
USOO5857102A

Ulllted States Patent [19] [11] Patent Number: 5,857,102
McChesney et al. [45] Date of Patent: Jan. 5, 1999

[54] SYSTEM AND METHOD FOR 5,404,527 4/1995 Irwin et al. 395/700
DETERMINING AND MANIPULATING 5,428,785 6/1995 Morel etal. 395/651
CONFIGURATION INFORMATION 0F 5,469,573 11/1995 McGill, III et al. 395/712

SERVERS IN A DISTRIBUTED OBJECT
ENVIRONMENT OTHER PUBLICATIONS

_ Object Management Group, ‘The Common Object Request
[75] Inventors: RPderlck J‘ Mcchesney> Redwood Broker: Architecture and Speci?cation,’ Rev 1.2 OMG TC

CRY; Gregory B- Nuyens, Menlo Park, Document No. 93_12_43, Dec. 29, 1993.
both of Calif.

_ _ _ _ Primary Examiner—Emanuel Todd VoeltZ

[73] Asslgnee' Sun Mlcrosystems’ Inc" Mt‘ VleW’ Assistant Examiner—Peter J. Corcoran, III
Cahf' Attorney, Agent, or Firm—FenWick & West LLP

[21] Appl. No.: 403,337 [57] ABSTRACT

[22] Filed; Mal; 14, 1995 A computer system in a distributed object programming
6 environment includes a number of host computers providing

[51] Int. Cl. G06F 9/445 Services to Clients on a network through internally Stored
U-S- Cl- Servers_ Various types of Con?guration information for each

[58] Field of Search 395/700, 300.1, server are available to clients through persistent server
395/651, 652, 653, 712 administrators, Which are objects containing such informa

_ tion about individual servers. A server administrator can

[56] References Clted store such information as startup execution de?nitions,

U'S' PATENT DOCUMENTS saved program definition, ob]ect interfaces and
implementations, reapmg, tracmg, and loggmg con?gura

5,230,052 7/1993 Dayan et al. 395/700 tion data. Being persistent and external to the server, the
5,249,290 9/ 1993 HeiZef ------------- ~ 395/700 server administrator can manipulate and determine its infor
5257378 10/1993 sldeserf et a1~ 395/652 mation about a server in response to client requests Without
5’317’744 5/1994 Halwellet a1‘ 395/700 starting up the server, thereby facilitating system adminis
5,361,36O 11/1994 Ishigami et al. .. 395/700 nation
5,367,635 11/1994 Bauer et al. 395/653 '

5,379,430 1/1995 Nguyen 395/700
5,379,431 1/1995 Lemon et al. 395/700 33 Claims, 8 Drawing Sheets

301

Execute Server lor
installation

303

Search for Existing
Sewer Admin.

i \ 305 313
Server Admin. Y 5 Set Basic Server Host Name

. . S N < Exists’? / ‘ lnlorrnatlon Dzgebirggtlgry
1 NO 1 aved Pro ram Def
307 315

Find Sewer Admin. For Each
Factory Implementation in
4 Server
309

Create New Sewer
Admin.

4
311

Bind Object
Reference for Sewer

Admin. to Name

Implementation

311

Interface of
YES

in Sewer
Admin?

321
Include

Implementation

BLUE COAT - EXHIBIT 1015

5,857,102 U.S. Patent Jan. 5, 1999 Sheet 1 of8

N MIDGI
a

850 59:0 8.5a =55

B252 @3886?
‘a

53:60 mo:
.................... Go: “no:

5,857,102 U.S. Patent Jan. 5, 1999 Sheet 2 of8

mum 22026 83m 952 NNN 62% msemz

N WEDGE 2952 298862 2203 522552 52%
mom\V : 6.92553 32% F BBS-BEEP‘ am 52%

mo PM

U.S. Patent Jan. 5, 1999 Sheet 3 of8 5,857,102

301

Execute Server for
installation

303

Search for Existing
Server Admin.

305
Server Admin.

Exists?

313

Set Basic Server
lnfon'nation

Host Name
Server Name
Data Directory
Saved Pro ram Del

307 315
Find Server Admin. For Each

Factory Implementation in
Sewer

309

Create New Server an
Admin. Interface of

Implementation YES
in Server

an Admin.?
Bind Object

Reference for Server
Admin. to Name 319

Include
Interface

321
_ Include

Implementation

FIGURE 3

U.S. Patent Jan. 5, 1999 Sheet 4 of8 5,857,102

105

Client

413 401

Return Invoke Sewer
Configuration Admin.
infon'nation

409 20-9

Objects
403b 203 ,

Sewer Admin
03a

4070 201 5c

407 Server 405
Update Stored Return Stored
Configuration 405D Configuration

Information \‘ 225 lnforrnation
BOA

407b

r.)
4078 405a

411

Stored
Configuration
Information

FIG URE 4a

U.S. Patent Jan. 5, 1999 Sheet 5 of8 5,857,102

105

Client

203

Server Admin

419
Corba Pseudo
Obiect._call

213

Server Spy
._implementation

22s

BOA

FIG UHE 4b

U.S. Patent Jan. 5, 1999

s01
Invoke lnterpose with

Parameters

s03
Retrieve Program
Definition of Server

505
Update Program

De?nition with New
Pathname

l

Sheet 6 0f 8

s07
Restructure Program
Definition Arguments

517

Store New Program
De?nition in BOA

FIGURE 5

— Append Additional

509
Set 1st Argument to

Special String
"_Orig_Prog_Path“

511
Set 2nd Argument to
Actual Pathname

51a
Append Original

Program Definition
Arguments

515

Arguments

5,857,102

U.S. Patent Jan. 5, 1999

601

For each facility in Server
Admin

s03 _

Loop over facilities in
Server

605
Server Admin

facility in
Server?

607

Sheet 7 0f 8

I FIGURE 6

Add Sewer
Admin Facility

to Sewer

For each facility in Server
609

617

s11
Loop over facilities in

Server Admin

613

Server facility in
Server Admin’?

615
Delete Server

Facility

Return

5,857,102

5,857,102
1

SYSTEM AND METHOD FOR
DETERMINING AND MANIPULATING
CONFIGURATION INFORMATION OF
SERVERS IN A DISTRIBUTED OBJECT

ENVIRONMENT

BACKGROUND

1. Field of Invention
This invention relates to the ?eld of object oriented

application and operating systems development, and more
particularly, to methods and systems for performing admin
istrative operations on object oriented applications operating
in a distributed object programming environment.

2. Background of Invention
Client-server computing is the predominant model for the

management of computing resources, typically on a netWork
of distributed computers. Servers are computers and appli
cation programs executing thereon that provide various
functional operations and data, upon request. Clients are
computers and applications that request such services. While
clients and servers may be distributed in various computers
on a netWork, they may also reside in a single computer, With
individual applications providing client or server functions,
or both.

