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Preface 

Since the last USENIX Security Symposium, just a year ago~ the world has really awakened to the 
Internet, sat up and looked around, and started to get worried. Laws have been proposed and some 
passed~ mechanisms for security and censorship designed, secure products broken, and censors 
bypassed. 

Along with the growing awareness that security is important has come a realization that there are 
some problems only cryptographic techniques will solve. While great advances in cryptography 
have been made in the last two decades, deployment of these advances has been slow. It is time to 
correct that, and by focusing this year on the subject of Applications of Cryptography, this sympo­
sium attempts to contribute materially to the real world in this area. 

Just after I drafted the preceding paragraph, I was on a United Airlines flight, and the in-flight 
news program had two interesting stories which are relevant to this conference. The first was 
about Tsutomu Shimomura's tracking of Kevin Mitnick, and it highlighted (among other things) 
many problems with the state of security in today's world, both on the Internet and in the tele­
phone system. While one screen of email scrolled past Tsutomu 's reflected face, I saw a number 
of familiar names, Blaze, Rubin, Bellovin, Kam, Cheswick, all of whom have contributed materi­
ally to this Symposium. So have a lot of other people, and I heartily thank all of them. 

The second was about Football. I was dozing through it when I awoke with a start. The football 
coach was transmitting instructions to the quarterback (please forgive me if I get the terms wrong, 
I come from a country with different kinds of football, and I ignore them too ... ) by radio to a 
receiver in the player's helmet. He said that the information was encrypted so that spectators, and 
presumably the opposing coach, couldn't listen in, and that it would take years to crack the "very 
long" key. While I'm prepared to make a small wager that "very long" key was 40 bits, the fact 
that cryptography is being deployed on football fields makes my point. 

I hope, and believe, that these proceedings and the Symposium itself have been valuable for the 
attendees and the broader community. 

Good luck, 

Greg Rose 
Program Chair 
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Abstract 

Downloading executable content, which enables 
principals to run programs from remote sites, is a 
key technology in a number of emerging applications, 
including collaborative systems, electronic commerce, 
and web information services. However, the use of 
downloaded executable content also presents serious 
security problems because it enables remote princi­
pals to execute programs on behalf of the downloading 
principal. Unless downloaded executable content is 
properly controlled, a malicious remote principal may 
obtain unauthorized access to the downloading prin­
cipal's resources. Current solutions either attempt 
to strictly limit the capabilities of downloaded con­
tent or require complete trust in the remote principal, 
so applications which require intermediate amounts 
of sharing, such as collaborative applications, cannot 
be constructed over insecure networks. In this par 
per, we describe an architecture that flexibly controls 
the access rights of downloaded content by: (1) au­
thenticating content sources; (2) determining content 
access rights based on its source and the application 
that it is implementing; and (3) enforcing these access 
rights over a wide variety of objects and for the entire 
computation, even if external software is used. We 
describe the architecture in the context of an infras­
tructure for supporting collaborative applications. 

1 Introduction 

The ability to download executable content is 
emerging as a key technology in a number of applica­
tions, including collaborative systems, electronic com­
merce, and web information services. By download-
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ing executable content on demand, systems can be 
built that provide better performance and fault toler­
ance than existing systems. Application performance 
can be improved because the program (i.e., executable 
content) can be downloaded to the location of the data 
(e.g., for a query) or the location of the user (e.g., for 
an interface-driven task). In addition, the fault toler­
ance of an application can be improved by reducing 
the client's dependency on the liveness of a specific 
server. 

Recent distributed systems architectures, such as 
mobile agent and replicated process architectures, en­
able processes to download and run executable con­
tent. For example, consider the mobile agent archi­
tecture (also known as computational e-mail, com­
mand script architecture, and enabled mail) in Fig­
ure 1. First, a remote principal composes an agent 
by specifying a program. Through some mechanism 
(e.g., http or e-mail) the agent is downloaded to an­
other principal. The downloading principal uses an 
agent interpreter process running on his machine to 
execute the mobile agent (number 2 in the figure). 
This process is owned by the downloading principal, 
so the agent is executed with his access rights. A 
malicious remote principal can use these access rights 
to: (1) read and write the downloading principal's pri­
vate objects; (2) execute applications, such as mail or 
cryptographic software, to masquerade as the down­
loading principal to other users; and (3) read the pass­
word file on the downloading principal's machine. In 
addition, a remote principal may be spoofed into inte­
grating malicious content from an attacker to mobile 
agent which would then give a third party access to 
the information provided above [5]. 

Current interpreters for executing downloaded con­
tent , such as Java-enabled Netscape, Java's ap-
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Figure 1: Mobile agent architecture 

pletviewer [10), and Tel's safe interpreter [3, 16], 
strictly limit the access rights of content to prevent 
these attacks. For example, content run using Java­
enabled Netscape is prevented from performing any 
file system 1/0 and communicating with third parties 
(in theory anyway, see [5]). The Java. a.ppletviewer 
permits some access rights to be granted to content (as 
specified in the -1 .hotjava/properties file). How­
ever, these rights must be shared with any remote 
principal whose content is downloaded. Therefore, 
these interpreters are not suitable for building an ap­
plication where a. downloading principal must grant 
rights to a specific remote principal. 

Our goal is to flexibly control downloaded content, 
so applications which need to share resources with 
specific remote principals can be built. Flexible con­
trol of downloaded content means that the content's 
access rights can be set to any subset of the download­
ing principal's rights. Flexible control of downloaded 
content is difficult because: (1) to determine the ac­
cess rights of downloaded content requires decisions 
a.t runtime and (2) to enforce these rights requires 
control of a wide variety of system objects. Content 
access rights depend on: (1) the trust in the remote 
principal who provided the downloaded content; (2) 
the access requirements of the application that the 
content is implementing; and (3) the state of that ap­
plication. The state of the application and the access 
control requirements of the content are not known un­
til runtime time, so a principal trusted to make access 
control decisions at runtime is necessary. However, 
users are typically not trusted to make such judge­
ments. Also, executing content requires that access to 
a wide variety of system objects, such as files, sock­
ets, and existing software, be controlled. In particular, 
control of existing software is not supported by inter-

preters because they are simply user processes. How­
ever, current operating systems &lso lack the necessary 
tools to effectively control external software executed 
by downloaded content. 

In this paper, we describe an architecture for flex· 
ible control of downloaded content. This architec­
ture enables downloading principals to execute appli­
cations that use content to share resources in a con­
trolled manner to complete the application's goals. 
The architecture enables the access rights of down­
loaded content to be determined with little need for 
runtime access control specification by users. The ar­
chitecture: ( 1) authenticates content sources; (2) de­
termines content access rights based on its source and 
the application that it is implementing; and (3) en­
forces these access rights over a wide variety of objects 
and for the entire computation, even if external soft­
ware is used. Cryptographic authentication identifies 
the source of content and also prevents some of the at­
tacks that have plagued current interpreters, such as 
the DNS attack described in [5]. Also, in addition to 
the source, the application of the content is also used 
to determine the access rights of content. For exam­
ple, we can remove the limitation that content can 
only communicate with ports at the server, by know­
ing the authorized remote principals in the applica­
tion. We define an access control model for express­
ing the access rights of system objects and services 
for enforcing those rights. For example, the execu­
tion of external software is administered by a trusted 
interpreter, so we can control what software is being 
executed and limit the rights available to it. 

Throughout the paper, we will assume a conven­
tional protection model, where principals (e.g., users, 
groups, services, etc.) execute processes that perform 
operations (e.g., read, write, etc.) on objects (e.g., 
files, devices, etc.). The permissions of a principal to 
perform operations on objects are called the access 
rights of the principal. We call a. set of access rights 
a.n access control domain or simply domain. 

