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SYSTEM AND METHOD FOR SECURING 
COMPILED PROGRAM CODE 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 

The present invention relates to computer security, and 
more particularly, to an apparatus and method for providing 
increased computer security to previously compiled com 
puter software. 

2. Background Information 
There has been an explosion in the growth of computer 

networks as organizations realize the benefits of networking 
their personal computers and workstations. Increasingly, 
these networks are falling prey to malicious outsiders who 
hack into the network, reading and sometimes destroying 
sensitive information. Exposure to such attacks has 
increased as companies connect to outside systems such as 
the Internet. 

To protect themselves from attacks by malicious 
outsiders, organizations are turning to mechanisms for 
increasing network security. One such mechanism is 
described in “SYSTEM AND METHOD FOR PROVID 
ING SECURE INTERNETWORK SERVICES”, U.S. 
patent application Ser. No. 08/322,078 filed Oct. 12, 1994 by 
Boebert et al., the discussion of which is hereby incorpo 
rated by reference. Boebert teaches that modifications can be 
made to the kernel of the operating system in order to add 
type enforcement protections to the operating system kernel. 
This protection mechanism can be added to any other 
program by modifications to the program code made prior to 
compiling. It cannot, however, be used to add type enforce 
ment protection to program code after that program code has 
been compiled. 
A number of software vendors keep close guard over their 

source code (in order, e.g. to protect trade secrets). Such 
vendors may refuse to provide a source code level version of 
their programs to facilitate adding additional computer secu 
rity mechanism. What is needed is a way of adding computer 
security protection to compiled program code to increase 
secure operation of such code. 

SUMMARY OF THE INVENTION 

The present invention is a system and method of provid 
ing increased security for compiled program code. Compiled 
program code is installed in a computer having type enforce 
ment capability. The compiled program code is allowed to 
execute and type enforcement violations are logged. The 
execution environement of the compiled program code is 
then modified to prevent recurrence of the logged type 
enforcement violations. 

According to another aspect of the present invention, 
additional levels of security can be added to compiled 
program code by executing the compiled program code 
within a type enforcement environment, wherein the step of 
executing the compiled program code includes the step of 
checking each access by a process for type enforcement 
violations. Operation of the compiled program code is then 
modified to eliminate each type enforcement violation. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a representation of a system having an internal 
and external interface connected via two separate protocol 
stacks; 

FIGS. 2a–d are representations of communication proto 
cols; 
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2 
FIG. 3 is a representation of one form of interprocessor 

communication which can be used in a system having a 
plurality of separate protocol stacks; 

FIG. 4 is a more detailed representation of one embodi 
ment of the form of interprocessor communication shown in 
FIG. 3; 

FIG. 5 is an alternate embodiment of the system of FIG. 
1, in which all communications between regions (burbs) 
pass through system space before being passed to another 
burb; 

FIG. 6 is a flowchart illustrating the steps taken in 
securing compiled program code according to the present 
invention; 

FIG. 7 is a flowchart illustrating the steps taken in 
applying network separation to compiled program code 
according to the present invention; and 

FIG. 8 is a representation of a system built using the steps 
shown in FIGS. 6 and 7. 

DETAILED DESCRIPTION OF THE 
PREFFERED EMBODIMENTS 

In the following Detailed Description of the Preferred 
Embodiments, reference is made to the accompanying 
Drawings which form a part hereof, and in which are shown 
by way of illustration specific embodiments in which the 
invention may be practiced. It is to be understood that other 
embodiments may be utilized and structural changes may be 
made without departing from the scope of the present 
invention. 

Computer systems which use a single communications 
protocol stack to handle communication between an internal 
and an external network are widely in use. This is the 
communication model used, for instance, in BSD 4.4. The 
problem with such a system is that once a process receives 
privileges within the system, it can use those privileges to 
access other network files. This can lead to a dangerous 
breach of network security. Two approaches can be used to 
beef up the security of such a system: type enforcement and 
network separation. Type enforcement adds an additional 
level of protection to the process of accessing files. Network 
separation divides a system into a set of independent 
regions. Through network separation a malicious attacker 
who gains control of one of the regions is prevented from 
being able to compromise processes executing in other 
regions. Type enforcement and network separation will be 
described next. 
Type Enforcement 

In “SYSTEM AND METHOD FOR PROVIDING 
SECURE INTERNETWORK SERVICES”, U.S. patent 
application Ser. No. 08/322,078 filed Oct. 12, 1994, Boebert 
et al. describe a way of extending type enforcement protec 
tion to a computer system having both an internal private 
network and an external public network. In one embodiment 
of such a system, a secure computer is used to connect a 
private network having a plurality of workstations to a 
public network. A protocol package (such as TCP/IP) run 
ning on the secure computer implements a communications 
protocol used to communicate between each workstation 
and the secure computer. A Local Cryptography function can 
be integrated into the protocol package in order to protect 
and authenticate traffic on the private network. 
Program code running on the secure computer is used to 

communicate through the private network to the worksta 
tion’s protocol package. In one embodiment, the secure 
computer is an Intel Pentium-based machine running a 
hardened form of BSD386 Unix. A system based on a 90 
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MHz Pentium microprocessor with 32 megabytes of 
memory, 2 gigabytes of hard disk space, a DAT tape for 
backup and a CD-ROM for software loads has been found 
to be adequate. 

Likewise, program code running on the secure computer 
is used to communicate through a public network interface 
to a public network such as the Internet. In an Internet 
embodiment, the program code used to communicate with 
the Internet is part of a set of Internet protocols which 
communicate with computers on the Internet through an 
Internet connection. In one embodiment, different protocols 
and cryptographic methods may be used when communi 
cating with different entities on the Internet. In one 
embodiment, a tep wrapper package operating in the Internet 
protocols is used to sit on the external, public network so that 
information about external probes can be logged. It is most 
likely that the open nature of the public network will favor 
the use of public-key cryptography in this module. 
As noted above, in one embodiment the secure computer 

is an Intel Pentium-based machine running a hardened form 
of Berkeley’s BSD386 Unix. In that embodiment, BSD386 
is hardened by adding a type enforcement mechanism which 
restricts the access of processes to data. Type enforcement 
operates in conjunction with page access control bits in the 
virtual page translator of the Pentium to control access to 
objects stored in the memory of the secure computer. To 
accomplish this, system calls in the basic BSD386 kernel 
were modified so that type enforcement checks cannot be 
avoided. Certain other system calls were either disabled or 
had certain options disabled. 

The type enforcement controls are enforced by the kernel 
and cannot be circumvented by applications. Type enforce 
ment is used to implement data flow structures called 
Assured Pipelines. Assured pipelines are made possible by 
the so-called “small process” model of computation used by 
Unix. In this model, a computational task is divided up into 
small virtual units that run in parallel to each other. Unix 
provides a crude and loosely-controlled way of sharing data 
between processes. Type enforcement supplants this with the 
rigorously controlled, configurable structure of assured pipe 
lines. It should be noted that Type Enforcement works best 
as a supplement to the normal Unix permissions. That is, the 
Unix permissions are the first line of defense; when pro 
cesses get past the Unix permissions, however, they run into 
the type enforcement checks. 

In one embodiment, the secure computer has been con 
figured under BSD386 to run in one of two states: admin 
istrative and operational. In the administrative state all 
network connections are disabled and the Server will only 
accept commands from a properly authenticated System 
Administrator accessing the system from the hard-wired 
administrative terminal. This feature prevents anyone other 
than the System Administrator from altering the security 
databases in the secure computer. 

In the operational state the network connections are 
enabled and the Server will execute only software which has 
been compiled and installed as executable by an assured 
party. 

The two states are reflected in two separate kernels. The 
administrative kernel is not subject to type enforcement. 
Instead, it is network isolated and accessible only to autho 
rized personnel. This means that in administrative kernel 
mode, the secure computer cannot be seeded with malicious 
software by any but the people charged with system admin 
istration. 
On the other hand, the operational kernel is subject to type 

enforcement. This means, for instance, that executable files 
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4 
stored in the memory of the secure computer cannot be 
executed without explicit execution privileges. In one such 
embodiment, executable files cannot be give execution 
privileges from within the operational kernel. Instead, the 
secure computer must enter administrative kernel to grant 
execution privileges. This prevents execution of malicious 
software posted to memory of the secure computer. Instead, 
only executables approved by operational administrators 
while in administrative kernel mode ever become executable 
within operational kernel mode of the secure computer. In 
one such embodiment, administrative kernel can be entered 
only from either a manual interrupt of the boot process to 
boot the administrative kernel or by booting the secure 
computer from a floppy that has a pointer to the adminis 
trative kernel. 
The flow of data between processes is limited to transfers 

through assured pipelines controlled, in one embodiment, by 
the access enforcement mechanism of the Intel Pentium 
processor. Virtual memory translation circuitry within the 
Pentium processor includes a mechanism for assigning 
access privileges to pages of virtual memory. This ensures 
that control is imposed on every fetch from, or store to, the 
machine memory. In this way, the protection is made con 
tinuous. The Pentium access control mechanism enforces 
the following modes of access: 
Read Only (R): Data values may be fetched from memory 

and used as inputs to operations, but may not be 
modified or used as program text. 

Read Execute (RE): Data values may be fetched from 
memory and used as inputs to operations, and may also 
be used as program text, but may not be modified. 

Read Write (RW); Data values can be fetched from 
memory and used as inputs to operations, and may also 
be stored back in modified form. 

No Access: The data cannot be fetched from memory for 
any purpose, and it may not be modified. 

These hardware-enforced accesses can be used to force 
data flowing from the internal private network to the Internet 
to go through a filter process, without any possibility that the 
filter is bypassed or that filtered data is tampered with by 
possibly vulnerable software on the Internet side of the filter. 
The access a process has to a data object via type 

enforcement is defined by an entry in a central, protected 
data structure called the Domain Definition Table (DDT). A 
Domain name denotes an equivalence class of processes. 
Every process in execution has associated with it two 
Domain names which are used to control its interaction with 
object and with other Domains. The real Domain of a 
process is used to control Domain to Domain interactions 
and to grant or deny special, object-independent privileges. 
The effective Domain of a process is used to control its 
access to objects. The real and effective Domains of a 
process will generally be identical; the circumstances in 
which they differ are described below. 
A Type name denotes an equivalence class of objects. 

