
BLUE COAT - EXHIBIT 1019

USENIX Association

Proceedings of the

Sixth Annual USENIX Security Symposium:

Focusing on Applications of Cryptography

July 22-25, 1996
San Jose, California

Wednesday, July 24

9am-10:30am

llam-12:30pm

Table of Contents

6th USENIX Security Symposium
Focusing on Applications of Cryptography

July 22-25, 1996 • San Jose, California

Opening Remarks: Greg Rose, Qualcom
Keynote Address: A Simple Distributed Security Infrastructure

Ronald L. Rivest, MIT Laboratory for Computer Science

Session 1: "He who controls the area controls the religion''-Latin
Session Chair: Brent Chapman, Great Circle Associates

A Secure Environment for Untrusted Helper Applications ... !
Ian Goldberg, David Wagner. Randi Thomas and Eric A. Brewer, University of California, Berkeley

A DNS Filter and Switch for Packet-filtering Gateways ... lS
Bill Cheswick, Lucent Technologies; Steven M. Bellovin, AT&T Research

Confining Root Programs with Domain and "JYpe Enforcement ... 21
Kenneth M. Walker, Daniel F. Sterne, M. Lee Badger, Michael J. Petkac, David L. Sherman,
Karen A. Oostendorp, Trusted Information Systems, Inc.

2pm-3:30pm Session 2: "The secret whispers of each other's watch"-W.S.
Session Chair: Avi Rubin, Bellcore

SSH - Secure Login Connections Over the Internet .. 37
Tatu Ylonen, SSH Comunications Security, Ltd., Finland

Dual-workfactor Encrypted Key Exchange: Efficiently Preventing Password Chaining and Dictionary Attacks43
Barry Jaspan, Independent Consultant

Security Mechanism Independence in ONC RPC ... Sl
Mike Eisler, Roland J. Schemers and Raj Srinivasan, SunSoft, Inc.

4pm-S:30pm Session 3: "There are more things in heaven and earth''-W.S.
Session Chair: Steven M. Bellovin, AT&T Research

Establishing Identity Without Certification Authorities .. 67
Carl Ellison, Cybercash, Inc.

Secure Deletion of Data from Magnetic and Solid-State Memory ... 77
Peter Gutmann, University of Auckland

A Revocable Backup System ... 91
Dan Boneh and Richard J. Lipton, Princeton University

Thursday, July 25

9am·10:30am Session 4: '~to promote commerce, and not betray if'-Pepys
Session Chair: Clifford Neuman, University of Southern California

Building Blocks for Atomicity in Electronic Commerce .. 97
Jiawen Su and J.D. Tygar. Carnegie Mellon University

Kerberos on Wall Street. .. 1 OS
Isaac Hollander. P. Rajaram and Constantin Tanno, Morgan Stanley & Co.

A Framework for Building an Electronic Currency System ... 113
Lei Tang, Carnegie Mellon University

llam 12:30pm Session 5: "In middle of her Web, which spreadeth wide"-Davies
Session Chair: Kathy Fithen, CERT

Chrg-http: A Tool for Micropayments on the World Wide Web ... 123
Lei Tang, Carnegie Mellon University; Steve Low, AT&T Research

Building Systems That Flexibly Download Executable Content .. 131
Trent Jaeger and Atul Prakash, University of Michigan; A vi Rubin, Bellcore

Enclaves: Enabling Secure Collaboration over the Internet .. 149
Li Gong, SRI International

2pm-3:30pm Session 6: "Two massy k£ys he bore"-Milton

Session Chair: Diane Coe, The MITRE Corporation

Public Key Distribution with Secure DNS .. 161
James M. Galvin, EIT/VeriFone

Compliance Defects in Public Key Cryptography ... 171
Don Davis, Independent Consultant

Texas A&M University Anarchistic Key Authorization (AKA) ... 179
David Safford, Douglas Schales and David Hess. Texas A&M University

4pm-5pm Session 7: " .•• tangled in amorous nets"-Milton
Session Chair: Fred Avolio, Trusted Information Systems, Inc.

Murphy's Law and Computer Security ... 187
Wietse Venema, Eindhoven University of Technology

NetKuang-·A Multi-Host Configuration Vulnerability Checker ... 195
Dan Zerkle and Karl Levilt, University of California. Davis

Problem Areas for the IP Security Protocols ... 205
Steven M. Bellovin, AT&T Research

ACKNOWLEDGMENTS

PROGRAM CHAIR-----~------,
Greg Rose, Qualcomm

USENIX PROGRAM COMMITTEE------,
Fred Avolio, Trusted Infonnation Systems, Inc.

Steven M. Bellovin, AT&T Research
Brent Chapman, Great Circle Associates

Diane Coe, The MITRE Corporation
Ed DeHart, CERT

Kathy Fithen, CERT
Daniel Geer, Open Market, Inc.

Peter Gutmann, University of Auckland
Kent Landfield, Sterling Software

Clifford Neuman, University of Southern California
A vi Rubin, Bellcore

Ken van Wyk, Defense Information Systems Agency
Karen Worstell, The Boeing Company

READERS---------------------.
Matt Bishop, University of California, Davis

Lee Damon, Qualcomm
Phil Karn, Qualcomm

Greg Noel, Qualcomm
Brett Rees, Sterling Software

UNIFORUM PROGRAM CHAIR
Jim Schindler, Hewlett-Packard I

UNIFORUM PROGRAM COMMITTEE--.....,
Rik Farrow, Consultant

Deborah Murray, UniForum

TUTORIAL COORDINATOR--------,
Daniel V. Klein, USENIX. Association

PROCEEDINGS PRODUCTION--------,
Pennfield Jensen, USENIX Association

USENIX MEETING PLANNER------,
Judith F. Desharnais, USENIX Association

USENIX EXECUTIVE DIRECTOR--------,
Ellie Young, USENIX Association

USENIX Marketing Director----------,
Zanna Knight, USENIX Association

USENIX SUPPORT STAFF-------,
Colleen Biddle, USENIX Association

Eileen Curtis, USENIX Association
Diane DeMartini, USENIX Association

Toni Veglia, USENIX. Association

Preface

Since the last USENIX Security Symposium, just a year ago~ the world has really awakened to the
Internet, sat up and looked around, and started to get worried. Laws have been proposed and some
passed~ mechanisms for security and censorship designed, secure products broken, and censors
bypassed.

Along with the growing awareness that security is important has come a realization that there are
some problems only cryptographic techniques will solve. While great advances in cryptography
have been made in the last two decades, deployment of these advances has been slow. It is time to
correct that, and by focusing this year on the subject of Applications of Cryptography, this sympo­
sium attempts to contribute materially to the real world in this area.

Just after I drafted the preceding paragraph, I was on a United Airlines flight, and the in-flight
news program had two interesting stories which are relevant to this conference. The first was
about Tsutomu Shimomura's tracking of Kevin Mitnick, and it highlighted (among other things)
many problems with the state of security in today's world, both on the Internet and in the tele­
phone system. While one screen of email scrolled past Tsutomu 's reflected face, I saw a number
of familiar names, Blaze, Rubin, Bellovin, Kam, Cheswick, all of whom have contributed materi­
ally to this Symposium. So have a lot of other people, and I heartily thank all of them.

The second was about Football. I was dozing through it when I awoke with a start. The football
coach was transmitting instructions to the quarterback (please forgive me if I get the terms wrong,
I come from a country with different kinds of football, and I ignore them too ...) by radio to a
receiver in the player's helmet. He said that the information was encrypted so that spectators, and
presumably the opposing coach, couldn't listen in, and that it would take years to crack the "very
long" key. While I'm prepared to make a small wager that "very long" key was 40 bits, the fact
that cryptography is being deployed on football fields makes my point.

I hope, and believe, that these proceedings and the Symposium itself have been valuable for the
attendees and the broader community.