The paper is organized as follows. In Section 2, 
we detail the security requirements of some emerging 
applications. In Section 3, we define the problem of 
enforcing the access rights of an untrusted computa­
tion. In Section 4, we review related work. In Sec­
tion 6, we present our system architecture. In Section 
6, we define our access control model. In Section 7, 
we describe the architectural details and their imple­
mentation. In Section 8, we conclude the paper and 
present future work. 
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2 Example 

At the University of Michigan1 we are develop­
ing a system called the Upper Atmospheric Re­
search Collaboratory (UARC) [6]. UARC provides its 
geographically-distributed users with a wide variety 
of applications which support collaborative analysis 
of atmospheric test data. For example, a test data 
viewer enables users located in the United States a.nd 
Europe to share views of the atmospheric test data 
and jointly observe and annotate the views and the 
data. Most of the applications in U ARC involve syn­
chronous interaction among users. 

Since collaborative applications have many com­
mon requirements, we are building an application­
independent infrastructure called the Collaboratory 
Builders' Environment (CBE) [15]. The CBE pro­
vides services that are common to collaborative ap­
plications, such as replicated object management [22], 
multicast communication [11), and security. The goal 
of the security infrastructure is to provide the security 
services rtecessary to support a variety of collaborative 
applications. 

UARC applications are to be implemented as 
downloaded executable content. When a user wants 
to use an application, the user downloads and executes 
the associated content on his local machine. There­
fore, the user assumes the role of the downloading 
principal in the mobile agent architecture. In order to 
properly control the access rights of the user, the CBE 
infrastructure must be able to: (1) identify the source 
of the application a.nd (2) assign that application ap­
propriate access rights. For a UARC application, the 
set of U ARC developers is the expected remote princi­
pal. Assigning the access rights is a difficult problem 
because a UARC application, such as the test data 
viewer, may need the rights to: 

• Obtain test data. from the remote U ARC data 
server 

• Communicate actions to the remote collaborators 
who share the view 

• Read local setup files and environment variables 
for executing the application 

• Read past analysis session files to replay them 

• Store the analysis session for future replay 

• Execute existing applications (e.g., editors, nu­
merical analysis programs, etc.) 

Therefore, we presume that an access control in­
frastructure must be able to control access to a variety 

of objects including file system objects, sockets, envi­
ronment variables, applications, URLs, and network 
services. 

Since the CBE supports collaborative applications, 
WP. must prevent ~nllaborator actions from cam~ing se­
curity problems. In the CBE, applications are sup­
ported by a replicated process architecture where each 
collaborator has: ( 1) a process on his local machine 
that is executing the application; (2) the application 
itself; (3) shared state which is to be consistently 
maintained by the application; and ( 4) private data 
that is unique to each collaborator. When a. principal 
performs an action on the shared state, this action is 
multicast to each collaborator and executed at each 
site (i.e., if the principal is permitted to perform that 
action). Therefore, a replicated process architecture 
enables multiple principals to execute actions in a sin­
gle process. Security problems arise because different 
principals have different rights in the collaboration. 
For example, some principals administer the collab­
oration, others participate by modifying the shared 
application state, others can make limited changes to 
the shared state, and some can only view the shared 
state. Since each collaborator has a copy of the ap­
plication, some users may run a modified version of 
the application which could try to perform, either ac­
cidentally or maliciously, unauthorized actions. Also, 
attackers on the Internet may attempt to disrupt the 
collaboration by sending malicious messages, deleting 
messages, replaying old messages, and modifying mes­
sages in transit. 

3 Problem Definition 

The problem of flexibly controlling U ARC appli­
cations that are supported by the CBE is to: (1) au­
thenticate the source of the content; (2) determine the 
least privilege access rights f'or the content given its 
source; and (3) enforce those access rights throughout 
the execution of the content. 

Authentication involves: ( 1) identifying the source 
of content; (2) verifying the integrity of content; and 
(3) ensuring that the content meets its freshness re­
quirements. Authenticating the source of applications 
differs from authenticating the source of collaborator 
content. An application may be composed of com­
ponents fror:n several sources, so each of the sources 
needs to be identified to deLermint: the appropriate 
access rights. Also, freshness is not a factor as long as 
the appropriate version of the application is obtained 
and its integrity is verified. Collaborator content is 
analogous to a message in a distributed computation, 
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so only one source is typically responsible for the con­
tent. However, the freshness of collaborator content 
must be verified because a. replay of this content may 
cause the shared state of the collaborators to diverge. 

The access rights of content depend on: (1) the 
trust of the downloading principal in the authenti­
cated remote principals :responsible for the content 
and (2) the purpose of the content. If a download­
ing principal trusts a remote principal with an ac­
cess right, then the downloading principal can grant 
the remote principal's content that right. Clearly, 
this set of rights may be more than any particular 
content requires, and, in addition, there may be spe­
cial cases where a downloading principal is willing to 
grant temporary access to a. private file to complete 
some transaction. Therefore, information about the 
access requirements of content and the downl<~ading 
principal's willingness to grant additional rights are 
needed to determine the rights actually required by 
content. Unfortunately, this information is not known 
until runtime and is typically difficult for end users to 
provide without being vulnerable to spoofing attacks. 

The access rights assigned to content should be en­
forced for the content and any programs controlled 
by the content. Obviously, the access requests made 
directly by content must be controlled. In addition, 
any existing programs or network services that ca.n 
be controlled by the content (i.e., can be provided in~ 
put by the content directly or indirectly) must also 
be restricted to the same or fewer rights. In general, 
access to the following types of objects needs to be 
controlled: 

• Application Objects: A process can read a.nd 
write objects in its memory 

• File System: A process can perform read, write, 
and execute operations 

• Applications: A process can .execute another 
application by creating a process for that appli~ 
cation 

• Processes: A process can communicate with an­
other process via pipes or the file system 

• Environment: A process can execute its envi~ 
ronment's scripts and read and write its environ­
ment variables 

• Network Services: A process can communicate 
with a service on the network using a socket 

• Universal Resource Locators (URLs): A 
process can download and read system objects 
by specifying a URL 

Remote Prindpal 

c:bEoot 

System: Role-based Access Conttol 
Netwoct Computing Envs. 

Figure 2: The current architecture for systems that 
utilize downloaded executable content 

Operations on application objects must be autho­
rized to ensure that the principal is permitted to mod­
ify the object. Access to file system objects should 
be limited to prevent unauthorized access to private 
objects. Also, access to objects that previously are 
available to trusted programs, such as environment 
variables and remote communication channels, must 
now also be controlled. These objects can be used by 
content to attack the downloading principal. For ex­
ample, an attack on alpha version Java involves open­
ing socket connections to an unauthorized third party 
to send information shared between the two legitimate 
principals [5]. 

4 Related Work 

The current architecture for executing downloaded 
content is shown in Figure 2. In this architecture, ex­
ecutable content is downloaded to a principal who ex­
t:cut.es the program using one of a variety of "safe" in­
ter;preters, such as Java-enabled Netscape [10], Java's 
appletviewer, and Tel's safe interpreter [3, 16]. To 
prevent attacks, these interpreters strictly limit the 
access rights of content. By default, all these in­
terpreters only grant content (remote content in the 
case of Java) the right to communicate to only ports 
at the IP address of the content. The addition of 
read and write access rights to files is possible in 
the appletviewer by specifying those rights in the 
~/.hotja.va/properties file. Unfortunately, the 
rights apply to all remote content. Also, these in­
terpreters lack authentication, so all content must be 
assumed to have been downloaded from highly un­
trusted sources. 

