
US005867647A

United States Patent [19] [11] Patent Number: 5,867,647
Haigh et al. [45] Date of Patent: Feb. 2, 1999

[54] SYSTEM AND METHOD FOR SECURING 0554182A1 4/1993 European Pat. Off. H04L 29/06
COMPILED PROGRAM CODE 0 743 777A2 11/1996 European Pat. Off. H04L 29/06

96/13113 5/1996 WIPO H04L 29/06

[75] Inventors: J. Thomas Haigh, Minneapolis; .º !!. § ------------------------------ tº'º.
* W. Jensen, Oakdale, both of 97/29413 8/1997 WIPO .

IIl?l.

[73] Assignee: Secure Computing Corporation, OTHER PUBLICATIONS
Roseville, Minn. News Release: “100% of Hackers Failed to Break Into One

Internet Site Protected by Sidewinder"M”, Secure Comput
[21] Appl. No.: 594,893 ing Corporation (Feb. 16, 1995).
[22] Filed: Feb. 9, 1996 News Release: “Internet Security System Given ‘Product of

the Year' Award”, Secure Computing Corporation (Mar. 28,
[51] Int. Cl." … H04L 9/00 1995).
[52] U.S. Cl. … 395/186: 395/726 News Release: “SATAN No Threat to Sidewinder"M”,
[58] Field of Search 395/704, 288, Secure Computing Corporation (Apr. 26, 1995).

395/116, 677, 726, 186; 380/4; 707/9 “Sidewinder Internals”, Product information, Secure Com
[56] References Cited puting Corporation, 16 p. (Oct. 1994) -

“Special Report: Secure Computing Corporation and Net
U.S. PATENT DOCUMENTS work Security”, Computer Select, 13 p. (Dec. 1995).

3,956,615 5/1976 Anderson et al. 235/61.7 B Ancilotti, P., et al., “Language Features for Access Control”,
4,104,721 8/1978 Markstein et al. 364/200 IEEE Transactions on Software Engineering, SE—9, 16–25
4,177,510 12/1979 Appell et al. 364/200 (Jan. 1983).
4,442,484 4/1984 Childs, Jr. et al. ... 364/200 & 4 - - - - * -- -33
4,584,639 4/1986 Hardy jº, Cobb, s, “Establishing Firewall Policy", IEEE, 198-205
4,621,321 11/1986 Boebert et al. ... 364,200 (1996).
4,648,031 3/1987 Jenner 364/200 - -
4,701,840 10/1987 Boebert et al. 364/200 (List continued on next page.)
4,713,753 12/1987 Boebert et al. 364/200
4,870,571 9/1989 Frink 364/200 Primary Examiner—James P. Trammell
4.885,789 12/1989 Burger et al. … 380/25 Assistant Examiner—Matthew Smithers
5,093,914 3/1992 Coplien et al. 395/700 Attorney, Agent, or Firm—Schwegman, Lundberg,
5,153,918 10/1992 Tuai .. *02° Woessner &Kluth. PA
5,204,961 4/1993 Barlow 395/725 2 * * * *
5,228,083 7/1993 Lozowick et al. 380/9 [57] ABSTRACT
5,263,147 11/1993 Francisco et al. 395/425
5,272,754 12/1993 Boebert 380/25 A system and method of providing increased security for
5,276,735 1/1994 Boebert et al. … 380/21 compiled program code. Compiled program code is installed
5,303,303 4/1994 White …~~~~ 380/49 in a computer having type enforcement capability. The
sº º! i. al. ai." sº compiled program code is allowed to execute and type
2~~~ 2 / uraiSngham et al. / enforcement violations are logged. The execution environ

5,359,659 10/1994 Rosenthal 380/4 t of th iled de is th dified t
5,414,833 5/1995 Hershey et al. sos.sºs ment of Ine compiled program code is inen moduled to
5,684,951 11/1997 Goldman et al. 395/18801 prevent recurrence of the logged type enforcement viola

FOREIGN PATENT DOCUMENTS

686906 12/1995 Denmark .

tions.

15 Claims, 10 Drawing Sheets

100 |NSTALL PROGRAM

102 RUN PROGRAM

104 FOR EACH TE
WIOLATION

106
DEAL WITH

TE WIO: ATION

108
|

142

(GNORE
THE

WIC ATION:

REMOVE REGUFst
THAT GENERATED
THE VIOLATION

GRANT PERMISSION(s)
TO REMOVE THE

WIOLATION

PROCESS
TO=PROCESS
?(\{{UNICATION

SYSTEM
£NWIRONMEMT
ACCESS

124
%

SET
FILE ACCESS
PERMISSION(S)

SET PROCESS
INTERACTION

PERMISSION(s)

SET system
ENVIRONMENT

ACCESS

BLUE COAT - EXHIBIT 1014

5,867,647
Page 2

OTHER PUBLICATIONS

Damashek, M., “Gauging Similarity with n—Grams: Lan
guage—Independent Categorization of Text”, Science, 267,
843–848 (Feb. 10, 1995).
Gassman, B., “Internet Security, and Firewalls Protection on
the Internet”, IEEE, 93–107 (1996).
Greenwald, M., et al., “Designing an Academic Firewall:
Policy, Practice, and Experience with SURF", IEEE, 79–92
(1996).
Karn, P., et al., “The ESP DES-CBC Transform”, Network
Working Group, Request for Comment No. 1829, http//
ds.internic.net/rfc/rfc.1829.txt, 9 p. (Aug. 1995).
Lampson, B.W., et al., “Dynamic Protection Structures”,
AFIPS Conference Proceedings, 35, 1969 Fall Joint Com
puter Conference, Las Vegas, NV, 27–38 (Nov. 18–20,
1969).
McCarthy, S.P., “Hey Hackers! Secure Computing Says You
Can't Break into This Telnet Site”, Computer Select, 2 p.
(Dec. 1995).
Metzger, P., et al., “IP Authentication using Keyed MD5°,
Network Working Group, Request for Comments No. 1828,
http//ds.internic.net/rfc/rfc.1828.txt, 5 p. (Aug. 1995).
Peterson, L.L., et al., In: Computer Networks, Morgan
Kaufmann Publishers, Inc., San Francisco, CA, pp.
218–221, 284–286 (1996).
Schroeder, M.D., et al., “A Hardware Architecture for Imple
menting Protection Rings”, Communications of the ACM,
15, 157–170 (Mar. 1972).
Smith, R.E., “Constructing a High Assurance Mail Guard”,
Secure Computing Corporation (Appeared in the Proceed
ings of the National Computer Security Conference), 7 p.
(1994).
Stadnyk, I., et al., “Modeling User’s Interests in Information
Filters”, Communications of the ACM, 35, 49–50 (Dec.
1992).
Stempel, S., “IpAccess—An Internet Service Access System
for Firewall Installations”, IEEE, 31–41 (1995).
Stevens, C., “Automating the Creation of Information Fil
ters”, Communications of the ACM, 35, 48 (Dec. 1992).
Thomsen, D., “Type Enforcement: The New Security
Model”, SPIE, 2617, 143–150 (1995).
Warrier, U.S., et al., “A Platform for Heterogeneous Inter
connection Network Management”, IEEE Journal on
Selected Areas in Communications, 8, 119–126 (Jan. 1990).
White, L.J., et al., “A Firewall Concept for Both Control—
Flow and Data-Flow in Regression Integration Testing”,
IEEE, 262–271 (1992).
Wolfe, A., “Honeywell Builds Hardware for Computer
Security”, Electronics, 14–15 (Sep. 2, 1985).
Commun, of the ACM, vol. 35, p. 28, (Dec. 1992).
“Answers to Frequently Asked Questions About Network
Security”, Secure Computing Corporation, pp. 1–41 & pp.
1–16, (Date unavailable).
“Copy of PCT Search Report”, Application No. PCT/US95/
12681, 8 pages, (Apr. 9, 1996).
J. A. Adam, “Meta-matrices”, IEEE Spectrum, p. 26, (Oct.
1992).
J. A. Adam, “Playing on the net”, IEEE Spectrum, 29 (Oct.
1992).

Lee Badger, et al., “Practical Domain and Type Enforcement
for UNIX”, 1995 IEEE Symposium on Security and Privacy,
pp. 66–77, (May, 1995).
N. J. Belkin, et al., “Information filtering and information
retrieval: Two sides of the same coin’?”, Commun, of the
ACM, vol. 35, p. 29, (1992).
S. M. Bellovin, et al., “Network Firewalls”, IEEE Commu
nications Magazine, vol. 32, 9 pages, (Sep. 1994).
William R. Bevier, et al., “Connection Policies and Con
trolled Interference”, The Eighth IEEE Computer Security
Foundations Workshop, IEEE Computer Society Technical
Committee on Security and Privacy, pp. 167–176, (Jun.,
1995).
T. F. Bowen, et al., “The datacycle architecture”, Commun.
of the ACM, 35, 71 (1992).
J. Bryan, “Firewalls For Sale”, BYTE, 99–100, 102,
104–105, (Apr. 1995).
B. B. Dillaway, et al., “A Practical Design For A Multilevel
Secure Database Management System”, American Institute
of Aeronautics and Astronautics, Inc., pp. 44–57, (Dec.
1986).
Todd Fine, et al., “Assuring Distributed Trusted Mach”,
IEEE Computer Society Symposium on Research in Security
and Privacy, pp. 206–218, (1993).
P. W. Foltz, et al., “Personalized information delivery: an
analysis of information filtering methods”, Commun. of the
ACM, vol. 35, p. 51, (1992).
D. Goldberg, et al., “Using collaborative filtering to weave
an information tapestry”, Commun. of the ACM, vol. 35, p.
61, (1992).
F. T. Grampp, “Unix Operating System Security”, AT&T
Bell Laboratories Technical Journal, vol. 63, No. 8,
1649–1672, (Oct. 1984).
J. Thomas Haigh, et al., “Extending the Noninterference
Version of MLS", IEEE Transactions of Software Engineer
ing, vol. SE—13, No. 2, pp. 141–150, (Feb., 1987).
S. T. Kent, “Internet privacy enhanced mail”, Commun. of
the ACM, vol. 36, p. 48, (1993).
K. Lee, et al., “A framework for controlling cooperative
agents”, Computer, p. 8, (1993).
Yuet C. Lee, et al., “Multimedia: Full—Service Impact on
Business, Education, and the Home”, SPIE–The Interna
tional Society for Optical Engineering, vol. 2617, pp.
143–150, (Oct. 1995).
S. Loeb, “Architecting personalized delivery of multimedia
information”, Commun, of the ACM, 35, 39 (1992).
Paul Merenbloom, “Network ‘fire walls’ safeguard LAN
data from outside intrusion”, Infoworld, LAN Talk, pp. 69 &
add’1 page, (Jul 25, 1994).
K. Obraczka, et al., “Internet resource discovery services”,
Computer, p. 8, (Sep., 1993).
L. Press, “The net: progress and opportunity”, Commun. of
the ACM, vol. 35, p. 21, (1992).
M. F. Schwartz, “Internet resource discovery at the Univer
sity of Colorado”, Computer, p. 25, (Sep. 1993).
Richard E. Smith, “Sidewinder: Defense in Depth Using
Type Enforcement”, International Journal of Network Man
agement, pp. 219–229, (Jul—Aug. 1995).