Good luck,

Greg Rose
Program Chair

This mate ria I may be protected by Copyright law (Title 17 U.S. Code l

Building Systems That Flexibly Control
Downloaded Executable Content

Trent J aegert Aviel D. Rubin+ Atul Prakasht

Software Systems Research Labt
EECS Department

University of Michigan
Ann Arbor, MI 48105

Em ails: {jaegertlapra.k.a.sh }@eecs. umich.edu

Abstract

Downloading executable content, which enables
principals to run programs from remote sites, is a
key technology in a number of emerging applications,
including collaborative systems, electronic commerce,
and web information services. However, the use of
downloaded executable content also presents serious
security problems because it enables remote princi­
pals to execute programs on behalf of the downloading
principal. Unless downloaded executable content is
properly controlled, a malicious remote principal may
obtain unauthorized access to the downloading prin­
cipal's resources. Current solutions either attempt
to strictly limit the capabilities of downloaded con­
tent or require complete trust in the remote principal,
so applications which require intermediate amounts
of sharing, such as collaborative applications, cannot
be constructed over insecure networks. In this par
per, we describe an architecture that flexibly controls
the access rights of downloaded content by: (1) au­
thenticating content sources; (2) determining content
access rights based on its source and the application
that it is implementing; and (3) enforcing these access
rights over a wide variety of objects and for the entire
computation, even if external software is used. We
describe the architecture in the context of an infras­
tructure for supporting collaborative applications.

1 Introduction

The ability to download executable content is
emerging as a key technology in a number of applica­
tions, including collaborative systems, electronic com­
merce, and web information services. By download-

Security Research Groupt
Bell core

445 South Street
Morristown, NJ 07960

rubin@bellcore.com

ing executable content on demand, systems can be
built that provide better performance and fault toler­
ance than existing systems. Application performance
can be improved because the program (i.e., executable
content) can be downloaded to the location of the data
(e.g., for a query) or the location of the user (e.g., for
an interface-driven task). In addition, the fault toler­
ance of an application can be improved by reducing
the client's dependency on the liveness of a specific
server.

Recent distributed systems architectures, such as
mobile agent and replicated process architectures, en­
able processes to download and run executable con­
tent. For example, consider the mobile agent archi­
tecture (also known as computational e-mail, com­
mand script architecture, and enabled mail) in Fig­
ure 1. First, a remote principal composes an agent
by specifying a program. Through some mechanism
(e.g., http or e-mail) the agent is downloaded to an­
other principal. The downloading principal uses an
agent interpreter process running on his machine to
execute the mobile agent (number 2 in the figure).
This process is owned by the downloading principal,
so the agent is executed with his access rights. A
malicious remote principal can use these access rights
to: (1) read and write the downloading principal's pri­
vate objects; (2) execute applications, such as mail or
cryptographic software, to masquerade as the down­
loading principal to other users; and (3) read the pass­
word file on the downloading principal's machine. In
addition, a remote principal may be spoofed into inte­
grating malicious content from an attacker to mobile
agent which would then give a third party access to
the information provided above [5].

Current interpreters for executing downloaded con­
tent , such as Java-enabled Netscape, Java's ap-

UsENIX Association 6th USENIX Security Symposium 131

Mobile
A &eDt

Mobile
Aaeor

Downloadill8
Prilldpal

Figure 1: Mobile agent architecture

pletviewer [10), and Tel's safe interpreter [3, 16],
strictly limit the access rights of content to prevent
these attacks. For example, content run using Java­
enabled Netscape is prevented from performing any
file system 1/0 and communicating with third parties
(in theory anyway, see [5]). The Java. a.ppletviewer
permits some access rights to be granted to content (as
specified in the -1 .hotjava/properties file). How­
ever, these rights must be shared with any remote
principal whose content is downloaded. Therefore,
these interpreters are not suitable for building an ap­
plication where a. downloading principal must grant
rights to a specific remote principal.

Our goal is to flexibly control downloaded content,
so applications which need to share resources with
specific remote principals can be built. Flexible con­
trol of downloaded content means that the content's
access rights can be set to any subset of the download­
ing principal's rights. Flexible control of downloaded
content is difficult because: (1) to determine the ac­
cess rights of downloaded content requires decisions
a.t runtime and (2) to enforce these rights requires
control of a wide variety of system objects. Content
access rights depend on: (1) the trust in the remote
principal who provided the downloaded content; (2)
the access requirements of the application that the
content is implementing; and (3) the state of that ap­
plication. The state of the application and the access
control requirements of the content are not known un­
til runtime time, so a principal trusted to make access
control decisions at runtime is necessary. However,
users are typically not trusted to make such judge­
ments. Also, executing content requires that access to
a wide variety of system objects, such as files, sock­
ets, and existing software, be controlled. In particular,
control of existing software is not supported by inter-

preters because they are simply user processes. How­
ever, current operating systems &lso lack the necessary
tools to effectively control external software executed
by downloaded content.

In this paper, we describe an architecture for flex·
ible control of downloaded content. This architec­
ture enables downloading principals to execute appli­
cations that use content to share resources in a con­
trolled manner to complete the application's goals.
The architecture enables the access rights of down­
loaded content to be determined with little need for
runtime access control specification by users. The ar­
chitecture: (1) authenticates content sources; (2) de­
termines content access rights based on its source and
the application that it is implementing; and (3) en­
forces these access rights over a wide variety of objects
and for the entire computation, even if external soft­
ware is used. Cryptographic authentication identifies
the source of content and also prevents some of the at­
tacks that have plagued current interpreters, such as
the DNS attack described in [5]. Also, in addition to
the source, the application of the content is also used
to determine the access rights of content. For exam­
ple, we can remove the limitation that content can
only communicate with ports at the server, by know­
ing the authorized remote principals in the applica­
tion. We define an access control model for express­
ing the access rights of system objects and services
for enforcing those rights. For example, the execu­
tion of external software is administered by a trusted
interpreter, so we can control what software is being
executed and limit the rights available to it.

Throughout the paper, we will assume a conven­
tional protection model, where principals (e.g., users,
groups, services, etc.) execute processes that perform
operations (e.g., read, write, etc.) on objects (e.g.,
files, devices, etc.). The permissions of a principal to
perform operations on objects are called the access
rights of the principal. We call a. set of access rights
a.n access control domain or simply domain.

The paper is organized as follows. In Section 2,
we detail the security requirements of some emerging
applications. In Section 3, we define the problem of
enforcing the access rights of an untrusted computa­
tion. In Section 4, we review related work. In Sec­
tion 6, we present our system architecture. In Section
6, we define our access control model. In Section 7,
we describe the architectural details and their imple­
mentation. In Section 8, we conclude the paper and
present future work.

132 6th USENIX Security Symposium USENIX Association

----·-·--·- -···-- ·--

2 Example

At the University of Michigan1 we are develop­
ing a system called the Upper Atmospheric Re­
search Collaboratory (UARC) [6]. UARC provides its
geographically-distributed users with a wide variety
of applications which support collaborative analysis
of atmospheric test data. For example, a test data
viewer enables users located in the United States a.nd
Europe to share views of the atmospheric test data
and jointly observe and annotate the views and the
data. Most of the applications in U ARC involve syn­
chronous interaction among users.

Since collaborative applications have many com­
mon requirements, we are building an application­
independent infrastructure called the Collaboratory
Builders' Environment (CBE) [15]. The CBE pro­
vides services that are common to collaborative ap­
plications, such as replicated object management [22],
multicast communication [11), and security. The goal
of the security infrastructure is to provide the security
services rtecessary to support a variety of collaborative
applications.

UARC applications are to be implemented as
downloaded executable content. When a user wants
to use an application, the user downloads and executes
the associated content on his local machine. There­
fore, the user assumes the role of the downloading
principal in the mobile agent architecture. In order to
properly control the access rights of the user, the CBE
infrastructure must be able to: (1) identify the source
of the application a.nd (2) assign that application ap­
propriate access rights. For a UARC application, the
set of U ARC developers is the expected remote princi­
pal. Assigning the access rights is a difficult problem
because a UARC application, such as the test data
viewer, may need the rights to:

• Obtain test data. from the remote U ARC data
server

• Communicate actions to the remote collaborators
who share the view

• Read local setup files and environment variables
for executing the application

• Read past analysis session files to replay them

• Store the analysis session for future replay

• Execute existing applications (e.g., editors, nu­
merical analysis programs, etc.)

Therefore, we presume that an access control in­
frastructure must be able to control access to a variety

of objects including file system objects, sockets, envi­
ronment variables, applications, URLs, and network
services.