To grant rights to Tel or Java content per re­
mote principal currently requires the use of an in-
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terpreter for trusted content or that custom appli· 
cations be built". InterpreterS' for executing trusted 
content run content with the downloading principal's 
access rights, so access to objects not normally avail­
able to another principal, such as private files, are 
granted. We do not believe that content should be 
granted rights that another user would not normally 
have. On the other hand, custom applications require 
their own authentication, access control specification, 
and authorization infrastructure. Therefore, ad hoc 
security services need to be constructed which is an 
arduous and error-prone. 

The Telescript engine [34} is another mobile agent 
interpreter. The Telescript engine differs from the in­
terpreters described above in its use of credentials for 
authentication and pern&its for authorization. Creden­
tials are cryptographic representations of the identity 
of the principal responsible for the content. Permits 
list the access rights of content. A permit can contain 
rights to another principal's (e.g., the downloading 
principal) resources. When content is downloaded, 
the downloading principal can deny rights that the 
content's permit grant, but this decision is ad hoc. 
Also, like other interpreters, the Telescript engine can­
not control the execution of external software. 

Operating systems can control the access rights of 
external software it executes, but current operating 
systems are not designed to flexibly restrict a prin­
cipal's rights. For example, we showed in [12] that 
current file systems, such as Unix (24) and AFS [27), 
only provide limited mechanisms for a principal to 
dynamically restrict the access rights of one of his 
processes. Additionally, in Unix-based systems, the 
command ehroot is available to limit the execution 
scope of a process to a file system subtree. However, 
chroot is cumbersome to use becaUBe of the need to 
transfer files to the restricted file system subtree, and, 
even worse, it cannot control remote communication 
by content. In fact, no current operating controls r~ 
mote communication. Control of remote communica­
tion is typically provided by firewalls, but firewalls do 
not control access rights on a per process basis. 

Recent research has yielded systems which provide 
support for defining limited access control domains, 
but it is not possible to generate a. new domain at run­
time. Role-based access control (RBAC) [1, 9, 33, 35] 
models permit a user to execute processes using differ­
ent principals, called roles, which a.re associated with 
different access control domains. Thus, two processes 
run by the same user can have different access rights. 
However, to create these access control domains, most 
of these models require changes to the ACLs of all 
effected objects, so creating roles dynamically is pro-

hibitively expensive. The Domain Type Enforcement 
(DTE) RBAC model uses the file system hierarchy to 
express domains more concisely. Therefore, we believe 
it is possible, from a performance perspective, to dy­
namically generate limited domains using DTE, but 
users and their processes are prevented from gener­
ating domains because DTE is used as a mandatory 
access control model. Other RBAC models permit 
evolution of access rights using rules [4, 17]. However, 
the rules, like the domains, must be specified in ad­
vance, but the rights of content depend on the goals 
of the content's application which are large in number 
and are often not known until runtime. 

In [30], the DTE RBAC model is applied to con­
trolling content. A domain that includes the objects 
needed by the browser to run and a '1scratchpad," 
public directory are defined. While this permits an 
extension of current interpreter access domains, it still 
lacks the 8exibility and per-content access control we 
desire. Also, control of remote communication is still 
lacking (however, IPC is controlled by DTE). 

Another mechanism for granting limited rights to 
a process is delegation. Delegation is advantageous in 
that cryptographic credentials are used to represent 
the rights being delegated, but flexibility, standard­
ization, and trust are problematic. Some systems, 
such as Taos {35], delegate rights via roles, so they 
suffer from the same 8exibility limitations as RBAC. 
Kerberos version 5 [14, 29) provides a field for stor~ 
ing access control domains in the delegated creden­
tials, so flexible delegation of rights over a variety of 
objects i~ possible. However, access rights must be 
transferred to servers in a language that the server 
can understand and enforce. Also, a trusted mecha­
nism for transferring the rights to the server must be 
used. For example, a service controlled by the down­
loaded content cannot be given the responsibility to 
control file system objects. 

5 Architecture 

In the design of an architecture for controlling 
downloaded executable content, we make the follow­
ing assumptions. First, we assume the existence of 
a public key infrastructure that be used to securely 
obtain the public key of any principal. Thus, any 
principal can verify the source and integrity of ames­
sage signed with a private key. Next, we assume that 
we can identify any I/0 commands in the content lan­
guage. This is necessary to control access to system 
objects. Next, we assume that the operating system 
has an unmodified trusted computing base, protects 
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process domains, and provides authentication of prin­
cipals. This ensures that system software, such as 
cryptographic software, can be trusted, processes can 
only interact in controllable ways, and authentication 
of services is possible. Without trust in the operating 
system, it is not possible to build trusted applications 
that run on that operating system. A secure operat­
ing system, such as Trusted Mach [32J, satisfies these 
requirements. Lastly, for applications involving three 
or more principals, we assume the existence of a secure 
group membership protocol, such as that described by 
Reiter [23), to ensure that all valid correctly-behaving 
principals share the same view of the application's 
group. 

The following types of principals are involved in a 
downloaded content computation: 

• Downloading Principal: The principal who 
downloads and executes the content 

• Remote Principals: The principals responsible 
for the content 

• Application Developers: Remote principals 
who provide content that implements applica­
tions that execute downloaded content from oth­
ers 

• System Administrator: A trusted principal 
who understands the structure of the download­
ing principal's system 

The downloading principal trusts the system ad­
ministrator and may have some trust in the re­
mote principals (including the application developer). 
Thus, the downloading principal wants to grant only a. 
subset of his access rights to a remote principal's con­
tent, and the system administrator is trusted to help 
the downloading principal define this subset. Note 
that the downloading principal may have different lev­
els of trust (i.e., define different access control do­
mains) in each remote principal. We assume that re­
mote principals are trusted keep secrets from other re­
mote principals with less privilege (e.g., private keys). 

An architecture for flexible control of downloaded 
executable content is shown in Figure 3. This archi­
tecture consists of four levels: (1) local system ser­
vices for access control; (2) a. trusted, application­
independent interpreter; (3) an application-specific in­
terpreter (optional); and (4) an interpreter for ex­
ecuting downloaded content. The local system ser­
vices provide operating systems services for control­
ling operations external to the interpreters. Also, 
system-specific information is made available for lo­
cal system services (e.g., the file system structure). 
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Figure 3: An architecture for flexible control of 
downloaded executable content; (a) system services 
control access outside the interpreter; (b) trusted, 
application-independent interpreters (browsers) con­
trol access to system objects by the less-trusted in­
terpreters; (c) application-specific interpreters control 
access to application objects and determine the access 
rights of content within their domain; (d) downloaded 
content implements the actions of remote principals. 

Trusted. application-independent interpreters (which 
we will refer to as browsers from here on) control ac­
cess to system objects by the application-specific in­
terpreters and downloaded content. An application­
specific interpreter controls access to application ob­
jects and specifies the access rights of downloaded con­
tent within its limited domain. 

The process for executing content using this archi­
tecture is shown in Figure 4. The remote principal 
sends a. content message to the downloading principal 
which provides the content, the content type, and any 
authentication/encryption information. The browser 
receives this message and verifies the identity of the 
remote principal, the integrity of the content and con­
tent type, and the freshness of the message. Ifthe ver­
ification succeeds, the browser determines which inter­
preter to execute the content. If the type refers to a 
known application-specific interpreter and the remote 
principal has the rights to execute content in that in­
terpreter, then the content is run in that interpreter. 
The access rights available to the content are an in­
tersection of; (1) the rights the downloading principal 
grants to the remote principal to execute the appli­
cation; (2) the rights that the downloading principal 
grants to the application developer for the applica­
tion; and (3) the rights that the application grants 
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Figure 4: Content is downloaded to application­
independent interpreter (called the browser) which au­
thenticates the remote principal and finds the appro­
priate interpreter to execute the content. If the re­
mote principal is authorized to execute content in that 
interpreter, then the content is executed. 

to the remote principal. In addition, the application­
specific interpreter has some leeway in transforming 
the access rights of content within its access control 
domain. This may result in either rights becoming 
available or unavailable from content, but the browser 
always enforces the intersection described above. 