In a client-server system based on a object oriented
development environment, a client is code that invokes or
manipulates an object, and the object that is invoked is the
server. Aserver provides a number of interfaces to clients for
invoking various objects Within the server that provide
functionality requested by a client. Each of the objects may
have multiple implementations, or object code that executes
the functionality of the code When an instance of the object
is created by the server. Thus, a particular interface, When
used by a client to invoke an object, Will result in the
execution of a particular implementation for the object that
is invoked. When the server or one of its objects is invoked,
the server Will operate in accordance With certain con?gu
ration information, such as the location of its data directory,
the executable pathname, and the like. In a client-server
system, it is desirable to be able to determine and manipulate
the con?guration information for a server available on the
netWork Without consuming system resources by invoking
the server.

Information about a server can be classi?ed into tWo

categories. Dynamic information arises out of a particular
process that is executing a server, such as its process
identi?er, hoW many objects are active Within the server, and
the like. This information is dynamic because it depends on
a current executing process Which is transient. Static infor
mation is information that does not devolve from a particular
execution or process. This includes external information
such as the identify of the host computer of Where the server
is installed, its pathname, its execution de?nition, and inter
nal information, such as the identity and description of the
object interfaces and implementations the server provides,
and the setup of various application programming interfaces
used by the server, such as the identity and con?guration of
tracing facilities available in the server, log ?le
con?gurations, and reaping functions.

Conventionally, systems administrators have various soft
Ware tools for determining the con?guration and related
information about servers on various computers on a net

Work. HoWever, these administrative tools require that the
server be executing as a process for any information to be
obtained, and thus require an inactive server to be started up,
merely to obtain or manipulate con?guration and similar

10

15

25

35

45

55

65

2
information. Such startup procedures limit the ?exibility of
the administrative tools, and require unnecessary consump
tion of computer resources. This is particularly the case
Where a client needs to determine con?guration information
for a large number of servers on the netWork.

Similarly, netWork managers use netWork management
tools to determine the state of netWork resources, such as
routers, bridges, printers, ?le servers, disk drives, Worksta
tions and the like. With conventional netWork management
tools, such as tools compliant With the SNMP or CMIP
standards, individual managed objects are associated With
each netWork device. The netWork manager can query and
con?gure netWorked devices through manipulation of the
managed object associated With each device. These man
aged objects hoWever, are limited to conveying information
at the device level, and do not query or manipulate object
level information for individual processes, particularly for
servers running on Workstations and similar processing
units. For example, SNMP tools currently do not determine
the interfaces implemented by a given server on a particular
Workstation. Thus, these tools do not provide adequate level
of granularity for use by a systems administrator of a
client-server system built on a distributed object program
ming environment.

Additionally, SNMP and CMIP tools require the netWork
device associated With each managed object to be operating
and available on the netWork in order for the managed object
to determine and con?gure the state of the netWork device.
Conventional managed objects are unable to automatically
startup their associated netWork devices, and thus if the
netWork device crashes or its otherWise terminated, the
managed object and the SNMP tool is unable to provide
information about the netWork device. This is because the
managed objects do not have information about the startup
con?guration of the netWork devices, as the managed
objects operate on the assumption that the associated net
Work devices are already operating. Thus, these tools Would
also require the servers to be executing in order for any
information to be obtained. Similarly, With loW level
protocols, like RPC, no information is stored about
pathnames, con?guration information or the like for servers,
again, preventing an RPC agent from starting a netWorked
server, or providing process level information.

In conventional systems Where the processes created by
an application all reside in a common address space, typical
system administrative tools require providing an explicit
reference to the host machine and the process or processes
for Which information is requested. In a distributed object
programming environment, hoWever, a client invokes a
server through an object reference, Without having informa
tion as to Where the invoked object resides in the system, that
is, Without speci?cally knoWing the computer Where the
invoked object is stored or Where its running. Rather, the
client passes the object reference through an object request
broker Which locates the server, and passes back any output
from the server to the client. To the user, the client and
server, and any group of distributed objects, behave trans
parently as an integrated application, even though the
objects may be distributed in various computer systems. One
standard for the distributed object programming is the
Common Object Request Broker Architecture (CORBA),
speci?ed by the Object Management Group. In this
environment, conventional system administrative tools are
shielded from the actual implementation of the server, and
do not have a mechanism for obtaining uni?ed access to the
internal structure of a server, particuarly its con?guration
setup. While such information may be available in various

5,857,102
3

objects in various parts of the environment, such as naming
services, and the like, there is no uni?ed object that provides
this information access efficiently.

Accordingly, it is desirable to provide a method and
system for obtaining and manipulating con?guration infor
mation about servers on computers in a distributed object
programming environment Without starting up the servers,
and Where only an object reference to the server is available
to clients.

SUMMARY OF THE INVENTION

The present invention overcomes the foregoing limita
tions by associating With each server a persistent stored
object knoWn as a server administrator. The server admin
istrator stores various types of information that can be
knoWn about the server Without starting up the server, such
as its execution de?nition, name, location, and various
internal con?guration information, such as the object inter
faces and implementations supported by the server. Because
the server administrator is persistent, it maintains the con
?guration information even When the server is not execut
ing. This alloWs the con?guration information to be manipu
lated by clients via the server administrator, Which also
provides various methods for changing and updating the
con?guration information.

The presence of a server administrator simpli?es the
discovery of What services the server provides through the
object interfaces and implementations. In the absence of this
information stored in the server administrator, clients Would
have to start up the server to obtain this information. This
process can be extremely time and resource intensive, par
ticularly Where a client is attempting to determine this
information for every server on the network. Storing inter
face and implementation information in an object, such as
the server administrator, external to the server, means that
this information can be obtained Without starting up the
server.