Since the CBE supports collaborative applications,
WP. must prevent ~nllaborator actions from cam~ing se­
curity problems. In the CBE, applications are sup­
ported by a replicated process architecture where each
collaborator has: (1) a process on his local machine
that is executing the application; (2) the application
itself; (3) shared state which is to be consistently
maintained by the application; and (4) private data
that is unique to each collaborator. When a. principal
performs an action on the shared state, this action is
multicast to each collaborator and executed at each
site (i.e., if the principal is permitted to perform that
action). Therefore, a replicated process architecture
enables multiple principals to execute actions in a sin­
gle process. Security problems arise because different
principals have different rights in the collaboration.
For example, some principals administer the collab­
oration, others participate by modifying the shared
application state, others can make limited changes to
the shared state, and some can only view the shared
state. Since each collaborator has a copy of the ap­
plication, some users may run a modified version of
the application which could try to perform, either ac­
cidentally or maliciously, unauthorized actions. Also,
attackers on the Internet may attempt to disrupt the
collaboration by sending malicious messages, deleting
messages, replaying old messages, and modifying mes­
sages in transit.

3 Problem Definition

The problem of flexibly controlling U ARC appli­
cations that are supported by the CBE is to: (1) au­
thenticate the source of the content; (2) determine the
least privilege access rights f'or the content given its
source; and (3) enforce those access rights throughout
the execution of the content.

Authentication involves: (1) identifying the source
of content; (2) verifying the integrity of content; and
(3) ensuring that the content meets its freshness re­
quirements. Authenticating the source of applications
differs from authenticating the source of collaborator
content. An application may be composed of com­
ponents fror:n several sources, so each of the sources
needs to be identified to deLermint: the appropriate
access rights. Also, freshness is not a factor as long as
the appropriate version of the application is obtained
and its integrity is verified. Collaborator content is
analogous to a message in a distributed computation,

USENIX Association 6th USENIX Security Symposium 133

so only one source is typically responsible for the con­
tent. However, the freshness of collaborator content
must be verified because a. replay of this content may
cause the shared state of the collaborators to diverge.

The access rights of content depend on: (1) the
trust of the downloading principal in the authenti­
cated remote principals :responsible for the content
and (2) the purpose of the content. If a download­
ing principal trusts a remote principal with an ac­
cess right, then the downloading principal can grant
the remote principal's content that right. Clearly,
this set of rights may be more than any particular
content requires, and, in addition, there may be spe­
cial cases where a downloading principal is willing to
grant temporary access to a. private file to complete
some transaction. Therefore, information about the
access requirements of content and the downl<~ading
principal's willingness to grant additional rights are
needed to determine the rights actually required by
content. Unfortunately, this information is not known
until runtime and is typically difficult for end users to
provide without being vulnerable to spoofing attacks.

The access rights assigned to content should be en­
forced for the content and any programs controlled
by the content. Obviously, the access requests made
directly by content must be controlled. In addition,
any existing programs or network services that ca.n
be controlled by the content (i.e., can be provided in~
put by the content directly or indirectly) must also
be restricted to the same or fewer rights. In general,
access to the following types of objects needs to be
controlled:

• Application Objects: A process can read a.nd
write objects in its memory

• File System: A process can perform read, write,
and execute operations

• Applications: A process can .execute another
application by creating a process for that appli~
cation

• Processes: A process can communicate with an­
other process via pipes or the file system

• Environment: A process can execute its envi~
ronment's scripts and read and write its environ­
ment variables

• Network Services: A process can communicate
with a service on the network using a socket

• Universal Resource Locators (URLs): A
process can download and read system objects
by specifying a URL

Remote Prindpal

c:bEoot

System: Role-based Access Conttol
Netwoct Computing Envs.

Figure 2: The current architecture for systems that
utilize downloaded executable content

Operations on application objects must be autho­
rized to ensure that the principal is permitted to mod­
ify the object. Access to file system objects should
be limited to prevent unauthorized access to private
objects. Also, access to objects that previously are
available to trusted programs, such as environment
variables and remote communication channels, must
now also be controlled. These objects can be used by
content to attack the downloading principal. For ex­
ample, an attack on alpha version Java involves open­
ing socket connections to an unauthorized third party
to send information shared between the two legitimate
principals [5].

4 Related Work

The current architecture for executing downloaded
content is shown in Figure 2. In this architecture, ex­
ecutable content is downloaded to a principal who ex­
t:cut.es the program using one of a variety of "safe" in­
ter;preters, such as Java-enabled Netscape [10], Java's
appletviewer, and Tel's safe interpreter [3, 16]. To
prevent attacks, these interpreters strictly limit the
access rights of content. By default, all these in­
terpreters only grant content (remote content in the
case of Java) the right to communicate to only ports
at the IP address of the content. The addition of
read and write access rights to files is possible in
the appletviewer by specifying those rights in the
~/.hotja.va/properties file. Unfortunately, the
rights apply to all remote content. Also, these in­
terpreters lack authentication, so all content must be
assumed to have been downloaded from highly un­
trusted sources.

To grant rights to Tel or Java content per re­
mote principal currently requires the use of an in-

134 6th USENIX Security Symposium USENIX Association

terpreter for trusted content or that custom appli·
cations be built". InterpreterS' for executing trusted
content run content with the downloading principal's
access rights, so access to objects not normally avail­
able to another principal, such as private files, are
granted. We do not believe that content should be
granted rights that another user would not normally
have. On the other hand, custom applications require
their own authentication, access control specification,
and authorization infrastructure. Therefore, ad hoc
security services need to be constructed which is an
arduous and error-prone.

The Telescript engine [34} is another mobile agent
interpreter. The Telescript engine differs from the in­
terpreters described above in its use of credentials for
authentication and pern&its for authorization. Creden­
tials are cryptographic representations of the identity
of the principal responsible for the content. Permits
list the access rights of content. A permit can contain
rights to another principal's (e.g., the downloading
principal) resources. When content is downloaded,
the downloading principal can deny rights that the
content's permit grant, but this decision is ad hoc.
Also, like other interpreters, the Telescript engine can­
not control the execution of external software.

Operating systems can control the access rights of
external software it executes, but current operating
systems are not designed to flexibly restrict a prin­
cipal's rights. For example, we showed in [12] that
current file systems, such as Unix (24) and AFS [27),
only provide limited mechanisms for a principal to
dynamically restrict the access rights of one of his
processes. Additionally, in Unix-based systems, the
command ehroot is available to limit the execution
scope of a process to a file system subtree. However,
chroot is cumbersome to use becaUBe of the need to
transfer files to the restricted file system subtree, and,
even worse, it cannot control remote communication
by content. In fact, no current operating controls r~
mote communication. Control of remote communica­
tion is typically provided by firewalls, but firewalls do
not control access rights on a per process basis.

Recent research has yielded systems which provide
support for defining limited access control domains,
but it is not possible to generate a. new domain at run­
time. Role-based access control (RBAC) [1, 9, 33, 35]
models permit a user to execute processes using differ­
ent principals, called roles, which a.re associated with
different access control domains. Thus, two processes
run by the same user can have different access rights.
However, to create these access control domains, most
of these models require changes to the ACLs of all
effected objects, so creating roles dynamically is pro-

hibitively expensive. The Domain Type Enforcement
(DTE) RBAC model uses the file system hierarchy to
express domains more concisely. Therefore, we believe
it is possible, from a performance perspective, to dy­
namically generate limited domains using DTE, but
users and their processes are prevented from gener­
ating domains because DTE is used as a mandatory
access control model. Other RBAC models permit
evolution of access rights using rules [4, 17]. However,
the rules, like the domains, must be specified in ad­
vance, but the rights of content depend on the goals
of the content's application which are large in number
and are often not known until runtime.

In [30], the DTE RBAC model is applied to con­
trolling content. A domain that includes the objects
needed by the browser to run and a '1scratchpad,"
public directory are defined. While this permits an
extension of current interpreter access domains, it still
lacks the 8exibility and per-content access control we
desire. Also, control of remote communication is still
lacking (however, IPC is controlled by DTE).

Another mechanism for granting limited rights to
a process is delegation. Delegation is advantageous in
that cryptographic credentials are used to represent
the rights being delegated, but flexibility, standard­
ization, and trust are problematic. Some systems,
such as Taos {35], delegate rights via roles, so they
suffer from the same 8exibility limitations as RBAC.
Kerberos version 5 [14, 29) provides a field for stor~
ing access control domains in the delegated creden­
tials, so flexible delegation of rights over a variety of
objects i~ possible. However, access rights must be
transferred to servers in a language that the server
can understand and enforce. Also, a trusted mecha­
nism for transferring the rights to the server must be
used. For example, a service controlled by the down­
loaded content cannot be given the responsibility to
control file system objects.