Content is executed as shown in Figure 5. After the 
browser authenticates the content and sends the con­
tent to be run in the appropriate application-specific 
interpreter as described above, the content is assigned 
to content interpreter based on the identity provided 
by authentication. This content interpreter has ac­
cess rights consistent with the identity of the remote 
principal. Any controlled operation run by the con­
tent is authorized by the appropriate interpreter and 
if authorization is granted then the operation is ex­
ecuted. Operations are executed in the interpreter 
trusted with the operation. For example, file open is 
restricted to the browser. Also, tbe result returned to 
the content interpreter must ·not enable the content 
interpreter to gain additional rights. A read-only file 
handle is returned to the content interpreter in this 
ease. 
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Figure 5: Content Execution Protocol: (1) 
Remote principal downloads content to browser; 
(2) Browser assigns content to principal group in 
application-specific interpreter (not shown); (3) con­
tent executes a limited operation which cause autho­
rization in the browser; ( 4) if authorized the browser 
access system objects on behalf of content. 

6 Access Control Model 

Access control is the goal of this system, so we de­
fine an access control model for expressing the access 
control requirements of remote principals. This access 
control model uses the following concepts: 

• Definition 1: A principal group is a set of prin­
cipals with the same access rights. 

• Definition 2: An object group is a set of objects 
which are grouped for expressing common access 
control requirements. 

• Definition 3: Access rights of a principal group 
are the defined by two types of specifications: 

Domain Rights: A tu­
ple, {p_group, allowed~ops, object _group}, 
which describes a set of operations which 
the principal group (p_group) can perform 
on an object~group. 

- Exceptions: A tu-
ple, {p_group, precluded...ops, object group'}, 
which describes a set of operations which the 
principal group (p_group) is precluded from 
performing on an object_group'. 

• Definition 4: A cla3s operation is a set of op­
erations that a principal group can perform on 
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objects belonging to that class given authoriza­
tion via object group rights. 

• Definition 5: A transform moves an object from 
one object group to another. 

The relationship between these concepts in the ac­
cess control model is shown in Figure 6. Individual 
principals are aggregated into a principal group if they 
all have the same access rights. Objects are also aggre­
gated into groups called object groups for expression 
of a common access control requirement. The access 
rights of a principal group are described by its do­
main rights and exceptions. Domain rights describe 
the rights permitted to the principal group, and ex­
ceptions describe rights which are precluded from the 
principal group. This permits access rights to bed~ 
fined concisely for a. large set of objects while permit­
ting some objects in the group to override those rights. 
Thus, fewer object groups should be necessary. Note 
that exceptions take precedence in the authorization 
mechanism, so an operation is granted only if a do­
main right grants the operation and no exception ex­
ists that may preclude the operation. 

The expression of object groups is fairly straightfor­
ward except in the case file system objects. Normally, 
object groups a.re simply unique names that refer to a 
set of objects. For example, suppose we permit con­
tent from any member of the UARC scientists group 
to communicate with any other member of the same 
group. We would express this rights as a domain right 
{scientists, communicate, scientists_certs}. Defini­
tion of the U ARC scientists group is simply a listing 
of their public key certificate identifiers (a more gen­
eral specification is proposed in Policy Maker [2]). File 
system objects are different because these objects al­
ready have access rights. We would like to use these 
existing rights to express a subset of the downloading 
principal's rights. We describe a. set of file system ob­
jects by a path and a sharing type. A path indicates 
the domain in the file system hierarchy in which ob­
ject group resides. For example, a path of- indicates 
all objects in the downloading principal,s home direc­
tory or any of its descendant directories. A sharing 
type indicates objects that are accessible to the same 
classes of principals. Examples of sharing types are: 

• All: all objects that the downloading principal 
can perform the operations allowed (in the do­
main rights). 

• Intersection: both the downloading principal 
and the remote principal objects can perform the 
operations allowed. 
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Figure 6: Access control relationships among entities: 
( 1) principal groups can execute operations on ob· 
jects that belong to classes (class operations); (2) prin­
cipal groups ca.n execute operations on objects in ob­
ject groups (accessible objects); (3) domain rights 
specify a. principal group's permissions to execute op­
erations on an object group; (4) exceptions prevent 
operations from being executed on objects in an ob­
ject group (even if a domain right is granted); and (5) 
transforms enable an object to join or leave a group. 

• Public: The operations allowed for that are 
available to local users 

• Foreign: The operations a.llowed for tha.t are 
a.vailable to foreign users 

•' None: No objects 

• New: Can only create, examine, and modify new 
objects in the domain 

Using our access control model, the access rights 
for a UARC scientist using the UARC application de­
scribed in the Example Section are (scientist is abbre­
via.ted as sci): 

• {sci, communicate, uarc_cert} 

• {sci, communicate, scientists_certs} 

• {sci, r, uarc....env} 

• {sci,r,"" f.uarc: public} 
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• except: { sc?, rw,....., / .uarcjprefs :all} 

• {sci,rw,- f.uarc/sessions: new} 

• {sci, rz,fusr/bin/num...analysis: public} 

UARC scientists' content can communicate with 
the UARC server and other UARC scientists. Also, 
environment variables for uarc ca.n be used by the 
UARC scientists content. UARC scientists content 
can use downloading principal's file system to obtain 
public UARC setup information, except for the down­
loading principal's personal preferences. Also, exist­
ing, public analysis sessions in -1. uare/sessions 
can be replayed given this specification. However, new 
sessions can only be saved into new files in that direc­
tory. Finally, this specification permits the content to 
execute a numerical analysis package. 

The other access control model objects are used 
to help developers build their applications to ma.nage 
access rights. The rights of principals to perform op­
erations on classes of objects are defined using cl11ss 
operations. Class operations describe the set of opera­
tions that a. principal group may ever perform. Class 
operations are strongly-typed (i.e., the types of the 
argument3 must be well-defined). Also, casting of ob­
jects is restricted to ancestors or descendants in a class 
hierarchy to prevent unauthorized access by using a 
remotely different class's version of an operation with 
the same name. In addition, access control predicates 
on any argument in an operation can be added, which 
is useful for authorizing the execution of external soft­
ware. Lastly, we define mandatory class operations as 
operations which can always be run (given that an 
object handle is available). These operations do not 
require authorization. All other controlled class oper­
ations (classes for which class operations are defined) 
require authorization. 

The ability to transform access rights as the ap­
plication state changes involves adding or removing 
objects from objeet groups. For example, when a 
downloading principal loads test data into a view, 
the window object should be loaded into an object 
group for shared windows. Thus, in the access control 
model, certain operations are associated with changes 
in object group membership, called transforms. The 
idea that operations modify the set of access rights, 
and that high-level specifications should be used to 
represent these access rights is adapted from Foley 
and J a.cob {7]. However, our implementation speci­
fies changes in rights rather than the complete set of 
rights. For example, the operation x .load returns a 
window object y upon load of test data x. In order 
to automatically add new windows to the shared win­
dow object group, developers specify that y=x .load : 

svg.add(y) where swg is the shared window object 
group. In order to execute this transform, the prin­
cipal must have permission to run both x .load and 
swg. add, so restricting this operation such that only 
authorized principals can make access rights modifi­
cations is straightforward. 