5,867,647 Sheet 1 of 10 Feb. 2, 1999 U.S. Patent

XA>JONALEN TV/NMBINI 0
|

X>JOM IBN TWNNEIXE

U.S. Patent Feb. 2, 1999 Sheet 2 of 10

20 SOCKET CALLS

22- PROTOCOL DRIVERS

24- MEDIA DRIVERS

FIG. 2A

ROUTING/|| "T ICMP/ARP||

5,867,647

U.S. Patent Feb. 2, 1999 Sheet 3 of 10 5,867,647

20 SOCKET CALLS

5,867,647 Sheet 4 of 10 Feb. 2, 1999 U.S. Patent

-l

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

-l

-l

– – – †-JL- - - - - - - - - - ær - - - - - - - -+ – –
| ‘ZZO‘ZZ STTVO LEXIOOS H-Oz

5,867,647 Sheet 5 of 10 Feb. 2, 1999 U.S. Patent

[N]>JEAINQ \/IC]EWN
N°99 [N]>JENING [N]di LEXIOOS

TTVO | EXMOOS
09

5,867,647

XIXJONALEN TWNNELNI

Sheet 7 of 10 Feb. 2, 1999 U.S. Patent

| EIN?JEHLE èJE])\\/] di èJEWWT dO 1

U.S. Patent Feb. 2, 1999 Sheet 8 of 10 5,867,647

100- INSTALL PROGRAM FIG. 6

102 RUN PROGRAM

1 O4 FOR EACH TE
VIOLATION

106
DEAL WITH

TE VIOLATION

11 O 112

IGNORE REMOVE REQUEST ||GRANT PERMISSION(S)
THE THAT GENERATED TO REMOVE THE

VIOLATION THE VIOLATION VIOLATION

SYSTEM
FILE 114 ENVIRONMENT

ACCESS KIND OF ACCESS
VIOLATION

116 PROCESS—
YES TO–PROCESS

COMMUNICATION
118

USE
SHARED
TYPE

120 122 124

SET SET PROCESS SET SYSTEM
FILE ACCESS INTERACTION ENVIRONMENT
PERMISSION(S) || PERMISSION(S) ACCESS

U.S. Patent Feb. 2, 1999 Sheet 9 of 10 5,867,647

140 ASSIGN BURBS

DETERMINE HOW THE
PROGRAMS INTERACT
BETWEEN BURES

ELIMINATE TE
VIOLATION

FIG. 7

142

144

5,867,647 Sheet 10 of 10 Feb. 2, 1999 U.S. Patent

èJOSSBOO?]d ISOO

5,867,647
1

SYSTEM AND METHOD FOR SECURING
COMPILED PROGRAM CODE

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to computer security, and
more particularly, to an apparatus and method for providing
increased computer security to previously compiled com
puter software.

2. Background Information
There has been an explosion in the growth of computer

networks as organizations realize the benefits of networking
their personal computers and workstations. Increasingly,
these networks are falling prey to malicious outsiders who
hack into the network, reading and sometimes destroying
sensitive information. Exposure to such attacks has
increased as companies connect to outside systems such as
the Internet.

To protect themselves from attacks by malicious
outsiders, organizations are turning to mechanisms for
increasing network security. One such mechanism is
described in “SYSTEM AND METHOD FOR PROVID
ING SECURE INTERNETWORK SERVICES”, U.S.
patent application Ser. No. 08/322,078 filed Oct. 12, 1994 by
Boebert et al., the discussion of which is hereby incorpo
rated by reference. Boebert teaches that modifications can be
made to the kernel of the operating system in order to add
type enforcement protections to the operating system kernel.
This protection mechanism can be added to any other
program by modifications to the program code made prior to
compiling. It cannot, however, be used to add type enforce
ment protection to program code after that program code has
been compiled.
A number of software vendors keep close guard over their

source code (in order, e.g. to protect trade secrets). Such
vendors may refuse to provide a source code level version of
their programs to facilitate adding additional computer secu
rity mechanism. What is needed is a way of adding computer
security protection to compiled program code to increase
secure operation of such code.

SUMMARY OF THE INVENTION

The present invention is a system and method of provid
ing increased security for compiled program code. Compiled
program code is installed in a computer having type enforce
ment capability. The compiled program code is allowed to
execute and type enforcement violations are logged. The
execution environement of the compiled program code is
then modified to prevent recurrence of the logged type
enforcement violations.

According to another aspect of the present invention,
additional levels of security can be added to compiled
program code by executing the compiled program code
within a type enforcement environment, wherein the step of
executing the compiled program code includes the step of
checking each access by a process for type enforcement
violations. Operation of the compiled program code is then
modified to eliminate each type enforcement violation.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a representation of a system having an internal
and external interface connected via two separate protocol
stacks;

FIGS. 2a–d are representations of communication proto
cols;

10

15

20

25

30

35

40

45

50

55

60

65

2
FIG. 3 is a representation of one form of interprocessor

communication which can be used in a system having a
plurality of separate protocol stacks;

FIG. 4 is a more detailed representation of one embodi
ment of the form of interprocessor communication shown in
FIG. 3;

FIG. 5 is an alternate embodiment of the system of FIG.
1, in which all communications between regions (burbs)
pass through system space before being passed to another
burb;

FIG. 6 is a flowchart illustrating the steps taken in
securing compiled program code according to the present
invention;

FIG. 7 is a flowchart illustrating the steps taken in
applying network separation to compiled program code
according to the present invention; and

FIG. 8 is a representation of a system built using the steps
shown in FIGS. 6 and 7.

DETAILED DESCRIPTION OF THE
PREFFERED EMBODIMENTS

In the following Detailed Description of the Preferred
Embodiments, reference is made to the accompanying
Drawings which form a part hereof, and in which are shown
by way of illustration specific embodiments in which the
invention may be practiced. It is to be understood that other
embodiments may be utilized and structural changes may be
made without departing from the scope of the present
invention.

Computer systems which use a single communications
protocol stack to handle communication between an internal
and an external network are widely in use. This is the
communication model used, for instance, in BSD 4.4. The
problem with such a system is that once a process receives
privileges within the system, it can use those privileges to
access other network files. This can lead to a dangerous
breach of network security. Two approaches can be used to
beef up the security of such a system: type enforcement and
network separation. Type enforcement adds an additional
level of protection to the process of accessing files. Network
separation divides a system into a set of independent
regions. Through network separation a malicious attacker
who gains control of one of the regions is prevented from
being able to compromise processes executing in other
regions. Type enforcement and network separation will be
described next.
Type Enforcement

In “SYSTEM AND METHOD FOR PROVIDING
SECURE INTERNETWORK SERVICES”, U.S. patent
application Ser. No. 08/322,078 filed Oct. 12, 1994, Boebert
et al. describe a way of extending type enforcement protec
tion to a computer system having both an internal private
network and an external public network. In one embodiment
of such a system, a secure computer is used to connect a
private network having a plurality of workstations to a
public network. A protocol package (such as TCP/IP) run
ning on the secure computer implements a communications
protocol used to communicate between each workstation
and the secure computer. A Local Cryptography function can
be integrated into the protocol package in order to protect
and authenticate traffic on the private network.
Program code running on the secure computer is used to

communicate through the private network to the worksta
tion’s protocol package. In one embodiment, the secure
computer is an Intel Pentium-based machine running a
hardened form of BSD386 Unix. A system based on a 90

5,867,647
3

MHz Pentium microprocessor with 32 megabytes of
memory, 2 gigabytes of hard disk space, a DAT tape for
backup and a CD-ROM for software loads has been found
to be adequate.

Likewise, program code running on the secure computer
is used to communicate through a public network interface
to a public network such as the Internet. In an Internet
embodiment, the program code used to communicate with
the Internet is part of a set of Internet protocols which
communicate with computers on the Internet through an
Internet connection. In one embodiment, different protocols
and cryptographic methods may be used when communi
cating with different entities on the Internet. In one
embodiment, a tep wrapper package operating in the Internet
protocols is used to sit on the external, public network so that
information about external probes can be logged. It is most
likely that the open nature of the public network will favor
the use of public-key cryptography in this module.
As noted above, in one embodiment the secure computer

is an Intel Pentium-based machine running a hardened form
of Berkeley’s BSD386 Unix. In that embodiment, BSD386
is hardened by adding a type enforcement mechanism which
restricts the access of processes to data. Type enforcement
operates in conjunction with page access control bits in the
virtual page translator of the Pentium to control access to
objects stored in the memory of the secure computer. To
accomplish this, system calls in the basic BSD386 kernel
were modified so that type enforcement checks cannot be
avoided. Certain other system calls were either disabled or
had certain options disabled.

The type enforcement controls are enforced by the kernel
and cannot be circumvented by applications. Type enforce
ment is used to implement data flow structures called
Assured Pipelines. Assured pipelines are made possible by
the so-called “small process” model of computation used by
Unix. In this model, a computational task is divided up into
small virtual units that run in parallel to each other. Unix
provides a crude and loosely-controlled way of sharing data
between processes. Type enforcement supplants this with the
rigorously controlled, configurable structure of assured pipe
lines. It should be noted that Type Enforcement works best
as a supplement to the normal Unix permissions. That is, the
Unix permissions are the first line of defense; when pro
cesses get past the Unix permissions, however, they run into
the type enforcement checks.

In one embodiment, the secure computer has been con
figured under BSD386 to run in one of two states: admin
istrative and operational. In the administrative state all
network connections are disabled and the Server will only
accept commands from a properly authenticated System
Administrator accessing the system from the hard-wired
administrative terminal. This feature prevents anyone other
than the System Administrator from altering the security
databases in the secure computer.

In the operational state the network connections are
enabled and the Server will execute only software which has
been compiled and installed as executable by an assured
party.

The two states are reflected in two separate kernels. The
administrative kernel is not subject to type enforcement.
Instead, it is network isolated and accessible only to autho
rized personnel. This means that in administrative kernel
mode, the secure computer cannot be seeded with malicious
software by any but the people charged with system admin
istration.
On the other hand, the operational kernel is subject to type

enforcement. This means, for instance, that executable files

10

15

20

25

30

35

40

45

50

55

60

65

4
stored in the memory of the secure computer cannot be
executed without explicit execution privileges. In one such
embodiment, executable files cannot be give execution
privileges from within the operational kernel. Instead, the
secure computer must enter administrative kernel to grant
execution privileges. This prevents execution of malicious
software posted to memory of the secure computer. Instead,
only executables approved by operational administrators
while in administrative kernel mode ever become executable
within operational kernel mode of the secure computer. In
one such embodiment, administrative kernel can be entered
only from either a manual interrupt of the boot process to
boot the administrative kernel or by booting the secure
computer from a floppy that has a pointer to the adminis
trative kernel.
The flow of data between processes is limited to transfers

through assured pipelines controlled, in one embodiment, by
the access enforcement mechanism of the Intel Pentium
processor. Virtual memory translation circuitry within the
Pentium processor includes a mechanism for assigning
access privileges to pages of virtual memory. This ensures
that control is imposed on every fetch from, or store to, the
machine memory. In this way, the protection is made con
tinuous. The Pentium access control mechanism enforces
the following modes of access:
Read Only (R): Data values may be fetched from memory

and used as inputs to operations, but may not be
modified or used as program text.