The server administrator also provides for uni?ed storage
of startup con?guration for the server, alloWing a client to
obtain and manipulate the startup con?guration for many
different servers by accessing their respective server admin
istrators Which may be stored in a common naming context.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of a system of distributed com
puters for using server administrator objects;

FIG. 2 is an illustration of the organiZation of a host
computer supporting various servers;

FIG. 3 is a ?oWchart one embodiment of a process of
registering a server With a persistent associated server
administrator object;

FIGS. 4a and 4b are data How diagrams of the call
architecture for obtaining information about a server Without
starting up the server;

FIG. 5 is a ?oWchart of one embodiment of a process for
interposing an application for the server;

FIG. 6 is a ?oWchart of one embodiment of a process for
updating tracing facilities in the server; and

FIG. 7 is an illustration of one embodiment of a user
interface for obtaining information about servers and host
machines.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring noW to FIG. 1 there is shoWn a hardWare vieW
of a system 100 for determining and manipulating con?gu

15

25

35

45

55

65

4
ration information for servers on distributed computers in a
distributed object programming environment. The system
100 includes a number of host computers 101 connected
along a netWork 103. Each host computer 101 includes
secondary storage 107 for long term storage of implemen
tation code and data for servers and clients, and the like, an
input device 109 and an output device 115 for receiving and
outputting commands and data into the system 100, and an
addressable memory 113 for storing server and client imple
mentation code during execution by a processor 111. During
execution by the processor 111, servers exist as processes in
the addressable memory 113. Also coupled to the netWork
103 are a number of clients 105. Each client 105 is an object
executing as a process in a remotely situated computer
similar in structure to a host computer 101, or alternatively,
existing as separate processes in any of the host computers
101. Each client 105 requests services or data from servers
(not shoWn) in host computers 101 on the netWork 103. The
host computers 101 may be realiZed by most general pur
poses computers, such as a SPARCstationTM computer
manufactured by Sun Microsystems, Inc. of Mountain VieW,
Calif. Any other general purpose computer may also be
adapted for use With the invention. Each host computer 101
executes a general purpose operating system, such as Sun
Microsystems’ Solaris® operating system. In addition, each
host computer 101 is part of an object request broker
environment, satisfying the CORBA standards set by the
Object Management Group in The Common Object Request
Broker: Architecture and Speci?cation, Rev. 1.2, OMG TC
Document Number 93-12-43, available by anonymous ftp to
omg.org. Other equivalent environments for distributed
object systems may also be used. In the preferred
embodiment, the object request broker environment is Sun
Microsystems’ Project DOE (Distributed Objects
EveryWhere).

Referring noW to FIG. 2, there is shoWn a logical vieW of
system 100, particularly illustrating the con?guration of
addressable memory 113 in any of the host computers 101
during runtime operation of various servers. The addressable
memory 113 of each host computer 101 includes a number
of executable objects for performing various functions,
including user application functions, such as Word
processing, database management, graphics design, CAD
engineering, softWare development, ?nancial management,
and the like, and operating system functions, such as
memory management, resource allocation, storage
management, and system accounting information, and net
Work interfacing With remote clients and hosts.
More particularly, host computer 101 includes a number

of servers 201, each providing a particular type of function
ality to clients 105 distributed on the netWork 103 (or locally
executing in the host computer 101). Each server 201 in the
host computer 101 includes a number of objects 209, each
of Which encapsulates data associated With the object 209
and its state, and executable code for implementing func
tional operations, or methods of the object 209 on the data
or other objects 209. An object 209 is manipulated by clients
105 or other objects 209 through an interface de?nition that
speci?es the operations, attributes, and exceptions that an
object 209 provides. The objects 209 are distributed objects,
distinguished from conventional objects in object oriented
programming languages in that the interface of an object 209
is de?ned in an interface de?nition language, Which is then
mapped to an implementation language, such as C++ or C.
This alloWs objects 209 to have multiple implementations in
various languages, While still maintaining a consistently
de?ned interface. A client 105 does not have to have any

5,857,102
5

information about the underlying implementation of the
object 209, but merely has to have the interface for the object
209. The objects 209 are distributed in that a client 105 may
invoke an object 209 existing anyWhere on the netWork 103,
including in the address space of a client 105, or any number
of host computers 101, by using a naming server 227 and the
various BOAs 225 on the host computers 101.

Facilitating communication the clients 105 and the host
computers 101 is a basic object adapter 225, or BOA. The
BOA 225 comforms to the requirements for the basic object
adapter speci?ed in CORBA. The BOA 225 provides an
interface for clients 105 to access object implementations of
objects 209 included in servers 201 on various host com
puters 101 distributed on netWork 103. Object implementa
tions are actual code Which implements an object 209. In
order to efficiently manage the addressable memory 113 of
the host computer 101, the BOA 225 maintains records
indicating Which servers 201 are active and inactive, and in
each server 201, Which objects 209 are active or inactive,
and Which implementations of object methods are also
active or inactive. In this Way the BOA 225 can readily
manage memory resources in the addressable memory 113
on an as-needed basis, allocating memory to active servers
201, objects 209 and implementations, and deallocating
memory from inactive entities. The BOA 225 includes a
daemon for managing and responding to invocations from
clients 105 for objects 209 in the various servers 201 of the
host computer 101. The daemon of the BOA 225 automati
cally starts up a server 201 in the host computer 101 to
service an incoming call to an object 209 if the server 201
is not running. The BOA 225 receives a request from a client
105 for an object 209 in a server 201, the client 105 passing
the object reference to the BOA 225. The BOA 225 deter
mines Whether there is an active implementation of the
object 209 or method and if so, the BOA 225 passes the
request to the object 209, otherWise, the BOA 225 retrieves
the implementation code for the object 209 from secondary
storage 107, starts a neW process for the invoked object,
executing the implementation With the processor 111. The
BOA 225 Will also manage deactivation of objects 209 and
implementations that are no longer being used, or that are
explicitly terminated by a client 105 or server 201, reclaim
ing resources allocated to the object 209 and updating any
persistent attributes or data of the object 209.

Coupled to the host computer 101 by the netWork 103 is
a naming server 227. The naming server 227 maintains a
name space directory 229 including number of naming
contexts, each of Which includes a set of name bindings. A
name binding is an association betWeen an arbitrary object
name, and an object reference uniquely identifying an object
209 Within a server 201 and further identifying the server
201, and host computer 101 including the object 209. The
naming server 227 provides methods for binding a name to
an object reference so that the object 209 associated With the
object reference can be accessed from the name, and for
resolving names provided by clients 105 in order to provide
an object reference to a client 105. With an object reference,
a client 105 can directly invoke a server 201 or any object
209 Within a server 201. The naming server 227 provides
clients 105 With a service that alloWs access to distributed
servers 201 before the client 105 has an object reference.
Multiple naming servers 227 may be supported, With clients
105 transparently accessing various naming servers 27 on
the netWork 103. In the preferred embodiment, a naming
server 227 is included in each host computer 101, and
supports objects 209 Within the host computer 101; multiple
naming servers 227 then Work in conjunction to provides
clients 105 With object references for local objects 209.

10

15

25

35

45

55

65

6
A factory object 211 may be associated With each object

209, for performing a single method that is called by a client
105 to create a neW instance of the type of object 209. The
factory object 211 is registered in the name space directory
229 of the naming server 227, Which is accessed by clients
105 for obtaining object references. Each factory object 211
includes a static create member function that creates a neW
object 209 of the type speci?c to the factory object 211, and
returns an object reference to the neW object 209. An
initialiZe function is provided in created object 209 to
perform any needed initialiZation on the object’s state.
Typically there is only one instance of a factory object 211
implementation for each object 209 in the server 201. The
instance of each factory object 211 is created When the
server 201 is installed in the host computer 201 and regis
tered in the naming server 227. An object 209 need not have
an associated factory object 211, for example, Where the
object 209 is not public and available only to the server 201,
or Where the server 201 is designed to have a single instance
of a particular type of object 209.