This model is influenced most strongly by the a.c· 
cess control models of Hydra. [36] and DTE [1]. Like 
Hydra, access control on the operations of abstract 
data. types are possible, but access rights in our model 
are associated with principals rather than the content 
itself (procedures in Hydra). Therefore, management 
of rights is simpler and consistent with our applica­
tions. Like DTE, access rights information is aggre· 
gated to eliminate redundant specification. However, 
unlike DTE we use existing access control information 
to specify the domains. The sharing types permit us 
to implicitly restrict the access rights to a subset of 
the downloading principal's rights. Thus, verification 
that the domain is indeed a subset of the downloading 
principal's domain is not necessary. Also, we extend 
the application of DTE-like specification to non-file 
system objects. 

7 Details and Implementation 

The main tasks of the architecture are authenticat­
ing content, determining the access rights of content, 
and enforcing those access rights. Content must be 
authenticated to determining its source and verify its 
integrity and freshness. Determination of access rights 
involves combining trusts in the application developer 
and remote principal with the access rights implied 
by the application-specific interpreter's current state. 
Enforcement of these rights must be possible for the 
entire computation spawned by the content. This in­
dudes any external software or network services that 
are executed by the content. In this section, we detail 
these tasks and discuss their implementation. 

We have developed a prototype architecture using 
Td version 7.5. We chose this version of Tel be­
cause of its interpreter model and security model [16]. 
The interpreter model of Tel 7.5 permits a hierar­
chy of interpreters to be constructed where one can 
be the master of a.nother w hieh is referred to as the 
slave. Therefore, we can build a. hierarchy of inter­
preters where: (1) the browser is the master of the 
application·specific interpreters and (2) application­
specific interpreters are masters of the content inter­
preters. In addition, Tel 7.5 implements the "safe" 
interpreters of the style of Safe-Tel [3]. Therefore, se­
curity i$ enforced by removing unsafe commands from 
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slave interprefers. However, some unsafe commands 
may be needed to complete the application, so Tel 
provides a mechanism for masters to execute unsafe 
commands on behalf of slaves (called alias). There­
fore, the browser implements commands that operate 
on system objects. and the application-specific inter­
preter implements commands that operate on appli­
cation objects. These unsafe actions cannot be added 
by the content interpreters, so they must use the com­
mands in the masters and authorization is enforced. 

7.1 Downloading Content 

Content is downloaded in a. content message. A 
content message has three purposes: (1) to provide the 
content; (2) to determine which interpreter should ex­
ecute the content; and (3) to authorize the execution 
of the content in that interpreter. Therefore, a con­
tent message is defined as a quintuple m = (r, c, t, a, s) 
where: ( 1) r is the identity of the remote principal; 
(2) c is the content; (3) t is the content type; ( 4) a 
is the content's authentication information; and (5) s 
is an optional session identifier (for computations in­
volving multiple interactions). The content type is a 
MIME type of the form browser/application where 
browser refers to the fact that the content is con­
trolled by the browser interpreter, and application 
identifies an application-specific interpreter in which 
the content will be executed. The .mailcap file is 
used to store this information. The .ma.ilcap may be 
subject to denial-of-service attacks, so a secure (i.e., 
root-owned) .maileap should be used. Therefore, the 
mapping of content type to application-specific inter­
preter is likely to be maintained by a system admin­
istrator. 

The authentication information a is a double a = 
(n, i) where n is a nonce and i is the integrity verifi­
cation field. The nonce is a random value provided to 
prevent an attacker from replaying an old message. If 
an attacker could replay an old message, an attacker 
could modify the state of a transaction. We use a 
timestamp and a per-remote-principal counter as the 
nonce. The timestamp represents a recent, fresh ses­
sion (i.e., no two sessions started by the same principal 
can use the same timestamp), and the counter indi­
cates whether the message has been run in the session 
by this prindpal. i is the integrity verification field 
which is used to verify the integrity of the message. 
Using a public key algorithm, such as RSA [25] or 
DSA [19]), i is a digital signature of a message cre­
ated from the concatenation of the remote principal 
name, content, type, and the nonce. 

Some applications involve a number of interactions, 
so to improve the performance of the message au then-

tication in these applications, symmetric key cryptog­
raphy should be used. It is fairly straightforward for 
two principals to exchange a symmetric key given that 
the two principals have securely obtained each other's 
public keys (e.g., SSL protocol [8]). If symmetric 
cryptography is used, i is a message authentication 
code (MAC) computed with a ha.sh function (e.g., 
SHA [18]) rather than a digital signature (the same 
message is used, however). We prefer using a hash 
function MAC over a DES CBC MIC (28] because a 
DES CBC MIC is not guaranteed to be collision-free. 

In addition, some applications involve more than 
two principals and a number of interactions, so using 
symmetric cryptography for authentication becomes 
more complicated. In general, an n-principal compu­
tation requires O(n2 ) keys total and O(n) encryptions 
per message because each pair of principals must share 
a. secret in order to be certain of the identity of the 
sender. The fact that in many applications multiple 
principals have the same access rights can reduce the 
number of keys and encryptions somewhat. Members 
in a principal group can share a symmetric key, but a 
key is required for each pair of group and non-member. 
Therefore, if g is the number of principal groups and 
n is the number of principals overall, the maximum 
number of keys required is g • ( n- n/ g)+ g 1 and the 
number of encryptions per message is the number of 
non-members + 1 (for the group). Note that if the 
number of principal groups is small (i.e., limited by a 
known constant), which is normally the ca.se in a syn­
chronous collaboration, the number of keys remains 
bounded by 0( n ). Therefore, a.s long a.s n is less than 
100, symmetric cryptography is still preferred. 

The browser procedure for authenticating an un­
trusted program is shown in Figure 7. This proce­
dure receives pointers to the remote principal's name, 
the content, the content type, and the authentica­
tion information from the content message. A pointer 
to a session Qbject is obtained if a session identi­
fier is provided. A session object is a tuple, s = 
(auth, members, counter, keys, t) where: (1) auth is 
the authentication type of the session (either public 
or symmetric); (2) members is the set of principals 
involved in the session; (3) counter is an array of mes­
sage counters for each remote principal; ( 4) keys is a 

1 This the number of keys required if there are 2 or more 
group members in each group. H g = n (each principal is in 
a unique group), then the number of keye required ie fewer 
because maD)' keyt are redundant. An internal key for the 
group is not needed because each principal ia ~ ~oup, ao the 
number of keys i1 reduced by n. Alao, the remAJnmg half of the 
key• are redundant because, an extra key is added for every pair 
of principals because keys are distributed between each group 
and non-member normally. Therefore, the nwnber of keys is 
(n • (n- n/n))/2 + n- n = n(n- 1)/2, as expected. 
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Authenticate(!' e t a a) 

r i& the remote principal name 
c i& the content 
t is the content type 
a i! the authentication information 
s is a 3esaion 
I • First, get the key i'or the principal from 
the session or user's public key •I 
If (a is null) t.hen k = public.key(r) 
else It = key(s,r} 
I• Next, If session is unknown orr's counter = 0 
then use public key algorithm to compute y 
if ((sis null) II (s.counter[r] = 0)) then 

y = /pub!ic(r, c,1, a.n) 
else y = / ....... ,.(r,c,t,a.n) 
I• Finally, determine if y is the same as a. i for 
the expected counter value s. counter[r] 
If ((y != a. i) II 

(a .counter[r] != a.n.counter)) then error(s,r) 
increment a.eounter[r] 
return r 

Figure 7: Authentication procedure in browser inter­
preter 

mapping of principals to keys stored by the download­
ing principal; and (5) t is the content type. First, this 
procedure determines the key to use to authenticate 
the message using the remote principal's name and the 
keys map. If there is no session then r's public key is 
used. Next, the authentication function is determined 
from the session. If the session is null or this principal 
is new to the session the public key algorithm is used. 
The authentication value fuuth.(r, c, t, a) is compared 
to a.i from the content message. If they match, then 
the message is authenticate to have been from r. 