Objects are, in general, the “base types” of BSD/386 Unix: 
files, directories, etc. There are eight default subtypes: file, 
directory, socket, fifo, device, port, executable, and gate. The 
implied default subtype pipe is, in effect, untyped because no 
check is made on access to pipes. Type names consist of two 
parts and, in the preferred embodiment, are written in 
documentation and comments as creator:subtype. The cre 
ator field is the four-character name of the Domain which 
created the object. The subtype field denotes the “class” of 
the object within that Domain. Subtype names are also four 
characters long and may contain any printable character 
except **’ or whitespace. 
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Subtypes will not be shared; thus Mail: file means, in 
effect, “the files private to the Mail Domain.” When objects 
are created they are automatically assigned the appropriate 
default subtype. Objects which are to be shared between 
Domains must have their subtype changed from the default 
to an explicit subtype. 

Subtypes can be assigned one of three ways: 
By having a default subtype assigned when the object is 

created by the operational kernel. 
By having an explicit subtype assigned by the privileged 

chtype or fchtype syscalls. Thus a file which was to be 
shared between the Mail Domain and some other 
Domain would first be created as Mail:file and then 
changed to, e.g., Type Mail:Publ. If an subtype is 
changed to a default subtype, then the object becomes 
private. 

By having a default or explicit subtype assigned admin 
istratively by the administrative kernel. 

The default subtypes exec and gate are “static.” The 
operational kernel will not create any objects of those 
subtypes, change those subtypes into any other subtype, or 
change any other subtypes into a gate or exec. 

The Domain/Type relationship is used to define the modes 
and consequences of accesses by processes to objects. The 
modes and consequences of accesses are defined by access 
attributes which are store in the DDT database. The DDT 
database is “indexed” by three values: 

The effective Domain of the process requesting the access 
or action. 

The creator field of the object Type. 
The subtype field of the object Type. 
The result of “indexing” is the retrieval of a set of access 

attributes. The term “attribute” is used instead of “mode” 
because some of the attributes define immediate side effects. 
The selection of attributes was governed by the following 
considerations. 
To constrain the modes of access which processes may 

exercise on objects. 
To prevent the execution of any application software other 

than that which has been installed through the con 
trolled administrative environment. 

To enable the spoofing of attackers so that the attack 
response facilities can be used to trace them at the 
physical packet level. 

This required a more sophisticated response to illegal 
accesses than just shutting down the offending process. 

Gating permits a process to temporarily become a mem 
ber of another Domain. The “home” or permanent Domain 
of the process is called its real Domain and the temporary or 
assumed Domain is called the effective Domain. Implicit 
gating is used when it is necessary to strictly control the 
manner in which the effective Domain’s accesses are used. 
Implicit gating “ties” the temporary Domain change to a 
specific executable which has been subjected to extra scru 
tiny to insure that the effective Domain’s accesses are used 
safely. The “tying” of the Domain change is done because 
the Domain change is a side effect of execVe’ing a special 
executable: one whose subtype is gate. Implicit gating also 
allows Domain changes to be defined by changing the Type 
of an executable instead of inserting explicit calls into the 
source code. 

Explicit gating is used when a looser control on the 
temporary Domain transition is appropriate, or when the 
“tying” of the gating to a specific executable would require 
excessive restructuring of existing software. 
Domain changes are controlled by the DIT. The logical 

structure of the DIT is a table with an entry for each Domain. 
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6 
The logical structure of each entry is that of two pointers, 
one to a list of allowed real Domains and the other to a list 
of allowed effective Domains. Thus, if a process executed a 
makedomain or changedomain, the real Domain of the 
process selects the entry and the Domain given by the 
domainname argument must be on the list of allowed real 
Domains for the Domain change to happen. Likewise, if a 
process executes a gate, the Domain given in the domain 
name argument must be on the list of allowed effective 
Domains. Finally, if a process executes an execye of an 
executable whose subtype is gate, the creator Domain of that 
executable must appear on the list of allowed effective 
Domains. 

Certain kernel syscalls are restricted to processes execut 
ing out of privileged Domains. In one embodiment two 
levels of checks are made. First, the normal BSD UNIX 
permissions are checked; if these permissions cause the 
operation to fail, the system call returns the normal error 
code. If the UNIX permissions are adequate, the type 
enforcement (TE) privileges are checked next, (and thus in 
addition to the UNIX permissions). 
The following BSD system calls have been modified to 

properly implement type enforcement. The modified calls 
have been grouped into four groups for ease of explanation. 
The first group of system calls that require modification 

are those that set or affect the identity and/or state of the 
computer. Two of these system calls affect the computer’s 
internal time: settimeofday and adjtime. Both of these sys 
tem calls have been modified to require the «can set 
clock- privilege before the request will be honored. In the 
event of a privilege violation, the system call will raise an 
Alarm, will not honor the request, but will return success. 

Other system calls which affect the computer’s notion of 
self identity are sethostname and sethostid. Both of these 
system calls have been modified to require the -is-startup> 
privilege before the request will be honored. In the event of 
a privilege violation, the system call will raise an Alarm, will 
not honor the request, and will return the EPERM error flag. 
The last system call affects the computers runtime status, 
reboot. The reboot system call has been modified to require 
the -admin-reboot~ privilege before the request will be 
honored. If the request is honored, the computer will boot to 
the admin kernel (single-user mode only with networking 
disabled). In the event of a privilege violation, the system 
call will raise an Alarm, will not honor the request, and will 
return the EPERM error flag. 
The second group of system calls that require modifica 

tion are those that allow interaction with the computer’s 
filesystem. The open system call has been modified to 
become the primary TE check. After performing the normal 
BSD UNIX permission checks, the TE check is performed. 
An Alarm is raised if the TE check returns null (no 
permissions), or if the caller asks for read but the ºddt 
read> privilege is not set, or if the caller asks for write but 
the ºddt write- privilege is not set. The creat system call 
has been modified to set the new file’s Type to <creator:file>. 
Additionally, the creation of a new file implies a write 
operation on the directory, which in turn implies that the 
TE-modified open system call will be used to open the 
directory file, which in turn implies that TE can be used to 
control the success or failure of the creat system call. The 
unlink and rename system calls are modified in like manner. 
The unlink system call requires the ºddt destroy: privi 
lege. The rename system call requires the ºddt rename> 
privilege on the “from" file, and if the “to’’ file exists, it 
further requires the ºddt destroy: privilege on the “to’’ file. 
In the event of a privilege violation, both the unlink and 
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rename system calls will raise an Alarm, will not honor the 
request, but will return success. The access system call is 
modified to require the ‘mode> privilege on the file pointed 
to by the path. In the event of a privilege violation, the access 
system call will raise an Alarm, will not honor the request, 
but will return success. The chflags, fchflags and quotacl 
system calls are modified in alike manners. All are modified 
to perform no functions. Attempts to call them will raise an 
Alarm, will not honor the request, and will return EPERM. 
The mknod system call is modified to perform no function. 
Attempts to call it will raise an Alarm, will not honor the 
request, and will return EPERM. 

The third group of system calls that require modification 
are those concerning process creation, maintenance and 
tracing. The fork system call has been modified so that the 
child process inherits both the real and effective Domains of 
the parent process. The execwe system call is modified to 
require the ºddt exec-privilege on the file pointed to by 
the path before the request will be honored. The real and 
effective Domain of the process remain unchanged. In the 
event of a privilege violation, the system call will raise an 
Alarm, will not honor the request, but will return success. 
The ktrace, ptrace and profil system calls are modified in 
alike manners. All are modified to perform no function. 
Attempts to call them will raise an Alarm, will not honor the 
request. The ktrace and ptrace system calls will return 
EPERM, whereas the profil system call will return EFAULT 

The mprotect system call is modified to perform no 
function. Attempts to call it will raise an Alarm, will not 
honor the request, and will return EPERM. 

The fourth group of system calls that require modification 
are those that relate processes to user ids. The setuid and 
seteuid and old.setreuid system calls are modified in alike 
manners. All are modified to require the ‘suppress su 
alarm: privilege before the request will be honored. In the 
event of a privilege violation, the system call will raise an 
Alarm, will not honor the request, and will return success. 
The acct system call is modified to perform no function. 
Attempts to call it will raise an Alarm, will not honor the 
request, and will return EPERM. The setlogin system call is 
modified to require the «can setlogin- privilege. In the 
event of a privilege violation, the access system call will 
raise an Alarm, will not honor the request, but will return 
Sll CCèSS. 

A final set of system calls consists of those that are 
removed entirely from the BSD UNIX kernel. This set of 
system calls includes: obs vtrace, nfssvc, asynch daemon, 
getfh, shmsys, sfork, getdescriptor, and setdescriptor. 
Network Separation 

The goal of network separation is to provide an operating 
system kernel with support for multiple networking protocol 
stacks. A system 10 having such an operating system kernel 
is illustrated in FIG. 1. System 10 is split into separate 
regions, with a domain 16 and a protocol stack 12 assigned 
to each region. Each protocol stack (12.0, 12.1) has a fixed 
set of interfaces bound to it. For example, two or more 
ethernet drivers can be connected to, for instance, protocol 
stack 12.0. 
A given socket will be bound to a single protocol stack 12 

at creation time. Each protocol stack 12 will have its own 
independent set of data structures including routing infor 
mation and protocol information. No data will pass between 
protocol stacks without going through proxy space and 
being sent back down another protocol stack by a proxy 
program 14. Proxy 14 acts as a go-between, therefore, for 
transfers between domains 16.0 and 16.1. No user applica 
tions will have direct access to either network. 
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8 
The embodiments discussed will only cover common 

networking support, such as the media layer drivers like 
PPP, ethernet, and SLIP and the TCP/IP suite of protocols. 
The BSD kernel supports other protocols such as CCITT/ 
X.25 and XNS. These are not covered here, although it 
should be apparent that network separation can be extended 
to other protocols by dividing the protocol stacks associated 
with the protocol layers into multiple protocol stacks with 
the number of (and the name of) stacks being the same 
across all protocol suites. 
The following terminology will be used throughout the 

document: 
BSD The BSD/OS 2.0 Unix operating system as based upon 

the BSD 4.4 Lite distribution. In the case of the network 
ing functionality the code is virtually identical across all 
4.4 derived Unixes (NetBSD1.0, FreeBSD 2.0, and BSD/ 
OS 2.0). The only significant differences are the hardware 
device drivers in terms of how they autoconfig during 
boot, which ones are present, and their internal code. 
Their interfaces to the rest of the networking code is 
effectively identical. 

