify the parameters and initiate the invocation.

Clients most commonly obtain object references by receiving them as output parameters
from invocations on other objects for which they have references. When aclient isalso an
implementation, it receives object references asinput parameters on invocations to objects
it implements. An object reference can also be converted to a string that can be stored in
files or preserved or communicated by different means and subsequently turned back into
an object reference by the ORB that produced the string.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 41

The Common Object Request Broker Architecture

3.4 The Structure of an Object Implementation

An Object Implementation provides the actual state and behavior of an object. The object
implementation can be structured in avariety of ways. Besides defining the methods for
the operations themsel ves, an implementation will usually define proceduresfor activating
and deactivating objects and will use other objects or non-object facilities to make the
object state persistent, to control accessto the object, aswell as to implement the methods.

The object implementation (see FIG. 8 on page 42) interacts with the ORB in a variety of
ways to establish itsidentity, to create new objects, and to obtain ORB-dependent ser-
vices. It primarily does this viaaccessto an Object Adapter, which provides an interfaceto
ORB servicesthat is convenient for a particular style of object implementation.

FIG. 8 The Structure of a Typical Object Implementation

OBJECT IMPLEMENTATION
Methods for © Object data
Interface A

ORB object references

Library routines

Skeleton for Object adapter
Interface A routines

42 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

The Structure of an Object Adapter

Because of the range of possible object implementations, it is difficult to be definitive
about how in general an object implementation is structured. See Chapter 9 for the struc-
ture of object implementations that use the Basic Object Adapter.

When an invocation occurs, the ORB Core, object adapter, and skeleton arrange that a call
is made to the appropriate method of the implementation. A parameter to that method
specifies the object being invoked, which the method can use to locate the data for the
object. Additional parameters are supplied according to the skeleton definition. When the
method is complete, it returns, causing output parameters or exception results to be trans-
mitted back to the client.

When anew object is created, the ORB may be notified so that the it knows where to find
the implementation for that object. Usually, the implementation also registersitself as
implementing objects of a particular interface, and specifies how to start up the implemen-
tation if it is not already running.

Most object implementations provide their behavior using facilitiesin addition to the ORB
and object adapter. For example, although the Basic Object Adapter provides some persis-
tent data associated with an object, that relatively small amount of dataistypically used as
an identifier for the actual object data stored in a storage service of the object implementa-
tion’s choosing. With this structure, it is not only possible for different object implementa-
tions to use the same storage service, it is aso possible for objects to choose the service
that is most appropriate for them.

3.5 The Structure of an Object Adapter

An object adapter (see FIG. 9 on page 44) is the primary means for an object implementa-
tion to access ORB services such as object reference generation. An object adapter exports
apublic interface to the object implementation, and a private interface to the skeleton. It is
built on a private ORB-dependent interface.

Object adapters are responsible for the following functions:

» generation and interpretation of object references

* method invocation

* security of interactions

» object and implementation activation and deactivation

* mapping object references to the corresponding object implementations
* registration of implementations

These functions are performed using the ORB Core and any additional components neces-
sary. Often, an object adapter will maintain its own state to accomplish its tasks. It may be

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 43

The Common Object Request Broker Architecture

possible for aparticular object adapter to del egate one or more of its responsibilitiesto the
Core upon which it is constructed.

Asshown in FIG. 9 on page 44, the Object Adapter isimplicitly involved in invocation of
the methods, although the direct interface is through the skeletons. For example, the
Object Adapter may be involved in activating the implementation or authenticating the
request.

FIG. 9

The Structure of a Typical Object Adapter

4 N

Object Implementation

Interface A Interface B
Methods Methods
\

Interface A Interface B Object
Skeleton Skeleton Adapter
Interface

/

ORB Core

The Object Adapter defines most of the services from the ORB that the Object Implemen-
tation can depend on. Different ORBswill provide different levels of service and different
operating environments may provide some properties implicitly and require others to be
added by the Object Adapter. For example, it iscommon for Object |mplementations to
want to store certain values in the object reference for easy identification of the object on
an invocation. If the Object Adapter allows the implementation to specify such values
when anew object is created, it may be able to store them in the object reference for those
ORBs that permit it. If the ORB Core does not provide this feature, the Object Adapter
would record the value in its own storage and provide it to the implementation on an invo-
cation. With Object Adapters, it is possible for an Object | mplementation to have accessto
aservice whether or not it isimplemented in the ORB Core—if the ORB Core providesit,
the adapter simply provides an interface to it; if not, the adapter must implement it on top

44

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Some Example Object Adapters

3.6

of the ORB Core. Every instance of a particular adapter must provide the same interface
and servicefor al the ORBsit isimplemented on.

It isalso not necessary for all Object Adaptersto provide the same interface or functional-
ity. Some Object Implementations have special requirements, for example, an object-ori-
ented database systerm may wish to implicitly register its many thousands of objects
without doing individual calls to the Object Adapter. In such a case, it would be impracti-
cal and unnecessary for the object adapter to maintain any per-object state. By using an
object adapter interface that istuned towards such object implementations, it is possible to
take advantage of particular ORB Core details to provide the most effective access to the
ORB.

Some Example Object Adapters

3.6.1

3.6.2

3.6.3

There are avariety of possible object adapters. However, since the object adapter interface
is something that object implementations depend on, it is desirable that there be as few as
practical. Most object adapters are designed to cover arange of object implementations, so
only when an implementation requires radically different services or interfaces should a
new object adapter be considered. In this section, we describe three object adapters that
might be useful.

Basic Object Adapter

This specification defines an object adapter that can be used for most ORB objects with
conventional implementations (See Chapter 9). For this object adapter, implementations
are generally separate programs. It allows there to be a program started per method, a sep-
arate program for each object, or a shared program for all instances of the object type. It
provides asmall amount of persistent storage for each object, which can be used asaname
or identifier for other storage, for access control lists, or other object properties. If the
implementation is not active when an invocation is performed, the BOA will start one.

Library Object Adapter

This object adapter is primarily used for objects that have library implementations. It
accesses persistent storagein files, and does not support activation or authentication, since
the objects are assumed to be in the clients program.

Object-Oriented Database Adapter

This adapter uses a connection to an object-oriented database to provide access to the
objects stored in it. Since the OODB provides the methods and persistent storage, objects
may be registered implicitly and no state is required in the object adapter.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 45

The Common Object Request Broker Architecture

3.7 The Integration of Foreign Object Systems

The Common ORB Architecture is designed to allow interoperation with a wide range of
object systems (see FIG. 10 on page 46). Because there are many existing object systems,
acommon desire will be to allow the objects in those systems to be accessible viathe
ORB. For those object systems that are ORBs themsel ves, they may be connected to other
ORBs through the mechanisms described in chapter 10 on page 165.

FIG. 10

Different Ways to Integrate Foreign Object Systems

Object system as Object system as
a BOA object an implementation
implementation with a special-purpose
object adapter

Basic Object Adapter || Special-purpose Adapter

Object system as
another ORB
Orb Core interoperating via a

Gateway gateway

For object systems that simply want to map their objects into ORB objects and receive
invocations through the ORB, one approach is to have those object systems appear to be
implementations of the corresponding ORB objects. The object system would register its
objects with the ORB and handle incoming requests, and could act like a client and per-
form outgoing requests.

In some cases, it will be impractical for another object system to act like a BOA object
implementation. An object adapter could be designed for objects that are created in con-
junction with the ORB and that are primarily invoked through the ORB. Another object
system may wish to create objects without consulting the ORB, and might expect most
invocations to occur within itself rather than through the ORB. In such a case, a more
appropriate object adapter might allow objects to be implicitly registered when they are
passed through the ORB.

46

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

4

IDL Syntax and Semantics

IDL (the Interface Definition Language) is the language used to describe the interfaces
that client objects call and object implementations provide. An interface definition written
in IDL completely defines the interface and fully specifies each operation’s parameters.
An IDL interface provides the information needed to devel op clients that use the inter-
face's operations. Clients are not written in IDL, which is purely a descriptive language,
but in languages for which mappings from IDL concepts have been defined. The mapping
of an IDL concept to aclient language construct will depend on the facilities availablein
the client language. For example, an IDL exception might be mapped to a structurein a
language that has no notion of exception, or to an exception in alanguage that does. The
binding of IDL concepts to the C language is described in Chapter 5; the C language has
no special status except that it isthe first language for which IDL mappings have been
established.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 47

IDL Syntax and Semantics

IDL obeysthe same lexical rules as C++1, although new keywords are introduced to sup-
port distribution concepts. It also provides full support for standard C++ preprocessing
features. The IDL specification is expected to track relevant changesto C++ introduced by
the ANSI standardization effort.

The description of IDL’s lexical conventionsis presented in 84.1 on page 49. A descrip-
tion of IDL preprocessing is presented in 84.2 on page 56. The scope rules for identifiers
inan IDL specification are described in 84.11 on page 79.

The IDL grammar is asubset of ANSI C++ with additional constructs to support the oper-
ation invocation mechanism. IDL is a declarative language; it supports C++ syntax for
constant, type, and operation declarations; it does not include any algorithmic structures or
variables. The grammar is presented in 84.3 on page 56.

IDL-specific pragmas (those not defined for C++) may appear anywhere in a specification,;
the textual location of these pragmas may be semantically constrained by a particular
implementation.

A source file containing interface specifications written in IDL must have a“.idl” exten-
sion. Thefile orb.idl, which contains IDL type definitions and is available on every ORB
implementation, is described in Appendix A.

This chapter describes IDL semantics and gives the syntax for IDL grammatical con-
structs. The description of IDL grammar uses a syntax notation that is similar to Extended
Backus-Naur format (EBNF); TBL. 1 on page 48 lists the symbols used in this format and
their meaning.

TBL.1 IDL EBNF Format
Symbol Meaning
= Is defined to be
| Alternatively
<text> Non-terminal
“text” Literal
* The preceding syntactic unit can be repeated zero or more times
+ The preceding syntactic unit can be repeated one or more times
{ The enclosed syntactic units are grouped as a single syntactic unit
1 The enclosed syntactic unit is optional—may occur zero or one time
1. Ellis, Margaret A. and Bjarne Stroustrup, The Annotated C++ Reference Manual, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1990, ISBN 0-201-51459-1
48 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Lexical Conventions

4.1

Lexical Conventions

This section? presents the lexical conventions of IDL. It definestokensin an IDL specifi-
cation and describes comments, identifiers, keywords, and literals—integer, character, and
floating point constants and string literals.

An IDL specification logically consists of one or morefiles. A file is conceptualy trans-

lated in several phases.

Thefirst phase is preprocessing, which performs file inclusion and macro substitution.
Preprocessing is controlled by directivesintroduced by lines having # as the first character
other than white space. The result of preprocessing is a sequence of tokens. Such a
sequence of tokens, that is, afile after preprocessing, is caled atranslation unit.

IDL usesthe 1SO Latin-1 (8859.1) character set. This character set is divided into alpha-
betic characters (letters), digits, graphic characters, the space (blank) character and for-
matting characters. TBL. 2 on page 49 shows the IDL alphabetic characters; upper- and

lower-case equivalencies are paired.

TBL. 2

The 114 Alphabetic Characters (Letters)

Char. Description Char. Description

Aa Upper/Lower-case A Aa Upper/Lower-case A with grave accent

Bb Upper/Lower-case B Aa Upper/Lower-case A with acute accent

Cc Upper/Lower-case C Aa Upper/Lower-case A with circumflex accent
Dd Upper/Lower-case D Aa Upper/Lower-case A with tilde

Ee Upper/Lower-case E Aa Upper/Lower-case A with diaeresis

Ff Upper/Lower-case F A& Upper/Lower-case A with ring above

Gg Upper/Lower-case G FEee Upper/Lower-case dipthong A with E

Hh Upper/Lower-case H Cc Upper/Lower-case C with cedilla

li Upper/Lower-case | Ee Upper/Lower-case E with grave accent

Jj Upper/Lower-case J Eé Upper/Lower-case E with acute accent

Kk Upper/Lower-case K Eé Upper/Lower-case E with circumflex accent
LI Upper/Lower-case L Ee Upper/Lower-case E with diaeresis

Mm Upper/Lower-case M I Upper/Lower-case | with grave accent

Nn Upper/Lower-case N I Upper/Lower-case | with acute accent

Oo Upper/Lower-case O 0 Upper/Lower-case | with circumflex accent

2. Thissection is an adaptation of The Annotated C++ Reference Manual, Chapter 2; it differsin the list
of legal keywords and punctuation.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 49

IDL Syntax and Semantics

TBL. 2 The 114 Alphabetic Characters (Letters) (Continued)

Char. Description Char. Description
Pp Upper/Lower-case P Ti Upper/Lower-case | with diaeresis
Qq Upper/Lower-case Q] Upper/Lower-case Icelandic eth
Rr Upper/Lower-case R N Upper/Lower-case N with tilde
Ss Upper/Lower-case S 0o Upper/Lower-case O with grave accent
Tt Upper/Lower-case T 06 Upper/Lower-case O with acute accent
Uu Upper/Lower-case U 0b Upper/Lower-case O with circumflex accent
Vv Upper/Lower-case V 06 Upper/Lower-case O with tilde
Ww Upper/Lower-case W 06 Upper/Lower-case O with diaeresis
XX Upper/Lower-case X 0]} Upper/Lower-case O with oblique stroke
Yy Upper/Lower-case Y W Upper/Lower-case U with grave accent
Zz Upper/Lower-case Z Ua Upper/Lower-case U with acute accent
Oa Upper/Lower-case U with circumflex accent
Ui Upper/Lower-case U with diaeresis
Yy Upper/Lower-case Y with acute accent
Pb Upper/Lower-case Icelandic thorn
3 Lower-case German sharp S
y Lower-case Y with diaeresis

TBL. 3 on page 50 lists the decimal digit characters.

TBL. 3 Decimal Digits

0123456789

TBL. 4 on page 50 shows the graphic characters.

TBL. 4 The 65 Graphic Characters

Char. Description Char. Description

! exclamation point i inverted exclamation mark
double quote ¢ cent sign

number sign £ pound sign

$ dollar sign a currency sign

% percent sign ¥ yen sign

& ampersand H broken bar

50 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Lexical Conventions

TBL. 4

The 65 Graphic Characters (Continued)

Char. Description Char. Description
’ apostrophe § section/paragraph sign
(left parenthesis " diaeresis
) right parenthesis © copyright sign
* asterisk a feminine ordinal indicator
+ plus sign « left angle quotation mark
, comma - not sign
- hyphen, minus sign soft hyphen
period, full stop ® registered trade mark sign
/ solidus - macron
colon ° ring above, degree sign
; semicolon + plus-minus sign
< less-than sign 2 superscript two
= equals sign 3 superscript three
> greater-than sign acute
? question mark u micro
@ commercial at 1 pilcrow
[left square bracket . middle dot
\ reverse solidus . cedilla
] right square bracket 1 superscript one
N circumflex ° masculine ordinal indicator
_ low line, underscore » right angle quotation mark
‘ grave Y vulgar fraction 1/4
{ left curly bracket P vulgar fraction 1/2
| vertical line A vulgar fraction 3/4
} right curly bracket é inverted question mark
~ tilde X multiplication sign

division sign

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

51

IDL Syntax and Semantics

The formatting characters are shown in TBL. 5 on page 52.

TBL.5 The Formatting Characters
Description Abbreviation ISO 646 Octal Value
alert BEL 007
backspace BS 010
horizontal tab HT 011
newline NL, LF 012
vertical tab VT 013
form feed FF 014
carriage return CR 015
4.1.1 Tokens
There are five kinds of tokens: identifiers, keywords, literals, operators, and other separa-
tors. Blanks, horizontal and vertical tabs, newlines, formfeeds, and comments (collective,
“white space”), as described below, are ignored except as they serve to separate tokens.
Some white space is required to separate otherwise adjacent identifiers, keywords, and
constants.
If the input stream has been parsed into tokens up to a given character, the next token is
taken to be the longest string of characters that could possibly constitute a token.
4.1.2 Comments
The characters /* start a comment, which terminates with the characters */. These com-
ments do not nest. The characters // start acomment, which terminates at the end of the
line on which they occur. The comment characters//, /*, and */ have no special meaning
within a// comment and are treated just like other characters. Similarly, the comment
characters// and /* have no special meaning within a/* comment. Comments may contain
alphabetic, digit, graphic, space, horizontal tab, vertical tab, form feed and newline char-
acters.
4.1.3 Identifiers
Anidentifier isan arbitrarily long sequence of alphabetic, digit, and underscore (“_")
characters. Thefirst character must be an alphabetic character. All characters are signifi-
cant.
Identifiers that differ only in case collide and yield a compilation error. Anidentifier for a
definition must be spelled consistently (with respect to case) throughout a specification.
52 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Lexical Conventions

4.1.4

When comparing two identifiers to seeif they collide:
» Upper- and lower-case |etters are treated as the same letter. TBL. 2 on page 49 defines
the equivalence mapping of upper- and lower-case |etters.

» The comparison does not take into account equivalences between digraphs and pairs
of letters (e.g., “a& and “ae” are not considered equivalent) or equival ences between
accented and non-accented letters (e.g., “A” and “A” are not considered equivalent).

o All characters are significant.

Thereis only one namespace for IDL identifiers. Using the same identifier for a constant
and an interface, for example, produces a compilation error.

Keywords

Theidentifierslisted in TBL. 6 on page 53 are reserved for use as keywords, and may not
be used otherwise.

TBL.6 Keywords
any default inout out switch
attribute double interface raises TRUE
boolean enum long readonly typedef
case exception module sequence unsigned
char FALSE Object short union
const float octet string void
context in oneway struct
Keywords obey the rules for identifiers (see 84.1.3 on page 52) and must be written
exactly as shown in the above list. For example, “boolean” is correct; “Boolean” produces
acompilation error.
IDL specifications use the characters shown in TBL. 7 on page 53 as punctuation.
TBL.7 Punctuation Characters

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 53

IDL Syntax and Semantics

In addition, the tokenslisted in TBL. 8 on page 54 are used by the preprocessor.

TBL. 8 Preprocessor Tokens
#o #) I &&
4.1.5 Literals
4.1.5.1 Integer Literals
Aninteger literal consisting of a sequence of digitsistaken to be decimal (base ten) unless
it beginswith O (digit zero). A sequence of digits starting with O istaken to be an octal
integer (base eight). The digits 8 and 9 are not octal digits. A sequence of digits preceded
by Ox or OX istaken to be a hexadecimal integer (base sixteen). The hexadecimal digits
include aor A through f or F with decimal values ten through fifteen, respectively. For
example, the number twelve can be written 12, 014, or OXC.
4.1.5.2 Character Literals
A character literal is one or more characters enclosed in single quotes, asin’x’. Character
literals have type char.
A character isan 8-bit quantity with a numerical value between 0 and 255 (decimal). The
value of a space, alphabetic, digit or graphic character literal isthe numerica value of the
character as defined in the ISO Latin-1 (8859.1) character set standard (See TBL. 2 on
page 49, TBL. 3 on page 50, and TBL. 4 on page 50). The value of anull is0. The value of
aformatting character literal isthe numerical value of the character as defined in the 1ISO
646 standard (See TBL. 5 on page 52). The meaning of all other charactersisimplementa-
tion-dependent.
Nongraphic characters must be represented using escape sequences as defined below in
TBL. 9 on page 54. Note that escape sequences must be used to represent single quote and
backslash characters in character literals.
TBL. 9 Escape Sequences
Description Escape Sequence
newline \n
horizontal tab \t
vertical tab \v
backspace \b
carriage return \r
54 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Lexical Conventions

TBL.9 Escape Sequences (Continued)

Description Escape Sequence

form feed \f

alert \a

backslash \\

question mark \?

single quote \'

double quote \"

octal number \ooo

hexadecimal \xhh

number
If the character following a backdash is not one of those specified, the behavior is unde-
fined. An escape sequence specifies a single character.
The escape \00o consists of the backslash followed by one, two, or three octal digits that
are taken to specify the value of the desired character. The escape \xhh consists of the
backslash followed by x followed by one or two hexadecimal digits that are taken to spec-
ify the value of the desired character. A sequence of octal or hexadecimal digitsis termi-
nated by the first character that is not an octal digit or a hexadecimal digit, respectively.
The value of a character constant isimplementation dependent if it exceeds that of the
largest char.

4.1.5.3 Floating-point Literals
A floating-point literal consists of an integer part, a decimal point, afraction part, an e or
E, and an optionally signed integer exponent. The integer and fraction parts both consist of
a sequence of decimal (base ten) digits. Either the integer part or the fraction part (but not
both) may be missing; either the decimal point or the letter e (or E) and the exponent (but
not both) may be missing.
4.1.5.4 String Literals

A string literal is a sequence of characters (as defined in 84.1.5.2 on page 54) surrounded
by double quotes, asin™...".

Adjacent string literals are concatenated. Characters in concatenated strings are kept dis-
tinct. For example,

II\XAII IIBII

contains the two characters \xA' and 'B' after concatenation (and not the single hexadeci-
mal character \xXAB').

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 55

IDL Syntax and Semantics

4.2

The size of astring literal isthe number of character literals enclosed by the quotes, after
concatenation. The size of the literal is associated with the literal. Within a string, the dou-
ble quote character " must be preceded by a\.

A string literal may not contain the character \O'.

Preprocessing

IDL preprocessing, which is based on ANSI C++ preprocessing, provides macro substitu-
tion, conditional compilation, and source file inclusion. In addition, directives are pro-
vided to control line numbering in diagnostics and for symbolic debugging, to generate a
diagnostic message with a given token sequence, and to perform implementation-depen-
dent actions (the #pragma directive). Certain predefined names are available. These facili-
ties are conceptually handled by a preprocessor, which may or may not actually be
implemented as a separate process.

Lines beginning with # (also called “ directives’) communicate with this preprocessor.
White space may appear before the #. These lines have syntax independent of the rest of
IDL; they may appear anywhere and have effectsthat last (independent of the IDL scoping
rules) until the end of the translation unit. The textual location of IDL-specific pragmas
may be semantically constrained.

A preprocessing directive (or any line) may be continued on the next line in a source file
by placing a backslash character (“\"), immediately before the newline at the end of the
line to be continued. The preprocessor effects the continuation by deleting the backslash
and the newline before the input sequence is divided into tokens. A backslash character
may not be the last character in a sourcefile.

A preprocessing token isan IDL token (84.1.1 on page 52), afile name asin a#include
directive, or any single character, other than white space, that does not match another pre-
processing token.

The primary use of the preprocessing facilities is to include definitions from other IDL
specifications. Text in filesincluded with a#include directive istreated asif it appeared in
the including file. A complete description of the preprocessing facilities may be found in
The Annotated C++ Reference Manual, Chapter 16.