Once r's content is authenticated,. the name of the 
application-specific interpreter for the content is r~ 
trieved from the .mailcap file using the content type 
t (hereafter called interpreter t). Next, we determine if 
the remote principal is permitted to execute content 
in interpreter t. If the remote principal is mapped 
to a principal group in interpreter t, then the con­
tent can be executed. This mapping is stored in file 
called principal-groupa.t. This file must be write­
protected. Once it is determined that the remote prin­
cipal's content can be executed, then the appropri­
ate keys can be distributed to the remote principal, 
if necessary. First, if there is no session object, then 
interpreter t is queried for its authentication type. If 
there is a session object, it is examined to determine 
if a keys for the principal group bave been assigned. If 

not keys for the group and between the group and any 
non-members are generated. Also, the remote princi­
pal needs a key for each group it is not a member 
of. 

7.2 Determining Aeeess Rights 

Once the browser has determined that r's content 
can be run in interpreter t, it is then necessary to 
determine the content's access rights. We first d~ 
scribe the ways in which access rights are expressed. 
The goal is to minimize the amount of specification 
required by the downloading principal, yet to still en­
force least privilege access rights. Next, we describe 
how the rights are computed. The access rights of a r~ 
mote principal's content in interpreter t active at state 
s are the intersection of: (1) the rights of interpreter t 
and (2) the rights of the principal group to which the 
remote principal is a.ssigned in interpreter t at state 
s. Application-specific interpreters are responsible for 
deriving access rights within their domain, but the 
browser still enforces all system object accesses. 

Application-specific interpreters are responsible for 
deriving the access rights of remote principals, but 
they lack information about either the exact names 
of system objects, such as the path names of files, or 
the identities of trusted remote principals. Therefore, 
logical objects are created to represent these system­
dependent objects. Remote principals are represented 
by principal groups and system objects are repre­
sented by object groups, as defined in the access con­
trol model. Thus, the access rights of the interpreter t 
and any remote principals is based on the mapping of 
these principals to principal groups and the mapping 
of object groups to actual system objects. 

We first describe how the access control domain of 
interpreter t is specified. Object groups are used to 
express the types of the objects to which interpreter 
t requests access. For example, suppose interpreter t 
implements the test data viewer application described 
in the Example Section. Thus, interpreter t requires 
access to the following object groups: 

• U ARC Server Socket 

• Scientist Sockets 

• Administrators Sockets 

• UARC Environment Variables 

• U ARC System Files 

• U ARC Analysis Data 

• Numerical Analysis 
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• Emacs Text Editor 

Thus, the following rights are specified for inter­
preter t using our access control model ( U ARC devel­
opers are abbreviated by dev): 

• { dev : t, communicate, uarc_servers} 

• { dev : t, communicate, uarc-scientists} 

• { dev : t, communicate, uarc_admins} 

• { dev : t, r, uarc...environment} 

• { dev : t, r, uarc..system} 

• { dev : t, rw, uarc...data} 

• {dev :t,rz,ezternal..sw} 

The file /usr /loeal/uare/ system/mapping. t is 
used to define the mapping from object groups to sys. 
tern objects for interpreter t. The contents of this 
file should be based on analysis (e.g., use in system 
that can log process actions) of the interpreter t. The 
result is an access control domain for interpreter t 
which describes the objects which it is trusted to pro­
tect. Therefore, significant trust may be placed in an 
application-specific interpreter. We do not think this 
is unreasonable given that traditional applications are 
typically run with the users' complete trust. The 
browser and operating system must be able to enforce 
the specified rights to ensure that unauthorized rights 
cannot be obtained by interpreter t, however. 

We specify the following mapping for interpreter t 
in the file /usr/loeal/uare/system/mapping.t: 

• uarc..servers := uarc..server ..cert 

• uarc_scientists := scientists_certs 

• uarc_admins := uarc_admin-certs 

• uarc..environment := uarc_environment 

• uarc..system 
public 

jusrjlocaljuarc/ system 

• uarc..data := ...... f.uarc: public} 

except: w,"" f.uarcfsystem: public 

• external..sw := jusr/bin: public 

except: rz,fusrfbinfmail: all 

This mapping results in the following access rights 
for interpreter t: 

• { dev : t, communicate, uarc..server _cert} 

• { dev : t, communicate, scientists_certs} 

• {dev: t, communicate, uarc_admin_certs} 

• { dev : t, r, uarc...environment} 

• {dev: t, r, jusrjlocalfuarcfsystem: public} 

• { dev : t, rw,"' j.uarc: public} 

• except: {dev: t,w,"' j.uarcfsystem: public} 

• {dev: t, r:z:, fusr/bin: public} 

• except: {dev: t, rz, jusr/binfmail: all} 

Thus, interpreter t can communicate with the 
U ARC server, scientists, and the U ARC administra­
tors. Also, it can access UARC environment vari­
ables and the files in the ,....; . uarc directory. The 
/usr/loeal/uarc/ayatem and . uarc/aystem direc­
tories contain the secure files needed by the browser 
to execute the application, so write access to these 
files is precluded from interpreter t. Also, in this 
specification, permission is granted for it to execute 
all software in usr/bin except the mail program. 
The mapping of local groups to objects is done us­
ing -1. uarc/groups (for all applications). 

The access rights of the remote principals in inter­
preter t is specified by defining the rights for principal 
groups in the interpreter and assigning remote princi­
pals to principal groups. The access rights for a prin­
cipal group are specified by the developers in terms of 
object groups, as described above for the interpreter 
itself. Suppose the UARC application has two princi­
pal groups: lead scientists and scientists. Lead 
scientists can save new analyses on the machines of 
all collaborators, run the numerical analysis package, 
and replay and annotate analyses. Regular scientists 
can only replay and annotate analyses on behalf of 
the downloading principal. Therefore, the application 
developer specifies the access rights of these principal 
groups as follows (not including the communication 
and environment rights) (lead scientists are abbrevi­
ated lsei: 

• Lead Scientists 

- {lsci, rw, new..analyses} 

{I sci, rw, annotations} 

- {lsci, r, old.analyses} 

- {lsci, rz, num.nnalysi.t} 

• Scientists 

- {sci, rw, annotations} 
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- {sci, r, old....analyses} 

The system administrator and/or the download­
ing principal defines a mapping between these object 
groups and a domain of real system objects. This per­
mits the browser to describe the maximal domains of 
principal groups to the downloading principal, so he 
can choose a principal group for a remote principal. 
The mapping is specified in the file object-group. t 
in the write-protected ...... f. uarc/syste111 directory (or 
perhaps in the /usr/local/uarc/system directory 
for a default mapping). For example, UARC's old 
analyses are mapped to ...... f. uarc/analyses directory 
(similarly for annotations). However, initially there 
are no new analyses. A principal must create a new 
analysis in the -1. narc/analyses directory to write 
to it. The numerical analysis package is mapped ,to 
/usr/bin/nu...analysis, but note that the develop­
ers must know the browser's API for executing it in 
order to correctly initiate its execution. This is a prob­
lem because we do not want to evaluate arbitrary com­
mands in the browser. Evaluation of arbitrary code 
in a. trusted interpreter can result in undesirable mod­
ification of the trusted interpreter's security data, so 
this cannot be allowed. Therefore, the application­
specific interpreter requests execution of the logical 
numerical analysis package object, and the browser 
maps the logical object to the actual system object. 