BSD kernel The BSD/OS 2.0 kernel. 
Burb The aggregation of a protocol stack with all the 

processes that can access that stack. Processes that can 
access a particular protocol stack are said to be bound to 
that protocol stack. 

NBURBS The number of protocol stacks or network inter 
faces to which all networking processes and related 
entities are bound to. 

Kernel space The address and code space of the running 
kernel. This includes kernel data structures and functions 
internal to the kernel. Technically the kernel can access 
the memory of the current process as well, but “kernel 
space” generally means the memory (including code and 
data) that is private to the kernel and not accessible by any 
user process. 

User space The address and code space of processes running 
that isn’t kernel space. A running process will often 
execute inside of the kernel during system calls, but that’s 
kernel space since the kernel *always” is running with the 
context of the current process except during the few 
moments of the actual context switch—in a kernel with 
out SMP support and kernel threads. In general user space 
refers to code and data allocated by a code that is loaded 
from an executable and is available to that process, not 
counting the kernel private code data structures. 

Protocol stack The set of data structures and logical entities 
associated with the networking interfaces. This includes 
sockets, protocol drivers, and the media device drivers. 

Link level & hardware drivers These are the (almost in some 
cases) bottom layer drivers that talk a particular physical 
and/or link level protocol (ethernet, PPP, SLIP). They may 
be a hardware driver, in the case of most ethernet drivers, 
or they may sit on top of yet other drivers, such as PPP on 
a TTY on the COM port driver or even a parallel port 
Ethernet driver on top of the LPT port driver. Most of 
these drivers have two layers, a generalized layer that 
handles the common parts of the link level protocol 
(ethernet, ppp., etc.) and the hardware specific driver. 
One of the goals of a secure operating system kernel is to 

allow dividing the network interfaces into distinct regions so 
that there is assurance that packets are never quietly passed 
through the kernel between those regions. In one 
embodiment, the following rules must be met to ensure 
secure control of packet transfer between regions: 
A single user process can only send and receive informa 

tion (packets) from one region at a time. 
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Once a process is bound to a region, it can only access that 
region. 

Incoming packets can only go to processes that are in the 
region associated with the interface the packet arrived 
OIl. 

Any data passing through the computing system to a 
different region must come into user process and be 
handed off to a different process that has access to the 
other region, a proxy program, to be sent out again. 

The reasons for these design requirements are fairly 
simple. The goal is that any information passing through the 
computer between different regions has to be passed through 
a predefined, or assured, pipeline. 

There are three ways of achieving this goal: 
1) Packet Filtering Packet filtering would be done using 

conventional approaches similar to current firewalls and 
screening routers. This could be enhanced with additional 
filters based on interface rather than address to prevent 
certain types of spoofing. 

2) Packet Separation A given message, incoming or 
outgoing, would be assigned a type based on the interface 
it arrived on or the socket it was sent from. The packet 
would then be thrown out at the top or bottom level if that 
type didn’t match the type of the interface it was being 
Sent On. 

3) Separate Protocol Stacks The protocol stacks would be 
separated into multiple instances with a given interface or 
socket existing on only one. 
In arriving at our current approach, the packet filtering 

solution was quickly discarded. Although you could elimi 
nate several kinds of spoofing, many of them would still 
remain. For filtering to work at all, IP packet forwarding 
must be enabled, but then you are vulnerable to all sorts of 
nasty things Sneaking through the computer system using the 
normal sorts of attacks with various forms of spoofing, 
piggybacking, and just plain misconfiguration of complex 
filtering expressions. 

The packet typing approach had merit, but required exten 
sive code changes as all of the various layers would have to 
be rewritten to handle additional fields in all of the various 
structures (mbufs, sockets, etc.). The other problem with the 
packet typing approach was how to deal with kernel inter 
nally generated messages like ICMP messages. 
The separate protocol stack approach was selected 

because it gives a very clear split of the regions making 
assurance easier. It also requires surprisingly few code 
changes. Rather than change the existing data structures, 
they are simply replicated as needed for the various regions. 
The initial reference has to be fixed, but most references are 
done by cached pointers within the various structures, so 
many of the functions and layers of the protocol stack 
require no changes at all. For instance, the hardware drivers 
require absolutely no changes. The socket code requires only 
a minor change during the socket instantiation, subsequent 
references done using the already fixed pointer to the 
particular protocol driver. This also gives a performance win 
because there are basically no lookups done dynamically, 
only an extra level of indirection during initialization, but 
not subsequently. 

The general structure of the design chosen involves 
duplicating all of the protocol stacks where each stack is 
independent of the others. The routing to a given stack is 
done at the very top or bottom of the dataflow so that a given 
packet, piece of data, control message, etc. is bound to a 
particular stack at creation. 
A name was needed for each of these protocol stacks, and 

the processes and related entities bound to them, the name 
that was chosen was burb. 
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Second, the decision whether to replicate and subdivide 

into separate burbs is made on a protocol family by protocol 
family basis. Generally all external supported networking 
protocol families will be divided. The internal Unix domain 
socket family won’t be replicated. This is important because 
the Unix Domain sockets (AF UNIX) will continue to exist 
in one common region for the entire system. This feature 
becomes important for the pipeline structure given later. 
To identify the network/socket access a process is given 

a burb id that says which burb it is in. In one embodiment, 
the burb ID is an ordinal number. 
The general picture of the protocol stacks in a normal 

BSD kernel is shown in FIG. 2a. An expanded view of this 
picture to include the various IP protocol drivers is shown in 
FIG. 2b. 
When a socket is actually created, it is explicitly, during 

the initial socket() call 20, bound to one of the protocol 
drivers 22 via a pair of pointers in the socket structure, the 
so proto member (a pointer to a struct protosw), and the 
so pcb member. The protosw structure is unique per pro 
tocol driver, but there is only one per protocol driver. The 
so pcb pointer is an opaque pointer to a socket specific 
structure that has the protocol specific information for a 
socket (such as the TCP state information for a TCP socket). 
At the bottom level, the generic media drivers 24 

(ethernet, ppp., slip) put incoming packets on a per protocol 
family (IP, XNS, CCITT, etc.) queue, ipintrol in the case of 
IP. 
The picture then for a created socket becomes something 

like the system of FIG. 2C. 
So, the fundamental concept of the kernel portion of the 

design is that the protocol stacks are replicated N times (with 
N being a fixed small constant, typically 2–10), with all 
protocol level and other shared data structures being repli 
cated. In practice, each burb/protocol stack has a name, that 
name maps onto a number, starting at 0, that is used as an 
index. Each static structure is converted into an array. This 
also makes it easy to change the number of burbs supported. 
FIG. 2d illustrates a system having two burbs and limited to 
just IP. A generic system having N burbs is shown in FIG. 
3. Aspecific TCP/IP system having N burbs is shown in FIG. 
4. 
Once the socket is created then the picture becomes much 

simpler again, because the individual data structures are then 
bound explicitly and no lookup or search stage occurs again. 
All activity then occurs within one of the burbs (e.g., 
TCP[0]). 
The advantage of duplicating the protocol stacks in their 

entirety is that the number of data structures to be 
duplicated, and the points that those are referenced, is 
manageable, much more so that making a given datum have 
a type and/or domain and having to “route” within the kernel 
based on that at every layer. As mentioned before, the basic 
approach is that all shared data structures are replicated N 
times, 1 for each burg. These data structures are a reasonably 
finite list. They include: 
Protocol Domain List and Tables (domains, protosw)— 
When a socket is created, a family and a type is specified, 
such as socket (AF INET, SOCK STREAM). The 
socket creation routine first looks up the top level protocol 
in the family list, ala: AF INET, which returns a 2nd 
level table of protosw structures that has the individual 
protocol drivers. The 2nd level table is in the form of 
XXX domain, such as inetdomain. The first level list is 
called “domains”. 
The design replicates only the tables (when that family 

supports separate burbs, such as IP route). In the case of 
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things like the AF UNIX domain, each list will point at the 
same table. The lookup will then return a protosw structure 
unique to the instance of the protocol driver, such as 
inetsw[proto||burb], instead of inetsw[proto]. The routing 
structure will be replicated into routesw [NBURBS]. 
Protocol Interrupt Queues (ipintrºl)—External networking 

protocols each have an input queue for incoming packets. 
Each queue is a simple mbuf list. So queues for protocols 
will be replicated, becoming things like ipintrºl 
[NBURBS] instead of just ipintra. 

IP Fragmentation Queues (ipq)—Similar to the IP interrupt 
queue, there is a reassembly queue, ipd, to reassemble 
fragmented IP packets. All network interfaces have a 
maximum transmission unit (MTU). Outgoing packets 
larger than the MTU are fragmented by the IP layer into 
smaller packets for transmission. When the fragmented 
packets arrive at the destination, they are placed on a 
reassembly queue waiting for reassembly. This queue is 
also replicated into ipg|[NBURBS]. 