4.3 IDL Grammar
(1) <specification> = <definition>*
(2) <definition> = <type_dcl>*;"
| <const_dcl>*“;”

56

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

IDL Grammar

(3) <module>

(4) <interface>

<interface_dcl>

<forward_dcl>

)

)

) <interface_header>
) <interface_body>
)

<export>

(10) <inheritance_spec>

(12) <scoped_name>

(12) <const_dcl>

(13) <const_type>

(14) <const_exp>

(15) <or_expr>
(16) <xor_expr>
(17) <and_expr>

(18) <shift_expr>
(19) <add_expr>

(20) <mult_expr>

<except_dcl>“;”
<interface> “;”
<module> “;”

“module” <identifier> “{* <definition>* “}”

<interface_dcl>
<forward_dcl>

<interface_header> “{” <interface_body> “}”
“interface” <identifier>

“interface” <identifier> [<inheritance_spec>]
<export>"

<type_dcl>*“;”
<const_dcl> ;"
<except_dcl>“;”
<attr_dcl>*;”
<op_dcl>*;”

" <scoped_name> { “,” <scoped_name> }*

<identifier>

;7 <identifier>
<scoped_name> “::” <identifier>

“const” <const_type> <identifier> “=" <const_exp>

<integer_type>
<char_type>
<boolean_type>
<floating_pt_type>
<string_type>
<scoped_name>

<or_expr>

<X0r_expr>

<or_expr> “|” <xor_expr>
<and_expr>

<xor_expr> “"” <and_expr>
<shift_expr>

<and_expr> “&” <shift_expr>

<add_expr>
<shift_expr> “>>” <add_expr>
<shift_expr> “<<” <add_expr>

<mult_expr>
<add_expr> “+” <mult_expr>
<add_expr> “-” <mult_expr>

<unary_expr>
<mult_expr> “*” <unary_expr>

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

57

IDL Syntax and Semantics

(21) <unary_expr> =

(22) <unary_operator> =
(23) <primary_expr> =

(24) <literal> =

(25) <boolean_literal> =

(26) <positive_int_const> ::=

(27) <type_dcl> =

(28) <type_declarator> ::=
(29) <type_spec> -

(30) <simple_type_spec> ::=

(31) <base_type spec>

(32) <template_type spec>::=
|

(33) <constr_type spec> =
I

(34) <declarators> =

(35) <declarator> vz

<mult_expr> “/” <unary_expr>
<mult_expr> “%” <unary_expr>

<unary_operator> <primary_expr>
<primary_expr>

wyn

<scoped_name>
<literal>
u(l! <C0nSt_eXp> H)H

<integer _literal>
<string_literal>
<character _literal>
<floating_pt_literal>
<boolean_literal>

“TRUE”
“FALSE”

<const_exp>

“typedef” <type_declarator>
<struct_type>
<union_type>
<enum_type>

<type_spec> <declarators>

<simple_type_spec>
<constr_type_spec>

<base_type_spec>
<template_type_spec>
<scoped_name>

<floating_pt_type>
<integer_type>
<char_type>
<boolean_type>
<octet_type>
<any_type>

<sequence_type>
<string_type>

<struct_type>
<union_type>
<enum_type>

<declarator> { “,” <declarator> }*

<simple_declarator>
<complex_declarator>

58

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

IDL Grammar

(36) <simple_declarator>

(37) <complex_declarator> ::

(38) <floating_pt_type>
(39) <integer_type>
(40) <signed_int>

(41) <signed_long_int>
(42) <signed_short_int>

(43) <unsigned_int>

44) <unsigned _long_int>

46) <char_type>
47) <boolean_type>
48) <octet_type>
49) <any_type>
50) <struct_type>
51) <member_list>

52) <member>

(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)

53) <union_type>

(54) <switch_type_spec>

(55) <switch_body>
(56) <case>

(57) <case_label>

58) <element_spec>
59) <enum_type>

(58)
(59)
(60) <enumerator>
(61)

61) <sequence_type>

45) <unsigned_short_int> ::

<identifier>
<array_declarator>

“float”
“double”

<signed_int>
<unsigned_int>

<signed_long_int>
<signed_short_int>

ulongn
“short”

<unsigned_long_int>
<unsigned_short_int>

“unsigned” “long”
“unsigned” “short”
“char”

“boolean”

“octet”

any

“struct” <identifier> “{” <member_list> “}"

<member>t

<type_spec> <declarators>

“union” <identifier> “switch” “(” <switch_type_spec> “)”

“{" <switch_body> “}”

<integer_type>
<char_type>
<boolean_type>
<enum_type>
<scoped_name>

<case>"

<case_label>* <element_spec>

“case” <const_exp> *:
“default” “:”

<type_spec> <declarator>

“enum” <identifier> “{” <enumerator> {

<identifier>

“sequence” “<” <simple_type_spec>
“sequence” “<” <simple_type_spec> “>”

“wn
1

.7 <enumerator> }* #}”

<positive_int_const> “>

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

IDL Syntax and Semantics

(62) <string_type> = “string” “<” <positive_int_const> “>”
| “string”

(63) <array_declarator> <identifier> <fixed_array_size>*

(64) <fixed_array_size>

“[” <positive_int_const> “]”

(65) <attr_dcl> = [“readonly”] “attribute” <param_type_spec> <simple_declarator>
{*“,” <simple_declarator> }*
(66) <except_dcl> ;= “exception” <identifier> “{* <member>* “}”
(67) <op_dcl> = [<op_attribute>] <op_type_spec> <identifier> <parameter_dcls>
[<raises_expr>] [<context_expr>]
(68) <op_attribute> = “oneway”
(69) <op_type_spec> ;= <param_type_spec>
| “void”
(70) <parameter_dcls> = “(” <param_dcl> { “,” <param_dcl> }* “)”
I)"
(71) <param_dcl> ;= <param_attribute> <param_type_spec> <simple_declarator>
(72) <param_attribute> 2= Min”
| “out”
| “inout”
(73) <raises_expr> = “raises” “(” <scoped_name> { “,” <scoped_name> }* “)”
(74) <context_expr> = “context” “(” <string_literal> { “,” <string_literal> }* “)”
(75) <param_type_spec> ::= <base_type spec>

| <string_type>
| <scoped_name>

4.4 IDL Specification

An IDL specification consists of one or more type definitions, constant definitions, excep-
tion definitions, or module definitions. The syntax is:

<specification> == <definition>"
<definition> = <type_dcl> "
<const_dcl>*;”

<interface> “;”

|

| <except_dcl>*“;”
|

| <module>*;”

See 84.6 on page 65, 84.7 on page 68, and 84.8 on page 75, respectively, for specifications
of <const_dcl>, <type_dcl>, and <except_dcl>.

60

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

IDL Specification

441

4.4.2

4421

Module Declaration
A module definition satisfies the following syntax:

<module> = “module” <identifier> “{* <definition>* “}”

The module construct is used to scope IDL identifiers; see 84.11 on page 79 for details.

Interface Declaration

An interface definition satisfies the following syntax:

<interface> ;= <interface_dcl>
| <forward_dcl>
<interface_dcl> ;= <interface_header> “{” <interface_body> “}"
<forward_dcl> = “interface” <identifier>
<interface_header> = “interface” <identifier> [<inheritance_spec>]
<interface_body> n= <export>”
<export> ;= <type_dcl>*”
| <const_dcl>*;”
| <except_dcl>*“;”
| <attr_dcl>*;”
| <Op_dC|> u;n
Interface Header

The interface header consists of two elements:

* Theinterface name. The name must be preceded by the keyword interface, and con-
sists of anidentifier that names the interface.

» Anoptiona inheritance specification. The inheritance specification is described in
84.4.2.2 on page 62.

The <identifier> that names an interface defines alegal type name. Such a type name may
be used anywhere an <identifier> islegal in the grammar, subject to semantic constraints as
described in the following sections. Since one can only hold references to an object, the
meaning of a parameter or structure member which is an interface typeis as areference to
an object supporting that interface. Each language binding describes how the programmer
must represent such interface references.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 61

IDL Syntax and Semantics

44272

4423

4424

Inheritance Specification
The syntax for inheritance is as follows:

<inheritance_spec> .= " <scoped_name> {“,” <scoped_name>}*
<scoped_name> ::= <identifier>
| “::” <identifier>

| <scoped_name> “::” <identifier>

Each <scoped_name> in an <inheritance_spec> must denote a previously defined inter-
face. See 84.5 on page 63 for the description of inheritance.

Interface Body
The interface body contains the following kinds of declarations:

» Congtant declarations, which specify the constants that the interface exports; constant
declaration syntax is described in 84.6 on page 65.

» Type declarations, which specify the type definitions that the interface exports; type
declaration syntax is described in 84.7 on page 68.

» Exception declarations, which specify the exception structures that the interface
exports; exception declaration syntax is described in 84.8 on page 75.

» Attribute declarations, which specify the associated attributes exported by the inter-
face; attribute declaration syntax is described in 84.10 on page 78.

» Operation declarations, which specify the operations that the interface exports and the
format of each, including operation name, the type of data returned, the types of all
parameters of an operation, legal exceptions which may be returned as a result of an
invocation, and contextual information which may affect method dispatch; operation
declaration syntax is described in 84.9 on page 75.

Empty interfaces (i.e. those that contain no declarations) are permitted.

Some implementations may require interface-specific pragmas to precede the interface
body.

Forward Declaration

A forward declaration declares the name of an interface without defining it. This permits
the definition of interfaces that refer to each other. The syntax consists simply of the key-
word interface followed by an <identifier> that names the interface. The actual definition
must follow later in the specification.

Multiple forward declarations of the same interface name are legal.

62

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Inheritance

4.5

Inheritance

An interface can be derived from another interface, which isthen called abase interface of
the derived interface. A derived interface, like all interfaces, may declare new elements
(constants, types, attributes, exceptions, and operations). In addition, unless redefined in
the derived interface, the elements of a base interface can bereferred to asif they were ele-
ments of the derived interface. The name resolution operator (“::”) may be used to refer to
a base element explicitly; this permits reference to a name that has been redefined in the
derived interface.

A derived interface may redefine any of the type, constant, and exception names which
have been inherited; the scope rules for such names are described in 84.11 on page 79.

Aninterfaceiscalled adirect baseif it is mentioned in the <inheritance_spec> and an indi-
rect base if it is not a direct base but is a base interface of one of the interfaces mentioned
in the <inheritance_spec>.

An interface may be derived from any number of base interfaces. Such use of more than
one direct base interface is often called multiple inheritance. The order of derivation is not
significant.

An interface may not be specified as a direct base interface of a derived interface more
than once; it may be an indirect base interface more than once. Consider the following
example:

interface A{... }
interface B: A{...}
interface C: A{...}
interface D: B,C{... }

The relationships between these interfaces is shown in FIG. 11 on page 64. This“dia-
mond” shapeislegal.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 63

IDL Syntax and Semantics

FIG. 11 Legal Multiple Inheritance Example

D

Reference to base interface elements must be unambiguous. Reference to a base interface
element is ambiguous if the expression used refers to a constant, type, or exceptionin
more than one base interface. (It is currently illegal to inherit from two interfaces with the
same operation or attribute name, or to redefine an operation or attribute namein the
derived interface.) Ambiguities can be resolved by qualifying a name with its interface
name (i.e., using a<scoped_name>).

References to congtants, types, and exceptions are bound to an interface when it is defined
i.e., replaced with the equivalent global <scoped _name>s. This guarantees that the syntax
and semantics of an interface are not changed when the interface is a base interface for a
derived interface. Consider the following example:

constlongL =3;

interface A {
void f (in float s[L]); II's has 3 floats

k

interface B {
constlong L = 4;

3
interface C: B, A {} /I what is f()'s signature?

The early binding of constants, types, and exceptions at interface definition guarantees
that the signature of operation f ininterface C is

void f(in float s[3]);

64 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Constant Declaration

which isidentical to that in interface A. Thisrule also prevents redefinition of a constant,
type, or exception in the derived interface from affecting the operations and attributes
inherited from a base interface.

Interface inheritance causes al identifiersin the closure of the inheritance tree to be
imported into the current naming scope. A type name, constant name, enumeration value
name, or exception name from an enclosing scope can be redefined in the current scope.
An attempt to use an ambiguous name without qualification is a compilation error.

Operation names are used at runtime by both the stub and dynamic interfaces. As aresult,
all operations that might apply to a particular object must have unique names. This
requirement prohibits redefining an operation namein aderived interface, aswell asinher-
iting two operations with the same name.

NOTE It isanticipated that future revisions of the language may relax this rule in some way,

perhaps allowing overloading or providing some means to distinguish operations with the
same name.

4.6 Constant Declaration

This section describes the syntax for constant declarations.

4.6.1 Syntax
The syntax for a constant declaration is.
<const_dcl> = “const” <const_type> <identifier> “=" <const_exp>
<const_type> = <integer_type>

| <char_type>

| <boolean_type>

| <floating_pt_type>
| <string_type>

| <scoped_name>

<const_exp> = <or_expr>

<or_expr> ;= <Xor_expr>

| <or_expr>*|” <xor_expr>
<xor_expr> = <and_expr>

| <xor_expr>*“"" <and_expr>
<and_expr> = <shift_expr>

| <and_expr>“&” <shift_expr>
<shift_expr> = <add_expr>

| <shift_expr>“>>" <add_expr>

| <shift_expr>“<<” <add_expr>

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 65

IDL Syntax and Semantics

4.6.2

<add_expr> = <mult_expr>
| <add _expr>“+” <mult_expr>
| <add_expr>“-" <mult_expr>

<mult_expr> = <unary_expr>
| <mult_expr> “*” <unary_expr>
| <mult_expr>“/” <unary_expr>
| <mult_expr> “%” <unary_expr>

<unary_expr> ;= <unary_operator> <primary_expr>
| <primary_expr>

<unary_operator> S
"
<primary_expr> .= <scoped_name>

| <literal>
| u(u <C0nSt_eXp> u)n

<literal> = <integer_literal>
<string_literal>
<character _literal>
<floating_pt_literal>
<boolean_literal>

<boolean_literal> = “TRUE”

| “FALSE”
<positive_int_const> = <const_exp>
Semantics

The <scoped_name> in the <const_type> production must be a previously defined name of
an <integer_type>, <char_type>, <boolean_type>, <floating_pt_type>, or <string_type> con-
Stant.

No infix operator can combine an integer and afloat. Infix operators are not applicable to
types other than integer and float.

An integer constant expression is evaluated as unsigned long unless it contains a negated
integer literal or the name of an integer constant with a negative value. In the latter case,
the constant expression is evaluated as signed long. The computed value is coerced back
to the target type in congtant initializers. It is an error if the computed value exceeds the
precision of the target type. Itisan error if any intermediate value exceeds the range of the
evaluated-as type (long or unsigned long).

All floating-point literals are double, all floating-point constants are coerced to double,
and all floating-point expressions are computed as doubles. The computed double valueis
coerced back to the target type in constant initializers. Itisan error if this coercion fails or
if any intermediate values (when evaluating the expression) exceed the range of double.

66

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Constant Declaration

Unary (+ —)andbinary (* / + -) operatorsare applicable in floating-point expressions.
Unary (+ — ~)andbinary (* / % + — << >> & | ") operatorsare applicablein
integer expressions.

The“~" unary operator indicates that the bit-complement of the expression to whichitis
applied should be generated. For the purposes of such expressions, the values are 2's com-
plement numbers. As such, the complement can be generated as follows:

long —(valuetl)
unsigned long (2**32-1) —value

The“%” binary operator yields the remainder from the division of the first expression by
the second. If the second operand of “%" is 0, the result is undefined; otherwise

(a/b)*b + a%b

isequal to a. If both operands are nonnegative, then the remainder is nonnegative; if not,
the sign of the remainder isimplementation dependent.

The “<<”binary operator indicates that the value of the left operand should be shifted left
the number of bits specified by the right operand, with O fill for the vacated bits. The right
operand must be in the range 0 <= right operand < 32.

The“>>" binary operator indicates that the value of the left operand should be shifted
right the number of bits specified by the right operand, with O fill for the vacated bits. The
right operand must be in the range 0 <= right operand < 32.

The“&” binary operator indicates that the logical, bitwise AND of the left and right oper-
ands should be generated.

The*|” binary operator indicatesthat the logical, bitwise OR of the left and right operands
should be generated.

The*”~” binary operator indicatesthat the logical, bitwise EXCLUSIVE-OR of the left and
right operands should be generated.

<positive_int_const> must evaluate to a positive integer constant.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 67

IDL Syntax and Semantics

4.7

Type Declaration

IDL provides constructs for naming data types; that is, it provides C language-like decla-
rationsthat associate an identifier with atype. IDL usesthe typedef keyword to associate a
name with a data type; a name is also associated with a data type via the struct, union, and
enum declarations; the syntax is:

<type_dcl>

<type_declarator>

“typedef” <type_declarator>
<struct_type>
<union_type>
<enum_type>

<type_spec> <declarators>

For type declarations, IDL defines a set of type specifiers to represent typed values. The

syntax is as follows:

<type_spec>

<simple_type_spec>

<base_type_spec>

<template_type_spec>
<constr_type_spec>
<declarators>
<declarator>

<simple_declarator>

<complex_declarator>

<simple_type_spec>
<constr_type_spec>

<base_type_spec>
<template_type_spec>
<scoped_name>

<floating_pt_type>
<integer_type>
<char_type>
<boolean_type>
<octet_type>
<any_type>

<sequence_type>
<string_type>

<struct_type>
<union_type>
<enum_type>

<declarator> { “,” <declarator> }*

<simple_declarator>
<complex_declarator>

<identifier>

<array_declarator>

The <scoped_name> in <simple_type_spec> must be a previously defined type.

As seen above, IDL type specifiers consist of scalar data types and type constructors. IDL
type specifiers can be used in operation declarations to assign data types to operation
parameters. The next sections describe basic and constructed type specifiers.

68

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Type Declaration

4.7.1

4.7.1.1

4.7.1.2

Basic Types
The syntax for the supported basic typesis asfollows:
<floating_pt_type> = “float”

| “double”
<integer_type> ;= <signed_int>

| <unsigned_int>
<signed_int> ::= <signed_long_int>

| <signed_short_int>
<signed_long_int> = “long”
<signed_short_int> ;= “short”
<unsigned_int> ;= <unsigned_long_int>

| <unsigned_short_int>
<unsigned_long_int> ;= “unsigned” “long”
<unsigned_short_int> ;= “unsigned” “short”
<char_type> n= “char”
<boolean_type> = “boolean”
<octet_type> = “octet”
<any_type> = fany”

Each IDL datatype is mapped to a native data type viathe appropriate |anguage mapping.
Conversion errors between IDL data types and the native types to which they are mapped
can occur during the performance of an operation invocation. The invocation mechanism
(client stub, dynamic invocation engine, and skeletons) may signal an exception condition
to the client if an attempt is made to convert an illegal value. The standard exceptions
which areto be signalled in such situations are defined in 84.14 on page 82.

Integer Types

IDL supports long and short signed and unsigned integer data types. long represents the
range -2°t .. 231 - 1 while unsigned long representstherange 0 .. 2% - 1. short represents
the range -2'5 .. 2% - 1, while unsigned short representsthe range 0 .. 216 - 1.

Floating-Point Types

IDL floating-point types are float and double. The float type represents | EEE single-preci-
sion floating point numbers; the double type represents | EEE double-precision floating
point numbers.The IEEE floating point standard specification (IEEE Sandard for Binary
Floating-Point Arithmetic, ANSI/IEEE Std 754-1985) should be consulted for more infor-
mation on the precision afforded by these types.

Implementations that do not fully support the value set of the IEEE 754 floating-point
standard must completely specify their deviance from the standard.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 69

IDL Syntax and Semantics

4.7.1.3

4.7.1.4

4.7.1.5

4.7.1.6

4.7.2

Char Type
IDL defines achar datatype consisting of 8-bit quantities.

The SO Latin-1 (8859.1) character set standard defines the meaning and representation of
all possible graphic characters (i.e., the space, alphabetic, digit and graphic characters
defined in TBL. 2 on page 49, TBL. 3 on page 50, and TBL. 4 on page 50). The meaning
and representation of the null and formatting characters (see TBL. 5 on page 52) isthe
numerical value of the character as defined in the ASCII (1SO 646) standard. The meaning
of all other charactersisimplementation-dependent.

During transmission, characters may be converted to other appropriate forms as required
by a particular language binding. Such conversions may change the representation of a
character but maintain the character’s meaning. For example, a character may be con-
verted to and from the appropriate representation in international character sets.

Boolean Type

The boolean datatype is used to denote a data item that can only take one of the values
TRUE and FALSE.

Octet Type

The octet typeis an 8-bit quantity that is guaranteed not to undergo any conversion when
transmitted by the communication system.

Any Type
The any type permits the specification of valuesthat can expressany IDL type. If usedina
request, an any must satisfy the constraints specified in Appendix A.

Constructed Types
The constructed types are:

<constr_type_spec> = <struct_type>
| <union_type>
| <enum_type>

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Type Declaration

4.7.2.1

4.7.2.2

Although it is syntactically possible to generate recursive type specificationsin IDL, such
recursion is semantically constrained. The only permissible form of recursive type specifi-
cation is through the use of the sequence template type. For example, the following is

legal:

struct foo {
long value;
sequence<foo> chain;

}
See 84.7.3.1 on page 73 for details of the sequence template type.

Structures
The structure syntax is:

<struct_type> “struct” <identifier> “{” <member_list> “}"

<member_list> <member>*

<member> <type_spec> <declarators> “;”

The <identifier> in <struct_type> defines anew legal type. Structure types may also be
named using atypedef declaration.

Name scoping rules require that the member declaratorsin a particular structure be
unique. The value of astruct isthe value of all of its members.

Discriminated Unions
The discriminated union syntax is:

<union_type> = “union” <identifier> “switch” “(” <switch_type_spec> “)”
“{” <switch_body> “}”

<switch_type_spec> <integer_type>
<char_type>
<boolean_type>
<enum_type>

<scoped_name>

<switch_body> = <case>t
<case> = <case_label>" <element_spec> “;”
<case_label> ;= “case” <const_exp>“:”
| “default” “:”
<element_spec> .= <type_spec> <declarator>

IDL unions are a cross between the C uni on and swi t ch statements. IDL unions must
be discriminated; that is, the union header must specify atyped tag field that determines
which union member to use for the current instance of a call. The <identifier> following

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 71

IDL Syntax and Semantics

the union keyword defines a new legal type. Union types may also be named using a
typedef declaration. The <const_exp> in a<case_label> must be consistent with the
<switch_type_spec>. A default case can appear at most once. The <scoped_name> in the
<switch_type_spec> production must be a previously defined integer, char, boolean or
enum type.

Case labels must match or be automatically castable to the defined type of the discrimina-
tor. The complete set of matching rules are shown in TBL. 10 on page 72.

TBL. 10

Case Label Matching

4.7.2.3

Discriminator
Type Matched By

long any integer value in the value range of long

short any integer value in the value range of short

unsigned long any integer value in the value range of unsigned long
unsigned short any integer value in the value range of unsigned short
char char

boolean TRUE or FALSE

enum any enumerator for the discriminator enum type

Name scoping rules require that the element declarators in a particular union be unique. If
the <switch_type_spec> isan <enum_type>, the identifier for the enumeration isin the
scope of the union; asaresult, it must be distinct from the element declarators.

It isnot required that all possible values of the union discriminator be listed in the
<switch_body>. The value of aunion is the value of the discriminator together with one of
the following:

» if thediscriminator value was explicitly listed in acase statement, the value of the ele-
ment associated with that case statement;

» if adefault case label was specified, the value of the element associated with the
default case label;

* no additional value.
Access to the discriminator and the related element is language-mapping dependent.