Read Execute (RE): Data values may be fetched from
memory and used as inputs to operations, and may also
be used as program text, but may not be modified.

Read Write (RW); Data values can be fetched from
memory and used as inputs to operations, and may also
be stored back in modified form.

No Access: The data cannot be fetched from memory for
any purpose, and it may not be modified.

These hardware-enforced accesses can be used to force
data flowing from the internal private network to the Internet
to go through a filter process, without any possibility that the
filter is bypassed or that filtered data is tampered with by
possibly vulnerable software on the Internet side of the filter.
The access a process has to a data object via type

enforcement is defined by an entry in a central, protected
data structure called the Domain Definition Table (DDT). A
Domain name denotes an equivalence class of processes.
Every process in execution has associated with it two
Domain names which are used to control its interaction with
object and with other Domains. The real Domain of a
process is used to control Domain to Domain interactions
and to grant or deny special, object-independent privileges.
The effective Domain of a process is used to control its
access to objects. The real and effective Domains of a
process will generally be identical; the circumstances in
which they differ are described below.
A Type name denotes an equivalence class of objects.

Objects are, in general, the “base types” of BSD/386 Unix:
files, directories, etc. There are eight default subtypes: file,
directory, socket, fifo, device, port, executable, and gate. The
implied default subtype pipe is, in effect, untyped because no
check is made on access to pipes. Type names consist of two
parts and, in the preferred embodiment, are written in
documentation and comments as creator:subtype. The cre
ator field is the four-character name of the Domain which
created the object. The subtype field denotes the “class” of
the object within that Domain. Subtype names are also four
characters long and may contain any printable character
except **’ or whitespace.

5,867,647
5

Subtypes will not be shared; thus Mail: file means, in
effect, “the files private to the Mail Domain.” When objects
are created they are automatically assigned the appropriate
default subtype. Objects which are to be shared between
Domains must have their subtype changed from the default
to an explicit subtype.

Subtypes can be assigned one of three ways:
By having a default subtype assigned when the object is

created by the operational kernel.
By having an explicit subtype assigned by the privileged

chtype or fchtype syscalls. Thus a file which was to be
shared between the Mail Domain and some other
Domain would first be created as Mail:file and then
changed to, e.g., Type Mail:Publ. If an subtype is
changed to a default subtype, then the object becomes
private.

By having a default or explicit subtype assigned admin
istratively by the administrative kernel.

The default subtypes exec and gate are “static.” The
operational kernel will not create any objects of those
subtypes, change those subtypes into any other subtype, or
change any other subtypes into a gate or exec.

The Domain/Type relationship is used to define the modes
and consequences of accesses by processes to objects. The
modes and consequences of accesses are defined by access
attributes which are store in the DDT database. The DDT
database is “indexed” by three values:

The effective Domain of the process requesting the access
or action.

The creator field of the object Type.
The subtype field of the object Type.
The result of “indexing” is the retrieval of a set of access

attributes. The term “attribute” is used instead of “mode”
because some of the attributes define immediate side effects.
The selection of attributes was governed by the following
considerations.
To constrain the modes of access which processes may

exercise on objects.
To prevent the execution of any application software other

than that which has been installed through the con
trolled administrative environment.

To enable the spoofing of attackers so that the attack
response facilities can be used to trace them at the
physical packet level.

This required a more sophisticated response to illegal
accesses than just shutting down the offending process.

Gating permits a process to temporarily become a mem
ber of another Domain. The “home” or permanent Domain
of the process is called its real Domain and the temporary or
assumed Domain is called the effective Domain. Implicit
gating is used when it is necessary to strictly control the
manner in which the effective Domain’s accesses are used.
Implicit gating “ties” the temporary Domain change to a
specific executable which has been subjected to extra scru
tiny to insure that the effective Domain’s accesses are used
safely. The “tying” of the Domain change is done because
the Domain change is a side effect of execVe’ing a special
executable: one whose subtype is gate. Implicit gating also
allows Domain changes to be defined by changing the Type
of an executable instead of inserting explicit calls into the
source code.

Explicit gating is used when a looser control on the
temporary Domain transition is appropriate, or when the
“tying” of the gating to a specific executable would require
excessive restructuring of existing software.
Domain changes are controlled by the DIT. The logical

structure of the DIT is a table with an entry for each Domain.

10

15

20

25

30

35

40

45

50

55

60

65

6
The logical structure of each entry is that of two pointers,
one to a list of allowed real Domains and the other to a list
of allowed effective Domains. Thus, if a process executed a
makedomain or changedomain, the real Domain of the
process selects the entry and the Domain given by the
domainname argument must be on the list of allowed real
Domains for the Domain change to happen. Likewise, if a
process executes a gate, the Domain given in the domain
name argument must be on the list of allowed effective
Domains. Finally, if a process executes an execye of an
executable whose subtype is gate, the creator Domain of that
executable must appear on the list of allowed effective
Domains.

Certain kernel syscalls are restricted to processes execut
ing out of privileged Domains. In one embodiment two
levels of checks are made. First, the normal BSD UNIX
permissions are checked; if these permissions cause the
operation to fail, the system call returns the normal error
code. If the UNIX permissions are adequate, the type
enforcement (TE) privileges are checked next, (and thus in
addition to the UNIX permissions).
The following BSD system calls have been modified to

properly implement type enforcement. The modified calls
have been grouped into four groups for ease of explanation.
The first group of system calls that require modification

are those that set or affect the identity and/or state of the
computer. Two of these system calls affect the computer’s
internal time: settimeofday and adjtime. Both of these sys
tem calls have been modified to require the «can set
clock- privilege before the request will be honored. In the
event of a privilege violation, the system call will raise an
Alarm, will not honor the request, but will return success.

Other system calls which affect the computer’s notion of
self identity are sethostname and sethostid. Both of these
system calls have been modified to require the -is-startup>
privilege before the request will be honored. In the event of
a privilege violation, the system call will raise an Alarm, will
not honor the request, and will return the EPERM error flag.
The last system call affects the computers runtime status,
reboot. The reboot system call has been modified to require
the -admin-reboot~ privilege before the request will be
honored. If the request is honored, the computer will boot to
the admin kernel (single-user mode only with networking
disabled). In the event of a privilege violation, the system
call will raise an Alarm, will not honor the request, and will
return the EPERM error flag.
The second group of system calls that require modifica

tion are those that allow interaction with the computer’s
filesystem. The open system call has been modified to
become the primary TE check. After performing the normal
BSD UNIX permission checks, the TE check is performed.
An Alarm is raised if the TE check returns null (no
permissions), or if the caller asks for read but the ºddt
read> privilege is not set, or if the caller asks for write but
the ºddt write- privilege is not set. The creat system call
has been modified to set the new file’s Type to <creator:file>.
Additionally, the creation of a new file implies a write
operation on the directory, which in turn implies that the
TE-modified open system call will be used to open the
directory file, which in turn implies that TE can be used to
control the success or failure of the creat system call. The
unlink and rename system calls are modified in like manner.
The unlink system call requires the ºddt destroy: privi
lege. The rename system call requires the ºddt rename>
privilege on the “from" file, and if the “to’’ file exists, it
further requires the ºddt destroy: privilege on the “to’’ file.
In the event of a privilege violation, both the unlink and

5,867,647
7

rename system calls will raise an Alarm, will not honor the
request, but will return success. The access system call is
modified to require the ‘mode> privilege on the file pointed
to by the path. In the event of a privilege violation, the access
system call will raise an Alarm, will not honor the request,
but will return success. The chflags, fchflags and quotacl
system calls are modified in alike manners. All are modified
to perform no functions. Attempts to call them will raise an
Alarm, will not honor the request, and will return EPERM.
The mknod system call is modified to perform no function.
Attempts to call it will raise an Alarm, will not honor the
request, and will return EPERM.

The third group of system calls that require modification
are those concerning process creation, maintenance and
tracing. The fork system call has been modified so that the
child process inherits both the real and effective Domains of
the parent process. The execwe system call is modified to
require the ºddt exec-privilege on the file pointed to by
the path before the request will be honored. The real and
effective Domain of the process remain unchanged. In the
event of a privilege violation, the system call will raise an
Alarm, will not honor the request, but will return success.
The ktrace, ptrace and profil system calls are modified in
alike manners. All are modified to perform no function.
Attempts to call them will raise an Alarm, will not honor the
request. The ktrace and ptrace system calls will return
EPERM, whereas the profil system call will return EFAULT

The mprotect system call is modified to perform no
function. Attempts to call it will raise an Alarm, will not
honor the request, and will return EPERM.

The fourth group of system calls that require modification
are those that relate processes to user ids. The setuid and
seteuid and old.setreuid system calls are modified in alike
manners. All are modified to require the ‘suppress su
alarm: privilege before the request will be honored. In the
event of a privilege violation, the system call will raise an
Alarm, will not honor the request, and will return success.
The acct system call is modified to perform no function.
Attempts to call it will raise an Alarm, will not honor the
request, and will return EPERM. The setlogin system call is
modified to require the «can setlogin- privilege. In the
event of a privilege violation, the access system call will
raise an Alarm, will not honor the request, but will return
Sll CCèSS.

A final set of system calls consists of those that are
removed entirely from the BSD UNIX kernel. This set of
system calls includes: obs vtrace, nfssvc, asynch daemon,
getfh, shmsys, sfork, getdescriptor, and setdescriptor.
Network Separation

The goal of network separation is to provide an operating
system kernel with support for multiple networking protocol
stacks. A system 10 having such an operating system kernel
is illustrated in FIG. 1. System 10 is split into separate
regions, with a domain 16 and a protocol stack 12 assigned
to each region. Each protocol stack (12.0, 12.1) has a fixed
set of interfaces bound to it. For example, two or more
ethernet drivers can be connected to, for instance, protocol
stack 12.0.
A given socket will be bound to a single protocol stack 12

at creation time. Each protocol stack 12 will have its own
independent set of data structures including routing infor
mation and protocol information. No data will pass between
protocol stacks without going through proxy space and
being sent back down another protocol stack by a proxy
program 14. Proxy 14 acts as a go-between, therefore, for
transfers between domains 16.0 and 16.1. No user applica
tions will have direct access to either network.

5

10

15

20

25

30

35

40

45

50

55

60

65

8
The embodiments discussed will only cover common

networking support, such as the media layer drivers like
PPP, ethernet, and SLIP and the TCP/IP suite of protocols.
The BSD kernel supports other protocols such as CCITT/
X.25 and XNS. These are not covered here, although it
should be apparent that network separation can be extended
to other protocols by dividing the protocol stacks associated
with the protocol layers into multiple protocol stacks with
the number of (and the name of) stacks being the same
across all protocol suites.
The following terminology will be used throughout the

document:
BSD The BSD/OS 2.0 Unix operating system as based upon

the BSD 4.4 Lite distribution. In the case of the network
ing functionality the code is virtually identical across all
4.4 derived Unixes (NetBSD1.0, FreeBSD 2.0, and BSD/
OS 2.0). The only significant differences are the hardware
device drivers in terms of how they autoconfig during
boot, which ones are present, and their internal code.
Their interfaces to the rest of the networking code is
effectively identical.