Interfaces (ifnet)—Each interface, including the loopback 
will be bound at boot time to a given burb by a one time 
system call. A burb field will be added to the ifnet 
structure, ifnet.if burb, which is unique per interface so 
that it knows which burb it’s in and which interrupt 
queues to send data to. The binding will also be one shot, 
so that once an interface is bound, it can’t be rebound to 
a different burb. 
Other data structures are already unique per interface. The 

other item to be replicated is the list of interfaces. There will 
be one list per interface. The interface binding call will set 
the burb of the interface and tell it which interface list to put 
itself on during initialization. 
Loopback Interface (loif)—The loopback interface IP 

address will have to be unique per interface. In other 
words, the recommended loopback address 127.0.0.1 can 
not be shared between the interfaces. The loopback inter 
face data structure will be replicated, loif [NBURBS]. 
Loopback addresses will be subnetted, with netmask 
255.255.0.0, to give each interface a unique IP address, 
127.burb.0.1. 

Protocol Control Blocks (tcb, udb, rawcb)—Each protocol 
maintains its own list of protocol control blocks, which 
hold various pieces of information required for the socket 
operations. These lists will be replicated and maintained 
on a burb basis: teb [NBURBS] for TCP udb [NBURBS] 
for UDP, and rawcb [NBURBS] for routing sockets. 

Routing Tables (rt tables)—There is a single master routing 
table, rt tables [family], that is a linked list of routes. 
This table will be separated into one table per burb, 
rt tables [family][NBURBS]. There will be no master 
routing table. 
These routing tables will be used as lookup tables so that 

the incoming end of a proxy knows which outgoing proxy to 
connect to. For outgoing packets, the search always starts 
with the local table. If a route cannot be found, then the 
system searches other tables. If a route is found on a 
nonlocal table, then the networking code will hand the 
packets off to the proxy processes. 
ARP Tables and Queues (llinfo arp, arpintrºl)—There are 

no data structures at the common link level (ethernet, ppp, 
slip) except the ARP table and the ARP interrupt queue, 
llinfo arp and arpintrol. This again is a list of interfaces 
with just the information needed for ARP and a queue for 
incoming ARP packets. Both of these data structures will 
be replicated, llinfo arp [NBURBS] and arpintrol 
[NBURBS]. 

Sockets (struct socket)—The data structures for a socket are 
created dynamically for each socket, so no fixed replica 
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tion needs to be done. The alternation of the protocol 
driver lookup code means that a socket will automatically 
get the pointer to the protocol driver in the correct burb 
without any changes to the socket code except the domain 
list search routines. A burb field will be added to the 
socket structure, socket.so burb, so that it knows which 
burb it’s in. 
There are some other issues. A message doesn’t normally 

have an intrinsic burb, but it will be added as a debugging 
aid during development. Each major data structure that is 
burb dependent (the input queues, the protosw structures, 
etc.) will always have a field giving its burb. So at various 
points, these fields can be compared against during devel 
opment as a debugging aid. Critical hand off stages (like 
socket initialization) will have sanity checks that are done all 
the time because the overhead is negligible. 
The kernel is implemented to respond to connection 

requests that are not intended for the computer system itself. 
For instance, when an internal client requests a connection 
to an external Internet host, the kernel will answer the 
request as if it were the external host. Meanwhile, it will 
attempt to set up the connection with the external host. This 
process occurs transparently to the internal client. Such 
support allows the secure computer to answer in a secure 
manner connections intended for outside boxes. 

Each burb will have its own routing tables. The general 
algorithm for each incoming packet will be, see if it’s to one 
of the local addresses, if so accept it (as this is standard 
behavior). If not, route it within the burb. If that fails, then 
see if there is a route in another burb (using other burbs' 
routing tables). If not, then toss the packet. If so, accept the 
packet and pass it up the stack, which eventually should 
arrive at the proxies. 
The existing TCP and UJDP drivers will happily accept 

the packet and pass it onto a socket if it exists. If it’s to an 
already established TCP connection or a UDP socket, it will 
get there normally. If it’s a new incoming TCP connection 
that is accepted, it will create the socket, and fill in the local 
address from the incoming packet. The process doing the 
accept () can call getsockname () to get that address. In 
other words, the UDP and TCP drivers trust the lower layer 
IP driver that the packet is for the machine, so no change to 
those layers need to be done at all to support this, only the 
secondary routing lookup in the IP layer. 

This functionality means a couple of things. For this to 
work, there still have to be unique IP addresses all around, 
so no hacks are done to support hidden IP addresses that 
conflict with external ones. Also, there can only be one 
default route on the machine still. If there were one per burb, 
the burb routing lookup wouldn’t know where to send it. 
This isn’t hard. Generally the default route will be for one 
of the outside burbs. Other burbs will simply have to have 
complete routing for the internal network. This isn’t a 
problem as it’s really already the case. A host with a complex 
internal network already has to have proper routing for all of 
those networks if it uses a default route. 

This also means there can be no duplicate routes in the 
replicated routing tables. If there were duplicate routes, the 
routing lookup would always return the first route found. 
Network Separation Using Type Enforcement 
The degree to which network separation protects a net 

work from malicious attack is enhanced through the use of 
type enforcement. 
As noted above, in a type enforcement scheme processes 

and files are assigned to a domain and subtype, domain:sub 
type. Process-to-file, or domain-to-domain:subtype, access 
is controlled by the Domain Definition Table (DDT), that 
specifies the permissions: 
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create—ddt create 
write—ddt write 
read—ddt read 
destroy—ddt destroy 
execute—ddt execute 
rename—ddt rename 
Subtypes allow a finer division of file types (file=file, 

diry=directory, sock=socket, exec=executable, etc.). 
Interactions between the processes, or domain-to-domain, 

such as signals, are enforced by the Domain Interaction 
Table (DIT), that specifies the allowed signals (sPIUP, 
SABRT, sjob, etc.) 
An instantiated domain is one that has several instances 

with identical access rights to itself and other domains. Take 
two instantiated domains, www.0 and www1. They both 
have identical access to all other domains and subtypes. 
They also have equivalent access to their instances and no 
access to other instances. In the domain specification 
language, these domains are specified with a “X” as the last 
character, where X represents the burb id. So if you say: 

www.x: 
has read access to www:#:conf 
has write access to Slog:sock 

the DDT/DIT is created like: 
www?): 

has dat read access to www.0:conf 
has dat write access to Slog:sock 

www.1: 
has dat read access to www1:conf 
has dat write access to Slog:sock 
If another domain is given access to a general instantiated type, 

then it gets equal access to all instances, for instance: 
Admn: 

has write, read, create access to www.ft.conf 
the DDT/DIT is created like: 
Admn: 

has dat write, ddt read, ddt create access to www.0:conf 
has dat write, ddt read, ddt create access to www1:conf 

There are a set of special domains that are used to actually 
grant access to the networks themselves. These domains are 
in the form of Protocol:port. Protocol is a domain name 
corresponding to the protocol type. Current domains and 
what type of socket they map to include: 

Domain Name Network Domain Socket Family/Protocol 

topx TCP AF INET/SOCK STREAM 
udpX UDP AF INET/SOCK DGRAM 
ipox Raw IP AF INET/SOCK RAW 
rteX Route PF ROUTE/SOCK RAW 

For sockets that have port numbers, such as tcp and udp, 
the subtype is an asciish number that is the prot that binding 
is allowed to. For instance, the fip0 domain would have 
access to ftp 0:0020 and ftp 0:0021 to give it access to the 
ftp control and data ports (20 and 21). 
The access given corresponds to the directionality of 

communication. There must be ddt create privilege to 
create the socket at all. For datagram sockets, ddt read 
gives the ability to read () or recVmsg (), and ddt write 
gives access to write () and sendmsg (). 

With stream sockets, ddt read gives access to bind (), 
listen (), and accept () so that the process can receive an 
incoming connection. ddt write gives access to bind () and 
connect () so that the process can initiate an outgoing 
connection. 
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The following subtypes give access to random and 

reserved ports: 
rall—bind to all reserved ports explicitly 
rany—bind to any arbitrary reserved ports 
nall—bind to all non-reserved ports explicitly 
many—bind to any arbitrary non-reserved ports 
For portless types, the subtype grants access to a specific 

type of socket. The types currently include ‘icmp’, only 
valid under the IP domain (ipox:icmp), which gives access 
to ICMP sockets. Some more network subtypes: 

sock—flag access to a network type 
conf-access to network configuration capability 
Subtype “sock’ is used during the socket creation so the 

kernel can verify access to a given network domain. The port 
isn’t known at this point, and an exhaustive search of the 
DIT would be expensive, so any domain that has access to 
any networking domain has to be given access to the “sock’ 
subtype as well. 
Network configuration programs such as ifconfig, nss, and 

sysctl must have access to “network domain:conf’. For 
example: tepX:conf allows the Unix commands ifconfig to 
configure network interfaces and sysctl to set networking 
configurables. 
A network interface is bound to a burb at boot time. A 

given socket is bound to a particular burb at the socket 
creation time. The rules for this are pretty simple. 
An example of a type enforced, network separated system 

70 is shown in FIG. 5. In FIG. 5, ftp0 and ftp 1 are two 
instantiated domains (72.0 and 72.1, respectively). Each 
instantiated domain has access to its own protocol stack 
(74.0 and 74.1). Transfers from one domain to another are 
made through a ftp proxy 75 via calls to kernel 76. 

Processes running in an “instantiated domain” such as 
ftp0, intrinsically have access to one and only one burb, the 
burb that matches the numeric part of the domain name. In 
these cases, the system just binds that socket to the appro 
priate burb. It should be noted that a process is not actually 
bound to a burb until it tries to make a direct or indirect 
socket call to that burb. 

Programs running within other domains either have no 
access or access to all burbs. In these cases, the caller must 
specify which burb they want. If they don’t, it’s an error. If 
they do specify a burb and they don’t have access privileges 
to that burb, it’s also an error. 