Enumerations
Enumerated types consist of ordered lists of identifiers. The syntax is:

<enum_type> = “enum” <identifier> “{” <enumerator> { “,” <enumerator> }* “}”

<enumerator> 1= <identifier>

72

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Type Declaration

4.7.3

4.7.3.1

A maximum of 232 identifiers may be specified in an enumeration; as such, the enumerated
names must be mapped to a native data type capable of representing a maximally-sized
enumeration. The order in which the identifiers are named in the specification of an enu-
meration definestherelative order of the identifiers. Any language mapping which permits
two enumerators to be compared or defines successor/predecessor functions on enumera-
tors must conform to this ordering relation. The <identifier> following the enum keyword
defines anew legal type. Enumerated types may aso be named using atypedef declara-
tion.

Template Types

The template types are:
<template_type_spec> 1= <sequence_type>

| <string_type>
Sequences

IDL defines the sequence type sequence. A sequence isaone-dimensional array with two
characteristics: a maximum size (which isfixed at compile time) and a length (whichis
determined at run time).

The syntax is:

<sequence_type> = “sequence” “<” <simple_type_spec>“,” <positive_int_const> “>”
| “sequence” “<” <simple_type_spec> “>”

The second parameter in a sequence declaration indicates the maximum size of the
sequence. If apositive integer constant is specified for the maximum size, the sequenceis
termed a bounded sequence. Prior to passing a bounded sequence as a function argument
(or asafield in astructure or union), the length of the sequence must be set in alanguage-
mapping dependent manner. After receiving a sequence result from an operation invoca-
tion, the length of the returned sequence will have been set; this value may be obtained in
alanguage-mapping dependent manner.

If no maximum size is specified, size of the sequence is unspecified (unbounded). Prior to
passing such a sequence as a function argument (or as afield in a structure or union), the
length of the sequence, the maximum size of the sequence, and the address of a buffer to
hold the sequence must be set in alanguage-mapping dependent manner. After receiving
such a sequence result from an operation invocation, the length of the returned sequence
will have been set; this value may be obtained in alanguage-mapping dependent manner.

A seguence type may be used as the type parameter for another sequence type. For exam-
ple, the following:

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 73

IDL Syntax and Semantics

4.7.3.2

typedef sequence< sequence<long> > Fred;

declares Fred to be of type “unbounded sequence of unbounded sequence of long”. Note
that for nested sequence declarations, white space must be used to separate the two “>”
tokens ending the declaration so they are not parsed asasingle “>>" token.

Strings

IDL defines the string type string consisting of all possible 8-bit quantities except null. A
string is similar to a sequence of char. Aswith sequences of any type, prior to passing a
string as afunction argument (or as afield in a structure or union), the length of the string
must be set in alanguage-mapping dependent manner. The syntax is:

<string_type> = “string” “<” <positive_int_const> “>”
| “string”

The argument to the string declaration is the maximum size of the string. If a positive inte-
ger maximum size is specified, the string is termed a bounded string; if no maximum size
is specified, the string is termed an unbounded string.

Strings are singled out as a separate type because many languages have special built-in
functions or standard library functions for string manipulation. A separate string type may
permit substantial optimization in the handling of strings compared to what can be done
with sequences of general types.

4.7.4 Complex Declarator

4.7.4.1 Arrays

IDL defines multidimensional, fixed-size arrays. An array includes explicit sizes for each
dimension.

The syntax for arraysis:
<array_declarator> = <identifier> <fixed_array_size>*
<fixed_array_size> = “[” <positive_int_const> “]”

The array size (in each dimension) is fixed at compile time. When an array is passed asa
parameter in an operation invocation, al elements of the array are transmitted.

The implementation of array indices islanguage mapping specific; passing an array index
as a parameter may yield incorrect results.

74

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Exception Declaration

4.8

Exception Declaration

4.9

Exception declarations permit the declaration of struct-like data structures which may be
returned to indicate that an exceptional condition has occurred during the performance of
arequest. The syntax is asfollows:

<except_dcl> = “exception” <identifier> “{* <member>* “}”

Each exception is characterized by its IDL identifier, an exception type identifier, and the
type of the associated return value (as specified by the <member>sin its declaration. If an
exception isreturned as the outcome to arequest, then the value of the exception identifier
is accessible to the programmer for determining which particular exception was raised.

If an exception is declared with members, a programmer will be able to access the values
of those members when an exception israised. If no members are specified, no additional
information is accessible when an exception is raised.

A set of standard exceptionsis defined corresponding to standard runtime errors which
may occur during the execution of arequest. These standard exceptions are documented in
84.14 on page 82.

Operation Declaration

Operation declarationsin IDL are similar to C function declarations. The syntax is:

<op_dcl> = [<op_attribute>] <op_type_spec> <identifier> <parameter_dcls>
[<raises_expr>][<context_expr>]
<op_type_spec> 1= <param_type_spec>
| Hvoid"

An operation declaration consists of :

* Anoptiona operation attribute that specifies which invocation semantics the commu-
nication system should provide when the operation isinvoked. Operation attributes are
described in 84.9.1 on page 76.

* Thetype of the operation’s return result; the type may be any type which can be
defined in IDL. Operations that do not return aresult must specify the void type.

* Anidentifier that names the operation in the scope of the interface in which itis
defined.

» A parameter list that specifies zero or more parameter declarations for the operation.
Parameter declaration is described in 84.9.2 on page 76.

* Anoptional raises expression which indicates which exceptions may beraised asa
result of an invocation of this operation. Raises expressions are described in Section
84.9.3 on page 77.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 75

IDL Syntax and Semantics

49.1

4.9.2

* Anoptional context expression which indicates which elements of the request context
may be consulted by the method that implements the operation. Context expressions
are described in 84.9.4 on page 77.

Some implementations and/or language mappings may require operation-specific pragmas
to immediately precede the affected operation declaration.

Operation Attribute

The operation attribute specifies which invocation semantics the communication service
must provide for invocations of a particular operation. An operation attribute is optional.
The syntax for its specification is as follows:

<op_attribute> = “oneway”

When aclient invokes an operation with the oneway attribute, the invocation semanticsare
best-effort, which does not guarantee delivery of the call; best-effort implies that the oper-
ation will be invoked at most once. An operation with the oneway attribute must not con-

tain any output parameters and must specify avoid return type. An operation defined with
the oneway attribute may not include araises expression; invocation of such an operation,
however, may raise a standard exception.

If an <op_attribute> is not specified, the invocation semantics is at-most-once if an excep-
tion is raised; the semantics are exactly-once if the operation invocation returns success-
fully.

Parameter Declarations
Parameter declarationsin IDL operation declarations have the following syntax:

<parameter_dcls> = “(” <param_dcl> { #,” <param_dcl>}* “)”
| u(" u)"
<param_dcl> ;= <param_attribute> <param_type_spec> <simple_declarator>
<param_attribute> 2= Min”
| uoutn
| “inout”
<param_type_spec> ;= <base_type_spec>

| <string_type>
| <scoped_name>

A parameter declaration must have a directional attribute that informs the communication
service in both the client and the server of the direction in which the parameter isto be
passed. The directional attributes are:

76

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Operation Declaration

4.9.3

49.4

* in - the parameter is passed from client to server.
* out - the parameter is passed from server to client.
* inout - the parameter is passed in both directions.

It is expected that an implementation will not attempt to modify an in parameter. The abil-
ity to even attempt to do so is language-mapping specific; the effect of such an actionis
undefined.

If an exception israised as aresult of aninvocation, the values of the return result and any
out and inout parameters are undefined.

When an unbounded string or sequence is passed as an inout parameter, the returned value
cannot be longer than the input value.

Raises Expressions

A raises expression specifies which exceptions may be raised as a result of an invocation
of the operation. The syntax for its specification is as follows:

<raises_expr> = “raises” “(" <Scoped_name> { wn <SCOped_name> }* “)"
The <scoped_name>’sin the raises expression must be previously defined exceptions.

In addition to any operation-specific exceptions specified in the raises expression, there
are a standard set of exceptions that may be signalled by the ORB. These standard excep-
tions are described in 84.14 on page 82. However, standard exceptions may not be listed in
araises expression.

The absence of araises expression on an operation impliesthat there are no operation-spe-
cific exceptions. Invocations of such an operation are still liable to receive one of the stan-
dard exceptions.

Context Expressions

A context expression specifies which elements of the client’s context may affect the per-
formance of arequest by the object. The syntax for its specification is as follows:

<context_expr> = “context” “(” <string_literal> { “,” <string_literal>}" “)”

The runtime system guarantees to make the value (if any) associated with each
<string_literal> in the client’ s context available to the object implementation when the
request is delivered. The ORB and/or object is free to use information in this request con-
text during request resolution and performance.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 77

IDL Syntax and Semantics

The absence of a context expression indicates that there is no request context associated
with requests for this operation.

Each string_literal is an arbitrarily long sequence of alphabetic, digit, period (“.”), under-
score (“ "), and asterisk (“*”) characters. The first character of the string must be an
alphabetic character. An asterisk may only be used as the last character of the string. Some
implementations may use the period character to partition the name space.

The mechanism by which a client associates values with the context identifiersis
described in Chapter 6.

4.10 Attribute Declaration

Aninterface can have attributes as well as operations; as such, attributes are defined as
part of an interface. An attribute definition islogically equivalent to declaring a pair of
accessor functions; one to retrieve the value of the attribute and one to set the value of the
attribute.

The syntax for attribute declaration is:

<attr_dcl> = [“readonly”] “attribute” <param_type_spec> <simple_declarator>
{“” <simple_declarator> }*

The optional readonly keyword indicates that there is only a single accessor function—the
retrieve value function. Consider the following example:

interface foo {
enum material_t {rubber, glass};
struct position_t {
float x, y;
h

attribute float radius;
attribute material_t material,
readonly attribute position_t position;

h

The attribute declarations are equivalent to the following pseudo-specification fragment:

78 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

CORBA Module

4.11

float _get radius ();

void _set_radius (in float r);
material t _get material ();

void _set_material (in material_t m);

position_t _get position ();

The actual accessor function names are language-mapping specific; the C mappings are
described in 85.5 on page 92. The attribute name is subject to IDL’s name scoping rules,
the accessor function names are guaranteed not to collide with any legal operation names
specifiablein IDL.

Attribute operations return errors by means of standard exceptions.

Attributes are inherited. An attribute name cannot be redefined to be a different type. See
84.11 on page 79 for more information on redefinition constraints and the handling of
ambiguity.

CORBA Module

4.12

In order to prevent names defined within the CORBA specification from clashing with
names in programming languages and other software systems, all names defined by
CORBA aretreated asif they were defined within a module named CORBA. Within an
IDL specification, however, IDL keywords such as Object must not be preceded by a
“CORBA::" prefix. Other interface names such as TypeCode are not IDL keywords and
so must be referred to by their fully scoped names (e.g., CORBA:: TypeCode) within an
IDL specification.

Names and Scoping

Anentire IDL file forms a naming scope. In addition, the following kinds of definitions
form nested scopes:

e module

e interface
e dtructure
e union

e operation
e exception

Identifiers for the following kinds of definitions are scoped:

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 79

IDL Syntax and Semantics

* types

e constants

e enumeration values
e exceptions

* interfaces
e atributes
e operations

Anidentifier can only be defined once in a scope. However, identifiers can be redefined in
nested scopes.

Due to possible restrictions imposed by future language bindings, IDL identifiers are case
insensitive—i.e. two identifiers that differ only in the case of their characters are consid-
ered redefinitions of one another. However, all referencesto adefinition must use the same
case as the defining occurrence. (This alows natural mappings to case-sensitive lan-

guages.)

Type names defined in a scope are available for immediate use within that scope. In partic-
ular, see 84.7.2 on page 70 on cyclesin type definitions.

A name can be used in an unqualified form within a particular scope; it will be resolved by
successively searching farther out in enclosing scopes. Once an unqualified name is used
in ascope, it cannot be redefined—i.e. if one has used a name defined in an enclosing
scope in the current scope, one cannot then redefine a version of the name in the current
scope. Such redefinitions yield a compilation error.

A qualified name (one of the form <scoped-name>::<identifier>) isresolved by first
resolving the qualifier <scoped-name> to a scope S, and then locating the definition of
<identifier> within S. The identifier must be directly defined in Sor (if Sis an interface)
inherited into S. The <identifier> isnot searched for in enclosing scopes.

When a qualified name begins with “::”, the resolution process starts with the smallest
enclosing module, and locates subsequent identifiers in the qualified name by the rule
described in the previous paragraph.

Every IDL definition in afile has aglobal name within that file. The global name for a def-
inition is constructed as follows.

Prior to starting to scan afile containing an IDL specification, the name of the current root
isinitially empty (") and the name of the current scopeisinitially empty (“”). Whenever
amodule keyword isencountered, the string “::” and the associated identifier are appended
to the name of the current root; upon detection of the termination of the module, the trail-

80

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Names and Scoping

ing “::" and identifier are deleted from the name of the current root. Whenever an
interface, struct, union, or exception keyword is encountered, the string “::” and the associ-
ated identifier are appended to the name of the current scope; upon detection of the termi-
nation of the interface, struct, union, or exception, thetrailing “::” and identifier are deleted
from the name of the current scope. Additionally, a new, unnamed, scope is entered when
the parameters of an operation declaration are processed; this allows the parameter names
to duplicate other identifiers; when parameter processing has completed, the unnamed
scopeis exited.

The global name of an IDL definition is the concatenation of the current root, the current
scope, a“:.”, and the <identifier> which is the local name for that definition.

Inheritance produces shadow copies of the inherited identifiers—i.e., it introduces names
into the derived interface, but these names are considered to be semantically “the same” as
the original definition. Two shadow copies of the same original (as results from the dia-
mond shape in FIG. 11 on page 64) introduce a single name into the derived interface and
don’t conflict with each other.

Inheritance introduces multiple global IDL names for the inherited identifiers. Consider
the following example:

interface A {
exception E {
long L;
h
void f() raises(E);
h
interface B: A {
void g() raises(E);
h

In this example, the exception is known by the global names ::A::E and ::B::E.
Ambiguity can arise in specifications due to the nested naming scopes. For example:

interface A {
typedef string<128> string_t;

k

interface B {
typedef string<256> string_t;

h

interface C: A, B{
attribute string_t Title; * AMBIGUOUS!! #/

h

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 81

IDL Syntax and Semantics

The attribute declaration in C is ambiguous, since the compiler does not know which
string_t is desired. Ambiguous declarations yield compilation errors.

4.13 Differences from C++

The IDL grammar, while attempting to conform to the C++ syntax, is somewhat more
restrictive. The current restrictions are as follows:

» A function return type is mandatory.

* A name must be supplied with each formal parameter to an operation declaration.

* A parameter list consisting of the single token void is not permitted as a synonym for
an empty parameter list.

» Tagsarerequired for structures, discriminated unions, and enumerations.

* Integer types cannot be defined as simply int or unsigned; they must be declared
explicitly as short or long.

» char cannot be qualified by signed or unsigned keywords.

4.14 Standard Exceptions

This section presents the standard exceptions defined for the ORB. These exception iden-
tifiers may be returned as aresult of any operation invocation, regardless of the interface
specification. Standard exceptions may not be listed in raises expressions.

In order to bound the complexity in handling the standard exceptions, the set of standard
exceptions should be kept to atractable size. This constraint forces the definition of equiv-
alence classes of exceptions rather than enumerating many similar exceptions. For exam-
ple, an operation invocation can fail at many different points due to the inability to allocate
dynamic memory. Rather than enumerate several different exceptions corresponding to
the different ways that memory allocation failure causes the exception (during marshal-
ling, unmarshalling, in the client, in the object implementation, allocating network pack-
ets, ...), asingle exception corresponding to dynamic memory allocation failure is defined.
Each standard exception includes a minor code to designate the subcategory of the excep-
tion; the assignment of values to the minor codes isleft to each ORB implementation.

Each standard exception also includes a completion_status code which takes one of the
values{ COMPLETED_YES, COMPLETED_NO, COMPLETED_MAY BE}. These have
the following meanings:

COMPLETED_YES The object implementation has completed processing prior to
the exception being raised.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Standard Exceptions

COMPLETED_NO The object implementation was never initiated prior to the
exception being raised.

COMPLETED_MAYBE The status of implementation completion is indeterminate.

The standard exceptions are defined below.

#define ex_body {unsigned long minor; completion_status completed;}

enum completion_status {COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE};
enum exception_type {NO_EXCEPTION, USER_EXCEPTION, SYSTEM_EXCEPTION};

exception UNKNOWN ex_body; Il the unknown exception

exception BAD_PARAM ex_body; Il'an invalid parameter was passed
exception NO_MEMORY ex_body; /I dynamic memory allocation failure
exception IMP_LIMIT ex_body; Il violated implementation limit
exception COMM_FAILURE ex_body; /I communication failure

exception INV_OBJREF ex_body; Il'invalid object reference

exception NO_PERMISSION ex_body; Il no permission for attempted op.
exception INTERNAL ex_body; Il ORB internal error

exception MARSHAL ex_body; Il error marshalling param/result
exception INITIALIZE ex_body; /I ORB initialization failure

exception NO_IMPLEMENT ex_body; /I operation implementation unavailable
exception BAD_TYPECODE ex_body; II'bad typecode

exception BAD_OPERATION ex_body; /l'invalid operation

exception NO_RESOURCES ex_body; Il'insufficient resources for req.
exception NO_RESPONSE ex_body; Il response to req. not yet available
exception PERSIST_STORE ex_body; Il persistent storage failure

exception BAD_INV_ORDER ex_body; Il routine invocations out of order

exception TRANSIENT ex_body; Il transient failure - reissue request
exception FREE_MEM ex_body; Il cannot free memory

exception INV_IDENT ex_body; /l'invalid identifier syntax

exception INV_FLAG ex_body; Il'invalid flag was specified

exception INTF_REPOS ex_body; Il error accessing interface repository

exception BAD_CONTEXT ex_body; Il error processing context object
exception OBJ_ADAPTER ex_body; Il failure detected by object adapter
exception DATA_CONVERSION ex_body; /I data conversion error

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

IDL Syntax and Semantics

84

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

5

C Language Stub Mapping

5.1

The CORBA architecture is independent of the programming language used to construct
clients or implementations. In order to use the ORB, it is necessary for programmers to
know how to access ORB functionality from their particular programming languages.

This chapter defines the mapping to the C programming language as the first language
required by OMG,; it is expected that additional language mappings will be defined.

Requirements for a Language Mapping

All language mappings have approximately the same structure. They must define the
means of expressing in the language:

o dl IDL basic datatypes

» al IDL constructed data types

» referencesto constants defined in IDL

» referencesto objectsdefined in IDL

* invocations of operations, including passing parameters and receiving results

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 85

C Language Stub Mapping

5.1.1

5.1.2

5.1.3

5.14

* exceptions, including what happens when an operation raises an exception and how
the exception parameters are accessed

e accessto attributes

» signaturesfor the operations defined by the ORB, such as the dynamic invocation
interface, the object adapters, etc.

A complete language mapping will allow a programmer to have accessto all ORB func-
tionality in away that is convenient for the particular programming language. To support
source portability, all ORB implementations must support the same mapping for a particu-
lar language.

Basic Data Types

A language mapping must define the means of expressing al of the data types defined in
84.7.1 on page 69. The ORB defines the range of values supported, but the language map-
ping defines how a programmer sees those values. For example, the C mapping might
define TRUE as 1 and FAL SE as 0, whereas the L1SP mapping might define TRUE as T
and FALSE as NIL. The mapping must specify the means to construct and operate on
these data types in the programming language.

Constructed Data Types

A language mapping must define the means of expressing the constructed data types
defined in 84.7.2 on page 70 through 84.7.4 on page 74. The ORB defines aggregates of
basic data types that are supported, but the language mapping defines how a programmer
sees those aggregates. For example, the C mapping might define an IDL struct asaC
struct, whereas the L1SP mapping might define an IDL struct as alist. The mapping must
specify the means to construct and operate on these data typesin the programming lan-

guage.

Constants

IDL definitions may contain named constant values that are useful as parameters for cer-
tain operations. The language mapping should provide the means to access these constants
by name.

Objects

There are two parts of defining the mapping of ORB objects to a particular language. The
first specifies how an object is represented in the program and passed as a parameter to
operations. The second is how an object is invoked.

The representation of an object referencein a particular language is generally opague, that
is, some language-specific data type is used to represent the object reference, but the pro-

86

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Requirements for a Language Mapping

5.1.5

5.1.6

gram does not interpret the values of that type. The language-specific representation is
independent of the ORB representation of an object reference, so that programs are not
ORB-dependent. In an object-oriented programming language, it may be convenient to
represent an ORB object as a programming language object. Any correspondence between
the programming language object types and the IDL typesincluding inheritance, operation
names, etc., is up to the language mapping.

There are only three uses that a program can make of an object reference: it may specify it
as a parameter to an operation (including receiving it as an output parameter), it can
invoke an operation on it, or it can perform an ORB operation (including object adapter
operations) onit.

Invocation of Operations

An operation invocation requires the specification of the object to be invoked, the opera-
tion to be performed, and the parameters to be supplied. There are avariety of possible
mappings, depending to alarge extent on the procedure mechanism in the particular lan-
guage. Some possible choices for language mapping of invocation include: interface-spe-
cific stub routines, a single general-purpose routine, a set of calls to construct a parameter
list and initiate the operation, or mapping ORB operations to operations on objects defined
in an object-oriented programming language.

The mapping must define how parameters are associated with the call, and how the opera-
tion name is specified. It is also necessary to specify the effect of the call on the flow of
control in the program, including when an operation completes normally and when an
exception israised.

The most natural mapping would be to model a call on an ORB object as the correspond-
ing call in the particular language. However, this may not always be possible for lan-
guages where the type system or call mechanism is not powerful enough to handle ORB
objects. In this case, multiple calls may be required. For example, in C, it is necessary to
have a separate interface for dynamic construction of calls, since C does not permit dis-
covery of new types at runtime. In LISP, however, it may be possible to make a language
mapping that is the same for objects whether or not they were known at compile time.

In addition to defining how an operation is expressed, it is necessary to specify the storage
allocation policy for parameters, for example, what happens to storage of input parame-
ters, and how and where output parameters are allocated. It is aso necessary to describe
how areturn value is handled, for operations that have one.

Exceptions

There are two aspects to the mapping of exceptionsinto a particular language. First isthe
means for handling an exception when it occurs, including deciding which exception

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 87

C Language Stub Mapping

5.1.7

5.1.8

occurred. If the programming language has a model of exceptions that can accommodate
ORB exceptions, that would likely be the most convenient choice; if it does not, some
other means must be used, for example, passing additional parameters to the operation that
receive the exception status.

It iscommonly the case that the programmer associates specific code to handle each kind
of exception. It isdesirable to make that association as convenient as possible.

When an exception has been raised, it must be possible to access the parameters of the
exception. If the language exception mechanism allows for parameters, that mechanism
could be used. Otherwise, some other means of obtaining the exception values must be
provided.