5 Architecture

In the design of an architecture for controlling
downloaded executable content, we make the follow­
ing assumptions. First, we assume the existence of
a public key infrastructure that be used to securely
obtain the public key of any principal. Thus, any
principal can verify the source and integrity of ames­
sage signed with a private key. Next, we assume that
we can identify any I/0 commands in the content lan­
guage. This is necessary to control access to system
objects. Next, we assume that the operating system
has an unmodified trusted computing base, protects

USENIX Association 6th USENIX Security Symposium 135

process domains, and provides authentication of prin­
cipals. This ensures that system software, such as
cryptographic software, can be trusted, processes can
only interact in controllable ways, and authentication
of services is possible. Without trust in the operating
system, it is not possible to build trusted applications
that run on that operating system. A secure operat­
ing system, such as Trusted Mach [32J, satisfies these
requirements. Lastly, for applications involving three
or more principals, we assume the existence of a secure
group membership protocol, such as that described by
Reiter [23), to ensure that all valid correctly-behaving
principals share the same view of the application's
group.

The following types of principals are involved in a
downloaded content computation:

• Downloading Principal: The principal who
downloads and executes the content

• Remote Principals: The principals responsible
for the content

• Application Developers: Remote principals
who provide content that implements applica­
tions that execute downloaded content from oth­
ers

• System Administrator: A trusted principal
who understands the structure of the download­
ing principal's system

The downloading principal trusts the system ad­
ministrator and may have some trust in the re­
mote principals (including the application developer).
Thus, the downloading principal wants to grant only a.
subset of his access rights to a remote principal's con­
tent, and the system administrator is trusted to help
the downloading principal define this subset. Note
that the downloading principal may have different lev­
els of trust (i.e., define different access control do­
mains) in each remote principal. We assume that re­
mote principals are trusted keep secrets from other re­
mote principals with less privilege (e.g., private keys).

An architecture for flexible control of downloaded
executable content is shown in Figure 3. This archi­
tecture consists of four levels: (1) local system ser­
vices for access control; (2) a. trusted, application­
independent interpreter; (3) an application-specific in­
terpreter (optional); and (4) an interpreter for ex­
ecuting downloaded content. The local system ser­
vices provide operating systems services for control­
ling operations external to the interpreters. Also,
system-specific information is made available for lo­
cal system services (e.g., the file system structure).

r Remote Priadpll

I
~trusted Network ~

l

Appllcadoa-SpecUlc
"Safe" Iaterpreter

I

Trusted, Appllcatlou-ladepeadeat
tatfrpreter (Browser)

System w/ ObJect Access Control
aod Autbeadcated Commullfcadoa

Figure 3: An architecture for flexible control of
downloaded executable content; (a) system services
control access outside the interpreter; (b) trusted,
application-independent interpreters (browsers) con­
trol access to system objects by the less-trusted in­
terpreters; (c) application-specific interpreters control
access to application objects and determine the access
rights of content within their domain; (d) downloaded
content implements the actions of remote principals.

Trusted. application-independent interpreters (which
we will refer to as browsers from here on) control ac­
cess to system objects by the application-specific in­
terpreters and downloaded content. An application­
specific interpreter controls access to application ob­
jects and specifies the access rights of downloaded con­
tent within its limited domain.

The process for executing content using this archi­
tecture is shown in Figure 4. The remote principal
sends a. content message to the downloading principal
which provides the content, the content type, and any
authentication/encryption information. The browser
receives this message and verifies the identity of the
remote principal, the integrity of the content and con­
tent type, and the freshness of the message. Ifthe ver­
ification succeeds, the browser determines which inter­
preter to execute the content. If the type refers to a
known application-specific interpreter and the remote
principal has the rights to execute content in that in­
terpreter, then the content is run in that interpreter.
The access rights available to the content are an in­
tersection of; (1) the rights the downloading principal
grants to the remote principal to execute the appli­
cation; (2) the rights that the downloading principal
grants to the application developer for the applica­
tion; and (3) the rights that the application grants

136 6th USENIX Security Symposium USENIX Association

c:

]
Remote Princlp•l

J

Browser
Steurlly Menager

Figure 4: Content is downloaded to application­
independent interpreter (called the browser) which au­
thenticates the remote principal and finds the appro­
priate interpreter to execute the content. If the re­
mote principal is authorized to execute content in that
interpreter, then the content is executed.

to the remote principal. In addition, the application­
specific interpreter has some leeway in transforming
the access rights of content within its access control
domain. This may result in either rights becoming
available or unavailable from content, but the browser
always enforces the intersection described above.

Content is executed as shown in Figure 5. After the
browser authenticates the content and sends the con­
tent to be run in the appropriate application-specific
interpreter as described above, the content is assigned
to content interpreter based on the identity provided
by authentication. This content interpreter has ac­
cess rights consistent with the identity of the remote
principal. Any controlled operation run by the con­
tent is authorized by the appropriate interpreter and
if authorization is granted then the operation is ex­
ecuted. Operations are executed in the interpreter
trusted with the operation. For example, file open is
restricted to the browser. Also, tbe result returned to
the content interpreter must ·not enable the content
interpreter to gain additional rights. A read-only file
handle is returned to the content interpreter in this
ease.

Syatem Browser

Loc.l File

Prlnclp .. Group
Thi'Md

\
\
I
I
I
I
I

I
/

------_,

Figure 5: Content Execution Protocol: (1)
Remote principal downloads content to browser;
(2) Browser assigns content to principal group in
application-specific interpreter (not shown); (3) con­
tent executes a limited operation which cause autho­
rization in the browser; (4) if authorized the browser
access system objects on behalf of content.

6 Access Control Model

Access control is the goal of this system, so we de­
fine an access control model for expressing the access
control requirements of remote principals. This access
control model uses the following concepts:

• Definition 1: A principal group is a set of prin­
cipals with the same access rights.

• Definition 2: An object group is a set of objects
which are grouped for expressing common access
control requirements.

• Definition 3: Access rights of a principal group
are the defined by two types of specifications:

Domain Rights: A tu­
ple, {p_group, allowed~ops, object _group},
which describes a set of operations which
the principal group (p_group) can perform
on an object~group.

- Exceptions: A tu-
ple, {p_group, precluded...ops, object group'},
which describes a set of operations which the
principal group (p_group) is precluded from
performing on an object_group'.

• Definition 4: A cla3s operation is a set of op­
erations that a principal group can perform on

USENIX Association 6th USENlX Security Symposium 137

objects belonging to that class given authoriza­
tion via object group rights.

• Definition 5: A transform moves an object from
one object group to another.

The relationship between these concepts in the ac­
cess control model is shown in Figure 6. Individual
principals are aggregated into a principal group if they
all have the same access rights. Objects are also aggre­
gated into groups called object groups for expression
of a common access control requirement. The access
rights of a principal group are described by its do­
main rights and exceptions. Domain rights describe
the rights permitted to the principal group, and ex­
ceptions describe rights which are precluded from the
principal group. This permits access rights to bed~
fined concisely for a. large set of objects while permit­
ting some objects in the group to override those rights.
Thus, fewer object groups should be necessary. Note
that exceptions take precedence in the authorization
mechanism, so an operation is granted only if a do­
main right grants the operation and no exception ex­
ists that may preclude the operation.

The expression of object groups is fairly straightfor­
ward except in the case file system objects. Normally,
object groups a.re simply unique names that refer to a
set of objects. For example, suppose we permit con­
tent from any member of the UARC scientists group
to communicate with any other member of the same
group. We would express this rights as a domain right
{scientists, communicate, scientists_certs}. Defini­
tion of the U ARC scientists group is simply a listing
of their public key certificate identifiers (a more gen­
eral specification is proposed in Policy Maker [2]). File
system objects are different because these objects al­
ready have access rights. We would like to use these
existing rights to express a subset of the downloading
principal's rights. We describe a. set of file system ob­
jects by a path and a sharing type. A path indicates
the domain in the file system hierarchy in which ob­
ject group resides. For example, a path of- indicates
all objects in the downloading principal,s home direc­
tory or any of its descendant directories. A sharing
type indicates objects that are accessible to the same
classes of principals. Examples of sharing types are:

• All: all objects that the downloading principal
can perform the operations allowed (in the do­
main rights).