This specification is implemented via a new system call, 
socketburb (). Basically, socketburb () replaces the old 
socket () system call. It performs the same function and 
takes one additional argument, burbid. The old socket () still 
exists, but its gut has been replaced by a call to socketburb 
(). 

int socketburg (int domain, int type, int protocol, unsigned 
long burbid); 

Ported applications and new programs will use the new 
socketburb (). Existing programs, in instantiated domains, 
using socket () wouldn’t have to be changed and still work. 
Burbification of socket () calls to socketburb () should use 
the library call domain to burb () to convert and pass the 
burbid argument: 

sock1 = socket (AF INET, SOCK STREAM, 0); 
sock2 = socket (AF INET, SOCK RAW, IPPROTO ICMP); 
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would become: 

int domain_to_burb (long domain); 
sock1 = socketburb (AF INET, SOCK STREAM, 0, domain to burb 

(domain)); 
sock2 = socketburb (AF-INET, SOCK-RAW, IPPROTO ICMP, 
domain_to_burb (domain)); 

Interfaces are bound to a particular burb. This is imple 
mented by a few new socket ioctls()s which set and get the 
burb id of an interface. 

Access to a socket for controlling interfaces and other 
shared parameters is controlled by access to the various conf 
subtypes. Parameters specific to a protocol, like TCP 
tunables, are controlled by access to the protocol specific 
type, such as ‘tcp0:conf’. IP layer things like the IP address 
and burbness of an interface are controlled by the types like 
‘ip0:conf’. 
The following interfaces have been modified or added to 

support type enforcement, burbification, and transparent 
proxies. The objectives of these calls have not changed, 
although access to these calls has been made more restricted. 
Some new error codes, errno, have been added in the case of 
type enforcement failures. Only the modifications are 
described below. 
socket ()—is used by a process to create a socket that is 
bound to a particular burb. If socket () is called, the socket 
is either bound implicitly to the burb id that matches the 
number of the instantiated domain, or fails. 

socketburb ()—a new system call and it is used to create a 
socket in a given burb. The burb filed is passed as an 
additional argument to the socketburb () call: 

int socket (int family, int type, int protocol); 
int socketburb (int family, int type, int protocol, unsigned long burb); 
int domain to burb (long domain); 
sock1 = socket (AF INET, SOCK STREAM, 0); 
sock2 = socketburb (AF INET, SOCK RAW, IPPROTO ICMP. 

domain to burb (domain)); 

These new error codes, errno, are returned by socket () 
and socketburb (): 
[EDBOM] returned and an audit generated if the calling 

process is not in a burb-bound domain. 
[EPERMI returned and an audit generated if the calling 

process doesn’t have dat create privilege. 
bind ()—assigns a local address and port number to a 

socket. The bind () call has been extended to allow a 
process to set the local address arbitrarily, it needs ddt 
rename access to “ipoX:Spuf’. Currently, no domains 
have this spoofing capability, i.e., no domains have dat 
rename access to “ipoX:spuf’. The calling process also 
must have the following privileges to successfully bind: 

ddt read - tepX:port 
ddt read - udpX:port 
ddt read - ipox:port, for raw IP 
has rootness - reserved ports (0–1023) 

[EADDRNOTAVAIL] returned and an audit generated if 
the calling process doesn’t have dat rename privilege. 
[EPERMI returned and an audit generated if the calling 

process doesn’t have dat read or has rootness privilege. 
connect ( )—initiates a connection from a socket to a 

specified address and port number. The calling process 
must have these privileges to the listed domains: subtypes 
to successfully connect. 
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ddt write - tepX:port 
ddt write - udpX:port 

[EPERMI returned and an audit generated if the calling 
process doesn’t have dat write privilege. 
The ioctl () call is used to manipulate the underlying 

device parameters. Several new socket ioctl () commands 
have been added. Most will work with a “struct ifreq” 
argument and be handled similar to the other set/get ioctls of 
an interface. If an ordinal value is being set or retrieved such 
as the burb id, then it will be passed in the ifr metric field. 
The following ioctl () commands now require is startup 

or is admin privilege to execute: SIOCSIFFLAGS, 
SIOCSIFMETRIC, SIOCADDMULTI, and SIOCDEL 
MULTI. EPERM is returned and an audit is generated if the 
calling process doesn’t have the correct privilege. These new 
ioctl () commands are added to support burbness in the 
secure computer: 
SIOCGIFBURB/SIOCSIFBURB–get and set the burbid of 

a network interface. The burb id is passed in the ifr 
metric field. To set the interface’s burb id, the calling 
process must have is startup or is admin privilege. A 
sample call would look like: 

int ioctl (int socket descriptor, unsigned long command, char *argp); 
struct ifreq if: 
int burb, so; 
ifr.ifr metric = burb; 
if (ioctl (so, SIOCSIFBURB, (caddr t) & ifr) < 0 perror (“ioctl 

(SIOCSIFBURB)”); 
if (ioctl (so, SIOCGIFBURB, (caddr t) & ifr) < 0) perror (“ioctl 
(SIOCGIFBURB)”); 

[EPERMI returned and an audit generated if the calling 
process doesn’t have is startup or is admin privilege. 
[EINVAL] returned and an audit generated if the calling 

process doesn’t have access to subtype “:conf’. 
SIOCGSOCKBURB—get the burb that a socket is bound to. 

This is mainly a debugging aid. The burb id is passed in 
the ifr metric field. 

SIOCGMSGBURB–get the burb of the pending message. 
It should always be the same as the burb of the socket. 
This is mainly a debugging aid. The burb id is passed in 
the ifr metric field. A sample call would look like: 

struct ifreq ifr; 
int burb, so; 
if (ioctl (so, SIOCMSGBURB, (caddr t) & ifr) < 0 perror (“ioctl 
(SIOCMSGBURB)”); 

burb = ifrifr metric; 

[ENOENT] returned and an audit generated if the socket 
cannot be read. 
SIOCGMSGIFNAME–get the name of the interface that 

the pending message arrived on. It is used as a debugging 
aid or to filter on the basis of the specific interface of the 
message. The interface name is returned in the ifr name 
field. A sample call would look like: 

struct ifreq ifr; 
int so; 
if (ioct (so, SIOCMSGIFNAME, (caddr t & ifr) < 0 perror (“ioctl 
(SIOCMSGIFNAME)”); 

printf (“interface : %s”, ifrifr name); 
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[ENOENT] returned and an audit generated if the socket 
cannot be read. 
SIOGSUBURBRT-returns a burb id for a given IP 

addresses. The kernel searches each routing table and 
returns the first route found. The IP address is passed in 
the ifr addr field. The burb id is returned in the ifr 
metric field on success. Since there can be more than one 
burb, this command is used by an incoming proxy to find 
which outing proxy to connect to. A sample call would 
look like: 

struct ifreq ifr; 
int so; 
ifrifr addr = tempaddr; 
if (ioctl (so, SIOCGBURBRT, (caddr t) & ifr) < 0) perror (“ioctl 
(SIOCGBURBRT)”); 

printf (“route %d”, ifrifr metric); 

[EHOSTUNREACH] returned and an audit generated if 
no route can be found for the given address. 
The getsockopt () and set sockopt () calls manipulate the 

options associated with a socket. The following socket 
options have been added: 

#include <sys/types.h> 
#include <sys/socket.h> 
int getsockopt (int so, int level, int optname, void "optval, int *optlen); 
int setsockopt (int so, int level, int optname, const void “optval, int 

optlen); 

SO STATE–returns the state of the socket, the so state 
field of the struc socket. This is used by applications that 
wish to be more intelligent in their handling of a socket 
depending on its state. 

SO SOCKBURB–returns the burb id of the socket, simi 
lar to ioctl (SIOCGSOCKBURB). A sample call would 
look like: 

int value, length, error; 
length = sizeof (value); 
if ((error = getsockopt (sockfö, SOL SOCKET SO SOCKBURB, & 

value, & length return error; 
return value; 

SO MSGBURB–returns the burb id of the pending 
message, similar to ioctl (SIOCGMSGBURB) via an 
unsigned long. 
[ENOENT] returned and an audit generated if the socket 

cannot be read. 
SO MSGIFNAME–returns the burb id of the pending 

message, similar to ioctl (SIOCGMSGIFNAME) via an 
unsigned long. 
[ENOENT] returned and an audit generated if the socket 

cannot be read. 
Most of the kernel auditings will be generated by type 

enforcement checks such as check dot (), check dit (), 
and check dot net () and user privilege check such as 
psuser (). These audits are logged to /var/log/audit.asc and 
/var/log/audit.te.asc. 

Network audit is another type of kernel audit. These are 
logged to /var/log/audit.asc and /var/log/audit.attack.asc. 
Currently, network audits are generated for ICMP, TCP, 
UDP, and IP packets. 
ICMP–ICMP messages are used to communicate error and 

administrative messages between systems. ICMP audits 
are the only network audits that can be configurable. This 
is implemented via the Unix command sysctl and the field 
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18 
burb.X.net.inct.ip.icmpaudit, where X is the burb id. The 
default state of the secure computer is level 1, audit only 
icmp-redirects. ICMP audits can be configured at 3 levels: 
0=no icmp audits 
1=icmp redirects only (default) 
2=all icmp messages, except echo and reply 

IP–if the source-routed packets option is disabled (0), the 
kernel will generate a “source-routed packets dropped” 
audit for each source-routed packet. The source-routed 
packet option is configurable via the sysctl command, by 
disabling or enabling the fields burb.X.net.inct.ip.for 
warding and burb.X.net.inct.ip.forwsrcrt. As default, both 
of these fields are disabled so the secure computer will not 
forward any source-routed packets. 

TCP—the kernel will generate an audit for any TCP 
attempts to synchronize sequence numbers without a valid 
protocol control block. These types of packets are viewed 
as hostile probing attempts. 