For each server 201 on the host computer 101 there is a
persistent server administrator 203 object that is instantiated
from a server administrator class. Each server administrator
203 maintains con?guration information for the particular
server 201 associated With the server administrator 203,
including information that can be knoWn Whether or not the
server 201 is executing. This alloWs system administrative
tools to determine the state of the server 201 Without having
to start up the server 201 as a process in the host computer
101. Throughout the remainder of this disclosure, references
to “the server” and “the server administrator” refer to one
server 201 and its associated server administrator 203, and
it is understood that the functionality described for these
respective entities applies to each respective server 201 and
server administrator 203 in the host computer 101.
A server administrator 203 is created by a server admin

istrator factory 205 When a server 201 is installed on the host
computer 101. A server 201 is installed using conventional
installation techniques, such as executing the server 201
using the name of the server 201 along With a—install
command line argument. During this execution, the server
201 Will create a neW server administrator 203. FIG. 3 shoWs
a ?oWchart of one method by Which a neW server adminis
trator 203 is associated With a server 201.

First, the server 201 is executed 301 during the installa
tion process. The server 201 searches 303 for an existing
server administrator 203 object by accessing the naming
server 227 for the host computer 101, and traversing the
name space directory 229. The server 201 determines 305
Whether a server administrator 203 object exists With the
appropriate name. If no associated server administrator 203
object is located in the host computer 101, the server 201
accesses 307 the server administrator factory 205 via an
object reference stored in the naming server 227.
The server 201 Will invoke 309 the create method of the

server administrator factory 205, instantiating a neW server
administrator 203 object, and obtaining an object reference
for the neW server administrator 203. The server 201 Will
then store 311 a binding of the object reference and an object
name for the server administrator 203 in the naming server
227; the object name should uniquely identify the server
administrator 203 as associated With the particular server
201. Typically the object name Will have the folloWing
format:

<hosticomputeriname>/admin/servers/<serveriname>

Where hosticomputeriname is the literal string name pro
vided to the host computer 101 including the server 201, and
the serveriname is speci?ed by the developer of the server
201.

5,857,102
7

The server 201 Will set 313 various execution related
con?guration information in the appropriate structures of the
server administrator 203, as further described below. This
information preferably includes the name of the host com
puter 101 Where the server 201 is installed, the name of the
server 201 and any aliases for executing multiple instances
of the server 201, the path name of any data directory the
server 201 uses for storing and accessing local data and
resources, and the program de?nition. The data directory
information alloWs the operating system or other adminis
trative layer to administer the ?les in the data directory, for
example, providing backup services. The data directory is
used to issue a change directory command after the server
201 is executed so that the identi?ed directory becomes the
current directory. The saved program de?nition is the
pathname, command line arguments, and environmental
variables used When the server 201 is started up.

Normally, the program de?nition is stored in the BOA 225
as a part of the execution de?nition. In the BOA 225, any
change to the program de?nition is permanent and undoable,
and thus previous con?gurations of the program de?nition
are not saved. HoWever, it is typically necessary to alter the
program de?nition for administrative reasons, for example,
to attach a debugger to the server 201 for debugging, or to
execute various functions from a shell program.
Conventionally, once the program de?nition in the BOA 225
is made to accommodate these needs, the system adminis
trator Would have to manually reconstruct and reset the
normal or original program de?nition. With the saved pro
gram de?nition stored in the server administrator 203 this
information can be preserved and recalled separately from
the BOA 225. The saved program de?nition thus alloWs the
server administrator 203 to restore the correct program
de?nition after the BOA 225 has been changed.

Once the basic server information is stored in the server
administrator 203, the server 201 Will loop 315 over each of
the implementations present in the server 201. Each imple
mentation is executable code that implements an interface
for methods or attributes of an object 209 included in the
server 201. The server 201 tests 317 Whether the interface of
the implementation is already stored in the server adminis
trator 203, and if not, the server 201 stores 319 to the server
administrator 203 information to identify the interface. This
information preferably includes an identi?cation of the
interface, such as the name of the interface and an identi?
cation value. This information alloWs the server administra
tor 203 to provide to clients 105 information as to Which
objects 209 the server. 201 supports. The server 201 then
stores 321 in the server administrator 203 information about
the implementation, preferably storing the name of the
implementation, and an identi?cation value of the imple
mentation that is unique on the host computer 101, and the
interface associated With the interface. This alloWs the server
administrator 203 to invoke the implementation at a later
time in response to a request from a client 105, thereby
starting up the server 201 if necessary.

The purpose of this loop is to identify to the server
administrator 203 Which object interfaces the server 201
implements, so that the server administrator 203 can provide
this information to client 105 at a later time Without having
to start up the server 201 if it is not running at the time the
client 105 requests the information. In addition, this internal
information, Which is otherWise not directly available to
clients 105 because of the location opacity of the distributed
object programming environment, alloWs clients 105, acting
on behalf of system administrators or others, to determine
Which servers 201 are capable for performing Which func
tions.

10

15

25

35

45

55

65

8
The server administrator 203 provides clients 105 With a

uni?ed means for accessing and manipulating con?guration
information about the server 201 With Which it is associated.
FIG. 4a illustrates a data?oW diagram of the basic architec
ture of obtaining and manipulating con?guration informa
tion. Generally, the server administrator 203 receives 401 a
request from a client 105, through an invocation of one of its
operations or attributes, for selected con?guration informa
tion about the server 201. The server administrator 203 Will
execute 403(a, b) the appropriate method, as requested by the
client 105 to manipulate the information. The server admin
istrator 203 may then return 413 the information to the client
105 if requested.
More particularly, the server administrator 203 may

invoke 403a a method to return 405 the requested con?gu
ration information from various sources. These include
returning 405a the con?guration information by accessing
stored structures 411 in the server administrator 203 that
persistently maintain the con?guration information; by
accessing 405b con?guration information stored in the BOA
225; and by accessing 405c the server 201 itself.

The server adminstrator 203 may also execute 403b
methods to update 407 con?guration information using
values or data supplied by the client 105. These methods
including updating 407a the stored con?guration informa
tion 411; updating 407b persistently stored con?guration
information in the BOA 225 or similar services; and updat
ing 407c stored con?guration information in the server 201.

In some instances, the server administrator 203 may also
invoke 409 other objects 209 or services in the distributed
object environment to obtain the requested con?guration
information.
Where the server administrator 203 accesses the stored

con?guration information 411, the BOA 225, or other object
209, it performs its functionality Without invoking the server
201 if the server 201 is not already executing as a process in
the host computer 101. This conserves system resources,
provides faster response time to client 105 requests, and
simpli?es administration of the system 100.