BSD kernel The BSD/OS 2.0 kernel.
Burb The aggregation of a protocol stack with all the

processes that can access that stack. Processes that can
access a particular protocol stack are said to be bound to
that protocol stack.

NBURBS The number of protocol stacks or network inter
faces to which all networking processes and related
entities are bound to.

Kernel space The address and code space of the running
kernel. This includes kernel data structures and functions
internal to the kernel. Technically the kernel can access
the memory of the current process as well, but “kernel
space” generally means the memory (including code and
data) that is private to the kernel and not accessible by any
user process.

User space The address and code space of processes running
that isn’t kernel space. A running process will often
execute inside of the kernel during system calls, but that’s
kernel space since the kernel *always” is running with the
context of the current process except during the few
moments of the actual context switch—in a kernel with
out SMP support and kernel threads. In general user space
refers to code and data allocated by a code that is loaded
from an executable and is available to that process, not
counting the kernel private code data structures.

Protocol stack The set of data structures and logical entities
associated with the networking interfaces. This includes
sockets, protocol drivers, and the media device drivers.

Link level & hardware drivers These are the (almost in some
cases) bottom layer drivers that talk a particular physical
and/or link level protocol (ethernet, PPP, SLIP). They may
be a hardware driver, in the case of most ethernet drivers,
or they may sit on top of yet other drivers, such as PPP on
a TTY on the COM port driver or even a parallel port
Ethernet driver on top of the LPT port driver. Most of
these drivers have two layers, a generalized layer that
handles the common parts of the link level protocol
(ethernet, ppp., etc.) and the hardware specific driver.
One of the goals of a secure operating system kernel is to

allow dividing the network interfaces into distinct regions so
that there is assurance that packets are never quietly passed
through the kernel between those regions. In one
embodiment, the following rules must be met to ensure
secure control of packet transfer between regions:
A single user process can only send and receive informa

tion (packets) from one region at a time.

5,867,647
9

Once a process is bound to a region, it can only access that
region.

Incoming packets can only go to processes that are in the
region associated with the interface the packet arrived
OIl.

Any data passing through the computing system to a
different region must come into user process and be
handed off to a different process that has access to the
other region, a proxy program, to be sent out again.

The reasons for these design requirements are fairly
simple. The goal is that any information passing through the
computer between different regions has to be passed through
a predefined, or assured, pipeline.

There are three ways of achieving this goal:
1) Packet Filtering Packet filtering would be done using

conventional approaches similar to current firewalls and
screening routers. This could be enhanced with additional
filters based on interface rather than address to prevent
certain types of spoofing.

2) Packet Separation A given message, incoming or
outgoing, would be assigned a type based on the interface
it arrived on or the socket it was sent from. The packet
would then be thrown out at the top or bottom level if that
type didn’t match the type of the interface it was being
Sent On.

3) Separate Protocol Stacks The protocol stacks would be
separated into multiple instances with a given interface or
socket existing on only one.
In arriving at our current approach, the packet filtering

solution was quickly discarded. Although you could elimi
nate several kinds of spoofing, many of them would still
remain. For filtering to work at all, IP packet forwarding
must be enabled, but then you are vulnerable to all sorts of
nasty things Sneaking through the computer system using the
normal sorts of attacks with various forms of spoofing,
piggybacking, and just plain misconfiguration of complex
filtering expressions.

The packet typing approach had merit, but required exten
sive code changes as all of the various layers would have to
be rewritten to handle additional fields in all of the various
structures (mbufs, sockets, etc.). The other problem with the
packet typing approach was how to deal with kernel inter
nally generated messages like ICMP messages.
The separate protocol stack approach was selected

because it gives a very clear split of the regions making
assurance easier. It also requires surprisingly few code
changes. Rather than change the existing data structures,
they are simply replicated as needed for the various regions.
The initial reference has to be fixed, but most references are
done by cached pointers within the various structures, so
many of the functions and layers of the protocol stack
require no changes at all. For instance, the hardware drivers
require absolutely no changes. The socket code requires only
a minor change during the socket instantiation, subsequent
references done using the already fixed pointer to the
particular protocol driver. This also gives a performance win
because there are basically no lookups done dynamically,
only an extra level of indirection during initialization, but
not subsequently.

The general structure of the design chosen involves
duplicating all of the protocol stacks where each stack is
independent of the others. The routing to a given stack is
done at the very top or bottom of the dataflow so that a given
packet, piece of data, control message, etc. is bound to a
particular stack at creation.
A name was needed for each of these protocol stacks, and

the processes and related entities bound to them, the name
that was chosen was burb.

10

15

20

25

30

35

40

45

50

55

60

65

10
Second, the decision whether to replicate and subdivide

into separate burbs is made on a protocol family by protocol
family basis. Generally all external supported networking
protocol families will be divided. The internal Unix domain
socket family won’t be replicated. This is important because
the Unix Domain sockets (AF UNIX) will continue to exist
in one common region for the entire system. This feature
becomes important for the pipeline structure given later.
To identify the network/socket access a process is given

a burb id that says which burb it is in. In one embodiment,
the burb ID is an ordinal number.
The general picture of the protocol stacks in a normal

BSD kernel is shown in FIG. 2a. An expanded view of this
picture to include the various IP protocol drivers is shown in
FIG. 2b.
When a socket is actually created, it is explicitly, during

the initial socket() call 20, bound to one of the protocol
drivers 22 via a pair of pointers in the socket structure, the
so proto member (a pointer to a struct protosw), and the
so pcb member. The protosw structure is unique per pro
tocol driver, but there is only one per protocol driver. The
so pcb pointer is an opaque pointer to a socket specific
structure that has the protocol specific information for a
socket (such as the TCP state information for a TCP socket).
At the bottom level, the generic media drivers 24

(ethernet, ppp., slip) put incoming packets on a per protocol
family (IP, XNS, CCITT, etc.) queue, ipintrol in the case of
IP.
The picture then for a created socket becomes something

like the system of FIG. 2C.
So, the fundamental concept of the kernel portion of the

design is that the protocol stacks are replicated N times (with
N being a fixed small constant, typically 2–10), with all
protocol level and other shared data structures being repli
cated. In practice, each burb/protocol stack has a name, that
name maps onto a number, starting at 0, that is used as an
index. Each static structure is converted into an array. This
also makes it easy to change the number of burbs supported.
FIG. 2d illustrates a system having two burbs and limited to
just IP. A generic system having N burbs is shown in FIG.
3. Aspecific TCP/IP system having N burbs is shown in FIG.
4.
Once the socket is created then the picture becomes much

simpler again, because the individual data structures are then
bound explicitly and no lookup or search stage occurs again.
All activity then occurs within one of the burbs (e.g.,
TCP[0]).
The advantage of duplicating the protocol stacks in their

entirety is that the number of data structures to be
duplicated, and the points that those are referenced, is
manageable, much more so that making a given datum have
a type and/or domain and having to “route” within the kernel
based on that at every layer. As mentioned before, the basic
approach is that all shared data structures are replicated N
times, 1 for each burg. These data structures are a reasonably
finite list. They include:
Protocol Domain List and Tables (domains, protosw)—
When a socket is created, a family and a type is specified,
such as socket (AF INET, SOCK STREAM). The
socket creation routine first looks up the top level protocol
in the family list, ala: AF INET, which returns a 2nd
level table of protosw structures that has the individual
protocol drivers. The 2nd level table is in the form of
XXX domain, such as inetdomain. The first level list is
called “domains”.
The design replicates only the tables (when that family

supports separate burbs, such as IP route). In the case of

5,867,647
11

things like the AF UNIX domain, each list will point at the
same table. The lookup will then return a protosw structure
unique to the instance of the protocol driver, such as
inetsw[proto||burb], instead of inetsw[proto]. The routing
structure will be replicated into routesw [NBURBS].
Protocol Interrupt Queues (ipintrºl)—External networking

protocols each have an input queue for incoming packets.
Each queue is a simple mbuf list. So queues for protocols
will be replicated, becoming things like ipintrºl
[NBURBS] instead of just ipintra.

IP Fragmentation Queues (ipq)—Similar to the IP interrupt
queue, there is a reassembly queue, ipd, to reassemble
fragmented IP packets. All network interfaces have a
maximum transmission unit (MTU). Outgoing packets
larger than the MTU are fragmented by the IP layer into
smaller packets for transmission. When the fragmented
packets arrive at the destination, they are placed on a
reassembly queue waiting for reassembly. This queue is
also replicated into ipg|[NBURBS].

Interfaces (ifnet)—Each interface, including the loopback
will be bound at boot time to a given burb by a one time
system call. A burb field will be added to the ifnet
structure, ifnet.if burb, which is unique per interface so
that it knows which burb it’s in and which interrupt
queues to send data to. The binding will also be one shot,
so that once an interface is bound, it can’t be rebound to
a different burb.
Other data structures are already unique per interface. The

other item to be replicated is the list of interfaces. There will
be one list per interface. The interface binding call will set
the burb of the interface and tell it which interface list to put
itself on during initialization.
Loopback Interface (loif)—The loopback interface IP

address will have to be unique per interface. In other
words, the recommended loopback address 127.0.0.1 can
not be shared between the interfaces. The loopback inter
face data structure will be replicated, loif [NBURBS].
Loopback addresses will be subnetted, with netmask
255.255.0.0, to give each interface a unique IP address,
127.burb.0.1.

Protocol Control Blocks (tcb, udb, rawcb)—Each protocol
maintains its own list of protocol control blocks, which
hold various pieces of information required for the socket
operations. These lists will be replicated and maintained
on a burb basis: teb [NBURBS] for TCP udb [NBURBS]
for UDP, and rawcb [NBURBS] for routing sockets.

Routing Tables (rt tables)—There is a single master routing
table, rt tables [family], that is a linked list of routes.
This table will be separated into one table per burb,
rt tables [family][NBURBS]. There will be no master
routing table.
These routing tables will be used as lookup tables so that

the incoming end of a proxy knows which outgoing proxy to
connect to. For outgoing packets, the search always starts
with the local table. If a route cannot be found, then the
system searches other tables. If a route is found on a
nonlocal table, then the networking code will hand the
packets off to the proxy processes.
ARP Tables and Queues (llinfo arp, arpintrºl)—There are

no data structures at the common link level (ethernet, ppp,
slip) except the ARP table and the ARP interrupt queue,
llinfo arp and arpintrol. This again is a list of interfaces
with just the information needed for ARP and a queue for
incoming ARP packets. Both of these data structures will
be replicated, llinfo arp [NBURBS] and arpintrol
[NBURBS].