UDP-similar to TCP, the kernel will also generate a 
probing attempt audit for any UDP attempts to connect 
without a valid protocol control block. 
There are a number of system utilities that configure or 

retrieve the network states. These utilities are also modified 
to support burbness. 
arp—displays and modifies the Internet-to-Ethernet address 

resolution. The art display and command line interface 
will remain the same. Only the internal implementation 
will be modified to handle the replicated arp tables. 

ifconfig–is used to configure network interface parameters. 
It is modified to accept a “burb id” entry so that it can be 
used to set the burb of an interface. It will also print the 
burb of an interface as part of its normal output. Example: 
if config efo inet 172.17.128.79 netmask 255.255.0.0 burb 
0. 

inetd—is the internet-service daemon that runs at boot time 
and listens for connections on certain internet sockets. 
This daemon will be replaced by the Network Services 
Sentry, NSS, NSS will be “burb aware” and able to start 
network services in the appropriate domain. Resident 
servers will be launched from a similar master utility, such 
as /etc/rc, so that they run in the correct burb. For more 
information, see the proxy design specification. 

netstat—formats and displays various network-related status 
and data structures. The formatting will be modified so 
that when appropriate, the -I or -i flags and when printing 
IP sockets, it will include a burb id column in its output. 

sysctl—is used to retrieve kernel state and allows processes 
with appropriate privilege to set kernel state. Network 
states are replicated appropriately into NBURBS. For the 
curious, execute “sysctl-a” and you’ll be glad you did it. 
All services supported on the secure computer, such as 

telnet and ftp, pass their data through a set of proxies (see, 
e.g. ftp proxy 75 in FIG. 5). There is one proxy for each type 
of service, http proxy for web, telnet proxy for telnet, and so 
on. The proxy will accept () the connection or rcvmsg () 
/recVmsg () the packet and look at the incoming address, 
either in the mesg structure for UDP or via getsockname () 
for TCP. It will then find out which burb has a route to that 
destination, via ioctl (SIOCGSUBURBRT), and establish a 
socket connection in the outgoing burb. 

That connection will be via a Unix domain socket. Each 
service will have a proxy directory in /var/run, such as 
/var/run/telnetp/. In that directory each outgoing proxy will 
have already opened a domain socket. These sockets exist in 
the file namespace, so they already have access control via 
the domain and type of the socket node. Thus, the burb 
functionality guarantees that a given process can only access 
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assumption is valid. However, on a Network Separated 
system, the act of placing the administration-side program in 
a different burb than the production-side program will have 
the Network Separation side effect of disallowing process to 
process communication between the administration-side 
program and the production-side program. From a function 
ality standpoint, this is not acceptable. 
To restore the required program to program communica 

tion functionality, one is required to perform steps outside of 
those explained in the previous section. The problem to be 
solved concerns the conflicting restrictions placed by the 
type enforcement system and the network separation system. 

In Network Separation, if one program has been “bound” 
to one burb (e.g. Internet) and another program has been 
“bound” to another burb (e.g. internal), the Network Sepa 
ration mechanism will preclude the ability for the first 
program to establish a connection to the second program via 
a network communication connection; thus it precludes the 
ability for program to program communication using the 
network. One way of viewing Type Enforced Network 
Separation is to acknowledge this lack of direct network to 
network communication: since the networks cannot be 
shared, they are separated. 

So, the problem here can be restated as follows: given a 
program bound to one burb and another program bound to 
a different burb, how can we allow the two programs to 
communicate with each other without having access to the 
source code for either program. 
The procedure to solve this problem is shown in FIG. 7: 
First, at 140 decide to which burb each of the separate 

programs is to be bound. In the case of a production-side 
program and an administration-side program, it is clear that 
the production-side program must be bound to an Internet 
burb, and it is clear from a security standpoint that the 
administration-side program should be bound to an internal 
burb. In the case of more complicated sets of programs, 
tradeoffs must be made between availability and security. 
Binding a program to an Internet burb increases availability 
but also enormously increases security risks. Binding a 
program to an internal burb decreases security risks, but 
results in a decrease in availability. 

Second, at 142 determine how the two programs interact. 
Again, it is important to note that source code is not 
available for this step. If source code is available for 
inspection and modification, then this procedure does not 
apply. Without source code, this step is accomplished by 
examining the type enforcement violations generated by 
either or both programs, as required. 

Third, at 144 determine whether the type enforcement and 
network separation violations discovered in the second step 
can be eliminated. Techniques for removing TE violations 
(such as those shown in FIG. 6) can be used. In addition, one 
may be able to eliminate a type enforcement violation by 
placing one of the programs into a situation where it is 
“partially bound” to a particular burb. A “partially bound” 
program is a program which can interact with a specific burb 
under a reduced set of Network Separation rules. That is, a 
partially bound program can perform process to process 
communcation with another burb but not network to net 
work communication. Specifically, it is possible for the 
partially bound program in a first burb to signal a program 
that has been completely bound to another, separate burb, 
while simultaneously maintaining other connections to the 
first burb. Therefore, communication between burbs 
assigned to different burbs is permitted in a limited way and 
the problem is solved. 

In one embodiment, one creates this “partially bound” 
program by using a type enforcement database trick. 
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Normally, a program “P” is completely bound to a burb 
when the following syntax is used: 

“P” runs in domain www.if 
which means that program “P” can access any of the burbs 
0 through 9 (as signified by the character ‘H’ above). When 
program “P” first starts running, it has its choice of burbs 
(e.g. www.0, www1, . . . www.9) to establish a connection. 
But after the first connection, the program “P” is fully bound 
to that burb and the domain that is associated with that burb, 
and cannot establish a connection to any network in another 
burb. 
A program “P” is “partially bound” to a burb when the 

following syntax is used: 
“P” runs in domain adm0 

Here, the program “P” loses some of its flexibility (it can 
now connect only to burb adm0) but it gains the “partially 
bound” status. Furthermore, since such an approach is 
treated as if there are no other instantiated domains (i.e. no 
adml, adm2, etc.), program P running in domain adm0 can 
now connect to all other “H”-defined domains. 
For the production-side program “PP” and 

administration-side program “AA” example above, a full 
example might be: 
“AA” runs in domain adm0 
“PP” runs in domain prolif 

Thus, since the program “AA” is “partially bound” to 
“adm0°, there can be no domains adml through adm'9. 
Program “AA” has, however, gained the ability to interact 
with pra0 through proj9. Thus, the required signalling ability 
is re-established. 

If it is not possible to place all but one of the programs in 
a “partially bound” burb, then this procedure must stop 
without succeeding. The only alternative at this point is to 
place all programs in the same burb. Then, since the addi 
tional Network Separation checks are no longer an issue, this 
procedure degenerates into the type enforcement only 
approach described previously. 
Secure Commerce Server 
One embodiment of a binary program made secure 

through a combination of type enforcement and network 
separation is described next. The Netscape Commerce 
Server, version 1.1, available from Netscape Computer, Inc., 
is a server for use in conducting commercial transactions 
over the Internet. This server provides user authentication, 
SSL protection to http connections, and a forms interface for 
server administration. As such, it is critical that care be taken 
to protect a malicious attacker from gaining access to and 
subverting the program. 
A type enforced, network separated embodiment 160 of 

the Netscape Commerce server system is shown in FIG. 8. 
The Netscape Commerce server system includes two distinct 
servers: the Commerce server 162 and the administration 
server 164. In the preferred embodiment, one administration 
server 164 should be able to administer and configure a 
plurality of separate Commerce servers. In the system of 
FIG. 8, the dashed lines indicate a user level permission 
check such as the Unix file permissions. In addition, com 
ponents of the system are placed within domains 166, 168 
and 172 for a higher level of security. 
Commerce server 162 is installed via an HTML forms 

driven interface. Administration and configuration after 
installation is done in the same manner. Installation operates 
as follows: 
1. The user runs the script ns-setup in the source tree (the 

directory structure from which files are copied to install 
the Netscape Commerce Server). 

2. The user is prompted for the hostname of the host 
machine. 
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3. A temporary configuration is written in /tmp and a special 
WWW server is started using this configuration (the 
installation server). 

4. The installation server binds to an arbitrary, non-reserved 
port. 

5. The user is prompted for the name of a Web browser to 
start up. It then starts the browser on the port the instal 
lation server is listening on. 

6. The rest of the installation is HTML forms-driven through 
the browser. Various items such as port number for the 
Commerce server, UID to run the server under, install 
directory, logging, administration password, and other 
server configuration are entered via three forms. 

7. The configuration is verified and the actual installation 
takes place: 

create destination directory and subdirectories 
create document root directory 
create server startup and shutdown scripts 
create server configuration files 
copy all binaries, administration forms, and other files 
from source tree to destination tree 
change owner of directories 
start administration server 
start Commerce Server 

9. remove files created in /tmp 
8. Installation complete. 
Many Commerce servers 162 can be run on the same 

machine, binding to different ports (or even the same port, 
using different IP addresses) and having their own configu 
ration. Each server preforks 16 processes (number is 
configurable) to serve requests. This can load the system 
down if many servers are running. 

After installation, the Commerce server is administered 
via forms using any forms-capable browser and connecting 
to a separate administration server running on its own port. 
This server is started and stopped manually, except during 
installation when it is started automatically. (It is recom 
mended by Netscape that it be stopped when not being 
used.) The administration server is also configurable via 
forms (it configures itself). It can be configured to require a 
password to access it, and to allow only certain hostnames 
or IP addresses to connect to it. 
The Commerce server, once running, serves Web pages 

from a directory tree whose root is configurable. CGI script 
location, URL mappings, user authentication, access control 
by host, logging, and other items are also configurable via 
the administration server. Configuring some items causes 
creation of files, such as generating a key, installing a 
certificate, and creating a user database. 
High Level Design 

This section describes what must be done to port the 
Netscape Commerce Server to the secure computer. Since 
we have no source code from Netscape, we cannot modify 
how the server or installation process operates. Thus, design 
will focus on what needs to be done outside the Netscape 
source code to handle type enforcement. 
The installation process will be done completely in the 

administrative kernel (no type enforcement checks), so 
setting file types in the source tree is not necessary. All file 
types must be set after the install process is complete since 
Netscape is not type-enforcement (TE) aware. To accom 
plish this, a script is used to set all types appropriately. The 
script must be able to find the appropriate directories 
because paths are configurable, and the server files are in a 
directory named for the port it binds to. This info is passed 
via arguments or entered by the installer via prompts. 
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Commerce Server 162 runs in domain 166. In one 

embodiment, this is the same domain in which the CERN 
server (not shown) runs. Domain 166 is a bound (burbed) 
domain which is extended to handle the Commerce Server. 
That is, the Commerce Server is extended to be able to bind 
to port 443 (https), 80 (http), 8000, 8001, and 8080. In 
addition, to allow site flexibility, Commerce Server 162 
must be able to bind to selected reserved port ranges. 