Attributes

The ORB models attributes as a pair of operations, one to set and one to get the attribute
value. The language mapping defines the means of expressing these operations. One rea-
son for distinguishing attributes from pairs of operationsisto allow the language mapping
to define the most natural way for accessing them. Some possible choicesinclude defining
two operations for each attribute, defining two operations that can set or get, respectively,
any attribute, defining operations that can set or get groups of attributes, etc.

ORB Interfaces

Most of alanguage mapping is concerned with how the programmer-defined objects and
data are accessed. Programmers who use the ORB must also access some interfacesimple-
mented directly by the ORB, for example, to convert an object reference to astring. A lan-
guage mapping must also specify how these interfaces appear in the particular
programming language.

Various approaches may be taken, including defining a set of library routines, allowing
additional ORB-related operations on objects, or defining interfaces that are similar to the
language mapping for ordinary objects.

The last approach is called defining pseudo-objects. A pseudo-object has an interface that
can (with afew exceptions) be defined in IDL, but is not necessarily implemented as an
ORB object. Using stubs a client of a pseudo-object writes callsto it in the same way as if
it were an ordinary object. Pseudo-object operations cannot be invoked with the Dynamic
Invocation Interface. However, the ORB may recognize such calls as specia and handle
them directly. One advantage of pseudo-objectsisthat the interface can be expressed in
IDL independent of the particular language mapping, and the programmer can understand
how to write calls by knowing the language mapping for the invocations of ordinary
objects.

88

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Scoped Names

5.1.9

5.2

It is not necessary for a language mapping to use the pseudo-object approach. However,
this document defines interfaces in subsequent chapters using IDL wherever possible. A
language mapping must define how these interfaces are accessed, either by defining them
as pseudo-objects and supporting a mapping similar to ordinary objects, by defining lan-
guage-specific interfaces for them, or in some other way.

Language Stub Mapping

The remainder of this chapter is the C language stub mapping. Subsequent chapters will
discuss additional ORB interfaces. Although attempts have been made to separate the
mapping-specific details from the ORB-generic concepts, the reader is cautioned that it
has not aways been possible to separate them. A future revision of this document will
restructure this information to clarify which concepts are applicable to any programming
language mapping, and which concepts are specific to the C language mapping.

Scoped Names

The C programmer must always use the global name for a type, constant, exception, or
operation. The C global name corresponding to an IDL global name is derived by convert-
ing occurrencesof “::” to*_” (an underscore) and eliminating the leading underscore.

Consider the following example:

typedef string<256> filename_t;
interface example0 {
enum color {red, green, blue};
union bar switch (enum foo {room, bell}) { ... };

h
Code to use this interface would ook as follows:
#i ncl ude "exanpl e0. h" [* C */

filenanme_t FN;
exanpl e0_col or C = exanpl e0_red,;
exanpl e0O_bar myUni on;

switch (myUnion._d) {
case exanpl eO_bar_roon e o o
case exanpl e0_bar_bell: o o

b

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 89

C Language Stub Mapping

Note that the use of underscores to replace the “::” separators can lead to ambiguity if the
IDL specification contains identifiers with underscores in them. Consider the following
example:

typedef long foo_bar;
interface foo {
typedef short bar; * A legal IDL statement, but ambiguous in C */

k

Due to such ambiguities, it is advisable to avoid the indiscriminate use of underscoresin
identifiers.

5.3 Mapping for Interfaces

All interfaces must be defined at global scope (no nested interfaces). The mapping for an
interface declaration is as follows:

interface examplel {
long opl(in long argl);
¥

The preceding example generates the following C declarati onst:

typedef CORBA (hj ect exanpl el; [* C*/
extern CORBA | ong exanpl el opl(

exanpl el o,

CORBA_Envi ronnment *ev,

CORBA | ong argl
)

All object references (actually typed interface references to an object) are of the well-
known, opaque type CORBA (hj ect . The representation of CORBA (hj ect isa
pointer. To permit the programmer to decorate a program with typed references, atype
with the name of the interface is defined to be a CORBA (hj ect . Theliteral COR-

BA OBJECT NI L islegal wherever a CORBA _Obj ect may be used; it is guaranteed to
passtheis nil operation defined in §8.2.3 on page 150.

IDL permits specifications in which arguments, return results, or components of con-
structed types may be interface references. Consider the following example:

1. 85.14 on page 99 describes the additional arguments added to an operation in the C mapping.

90

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Inheritance and Operation Names

5.4

#include "examplel.idl"
interface example2 {
examplel op2();
3
Thisis equivalent to the following C declaration:
#i ncl ude "exanpl el. h" [* C*/

typedef CORBA (hj ect exanpl e2;
extern exanpl el exanpl e2_op2(exanpl e2 o, CORBA Environnent *ev);

A C fragment for invoking such an operation is as follows:

#i ncl ude "exanpl e2. h" [* C */
exanpl el ex1;

exanpl e2 ex2;

CORBA _Envi ronnent ev;

/* code for binding ex2 */

exl = exanpl e2_op2(ex2, &ev);

Inheritance and Operation Names

IDL permits the specification of interfaces that inherit operations from other interfaces.
Consider the following example:

interface example3 : examplel {
void op3(in long arg3, out long arg4);
¥

Thisis equivalent to the following C declarations:

typedef CORBA (hj ect exanpl e3; [* C*/

extern CORBA | ong exanpl e3_op1(
exanpl e3 o,
CORBA_Envi ronnment *ev,
CORBA | ong argl

)

extern voi d exanpl e3_op3(
exanpl e3 o,
CORBA_Envi ronnment *ev,
CORBA | ong arg3,
CORBA | ong *ar g4

)

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

C Language Stub Mapping

Asaresult, an object writtenin C can accessopl asif it was directly declared in example3.
Of course, the programmer could also invoke exanpl el _opl onan Cbj ect of type
exanpl e3; thevirtual nature of operationsin interface definitions will cause invocations
of either function to cause the same method to be invoked.

5.5 Mapping for Attributes

The mapping for attributes is best explained through a couple of examples. Consider the
following specification:

interface foo {
struct position_t {
float x, y;

k

attribute float radius;
readonly attribute position_t position;

h
Thisis exactly equivalent to the following illegal IDL specification:

interface foo {
struct position_t {

float x, y;
h
float _get_radius();
void _set_radius(in float r);

position_t _get_position();

h

This latter specification isillegal since IDL identifiers are not permitted to start with the
underscore (_) character.

The language mapping for attributes then becomes the language mapping for these equiv-
alent operations. More specifically, the function signatures generated for the above opera-
tions are asfollows:

92 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Mapping for Constants

typedef struct foo position_t { [* C*/
CORBA float x, vy;
} foo _position_t;

extern CORBA float foo_get radius(foo o, CORBA Environnment *ev);
extern void foo__set radius(

foo o,

CORBA_Envi ronnment *ev,

CORBA float r

)

extern foo position_t foo_ get position(foo o, CORBA Environnent *ev);

Note that two underscore characters (__) separate the name of the interface from the
words“get ” or “set ” in the names of the functions.

If the“set ” accessor function failsto set the attribute val ue, the method should return one
of the standard exceptions defined in 84.14 on page 82.

5.6 Mapping for Constants
Constant identifiers can be referenced at any point in the user’s code where aliteral of that
typeislegal. In C, these constants are #def i ned.
The fact that constants are #def i ned may lead to ambiguitiesin code. All names which
are mandated by the mappings for any of the structured types below start with an under-
score.

5.7 Mapping for Basic Data Types
The basic data types have the mappings shown in TBL. 11 on page 93. Implementations
are responsible for providing typedefs for CORBA _short, CORBA _long, etc. consistent
with IDL requirements for the corresponding data types.

TBL. 11 Data Type Mappings

IDL C
short CORBA_short
long CORBA long

unsigned short CORBA_unsigned_short
unsigned long CORBA _unsigned_long
float CORBA_float

double CORBA _double

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 93

C Language Stub Mapping

TBL. 11 Data Type Mappings (Continued)
IDL C
char CORBA _char
boolean CORBA_boolean
octet CORBA _octet
enum CORBA_enum
any typedef struct CORBA_any { CORBA_TypeCode _type; void *_value; }
CORBA_any;
The C mapping of the IDL boolean typesisunsi gned char with only the values 1
(TRUE) and 0 (FAL SE) defined; other values produce undefined behavior. CORBA _bool-
ean is provided for symmetry with the other basic data type mappings.
The C mapping of IDL enum typesisan unsigned integer type capable of representing 2%
enumerations. Each enumerator in an enum is#def i ned with an appropriate unsigned
integer value conforming to the ordering constraints described in 84.7.2.3 on page 72.
TypeCodes are described in 87.6 on page 142. The _val ue member for anany isa
pointer to the actual value of the datum.
5.8 Mapping for Structure Types
IDL structures map directly onto C st r uct s. Note that all IDL typesthat map to C
st r uct smay potentially include padding.
5.9 Mapping for Union Types
IDL discriminated unions are mapped onto C st r uct s. Consider the following IDL dec-
laration:
union Foo switch (long) {
case 1: long x;
case 2: float y;
default: char z;
h
Thisisequivalent to the following struct in C:
94 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Mapping for Sequence Types

typedef struct { [* C*/
CORBA | ong _d;
uni on {

CORBA | ong x;
CORBA fl oat vy;
CORBA char z;

by
} Foo;

The discriminator in the struct isalwaysreferred to as _d; the union in the struct is always
referredtoas _u.

Reference to union elementsisasin normal C:
Foo *v; [* C */
/* make a call that returns a pointer to a Foo in v */
switch(v->_d) {

case 1: printf("x

case 2: printf("y
default: printf("z

%d\n", v-> u.x); break;
%\n", v->_u.y); break;
%\n", v-> u.z); break;

5.10 Mapping for Sequence Types

The IDL data type sequence permits passing of unbounded arrays between objects. Con-
sider the following IDL declaration:

typedef sequence<long,10> vecl10;
In C, thisis converted to:

typedef struct { [* C */
CORBA _unsi gned_I| ong _maxi mum
CORBA unsi gned_I ong _I engt h;
CORBA | ong *_buffer;

} veclO;

An instance of thistypeis declared as follows:
vecl0 x = {10L, OL, (CORBA_|long *)NULL); [* C */
Prior to passing & asani n parameter, the programmer must set the _buf f er member

to point to a CORBA _| ong array of 10 elements, and must set the _| engt h member to
the actual number of elements to transmit.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 95

C Language Stub Mapping

Prior to passing & asan out parameter (or receiving avec 10 asthe function return),
the programmer does nothing. The client stub will allocate storage for the returned buffer;
for bounded sequences, it allocates a buffer of the specified size, while for unbounded
sequences, it alocates a buffer big enough to hold what was returned by the object. Upon
successful return from the invocation, the _maxi mummember will contain the size of the
allocated array, the _buf f er member will point at the allocated storage, and the

_| engt h member will contain the number of valuesthat werereturned inthe _buf f er
member. The client isresponsible for freeing the allocated storage using COR-

BA free().Thecurrent contentsof the buf f er member isoverwritten with a pointer
to the storage allocated by the stub.

Prior to passing & as an inout parameter, the programmer must set the _buf f er mem-
ber to point to a CORBA | ong array of 10 elements. For an unbounded sequence, the pro-
grammer must set the _maxi mummember to the actual size of the array. The _| engt h
member must be set to the actual number of elements to transmit. Upon successful return
from the invocation, the _| engt h member will contain the number of values that were
copied into the buffer pointed to by the _buf f er member. The number of values
returned is constrained by the value of the _maxi mummember.

For bounded sequences, it isan error to set the | engt h or _maxi mummember to a
value larger than the specified bound.

Two sequence types are the same type if their sequence element type and size arguments
areidentical. For example,

const long SIZE = 25;
typedef long seqtype;

typedef sequence<long, SIZE> s1;
typedef sequence<long, 25> s2;
typedef sequence<seqtype, SIZE> s3;
typedef sequence<seqtype, 25> s4;

declares s1, s2, s3, and s4 to be of the same type.

96

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Mapping for Strings

5.11

The IDL type

sequence<type,size>
maps to

#i f ndef _CORBA sequence_t ype_defi ned [* C*/
#def i ne _CORBA sequence_t ype_defi ned
typedef struct {
CORBA _unsi gned_I| ong _maxi mum
CORBA _unsi gned_I ong _I engt h;
type *_buffer;
} CORBA_sequence_type;
#endi f /* _CORBA sequence_type_defined */

Thei f def 'sare needed to prevent duplicate definition where the same type is used more
than once. The type name used in the C mapping is the type name of the effective type,
eg.in

typedef CORBA_| ong FRED, [* C */
t ypedef sequence<FRED, 10> FredSeq;

the sequenceismapped ontost ruct { ... } CORBA _sequence_| ong;

If the type in

sequence<type,size>

consists of more than one identifier (e.g. unsigned long), then the generated type name
consists of the string “CORBA _sequence ” concatenated to the string consisting of the
concatenation of each identifier separated by underscores (e.g. “unsigned_long”).

If the type isastring, the string “string” is used to generate the type name. If thetype isa
sequence, the string “ sequence” is used to generate the type name, recursively. For exam-

ple

seguence<sequence<long> >

generates a type of

CORBA _sequence_sequence_| ong

These generated type names may be used to declare instances of a sequence type.

Mapping for Strings

IDL strings are mapped to 0-byte terminated character arrays; i.e. the length of the string
isencoded in the character array itself through the placement of the O-byte. Note that the

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 97

C Language Stub Mapping

storage for C strings is one byte longer than the stated IDL bound. Consider the following
IDL declarations:

typedef string<10> sten;
typedef string sinf;

In C, thisis converted to:

typedef CORBA char *sten; [* C*/
typedef CORBA char *sinf;

Instances of these types are declared as follows:

sten sl
sinf s2

NULL; [* C*/
NULL;

Two string types are the same type if their size arguments are identical. For example,
const |long SIZE = 25; [* C *]

typedef string<SlZE> sx;
typedef string<25> sy;

declares sx and sy to be of the same type.

Prior to passing s1 or s2 asan in parameter, the programmer must assign the address of a
character buffer containing a O-byte terminated string to the variable.

Prior to passing &s 1 or &s2 as an out parameter (or receiving an st en or si nf asthe
return result), the programmer does nothing. The client stub will allocate storage for the
returned buffer; for bounded strings, it allocates a buffer of the specified size, while for
unbounded strings, it allocates a buffer big enough to hold the returned string. Upon suc-
cessful return from the invocation, the character pointer will contain the address of the
allocated buffer. The client is responsible for freeing the allocated storage using COR-
BA _freg() . If the pointer isnon-NULL when acall is made, it is overwritten with a
pointer to the storage allocated by the stub.

Prior to passing &s 1 or &2 as an inout parameter, the programmer must assign the
address of a character buffer containing a 0-byte terminated array to the variable. Upon
successful return from the invocation, the returned O-byte terminated array is copied into
the same buffer. If it was a bounded string, then the size of the returned string islimited by
the declared size of the string type; if it was an unbounded string, then the size of the
returned string is limited by the size of the string passed as input. Due to this restriction,
use of inout string parameters is deprecated.

98

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Mapping for Arrays

5.12 Mapping for Arrays

IDL arrays map directly to C arrays. All array indicesrun fromOto <si ze - 1>.

If the return result to an operation isan array, the array storage is dynamically allocated by
the stub; a pointer to the first element of the dynamically allocated array is returned as the
value of the client stub function. When the dataiis no longer needed, it isthe programmer’s
responsibility to return the dynamically allocated storage by calling CORBA free().

5.13 Mapping for Exception Types

Each defined exception type is defined as a struct tag and atypedef with the C global name
for the exception. Anidentifier for the exception, in string literal form, isalso #def i ned.
For example:

exception foo {
long dummy;

h
yields the following C declarations:

typedef struct foo { [* C*/
CORBA | ong dunmy;
} foo;

#define ex_foo <unique identifier for exception>

The identifier for the exception uniquely identifies this exception type. For example, it
could be the Interface Repository identifier for the exception (see §7.5.10 on page 142).

5.14 Implicit Arguments to Operations

From the point of view of the C programmer, all operations declared in an interface have
additional leading parameters preceding the operation-specific parameters:

1. Thefirst parameter to each operation isan CORBA (bj ect input parameter; this
parameter designates the object to process the request.

2. The second parameter to each operation isan (CORBA _Envi ronnent *) output
parameter; this parameter permits the return of exception information.

3. If an operation in an IDL specification has a context specification, then a CORBA _-
Cont ext input parameter followsthe (CORBA _Envi r onment *) parameter and
precedes any operation-specific arguments.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 99

C Language Stub Mapping

As described above, the CORBA _Obj ect typeisan opaque type. The CORBA _Envi -
ronnment typeis partially opague; 85.19 on page 104 provides a description of the non-
opaque portion of the exception structure and an example of how to handle exceptions in
client code. The CORBA _Cont ext type isopaque; see Chapter 6 for more information
on how to create and manipulate context objects.

5.15 Interpretation of Functions with Empty Argument Lists

A function declared with an empty argument list is defined to take no operation-specific
arguments.

5.16 Argument Passing Considerations

For al IDL types (except arrays), if the IDL signature specifies that an argument is an out
or inout parameter, then the caller must always pass the address of a variable of that type
(or the value of a pointer to that type); the callee must dereference the parameter to get to
the type. For arrays, the caller must pass the address of the first element of the array.

For in parameters, the value of the parameter must be passed for all of the basic types, enu-
meration types, and object references. For arrays, the address of the first element of the
array must be passed. For all other structured types, the address of a variable of that type
must be passed.

Consider the following IDL specification:

interface foo {
typedef long Vector[25];

void bar(out Vector x, out long y);

h

Client code for invoking the bar operation would look like:

foo object; [* C */
foo_Vector x;

CORBA | ong v;

CORBA_Envi ronment ev;

/* code to bind object to instance of foo */

foo_bar(object, &ev, X, &y);

For out parameters of type unbounded string or unbounded sequence, the ORB will allo-
cate storage for the output value. The client may use and retain that storage indefinitely,

100

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Return Result Passing Considerations

5.17

and must indicate when the value is no longer needed by calling the procedure COR-
BA free, whosesignatureis:

extern void CORBA free (void *storage); [* C */

The parameter to CORBA f r ee() isthe pointer used to return the out parameter. COR-
BA free() releasesthe ORB-allocated storage occupied by the out parameter, including
storage indirectly referenced, such asin the case of a sequence of strings. If a client does
not call CORBA free() before reusing the pointers that reference the out parameters,
that storage might be wasted.

Return Result Passing Considerations

When an operation is defined to return a non-void return result, the following rules hold:

1. If thereturn result is one of the types float, double, long, short, unsigned long,
unsigned short, char, boolean, octet, Object, or an enumeration, then the value is
returned as the operation result.

2. If thereturn result is one of the types struct, union, sequence, or any, then the value of
the C struct representing that type is returned as the operation result.

3. If thereturn result is of type string, then a pointer to the first character of the string is
returned as the operation result.

4. If thereturn result is of type array, then a pointer to the first element of the array is
returned as the operation result.

Consider the following interface:

interface X {
structy {
long a;
float b;
3
long op1();
y 0p2();
}

The following C declarations ensue from processing the specification:

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 101

C Language Stub Mapping

5.18

typedef CORBA hject X [* C*/
typedef struct Xy {

CORBA | ong a;

CORBA fl oat b;

}oXy;

extern CORBA | ong X opl(X object, CORBA _Environnment
extern Xy X op2(X object, CORBA Environnent *ev);

*ev);

For operation results of type unbounded string, unbounded sequence, or array, the ORB
will allocate storage for the return value. The client may use and retain that storage indefi-
nitely, and must indicate when the value is no longer needed by calling the procedure
CORBA free() describedin 85.16 on page 100.

Summary of Argument/Result Passing

TBL. 12 on page 102 summarizes what a client passes as an argument to a stub and
receives as aresullt.

TBL.12 Argument and Result Passing
Data Type Pass In Pass Out/Inout Return Result
short value addr of variable to hold value receive value
long value addr of variable to hold value receive value
unsigned short value addr of variable to hold value receive value
unsigned long value addr of variable to hold value receive value
float value addr of variable to hold value receive value
double value addr of variable to hold value receive value
boolean value addr of variable to hold value receive value
char value addr of variable to hold value receive value
octet value addr of variable to hold value receive value
enumeration value addr of variable to hold value receive value
ngect refer- Object value addr of variable to hold Object receive value of Object
struct addr of struct addr of variable to hold struct receive value of struct
union addr of struct addr of variable to hold struct receive value of struct
string addr of 1st char addr of (char *) variable receive char *
sequence addr of seq. addr of seq. struct receive value of seq. struct
struct
array addr of 1st elem addr of 1st elem receive addr of 1st elem
102 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Summary of Argument/Result Passing

A client isresponsible for providing storage for al arguments passed as in arguments. A
client isresponsible for providing storage for all out arguments and return results except in
the cases noted in TBL. 13 on page 103 and TBL. 14 on page 103.

TBL. 13 Client Argument Storage Responsibilities

Type Inout Param Out Param Return Result
1

short

long

unsigned short
unsigned long
float

double
boolean

char

octet
enumeration
object reference
struct

union

string
sequence
array

AR P P P R NP RPRRPRPRPRPRRERRR PR PR
AR, DN W R R NRRRPRPRRRRPR
AW DA WER R NRRPRRRRRRRPRPR

any

TBL.14 Argument Passing Cases

Case! Description

1 The client is responsible for providing storage and managing release of the storage. That is, the
system allocates storage which must be freed using CORBA _free() for the following types and
directions: string/out, string/return, sequence/out, sequence/return, array/return, any/inout, any/
out, any/return. For inout strings and sequences, the out result is constrained by the size of the
type on input.

2 The client is responsible for providing the storage used to contain the object reference. When the
reference is no longer needed, the client uses the release function described in §8.2.2 on page
150 to release the storage associated with the reference.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 103

C Language Stub Mapping

TBL. 14

Argument Passing Cases

Case! Description

3 The ORB provides the storage for these returned parameters and results. The client is responsi-
ble for releasing the storage using CORBA_free().

4 The client provides the storage for the structure which contains the description of the sequence or
any and the client manages release of the storage and the descriptor. The ORB provides storage
for the values returned and puts the pointers to this storage in the descriptor structures. The client
is responsible for releasing this storage using CORBA_free().

1. As listed in TBL. 13 on page 103.

5.19 Handling Exceptions

The CORBA_Envi r onnent typeis partially opague; the C declaration contains at |east
the following:

typedef struct CORBA Environnent { [* C*/
CORBA _exception_type _mjor;

} CORBA _Environnent;

Upon return from an invocation, the _maj or field indicates whether the invocation termi-
nated successfully; _naj or can have one of the values CORBA NO_EXCEPTI ON,
CORBA _USER_EXCEPTI QN, or CORBA SYSTEM EXCEPTI ON,; if the value is one of
the latter two, then any exception parameters signalled by the object can be accessed.

Three functions are defined on an CORBA_Envi r onnment structure for accessing excep-
tion information; their signatures are:

extern CORBA char *CORBA exception_i d(CORBA Environment *ev);/* C */
extern voi d *CORBA exception_val ue(CORBA Environnent *ev);
extern voi d CORBA exception_free(CORBA Environnent *ev);

CORBA _exception_i d() returnsapointer to the character string identifying the
exception. If invoked on an CORBA _Envi r onnment which identifies a non-exception,
(_maj or ==CORBA_NO_EXCEPTI ON) aNULL isreturned.