Sockets (struct socket)—The data structures for a socket are
created dynamically for each socket, so no fixed replica

10

15

20

25

30

35

40

45

50

55

60

65

12
tion needs to be done. The alternation of the protocol
driver lookup code means that a socket will automatically
get the pointer to the protocol driver in the correct burb
without any changes to the socket code except the domain
list search routines. A burb field will be added to the
socket structure, socket.so burb, so that it knows which
burb it’s in.
There are some other issues. A message doesn’t normally

have an intrinsic burb, but it will be added as a debugging
aid during development. Each major data structure that is
burb dependent (the input queues, the protosw structures,
etc.) will always have a field giving its burb. So at various
points, these fields can be compared against during devel
opment as a debugging aid. Critical hand off stages (like
socket initialization) will have sanity checks that are done all
the time because the overhead is negligible.
The kernel is implemented to respond to connection

requests that are not intended for the computer system itself.
For instance, when an internal client requests a connection
to an external Internet host, the kernel will answer the
request as if it were the external host. Meanwhile, it will
attempt to set up the connection with the external host. This
process occurs transparently to the internal client. Such
support allows the secure computer to answer in a secure
manner connections intended for outside boxes.

Each burb will have its own routing tables. The general
algorithm for each incoming packet will be, see if it’s to one
of the local addresses, if so accept it (as this is standard
behavior). If not, route it within the burb. If that fails, then
see if there is a route in another burb (using other burbs'
routing tables). If not, then toss the packet. If so, accept the
packet and pass it up the stack, which eventually should
arrive at the proxies.
The existing TCP and UJDP drivers will happily accept

the packet and pass it onto a socket if it exists. If it’s to an
already established TCP connection or a UDP socket, it will
get there normally. If it’s a new incoming TCP connection
that is accepted, it will create the socket, and fill in the local
address from the incoming packet. The process doing the
accept () can call getsockname () to get that address. In
other words, the UDP and TCP drivers trust the lower layer
IP driver that the packet is for the machine, so no change to
those layers need to be done at all to support this, only the
secondary routing lookup in the IP layer.

This functionality means a couple of things. For this to
work, there still have to be unique IP addresses all around,
so no hacks are done to support hidden IP addresses that
conflict with external ones. Also, there can only be one
default route on the machine still. If there were one per burb,
the burb routing lookup wouldn’t know where to send it.
This isn’t hard. Generally the default route will be for one
of the outside burbs. Other burbs will simply have to have
complete routing for the internal network. This isn’t a
problem as it’s really already the case. A host with a complex
internal network already has to have proper routing for all of
those networks if it uses a default route.

This also means there can be no duplicate routes in the
replicated routing tables. If there were duplicate routes, the
routing lookup would always return the first route found.
Network Separation Using Type Enforcement
The degree to which network separation protects a net

work from malicious attack is enhanced through the use of
type enforcement.
As noted above, in a type enforcement scheme processes

and files are assigned to a domain and subtype, domain:sub
type. Process-to-file, or domain-to-domain:subtype, access
is controlled by the Domain Definition Table (DDT), that
specifies the permissions:

5,867,647
13

create—ddt create
write—ddt write
read—ddt read
destroy—ddt destroy
execute—ddt execute
rename—ddt rename
Subtypes allow a finer division of file types (file=file,

diry=directory, sock=socket, exec=executable, etc.).
Interactions between the processes, or domain-to-domain,

such as signals, are enforced by the Domain Interaction
Table (DIT), that specifies the allowed signals (sPIUP,
SABRT, sjob, etc.)
An instantiated domain is one that has several instances

with identical access rights to itself and other domains. Take
two instantiated domains, www.0 and www1. They both
have identical access to all other domains and subtypes.
They also have equivalent access to their instances and no
access to other instances. In the domain specification
language, these domains are specified with a “X” as the last
character, where X represents the burb id. So if you say:

www.x:
has read access to www:#:conf
has write access to Slog:sock

the DDT/DIT is created like:
www?):

has dat read access to www.0:conf
has dat write access to Slog:sock

www.1:
has dat read access to www1:conf
has dat write access to Slog:sock
If another domain is given access to a general instantiated type,

then it gets equal access to all instances, for instance:
Admn:

has write, read, create access to www.ft.conf
the DDT/DIT is created like:
Admn:

has dat write, ddt read, ddt create access to www.0:conf
has dat write, ddt read, ddt create access to www1:conf

There are a set of special domains that are used to actually
grant access to the networks themselves. These domains are
in the form of Protocol:port. Protocol is a domain name
corresponding to the protocol type. Current domains and
what type of socket they map to include:

Domain Name Network Domain Socket Family/Protocol

topx TCP AF INET/SOCK STREAM
udpX UDP AF INET/SOCK DGRAM
ipox Raw IP AF INET/SOCK RAW
rteX Route PF ROUTE/SOCK RAW

For sockets that have port numbers, such as tcp and udp,
the subtype is an asciish number that is the prot that binding
is allowed to. For instance, the fip0 domain would have
access to ftp 0:0020 and ftp 0:0021 to give it access to the
ftp control and data ports (20 and 21).
The access given corresponds to the directionality of

communication. There must be ddt create privilege to
create the socket at all. For datagram sockets, ddt read
gives the ability to read () or recVmsg (), and ddt write
gives access to write () and sendmsg ().

With stream sockets, ddt read gives access to bind (),
listen (), and accept () so that the process can receive an
incoming connection. ddt write gives access to bind () and
connect () so that the process can initiate an outgoing
connection.

10

15

20

25

30

35

40

45

50

55

60

65

14
The following subtypes give access to random and

reserved ports:
rall—bind to all reserved ports explicitly
rany—bind to any arbitrary reserved ports
nall—bind to all non-reserved ports explicitly
many—bind to any arbitrary non-reserved ports
For portless types, the subtype grants access to a specific

type of socket. The types currently include ‘icmp’, only
valid under the IP domain (ipox:icmp), which gives access
to ICMP sockets. Some more network subtypes:

sock—flag access to a network type
conf-access to network configuration capability
Subtype “sock’ is used during the socket creation so the

kernel can verify access to a given network domain. The port
isn’t known at this point, and an exhaustive search of the
DIT would be expensive, so any domain that has access to
any networking domain has to be given access to the “sock’
subtype as well.
Network configuration programs such as ifconfig, nss, and

sysctl must have access to “network domain:conf’. For
example: tepX:conf allows the Unix commands ifconfig to
configure network interfaces and sysctl to set networking
configurables.
A network interface is bound to a burb at boot time. A

given socket is bound to a particular burb at the socket
creation time. The rules for this are pretty simple.
An example of a type enforced, network separated system

70 is shown in FIG. 5. In FIG. 5, ftp0 and ftp 1 are two
instantiated domains (72.0 and 72.1, respectively). Each
instantiated domain has access to its own protocol stack
(74.0 and 74.1). Transfers from one domain to another are
made through a ftp proxy 75 via calls to kernel 76.

Processes running in an “instantiated domain” such as
ftp0, intrinsically have access to one and only one burb, the
burb that matches the numeric part of the domain name. In
these cases, the system just binds that socket to the appro
priate burb. It should be noted that a process is not actually
bound to a burb until it tries to make a direct or indirect
socket call to that burb.

Programs running within other domains either have no
access or access to all burbs. In these cases, the caller must
specify which burb they want. If they don’t, it’s an error. If
they do specify a burb and they don’t have access privileges
to that burb, it’s also an error.

This specification is implemented via a new system call,
socketburb (). Basically, socketburb () replaces the old
socket () system call. It performs the same function and
takes one additional argument, burbid. The old socket () still
exists, but its gut has been replaced by a call to socketburb
().

int socketburg (int domain, int type, int protocol, unsigned
long burbid);

Ported applications and new programs will use the new
socketburb (). Existing programs, in instantiated domains,
using socket () wouldn’t have to be changed and still work.
Burbification of socket () calls to socketburb () should use
the library call domain to burb () to convert and pass the
burbid argument:

sock1 = socket (AF INET, SOCK STREAM, 0);
sock2 = socket (AF INET, SOCK RAW, IPPROTO ICMP);

5,867,647
15

would become:

int domain_to_burb (long domain);
sock1 = socketburb (AF INET, SOCK STREAM, 0, domain to burb

(domain));
sock2 = socketburb (AF-INET, SOCK-RAW, IPPROTO ICMP,
domain_to_burb (domain));

Interfaces are bound to a particular burb. This is imple
mented by a few new socket ioctls()s which set and get the
burb id of an interface.

Access to a socket for controlling interfaces and other
shared parameters is controlled by access to the various conf
subtypes. Parameters specific to a protocol, like TCP
tunables, are controlled by access to the protocol specific
type, such as ‘tcp0:conf’. IP layer things like the IP address
and burbness of an interface are controlled by the types like
‘ip0:conf’.
The following interfaces have been modified or added to

support type enforcement, burbification, and transparent
proxies. The objectives of these calls have not changed,
although access to these calls has been made more restricted.
Some new error codes, errno, have been added in the case of
type enforcement failures. Only the modifications are
described below.
socket ()—is used by a process to create a socket that is
bound to a particular burb. If socket () is called, the socket
is either bound implicitly to the burb id that matches the
number of the instantiated domain, or fails.

socketburb ()—a new system call and it is used to create a
socket in a given burb. The burb filed is passed as an
additional argument to the socketburb () call:

int socket (int family, int type, int protocol);
int socketburb (int family, int type, int protocol, unsigned long burb);
int domain to burb (long domain);
sock1 = socket (AF INET, SOCK STREAM, 0);
sock2 = socketburb (AF INET, SOCK RAW, IPPROTO ICMP.

domain to burb (domain));

These new error codes, errno, are returned by socket ()
and socketburb ():
[EDBOM] returned and an audit generated if the calling

process is not in a burb-bound domain.
[EPERMI returned and an audit generated if the calling

process doesn’t have dat create privilege.
bind ()—assigns a local address and port number to a

socket. The bind () call has been extended to allow a
process to set the local address arbitrarily, it needs ddt
rename access to “ipoX:Spuf’. Currently, no domains
have this spoofing capability, i.e., no domains have dat
rename access to “ipoX:spuf’. The calling process also
must have the following privileges to successfully bind:

ddt read - tepX:port
ddt read - udpX:port
ddt read - ipox:port, for raw IP
has rootness - reserved ports (0–1023)

[EADDRNOTAVAIL] returned and an audit generated if
the calling process doesn’t have dat rename privilege.
[EPERMI returned and an audit generated if the calling

process doesn’t have dat read or has rootness privilege.
connect ()—initiates a connection from a socket to a

specified address and port number. The calling process
must have these privileges to the listed domains: subtypes
to successfully connect.

10

15

20

25

30

35

40

45

50

55

60

65

16

ddt write - tepX:port
ddt write - udpX:port

[EPERMI returned and an audit generated if the calling
process doesn’t have dat write privilege.
The ioctl () call is used to manipulate the underlying

device parameters. Several new socket ioctl () commands
have been added. Most will work with a “struct ifreq”
argument and be handled similar to the other set/get ioctls of
an interface. If an ordinal value is being set or retrieved such
as the burb id, then it will be passed in the ifr metric field.
The following ioctl () commands now require is startup

or is admin privilege to execute: SIOCSIFFLAGS,
SIOCSIFMETRIC, SIOCADDMULTI, and SIOCDEL
MULTI. EPERM is returned and an audit is generated if the
calling process doesn’t have the correct privilege. These new
ioctl () commands are added to support burbness in the
secure computer:
SIOCGIFBURB/SIOCSIFBURB–get and set the burbid of

a network interface. The burb id is passed in the ifr
metric field. To set the interface’s burb id, the calling
process must have is startup or is admin privilege. A
sample call would look like:

int ioctl (int socket descriptor, unsigned long command, char *argp);
struct ifreq if:
int burb, so;
ifr.ifr metric = burb;
if (ioctl (so, SIOCSIFBURB, (caddr t) & ifr) < 0 perror (“ioctl

(SIOCSIFBURB)”);
if (ioctl (so, SIOCGIFBURB, (caddr t) & ifr) < 0) perror (“ioctl
(SIOCGIFBURB)”);

[EPERMI returned and an audit generated if the calling
process doesn’t have is startup or is admin privilege.
[EINVAL] returned and an audit generated if the calling

process doesn’t have access to subtype “:conf’.
SIOCGSOCKBURB—get the burb that a socket is bound to.