Administration Server 164 runs in a new Netscape Admin 
domain, domain 168. Domain 168 must be a burbed domain, 
since it does a non-burbaware socket () call. Transfers 
between domains must be done through proxy programs 
acting in concert with kernel 170. 
CGI scripts run in a CGI processor 171 in burbed CGI 

domain 172. Since, however, the Netscape server cannot be 
modified to do a makedomain () to run the CGI script in the 
proper domain, there will need to be a tran type added to 
CGI domain 172. Then, all CGI scripts will be of type tran. 
In an alternate embodiment, a line could be added to the CGI 
script itself which causes the script to automatically transi 
tion into CGI domain 172. To run a CGI script, Commerce 
Server 162 initiates a new process which executes in CGI 
processor 171 within CGI domain 172. The results are then 
transferred back to Commerce Server 162. In one 
embodiment, the CERN server also executes CGI scripts 
within CGI domain 172. 

For installing two servers on the same port, but with 
different IP addresses: 

1. Follow the install directions twice, specifying every 
thing the same except a different server name (which 
will need to resolve to the correct IP address), bind 
address, and document root. 

2. Make an IP alias so that both IP addresses used for the 
bind addresses in the previous step access the secure 
computer. Type: ifconfig efl alias 172.17.128.199 to 
alias the IP address 172.17.128.199 to the external 
interface. 

3. Access both servers using the different IP addresses. 
Files Manifest 
The following are files associated with the Commerce 

Server. In this section, /server-root? will denote the path 
where the server files are installed. Also, the subdirectory 
https-443 will denote the directory containing all files spe 
cific to the server running on port 443. The actual name will 
contain the port number the server binds to in place of 443’. 

Executables 
/server-root/bin/https/ns-httpd 
The Commerce server. 

/server-root/admserv/ns-admin 
The administration server. 

/server-root/admserv/servlist 
Part of the administration server. 

/server-root/bin/https/admin/bin/* 
CGI scripts for the admin server that generate forms, 

interpret responses, change config files, administer servers, 
generate keys, etc. 
/server-root/extras/database/batchdb 

Utility to convert NCSA-style user database to DBM 
database. 
/server-root/extras/database/changepw.cgi 
CGI script to allow users to change their own password 

via forms. 
/server-root/extras/log anly/analyze 

Analyze access logs. 
/server-root/extras/log anly/a form.cgi 
CGI script to analyze access logs via forms. 

/server-root/https-443/restart 
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Restart the Commerce server. 
/server-root/https-443/rotate 

Rotate the log files. 
/server-root/https-443/start 

Start up the Commerce server. 
/server-root/https-443/stop 

Shut down the Commerce server. 
/server-root/start-admin 

Start up the administration server. 
/server-root/stop-admin 

Shut down the administration server. 
Configuration files 

/server-root/admserv/admpw 
User and password file for access to administration server. 

/server-root/admserv/ns-admin.conf 
Configuration file for the administration server. 

/server-root/bin/https/admin/html/* 
Forms templates for the administration server. 

/server-root/bin/https/admin/icons/* 
Icons for the administration server. 

/server-root/mc-icons/* 
Icons for the Commerce server, used for gopher and ftp 

listings. 
/server-root/userdb/* 

User databases. (Initially empty) 
/server-root/https-443/config/admin.conf 
Commerce server configuration file. 

/server-root/https-443/config/magnus conf 
Commerce server configuration file. 

/server-root/https-443/config/obj.conf 
Commerce server configuration file. 

/server-root/https-443/config/mime.types 
Commerce server configuration file. 

/server-root/https-443/config/ServerKey.der 
Key pair file. Initially non-existent, generated by admin 

server when requested by the administrator. Path is config 
urable. 
/server-root/https-443/config/ServerCert.der 

Certificate file. Initially non-existent, installed by admin 
server from the Certificate Authority’s certificate response 
when requested by the administrator. Path is configurable. 
Log files 

/server-root/admserv/errors 
Log file for administration server. 

/server-root/https-443/logs/access 
Commerce server access log. Path is configurable. 

/server-root/https-443/logs/errors 
Commerce server error log. 

/server-root/https-443/logs/sccure 
Commerce server secure log. (All https accesses are 

logged here with the keysize used). 
Temporary files 

/server-root/admserv/pid 
Contains the process ID of the administration server when 

running. 
/server-root/https-443/logs/pid 

Contains the process ID of the Commerce server when 
running. 

System files 
/etc/spwd.db 

System password file containing encrypted passwords. 
/etc/pwd.db 
A shadow password file. 
Other files 

/server-root/extras/database/changepw.htm 
HTML form to allow users to change their own password. 

/server-root/extras/log anly/a form.html 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

28 
HTML form to analyze access logs. 

/server-root/docs/index. html 
Default home page for the Commerce server. Path is 

configurable. 
CGI scripts 

Path is configurable. 
HTML pages 

Path is configurable. 
As noted previously, Netscape Commerce Web server 162 

runs in the Web server domain (domain 166), the same 
domain that the CERN Web server runs in. Therefore, the 
Web server domain needs execute permission to the follow 
Ing: 
/server-root/bin/https/ns-httpd 

In addition, the Web server domain needs read permission 
to these files: 
/server-root/mc-icons/* 
/server-root/userdb/* 
/server-root/https-443/config/admin. conf 
/server-root/https-443/config/magnus.conf 
/server-root/https-443/config/obj.conf 
/server-root/https-443/config/mime.types 
/server-root/https-443/config/ServerKey.der 
/server-root/https-443/config/ServerCert.der 
/server-root/extras/database/changepw.htm 
/server-root/extras/log anly/a form.html 
/server-root/docs/index.html 
The Web server domain needs write permission to these 

files: 
/server-root/https-443/logs/access 
/server-root/https-443/logs/errors 
/server-root/https-443 /logs/secure 
/server-root/https-443/logs pid 

Since the server normally runs as root, if it were able to 
execute arbitrary code, this would be bad. We can address 
this by not having it run as root, taking advantage of the type 
enforcement protection of the sockets. This allows users 
other than root to connect to low numbered sockets. Other 
than needing to bind to port 80 or 443, there is no other 
reason the server needs to run as root. Therefore, the server 
will run as user “www.” and group “www.” with no need to 
run as root. 

The CGI bin executables present a potential security 
concern. Since the Commerce server is allowed to execute 
these files, if someone were able to put their own executable 
on the secure computer, the server may be compromised. TE 
only allows the Web server domain to transition to the CGI 
domains and no others. It does not have permission to create 
or write to files of any executable type. This helps prevent 
the possibility of an external user subverting the server and 
uploading an executable file. 
The entire directory tree containing the html documents 

which the Commerce server accesses will be write protected 
from the Web server domain. A separate writable directory 
will be set aside for all the data created by external users. 
This is where the CGI executables will put their results. The 
CGI domain will be allowed to create files in this directory, 
but not to read or destroy them. These files may later be read 
and moved internally by the webmaster using mail or FTP. 
The password administration program will run in the 

Netscape Admin domain (domain 168). This domain will 
have all the accesses required to maintain the Admin server 
and all Commerce servers on the secure computer. 
The Admin domain needs execute access to the following: 

/server-root/admserv/ns-admin 
/server-root/admserv/servlist 
/server-root/bin/https/admin/bin/* 
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/server-root/extras/database/batchdb 
/server-root/extras/log anly/a form.cgi 
/server-root/extras/log anly/analyze 
/server-root/https-443/restart 
/server-root/https-443/rotate 
/server-root/https-443/start 
/server-root/https-443/stop 
/server-root/start-admin 
/server-root/stop-admin 

The Admin domain needs read access for: 
/server-root/bin/https/admin/html/* 
/server-root/bin/https/admin/icons/* 
/server-root/extras/database/changepw.htm 
/server-root/extras/log anly/a form.html 
HTML pages 
The Admin domain needs both read and write access for: 

/server-root/admserv/admpw 
/server-root/admserv/ns-admin.conf 
/server-root/admserv/pid 
/server-root/admserv/errors 
/server-root/userdb/* 
/server-root/https-443/config/admin.conf 
/server-root/https-443/config/magnus.conf 
/server-root/https-443/config/obj.conf 
/server-root/https-443/config/mime.types 
/server-root/https-443/config/ServerKey.der 
/server-root/https-443/config/ServerCert.der 
/server-root/https-443/logs/access 
/server-root/https-443/logs/errors 
/server-root/https-443/logs/secure 
/server-root/https-443/logs/pid 
CGI scripts run in CGI domain 172. The following files 

will be of cgix:tran type and will run in the CGI domain: 
/server-root/extras/database/changepw.cgi 
/server-root/extras/log anly/a form.cgi 
CGI-scripts 
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Commerce Server 162 is controlled by the various con 

figuration files maintained by administration server 164. In 
one embodiment, it may be advantageous to add the ability 
to start and stop administrative server 164 from another 
system administration program running in another domain. 

Since the secure computer uses type enforcement on 
sockets, we can allow users other than root to bind to 
reserved ports. As a result, we run the Commerce server as 
user id “www.” and group id “www.”. The “www.” user is 
similar to “nobody” and has no log in capabilities. The 
administration server will still run as root. In addition, 
scripts that start and stop the servers need to execute /bin/sh 
(type $Sys:shel). These scripts are also not type-aware, so 
they need to be modified to execute in the correct domain. 