CORBA excepti on_val ue() returnsa pointer to the structure corresponding to this
exception. If invoked on an CORBA _Envi r onment which identifies a non-exception or
an exception for which there is no associated information, aNULL is returned.

CORBA _exception_free() returnsany storage which was allocated in the construc-
tion of the CORBA_Envi r onnent . It is permissible to invoke CORBA excepti on_-
free() regardlessof the value of the _nmaj or field.

104

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Handling Exceptions

Consider the following example:

interface exampleX {
exception BadCall {
string<80> reason;

k

void op() raises(BadCall);
3

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 105

C Language Stub Mapping

This interface defines a single operation which returns no results and can raise a BadCall
exception. The following user code shows how to invoke the operation and recover from
an exception:

#i ncl ude "exanpl eX h" [* C*/

CORBA_Envi ronnent ev;
exanpl eX obj ;
exanpl eX BadCal | *bc;

/*
* sone code to initialize obj to a reference to an object supporting
* the exanpleX interface
*/

exanpl eX op(obj, &ev);
switch(ev. _mjor) {
case CORBA_NO_EXCEPTI ON:. /* successful outconme*/
/* process out and inout argunents */
br eak;
case CORBA USER EXCEPTION:/* a user-defined exception */
if (strcmp(ex_exanpl eX BadCall, CORBA exception_id(&v)) == 0) {
bc = (exanpl eX BadCall *)CORBA exception_val ue(&ev);
fprintf(stderr, "exanpleX op() failed - reason: %\n",
bc- >reason);
el se { /* should never get here ... */
fprintf(stderr, "unknown user-defined exception - %\n"
CORBA _exception_id(&ev));

}
br eak;
default: /* standard exception */

/*
* CORBA_exception_id() can be used to determ ne which particul ar

* standard exception was raised; the m nor nenber of the struct

* associated with the exception (as yielded by

* CORBA _exception_value()) may provide additional systemspecific
* informati on about the exception

*/

br eak;

}

/* free any storage associated with exception */
CORBA _exception_free(&ev);

106 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Method Routine Signatures

5.20

Method Routine Signatures

5.21

The signatures of the methods used to implement an object depend not only on the lan-
guage binding, but also on the choice of object adapter. Different object adapters may pro-
vide additional parameters to access object adapter-specific features.

Most object adapters are likely to provide method signatures that are ssmilar in most
respectsto those of the client stubs. In particular, the mapping for the operation parameters
expressed in IDL should be the same as for the client side.

See 89.3 on page 160 for the description of method signatures for implementations using
the Basic Object Adapter.

Include Files

5.22

Multipleinterfaces may be defined in asingle sourcefile. By convention, each interfaceis
stored in a separate source file. All IDL compilers will, by default, generate a header file
named Foo. h from Foo.idl. Thisfile should be #included by clients and implementations
of the interfaces defined in Foo.idl.

Inclusion of Foo. h issufficient to define all global names associated with the interfaces
in Foo.idl and any interfaces from which they are derived.

Pseudo-objects

In the C language mapping, there are several interfaces that are defined as pseudo-objects;
TBL. 18 on page 176 lists the pseudo-objects. A client makes calls on a pseudo-object in

the same way as an ordinary ORB object. However, the ORB may implement the pseudo-
object directly, and there are restrictions on what a client may do with a pseudo-object.

The ORB itself is a pseudo-object with the following partial definition (see Chapter 8 for
the compl ete definition):

interface ORB {
string object_to_string (in Object obj);
Object string_to_object (in string str);

h

This meansthat a C programmer may convert an object reference into its string form by
calling:

CORBA_Envi ronment ev; [* C*/
CORBA char *str = CORBA_ORB_obj ect_to_string(orbobj, &ev, obj);

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 107

C Language Stub Mapping

just asif the ORB were an ordinary object. The C library contains the routine COR-

BA ORB _obj ect _to_string, andit doesnot do areal invocation. Theor bobj is
an object reference that specifies which ORB is of interest, sinceiit is possible to choose
which ORB should be used to convert an object reference to a string (see Chapter 8 for
details on this specific operation).

Although operations on pseudo-objects are invoked in the usual way defined by the C lan-
guage mapping, there are restrictions on them. In general, a pseudo-object cannot be spec-
ified as a parameter to an operation on an ordinary object. Pseudo-objects are also not
accessible using the dynamic invocation interface, and do not have definitions in the inter-
face repository.

Operations on pseudo-objects may take parametersthat are not permitted in operations on
ordinary objects. For example, the set_exception operation on the Basic Object Adapter
pseudo-object takesaC (voi d *) to specify the exception parameters (see 89.3.2 on
page 161 for details). Generally, these parameters will be language-mapping specific.

Because the programmer uses pseudo-objects in the same way as ordinary objects, some
ORB implementations may choose to implement some pseudo-objects as ordinary objects.
For example, assuming it could be efficient enough, a context object might be imple-
mented as an ordinary object.

108

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

6

Dynamic Invocation Interface

6.1 Overview

The ORB dynamic invocation interface allows dynamic creation and invocation of
requeststo objects. A client using this interface to send a request to an object obtains the
same semantics as a client using the operation stub generated from the type specification.

A request is comprised of an object reference, an operation, and a list of parameters. The
ORB applies the implementation-hiding (encapsulation) principle to requests.

In the dynamic invocation interface, parametersin arequest are supplied as elements of a
list. Each element is an instance of a NamedValue (see 86.1.1 on page 110). Each param-
eter is passed in its native data form.

Parameters supplied to a request may be subject to run-time type checking upon request
invocation. Parameters must be supplied in the same order as the parameters defined for
the operation in the Interface Repository.

All types defined in this chapter are part of the CORBA module. When referenced in IDL,
the type names must be prefixed by “CORBA::”.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 109

Dynamic Invocation Interface

6.1.1 Common Data Structures

The type NamedValue is awell-known datatype in IDL. It can be used either as a parame-
ter type directly or as amechanism for describing argumentsto arequest. Thetype NVList
is a pseudo-object useful for constructing parameter lists. The types are described in IDL
and C, respectively, as:.

typedef unsigned long Flags;

struct NamedValue {

Identifier name; [/l argument name

any argument; // argument

long len; Il'length/count of argument value
Flags arg_modes; // argument mode flags

h

NamedValue and Flags are defined in the CORBA module.
CORBA_NarredVal ue * CORBA_NVLi st ; [* C*/

The NamedValue and NVLi st structures are used in the request operations to describe
arguments and return values. They are also used in the context object routines to passlists
of property names and values. Despite the above declaration for NVLi st , the NVLi st
structure is partially opague and may only be created by using the ORB create list opera-
tion.

A named value includes an argument name, argument value (as an any), length of the
argument, and a set of argument mode flags. When named value structures are used to
describe arguments to a request, the names are the argument identifiers specified in the
IDL definition for a specific operation.

Asdescribed in 85.7 on page 93, an any consists of a TypeCode and a pointer to the data
value. The TypeCode is a well-known opaque type that can encode a description of any
type specifiablein IDL. A full description of TypeCodesisgiven in §7.6 on page 142.

For most datatypes, len isthe actual number of bytes that the value occupies. For object
references, len is 1. TBL. 15 on page 111 shows the length of data values for the C lan-

110 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Overview

guage binding. The behavior of aNamedValue is undefined if the len value isinconsistent
with the TypeCode.

TBL. 15

C Type Lengths

Data type: X Length (X)

short sizeof (CORBA _short)

unsigned short sizeof (CORBA_unsigned_short)
long sizeof (CORBA _long)

unsigned long sizeof (CORBA_unsigned_long)
float sizeof (CORBA _float)

double sizeof (CORBA_double)

char sizeof (CORBA_char)

boolean sizeof (char)

octet sizeof (CORBA_octet)

string strlen (string) /* does NOT include \0’ byte! */
enum E {}; sizeof (CORBA_enum)

union U {}; sizeof (U)

struct S {}; sizeof (S)

Object 1

array N of type T1 Length (T1) * N

sequence V of type T2 Length (T2) *V /* Vis the actual, dynamic, number of elements */

Thearg_modes field is defined as a bitmask (long) and may contain the following flag val-
ues:

CORBA::ARG_IN the associated value is an input only argument
CORBA::ARG OUT the associated value is an output only argument
CORBA::ARG_INOUT the associated value is an in/out argument

These flag values identify the parameter passing mode for arguments. Additional flag val-
ues have specific meanings for request and list routines, and are documented with their
associated routines.

All other bitsare reserved. The high-order 16 bitsare reserved for implementation-specific
flags.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 111

Dynamic Invocation Interface

6.1.2 Memory Usage

The values for output argument data types that are unbounded strings or unbounded
sequences are returned as pointers to dynamically allocated memory (see TBL. 13 on page
103). In order to facilitate the freeing of all “out-arg memory”, the request routines pro-
vide a mechanism for grouping, or keeping track of, this memory. If so specified, out-arg
memory is associated with the argument list passed to the create request routine. When the
list is deleted the associated out-arg memory will automatically be freed.

If the programmer chooses not to associate out-arg memory with an argument list, the pro-
grammer isresponsible for freeing each out parameter using CORBA free() (see85.16
on page 100).

6.1.3 Return Statuses and Exceptions

In the Dynamic Invocation Interface as specified, many routines return an Status result,
which isintended as a status code. Status is defined in the CORBA modules as:

typedef unsigned long Status;

Conforming CORBA implementations are not required to return this status code; instead,
the definition

typedef void Status;

isaconforming implementation (in which case no status code result is returned, except in

the usual inout Environment argument). |mplementations are required to specify which
Status behavior is supported.

6.2 Request Routines

The request routines are defined in terms of the Request pseudo-object. The Request rou-
tines usethe NVLi st definition defined above.

112 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Request Routines

module CORBA {

interface Request { / PIDL
Statusadd_arg (
in Identifier name, /[argument name
in TypeCode arg type, [/l argument datatype
invoid * value, /I argument value to be added
inlong len, /I length/count of argument value
in Flags arg flags /[argument flags

);

Statusinvoke (

in Flags invoke flags //invocation flags
);
Status delete ();
Status send (

in Flags invoke flags// invocation flags

);
Status get_response (
in Flags response flags // response flags
);
|3
|3

6.2.1 create_request

Because it creates a pseudo-object, this operation is defined in the Object interface (see
8§8.2 on page 149 for the complete interface definition). The create request operation is
performed on the Object which isto be invoked.

Status create request (/I PIDL
in Context CtX, /I context object for operation
in Identifier operation, /I intended oper ation on obj ect
in NVList arg list, /] argsto operation
inout NamedValue result, /l operation result
out Request request, /I newly created request
in Flags req_flags I/l request flags

);
This operation creates an ORB request. The actual invocation occurs by calling invoke or
by using the send / get_response calls.

The operation name specified on create request isthe same operation identifier that is
specified inthe IDL definition for this operation.

Thearg_list, if specified, containsalist of arguments (input, output, and/or input/output)
which become associated with the request. If arg_list isomitted (specified asNULL), the
arguments (if any) must be specified using the add_arg call below.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 113

Dynamic Invocation Interface

Arguments may be associated with arequest by passing in an argument list or by using
repetitive callsto add_ar g. One mechanism or the other may be used for supplying argu-
ments to a given request; a mixture of the two approachesis not supported.

If specified, the arg_list becomes associated with the request; until the invoke call has
completed (or the request has been deleted), the ORB assumes that arg_list (and any val-
ues it points to) remains unchanged.

When specifying an argument list, the value and len for each argument must be specified.
An argument’s datatype, name, and usage flags (i.e., in, out, inout) may also be specified;
if soindicated, arguments are validated for datatype, order, name, and usage correctness
against the set of arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and allow argu-
ments to be specified out of order) by doing ordering based upon argument name.

The context properties associated with the operation are passed to the object implementa-
tion. The object implementation may not modify the context information passed to it.

The operation result is placed in the result argument after the invocation completes.

Thereg_flagsargument is defined as a bitmask (long) that may contain the following flag
values:

CORBA::OUT_LIST MEMORY Indicatesthat any out-arg memory is associated
with the argument list (NVLi st).

Setting the OUT_LIST_MEMORY flag controls the memory allocation mechanism for
out-arg memory (output arguments, for which memory is dynamically allocated). If
OUT_LIST_MEMORY is specified, an argument list must al so have been specified on the
create request call. When output arguments of thistype are allocated, they are associated
with the list structure. When the list structureis freed (see below), any associated out-arg
memory is aso freed.

If OUT_LIST_MEMORY isnot specified, then each piece of out-arg memory remains
available until the programmer explicitly freesit with the CORBA f r ee() procedure
provided by the language mapping (see 85.16 on page 100).

The operation name is a string that conforms to the IDL rules for naming identifiers.

114

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Request Routines

6.2.2

6.2.3

add_arg
Statusadd_arg (/I PIDL
in Identifier name, /[argument name
in TypeCode arg_type, /[argument datatype
in void * value, /[argument value to be added
inlong len, /I length/count of argument value
in Flags arg_flags /I argument flags

);
add_arg incrementally adds arguments to the request.

For each argument, minimally its value and len must be specified. An argument’s
datatype, name, and usage flags (i.e in, out, inout) may also be specified. If so indicated,
arguments are validated for datatype, order, name, and usage correctness against the set of
arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and allow argu-
ments to be specified out of order) by doing ordering based upon argument name.

The arguments added to the request become associated with the request and are assumed
to be unchanged until the invoke has completed (or the request has been deleted).

Arguments may be associated with arequest by specifying them on the create request
call or by adding them viacallsto add_arg. Using both methods for specifying argu-
ments, for the same request, is not currently supported.

In addition to the argument modes defined in 86.1.1 on page 110, ar g_flags may also take
the flag value: IN_COPY _VALUE. The argument passing flags defined in 86.1.1 on page
110 may be used here to indicate the intended parameter passing mode of an argument.

If the IN_COPY_VALUE flag is set, acopy of the argument value is made and used
instead. Thisflag isignored for inout and out arguments.

invoke

Statusinvoke (/ PIDL
in Flags invoke flags I/l invocation flags
);

This operation calls the ORB, which performs method resolution and invokes an appropri-
ate method. If the method returns successfully, itsresult is placed in the result argument
specified on create request.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 115

Dynamic Invocation Interface

6.2.4 delete
Statusdelete (); // PIDL

This operation deletes the request. Any memory associated with the request (i.e. by using
the IN_COPY_VALUE flag) isaso freed.

6.3 Deferred Synchronous Routines

6.3.1 send

Status send (/ PIDL
in Flags invoke flags /I invocation flags

);

send initiates an operation according to the information in the Request. Unlike invoke,
send returns control to the caller without waiting for the operation to finish. To determine
when the operation is done, the caller must use the get_responseor get _next _re-
sponse operations described below. The out parameters and return value must not be
used until the operation is done.

Although it is possible for some standard exceptions to be raised by the send operation,
there is no guarantee that all possible errors will be detected. For example, if the object
reference is not valid, send might detect it and raise an exception, or might return before
the object reference is validated, in which case the exception will be raised when get_re-
sponseiscalled.

If the operation is defined to be oneway or if INV_NO_RESPONSE is specified, then
get_response does not need to be called. In such cases, some errors might go unreported,
sinceif they are not detected before send returnsthere is no way to inform the caller of the
error.

The following invocation flags are currently defined for send:

CORBA:: INV_NO_RESPONSE Indicatesthat the invoker does not intend to wait for
aresponse, nor does it expect any of the output
arguments (in/out and out) to be updated. This
option may be specified even if the operation has
not been defined to be oneway.

116 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Deferred Synchronous Routines

6.3.2

6.3.3

send_multiple_requests

CORBA St atus CORBA send_nul tiple_requests ([* C*/
CORBA _Request reqsf], /* array of Requests */
CORBA_Envi ronnment *env,
CORBA | ong count, /* nunber of Requests */
CORBA _Fl ags i nvoke fl ags

)

send_mul ti pl e_request s initiates more than one request in paralel. Like send,
send_nul ti pl e_request s returnsto the caller without waiting for the operations to
finish. To determine when each operation is done, the caller must use the get_response or
get _next _response operations described below.

The degree of paralelism in the initiation and execution of the requests is system depen-
dent. There are no guarantees about the order in which the requests are initiated. If
INV_TERM_ON_ERR is specified, and the ORB detects an error initiating one of the
requests, it will not initiate any further requests from thislist. If INV_NO_RESPONSE is
specified, it appliesto all of the requestsin thelist.

The following invocation flags are currently defined for send_nul ti pl e_r equest s:

CORBA::INV_NO _RESPONSE Indicatesthat the invoker does not intend to wait for
aresponse, nor does it expect any of the output argu-
ments (inout and out) to be updated. This option
may be specified even if the operation has not been
defined to be oneway.

CORBA::INV_TERM_ON_ERR If one of the requests causes an error, the remaining
requests are not sent.

get_response

Status get_response (// PIDL
in Flags response flags Il response flags

get_response determines whether arequest has completed. If get_response indicates that
the operation is done, the out parameters and return values defined in the Request are
valid, and they may be treated as if the Request invoke operation had been used to per-
form the request.

If the RESP_NO_WAIT flag is set, get_response returnsimmediately even if the request
isstill in progress. Otherwise, get_response waits until the request is done before return-

ing.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 117

Dynamic Invocation Interface

The following response flags are defined for get_response:

CORBA::RESP_NO WAIT Indicates that the caller does not want to wait for a
response.

6.3.4 get_next response

CORBA _St at us CORBA _get _next _response ([* C*/
CORBA_Envi ronnment *env,
CORBA _Fl ags response_fl ags,
CORBA_Request *req

)

get _next _r esponse returnsthe next request that completes. Despite the name, there
is no guaranteed ordering among the completed requests, so the order in which they are
returned from successive get _next _r esponse calsisnot necessarily related to the
order in which they finished.

If the RESP_NO_WAIT flag is set, and there are no completed requests pending, then
get _next _r esponse returnsimmediately. Otherwise, get _next _r esponse waits
until some request finishes.

The following response flags are defined for get _next _response:
CORBA::RESP_NO WAIT Indicates that the caller does not want to wait for a

response.

6.4 List Routines

The list routines use the named-val ue structure defined above.

The list operations that create NV List objects are defined in the ORB interface described
in Chapter 8, but are described in this section. The NV List interface is shown below.

118 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

List Routines

6.4.1

6.4.2

interface NVList { / PIDL
Statusadd_item (
in Identifier item_name, /l name of item
in TypeCode item_type, [l item datatype
invoid *value, Il item value
inlong value len, /l'length of item value
in Flags item_flags [l item flags
);
Statusfree ();

Statusfree_ memory ();
Status get_count (
out long count /[number of entriesin thelist
);
|3

Interface NVList is defined in the CORBA module.

create_list

This operation, which creates a pseudo-object, is defined in the ORB interface and
excerpted below.

Status create list (//PIDL
inlong count, /I number of itemsto allocate for list
out NVList new_list /I newly created list

);

This operation allocates a list of the specified size, and clearsit for initial use. List items
may be added to the list using the add_item routine. Alternatively, they may be added by
indexing directly into the list structure. A mixture of the two approaches for initializing a
list, however, isnot supported.

AnNVList isapartialy opaque structure. It may only be allocated viaacall to
create list.

add_item
Status add_item (// PIDL
in Identifier item_name, /l name of item
in TypeCode item_type, /l item datatype
invoid *value, [/l item value
inlong value len, /l'length of item value
in Flags item_flags I item flags
)i

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 119

Dynamic Invocation Interface

6.4.3

6.4.4

6.4.5

6.4.6

This operation adds a new item to the indicated list. The item is added after the previously
added item.

In addition to the argument modes defined in 86.1.1 on page 110, item_flags may also take
the following flag values: IN_COPY_VALUE, DEPENDENT _LIST. The argument pass-
ing flags defined in 86.1.1 on page 110 may be used here to indicate the intended parame-
ter passing mode of an argument.

If the IN_COPY_VALUE flag is set, acopy of the argument value is made and used
instead.

If aligt structureisadded asan item (e.g. a“sublist”) the DEPENDENT _LIST flag may be
specified to indicate that the sublist should be freed when the parent list is freed.

free
Statusfree(); / PIDL

This operation frees the list structure and any associated memory (an implicit call to the
list free_memory operation is done).

free_memory
Statusfree_ memory (); // PIDL

This operation frees any dynamically allocated out-arg memory associated with the list.
Thelist structure itself is not freed.

get_count

Status get_count (/ PIDL
out long count /[number of entriesin thelist

);
This operation returns the total number of items allocated for thislist.

create_operation_list
This operation, which creates a pseudo-object, is defined in the ORB interface.

Status create_operation_list (// PIDL
in OperationDef oper, /Il operation
out NVList new_list /I argument definitions

120

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Context Objects

This operation returns an NVLi st initialized with the argument descriptions for agiven
operation. The information isreturned in aform that may be used in dynamic invocation
requests. The arguments are returned in the same order as they were defined for the opera-
tion.

The list free operation is used to free the returned information.

6.5 Context Objects

A context object contains alist of properties, each consisting of a name and a string value
associated with that name. By convention, context properties represent information about
the client, environment, or circumstances of arequest that are inconvenient to pass as
parameters.

Context properties can represent a portion of aclient’s or application’s environment that is
meant be propagated to (and made implicitly part of) a server’s environment (for example,
awindow identifier, or user preference information). Once a server has been invoked (i.e.,
subsequent to the properties being propagated), the server may query its context object for
these properties.

In addition, the context associated with a particular operation is passed as a distinguished
parameter, allowing particular ORBs to take advantage of context properties, for example,
using the values of certain properties to influence method binding behavior, server loca-
tion, or activation policy.

An operation definition may contain a clause specifying those context properties that may
be of interest to a particular operation. These context properties comprise the minimum set
of propertiesthat will be propagated to the server’s environment (although a specified
property may have no value associated with it). The ORB may choose to pass more prop-
erties than those specified in the operation declaration.

When a context clause is present on an operation declaration, an additional argument is
added to the stub and skeleton interfaces. When an operation invocation occurs via either
the stub or dynamic invocation interface, the ORB causes the properties which were
named in the operation definition in IDL and which are present in the client’s context
object, to be provided in the context object parameter to the invoked method.

Context property names (which are strings) typically have the form of an IDL identifier, or
aseriesof IDL identifiers separated by periods. A context property name patterniseither a
property name, or a property name followed by asingle “*”. Property name patterns are
used in the context clause of an operation definition, and in the get_values operation
(described below).

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 121

Dynamic Invocation Interface

A property name pattern without atrailing “*” issaid to match only itself. A property
name pattern of the form “<name>*" matches any property name that starts with <name>
and continues with zero or more additional characters.

Context objects may be created and deleted, and individual context properties may be set
and retrieved. There will often be context objects associated with particular processes,
users, or other things depending on the operating system, and there may be conventions
for having them supplied to calls by default.

It may be possible to keep context information in persistent implementations of context
objects, while other implementations may be transient. The creation and modification of
persistent context objects, however, is not addressed in this specification.