• Intersection: both the downloading principal
and the remote principal objects can perform the
operations allowed.

PCl I - l.l.3.4.S

2
PClJ

1'04
PGS
1'06

®/
/

/

(§!

Figure 6: Access control relationships among entities:
(1) principal groups can execute operations on ob·
jects that belong to classes (class operations); (2) prin­
cipal groups ca.n execute operations on objects in ob­
ject groups (accessible objects); (3) domain rights
specify a. principal group's permissions to execute op­
erations on an object group; (4) exceptions prevent
operations from being executed on objects in an ob­
ject group (even if a domain right is granted); and (5)
transforms enable an object to join or leave a group.

• Public: The operations allowed for that are
available to local users

• Foreign: The operations a.llowed for tha.t are
a.vailable to foreign users

•' None: No objects

• New: Can only create, examine, and modify new
objects in the domain

Using our access control model, the access rights
for a UARC scientist using the UARC application de­
scribed in the Example Section are (scientist is abbre­
via.ted as sci):

• {sci, communicate, uarc_cert}

• {sci, communicate, scientists_certs}

• {sci, r, uarc....env}

• {sci,r,"" f.uarc: public}

138 6th USENIX Security Symposium USENIX Association

• except: { sc?, rw,....., / .uarcjprefs :all}

• {sci,rw,- f.uarc/sessions: new}

• {sci, rz,fusr/bin/num...analysis: public}

UARC scientists' content can communicate with
the UARC server and other UARC scientists. Also,
environment variables for uarc ca.n be used by the
UARC scientists content. UARC scientists content
can use downloading principal's file system to obtain
public UARC setup information, except for the down­
loading principal's personal preferences. Also, exist­
ing, public analysis sessions in -1. uare/sessions
can be replayed given this specification. However, new
sessions can only be saved into new files in that direc­
tory. Finally, this specification permits the content to
execute a numerical analysis package.

The other access control model objects are used
to help developers build their applications to ma.nage
access rights. The rights of principals to perform op­
erations on classes of objects are defined using cl11ss
operations. Class operations describe the set of opera­
tions that a. principal group may ever perform. Class
operations are strongly-typed (i.e., the types of the
argument3 must be well-defined). Also, casting of ob­
jects is restricted to ancestors or descendants in a class
hierarchy to prevent unauthorized access by using a
remotely different class's version of an operation with
the same name. In addition, access control predicates
on any argument in an operation can be added, which
is useful for authorizing the execution of external soft­
ware. Lastly, we define mandatory class operations as
operations which can always be run (given that an
object handle is available). These operations do not
require authorization. All other controlled class oper­
ations (classes for which class operations are defined)
require authorization.

The ability to transform access rights as the ap­
plication state changes involves adding or removing
objects from objeet groups. For example, when a
downloading principal loads test data into a view,
the window object should be loaded into an object
group for shared windows. Thus, in the access control
model, certain operations are associated with changes
in object group membership, called transforms. The
idea that operations modify the set of access rights,
and that high-level specifications should be used to
represent these access rights is adapted from Foley
and J a.cob {7]. However, our implementation speci­
fies changes in rights rather than the complete set of
rights. For example, the operation x .load returns a
window object y upon load of test data x. In order
to automatically add new windows to the shared win­
dow object group, developers specify that y=x .load :

svg.add(y) where swg is the shared window object
group. In order to execute this transform, the prin­
cipal must have permission to run both x .load and
swg. add, so restricting this operation such that only
authorized principals can make access rights modifi­
cations is straightforward.

This model is influenced most strongly by the a.c·
cess control models of Hydra. [36] and DTE [1]. Like
Hydra, access control on the operations of abstract
data. types are possible, but access rights in our model
are associated with principals rather than the content
itself (procedures in Hydra). Therefore, management
of rights is simpler and consistent with our applica­
tions. Like DTE, access rights information is aggre·
gated to eliminate redundant specification. However,
unlike DTE we use existing access control information
to specify the domains. The sharing types permit us
to implicitly restrict the access rights to a subset of
the downloading principal's rights. Thus, verification
that the domain is indeed a subset of the downloading
principal's domain is not necessary. Also, we extend
the application of DTE-like specification to non-file
system objects.

7 Details and Implementation

The main tasks of the architecture are authenticat­
ing content, determining the access rights of content,
and enforcing those access rights. Content must be
authenticated to determining its source and verify its
integrity and freshness. Determination of access rights
involves combining trusts in the application developer
and remote principal with the access rights implied
by the application-specific interpreter's current state.
Enforcement of these rights must be possible for the
entire computation spawned by the content. This in­
dudes any external software or network services that
are executed by the content. In this section, we detail
these tasks and discuss their implementation.

We have developed a prototype architecture using
Td version 7.5. We chose this version of Tel be­
cause of its interpreter model and security model [16].
The interpreter model of Tel 7.5 permits a hierar­
chy of interpreters to be constructed where one can
be the master of a.nother w hieh is referred to as the
slave. Therefore, we can build a. hierarchy of inter­
preters where: (1) the browser is the master of the
application·specific interpreters and (2) application­
specific interpreters are masters of the content inter­
preters. In addition, Tel 7.5 implements the "safe"
interpreters of the style of Safe-Tel [3]. Therefore, se­
curity i$ enforced by removing unsafe commands from

USENIX Association 6th USENIX Security Symposium 139

slave interprefers. However, some unsafe commands
may be needed to complete the application, so Tel
provides a mechanism for masters to execute unsafe
commands on behalf of slaves (called alias). There­
fore, the browser implements commands that operate
on system objects. and the application-specific inter­
preter implements commands that operate on appli­
cation objects. These unsafe actions cannot be added
by the content interpreters, so they must use the com­
mands in the masters and authorization is enforced.

7.1 Downloading Content

Content is downloaded in a. content message. A
content message has three purposes: (1) to provide the
content; (2) to determine which interpreter should ex­
ecute the content; and (3) to authorize the execution
of the content in that interpreter. Therefore, a con­
tent message is defined as a quintuple m = (r, c, t, a, s)
where: (1) r is the identity of the remote principal;
(2) c is the content; (3) t is the content type; (4) a
is the content's authentication information; and (5) s
is an optional session identifier (for computations in­
volving multiple interactions). The content type is a
MIME type of the form browser/application where
browser refers to the fact that the content is con­
trolled by the browser interpreter, and application
identifies an application-specific interpreter in which
the content will be executed. The .mailcap file is
used to store this information. The .ma.ilcap may be
subject to denial-of-service attacks, so a secure (i.e.,
root-owned) .maileap should be used. Therefore, the
mapping of content type to application-specific inter­
preter is likely to be maintained by a system admin­
istrator.

The authentication information a is a double a =
(n, i) where n is a nonce and i is the integrity verifi­
cation field. The nonce is a random value provided to
prevent an attacker from replaying an old message. If
an attacker could replay an old message, an attacker
could modify the state of a transaction. We use a
timestamp and a per-remote-principal counter as the
nonce. The timestamp represents a recent, fresh ses­
sion (i.e., no two sessions started by the same principal
can use the same timestamp), and the counter indi­
cates whether the message has been run in the session
by this prindpal. i is the integrity verification field
which is used to verify the integrity of the message.
Using a public key algorithm, such as RSA [25] or
DSA [19]), i is a digital signature of a message cre­
ated from the concatenation of the remote principal
name, content, type, and the nonce.

Some applications involve a number of interactions,
so to improve the performance of the message au then-

tication in these applications, symmetric key cryptog­
raphy should be used. It is fairly straightforward for
two principals to exchange a symmetric key given that
the two principals have securely obtained each other's
public keys (e.g., SSL protocol [8]). If symmetric
cryptography is used, i is a message authentication
code (MAC) computed with a ha.sh function (e.g.,
SHA [18]) rather than a digital signature (the same
message is used, however). We prefer using a hash
function MAC over a DES CBC MIC (28] because a
DES CBC MIC is not guaranteed to be collision-free.