Referring generally to FIG. 2, for those methods that
obtain dynamic con?guration information, such as the pro
cess identi?er of the server 201, there is preferably an object
209 Within the server 201 that can observe and report the
current state of the server 201. Because the server admin
istrator 203 is not Within the server 201 With Which it
associated, it must call an object 209 that is. In order to
ensure that the server administrator 203 alWays has access to
the same object 209 in a server 201 regardless of hoW the
applications developer created the server 201, there is pref
erably embedded in each server 201 a server spy 213 object.
The server spy 213 object is more completely described in
the related application identi?ed above. The server spy 213
is knoWn by the server administrator to alWays be present,
and accordingly, the server administrator 203 calls the server
spy 213 to obtain dynamic con?guration information about
the server 201 containing the server spy 213. The server spy
213, as With all objects 209, inherits from a base class,
CORBAzzObject, that provides several fundamental func
tions. One of these is theiimplementation method. This
method returns a CORBA pseudo object speci?c to a
CORBA de?ned implementation class. This class provides
further basic functionality, particularly, methods that return
information about the process in Which the originating
object, here the server spy 213, is embedded. This informa
tion is passed back to the server administrator 203 as
necessary to provide the desired information to a requesting
client 105.

5,857,102

FIG. 4b illustrates the general architecture of this inter
action betWeen the server administrator 203 and the server
spy 213. First, a client 105 Will invoke 401 a method of
server administrator 203 to provide some speci?c informa
tion about the current state of dynamic con?guration infor
mation of the server 201. The server administrator 203 Will
invoke 415a the server spy 213 to obtain the information. In
some cases, the server spy 213 has the necessary method to
obtain the information, and so executes and returns 417a this
information to the server administrator 203. In other cases,
Where the server spy 213 does not include an appropriate
method itself, server administrator 203 Will then invoke
415b theiimplementation method of the server spy 213.
Theiimplementation method is inherited from the COR
BA::Object class, and returns 417b an object reference to a
CORBA pseudo object 419. This CORBApseudo object 419
has all the functionality de?ned by the CORBA standard for
the object base class. The server administrator 203 Will then
invoke 415c an appropriate function call on the CORBA
pseudo object 419 to obtain the requested information about
the server 201. The CORBA pseudo object 419 Will return
417c this information to the server administrator 203, Which
may store it 407 or pass it 413 on to the client 105 if desired.
In other cases, the server administrator 203 Will invoke 415a
a particular method of the server spy 213, Which Will in turn
invoke or access 423 a loWer level object or process, such as
the operating system 421 or the BOA 225 to obtain the
requested information.

This architecture has been shoWn With respect to the
preferred embodiment using the server spy 213. The server
spy 213 is the preferred object 209 for this process because
it is embedded in every server 201 created in the distributed
object programming environment, and thus, the server
administrator 203 can reliably invoke the server spy 213 in
the server 201. Alternatively, any object 209 in the server
201 can be employed in the same capacity as the server spy
213, so long as that object 209 inherits from the COR
BA::Object class. To do this, the server administrator 203
Would have to identify the objects 209 in the server 201, in
a manner similar to that described With respect to FIG. 3.
The server administrator 203 could then select one of the
identi?ed objects 209 as its agent for performing these
various methods as required.

The speci?c methods or attributes provided in the pre
ferred embodiment of the server administrator 203 for
determining various types of con?guration information of
the server 201 are as folloWs, and are one implementation of
the interface de?nition included in Appendix A. Appendix A
is a pseudo interface de?nition language (IDL) ?le illustrat
ing one embodiment of the interface of the server adminis
trator 203; the folloWing discussion is With respect to the
functionality of a server administrator 203 described above,
as provided by the interface disclosed in Appendix A. It is
understood that other interface de?nition ?les may also be
suitably used to de?ne a server administrator 203 object.
Similarly, various implementation ?les can be used to imple
ment the attributes of the server administrator 203 (further
described beloW) as shoWn in IDL ?le.

The server administrator 203 includes an attribute for
determining Whether the server 201 is currently executing as
a process in the processor 111 of the host computer 101. An
example of the interface for this attribute is the isirunning
attribute of the IDL. This boolean attribute indicates Whether
the server 201 associated With the particular server admin
istrator 203 is currently executing as a process by the
processor 111 of the host computer 101. When this attribute
is invoked, the server administrator 203 calls 415b them

10

15

25

35

45

55

65

10
implementation method of the server spy 213, as illustrated
in FIG. 4b, Which returns 417b an object reference to a
CORBA pseudo object 419.
The server administrator 203 then invokes 415c an

isiserverirunning method on the CORBA pseudo object
419, Which is provided as part of the implementation object
class for CORBA. This method operates by determining
Whether the implementation that includes the CORBA
pseudo object 419 is currently executing. The CORBA
pseudo object 419 Will return 417c a boolean TRUE if the
server 201 is running, otherWise, it returns 417c a boolean
FALSE. With this method, the server administrator 203 is
able to determine, on behalf of a request from a client 105,
Whether a server 201 is actually running Without starting up
the server 201 since a call to the CORBA pseudo object 419
may be completed Without starting up the server 201, as With
a normal distributed object 209.
The server administrator 203 further includes an attribute

for determining the process identi?er of the server 201. An
example of the interface for this attribute is the processiid
attribute of the IDL. This attribute is implemented by
method similar to the isirunning attribute. Here, after
obtaining 417b the object reference to the CORBA pseudo
object 419, the server administrator 203 Will invoke 415c a
processiid method on the CORBA pseudo object 419. This
method returns 417c the process identi?er for the process,
here the server 201 process, that contains the CORBA
pseudo object 419. If the server 201 is not running as a
process, the CORBA pseudo object 419 Will return Zero.
Again, this method alloWs the server administrator 203 to
provide internal state information, here the process id, of a
server 201 to a client 105 Without starting up the server 201.
The server administrator 203 further includes an attribute