Once the files are mapped to objects groups, the 
initial access rights of the principal groups are well­
defined. For example, the rights below result for the 
two principals: 

• Lead Scientists 

{lsci, rw,,.., j.uarc/analyses: new} 

- {lsci, rw,- j.uarcfannotations: public} 

{I sci, r,'"" /. uarcf analyses : public} 

{lsci, rz, fusrjbinfnum..JJnalysis: public} 

• Scientists 

{sci, rw,- j.uarcjannotations: public} 

{sci, r,,.., / .uarcfanalyses :public} 

Now, the mapping from remote principals to prin­
cipal groups can be defined in the write-protected file 
...... f. uarc/system/principal-group.t. Note that if 
consistency is a. requirement of the application, then 
all collaborators must agree on the principal group as­

signment. This is where a secure agreement protocol 
is necessary. 

The actual rights of the remote principals depend 
on the actions that have been taken by the download­
ing principal in interpreter t. The interpreter use~ the 

access control model's transforms to modify the ac­
cess rights of principal groups implicitly based on op­
erations by the downloading principal. For example, 
if a downloading principal loads or joins an analysis, 
then the remote principals are granted the right to up­
date the associated annotation file on the download­
ing principaPs system. The transform is x .load : 
uarc....annotationa.add(x.annotations) where x is 
an analysis. 

Therefore, the actual access rights of a. remote prin­
cipal's content are the rights which are delegated by 
the application-specific interpreter on behalf of the 
downloading principal that are within both the ac­
cess control domains of the remote principal's princi­
pal group and the interpreter itself. Therefore, if the 
interpreter is malicious it will only affect files in its do­
main. If only the content is malicious, then it can only 
affect the dynamically-generated domain. Therefore, 
authentication of application-specific interpreters is 
vital, to obtain assurance that the interpreter is being 
granted the proper trust. We use the BETSI protocol 
to authenticate application-specific interpreters [26]. 

We would prefer that the downloading principal 
delegate rights to the application-specific interpreter 
and remote principals using the browser because it 
is trusted. However, we want delegation to be im­
plicit relative to some application rather than require 
the downloading principal to specify access rights 
at runtime. The problem is to get the download­
ing principal's content interpreter to run with the 
application-specific interpreter's transforms securely 
in the trusted browser. Because the application de­
veloper is not completely trusted, allowing this code 
to be run in the trusted browser is problematic. Fur­
ther work is needed here. 

Since the application-specific interpreter provides 
access control information to the browser, authorizes 
access to application objects, and transforms the ac­
cess rights of principal groups, this interpreter will 
require some security infrastructure. The architec­
ture provides a service to modify application-specific 
interpreters to add security infrastructure given the 
access control requirements of the hiterpreter. First, 
a call is made to collect the access control predicates 
for the operation. There is always one predicate to 
test whether the operation is permitted on the object 
(i.e., first argument). Next, a call to the authoriza­
tion procedure (described below) is added after the 
access control of each controlled operation (class op­
eration that is not mandatory, see the Access Control 
Model Section). Finally, the transform operation is 
added to the end of each operation with a transform 
specification. If there are multiple they are ordered as 
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operation(args) 
erg$ i1 a lilt of operation argument~ 
arg_types i• a list of the tvpe1 of args 
o.rg_ops i1 a li.st of the op.s to be run on args 

arg_types = types(args) 
If operation is not. mandatory 

then collect predicate( operation, first( args)) 
into arg_ops 

Foreach arg in args 
collect access predicates(operation, arg) 

into arg..opa 
If (authorize args arg.typea arg.ops) 

then results= execute(procedure, args) 
Foreach transfora in tranaforaa 

a.pply-tra.n.s( trandora,args,resul ts) 

Figure 8: Generated operation with authorization and 
transformation calls 

specified (order may be important). An example of a 
modified operation is shown in Figure 8. Finally, an 
operation is added for obtaining the access rights of 
any principal group. 

Content interpreters for the principal groups can 
also be generated in advance. However, the con­
tent interpreter cannot have actual implementations 
of controlled functions, otherwise a malicious content 
provide could override them with versio08 that cir­
cumvent authorization, for example. Tel provides a 
mechanism called alia• which enables an interpreter 
to eall a. command in another interpreter. Therefore1 

aliases ate provided for all controlled operations in 
the content interpreter, so trusted implementations of 
the operations can be executed in the browser (for 
accessing system objects) and the application-specific 
interpreter (for accessing application objects). 

7.3 Enforcing Access Rights 

Lastly, the architecture provides support for enforc· 
ing the access rights specified above while executing 
content and any external software and network ser­
vices used by the content. The browser: (1) authorizes 
content operations; (2) provides safe implementations 
of these operations; (3) enables controlled execution 
of external software and network services. 

The actual authorization procedure is shown in 
Figure 9. The access rights of content to system ob­
jects specified in the previous section ate stored in the 
browser. For each arg, the browser determines the 
object group of the arg and arg_type. The browser 

authorize (arga arg.t ypes arg.ops) 
For arg in args, arg.type in arg_types, 

ops in arg..opa 
Find object group for arg a.nd arg_type 
For op inops 

If domain rights grant op 
AND no exception precludes op on arg 
then continue 
else return FALSE 

return TRUE 

Figure 9: Authorization procedure 

then determines whether the object access rights per­
mit all the operations in arg..opa. Developers are not 
required to specify the operatioDB on arguments be­
cause when another procedure is called, the subse­
quent calls will be authorized as well. However, speci­
fying argument operations are useful to catch bugs in 
the procedure call and to restrict the access rights of 
external software. Typically, the only operation that 
is authorized is the application of the procedure to 
the first argument, the object identifier (i.e., the first 
argument in an object-oriented method indicates the 
object for which the procedure is intended). To au· 
thorize an operation on a.n object, the browser must 
be able to find: (1) a domain right that grants per­
mission to perform this operation on this object and 
(2) that no exception exists which precludes perform­
ing this operation on this object. Note that we had 
to create object identifiers for Tel objects since Tel is 
not object-oriented. 

Once authorized, the browser can exeeute the pro­
cedure. A procedure consists of two kinds of code: 
(1) calls to other procedures and (2) accesses to con­
trolled objects. A browser executes calls to existing 
procedures in the content interpreter using the .s l CJve 
eval t~rg~ eall in Tel. This ensures that all calls 
to other controlled procedures will be authorized u&­
ing the prineipal group rights. Operations on con­
trolled objects within the procedure are assumed to 
be authorized if access to the procedure is authorized. 
These commands must be run in the browser because 
only the browser bas access to the systems object. 
It is hard to automatically distinguish from existing 
procedures in Td because Tel is not object-oriented. 
Therefore, these methods are generated manually at 
present. We expect that the use of a.n object-oriented 
language would enable automatic generation of these 
procedures. 

The browser provides safe implementations of 
open, socket, env, and exec operations. All these 
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implementations are fairly straightforward except for 
exec which we describe in detail below. The other op­
erations are implemented by a call to authorize which 
checks the content access rights prior to calling the ac­
tual operation. Since these commands are only avail­
able in the browser and are protected by the autho­
rization operation, only authorized accesses to system 
objects are possible. An example is the implementa­
tion of the open command in [13] (called safe_open). 

The browser also provides support for controlled 
execution of external software and network services. 
When an operation for executing executing external 
software, the browser must: (1) authorize this execu­
tion and prepares for a safe executionj (2) determine 
a limited access control domain for executing the soft­
ware or servicej (3) transfer the domain specification 
to the system responsible for controlling the softwarej 
and ( 4) execute the software. This is not a easy task 
because current operating systems do not support dy­
namic modification of a principals access rights nor do 
they control remote communication. 