Context objects may be “chained” together to achieve a particular defaulting behavior.

Properties defined in a particular context object effectively override those propertiesin the
next higher level. This searching behavior may be restricted by specifying the appropriate
scope and the “restrict scope” option on the Context get_values call.

Context objects may be named for purposes of specifying a starting search scope.

6.6 Context Object Routines

When performing operations on a context object, properties are represented as named
value lists. Each property value corresponds to a named value item in the list.

A property name is represented by a string of characters (see 84.1.3 on page 52 for the
valid set of charactersthat are allowed). Property names are stored preserving their case,
however names cannot differ ssimply by their case.

122 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Context Object Routines

The Context interface is shown below.

module CORBA {

interface Context { // PIDL
Status set_one value (
in Identifier prop_name, /Il property nameto add
in string value /Il property valueto add

);

Status set_values (

in NVList values /Il property valuesto be changed
);
Status get_values (
in Identifier start_scope, /I search scope
in Flags op_flags, Il operation flags
in Identifier prop_name, /[l name of property(s) toretrieve
out NVList values /I requested property(s)

);
Status delete values (

in Identifier prop_name /[l name of property(s) to delete
);

Status create_child (

in Identifier ctx_name, /I name of context object

out Context child_ctx /I newly created context object
);
Status delete (

in Flags del_flags Il flags controlling deletion

):
h
h

6.6.1 get default_context

This operation, which creates a Context pseudo-object, is defined in the ORB interface
(see 88.1 on page 147 for the complete ORB definition).

Status get_default_context (/I PIDL
out Context ctx I/ context object

);

This operation returns a reference to the default process context object. The default con-
text object may be chained into other context objects. For example, an ORB implementa-
tion may chain the default context object into its User, Group, and System context objects.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 123

Dynamic Invocation Interface

6.6.2

6.6.3

6.6.4

set_one_value

Status set_one value (/I PIDL
in Identifier prop_name, /Il property nameto add
in string value /Il property valueto add

);
This operation sets a single context object property.

At thistime, only string values are supported by the context object.

set_values

Status set_values (// PIDL
in NVList values I property values to be changed
);

This operation sets one or more property values in the context object. In the NVList, the
flags field must be set to zero, and the TypeCode field associated with an attribute value
must be TC_string.

At thistime, only string values are supported by the context object.

get_values
Status get_values (/I PIDL
in Identifier start_scope, // search scope
in Flags op_flags, /Il operation flags
in Identifier prop_name, // name of property(s) toretrieve
out NVList values Il requested property(s)

);

This operation retrieves the specified context property value(s). If prop_name has atrail-
ing wildcard character (“*”), then all matching properties and their values are returned.
The values returned may be freed by a call to the list free operation.

If no properties are found an error isreturned, and no property list is returned.

Scope indicates the context object level at which to initiate the search for the specified
properties (e.g. “ USER”," SYSTEM?"). If the property is not found at the indicated
level, the search continues up the context object tree until a match isfound or al context
objectsin the chain have been exhausted.

Valid scope hames are implementation specific.

124

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Context Object Routines

6.6.5

6.6.6

6.6.7

If scope name is omitted, the search begins with the specified context object. If the speci-
fied scope name is not found, an exception is returned.

The following operation flags may be specified:

CORBA::CTX_RESTRICT_SCOPE Searching is limited to the specified search
scope or context object.

delete_values

Status delete values (// PIDL
in Identifier prop_name /l name of property(s) to delete

);

This operation deletes the specified property value(s) values from the context object. If
prop_name has atrailing wildcard character (“*”), then al property names that match
will be deleted.

Search scope is always limited to the specified context object.

If no matching property isfound, an exception is returned.

create_child

Status create child (// PIDL
in Identifier ctx_name, /I name of context object
out Context child_ctx /I newly created context object

);
This operation creates a child context object.

Thereturned context object is chained into its parent context. That is, searches on the child
context object will look in the parent context (and so on, up the context tree), if necessary,
for matching property names.

Context object names follow the rulesfor IDL identifiers (see 84.1.3 on page 52).

delete

Status delete (// PIDL
in Flags del_flags /I flags controlling deletion

);
This operation deletes the indicated context object.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 125

Dynamic Invocation Interface

The following option flags may be specified:

CORBA::CTX_DELETE_DESCENDENTS Deletestheindicated context object and all
of its descendent context objects, aswell.

An exception isreturned if there are one or more child context objects and the
CTX_DELETE_DESCENDENTS flag was not set.

6.7 Native Data Manipulation

A future version of this specification will define routines to facilitate the conversion of
data between the list layout found in NVList structures and the compiler native layout.

126 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

7

The Interface Repository

The Interface Repository is the component of the ORB that provides persistent storage of
interface definitions—it manages and provides access to a collection of object definitions
specified in IDL.

All types defined in this chapter are part of the CORBA module. When referenced in IDL,
the type names must be prefixed by “CORBA::”".

7.1 Overview

An ORB provides distributed access to a collection of objects using the objects’ publicly
defined interfaces specified in IDL. The Interface Repository providesfor the storage, dis-
tribution, and management of a collection of related objects' interface definitions.

For an ORB to function correctly (for it to correctly process requests), it must have access
to the definitions of the objectsit is handling. Object definitions can be made available to
an ORB in one of two forms:

1. By incorporating the information procedurally into stub routines (e.g., as code that
maps C language subroutines into communication protocols).

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 127

The Interface Repository

2. Asobjects accessed through the dynamically accessible Interface Repository (i.e., as
“interface objects’ accessed through IDL-specified interfaces).

In particular, the ORB can use object definitions maintained in the Interface Repository to
interpret/handle the values provided in a request:

» To provide type-checking of request signatures (whether the request was issued
through the API or through a stub).

» Toassist in checking the correctness of interface inheritance graphs.

* Toassist in providing interoperability between different ORB implementations.

Asthe interface to the object definitions maintained in an Interface Repository is public,
the information maintained in the Repository can also be used by clients and services. For
example, the Repository can be used:

* To manage the installation and distribution of interface definitions.

» To provide components of a CASE environment (e.g., an interface browser).

» To provide interface information to language-bindings (e.g., acompiler).

» To provide components of enduser environments (e.g., amenu bar constructor).

7.2 Scope of an Interface Repository

Interface definitions are maintained in the Interface Repository as a set of objects that are
accessible through a set of IDL-specified interface definitions. An interface definition con-
tains a description of the operations it supports, including the types of the parameters,
exceptions it may raise, and context information it may use.

In addition, the interface repository stores constant values, which might be used in other
interface definitions or might simply be defined for programmer convenience. And it
stores typecodes, which are values that describe atype in structural terms.

The Interface Repository uses modules as a way to group interfaces and to navigate
through those groups by name. Modules can contain constants, typedefs, exceptions, inter-
face definitions, and other modules. The standard does not specify what constitutes the
group of interfaces that comprises a particular module. Modules may, for example, corre-
spond to the organization of IDL definitions. They may also be used to represent organi za-
tions defined for administration or other purposes.

The Interface Repository is a set of objects that represent the information in it. There are
operations that operate on this apparent object structure. It isan implementation’s choice
whether these objects exist persistently or are created when referenced in an operation on
the repository. There are also operations that extract information in an efficient form,
obtaining a block of information that describes awhole interface or a whole operation.

128

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Implementation Dependencies

7.3

An ORB may have access to multiple Interface Repositories. This may occur because two
ORBs have different requirements for the implementation of the Interface Repository,
because an object implementation (such as an OODB) prefers to provide its own type
information, or because it is desired to have different additional information stored in dif-
ferent repositories. The use of typecodes and repository identifiersisintended to allow dif-
ferent repositories to keep their information consistent.

This CORBA Interface Repository specification defines operations only for retrieving
information from the repository. There may be any number of ways to insert information
into the repository (for example, compiling IDL definitions, constructing repository
objects through the dynamic invocation interface, copying objects from one repository to
another, etc.). Because some of these scenarios involve development environments, sys-
tem administration, and other issues beyond the scope of the ORB, this part of the inter-
face repository is left undefined.

Implementation Dependencies

An implementation of an Interface Repository requires some form of persistent object
store. Normally the kind of persistent object store used determines how interface defini-
tions are distributed and/or replicated throughout a network domain. For example, if an
Interface Repository isimplemented using afiling system to provide object storage, there
may be only asingle copy of a set of interfaces maintained on a single machine. Alterna-
tively, if an OODB is used to provide object storage, multiple copies of interface defini-
tions may be maintained each of which is distributed across several machines to provide
both high-availability and load-balancing.

Thekind of object store used may determine the scope of interface definitions provided by
an implementation of the Interface Repository. For example, it may determine whether
each user has alocal copy of aset of interfaces or if there is one copy per community of
users. The object store may also determine whether or not all clients of an interface set see
exactly the same set at any given point in time or whether latency in distributing copies of
the set gives different users different views of the set at any point in time.

An implementation of the Interface Repository is also dependent on the security mecha-
nismin use. The security mechanism (usually operating in conjunction with the object
store) determines the nature and granularity of access controls available to constrain
access to objects in the repository.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 129

The Interface Repository

7.4

Basics of the Interface Repository Interface

7.4.1

7.4.2

7.4.3

Names

Names are not necessarily unigue within an Interface Repository; they are alwaysrelative
to an explicit or implicit module. In this context, interface definitions are considered
explicit modules.

Repository identifiers uniquely identify modules, interfaces, constants, typedefs, excep-
tions, attributes, operations and parameters within a particular I nterface Repository.

Types and TypeCodes

The Interface Repository stores information about types that are not interfacesin a data
value called a TypeCode. From the TypeCode alone it is possible to determine the com-
plete structure of atype. See 87.6 on page 142 for more information on the internal struc-
ture of TypeCodes.

Interface Objects

Each interface managed in an Interface Repository is maintained as a collection of inter-

face objects:

1. Repository: the top-level module for the repository name space; it contains constants,
typedefs, exceptions, interface definitions, and modules.

2. ModuleDef: alogical grouping of interfaces; it contains constants, typedefs, excep-
tions, interface definitions, and other modules.

3. InterfaceDef: an interface definition; it contains lists of constants, types, exceptions,
operations, and attributes.

AttributeDef: the definition of an attribute of the interface.

OperationDef: the definition of an operation on the interface; it containslists of param-
eters and exceptions raised by this operation.

ParameterDef: the definition of an argument to an operation.

TypeDef: the definition of named type that is not an interface.

ConstantDef: the definition of a named constant.

ExceptionDef: the definition of an exception that can be raised by an operation.

a bk

© ©o N o

The interface specifications for each interface object lists the attributes maintained by that
object (see §87.5 on page 133). These attributes correspond directly to IDL statements. An
implementation can choose to maintain additional attributes to facilitate managing the

Repository or to record additional (proprietary) information about an interface. Note that

130

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Basics of the Interface Repository Interface

in practice, attributes used to define an Interface Repository object will be read-only
attributes.

The interface specifications for the Interface Repository objects define a set of basic oper-
ations for clients who want to access these interface objects. They are not intended to pro-
vide sufficient semantics for the construction of basic interface browsers or command-line
interfaces to the Interface Repository, nor to provide an administrative interface. Imple-
mentations of the Interface Repository must have additional operations for creation of the
component objects within an Interface object, but these need not be part of the public
interface.

The CORBA specification defines aminimal set of operations for interface objects. Addi-
tional operations that an implementation of the Interface Repository may provide could
include operations that provide for the versioning of interfaces, for the deletion of inter-
faces, and for the reverse compilation of specifications (i.e., the generation of afile con-
taining an object’s IDL specification).

7.4.4 Structure and Navigation of Interface Objects

The definitions in the Interface Repository are structured as a set of objects. The objects
are structured the same way definitions are structured—some objects (definitions) “con-
tain” other objects.

The containment relationships for the objects in the Interface Repository are shown in
FIG. 12 on page 132.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 131

The Interface Repository

FIG. 12 Interface Repository Object Containment
Repository Each interface repository is represented
by a global root repository object.
ConstantDef The repository object represents the constants,
TypeDef typedefs, exceptions, interfaces and modules
ExceptionDef that are defined outside the scope of a module.
InterfaceDef
ModuleDef
ConstantDef The module object represents the constants,
TypeDef typedefs, exceptions, interfaces, and other modules
ExceptionDef defined within the scope of the module.
ModuleDef
InterfaceDef
ConstantDef An interface object represents constants,
TypeDef typedefs, exceptions, attributes, and operations
ExceptionDef defined within or inherited by the interface.
AttributeDef
OperationDef Operation objects reference parameter and
exception objects.
There are three ways to locate an interface in the Interface Repository:
1. By obtaining an InterfaceDef object directly from the ORB (see §8.2 on page 149).
2. By navigating through the module name space using a sequence of names.
3. By locating the InterfaceDef object that corresponds to a particular repository identi-
fier.
Obtaining an InterfaceDef object directly is useful when an object is encountered whose
type was not known at compile time. By using the get_interface() operation on the object
reference, it is possible to retrieve the Interface Repository information about the object.
That information could then be used to perform operations on the object.
Navigating the module name space is useful when information about a particular named
interface is desired. Starting at the root module of the repository, it is possible to obtain
entries by name.
Locating the InterfaceDef object by 1D is useful when looking for an entry in one reposi-
tory that corresponds to another. A repository identifier must be unique for a particular
repository. By using the same identifier in two repositories, it is possible to obtain the
interface identifier for an interface in one repository, and then obtain information about
that interface from another repository that may be closer or contain additional information
about the interface.
132 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Interface Repository Interfaces

7.5

Interface Repository Interfaces

751

A common set of operations is used to locate objects within the Interface Repository.
These operations are defined in the abstract interfaces Container and Contained described
below. Objects that are containers inherit navigation operations from the Container inter-
face. Objects that are contained by other objects inherit navigation operations from the
Contained interface. The Contained and Container interfaces are not instantiable.

Container and Contained Interfaces

The following typedefs are used in the definitions of the Contained and Container inter-
faces:

typedef string Identifier;
typedef string Repositoryld,;
typedef Identifier InterfaceName;

interface Container;

interface Contained,;

typedef sequence<Repositoryld> RepositoryldSeq;
typedef sequence<ldentifier> IdentifierSeq;
typedef sequence<string> StringSeq;
typedef sequence<Container> ContainerSeq;
typedef sequence<Contained> ContainedSeq;

All of the above declarations are part of the CORBA module.

Identifiers are the simple names that identify modules, interface, constants, typedefs,
exceptions, attributes, and operations. They correspond exactly to the identifiers described
in 84.1.3 on page 52 and 84.3 on page 56. For example, both “ SampleDef” and
“SampleOp” areidentifiersin the following IDL definition.

interface SampleDef {
void SampleOp ();

3

A nameis not necessarily unique within an Interface Repository. As described in 84.11 on
page 79, names are unigue only within a module.

A Repositoryld is an identifier used by the ORB to uniquely identify module, interface,
constant, typedef, exception, attribute or operation. While Repositorylds correspond to
global or fully qualified names (with respect to a particular repository), they are opagque
structures so that an ORB may optimize their implementation. As Repositorylds are
defined as strings, they can be manipulated (e.g., copied and compared) using alanguage
binding’s string manipulation routines.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 133

The Interface Repository

An InterfaceName is a string containing the name of one of the following interfaces
defined within the Interface Repository:

“AttributeDef”, “ ConstantDef”, “ ExceptionDef”, “ InterfaceDef”, “ModuleDef”, * Param-
eterDef”, “OperationDef”, TypeDef”, “all”

The Contained interface represents the most generic form of interface from which all other
Interface Repository interfaces are derived. All objects within the Interface Repository,
except the root object (the Interface Repository itself) can be contained by other objects.

interface Contained {
struct Description {
Identifier name;

any value;
3
attribute Identifier name;
attribute Repositoryld id;
attribute Repositoryld defined_in;

ContainerSeq within ();
Description describe ();

h
The Contained interface is part of the CORBA module.
All objects that are contained by other objects have aname and an id to identify them.

Objects can be contained either because they are defined within the containing object (for
example, an interfaceis defined within amodule) or because they are inherited by the con-
taining object (for example, an operation may be contained by an interface because the
interface inherits the operation from another interface). If an object is contained through
inheritance, the defined_in attribute identifies the interface of the object from which the
object isderived. If the object isnot inherited (it isdefined here), this attribute contains the
id of thisinterface or module.

The within operation returns the list of objects that contain the object. If the object isan
interface or module it can be contained only by the object that definesit. Other objects can
be contained by the objects that define them and by the objects that inherit them.

The describe operation returns a structure containing all of the attributes defined for the
interface. The describe structure associated with each interface is provided below with the
interface’s definition. The name of the structure returned is provided with the returned
structure. For example, if the describe operation isinvoked on an attribute object, the
name field contains “ AttributeDescription” and the value field contains an any, which con-
tains the AttributeDescription structure.

134

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Interface Repository Interfaces

The Container interface is used to locate objects that are contained by other objects.

module CORBA {

interface Container {
struct Description {

Contained contained_object;
Identifier name;
any value;
3
typedef sequence<Description> DescriptionSeq;
ContainedSeq contents (
in InterfaceName limit_type,
in boolean exclude_inherited
);
ContainedSeq lookup_name (
in Identifier search_name,
in long levels_to_search,
in InterfaceName limit_type,
in boolean exclude_inherited

);

DescriptionSeq describe_contents(

in InterfaceName
in boolean
in long

limit_type,
exclude_inherited,
max_returned_objs

The contents operation returnsthe list of objects contained by the object. The operation is
used to navigate through the hierarchy of objects. Starting with the Repository object, a
client uses this operation to list all of the objects contained by the Repository, all of the
objects contained by the modules within the Repository, and then all of the interfaces
within a specific module, and so on.

limit_type

exclude_inherited

If limit_type isset to “all”, objects of all interface types are
returned. For example, if thisis an InterfaceDef, the attribute,
operation, and exception objects are all returned. If limit_type
is set to a specific interface, only objects of that interface type
are returned. For example, only attribute objects are returned if
limit_type is set to “AttributeDef”.

If set to TRUE, inherited objects (if there are any) are not
returned. If set to FALSE, all contained objects—whether con-
tained due to inheritance or because they were defined within
the object—are returned.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

135

The Interface Repository

7.5.2

The lookup_name operation is used to locate an object by name within a particular object
or within the objects contained by that object.

search_name Specifies which name is to be searched for.

levels_to_search Controls whether the lookup is constrained to the object the
operation is invoked on or whether it should search through
objects contained by the object as well.

Setting levels_to_search to -1 searchesthe current object and all
contained objects. Setting levels_to_search to 1 searches only
the current object.

limit_type If limit_type isset to “all”, objects of all interface types are
returned (e.g., attributes, operations, and exceptions are al
returned). If limit_type is set to a specific interface, only objects
of that interface type are returned. For example, only attribute
objects are returned if limit_type is set to “ AttributeDef” .

exclude_inherited If set to TRUE, inherited objects (if there are any) are not
returned. If set to FALSE, all contained objects (whether con-
tained due to inheritance or because they were defined within
the object) are returned.

The describe_contents operation combines the contents operation and the describe opera-
tion. For each object returned by the contents operation, the description of the object is
returned (i.e., the object’s describe operation isinvoked and the results returned).

max_returned_objs Limits the number of objects that can be returned in an invoca-
tion of the call to the number provided. Setting the parameter to
-1 means return all contained objects.

Repository

Repository is an interface that provides global access to the Interface Repository. The
Repository object contains constants, typedefs, exceptions, interfaces, and modules. Asit
inherits from Container, it can be used to look up any definition (whether globally defined
or defined within amodule or interface) either by name or by id.

There may be more than one Interface Repository in a particular ORB environment
(although some ORBs might require that definitions they use be registered with a particu-
lar repository). Each ORB environment will provide a means for obtaining object refer-
ences to the Repositories available within the environment.

136

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Interface Repository Interfaces

7.5.3

interface Repository : Container {
Contained lookup_id (in Repositoryld search_id);

k

The lookup_id operation is used to lookup an object in the Repository given its
Repositoryld.

The inherited contents operation can be used to list constants, typedefs, exceptions, inter-
faces, and modules that are contained by the Repository object, or any one of these inter-
face types. Constants, typedefs, exceptions, and interfaces contained by the Repository
object have global scope throughout the Interface Repository.

The inherited lookup_name operation can be used to find instances of a particular simple
name within an Interface Repository. For example, specifying a search_name of “Print”
and alevels_to_search of -1 would return alist of al the Print operations defined within
this Interface Repository.

The inherited describe_contents operation can be used to list amore complete description
of the contents of the Interface Repository. For each object, describe_contents returns:

struct RepositoryDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
3

Repository and RepositoryDescription are part of the CORBA module.

ModuleDef

A ModuleDef represents constants, typedefs, exceptions, interfaces and other module
objects.

interface ModuleDef : Container, Contained {};
The describe operation for aModuleDef object returns:

struct ModuleDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
h

The lookup_name operation is used to locate a constant, typedef, exception, attribute, or
operation defined in this module. Names must be unique within a module.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 137

The Interface Repository

754

ModuleDef and ModuleDescription are part of the CORBA module.

InterfaceDef

An InterfaceDef object represents an interface definition.
interface InterfaceDef : Container, Contained {

struct FullinterfaceDescription {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;

3
attribute RepositoryldSeq base_interfaces;
FullinterfaceDescription describe_interface();

k

Thebase_interfaces attribute representsalist of all the interfacesfrom which thisinterface
inherits.

The describe operation for an InterfaceDef object returns:

struct InterfaceDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
h

The contents operation returns the list of constants, typedefs, and exceptions defined in
this InterfaceDef and the list of attributes and operations either defined or inherited in this
InterfaceDef. If the exclude_inherited parameter is set to TRUE, only attributes and opera-
tions defined within thisinterface are returned. If the exclude_inherited parameter is set to
FALSE, all attributes and operations are returned.

The lookup_name operation is used to locate a constant, typedef, exception, attribute,
operation, or parameter defined in this InterfaceDef by name. Names must be unique
within ainterface definition.

The describe_contents operation provides a complete description of this interface, includ-
ing adescription of its constants, typedefs, exceptions, attributes, and operations, includ-
ing the description of each parameter and each exception defined for each operation.

The describe_interface operation provides a convenient way to obtain a description of all
of the operations and attributes defined in an interface.

138

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Interface Repository Interfaces

7.5.5

7.5.6

InterfaceDef and InterfaceDescription are part of the CORBA module.

AttributeDef
An AttributeDef represents the information that defines an attribute.
enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

interface AttributeDef : Contained {

attribute TypeCode type;
attribute AttributeMode mode;

k

The type attribute specifies the TypeCode of this attribute. The TypeCode must be known
globally, within this module, or defined in thisinterface. See 87.6 on page 142 for more
information on TypeCodes.

The mode attribute specifies read only or read/write access for this attribute.

The describe operation for an AttributeDef object returns:

struct AttributeDescription {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
TypeCode type;
AttributeMode mode;

h

typedef sequence<AttributeDescription> AttrDescriptionSeq;

AttributeMode, AttributeDef, AttributeDescription, and AttrDescriptionSeq are part of the
CORBA module.