In addition, some applications involve more than
two principals and a number of interactions, so using
symmetric cryptography for authentication becomes
more complicated. In general, an n-principal compu­
tation requires O(n2) keys total and O(n) encryptions
per message because each pair of principals must share
a. secret in order to be certain of the identity of the
sender. The fact that in many applications multiple
principals have the same access rights can reduce the
number of keys and encryptions somewhat. Members
in a principal group can share a symmetric key, but a
key is required for each pair of group and non-member.
Therefore, if g is the number of principal groups and
n is the number of principals overall, the maximum
number of keys required is g • (n- n/ g)+ g 1 and the
number of encryptions per message is the number of
non-members + 1 (for the group). Note that if the
number of principal groups is small (i.e., limited by a
known constant), which is normally the ca.se in a syn­
chronous collaboration, the number of keys remains
bounded by 0(n). Therefore, a.s long a.s n is less than
100, symmetric cryptography is still preferred.

The browser procedure for authenticating an un­
trusted program is shown in Figure 7. This proce­
dure receives pointers to the remote principal's name,
the content, the content type, and the authentica­
tion information from the content message. A pointer
to a session Qbject is obtained if a session identi­
fier is provided. A session object is a tuple, s =
(auth, members, counter, keys, t) where: (1) auth is
the authentication type of the session (either public
or symmetric); (2) members is the set of principals
involved in the session; (3) counter is an array of mes­
sage counters for each remote principal; (4) keys is a

1 This the number of keys required if there are 2 or more
group members in each group. H g = n (each principal is in
a unique group), then the number of keye required ie fewer
because maD)' keyt are redundant. An internal key for the
group is not needed because each principal ia ~ ~oup, ao the
number of keys i1 reduced by n. Alao, the remAJnmg half of the
key• are redundant because, an extra key is added for every pair
of principals because keys are distributed between each group
and non-member normally. Therefore, the nwnber of keys is
(n • (n- n/n))/2 + n- n = n(n- 1)/2, as expected.

140 6th USENIX Security Symposium USENIX Association

Authenticate(!' e t a a)

r i& the remote principal name
c i& the content
t is the content type
a i! the authentication information
s is a 3esaion
I • First, get the key i'or the principal from
the session or user's public key •I
If (a is null) t.hen k = public.key(r)
else It = key(s,r}
I• Next, If session is unknown orr's counter = 0
then use public key algorithm to compute y
if ((sis null) II (s.counter[r] = 0)) then

y = /pub!ic(r, c,1, a.n)
else y = / ,.(r,c,t,a.n)
I• Finally, determine if y is the same as a. i for
the expected counter value s. counter[r]
If ((y != a. i) II

(a .counter[r] != a.n.counter)) then error(s,r)
increment a.eounter[r]
return r

Figure 7: Authentication procedure in browser inter­
preter

mapping of principals to keys stored by the download­
ing principal; and (5) t is the content type. First, this
procedure determines the key to use to authenticate
the message using the remote principal's name and the
keys map. If there is no session then r's public key is
used. Next, the authentication function is determined
from the session. If the session is null or this principal
is new to the session the public key algorithm is used.
The authentication value fuuth.(r, c, t, a) is compared
to a.i from the content message. If they match, then
the message is authenticate to have been from r.

Once r's content is authenticated,. the name of the
application-specific interpreter for the content is r~
trieved from the .mailcap file using the content type
t (hereafter called interpreter t). Next, we determine if
the remote principal is permitted to execute content
in interpreter t. If the remote principal is mapped
to a principal group in interpreter t, then the con­
tent can be executed. This mapping is stored in file
called principal-groupa.t. This file must be write­
protected. Once it is determined that the remote prin­
cipal's content can be executed, then the appropri­
ate keys can be distributed to the remote principal,
if necessary. First, if there is no session object, then
interpreter t is queried for its authentication type. If
there is a session object, it is examined to determine
if a keys for the principal group bave been assigned. If

not keys for the group and between the group and any
non-members are generated. Also, the remote princi­
pal needs a key for each group it is not a member
of.

7.2 Determining Aeeess Rights

Once the browser has determined that r's content
can be run in interpreter t, it is then necessary to
determine the content's access rights. We first d~
scribe the ways in which access rights are expressed.
The goal is to minimize the amount of specification
required by the downloading principal, yet to still en­
force least privilege access rights. Next, we describe
how the rights are computed. The access rights of a r~
mote principal's content in interpreter t active at state
s are the intersection of: (1) the rights of interpreter t
and (2) the rights of the principal group to which the
remote principal is a.ssigned in interpreter t at state
s. Application-specific interpreters are responsible for
deriving access rights within their domain, but the
browser still enforces all system object accesses.

Application-specific interpreters are responsible for
deriving the access rights of remote principals, but
they lack information about either the exact names
of system objects, such as the path names of files, or
the identities of trusted remote principals. Therefore,
logical objects are created to represent these system­
dependent objects. Remote principals are represented
by principal groups and system objects are repre­
sented by object groups, as defined in the access con­
trol model. Thus, the access rights of the interpreter t
and any remote principals is based on the mapping of
these principals to principal groups and the mapping
of object groups to actual system objects.

We first describe how the access control domain of
interpreter t is specified. Object groups are used to
express the types of the objects to which interpreter
t requests access. For example, suppose interpreter t
implements the test data viewer application described
in the Example Section. Thus, interpreter t requires
access to the following object groups:

• U ARC Server Socket

• Scientist Sockets

• Administrators Sockets

• UARC Environment Variables

• U ARC System Files

• U ARC Analysis Data

• Numerical Analysis

USENIX Association 6th USENIX Security Symposium 141

• Emacs Text Editor

Thus, the following rights are specified for inter­
preter t using our access control model (U ARC devel­
opers are abbreviated by dev):

• { dev : t, communicate, uarc_servers}

• { dev : t, communicate, uarc-scientists}

• { dev : t, communicate, uarc_admins}

• { dev : t, r, uarc...environment}

• { dev : t, r, uarc..system}

• { dev : t, rw, uarc...data}

• {dev :t,rz,ezternal..sw}

The file /usr /loeal/uare/ system/mapping. t is
used to define the mapping from object groups to sys.
tern objects for interpreter t. The contents of this
file should be based on analysis (e.g., use in system
that can log process actions) of the interpreter t. The
result is an access control domain for interpreter t
which describes the objects which it is trusted to pro­
tect. Therefore, significant trust may be placed in an
application-specific interpreter. We do not think this
is unreasonable given that traditional applications are
typically run with the users' complete trust. The
browser and operating system must be able to enforce
the specified rights to ensure that unauthorized rights
cannot be obtained by interpreter t, however.

We specify the following mapping for interpreter t
in the file /usr/loeal/uare/system/mapping.t:

• uarc..servers := uarc..server ..cert

• uarc_scientists := scientists_certs

• uarc_admins := uarc_admin-certs

• uarc..environment := uarc_environment

• uarc..system
public

jusrjlocaljuarc/ system

• uarc..data := f.uarc: public}

except: w,"" f.uarcfsystem: public

• external..sw := jusr/bin: public

except: rz,fusrfbinfmail: all

This mapping results in the following access rights
for interpreter t:

• { dev : t, communicate, uarc..server _cert}

• { dev : t, communicate, scientists_certs}

• {dev: t, communicate, uarc_admin_certs}

• { dev : t, r, uarc...environment}

• {dev: t, r, jusrjlocalfuarcfsystem: public}

• { dev : t, rw,"' j.uarc: public}

• except: {dev: t,w,"' j.uarcfsystem: public}

• {dev: t, r:z:, fusr/bin: public}

• except: {dev: t, rz, jusr/binfmail: all}

Thus, interpreter t can communicate with the
U ARC server, scientists, and the U ARC administra­
tors. Also, it can access UARC environment vari­
ables and the files in the ,....; . uarc directory. The
/usr/loeal/uarc/ayatem and . uarc/aystem direc­
tories contain the secure files needed by the browser
to execute the application, so write access to these
files is precluded from interpreter t. Also, in this
specification, permission is granted for it to execute
all software in usr/bin except the mail program.
The mapping of local groups to objects is done us­
ing -1. uarc/groups (for all applications).