This is mainly a debugging aid. The burb id is passed in
the ifr metric field.

SIOCGMSGBURB–get the burb of the pending message.
It should always be the same as the burb of the socket.
This is mainly a debugging aid. The burb id is passed in
the ifr metric field. A sample call would look like:

struct ifreq ifr;
int burb, so;
if (ioctl (so, SIOCMSGBURB, (caddr t) & ifr) < 0 perror (“ioctl
(SIOCMSGBURB)”);

burb = ifrifr metric;

[ENOENT] returned and an audit generated if the socket
cannot be read.
SIOCGMSGIFNAME–get the name of the interface that

the pending message arrived on. It is used as a debugging
aid or to filter on the basis of the specific interface of the
message. The interface name is returned in the ifr name
field. A sample call would look like:

struct ifreq ifr;
int so;
if (ioct (so, SIOCMSGIFNAME, (caddr t & ifr) < 0 perror (“ioctl
(SIOCMSGIFNAME)”);

printf (“interface : %s”, ifrifr name);

5,867,647
17

[ENOENT] returned and an audit generated if the socket
cannot be read.
SIOGSUBURBRT-returns a burb id for a given IP

addresses. The kernel searches each routing table and
returns the first route found. The IP address is passed in
the ifr addr field. The burb id is returned in the ifr
metric field on success. Since there can be more than one
burb, this command is used by an incoming proxy to find
which outing proxy to connect to. A sample call would
look like:

struct ifreq ifr;
int so;
ifrifr addr = tempaddr;
if (ioctl (so, SIOCGBURBRT, (caddr t) & ifr) < 0) perror (“ioctl
(SIOCGBURBRT)”);

printf (“route %d”, ifrifr metric);

[EHOSTUNREACH] returned and an audit generated if
no route can be found for the given address.
The getsockopt () and set sockopt () calls manipulate the

options associated with a socket. The following socket
options have been added:

#include <sys/types.h>
#include <sys/socket.h>
int getsockopt (int so, int level, int optname, void "optval, int *optlen);
int setsockopt (int so, int level, int optname, const void “optval, int

optlen);

SO STATE–returns the state of the socket, the so state
field of the struc socket. This is used by applications that
wish to be more intelligent in their handling of a socket
depending on its state.

SO SOCKBURB–returns the burb id of the socket, simi
lar to ioctl (SIOCGSOCKBURB). A sample call would
look like:

int value, length, error;
length = sizeof (value);
if ((error = getsockopt (sockfö, SOL SOCKET SO SOCKBURB, &

value, & length return error;
return value;

SO MSGBURB–returns the burb id of the pending
message, similar to ioctl (SIOCGMSGBURB) via an
unsigned long.
[ENOENT] returned and an audit generated if the socket

cannot be read.
SO MSGIFNAME–returns the burb id of the pending

message, similar to ioctl (SIOCGMSGIFNAME) via an
unsigned long.
[ENOENT] returned and an audit generated if the socket

cannot be read.
Most of the kernel auditings will be generated by type

enforcement checks such as check dot (), check dit (),
and check dot net () and user privilege check such as
psuser (). These audits are logged to /var/log/audit.asc and
/var/log/audit.te.asc.

Network audit is another type of kernel audit. These are
logged to /var/log/audit.asc and /var/log/audit.attack.asc.
Currently, network audits are generated for ICMP, TCP,
UDP, and IP packets.
ICMP–ICMP messages are used to communicate error and

administrative messages between systems. ICMP audits
are the only network audits that can be configurable. This
is implemented via the Unix command sysctl and the field

10

15

20

25

30

35

40

45

50

55

60

65

18
burb.X.net.inct.ip.icmpaudit, where X is the burb id. The
default state of the secure computer is level 1, audit only
icmp-redirects. ICMP audits can be configured at 3 levels:
0=no icmp audits
1=icmp redirects only (default)
2=all icmp messages, except echo and reply

IP–if the source-routed packets option is disabled (0), the
kernel will generate a “source-routed packets dropped”
audit for each source-routed packet. The source-routed
packet option is configurable via the sysctl command, by
disabling or enabling the fields burb.X.net.inct.ip.for
warding and burb.X.net.inct.ip.forwsrcrt. As default, both
of these fields are disabled so the secure computer will not
forward any source-routed packets.

TCP—the kernel will generate an audit for any TCP
attempts to synchronize sequence numbers without a valid
protocol control block. These types of packets are viewed
as hostile probing attempts.

UDP-similar to TCP, the kernel will also generate a
probing attempt audit for any UDP attempts to connect
without a valid protocol control block.
There are a number of system utilities that configure or

retrieve the network states. These utilities are also modified
to support burbness.
arp—displays and modifies the Internet-to-Ethernet address

resolution. The art display and command line interface
will remain the same. Only the internal implementation
will be modified to handle the replicated arp tables.

ifconfig–is used to configure network interface parameters.
It is modified to accept a “burb id” entry so that it can be
used to set the burb of an interface. It will also print the
burb of an interface as part of its normal output. Example:
if config efo inet 172.17.128.79 netmask 255.255.0.0 burb
0.

inetd—is the internet-service daemon that runs at boot time
and listens for connections on certain internet sockets.
This daemon will be replaced by the Network Services
Sentry, NSS, NSS will be “burb aware” and able to start
network services in the appropriate domain. Resident
servers will be launched from a similar master utility, such
as /etc/rc, so that they run in the correct burb. For more
information, see the proxy design specification.

netstat—formats and displays various network-related status
and data structures. The formatting will be modified so
that when appropriate, the -I or -i flags and when printing
IP sockets, it will include a burb id column in its output.

sysctl—is used to retrieve kernel state and allows processes
with appropriate privilege to set kernel state. Network
states are replicated appropriately into NBURBS. For the
curious, execute “sysctl-a” and you’ll be glad you did it.
All services supported on the secure computer, such as

telnet and ftp, pass their data through a set of proxies (see,
e.g. ftp proxy 75 in FIG. 5). There is one proxy for each type
of service, http proxy for web, telnet proxy for telnet, and so
on. The proxy will accept () the connection or rcvmsg ()
/recVmsg () the packet and look at the incoming address,
either in the mesg structure for UDP or via getsockname ()
for TCP. It will then find out which burb has a route to that
destination, via ioctl (SIOCGSUBURBRT), and establish a
socket connection in the outgoing burb.

That connection will be via a Unix domain socket. Each
service will have a proxy directory in /var/run, such as
/var/run/telnetp/. In that directory each outgoing proxy will
have already opened a domain socket. These sockets exist in
the file namespace, so they already have access control via
the domain and type of the socket node. Thus, the burb
functionality guarantees that a given process can only access

5,867,647
23

assumption is valid. However, on a Network Separated
system, the act of placing the administration-side program in
a different burb than the production-side program will have
the Network Separation side effect of disallowing process to
process communication between the administration-side
program and the production-side program. From a function
ality standpoint, this is not acceptable.
To restore the required program to program communica

tion functionality, one is required to perform steps outside of
those explained in the previous section. The problem to be
solved concerns the conflicting restrictions placed by the
type enforcement system and the network separation system.

In Network Separation, if one program has been “bound”
to one burb (e.g. Internet) and another program has been
“bound” to another burb (e.g. internal), the Network Sepa
ration mechanism will preclude the ability for the first
program to establish a connection to the second program via
a network communication connection; thus it precludes the
ability for program to program communication using the
network. One way of viewing Type Enforced Network
Separation is to acknowledge this lack of direct network to
network communication: since the networks cannot be
shared, they are separated.

So, the problem here can be restated as follows: given a
program bound to one burb and another program bound to
a different burb, how can we allow the two programs to
communicate with each other without having access to the
source code for either program.
The procedure to solve this problem is shown in FIG. 7:
First, at 140 decide to which burb each of the separate

programs is to be bound. In the case of a production-side
program and an administration-side program, it is clear that
the production-side program must be bound to an Internet
burb, and it is clear from a security standpoint that the
administration-side program should be bound to an internal
burb. In the case of more complicated sets of programs,
tradeoffs must be made between availability and security.
Binding a program to an Internet burb increases availability
but also enormously increases security risks. Binding a
program to an internal burb decreases security risks, but
results in a decrease in availability.

Second, at 142 determine how the two programs interact.
Again, it is important to note that source code is not
available for this step. If source code is available for
inspection and modification, then this procedure does not
apply. Without source code, this step is accomplished by
examining the type enforcement violations generated by
either or both programs, as required.

Third, at 144 determine whether the type enforcement and
network separation violations discovered in the second step
can be eliminated. Techniques for removing TE violations
(such as those shown in FIG. 6) can be used. In addition, one
may be able to eliminate a type enforcement violation by
placing one of the programs into a situation where it is
“partially bound” to a particular burb. A “partially bound”
program is a program which can interact with a specific burb
under a reduced set of Network Separation rules. That is, a
partially bound program can perform process to process
communcation with another burb but not network to net
work communication. Specifically, it is possible for the
partially bound program in a first burb to signal a program
that has been completely bound to another, separate burb,
while simultaneously maintaining other connections to the
first burb. Therefore, communication between burbs
assigned to different burbs is permitted in a limited way and
the problem is solved.

In one embodiment, one creates this “partially bound”
program by using a type enforcement database trick.

10

15

20

25

30

35

40

45

50

55

60

65

24
Normally, a program “P” is completely bound to a burb
when the following syntax is used:

“P” runs in domain www.if
which means that program “P” can access any of the burbs
0 through 9 (as signified by the character ‘H’ above). When
program “P” first starts running, it has its choice of burbs
(e.g. www.0, www1, . . . www.9) to establish a connection.
But after the first connection, the program “P” is fully bound
to that burb and the domain that is associated with that burb,
and cannot establish a connection to any network in another
burb.
A program “P” is “partially bound” to a burb when the

following syntax is used:
“P” runs in domain adm0

Here, the program “P” loses some of its flexibility (it can
now connect only to burb adm0) but it gains the “partially
bound” status. Furthermore, since such an approach is
treated as if there are no other instantiated domains (i.e. no
adml, adm2, etc.), program P running in domain adm0 can
now connect to all other “H”-defined domains.
For the production-side program “PP” and

administration-side program “AA” example above, a full
example might be:
“AA” runs in domain adm0
“PP” runs in domain prolif

Thus, since the program “AA” is “partially bound” to
“adm0°, there can be no domains adml through adm'9.
Program “AA” has, however, gained the ability to interact
with pra0 through proj9. Thus, the required signalling ability
is re-established.