OperationDef
An OperationDef represents the information needed to define an operation.
enum OperationMode {OP_NORMAL, OP_ONEWAY};

interface OperationDef : Contained {

attribute TypeCode result;
attribute OperationMode mode;
attribute IdentifierSeq contexts;

h
The result attribute specifies the TypeCode of the value returned by this operation.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 139

The Interface Repository

71.5.7

The operation’s mode is either “oneway” (i.e., no output is returned) or normal.
The contexts attribute specifiesthe list of context identifiers that apply to this operation.

The describe operation for an OperationDef object returns:

struct OperationDescription {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
TypeCode result;
OperationMode mode;
StringSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

k

typedef sequence<OperationDescription> OpDescriptionSeq;

The describe_contents operation provides a complete description of this operation, includ-
ing adescription of each parameter and each exception defined for this operation.

OperationMode, OperationDef, OperationDescription, and OpDescriptionSeq are part of the
CORBA module.

ParameterDef
A ParameterDef represents the information needed to define an argument to an operation.
enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};

interface ParameterDef : Contained {

attribute TypeCode type;
attribute ParameterMode mode;

h

Thetype attribute specifies the TypeCode of this argument. The TypeCode must be known
globally, within this module, or defined in thisinterface. See 87.6 on page 142 for more
information on TypeCodes.

The mode attribute specifies whether this argument is used as an in, out, or in/out argu-
ment.

The describe operation for a ParameterDef object returns:

140

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Interface Repository Interfaces

7.5.8

7.5.9

struct ParameterDescription {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
TypeCode type;
ParameterMode mode;

I

typedef sequence<ParameterDescription> ParDescriptionSeq;

ParameterMode, ParameterDef, ParameterDescription, and ParDescriptionSeq are part of
the CORBA module.

TypedefDef Interface

TypedefDefs are only for named types (i.e., typedef, struct, ...). They aren't created for
anonymous types.

interface TypedefDef : Contained {
attribute TypeCode type;

k

Thetype attribute specifiesthe TypeCode for thistype definition. See 87.6 on page 142 for
more information on TypeCodes.

The describe operation for a TypedefDef object returns:

struct TypeDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
TypeCode type;

3

typedef sequence<TypeDescription> TypeDescriptionSeq;

TypeDef, TypeDescription,and TypeDescriptionSeq are part of the CORBA module.

ConstantDef Interface
The ConstantDef object defines a named constant.

interface ConstantDef : Contained {
attribute TypeCode type;
attribute any value;

k

The type attribute specifies the TypeCode for this constant. The type of a constant must be
one of the simple types (long, short, float, char, string, octet, etc.)

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 141

The Interface Repository

7.5.10

7.6

The value attribute contains the value of the constant, not the computation of the value
(e.g., thefact that it was defined as “1+2").

The describe operation for a ConstantDef object returns:

struct ConstantDescription {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
TypeCode type;

any value;

k

ConstantDef and ConstantDescription are part of the CORBA module.

ExceptionDef
An ExceptionDef represents an exception definition.

interface ExceptionDef : Contained {
attribute TypeCode type;

3

The type attribute specifies the type of the exception parameters. The type will be a struct
with the members corresponding to the individual exception parameters.

The describe operation for a ExceptionDef object returns:

struct ExceptionDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
TypeCode type;

h

typedef sequence<ExceptionDescription> ExcDescriptionSeq;

ExceptionDef, ExceptionDescription, and ExcDescriptionSeq are part of the CORBA mod-
ule.

TypeCodes

TypeCodes are values that represent invocation argument types and attribute types. They
can be obtained from the Interface Repository or from IDL compilers.

TypeCodes have a number of uses. They are used in the dynamic invocation interface to
indicate the types of the actual arguments. They are used by an Interface Repository to

142

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

TypeCodes

7.6.1

represent the type specifications that are part of many IDL declarations. Finally, they are
crucial to the semantics of the any type (see 84.7.1.6 on page 70).

TypeCodes are themselves values that can be passed as invocation arguments. To allow
different ORB implementationsto hide extrainformation in TypeCodes, the representation
of TypeCodes will be opague (like object references). However, we will assume that the
representation is such that TypeCode “literals’ can be placed in C include files.

Abstractly, TypeCodes consist of a“kind” field, and a“parameter list.” For example, the
IDL type long has TypeCode tk_Iong and no parameters. The IDL type
sequence<boolean,10> has TypeCode tk_sequence and two parameters. 10 and boolean.

Two TypeCodes are equal if the IDL type specifications from which they are compiled
denote equal types. Equal TypeCodes are interchangeable, and give identical results when
TypeCode operations are applied to them.

The TypeCode Interface

The IDL interface for TypeCodesis

module CORBA {
enum TCKind {

tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array

h
interface TypeCode {
exception Bounds {};
boolean equal (in TypeCode tc);
TCkind kind ();
long param_count ();
Il The number of parameters for this TypeCode.
any parameter (in long index) raises (Bounds);
I The index’th parameter. Parameters are indexed from 0
Il'to (param_count-1).
h

k

With the above operations, any TypeCode can be decomposed into its constituent parts.
Composing new TypeCodesis atopic for future OMG standardization.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 143

The Interface Repository

The legal combinations of kinds and parameters are listed in TBL. 16 on page 144.

TBL. 16 Legal TypeCode Kinds and Parameters

KIND PARAMETER LIST

tk_null *NONE*

tk_void *NONE*

tk_short *NONE*

tk_long *NONE*

tk_ushort *NONE*

tk_ulong *NONE*

tk_float *NONE*

tk_double *NONE*

tk_boolean *NONE*

tk_char *NONE*

tk_octet *NONE*

tk_any *NONE*

tk_TypeCode *NONE*

tk_Principal *NONE*

tk_objref {'interface-id }

tk_struct {struct-name, member-name, TypeCode, ... (repeat pairs) }

tk_union {union-name, switch-TypeCode, label-value, member-name,

TypeCode, ... (repeat triples) }

tk_enum {enum-name, enum-id, ... }

tk_string { maxlen-integer }

tk_sequence { TypeCode, maxlen-integer }

tk_array { TypeCode, length-integer }
The tk_objref TypeCode represents an interface type. Its parameter isthe interface-id of
that interface.
A structure with N members resultsin atk_struct TypeCode with 2N+1 parameters: the
type name of the struct, the rest are member names alternating with the corresponding
member TypeCode. Member names are represented as strings.
A union with N membersresultsin atk_union TypeCode with 3N+2 parameters. the type
name of the union, the switch TypeCode followed by alabel value, member name, and
member TypeCode for each of the N members. The label values are all values of the data
type designated by the switch TypeCode, with one exception. The default member (if
present) is marked with a label value consisting of the O octet. Recall that the operation

144 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

TypeCodes

7.6.2

“parameter(tc,i)” returns an any, and that anys themselves carry a TypeCode that can dis-
tinguish an octet from any of the legal switch types.

The tk_enum TypeCode has the type name of the enum followed by the enumeration ids
as parameters. Enumeration ids are represented as strings.

Thetk_string TypeCode has 1 parameter: an integer giving the maximum string length. A
maximum of 0 denotes unbounded.

The tk_sequence TypeCode has 2 parameters: a TypeCode for the sequence elements, and
an integer giving the maximum sequence. Again, O denotes unbounded.

Finally, the tk_array TypeCode has 2 parameters. a TypeCode for the array elements, and
an integer giving the array length. Arrays are never unbounded.

TypeCode Constants

If “typedef ... FOO;” isan IDL type declaration, the IDL compiler will (if asked) produce a
declaration of a TypeCode constant named TC_FOO. In the case of an unnamed, bounded
string type used directly in an operation or attribute declaration, a TypeCode constant
named TC_string_n, where n isthe bound of the string is produced. (For example,
“string<4> op1();” produces the constant “ TC_string_4".) These constants can be used
with the dynamic invocation interface, and any other routines that require TypeCodes. The
predefined TypeCode constants are:

TC null

TC void

TC _short

TC long

TC ushort

TC ulong

TC float

TC double

TC_boolean

TC char

TC_octet

TC any

TC_TypeCode

TC_Principal

TC_Object =tk _objref { Object }
TC string =tk _string{ 0} /[unbounded
TC_NamedVaue =tk _struct{ ...}
TC_InterfaceDescription =tk _struct{ ...}

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 145

The Interface Repository

TC_OperationDescription =tk _struct{ ...}
TC_AttributeDescription =tk _struct{ ...}
TC_ParameterDescription =tk struct{ ...}
TC_RepositoryDescription =tk _struct{ ...}
TC_ModuleDescription =tk _struct{ ...}
TC_ConstDescription =tk struct{ ...}
TC_ExceptionDescription =tk _struct{ ...}
TC_TypeDescription =tk _struct{ ...}
TC_FulllnterfaceDescription =tk struct{ ...}

The exact form for TypeCode constants is language mapping, and possibly implementa-
tion, specific.

146 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

8

ORB Interface

8.1

The ORB interface is the interface to those ORB functions that do not depend on which
object adapter is used. These operations are the same for all ORBs and all object imple-
mentations, and can be performed either by clients of the objects or implementations.
Some of these operations appear to be on the ORB, others appear to be on the object refer-
ence. Because the operations in this section are implemented by the ORB itself, they are
not in fact operations on objects, although they may be described that way and the lan-
guage binding will, for consistency, make them appear that way.

The ORB interface also defines operations for creating lists and determining the default
context used in the Dynamic Invocation Interface. Those operations are described in
Chapter 6.

All types defined in this chapter are part of the CORBA module. When referenced in IDL,
the type names must be prefixed by “CORBA::".

Converting Object References to Strings

Because an object reference is opaque and may differ from ORB to ORB, the object refer-
ence itself is not a convenient value for storing references to objects in persistent storage

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 147

ORSB Interface

or communicating references by means other than invocation. Two problems must be
solved: allowing an object reference to be turned into a value that a client can storein
some other medium, and ensuring that the value can subsequently be turned into the
appropriate object reference.

An object reference may be trandated into a string by the operation object_to string.
The value may be stored or communicated in whatever ways strings may be manipulated.
Subsequently, the string_to_object operation will accept a string produced by
object_to_string and return the corresponding object reference.

module CORBA {

interface ORB { // PIDL
string object_to_string (in Object obj);
Object string_to_object (in string str);

Status create list (
inlong count,
out NVList new_list
)i
Status create operation_list (
in OperationDef oper,
out NVList new_list
);

Status get_default_context (out Context ctx);

h
b

To guarantee that an ORB will understand the string form of an object reference, that
ORB’sobject_to_string operation must be used to produce the string. Sincein general a
client does not know or care which ORB isused for a particular object reference, the client
can choose whatever ORB is convenient.

For adescription of the create list and create_operation_list operations, see 86.4 on
page 118. The get_default_context operation is described in §6.6.1 on page 123.

148 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Object Reference Operations

8.2 Object Reference Operations

8.2.1

There are some operations that can be done on any object. These are not operationsin the
normal sense, in that they are implemented directly by the ORB, not passed on to the
object implementation. We will describe these as being operations on the object reference,
although the interfaces actually depend on the language binding. As above, where we used
interface Object to represent the object reference, we will define an interface for Object:

module CORBA {

interface Object { // PIDL
ImplementationDef get_implementation ();
InterfaceDef get_interface ();
boolean is _nil();
Object duplicate ();
void release ();

Status create request (

in Context ctx,

in Identifier operation,
in NVList arg list,
inout NamedValue result,

out Request request,
in Flags reg_flags

h

The create request operation is part of the Object interface because it creates a pseudo-
object (a Request) for an object. It is described with the other Request operationsin §6.2
on page 112.

Determining the Object Implementation and Interface

An operation on the object reference, get_interface, returns an object in the Interface
Repository, which provides type information that may be useful to a program. See Chapter
7 for adefinition of operations on the Interface Repository. An operation on the Object
called get_implementation will return an object in an implementation repository that
describes the implementation of the object. See Chapter 9 for information about the Imple-
mentation Repository.

InterfaceDef get_interface (); // PIDL
ImplementationDef get_implementation ();

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 149

ORSB Interface

8.2.2

8.2.3

Duplicating and Releasing Copies of Object References

Because object references are opague and ORB-dependent, it is not possible for clients or
implementations to allocate storage for them. Therefore, there are operations defined to
copy or release an object reference.

Object duplicate (); / PIDL
void release ();

If more than one copy of an object reference is needed, the client may create a duplicate.
Note that the object implementation is not involved in creating the duplicate, and that the
implementation cannot distinguish whether the original or aduplicate was used in a partic-
ular request.

When an object reference is no longer needed by a program, its storage may be reclaimed
by use of the release operation. Note that the object implementation is not involved, and
that neither the object itself nor any other referencesto it are affected by the r el ease oper-
ation.

Nil Object References

An object reference whose value is OBJECT _NIL denotes no object. An object reference
can betested for this value by the is_nil operation. The object implementation is not
involved in the nil test.

boolean is nil (); / PIDL

150

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

9

The Basic Object Adapter

An Object Adapter isthe primary interface that an implementation uses to access ORB
functions. The Basic Object Adapter (BOA) isan interface intended to be widely available
and to support awide variety of common object implementations. It includes convenient
interfaces for generating object references, registering implementations that consist of one
or more programs, activating implementations, and authenticating requests. It also pro-
vides alimited amount of persistent storage for objects that can be used for connecting to
alarger or more general storage facility, for storing access control information, or other
puUrposes.

Most of the Basic Object Adapter interface can be expressed in IDL, sincethe interfaceis
to the operations on the object adapter. Some of the operations to bind the implementation
to the object adapter depend on the language mapping. We will note such dependencies,
but till use IDL as the means to describe the interface.

All types defined in this chapter are part of the CORBA module. When referenced in IDL,
the type names must be prefixed by “CORBA::”.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 151

The Basic Object Adapter

9.1 Role of the Basic Object Adapter

One object adapter, called the Basic Object Adapter, should be available in every ORB
implementation; although the BOA will generally have an ORB-dependent implementa-
tion, object implementations that use it should be able to run on any ORB that supports the
required language mapping, assuming they have been installed appropriately.

Other Object Adaptersare likely to be created. Ordinarily, it is not necessary for aclient of
an object to be concerned about which Object Adapter is used by the implementation.

The following functions are provided through the Basic Object Adapter:

» Generation and interpretation of object references,

» Authentication of the principal making the call,

» Activation and deactivation of the implementation,

» Activation and deactivation of individual objects, and
* Method invocation through skeletons.

The Basic Object Adapter supports object implementations that are constructed from one
or more programsl. The BOA activates and communicates with these programs using
operating system facilities that are not part of the ORB. Therefore the BOA requires some
information that is inherently non-portable. Although not defining this information, the
BOA does define the concept of an Implementation Repository which can hold thisinfor-
mation, allowing each system to install and start implementationsin the way that is appro-
priate for that system.

The mechanism for binding the program to the BOA and ORB is aso not specified
because it isinherently system and language-dependent. We assume that the BOA can
connect the methods to the skeleton by some means, whether at the time the implementa-
tion is compiled, installed, or activated, etc. Subsequent to activation, the BOA can make
calls on routines in the implementation and the implementation can make calls on the
BOA.

FIG. 13 on page 153 shows the structure of the Basic Object Adapter, and some of the
interactions between the BOA and an Object Implementation. The Basic Object Adapter
will start a program to provide the Object Implementation, in this example, a per-class
server (1). The Object Implementation notifiesthe BOA that it hasfinished initializing and
isprepared to handle requests (2). When thefirst request for a particular object arrives, the
implementation is notified to activate the object (3). On subsequent requests, the BOA

1. Theterm “program” is meant to include a wide range of possible constructs, including scripts, loadable
modules, etc., in addition to the traditional notions of an application or server.

152

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Basic Object Adapter Interface

calls the appropriate method using the per-interface skeleton (4). At various times, the
implementation may access BOA services such as object creation, deactivation, etc. (5).

FIG. 13 The Structure and Operation of the Basic Object Adapter
Object Implementation
Methods 5
1. 2. 3. 4. Access
Activate Register Activate Invoke BOA
Implementation Implementation Object Method service

v

: : Skeleton
Basic Object Adapter

ORB Core

The BOA exports operations that are accessed by the Object Implementation. The BOA
also callsthe Object Implementation under certain circumstances. The interface between a
particular version of the BOA and the ORB Core it runson is private, asisthe interface
between the BOA and the skeletons. Thus, the BOA can exploit features or overcome lim-
itations of a specific ORB Core, and can cooperate with the ORB Core and skeletons to
provide a set of portable interfaces for the object implementation.

9.2 Basic Object Adapter Interface

The BOA interfaceis specified in IDL, so that the way it is accessed in any programming
language is specified by the client side language mapping for that language. Some data
structures used by the BOA are specific to a given language mapping, so most IDL com-
pilerswill not be able to accept this definition literally.

In practice, the BOA is most likely to be implemented partially as a separate component
and partially as alibrary in the Object Implementation. The separate component is

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 153

The Basic Object Adapter

required to do activation when the implementation is not present. The library portion is
needed to establish the linkage between the methods and the skeleton. The exact partition-
ing of functionality between these partsisimplementation dependent. Generally, there will
appear to be a BOA object in the object implementation. When it isinvoked, some opera-
tions are satisfied in the library, some in an external server, and some in the ORB Core.

The following is the approximate interface definition for the BOA object. More details
will be provided as the operations are discussed.

module CORBA {

interface I nter faceDef; [/l from Interface Repository // PIDL
inter face | mplementationDef; [/l from Implementation Repository

interface Object; [/l an object reference

interface Principal; [/l for the authentication service

typedef sequence <octet, 1024> ReferenceData;

interface BOA {
Object create (
in ReferenceData id,
in InterfaceDef intf,
in I mplementationDef impl

);
void dispose (in Object obj);
ReferenceData get_id (in Object obj);

void change_implementation (
in Object obj,
in ImplementationDef impl

):

Principal get_principal (
in Object obj,
in Environment ev

):

void set_exception (

in exception_type major, /I NO, USER, or SYSTEM_EXCEPTION
instring userid, /I exception typeid
in void *param /I pointer to associated data

);

void impl_is ready (in ImplementationDef impl);

void deactivate_impl (in ImplementationDef impl);

void obj_is ready (in Object obj, in ImplementationDef impl);
void deactivate obj (in Object obj);

154 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Basic Object Adapter Interface

9.21

9.2.2

Reguests by an implementation on the BOA are of three kinds:

1. Operationsto create or destroy object references, or query or update the information
the BOA maintains for an object reference.

Operations associated with a particular request.
Operations to maintain aregistry of active objects and implementations.

Requests by the BOA to an implementation are made with skeletons or using an imple-
mentation’s runtime language mapping information, and are of three kinds:

1. Activating an implementation.
2. Activating an object.
3. Performing an operation (through a skeleton method).

Each of the BOA operationsis described in detail later in this section; the requests of the
BOA to an implementation are described in the language mapping section.

Registration of Implementations

The Basic Object Adapter expects information describing the implementations to be
stored in an Implementation Repository. The Implementation Repository ordinarily is
updated at program installation time, but may be set up incrementally or otherwise. There
are objects with an IDL interface called | mplementationDef, which capture thisinforma-
tion. The Implementation Repository may contain additional information for debugging,
administration, etc. Note that the Implementation Repository is logically distinct from the
Interface Repository, athough they may in fact be implemented together.

The Interface Repository contains information about interfaces. There are objects with an
IDL interface called | nter faceDef, which capture this information. The Interface Reposi-
tory may contain additional information for debugging, administration, browsing, etc. The
ORB Core may or may not make use of the Interface Repository or the Implementation
Repository, but the ORB and BOA use these objects to associate object references with
their interfaces and implementations.

Activation and Deactivation of Implementations

There are two kinds of activation that a BOA needs to perform as part of operation invoca-
tion. Thefirst, discussed in this section, isimplementation activation, which occurs when
no implementation for an object is currently available to handle the request. The second,
discussed later, is object activation, which occurs when no instance of the object is avail-
able to handle the request.

Implementation activation requires coordination between the BOA and the program(s)
containing the implementation. We use the term server as the separately executable entity

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 155

The Basic Object Adapter

that the BOA can start on a particular system. In aPOSIX environment, a server would be
aprocess. In most systems, a server corresponds to the notion of a program, but it can cor-
respond to whatever the appropriate system facility isin a particular environment.

The BOA initiates activity by the implementation by starting the appropriate server, prob-
ably in an operating system-dependent way. The implementation initializes itself, then
notifies the BOA that it is prepared to handle requests by calling impl_is ready or

obj isr eadyz. Between the time that the program is started and it indicates it isready, the
BOA will prevent any other requests from being delivered to the server. After that point,
the BOA, through the skeletons, will make calls on the methods of the implementation.

void impl_is ready (in ImplementationDef impl); / PIDL
void obj_is ready (
in Object obj,

in ImplementationDef impl
);
An activation policy describes the rules that a given implementation follows when there
are multiple objects or implementations active. There are four policiesthat all BOA imple-
mentations support for implementation activation:

» A shared server policy, where multiple active objects of a given implementation share
the same server.

* Anunshared server policy, where only one object of a given implementation at atime
can be active in one server.

* A server-per-method policy, where each invocation of a method isimplemented by a
separate server being started, with the server terminating when the method compl etes.

» Persistent server policy, where the server is activated by something outside the BOA.
The server nonethel ess must register with the BOA to receive invocations. A persistent
server is assumed to be shared by multiple active objects.

These kinds of implementation activation areillustrated in FIG. 14 on page 157. Case A is
ashared server, where the BOA starts a process which then registersitself with the BOA.
Case B isthe case of a persistent server, which isvery smilar but just registers itself with
the BOA, without the BOA having had to start a process. An unshared server isillustrated
in case C, where the process started by the BOA can only hold one object; the server-per-
method policy in case D causes each method invocation to be done by starting a process.

2. Thelatter isfor per-object servers.

156

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Basic Object Adapter Interface

FIG. 14

Implementation Activation Policies

A B
/
Start Process

. -+— Register Impl
Basic

Object D Process

Adapter i
Object

9.2.2.1 Shared Server Activation Policy

9.2.2.2

In a shared server, multiple objects may be implemented by the same program. Thisis
likely to be the most common kind of server. The server is activated the first time arequest
is performed on any object implemented by that server. When the server hasinitialized
itself, it notifies the BOA that it isready by calling impl_is_ready. Subsequently, the
BOA will deliver requests or object activations for any objects implemented by that
server. The server remains active and will receive requests until it calls deactivate_impl.
The BOA will not activate another server for that implementation if one is active.

Beforethefirst request isdelivered for a particular object, the object activate routine of the
server is called. An object remains active aslong asits server is active, unless the server
calls deactivate obj for that object.

Unshared Server Activation Policy

In an unshared server, each object isimplemented in a different server. Thiskind of server
isconvenient if a object isintended to encapsulate an application or if the server requires
exclusive access to aresource such as aprinter. A new server is activated the first time a
request is performed on the object. When the server hasinitialized itself, it notifies the
BOA that it isready by calling obj_is_ready. Subsequently, the BOA will deliver requests

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 157

The Basic Object Adapter

9.2.2.3

9.2.24

9.2.3

for that object. The server remains active and will receive requests until it calls
deactivate obj.

A new server is started whenever arequest ismade for an object that is not yet active, even
if aserver for another object with the same implementation is active.