Which Will suppress the server 201 from starting up to
service invocations of object 209 Within the server 201. An
example of the interface for this attribute is the hOldidOWIl
attribute of the IDL. As noted, the daemon of the BOA 225
automatically starts up an inactive server 201 in the host
computer 101 to service an incoming call to an object 209.
HoWever, it is sometimes desirable to suppress the server
201, for example, to upgrade, or backup the server 201. In
these instances, the system administrator or other user does
not Want the daemon to start up the server 201 in response
to calls from clients 105. Accordingly, the daemon Will
alWays check a hOldidOWIl value set in the execution
de?nition of the server 201, as stored in the BOA 225. The
hOldidOWIl attribute (in both the server administrator 203
and in the BOA 225) is preferably a multivalued enumerated
type, providing for various types of hOldidOWIl responses.
The hOldidOWIl attribute may have a “LONG” value, Which
indicates to the daemon that the server 201 Will be doWn for
an extended period time. In this case, the daemon can throW
an appropriate exception back to the invoking client 105.
The hOldidOWIl attribute may have a “SHORT” value,
indicating the the server 201 Will be doWn only temporarily,
such as several seconds, in Which instance the daemon Will
Wait until the server 201 is available again, and then service
the client 105 by starting up the server 201. Finally, the
hOldidOWIl attribute may take a “NONE” value, indicating
that the server 201 is not held doWn, and immediately
available for execution. The server administrator 203 sets
the hOldidOWIl attribute by ?nding the execution de?nition
for the server 201 in the BOA 225, obtaining the program
de?nition included in the execution de?nition, and setting
the hOldidOWIl value in this de?nition.
The server administrator 203 further includes an attribute

that stores a master version of the program de?nition in the

5,857,102
11

BOA 225. An example of the interface for this attribute is the
boaiprogramidef attribute of the IDL. This program de?
nition includes the pathname, command line arguments, and
the environment to be used When the server 201 is started up
by the BOA 225. This attribute of server administrator 203
allows a client 105 to change the program de?nition at any
time, again, Without having to start up the server 201 merely
for this purposes, and Without having to directly interface
With the BOA 225. This is doWn by invoking the boai
programidef attribute and passing in the desired param
eters. Once changed, the neW program de?nition Will be
used by the BOA 225 the next time the server 201 is
invoked. When this attribute is invoked Without parameters,
the server administrator 203 Will return the current program
de?nition.

The server administrator 203 further includes an attribute
that stores a backup version of the program de?nition in
BOA 225. An example of the interface for this attribute is the
savediprogramidef attribute of the IDL. As described
above, the BOA 225 only maintains a single current program
de?nition, Which may be changed only temporarily for
administrative purposes. The saved program de?nition
alloWs changes to the program de?nition to be restored to a
previous version; this is particularly useful for temporary
changes to the program de?nition. Invoking this attribute
returns the current saved program de?nition stored in the
server administrator 203. The saved program de?nition is
updated manually by the server 201 by passing in the
program de?nition When the server 201 is installed.

The server administrator 203 further includes an attribute
that restores the program de?nition in the BOA 225 With the
saved program de?nition of the server administrator 203. An
example of the interface for this attribute is the restorei
savediprogram attribute of the IDL. When invoked, the
server administrator 203 Will locate the program de?nition
of the server 201 in the BOA 225, and save to it the values
in the saved program de?nition attribute. This is done by
accessing the BOA 225 using an object key provided by an
object key method included in all CORBA objects, such as
the server spy 213. The object key is then used to extract an
object de?nition, Which in turn is used to obtain an imple
mentation de?nition, and ?nally, an execution de?nition,
including the program de?nition. Again, the server admin
istrator 203 is able to alter this con?guration information of
the server 201, Without having to start the server 201.

The server administrator 203 further includes an attribute
to alloW a system administrator to interpose another appli
cation or server for the server 201 that the server adminis
trator 203 manages. Interposing alloWs the system admin
istrator to have the daemon of the BOA 225 invoke a
debugger, shell program, or other administrative tool When
the server 201 is invoked by a client 105, by substituting the
pathname and argument list of the desired application for the
server 201. This is one Way in Which the program de?nition
of the BOA 225 may be changed, as described above With
respect to the boaiprogramidef and savediprogramidef
attributes. Using the interpose attribute of the server admin
istrator 203 alloWs a system administrator to alter the
con?guration information of the server 201 Without starting
up the server 201.

One method for implementing the interpose attribute is
shoWn in the ?oWchart of FIG. 5. The interpose method is
invoked 501 on the server administrator 203, With param
eters for the alternate pathname of the interposing applica
tion to be executed, and any additional arguments to be
passed at the command line. The server administrator 203
obtains 503 the existing program de?nition of the server 201

10

15

25

35

45

55

65

12
from the BOA 225, and changes 505 the pathname stored in
the program de?nition to the pathname of the interposing
application. As stated above, the program de?nition of the
server 201 may include a number of arguments to be
included When the server 201 invoked. These arguments
may not be appropriate to the interposing application.
Accordingly, the server administrator 203 Will restructure
507 the arguments in the program de?nition as needed to
ensure the correct and useful execution of the interposing
application. In the preferred embodiment, this restructuring
507 includes the folloWing: setting 509 the ?rst argument of
the program de?nition argument to a special string that can
be easily recogniZed as the correct executable path of the
interposing application, instead of as a regular argument, so
that the actual folloWing arguments can be identi?ed; setting
511 the second argument to the actual pathname of the server
201; appending 513 the original arguments of the program
de?nition for the server 201; and ?nally, appending 515 the
additional arguments that Were passed into the interpose
method for controlling the execution of the interposing
application. The server administrator 203 Will then store 517
the neW program de?nition in the execution de?nition of the
server 201 in the BOA 225.
The server administrator 203 further includes an attribute

for storing and setting the con?guration of the reaper 217,
for performing automatic deallocation of resources held by
idle objects 209. An example of the interface for this
attribute is the reapericon?g attribute of the IDL. The
reaper 217 is preferably con?gured by three values, a server
timeout value, a cycle time value, and a boolean ?ag. The
reaper cycle time determines hoW often the reaper 217 is
activated to perform automatic deallocation. The server
timeout value establishes maximum time interval Which the
server 201 may be idle, that is, during Which no object 209
Within the server 201 is invoked. If this time interval is
equaled or exceeded, then the reaper 217 Will automatically
shutdoWn the server 201 the next time the reaper 217 is
active. The boolean ?ag, reaping, tells the reaper 217
Whether or not to perform automatic deallocation. The
method of the reaper 217 is further shoWn in the related
application identi?ed above. In the preferred embodiment,
these various values are stored persistently in the server
administrator 203, and When a server 201 is invoked, the
reaper 217 included in the server 201 reads the reaper
con?guration attribute of the server administrator 203 asso
ciated With the invoked server 201, and sets its values
accordingly.
The server administrator 203 further includes an attribute

for storing and setting the con?guration of the logging
con?guration of the server 201. An example of the interface
for this attribute is the LoggingCon?guration attribute of the
IDL. The logging con?guration attribute includes a boolean
?ag to indicate Whether tracing and similar output informa
tion is handled by the operating system’s system logging
daemon; another boolean ?ag to indicate Whether such
information is to be output to the console, and a structure
identifying a user speci?ed log ?le for outputting this tracing
information, a number of sWap log ?les, and a maximum ?le
siZe for the log ?les. The manipulation of log ?les is further
described in the related application referenced above. In the
preferred embodiment, these various values are stored per
sistently in the server administrator 203, and When a server
201 is invoked, the logging API 221 of the server 201 is
con?gured according to the logging con?guration of the
server administrator 203.
The server administrator 203 further includes an attribute