If it is not possible to place all but one of the programs in
a “partially bound” burb, then this procedure must stop
without succeeding. The only alternative at this point is to
place all programs in the same burb. Then, since the addi
tional Network Separation checks are no longer an issue, this
procedure degenerates into the type enforcement only
approach described previously.
Secure Commerce Server
One embodiment of a binary program made secure

through a combination of type enforcement and network
separation is described next. The Netscape Commerce
Server, version 1.1, available from Netscape Computer, Inc.,
is a server for use in conducting commercial transactions
over the Internet. This server provides user authentication,
SSL protection to http connections, and a forms interface for
server administration. As such, it is critical that care be taken
to protect a malicious attacker from gaining access to and
subverting the program.
A type enforced, network separated embodiment 160 of

the Netscape Commerce server system is shown in FIG. 8.
The Netscape Commerce server system includes two distinct
servers: the Commerce server 162 and the administration
server 164. In the preferred embodiment, one administration
server 164 should be able to administer and configure a
plurality of separate Commerce servers. In the system of
FIG. 8, the dashed lines indicate a user level permission
check such as the Unix file permissions. In addition, com
ponents of the system are placed within domains 166, 168
and 172 for a higher level of security.
Commerce server 162 is installed via an HTML forms

driven interface. Administration and configuration after
installation is done in the same manner. Installation operates
as follows:
1. The user runs the script ns-setup in the source tree (the

directory structure from which files are copied to install
the Netscape Commerce Server).

2. The user is prompted for the hostname of the host
machine.

5,867,647
25

3. A temporary configuration is written in /tmp and a special
WWW server is started using this configuration (the
installation server).

4. The installation server binds to an arbitrary, non-reserved
port.

5. The user is prompted for the name of a Web browser to
start up. It then starts the browser on the port the instal
lation server is listening on.

6. The rest of the installation is HTML forms-driven through
the browser. Various items such as port number for the
Commerce server, UID to run the server under, install
directory, logging, administration password, and other
server configuration are entered via three forms.

7. The configuration is verified and the actual installation
takes place:

create destination directory and subdirectories
create document root directory
create server startup and shutdown scripts
create server configuration files
copy all binaries, administration forms, and other files
from source tree to destination tree
change owner of directories
start administration server
start Commerce Server

9. remove files created in /tmp
8. Installation complete.
Many Commerce servers 162 can be run on the same

machine, binding to different ports (or even the same port,
using different IP addresses) and having their own configu
ration. Each server preforks 16 processes (number is
configurable) to serve requests. This can load the system
down if many servers are running.

After installation, the Commerce server is administered
via forms using any forms-capable browser and connecting
to a separate administration server running on its own port.
This server is started and stopped manually, except during
installation when it is started automatically. (It is recom
mended by Netscape that it be stopped when not being
used.) The administration server is also configurable via
forms (it configures itself). It can be configured to require a
password to access it, and to allow only certain hostnames
or IP addresses to connect to it.
The Commerce server, once running, serves Web pages

from a directory tree whose root is configurable. CGI script
location, URL mappings, user authentication, access control
by host, logging, and other items are also configurable via
the administration server. Configuring some items causes
creation of files, such as generating a key, installing a
certificate, and creating a user database.
High Level Design

This section describes what must be done to port the
Netscape Commerce Server to the secure computer. Since
we have no source code from Netscape, we cannot modify
how the server or installation process operates. Thus, design
will focus on what needs to be done outside the Netscape
source code to handle type enforcement.
The installation process will be done completely in the

administrative kernel (no type enforcement checks), so
setting file types in the source tree is not necessary. All file
types must be set after the install process is complete since
Netscape is not type-enforcement (TE) aware. To accom
plish this, a script is used to set all types appropriately. The
script must be able to find the appropriate directories
because paths are configurable, and the server files are in a
directory named for the port it binds to. This info is passed
via arguments or entered by the installer via prompts.

.
i

10

15

20

25

30

35

40

45

50

55

60

65

26
Commerce Server 162 runs in domain 166. In one

embodiment, this is the same domain in which the CERN
server (not shown) runs. Domain 166 is a bound (burbed)
domain which is extended to handle the Commerce Server.
That is, the Commerce Server is extended to be able to bind
to port 443 (https), 80 (http), 8000, 8001, and 8080. In
addition, to allow site flexibility, Commerce Server 162
must be able to bind to selected reserved port ranges.

Administration Server 164 runs in a new Netscape Admin
domain, domain 168. Domain 168 must be a burbed domain,
since it does a non-burbaware socket () call. Transfers
between domains must be done through proxy programs
acting in concert with kernel 170.
CGI scripts run in a CGI processor 171 in burbed CGI

domain 172. Since, however, the Netscape server cannot be
modified to do a makedomain () to run the CGI script in the
proper domain, there will need to be a tran type added to
CGI domain 172. Then, all CGI scripts will be of type tran.
In an alternate embodiment, a line could be added to the CGI
script itself which causes the script to automatically transi
tion into CGI domain 172. To run a CGI script, Commerce
Server 162 initiates a new process which executes in CGI
processor 171 within CGI domain 172. The results are then
transferred back to Commerce Server 162. In one
embodiment, the CERN server also executes CGI scripts
within CGI domain 172.

For installing two servers on the same port, but with
different IP addresses:

1. Follow the install directions twice, specifying every
thing the same except a different server name (which
will need to resolve to the correct IP address), bind
address, and document root.

2. Make an IP alias so that both IP addresses used for the
bind addresses in the previous step access the secure
computer. Type: ifconfig efl alias 172.17.128.199 to
alias the IP address 172.17.128.199 to the external
interface.

3. Access both servers using the different IP addresses.
Files Manifest
The following are files associated with the Commerce

Server. In this section, /server-root? will denote the path
where the server files are installed. Also, the subdirectory
https-443 will denote the directory containing all files spe
cific to the server running on port 443. The actual name will
contain the port number the server binds to in place of 443’.

Executables
/server-root/bin/https/ns-httpd
The Commerce server.

/server-root/admserv/ns-admin
The administration server.

/server-root/admserv/servlist
Part of the administration server.

/server-root/bin/https/admin/bin/*
CGI scripts for the admin server that generate forms,

interpret responses, change config files, administer servers,
generate keys, etc.
/server-root/extras/database/batchdb

Utility to convert NCSA-style user database to DBM
database.
/server-root/extras/database/changepw.cgi
CGI script to allow users to change their own password

via forms.
/server-root/extras/log anly/analyze

Analyze access logs.
/server-root/extras/log anly/a form.cgi
CGI script to analyze access logs via forms.

/server-root/https-443/restart

5,867,647
27

Restart the Commerce server.
/server-root/https-443/rotate

Rotate the log files.
/server-root/https-443/start

Start up the Commerce server.
/server-root/https-443/stop

Shut down the Commerce server.
/server-root/start-admin

Start up the administration server.
/server-root/stop-admin

Shut down the administration server.
Configuration files

/server-root/admserv/admpw
User and password file for access to administration server.

/server-root/admserv/ns-admin.conf
Configuration file for the administration server.

/server-root/bin/https/admin/html/*
Forms templates for the administration server.

/server-root/bin/https/admin/icons/*
Icons for the administration server.

/server-root/mc-icons/*
Icons for the Commerce server, used for gopher and ftp

listings.
/server-root/userdb/*

User databases. (Initially empty)
/server-root/https-443/config/admin.conf
Commerce server configuration file.

/server-root/https-443/config/magnus conf
Commerce server configuration file.

/server-root/https-443/config/obj.conf
Commerce server configuration file.

/server-root/https-443/config/mime.types
Commerce server configuration file.

/server-root/https-443/config/ServerKey.der
Key pair file. Initially non-existent, generated by admin

server when requested by the administrator. Path is config
urable.
/server-root/https-443/config/ServerCert.der

Certificate file. Initially non-existent, installed by admin
server from the Certificate Authority’s certificate response
when requested by the administrator. Path is configurable.
Log files

/server-root/admserv/errors
Log file for administration server.

/server-root/https-443/logs/access
Commerce server access log. Path is configurable.

/server-root/https-443/logs/errors
Commerce server error log.

/server-root/https-443/logs/sccure
Commerce server secure log. (All https accesses are

logged here with the keysize used).
Temporary files

/server-root/admserv/pid
Contains the process ID of the administration server when

running.
/server-root/https-443/logs/pid

Contains the process ID of the Commerce server when
running.

System files
/etc/spwd.db

System password file containing encrypted passwords.
/etc/pwd.db
A shadow password file.
Other files

/server-root/extras/database/changepw.htm
HTML form to allow users to change their own password.

/server-root/extras/log anly/a form.html

10

15

20

25

30

35

40

45

50

55

60

65

28
HTML form to analyze access logs.

/server-root/docs/index. html
Default home page for the Commerce server. Path is

configurable.
CGI scripts

Path is configurable.
HTML pages

Path is configurable.
As noted previously, Netscape Commerce Web server 162

runs in the Web server domain (domain 166), the same
domain that the CERN Web server runs in. Therefore, the
Web server domain needs execute permission to the follow
Ing:
/server-root/bin/https/ns-httpd

In addition, the Web server domain needs read permission
to these files:
/server-root/mc-icons/*
/server-root/userdb/*
/server-root/https-443/config/admin. conf
/server-root/https-443/config/magnus.conf
/server-root/https-443/config/obj.conf
/server-root/https-443/config/mime.types
/server-root/https-443/config/ServerKey.der
/server-root/https-443/config/ServerCert.der
/server-root/extras/database/changepw.htm
/server-root/extras/log anly/a form.html
/server-root/docs/index.html
The Web server domain needs write permission to these

files:
/server-root/https-443/logs/access
/server-root/https-443/logs/errors
/server-root/https-443 /logs/secure
/server-root/https-443/logs pid

Since the server normally runs as root, if it were able to
execute arbitrary code, this would be bad. We can address
this by not having it run as root, taking advantage of the type
enforcement protection of the sockets. This allows users
other than root to connect to low numbered sockets. Other
than needing to bind to port 80 or 443, there is no other
reason the server needs to run as root. Therefore, the server
will run as user “www.” and group “www.” with no need to
run as root.