The access rights of the remote principals in inter­
preter t is specified by defining the rights for principal
groups in the interpreter and assigning remote princi­
pals to principal groups. The access rights for a prin­
cipal group are specified by the developers in terms of
object groups, as described above for the interpreter
itself. Suppose the UARC application has two princi­
pal groups: lead scientists and scientists. Lead
scientists can save new analyses on the machines of
all collaborators, run the numerical analysis package,
and replay and annotate analyses. Regular scientists
can only replay and annotate analyses on behalf of
the downloading principal. Therefore, the application
developer specifies the access rights of these principal
groups as follows (not including the communication
and environment rights) (lead scientists are abbrevi­
ated lsei:

• Lead Scientists

- {lsci, rw, new..analyses}

{I sci, rw, annotations}

- {lsci, r, old.analyses}

- {lsci, rz, num.nnalysi.t}

• Scientists

- {sci, rw, annotations}

142 6th USENIX Security Symposium UsENIX Association

- {sci, r, old....analyses}

The system administrator and/or the download­
ing principal defines a mapping between these object
groups and a domain of real system objects. This per­
mits the browser to describe the maximal domains of
principal groups to the downloading principal, so he
can choose a principal group for a remote principal.
The mapping is specified in the file object-group. t
in the write-protected f. uarc/syste111 directory (or
perhaps in the /usr/local/uarc/system directory
for a default mapping). For example, UARC's old
analyses are mapped to f. uarc/analyses directory
(similarly for annotations). However, initially there
are no new analyses. A principal must create a new
analysis in the -1. narc/analyses directory to write
to it. The numerical analysis package is mapped ,to
/usr/bin/nu...analysis, but note that the develop­
ers must know the browser's API for executing it in
order to correctly initiate its execution. This is a prob­
lem because we do not want to evaluate arbitrary com­
mands in the browser. Evaluation of arbitrary code
in a. trusted interpreter can result in undesirable mod­
ification of the trusted interpreter's security data, so
this cannot be allowed. Therefore, the application­
specific interpreter requests execution of the logical
numerical analysis package object, and the browser
maps the logical object to the actual system object.

Once the files are mapped to objects groups, the
initial access rights of the principal groups are well­
defined. For example, the rights below result for the
two principals:

• Lead Scientists

{lsci, rw,,.., j.uarc/analyses: new}

- {lsci, rw,- j.uarcfannotations: public}

{I sci, r,'"" /. uarcf analyses : public}

{lsci, rz, fusrjbinfnum..JJnalysis: public}

• Scientists

{sci, rw,- j.uarcjannotations: public}

{sci, r,,.., / .uarcfanalyses :public}

Now, the mapping from remote principals to prin­
cipal groups can be defined in the write-protected file
...... f. uarc/system/principal-group.t. Note that if
consistency is a. requirement of the application, then
all collaborators must agree on the principal group as­

signment. This is where a secure agreement protocol
is necessary.

The actual rights of the remote principals depend
on the actions that have been taken by the download­
ing principal in interpreter t. The interpreter use~ the

access control model's transforms to modify the ac­
cess rights of principal groups implicitly based on op­
erations by the downloading principal. For example,
if a downloading principal loads or joins an analysis,
then the remote principals are granted the right to up­
date the associated annotation file on the download­
ing principaPs system. The transform is x .load :
uarc....annotationa.add(x.annotations) where x is
an analysis.

Therefore, the actual access rights of a. remote prin­
cipal's content are the rights which are delegated by
the application-specific interpreter on behalf of the
downloading principal that are within both the ac­
cess control domains of the remote principal's princi­
pal group and the interpreter itself. Therefore, if the
interpreter is malicious it will only affect files in its do­
main. If only the content is malicious, then it can only
affect the dynamically-generated domain. Therefore,
authentication of application-specific interpreters is
vital, to obtain assurance that the interpreter is being
granted the proper trust. We use the BETSI protocol
to authenticate application-specific interpreters [26].

We would prefer that the downloading principal
delegate rights to the application-specific interpreter
and remote principals using the browser because it
is trusted. However, we want delegation to be im­
plicit relative to some application rather than require
the downloading principal to specify access rights
at runtime. The problem is to get the download­
ing principal's content interpreter to run with the
application-specific interpreter's transforms securely
in the trusted browser. Because the application de­
veloper is not completely trusted, allowing this code
to be run in the trusted browser is problematic. Fur­
ther work is needed here.

Since the application-specific interpreter provides
access control information to the browser, authorizes
access to application objects, and transforms the ac­
cess rights of principal groups, this interpreter will
require some security infrastructure. The architec­
ture provides a service to modify application-specific
interpreters to add security infrastructure given the
access control requirements of the hiterpreter. First,
a call is made to collect the access control predicates
for the operation. There is always one predicate to
test whether the operation is permitted on the object
(i.e., first argument). Next, a call to the authoriza­
tion procedure (described below) is added after the
access control of each controlled operation (class op­
eration that is not mandatory, see the Access Control
Model Section). Finally, the transform operation is
added to the end of each operation with a transform
specification. If there are multiple they are ordered as

USENIX Association 6th USENIX Security Symposium 143

operation(args)
erg$ i1 a lilt of operation argument~
arg_types i• a list of the tvpe1 of args
o.rg_ops i1 a li.st of the op.s to be run on args

arg_types = types(args)
If operation is not. mandatory

then collect predicate(operation, first(args))
into arg_ops

Foreach arg in args
collect access predicates(operation, arg)

into arg..opa
If (authorize args arg.typea arg.ops)

then results= execute(procedure, args)
Foreach transfora in tranaforaa

a.pply-tra.n.s(trandora,args,resul ts)

Figure 8: Generated operation with authorization and
transformation calls

specified (order may be important). An example of a
modified operation is shown in Figure 8. Finally, an
operation is added for obtaining the access rights of
any principal group.

Content interpreters for the principal groups can
also be generated in advance. However, the con­
tent interpreter cannot have actual implementations
of controlled functions, otherwise a malicious content
provide could override them with versio08 that cir­
cumvent authorization, for example. Tel provides a
mechanism called alia• which enables an interpreter
to eall a. command in another interpreter. Therefore1

aliases ate provided for all controlled operations in
the content interpreter, so trusted implementations of
the operations can be executed in the browser (for
accessing system objects) and the application-specific
interpreter (for accessing application objects).

7.3 Enforcing Access Rights

Lastly, the architecture provides support for enforc·
ing the access rights specified above while executing
content and any external software and network ser­
vices used by the content. The browser: (1) authorizes
content operations; (2) provides safe implementations
of these operations; (3) enables controlled execution
of external software and network services.

The actual authorization procedure is shown in
Figure 9. The access rights of content to system ob­
jects specified in the previous section ate stored in the
browser. For each arg, the browser determines the
object group of the arg and arg_type. The browser

authorize (arga arg.t ypes arg.ops)
For arg in args, arg.type in arg_types,

ops in arg..opa
Find object group for arg a.nd arg_type
For op inops

If domain rights grant op
AND no exception precludes op on arg
then continue
else return FALSE

return TRUE

Figure 9: Authorization procedure

then determines whether the object access rights per­
mit all the operations in arg..opa. Developers are not
required to specify the operatioDB on arguments be­
cause when another procedure is called, the subse­
quent calls will be authorized as well. However, speci­
fying argument operations are useful to catch bugs in
the procedure call and to restrict the access rights of
external software. Typically, the only operation that
is authorized is the application of the procedure to
the first argument, the object identifier (i.e., the first
argument in an object-oriented method indicates the
object for which the procedure is intended). To au·
thorize an operation on a.n object, the browser must
be able to find: (1) a domain right that grants per­
mission to perform this operation on this object and
(2) that no exception exists which precludes perform­
ing this operation on this object. Note that we had
to create object identifiers for Tel objects since Tel is
not object-oriented.

Once authorized, the browser can exeeute the pro­
cedure. A procedure consists of two kinds of code:
(1) calls to other procedures and (2) accesses to con­
trolled objects. A browser executes calls to existing
procedures in the content interpreter using the .s l CJve
eval t~rg~ eall in Tel. This ensures that all calls
to other controlled procedures will be authorized u&­
ing the prineipal group rights. Operations on con­
trolled objects within the procedure are assumed to
be authorized if access to the procedure is authorized.
These commands must be run in the browser because
only the browser bas access to the systems object.
It is hard to automatically distinguish from existing
procedures in Td because Tel is not object-oriented.
Therefore, these methods are generated manually at
present. We expect that the use of a.n object-oriented
language would enable automatic generation of these
procedures.