In one embodiment, the following domains are used to 
define the commerce server system. It should be apparent 
that other combinations of domains, privileges or access 
rights could be used. In the list, each domain can have the 
following privileges: “is admin” indicates the domain is an 
administrative domain, “has rootness” means that the 
domain can violate Unix permissions if the process UID is 
root, “can setlogin” indicates that the domain can set the 
login name of a process. In addition, each domain’s DIT 
could have the following permissions: “dt” indicates that 
transition to the named domain is allowed, “s/ABRT’’ indi 
cates that sending an ABRT signal to the named domain is 
allowed, “sjob” indicates that sending a job control signal to 
the named domain is allowed, “shUP” indicates that send 
ing a HUP signal to the named domain is allowed, and 
“suser” indicates that sending a USR1 or USR2 signal to the 
named domain is allowed. 

Finally, each DDT uses the following permissions: “w” is 
permission to write, “r” is permission to read, “d” is per 
mission to destroy, “n” is permission to rename, “c” is 
permission to create and “e” is permission to execute. 

Domain: CGI ‘cgix’ 
{ CGI scripts run here - limited access to things ) 
Privs: 
DIT: 

CGI 
Subtype: Script “scrp’ 

{Used for CGI shell scripts ) 
DDT. 

SABRT { } 

CGI e r { } 
Webmaster w r d n c { } 
WWW e r { } 

Subtype: Transistion “tran’ 
{Used for CGI compiled executables, not shell scripts. } 
DDT. 

Subtype: File ‘file' 

DDT. 

Subtype: Directory ‘diry’ 

DDT. 

Subtype: Save ‘save’ 

DDT. 

Webmaster I e W in { } 
WWW e { } 

CGI w r d n c { } 
Webmaster w r d n c { } 

CGI w r { } 
Webmaster w r d n c { } 

CGI C { } 
Webmaster w r d n c { } 

Domain: NetscapeAdmServ “nas): 
{ This domain is for the Netscape Admin Server. } 
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-continued 

Privs: 
can setlogin 

DIT: 
CGI dt { } 
NetscapeAdmServ sjob saBRT ( To control itself. } 
www dt sjob SHUP { } 

Subtype: Executable exec’ 
{ } 
DDT. 

NetscapeAdmServ re { } 
Webmaster I e { } 

Subtype: Config ‘conf 
{The Netscape Admin Server configuration file ) 
DDT. 

Webmaster r w n c d { } 
NetscapeAdmServ r w d n c { } 

Subtype: File ‘file' 
{ Default file type. This is the type created whenever the Admin 
Server creates a file (Key/Certificate files, User Databases, 
temporary files, etc.). } 
DDT. 

Webmaster w r d n c { } 
NetscapeAdmServ w r d n c { } 
WWW r {To read Key and Certificate files, and User 

databases created by the Netscape admin 
server. } 

Subtype: Directory ‘diry’ 
{ } 
DDT. 

NetscapeAdmServ w r d n c { } 
Webmaster w r d n c { } 

Domain: Webmaster “Webr’ 
{ This domain is for web admin work. } 
Privs: 

is admin 
has rootness 

DIT: 
CGI dt sjob { } 
NetscapeAdmServ dt SJob SABRT | } 
Webmaster SJob SHUP SABRT 
WWW dt SJob SHUP SABRT 

Subtype: File ‘file' 
{ Default file type. } 
DDT. 

| | 

Webmaster e w r d n c { } 
Subtype: Executable exec’ 

{ } 
DDT. 

Webmaster € { } 
Subtype: Directory ‘diry’ 

{ } 
DDT. 

Webmaster w r d n c { } 
Domain: www ‘www#’ 

{The www domain is where any Web servers will be run, such as the 
Commerce Server. } 
Privs: 
DIT: 

CGI dt { } 
www SUser SJob SHUP SABRT {Needs to control itself. } 

Subtype: Config ‘conf 
{The httpd configuration file(s). } 
DDT. 

NetscapeAdmServ w r {} 
Webmaster r w n c d { } 
WWW r { } 

Subtype: File ‘file' 
{ Default file type. This is the type created whenever the 
Commerce Server creates a file (log files, temporary files, etc.). } 
DDT. 

NetscapeAdmServ r n | } 
Webmaster w r d n c { } 
www w r d n c { } 

Subtype: Page page’ 
{ web pages } 
DDT. 

NetscapeAdmServ r {} 
Webmaster r w n c d { } 
WWW r { } 

Subtype: Directory ‘diry’ 

32 
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-continued 

{ } 
DDT. 

CGI r { } 
NetscapeAdmServ w r {} 
Webmaster w r d n c { } 
www w r d c 

34 

{ Web stores cached files in dirs, 
needs to make and destroy as needed} 

Domain: www.Common “wwwc’ 
{The common Web server domain (for items shared across burbs). } 
Privs: 
DIT: 
Subtype: Executable exec’ 

{ This is the Web Server executable type. } 
DDT. 

Webmaster € { } 
WWW e { Need to be able to run the server. } 

Subtype: Config ‘conf 
{ } 
DDT. 

NetscapeAdmServ w r d n, c { } 
Webmaster w r d n c { } 
WWW r { } 

Subtype: Directory ‘diry’ 
{ } 
DDT. 

CGI r { } 
NetscapeAdmServ w r {} 
Webmaster w r d n c { } 
WWW r { } 

Subtype: Page page’ 
{ } 
DDT. 

CGI r { } 
NetscapeAdmServ r {} 
Webmaster w r d n c { } 
WWW r { } 

Further information on an enhanced security commerce 
server can be found in “SECURE COMMERCE SERVER”, 
U.S. patent application Ser. No. xx/xxxxx by Jensen et al., 
filed herewith, the details of which are hereby incorporated 
by reference. 

Although the present invention has been described with 
reference to the preferred embodiments, those skilled in the 
art will recognize that changes may be made in form and 
detail without departing from the spirit and scope of the 
invention. 
What is claimed is: 
1. A method of providing increased security for compiled 

program code, comprising the steps of: 
installing the compiled program code in a computer; 
executing the compiled program code in the computer; 
logging type enforcement violations occurring during 

execution of the compiled program code; and 
modifying execution of the compiled program code in 

response to the logged type enforcement violations to 
prevent recurrence of the logged type enforcement 
violations. 

2. The method according to claim 1, wherein the compiled 
program code executes within an execution environment and 
wherein the step of modifying execution of the compiled 
program code comprises the step of changing the execution 
environment. 

3. The method according to claim 1, wherein the step of 
modifying execution of the compiled program code com 
prises the steps of: 

granting access permissions to processes generating the 
type enforcement violations; and 

reexecuting the compiled program code to determine if 
additional type enforcement violations occur. 
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4. A method of adding additional levels of security to 
compiled program code, comprising the steps of: 

executing the compiled program code within a type 
enforcement environment, wherein the step of execut 
ing the compiled program code includes the step of 
checking each access by a process for type enforcement 
violations; and 

modifying operation of the compiled program code in 
response to the logged type enforcement violations to 
eliminate each type enforcement violation. 

5. The method according to claim 4, wherein the step of 
modifying operation of the compiled program code com 
prises the step of changing the environment within which the 
compiled program code is executing. 

6. The method according to claim 5, wherein the step of 
changing the environment includes the steps of: 

defining a particular user; 
assigning type enforcement permissions on the access 

such that the access can only be performed by the 
particular user; and 

starting the process as that particular user. 
7. The method according to claim 4, wherein the step of 

modifying operation of the compiled program code com 
prises the step of granting appropriate type enforcement 
permissions to the access. 

8. The method according to claim 7, wherein the step of 
checking each access includes the step of generating a type 
enforcement violation when a process tries to access a data 
object having a type to which the process lacks access 
permission and wherein the step of granting appropriate type 
enforcement permissions includes the step of setting data 
object access permissions to permit the access. 

9. The method according to claim 7, wherein the step of 
checking each access includes the step of generating a type 
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enforcement violation when a first process tries to initiate a 
process to process communication to a second process to 
which the first process lacks access permission and wherein 
the step of granting appropriate type enforcement permis 
sions includes the step of setting process interaction permis 
sions to permit the communication. 

10. The method according to claim 7, wherein the step of 
checking each access includes the step of generating a type 
enforcement violation when a first process tries to initiate a 
system environment access to which the first process lacks 
access permission and wherein the step of granting appro 
priate type enforcement permissions includes the step of 
setting system environment access permissions to permit the 
a CCèSS. 

11. The method according to claim 4, wherein the step of 
modifying operation of the compiled program code com 
prises the steps of: 

dividing the compiled program code into a plurality of 
processes, wherein the plurality of processes includes a 
plurality of first processes and a plurality of second 
processes; 

assigning the first processes to a first burb; 
assigning the second processes to a second burb; 
determining how the first and second processes interact 

between the first and second burbs; and 
granting type enforcement permissions to permit neces 

sary interactions. 
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12. The method according to claim 11, wherein the step of 

determining includes the step of generating a type enforce 
ment violation when a process operating in the first burb 
tries to access a data object assigned to the second burb. 

13. The method according to claim 11, wherein the step of 
determining includes the step of generating a type enforce 
ment violation when a first process operating in the first burb 
tries to initiate a process to process communication to a 
second process assigned to the second burb. 

14. The method according to claim 13, wherein the step 
of granting appropriate type enforcement permissions 
includes the steps of: 

partially binding the first process to the first burb, wherein 
a partially bound process is a process which can 
interact with a specific burb without network separation 
restrictions; and 

giving the partially bound first process permission to 
initiate a process to process communication to the 
second process. 

15. The method according to claim 11, wherein the step of 
determining includes the step of generating a type enforce 
ment violation when a process operating in the first burb 
tries to initiate a system environment access to a process 
assigned to the second burb. 