The CGI bin executables present a potential security
concern. Since the Commerce server is allowed to execute
these files, if someone were able to put their own executable
on the secure computer, the server may be compromised. TE
only allows the Web server domain to transition to the CGI
domains and no others. It does not have permission to create
or write to files of any executable type. This helps prevent
the possibility of an external user subverting the server and
uploading an executable file.
The entire directory tree containing the html documents

which the Commerce server accesses will be write protected
from the Web server domain. A separate writable directory
will be set aside for all the data created by external users.
This is where the CGI executables will put their results. The
CGI domain will be allowed to create files in this directory,
but not to read or destroy them. These files may later be read
and moved internally by the webmaster using mail or FTP.
The password administration program will run in the

Netscape Admin domain (domain 168). This domain will
have all the accesses required to maintain the Admin server
and all Commerce servers on the secure computer.
The Admin domain needs execute access to the following:

/server-root/admserv/ns-admin
/server-root/admserv/servlist
/server-root/bin/https/admin/bin/*

5,867,647
29

/server-root/extras/database/batchdb
/server-root/extras/log anly/a form.cgi
/server-root/extras/log anly/analyze
/server-root/https-443/restart
/server-root/https-443/rotate
/server-root/https-443/start
/server-root/https-443/stop
/server-root/start-admin
/server-root/stop-admin

The Admin domain needs read access for:
/server-root/bin/https/admin/html/*
/server-root/bin/https/admin/icons/*
/server-root/extras/database/changepw.htm
/server-root/extras/log anly/a form.html
HTML pages
The Admin domain needs both read and write access for:

/server-root/admserv/admpw
/server-root/admserv/ns-admin.conf
/server-root/admserv/pid
/server-root/admserv/errors
/server-root/userdb/*
/server-root/https-443/config/admin.conf
/server-root/https-443/config/magnus.conf
/server-root/https-443/config/obj.conf
/server-root/https-443/config/mime.types
/server-root/https-443/config/ServerKey.der
/server-root/https-443/config/ServerCert.der
/server-root/https-443/logs/access
/server-root/https-443/logs/errors
/server-root/https-443/logs/secure
/server-root/https-443/logs/pid
CGI scripts run in CGI domain 172. The following files

will be of cgix:tran type and will run in the CGI domain:
/server-root/extras/database/changepw.cgi
/server-root/extras/log anly/a form.cgi
CGI-scripts

10

15

20

25

30

35

30
Commerce Server 162 is controlled by the various con

figuration files maintained by administration server 164. In
one embodiment, it may be advantageous to add the ability
to start and stop administrative server 164 from another
system administration program running in another domain.

Since the secure computer uses type enforcement on
sockets, we can allow users other than root to bind to
reserved ports. As a result, we run the Commerce server as
user id “www.” and group id “www.”. The “www.” user is
similar to “nobody” and has no log in capabilities. The
administration server will still run as root. In addition,
scripts that start and stop the servers need to execute /bin/sh
(type $Sys:shel). These scripts are also not type-aware, so
they need to be modified to execute in the correct domain.

In one embodiment, the following domains are used to
define the commerce server system. It should be apparent
that other combinations of domains, privileges or access
rights could be used. In the list, each domain can have the
following privileges: “is admin” indicates the domain is an
administrative domain, “has rootness” means that the
domain can violate Unix permissions if the process UID is
root, “can setlogin” indicates that the domain can set the
login name of a process. In addition, each domain’s DIT
could have the following permissions: “dt” indicates that
transition to the named domain is allowed, “s/ABRT’’ indi
cates that sending an ABRT signal to the named domain is
allowed, “sjob” indicates that sending a job control signal to
the named domain is allowed, “shUP” indicates that send
ing a HUP signal to the named domain is allowed, and
“suser” indicates that sending a USR1 or USR2 signal to the
named domain is allowed.

Finally, each DDT uses the following permissions: “w” is
permission to write, “r” is permission to read, “d” is per
mission to destroy, “n” is permission to rename, “c” is
permission to create and “e” is permission to execute.

Domain: CGI ‘cgix’
{ CGI scripts run here - limited access to things)
Privs:
DIT:

CGI
Subtype: Script “scrp’

{Used for CGI shell scripts)
DDT.

SABRT { }

CGI e r { }
Webmaster w r d n c { }
WWW e r { }

Subtype: Transistion “tran’
{Used for CGI compiled executables, not shell scripts. }
DDT.

Subtype: File ‘file'

DDT.

Subtype: Directory ‘diry’

DDT.

Subtype: Save ‘save’

DDT.

Webmaster I e W in { }
WWW e { }

CGI w r d n c { }
Webmaster w r d n c { }

CGI w r { }
Webmaster w r d n c { }

CGI C { }
Webmaster w r d n c { }

Domain: NetscapeAdmServ “nas):
{ This domain is for the Netscape Admin Server. }

5,867,647
31

-continued

Privs:
can setlogin

DIT:
CGI dt { }
NetscapeAdmServ sjob saBRT (To control itself. }
www dt sjob SHUP { }

Subtype: Executable exec’
{ }
DDT.

NetscapeAdmServ re { }
Webmaster I e { }

Subtype: Config ‘conf
{The Netscape Admin Server configuration file)
DDT.

Webmaster r w n c d { }
NetscapeAdmServ r w d n c { }

Subtype: File ‘file'
{ Default file type. This is the type created whenever the Admin
Server creates a file (Key/Certificate files, User Databases,
temporary files, etc.). }
DDT.

Webmaster w r d n c { }
NetscapeAdmServ w r d n c { }
WWW r {To read Key and Certificate files, and User

databases created by the Netscape admin
server. }

Subtype: Directory ‘diry’
{ }
DDT.

NetscapeAdmServ w r d n c { }
Webmaster w r d n c { }

Domain: Webmaster “Webr’
{ This domain is for web admin work. }
Privs:

is admin
has rootness

DIT:
CGI dt sjob { }
NetscapeAdmServ dt SJob SABRT | }
Webmaster SJob SHUP SABRT
WWW dt SJob SHUP SABRT

Subtype: File ‘file'
{ Default file type. }
DDT.

| |

Webmaster e w r d n c { }
Subtype: Executable exec’

{ }
DDT.

Webmaster € { }
Subtype: Directory ‘diry’

{ }
DDT.

Webmaster w r d n c { }
Domain: www ‘www#’

{The www domain is where any Web servers will be run, such as the
Commerce Server. }
Privs:
DIT:

CGI dt { }
www SUser SJob SHUP SABRT {Needs to control itself. }

Subtype: Config ‘conf
{The httpd configuration file(s). }
DDT.

NetscapeAdmServ w r {}
Webmaster r w n c d { }
WWW r { }

Subtype: File ‘file'
{ Default file type. This is the type created whenever the
Commerce Server creates a file (log files, temporary files, etc.). }
DDT.

NetscapeAdmServ r n | }
Webmaster w r d n c { }
www w r d n c { }

Subtype: Page page’
{ web pages }
DDT.

NetscapeAdmServ r {}
Webmaster r w n c d { }
WWW r { }

Subtype: Directory ‘diry’

32

5,867,647
33

-continued

{ }
DDT.

CGI r { }
NetscapeAdmServ w r {}
Webmaster w r d n c { }
www w r d c

34

{ Web stores cached files in dirs,
needs to make and destroy as needed}

Domain: www.Common “wwwc’
{The common Web server domain (for items shared across burbs). }
Privs:
DIT:
Subtype: Executable exec’

{ This is the Web Server executable type. }
DDT.

Webmaster € { }
WWW e { Need to be able to run the server. }

Subtype: Config ‘conf
{ }
DDT.

NetscapeAdmServ w r d n, c { }
Webmaster w r d n c { }
WWW r { }

Subtype: Directory ‘diry’
{ }
DDT.

CGI r { }
NetscapeAdmServ w r {}
Webmaster w r d n c { }
WWW r { }

Subtype: Page page’
{ }
DDT.

CGI r { }
NetscapeAdmServ r {}
Webmaster w r d n c { }
WWW r { }

Further information on an enhanced security commerce
server can be found in “SECURE COMMERCE SERVER”,
U.S. patent application Ser. No. xx/xxxxx by Jensen et al.,
filed herewith, the details of which are hereby incorporated
by reference.

Although the present invention has been described with
reference to the preferred embodiments, those skilled in the
art will recognize that changes may be made in form and
detail without departing from the spirit and scope of the
invention.
What is claimed is:
1. A method of providing increased security for compiled

program code, comprising the steps of:
installing the compiled program code in a computer;
executing the compiled program code in the computer;
logging type enforcement violations occurring during

execution of the compiled program code; and
modifying execution of the compiled program code in

response to the logged type enforcement violations to
prevent recurrence of the logged type enforcement
violations.

2. The method according to claim 1, wherein the compiled
program code executes within an execution environment and
wherein the step of modifying execution of the compiled
program code comprises the step of changing the execution
environment.

3. The method according to claim 1, wherein the step of
modifying execution of the compiled program code com
prises the steps of:

granting access permissions to processes generating the
type enforcement violations; and

reexecuting the compiled program code to determine if
additional type enforcement violations occur.

35

40

45

50

55

60

65

4. A method of adding additional levels of security to
compiled program code, comprising the steps of:

executing the compiled program code within a type
enforcement environment, wherein the step of execut
ing the compiled program code includes the step of
checking each access by a process for type enforcement
violations; and

modifying operation of the compiled program code in
response to the logged type enforcement violations to
eliminate each type enforcement violation.

5. The method according to claim 4, wherein the step of
modifying operation of the compiled program code com
prises the step of changing the environment within which the
compiled program code is executing.

6. The method according to claim 5, wherein the step of
changing the environment includes the steps of:

defining a particular user;
assigning type enforcement permissions on the access

such that the access can only be performed by the
particular user; and

starting the process as that particular user.
7. The method according to claim 4, wherein the step of

modifying operation of the compiled program code com
prises the step of granting appropriate type enforcement
permissions to the access.

8. The method according to claim 7, wherein the step of
checking each access includes the step of generating a type
enforcement violation when a process tries to access a data
object having a type to which the process lacks access
permission and wherein the step of granting appropriate type
enforcement permissions includes the step of setting data
object access permissions to permit the access.

9. The method according to claim 7, wherein the step of
checking each access includes the step of generating a type

5,867,647
35

enforcement violation when a first process tries to initiate a
process to process communication to a second process to
which the first process lacks access permission and wherein
the step of granting appropriate type enforcement permis
sions includes the step of setting process interaction permis
sions to permit the communication.

10. The method according to claim 7, wherein the step of
checking each access includes the step of generating a type
enforcement violation when a first process tries to initiate a
system environment access to which the first process lacks
access permission and wherein the step of granting appro
priate type enforcement permissions includes the step of
setting system environment access permissions to permit the
a CCèSS.

11. The method according to claim 4, wherein the step of
modifying operation of the compiled program code com
prises the steps of:

dividing the compiled program code into a plurality of
processes, wherein the plurality of processes includes a
plurality of first processes and a plurality of second
processes;

assigning the first processes to a first burb;
assigning the second processes to a second burb;
determining how the first and second processes interact

between the first and second burbs; and
granting type enforcement permissions to permit neces

sary interactions.

10

15

20

25

36
12. The method according to claim 11, wherein the step of

determining includes the step of generating a type enforce
ment violation when a process operating in the first burb
tries to access a data object assigned to the second burb.

13. The method according to claim 11, wherein the step of
determining includes the step of generating a type enforce
ment violation when a first process operating in the first burb
tries to initiate a process to process communication to a
second process assigned to the second burb.

14. The method according to claim 13, wherein the step
of granting appropriate type enforcement permissions
includes the steps of:

partially binding the first process to the first burb, wherein
a partially bound process is a process which can
interact with a specific burb without network separation
restrictions; and

giving the partially bound first process permission to
initiate a process to process communication to the
second process.

15. The method according to claim 11, wherein the step of
determining includes the step of generating a type enforce
ment violation when a process operating in the first burb
tries to initiate a system environment access to a process
assigned to the second burb.