that maintains various internal event driven state variables

5,857,102
13

for the current process of the server 201. An example of the
interface for this attribute is the starting() method of the IDL
?le. In the preferred embodiment, these internal state vari
ables are used to monitor Whether the server 201 is currently
running, thereby allowing the server administrator 203 to
report on the current status of the server 201 Without starting
up the server 201 if it is not already running. These internal
state variables include the process identi?er for the server
201 process, and a heartbeat interval value indicating hoW
often the server 201 sends a signal, a heartbeat, to its server
administrator 203 indicating that it is still active. This
heartbeat signal is preferably used instead of the server
administrator 203 polling the server 201 to determine
Whether it is active. The internal state variables further
include a value indicating a maximum number of heartbeat
signals the server 201 can fail to pass to the server admin
istrator 203 before being presumed to have crashed. Invok
ing the starting attribute of the server administrator 203 Will
cause the server 201 to update the attribute values. In the
preferred embodiment, the process identi?er is provided by
the server spy 213, Which indirectly invokes a getipid() on
the server 201 process.

Each time the server 201 sends a heartbeat signal, the
server administrator 203 timestamps the signal. The server
administrator 203 periodically, according to the heartbeat
interval value, and determines if the server 201 has missed
a heartbeat, Whereon the server administrator 203 incre
ments a counter. When the counter reaches the maximum
value set for missed heartbeats, the server administrator 203
begins a thread to check Whether the server 201 has been
shutdoWn or otherWise been terminated.

In conjunction With the starting method, the server admin
istrator 203 also includes a method that is invoked in
response to a received heartbeat from the server 201. An
example of the interface for this method is the sendinL
heartbeat() method of the IDL ?le. When the server 201
sends a heartbeat, the server administrator 203 resets a
stored timestamp value that tracks the time of the last
heartbeat. If the server administrator 203 itself has recently
been terminated or shutdoWn, then it may not have any
information as to the identity of the server 201 sending the
heartbeat signal; in this case, the server administrator 203
Will return a FALSE signal to the server 201, Which in turn
Will invoke the starting() method of the server administrator
203. If the server administrator 203 has been active, and
does have current information on the identity of the server
201 it is associated With, then it return a TRUE signal to the
server 201, indicating that the heartbeat has been success
fully received.

Finally, the server administrator 203 also includes an
method that is used to indicate that the server 201 has been
shut doWn. An example of the interface of this method is the
stopping() method of the IDL ?le. When the server 201 is
shutdoWn through the shutdoWn method of the server spy
213, the stopping() method is invoked. This updates the
internal state variables of the server administrator 203 to
indicate that the server 201 is no longer active.

The server administrator 203 further includes a number of
methods for con?guring the tracing facilities included in a
server 201. A tracing facility is a set of trace ?ags that
control tracing of selected events, and a set of output values
that are output When the various traced events are executed.
Tracing facilities and their use are described in further detail
in the related application.
A trace con?guration is a set of tracing facilities. The

server administrator 203 can store a number of tracing
con?gurations that can be used With the server 201 to

10

15

25

35

45

55

65

14
provide for conditional output of tracing information. When
the server 201 is started up, it reads the tracing con?guration
information in the server administrator 203, and selects a
distinguished tracing con?guration for initial use; this trac
ing con?guration is named “startup.” The server adminis
trator 203 can later change the setup for available tracing
con?gurations, by selecting con?gurations that provide dif
ferent sets of trace facilities, or enabling or disabling various
trace ?ags in selected trace facilities. This process does not
change the actual facilities in the server 201, but only the
settings of the facilities that Will be used if and When the
facility is later enabled in the server 201. The server spy 213
is used to enable or disable the tracing facilities in the server
201.
More speci?cally, the server administrator 203 includes

various methods for determining and changing tracing con
?gurations. A ?nd method alloWs a user, such as a system
administrator operating through a client 105, to locate a
speci?c tracing con?guration by name, enabling the user to
determine if such a facility is present in the server admin
istrator 203. If the named con?guration is not present, the
server administrator 203 returns an appropriate exception.
An add method alloWs a system administrator to add a

neW, empty con?guration With a speci?ed name to a server
201, to be later completed With speci?ed facilities. When
invoked, server administrator 203 Will search for the named
con?guration in its stored sequence of con?gurations. If the
con?guration is found, the server administrator 203 Will
return an exception indicating its existence, otherWise, the
server administrator 203 Will create a neW con?guration. A
remove method alloWs a system administrator to remove a

named con?guration from the stored sequence of con?gu
rations.
The server administrator 203 also includes a method for

enabling speci?c trace ?ags in a trace facility in a con?gu
ration. The user passes in a con?guration name, a trace
facility name, and the desired ?ags to be enabled. The server
administrator 203 Will search through its stored sequence of
con?gurations. If the named con?guration is found, the
server administrator 203 Will search through the con?gura
tion for the named facility, and if this facility is included in
the con?guration, the server administrator 203 Will enable
the desired ?ags. The server administrator 203 Will return
appropriate exceptions if either the con?guration or facility
is not located. Similarly, the server administrator 203
includes a method for disabling speci?c trace ?ags in a user
identi?ed trace con?guration and trace facility. Examples of
the interfaces for the add, ?nd, remove, enable and disable
methods are shoWn in the IDL ?le.
The server spy 213 includes methods for altering the

runtime operation of tracing facilities in the server 201.
Accordingly, during the life of the server 201 process, the
tracing facilities in the server administrator 203 may depart
from those operating in the server 201, With neW facilities
added, or old ones deleted in the server administrator 203.
The server administrator 203 thus includes a method for
updating the server 201 to include the current set of tracing
facilities in the server administrator 203, by deleting from
the server 201 tracing facilities that are not currently in the
server administrator 203, and by adding facilities that are
present in the server administrator 203 but not currently
available in the server 201. An example of interface for this
method, setifacilities, is shoWn in the IDL ?le.

FIG. 6 is a ?oWchart of one embodiment of the logic of
a method for updating the facilities of the server 201. In this
embodiment, the method loops 601 over each of the facili
ties in the server administrator 203, and for each facility,

5,857,102
15

loops 603 over the facilities in the server 201. If none of the
facilities in the server 201 match 605 the facility in the
server administrator 203, then the facility is added 607 to the
server 201. This part of the method updates the server 201
to include any neW facilities de?ned in the server adminis
trator 203. Second, the method loops 609 over each facility
in the server 201, and over 611 each facility in the server
administrator 203, and determines 613 Whether the server
201 facility is present in the server administrator 203. If not,
then the facility is no longer required, and it is deleted 615
from the server 201. The method then returns 617. Alternate
implementations of the setifacilities method may be
employed With variant loop structures or processing steps.