Server-per-Method Activation Policy

Under the server-per-method policy, a new server is always started each time arequest is
made. The server runs only for the duration of the particular method. Several serversfor
the same object or even the same method of the same object may be active simultaneously.
Because anew server is started for each request, it is not necessary for the implementation
to notify the BOA when an object isready or deactivated.

The BOA activates an implementation for each request, whether or not another request for
that operation, object, or implementation is active at the same time.

Persistent Server Activation Policy

Persistent servers are those servers which are activated by means outside the BOA. Such
implementations notify the BOA that they are available using the impl_is ready opera-
tion. Once the BOA knows about a persistent server, it treats the server as a shared server,
sending it activations for individual objects and method calls. If no implementation is
ready when arequest arrives, an error isreturned for that request.

Generation and Interpretation of Object References

Object references are generated by the BOA using the ORB Core when requested by an
implementation. The BOA and the ORB Core work together to associate some informa-
tion with a particular object reference. Thisinformation is later provided to the implemen-
tation upon the activation of an object. Note that thisis the only information an
implementation may use portably to distinguish different object references. The BOA
operation used to create a new object referenceis:

Object create (/ PIDL
in ReferenceData id,
in I nterfaceDef intf,

in ImplementationDef impl

);

Theid isimmutable identification information, chosen by the implementation at object
creation time, and never changed during the lifetime of the object. Theintf isthe Interface
Repository object that specifies the complete set of interfaces implemented by the object.
The impl is the Implementation Repository object that specifies the implementation to be
used for the object.

158

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Basic Object Adapter Interface

NOTE

9.24

A typical implementation will usetheid valueto distinguish different objects, but it isfree
to useit in any way it chooses or to assign the same value to different object references.
Two object references created with the same parameters are not the same object reference
asfar asthe ORB is concerned, although the implementation may or may not treat them as
references to the same object. Note that the object reference itself is opaque and may be
different for different ORBSs, but the id value is available portably in all ORBs. Only the
implementation can normally interpret the id value. The operation to get theid isaBOA
operation:

ReferenceData get_id (in Object obj); // PIDL
It is possible for the implementation associated with an object reference to be changed.

Thiswill cause subsequent requests to be handled according to the information in the new
implementation. The operation to set the implementation is a BOA operation:

void change _implementation (/ PIDL
in Object obj,
in ImplementationDef impl

);

Care must be taken in order to change the implementation after the object has been

created. There are issues of synchronization with activation, security, and whether or not
the new implementation is prepared to handle requests for that object. The
change_implementation operation affects all copies of that particular object reference.

If an object reference is copied, all copies have the sameid, intf, and impl.

Animplementation is allowed to dispose of an object it has created by asking the BOA to
invalidate the object reference. The implementation is responsible for deallocating all
other information about the object. After adispose isdone, the ORB Core and BOA act as
if the object had never been created, and attempts to issue requests on any existing object
references for that object will fail.

void dispose (in Object aobj); // PIDL

Note that all of the operations on object references in this section may be done whether or
not the object is active.

Authentication and Access Control

The BOA does not enforce any specific style of security management. It guarantees that
for every method invocation (or object activation) it will identify the principal on whose
behalf the request is performed. The object implementation can obtain this principal by the
operation:

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 159

The Basic Object Adapter

9.2.5

9.3

Principal get_principal (/ PIDL
in Object obj,
in Environment ev

);

The obj parameter is the object reference passed to the method. If another object is used
the result is undefined. The ev parameter is the language-mapping-specific request envi-
ronment passed to the method.

The meaning of the principal depends on the security environment that the implementa-
tion isrunning in. The decision of whether or not to permit a particular operation is left up
to the implementation. Typically, an implementation will associate access rights with par-
ticular objects and principals, and will examine those access rights to determine if the
principal making the request has the privileges required by the particular method. An
implementation could store a reference to the access control information for an object in
theid for the object.

Persistent Storage

Objects (or, more precisely, object references) are made persistent by the BOA and the
ORB Core, inthat aclient that has an object reference can use it at any time without warn-
ing, even if the implementation has been deactivated or the system has been restarted.
Although the ORB Core and BOA maintain the persistence of object references, the
implementation must participate in keeping any data outside the ORB Core and BOA per-
sistent.

Toward thisend, the BOA provides asmall amount of storage for an object intheid value.
In most cases, this storage is insufficient and inconvenient for the complete state of the
object. Instead, the implementation provides and manages that storage, using the id value
to locate the actual storage. For example, the id value might contain the name of afile, or
akey for a database system that holds the persistent state.

C Language Mapping for Object Implementations

Different programming languages may provide access to the basic ORB functionality in
different ways. Most of the issues of language mapping apply to all operationson al inter-
faces, and address such questions as the programming language view of the object refer-
ence, conventions for calling stubs and being called by skeletons, means of passing
exception information, etc. There are afew details that apply specifically to the object
adapter, such as how the implementation methods are connected to the skeleton.

160

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

C Language Mapping for Object Implementations

931

9.3.2

Operation-specific details

Chapter 5 defines most of the details of naming of parameter types and parameter passing
conventions. Generally, for those parameters that are operation-specific, the method
implementing the operation appears to receive the same values that would be passed to the
stubs.

Method signatures
With the BOA, implementation methods have signatures that are identical to the stubs.

If the following interfaceis defined in IDL:

interface example4 {
long op5(in long argé6);
3

amethod for the op5 routine must have the following function signature:

CORBA | ong exanpl e4_op5([* C*/
exanpl e4 obj ect,
CORBA_Envi ronnment *ev,
CORBA | ong ar g6

)

Theobj ect parameter isthe object reference that was invoked. The method can identify
which object was intended by using the get_id BOA operation. The ev parameter is used
for authentication on the get_principal BOA operation, and is used for indicating excep-
tions.

The method terminates successfully by executing ar et ur n statement returning the
declared operation value. Prior to returning the result of a successful invocation, the
method code must assign legal valuesto all out and inout parameters.

The method terminates with an error by executing theset _except i on BOA operation
prior to executing ar et ur n statement. Theset _except i on operation has the follow-
ing C language definition:

voi d CORBA BQOA set_exception ([* C*/
CORBA_(bj ect boa,
CORBA_Envi r onnent *ev,
CORBA_excepti on_type mgj or,
CORBA _char *except nane,
voi d *par am

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 161

The Basic Object Adapter

The ev parameter is the environment parameter passed into the method. The caller must
supply avalue for the mgjor parameter. The value of the major parameter constrains the
other parametersin the call asfollows:

* Ifthemaj or parameter hasthe value NO_EXCEPTION, then it specifiesthat thisisa
normal outcome to the operation. In this case, both except nane and par ammust
be NULL. Note that it isnot necessary to invoke set _except i on() toindicate a
normal outcome; it is the default behavior if the method ssimply returns.

» For any other value of maj or it specifies either a user-defined or standard exception.
The except nanme parameter is a string representing the exception type identifier. If
the exception is declared to take parameters, the par amparameter must be the address
of astruct containing the parameters according to the C language mapping, coerced to
avoi d *;if the exception takes no parameters, par ammust be NULL.

When raising an exception, the method code is not required to assign legal valuesto any
out or inout parameters. Due to restrictionsin C, it must return alegal function value.

9.3.3 Binding Methods to Skeletons

It is not specified as part of the language mapping how the skeletons are connected to the
methods. Different means will be used in different environments. For example, the skele-
tons may make references to the methods that are resolved by the linker or there may be a
system-dependent call done at program startup to specify the location of the methods.

9.3.4 BOA and ORB routines

The operations on the BOA defined earlier in this chapter and the operations on the ORB
defined in Chapter 8 are used asif they had the IDL definitions described in the document,
and then mapped in the usual way with the C language mapping.

For example, the string_to_object ORB operation has the following signature:

CORBA _(bj ect CORBA ORB string to_object ([* C*/
CORBA_(bj ect or b,
CORBA_Envi ronnment *ev,
CORBA char *obj ectstring

162 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

C Language Mapping for Object Implementations

Thecr eat e BOA operation has the following signature:

CORBA (bhj ect CORBA BQOA create ([* C*/
CORBA_(bj ect boa,
CORBA_Envi r onnment *ev,
CORBA_Ref er enceDat a *id,
CORBA | nt er f aceDef intf,
CORBA | npl enent at i onDef i mpl

)

Although in each example, we are using an “object” that is special (an ORB, an object
adapter, or an object reference), the method name is generated as

i nterface_operati on inthe sameway asordinary objects. Also, the signature con-
tainsan CORBA_Envi r onnent parameter for error indications.

In thefirst two cases, the signature calls for an object reference to represent the particul ar
ORB or object adapter being manipulated. Programs may obtain these objectsin avariety
of ways, for example, in aglobal variable before program startup if there isonly one ORB
or BOA that makes sense, or by obtaining them from a name service if more than oneis
available. In the third case, the object reference being operated on is specified as the first
parameter.

Following the same procedure, the C language binding for the remainder of the ORB,
BOA, and object reference operations may be determined.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 163

The Basic Object Adapter

164 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

10

Interoperability

It isan explicit goa of the Common ORB Architecture to allow interoperation between
different object systems and ORBs. The large diversity of ORB implementation tech-
niques means that a single strategy or technology for interoperation would be infeasible.
However, there is substantial experience in the industry in connecting networks with dif-
ferent protocols, and we look to those working examples that are in everyday use for the
model of how to connect ORBS.

In general, thereis no single protocol that can meet everyone's needs, and thereis no sin-
gle means to interoperate between two different protocols. There are many environments
in which multiple protocols coexist, and there are ways to bridge between environments
that share no protocols. These same truths will hold for ORBs as well.

The primary requirement to allow convenient interoperation is to have a higher-level
model that spans the differences. In the case of the ORB, there is an obvious higher-level
model—I DL -defined object-oriented invocation. Because IDL is defined in an ORB-inde-
pendent way, and because clients and object implementations can be built in an ORB-
independent way, it is possible for a particular request to pass through multiple ORBSs, pre-
serving the invocation semantics transparent to clients and implementations.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 165

Interoperability

10.1 The Organization of Multiple ORBs

FIG. 15 on page 166 shows three possible scenarios in which multiple ORBs coexist
(although we will describe the first scenario asasingle ORB).

1. ORB 1isimplemented on both Machine A and Machine B. Both implementations use
the same object references and communication mechanism, and an object reference
can be freely passed from Machine A to Machine B. We actually consider this case to
be a single ORB implemented on two machines since no transformation is needed to
move object references from one machine to the other.

2. On Machine A, the same client may have some objects implemented by ORB 1 and
some by ORB 2. It isthus possible to an invoke an object reference in one ORB and
pass as a parameter an object reference from another ORB. In any particular comput-
ing environment, an ORB must be able to distinguish its own object references from
others’, and must be able to pass other ORB’s object references as parameters.

3. Between Machine B and Machine C, there are no common ORBs. In order to pass
(and subsequently invoke) objects between Machine B and Machine C, it is necessary
to construct a gateway to translate object references and requests in one ORB to object
references and requests in the other.

FIG. 15 Multiple ORBs

ORB 1 Z
= Gateway
ORB 2 = =
Machine A E Machine B E Machine C

166 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

The Organization of Multiple ORBs

10.1.1

10.1.2

10.1.3

There are many possible ways to connect two ORBS together, but they tend to fall into
two categories. embedding of object references and protocol translation. Another tech-
nique isto allow object implementations to move objects between ORBSs.

Reference Embedding

With reference embedding, an object in one ORB appears to be an object in a second
ORB. Aninvocation on the object in the second ORB arrives at an implementation whose
job it isto perform an invocation in the first ORB. On Machine A in FIG. 15 on page 166
an object implemented using ORB 1 might be made available in ORB 2 by creating an
implementation in ORB 2 that, when invoked, simply invokes the corresponding object in
ORB 1. A common use for reference embedding is when one ORB isalibrary ORB or
other optimized implementation that cannot be accessed remotely. By embedding those
objects that must be accessed remotely, most of the benefits of the optimized ORB can be
had without sacrificing generality.

Protocol Translation

When two ORBs differ in their implementation details but have similar functionality, it
will often be possible to trand ate requests in one ORB to be requests in the other ORB.
For example, two RPC-based ORBs might differ in their object reference representation
and packet formats, but otherwise present the same semantics. If it is possible to map
object references in one ORB into object references in the other domain, and translate
packets from one format to the other, agateway could be constructed to pass requests back
and forth.

Alternate ORBs

An object implementation implicitly chooses an ORB when it bindsto a particular object
adapter. If a machine supports multiple ORBs and the same object adapter interfaceis
available on more than one ORB, an object implementation may choose to make the same
object available through multiple ORBs. Because the object adapter interface is the same
in each case, few changes would be necessary to the object implementation code to sup-
port multiple ORBs. However, the scope and performance of the different ORBs might be
quite different.

In this case, an object implementation might generate object referencesin different ORBSs.
The interface to the object could define operations that would alow a client to obtain an
equivalent object reference in a different ORB.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 167

Interoperability

168 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

11 Glossary

activation

adapter

attribute

basic object adapter

behavior

class

Preparing an object to execute an operation. For example, copy-
ing the persistent form of methods and stored data into an exe-
cutable address space to allow execution of the methods on the
stored data.

Same as object adapter.

An identifiable association between an object and avalue. An
attribute A is made visible to clients as a pair of operations:
get A and set_A. Readonly attributes only generate a get opera-
tion.

The object adapter described in Chapter 9.

The observable effects of an object performing the requested
operation including its results)binding. See language binding,
dynamic invocation, static invocation, or method resolution for
alternatives.

See interface and implementation for alternatives.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 169

Glossary

client

context object
CORBA

data type

deactivation

deferred synchronous request

dynamic invocation

externalized object reference

implementation

The code or process that invokes an operation on an object.

A collection of name-value pairsthat provides environmental or
user-preference information. See Chapter 6.

Common Object Request Broker Architecture.

A categorization of values operation arguments, typically cov-
ering both behavior and representation (i.e., the traditional non-
OO0 programming language notion of type).

The opposite of activation.

A request where the client does not wait for completion of the
request, but does intend to accept results later. Contrast with
synchronous request and one-way request.

Constructing and issuing a request whose signature is possibly
not known until runtime.

An object reference expressed as an ORB-specific string. Suit-
ablefor storagein files or other external media.

A definition that provides the information needed to create an
object and allow the object to participate in providing an appro-
priate set of services. An implementation typically includes a
description of the data structure used to represent the core state
associated with an object, as well as definitions of the methods
that access that data structure. It will also typically include
information about the intended interface of the object.

implementation definition language

implementation inheritance

implementation object

A notation for describing implementations. The implementation
definition language is currently beyond the scope of the ORB
standard. It may contain vendor-specific and adapter-specific
notations.

The construction of an implementation by incremental modifi-
cation of other implementations. The ORB does not provide
implementation inheritance. |mplementation inheritance may
be provided by higher level tools.

An object that serves as an implementation definition. Imple-
mentation objects reside in an implementation repository.

170 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

implementation repository

inheritance

instance

interface

interface inheritance

interface object

interface repository

interface type

interoperability

language binding or mapping

method

method resolution

multiple inheritance

A storage place for object implementation information.

The construction of a definition by incremental modification of
other definitions. See interface and implementation inheritance.

An object is an instance of an interface if it provides the opera-
tions, signatures and semantics specified by that interface. An
object is an instance of an implementation if its behavior is pro-
vided by that implementation.

A listing of the operations and attributes that an object provides.
This includes the signatures of the operations, and the types of
the attributes. An interface definition ideally includes the
semantics aswell. An object satisfies an interfaceif it can be
specified as the target object in each potential request described
by the interface.

The construction of an interface by incremental modification of
other interfaces. The IDL language provides interface inherit-
ance.

An object that servesto describe an interface. Interface objects
reside in an interface repository.

A storage place for interface information.

A type satisfied by any object that satisfies a particular inter-
face.

The ability for two or more ORBs to cooperate to deliver
requests to the proper object. Interoperating ORBs appear to a
client to be asingle ORB.

The means and conventions by which a programmer writing in
a specific programming language accesses ORB capabilities.

An implementation of an operation. Code that may be executed
to perform arequested service. Methods associated with an
object may be structured into one or more programs.

The selection of the method to perform arequested operation.

The construction of a definition by incremental modification of
more than one other definition.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 171

Glossary

object

object adapter

object creation

object destruction
object implementation

object reference

objref

one-way request

operation

operation name

ORB

ORB core

parameter passing mode

A combination of state and a set of methods that explicitly
embodies an abstraction characterized by the behavior of rele-
vant requests. An object is an instance of an implementation
and an interface. An object models areal-world entity, and it is
implemented as a computational entity that encapsulates state
and operations (internally implemented as data and methods)
and responds to requestor services.

The ORB component which provides object reference, activa-
tion, and state related services to an object implementation.
There may be different adapters provided for different kinds of
implementations.

An event that causes the existence of an object that is distinct
from any other object.

An event that causes an object to cease to exist.
Same as implementation.

A value that unambiguously identifies an object. Object refer-
ences are never reused to identify another object.

An abbreviation for object reference.

A request where the client does not wait for completion of the
request, nor does it intend to accept results. Contrast with
deferred synchronous request and synchronous request.

A service that can be requested. An operation has an associated
signature, which may restrict which actual parameters are valid.

A name used in arequest to identify an operation.

Object Request Broker. Provides the means by which clients
make and receive requests and responses.

The ORB component which moves arequest from aclient to
the appropriate adapter for the target object.

Describes the direction of information flow for a operation
parameter. The parameter passing modes are IN, OUT, and
INOUT.

172 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

persistent object

referential integrity

repository

request

results

server

server object

signature

single inheritance

skeleton

State

static invocation

stub

An object that can survive the process or thread that created it.
A persistent object exists until it is explicitly deleted.

The property ensuring that an object reference that existsin the
state associated with an object reliably identifies a single object.

See interface repository and implementation repository.

A client issues arequest to cause a service to be performed. A
request consists of an operation and zero or more actual param-
eters.

The information returned to the client, which may include val-
ues aswell as statusinformation indicating that exceptional
conditions were raised in attempting to perform the requested
service.

A process implementing one or more operations on one or more
objects.

An object providing response to arequest for aservice. A given
object may be aclient for some requests and a server for other
requests.

Defines the parameters of a given operation including their
number order, datatypes, and passing mode; the resultsif any;
and the possible outcomes (normal vs. exceptional) that might
occur

The construction of a definition by incremental modification of
one definition. Contrast with multiple inheritance.

The object-interface-specific ORB component which assists an
object adapter in passing requests to particular methods.

The time varying properties of an object that affect that object’s
behavior.

Constructing arequest at compiletime. Calling an operation via
astub procedure.

A local procedure corresponding to a single operation that
invokes that operation when called.

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 173

Glossary

synchronous request

transient object

type

value

A request where the client pauses to wait for completion of the
request. Contrast with deferred synchronous request and one-
way request.

An object whose existence is limited by the lifetime of the pro-
cess or thread that created it.

See data type and interface.

Any entity that may be a possible actual parameter in arequest.
Vauesthat serveto identify objects are called object references.

174 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

A

Standard IDL Types

The IDL typeslisted in this appendix are available in all ORB implementations. IDL spec-
ifications that incorporate these types are therefore portable across ORB implementations.

The types shown in TBL. 17 on page 175 are defined by the IDL language.

TBL. 17

Types Defined by IDL

Type

Described In

short

long

unsigned short
unsigned long
float

double

char

boolean

octet

struct

union

enum
sequence
string

array

84.7.1.1 on page 69
84.7.1.1 on page 69
84.7.1.1 on page 69
84.7.1.1 on page 69
84.7.1.2 on page 69
84.7.1.2 on page 69
84.7.1.3 on page 70
84.7.1.4 on page 70
84.7.1.5 on page 70
84.7.2.1 on page 71
84.7.2.2 on page 71
§4.7.2.3 on page 72
84.7.3.1 on page 73
§ on page 74

§4.7.4.1 on page 74

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

175

Standard IDL Types

TBL.17 Types Defined by IDL (Continued)
Type Described In
any 84.7.1.6 on page 70
Object 88.2 on page 149
TBL. 18 on page 176 lists the ORB pseudo-objects that should be available in any lan-
guage mapping; in the C mapping, these definitions are contained in the file orb.h. Pseudo-
objects cannot be invoked with the dynamic interface, and do not have object references.
Those pseudo-objects that cannot be used as general arguments (passed as argumentsin
requests on real objects) are identified in the table. The definitions of pseudo-objects that
can be used as general arguments are contained in the file orb.idl, and can be #included
into IDL specifications.
TBL. 18 Pseudo-objects
Name General Argument? In orb.idl? Described In
Environment No No §5.19 on page 104
Request No No 86.2 on page 112
Context No No 86.5 on page 121
ORB No No §8.1 on page 147
BOA No No 89.2 on page 153
TypeCode Yes Yes §7.6 on page 142
Principal Yes Yes 89.2.4 on page 159
NVList No No 86.1.1 on page 110
Types used with the Interface Repository are shown in TBL. 18 on page 176. They are
contained in orb.idl.
TBL. 19 Interface Repository Types
Name Type Described In
Identifier string §7.5.1 on page 133
Repositoryld string §7.5.1 on page 133
OperationMode enum §7.5.6 on page 139
ParameterMode enum §7.5.7 on page 140
AttributeMode enum §7.5.5 on page 139
InterfaceDescription struct §7.5.4 on page 138
OperationDescription struct §7.5.6 on page 139
176 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

TBL. 19 Interface Repository Types (Continued)

Name Type Described In
AttributeDescription struct §7.5.5 on page 139
ParameterDescription struct §7.5.7 on page 140
RepositoryDescription struct §7.5.2 on page 136
ModuleDescription struct §7.5.3 on page 137
ConstDescription struct §7.5.9 on page 141
ExceptionDescription struct §7.5.10 on page 142
TypeDescription struct §7.5.8 on page 141
FullinterfaceDescription struct 87.5.4 on page 138
InterfaceDef interface §7.5.4 on page 138
OperationDef interface §7.5.6 on page 139
AttributeDef interface §7.5.5 on page 139
ParameterDef interface §7.5.7 on page 140
RepositoryDef interface §7.5.2 on page 136
ModuleDef interface §7.5.3 on page 137
TypeDef interface §7.5.8 on page 141
ConstDef interface §7.5.9 on page 141
ExceptionDef interface §7.5.10 on page 142
ImplementationDef interface 89.2.1 on page 155

The any type can be used to represent a variety of types of values. All ORB implementa-

tions must support at least the typeslisted in TBL. 20 on page 177 as any. ORB implemen-

tations may define more values for any.

TBL. 20 Minimal Types for Any

IDL Basic Types
Object

Any

TypeCode
NamedValue

object references
InterfaceDescription
OperationDescription
AttributeDescription
ParameterDescription

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

177

Standard IDL Types

TBL. 20 Minimal Types for Any (Continued)

RepositoryDescription
ModuleDescription
ConstDescription
ExceptionDescription
TypeDescription
FullinterfaceDescription
sequences of the above

178 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Notes

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 179

Notes

180 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

Notes

THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION 181

Notes

182 THE COMMON OBJECT REQUEST BROKER: ARCHITECTURE AND SPECIFICATION