In general, software execution is authorized by 
determining if the remote principal (i.e., principal 
group) has execute rights for the first argument in 
the exec call. If so, then the exec operation executes 
the software using the current rights of the principal 
group (described further below). 

If the software should be further restricted or if we 
want to be aure that the software can be executed 
successfully, then we suggest the creation of classes 
for software to represent this information. Software 
classes contain strongly-typed "constructors» for ex­
ecuting the software. Also, access control predicates 
can be assigned to the arguments in the call. These 
predicates should authorize operations required of ar­
guments as well as the values of arguments. For ex­
ample, the command eat x I xter11 -e pipes file x 
into a new xterm and executes it. We may want to 
prevent an argument of cat from being a pipe. Also, 
we'd like to determine if we have the rights to read file 
x. In addition, the access control predicates specify 
the rights required to execute the software (excepting 
some start-up privileges which can be specified sep­
arately), so the execution of software can be limited 
more strictly than the content. 

Once the software execution is authorized and the 
access rights have been determined, it is necessary to 
convert the rights to a form that can be enforced by 
the operating system. Unfortunately, current operat­
ing systems are not designed to permit a principal to 
run a process with limited access rights. We describe 
a technique for limiting the access rights of a service in 
the Distributed Computing Environment (DCE) [21]. 

DCE has the advantage that its authorization model 
is very flexible. DCE associates ACL managers with 
services to implement the authorization mechanism of 
those services. Therefore, each service can use its own 
ACL manager. We define an ACL manager for imple­
menting our authorization mechanism which will be 
used by DCE's distributed file system (DFS). 

We first define our DCE access control model. DCE 
uses an extended Unix-style access model where for­
eign users join the standard owner, groups, and oth­
ers principal types. Modification of access rights 
involves changing: (1) the user identity (UUID)i 
(2) the groups identities and operations: group_obj, 
group, and foreign group; and (3) the operations 
that are permitted to the general classes: other ..obj, 
toreign..other, and any ...other. In addition, if inter­
section rights are granted, the remote principal and 
the downloading principal must be stored to deter­
mine if both have a specific right. The modified DCE 
model consists of the following fields and values (for 
a domain right): 

• Root: The root path name for the rights 

• User: Either the downloading principal (sharing 
type= all), nobodytlocal (public or intersection 
with local principal), or nobodytforeign (foreign 
or intersection with foreign principal), or none 
(none or new) 

• Group_Obj: None 

• Groups: Intersection of groups shared by the 
downloading principal and a remote principal (in­
tersection) 

• Users: Set of principals which must all have the 
right (intersection) 

• Masks: ACL types and permissions granted to 
that ACL type (for all ACL types) 

• Communications: List of principals or princi­
pal groups 

Exceptions are specified similarly, but masks imply 
the rights precluded. Thus, the new ACL manager's 
authorization mechanism determines if an operation 
on an object is permitted by a domain rights speci­
fication by: (1) finding a domain rights specification 
whose root is an ancestor the the object; (2) deter­
mining if any instance of an ACL type grants access 
to perform that operation given the masks. For ex­
ample, if the operation is write, then ACL type mask 
must permit write operations, and the instance of that 
type must have write permission on the object. 
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(!} 1 -- Oll!aln dei<e11or OFS w/ Aulh·Oata•DFS rfghiS 
2-Obi..., ~<l<et I<>< Seovioo 
3 --Send ~~sro Service 
4 --~MOO r&qU~ PAC for OFS: EPAC • OFS 'dcket 
5 -- Service eulhendc:atea to OFS using PAC+EPAC 

Figure 10: The protocol for a d~wnloading principal 
to grant a service rights to his objects in DCE's Dis­
tributed File System (DFS) 

DCE [21] utilizes an extended version of Kerberos 
version 5 tickets [14, 20] called Privilege Attribute 
Certificates (PACs) and further extensions to those 
tickets called Extended PACs (EPACs) for authen­
tication. Kerberos documentation suggests that the 
authorization-data field be used to represent au­
thorization information. However, DCE already uses 
that field for storing the UUID and groups for au­
thentication, so we use the EPACs to store our au· 
thorization data. This enables a principal (the down­
loading principal via the browser) to grant rights to 
another principal (the service) which can be enforced 
by a third principal (the DFS). The protocol is shown 
in Figure 10. In this protocol, the browser obtains 
an EPAC for the DFS and a. PAC for the service. 
Only the DFS can decrypt the EPAC and the EPAC 
is integrity-protected, so the DFS can verify that the 
EPAC is from the downloading principal. Therefore, 
the DFS ca.n grant the downloading principal's rights 
to the service. Note that the service ca.n only ob­
tain the downloading principal's rights if the EPAC 
is presented to the DFS. The DFS ACL manager can 
interpret the rights, so it can authorize actions given 
those rights. 

Note that using a DTE [1] makes the specification 
of rights much simpler, and enables the computation 
of intersections to be done at runtime. This is be­
cause access rights can be expressed more concisely. 
Therefore, we would prefer to use a DTE-style access 
control model in the future. 

Limiting access to environment variables is easily 
implemented by restricting which variables are made 
available to the software in the exec call. Therefore, 
the transfer of application object rights and environ­
ment rights to the kernel is not necessary. 

Control of other objects used by existing software, 
such a.s remote communications and network services, 
involves interaction between the kernel and network 
computing services. Therefore, the kernel should be 
able to interact with DCE as well to enforce strong 
authentication on all communications. As a proof of 
concept, this model of communication has been imple­
mented in the Taos operating system (35]. In Taos, 
processes are associated with authenticators for prov­
ing the identity of the owner of a process to other 
processes. The Taos kernel is integrated with the au­
thentication service, so all communication is authen­
ticated. The ability to dynamically restrict the access 
rights of a Taos process is not possible given the cur­
rent design. Similar services are also being developed 
for Trusted Mach (32) (upon which DTE is the access 
control model), so a nearly sufficient system environ­
ment is not that far off. 

8 Future Work and Conclusions 

We define an architecture that flexibly controls the 
access rights of downloaded executable content. In 
contrast to current interpreters: (1) strong authen­
tication is used to verify actions by remote princi· 
pals; (2) application-specific access control require­
ments are obtained which enable least privilege access 
to he enforced flexibly; and (3) these access rights can 
be enforced at both the application and system lev­
els which enables comprehensive access control on the 
application. 

By using this architecture, a variety of attacks can 
be avoided. For example, attacks in which data is sent 
to unauthorized principals (e.g., (31]) can be avoided 
because principals are authenticated and applications 
can identify the set of authorized remote principals. 
The use of services v.:ith poor security records, such 
as aendmail, can }>e avoided entirely. In addition, 
untrusted applications, such as ones that use aetuid, 
can also be avoided by not granting rights to execute 
them. 

Also, the architecture permits the use of rights not 
typically available in current interpreters. We provide 
specification models for developers to specify the ac­
cess rights of principals in their applications and how 
rights can be transformed given user actions. The ar­
chitecture provides a service to modify applications to 
integrate these security requirements with the appli­
cation code. This enables developers to build systems 
which are less likely to contain security infrastruc­
ture bugs that can lead to attacks. Also, this enables 
application-specific requirements to be used to control 
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access. Thus, arbitrary restrictions, such as preclud­
ing communication with parties other than the orig­
inating host and preventing the execution of existing 
applications, can be replaced with more semantically­
meaningful, application-specific access domains. 

In the future, we plan to assist application devel­
opers in verifying the access rights granted to remote 
principals. That is, we want to be able to show ap­
plication developers what a remote principal can do 
given a specific set of access rights. Thus, applica.tion 
developers can decide whether they have specified a 
satisfactory set of access control requirements. 
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