In the preferred embodiment, the setifacilities method is
called by the server spy 213 When the server 201 is regis
tered With the BOA 225 to update the facilities in the server
201 With the set of tracing facilities maintained by the server
administrator 203. This sets the server 201 to use the most
current tracing con?guration.

The various methods included in the preferred embodi
ment of the server administrator 203 provide access and
manipulation of detailed con?guration about the server 201.
Because the server administrator 203 is persistent, the vari
ous types of con?guration information are maintained
beyond a given execution of the server 201. Because the
server administrator 203 is external to the server 201, its

10

15

25

16
information can be accessed and manipulated Without start
ing up the server 201. This is bene?cial to system admin
istrators and clients 105 for determining the status of many
different servers 201 on the netWork 103 at a time.

For example, FIG. 7 shoWs one possible embodiment of
a user interface for accessing con?guration information of
the type described herein for servers 201. Here a WindoW
701 provides a column 703 listing the available host com
puters 101, a column 705 for the available servers 201 on a
each host computer 101, a column 707 listing the the object
implementations provided by each server 201, and a column
709 for the process identifer of each server 201, if the server
201 is active. For example, the SalesiOrder server 711 is
available on host computer “bagua,” and provides object
implementations 713 for a SalesOrderFactImpl object, a
SalesOrderImpl object, and a ServerSpyImpl object. As
shoWn in column 709, this server 201 is not currently
executing. Other servers are active, such as the Warehousei
server 715, and the process identi?er is the same for all its
implementations. The WindoW 701 alloWs a user, such as a
system administrator to ?lter the listing, using either a host
computer name in text entry ?eld 717, or a server name in
text entry ?eld 719, or both. As can be seen by the listing,
servers 201 can be identi?ed in host computers 101 Without
starting them up, as indicated by the “inactive” notation for
the process identi?er.

15

20

25

30

35

40

45

50

55

5,857,102
17 18

APPENDIX A

// File: ServerAdmin. idl
//
// © 1994 Sun Microsystems, Inc .

//

#ifndef __SERVER_ADMIN_IDL
#define __SERVER_ADMIN_IDL

// #pragma ident "@ (#) ServerAdmin. idl l .18 95/01/16 Sun Microsystems"

#include "ServerSpy. idl"

//
// Each ODF server has a ServerAdmin object associated with it that
// has static information about a server, that is, everything that
// can be known without the server process running.
//
// It also implements the ServerSpy interface, which includes calls to
// inspect and change the state of the running server.
//

module DatExt {
// Interface.
// repository.
struct Interface {

string interface_name;
string interface__id;

} ;
typedef sequence<Interface> Interfaces;

The interface ID is the logical ID used in the interface

// Implementation of an interface . The iclass_id is the internal
// identifier of the implementation, unique on the host.
struct Implementation {

Interface implemented_interface;
string implementation_name;
BOA: :IclassId iclass_id;
DatInt: :Seconds reaper_timeout;

} ;
typedef sequence<lmplementation> Implementations;

// An implemented interface.
struct ImplementedInterface {

Interface implemented_interface;
Implementations implementations;

) ;
typedef sequence<Implementedlnterface> Implementedlnterfaces;

// Named tracing configurations . There is always a configuration named
// "startup" which is read by the server when it starts.
// To change the current tracing without saving anything permanently,
// use the calls inherited from ServerSpy which operate directly on the
// running server process. -

struct TraceConfig {
string config_name; // Config' s name
DatInt: :Facilities facilities; // Facilities and their flags

} ;

33

10

20

25

30

35

40

45

50

55

5,857,102
19 20

typedef sequence<TraceConfig> Traceconfigs;

interface TraceConfigList {
exception ConfigExists {) ;
exception UnknownConfig {} ;
exception PredefinedConfig {} ;

void add(
in string config_name

) raises (ConfigExists) ;

void remove(
in string config_name

) raises (Unknownconfig, PredefinedConfig) ;

TraceConfig find(
in string config__name

) raises (UnknownConfig) ;

Void use(// Use this config for current tracing
in string config_name

) raises (UnknownConfig) ;

void enable_f1ag(
in string config_name,
in string facility_name,
in string flag

) raises (UnknownConfig,
DatInt: :ServerSpy: :UnknownFacility,
DatInt: :ServerSpy: :Unknown'I‘raceFlag) ;

void disable_flag(
in string config_name,
in string Eacility_name,
in string flag

) raises (UnknownConfig,
DatInt: :ServerSpy: :UnknownFacility,
DatInt: :ServerSpy: :UnknownTraceFlag) ;

bcolean flag_is_enabled(
in string config_name,
in string facility_name,
in string flag

) raises (Unknownconfig,
DatInt: :ServerSpy: :UnknownFacility,
DatInt. .ServerSpy: :UnknownTraceFlag) ;

readonly attribute TraceConfigs trace_configs;

// These two are for internal use only.

void set_facilities (
in DatInt: :Facilities facilities

) :

void destroy() ;
} i // TraceConfigList interface

// Startup logging configuration.

34

// Trying to remove "startup" , etc .

1(1

15

20

25

35

40

45

50

55

5,857,102
21 22

struct LoggingConfig {
boolean send_to_syslog;
boolean send_to_cons0le;
DatInt: :LogFile log_file;

} ;

// Send output to syslog daemon?
// Send output to console (ie stderr) ?
// Send output to this file

// Startup reaper configuration.
// is set at startup from the corresponding Implementation
// structure.
struct ReaperConfig {

// How many seconds to wait after the last object invocation
DatInt: :Seconds server_timeout;
// How often to wake up the reaper thread and check timeouts
DatInt: :Seconds reaper_cycle__time;
// Whether reaper should be started
boolean reaping;

//******************~k~k*****************~k**************~k***~x******-k**
//
// InternalAdmin interface
//
// These are the methods that should only be called from within ODF.
//

interface InternalAdmin (
void set_server_name(

in string server_name
) ;
void set_version(

in DatInt: :Version version
) ;
void set_data_directory(

in string data_directory
) ;
void set_computer_name(

in string computer_name
) :
void set_development_mode(

in boolean in__development.

//
// Populate the interface/implementation sequences: called by
// servers at registration time
//
exception InterfaceExists {} ;
exception InterfaceNotFound {} ;
exception ImplementationExists {} ;
exception ImplementationNotFound {) ;

// Called at the start of the registration run
void clear_interfaces () ;

Interface find_interface(
in string interface_name

) raises (InterfaceNotFound) ;

35

Each implmentation's reaper timeout