The browser provides safe implementations of
open, socket, env, and exec operations. All these

144 6th USENIX Security Symposium USENIX Association

-----· ···--- . ·--·-·-· -·-·-------· ·--------------------------------------

implementations are fairly straightforward except for
exec which we describe in detail below. The other op­
erations are implemented by a call to authorize which
checks the content access rights prior to calling the ac­
tual operation. Since these commands are only avail­
able in the browser and are protected by the autho­
rization operation, only authorized accesses to system
objects are possible. An example is the implementa­
tion of the open command in [13] (called safe_open).

The browser also provides support for controlled
execution of external software and network services.
When an operation for executing executing external
software, the browser must: (1) authorize this execu­
tion and prepares for a safe executionj (2) determine
a limited access control domain for executing the soft­
ware or servicej (3) transfer the domain specification
to the system responsible for controlling the softwarej
and (4) execute the software. This is not a easy task
because current operating systems do not support dy­
namic modification of a principals access rights nor do
they control remote communication.

In general, software execution is authorized by
determining if the remote principal (i.e., principal
group) has execute rights for the first argument in
the exec call. If so, then the exec operation executes
the software using the current rights of the principal
group (described further below).

If the software should be further restricted or if we
want to be aure that the software can be executed
successfully, then we suggest the creation of classes
for software to represent this information. Software
classes contain strongly-typed "constructors» for ex­
ecuting the software. Also, access control predicates
can be assigned to the arguments in the call. These
predicates should authorize operations required of ar­
guments as well as the values of arguments. For ex­
ample, the command eat x I xter11 -e pipes file x
into a new xterm and executes it. We may want to
prevent an argument of cat from being a pipe. Also,
we'd like to determine if we have the rights to read file
x. In addition, the access control predicates specify
the rights required to execute the software (excepting
some start-up privileges which can be specified sep­
arately), so the execution of software can be limited
more strictly than the content.

Once the software execution is authorized and the
access rights have been determined, it is necessary to
convert the rights to a form that can be enforced by
the operating system. Unfortunately, current operat­
ing systems are not designed to permit a principal to
run a process with limited access rights. We describe
a technique for limiting the access rights of a service in
the Distributed Computing Environment (DCE) [21].

DCE has the advantage that its authorization model
is very flexible. DCE associates ACL managers with
services to implement the authorization mechanism of
those services. Therefore, each service can use its own
ACL manager. We define an ACL manager for imple­
menting our authorization mechanism which will be
used by DCE's distributed file system (DFS).

We first define our DCE access control model. DCE
uses an extended Unix-style access model where for­
eign users join the standard owner, groups, and oth­
ers principal types. Modification of access rights
involves changing: (1) the user identity (UUID)i
(2) the groups identities and operations: group_obj,
group, and foreign group; and (3) the operations
that are permitted to the general classes: other ..obj,
toreign..other, and any ...other. In addition, if inter­
section rights are granted, the remote principal and
the downloading principal must be stored to deter­
mine if both have a specific right. The modified DCE
model consists of the following fields and values (for
a domain right):

• Root: The root path name for the rights

• User: Either the downloading principal (sharing
type= all), nobodytlocal (public or intersection
with local principal), or nobodytforeign (foreign
or intersection with foreign principal), or none
(none or new)

• Group_Obj: None

• Groups: Intersection of groups shared by the
downloading principal and a remote principal (in­
tersection)

• Users: Set of principals which must all have the
right (intersection)

• Masks: ACL types and permissions granted to
that ACL type (for all ACL types)

• Communications: List of principals or princi­
pal groups

Exceptions are specified similarly, but masks imply
the rights precluded. Thus, the new ACL manager's
authorization mechanism determines if an operation
on an object is permitted by a domain rights speci­
fication by: (1) finding a domain rights specification
whose root is an ancestor the the object; (2) deter­
mining if any instance of an ACL type grants access
to perform that operation given the masks. For ex­
ample, if the operation is write, then ACL type mask
must permit write operations, and the instance of that
type must have write permission on the object.

USENIX Association 6th USENIX Security Symposium 145

(!} 1 -- Oll!aln dei<e11or OFS w/ Aulh·Oata•DFS rfghiS
2-Obi..., ~<l<et I<>< Seovioo
3 --Send ~~sro Service
4 --~MOO r&qU~ PAC for OFS: EPAC • OFS 'dcket
5 -- Service eulhendc:atea to OFS using PAC+EPAC

Figure 10: The protocol for a d~wnloading principal
to grant a service rights to his objects in DCE's Dis­
tributed File System (DFS)

DCE [21] utilizes an extended version of Kerberos
version 5 tickets [14, 20] called Privilege Attribute
Certificates (PACs) and further extensions to those
tickets called Extended PACs (EPACs) for authen­
tication. Kerberos documentation suggests that the
authorization-data field be used to represent au­
thorization information. However, DCE already uses
that field for storing the UUID and groups for au­
thentication, so we use the EPACs to store our au·
thorization data. This enables a principal (the down­
loading principal via the browser) to grant rights to
another principal (the service) which can be enforced
by a third principal (the DFS). The protocol is shown
in Figure 10. In this protocol, the browser obtains
an EPAC for the DFS and a. PAC for the service.
Only the DFS can decrypt the EPAC and the EPAC
is integrity-protected, so the DFS can verify that the
EPAC is from the downloading principal. Therefore,
the DFS ca.n grant the downloading principal's rights
to the service. Note that the service ca.n only ob­
tain the downloading principal's rights if the EPAC
is presented to the DFS. The DFS ACL manager can
interpret the rights, so it can authorize actions given
those rights.

Note that using a DTE [1] makes the specification
of rights much simpler, and enables the computation
of intersections to be done at runtime. This is be­
cause access rights can be expressed more concisely.
Therefore, we would prefer to use a DTE-style access
control model in the future.

Limiting access to environment variables is easily
implemented by restricting which variables are made
available to the software in the exec call. Therefore,
the transfer of application object rights and environ­
ment rights to the kernel is not necessary.

Control of other objects used by existing software,
such a.s remote communications and network services,
involves interaction between the kernel and network
computing services. Therefore, the kernel should be
able to interact with DCE as well to enforce strong
authentication on all communications. As a proof of
concept, this model of communication has been imple­
mented in the Taos operating system (35]. In Taos,
processes are associated with authenticators for prov­
ing the identity of the owner of a process to other
processes. The Taos kernel is integrated with the au­
thentication service, so all communication is authen­
ticated. The ability to dynamically restrict the access
rights of a Taos process is not possible given the cur­
rent design. Similar services are also being developed
for Trusted Mach (32) (upon which DTE is the access
control model), so a nearly sufficient system environ­
ment is not that far off.

8 Future Work and Conclusions

We define an architecture that flexibly controls the
access rights of downloaded executable content. In
contrast to current interpreters: (1) strong authen­
tication is used to verify actions by remote princi·
pals; (2) application-specific access control require­
ments are obtained which enable least privilege access
to he enforced flexibly; and (3) these access rights can
be enforced at both the application and system lev­
els which enables comprehensive access control on the
application.

By using this architecture, a variety of attacks can
be avoided. For example, attacks in which data is sent
to unauthorized principals (e.g., (31]) can be avoided
because principals are authenticated and applications
can identify the set of authorized remote principals.
The use of services v.:ith poor security records, such
as aendmail, can }>e avoided entirely. In addition,
untrusted applications, such as ones that use aetuid,
can also be avoided by not granting rights to execute
them.

Also, the architecture permits the use of rights not
typically available in current interpreters. We provide
specification models for developers to specify the ac­
cess rights of principals in their applications and how
rights can be transformed given user actions. The ar­
chitecture provides a service to modify applications to
integrate these security requirements with the appli­
cation code. This enables developers to build systems
which are less likely to contain security infrastruc­
ture bugs that can lead to attacks. Also, this enables
application-specific requirements to be used to control

146 6th USENIX Security Symposium USENIX Association j

access. Thus, arbitrary restrictions, such as preclud­
ing communication with parties other than the orig­
inating host and preventing the execution of existing
applications, can be replaced with more semantically­
meaningful, application-specific access domains.

In the future, we plan to assist application devel­
opers in verifying the access rights granted to remote
principals. That is, we want to be able to show ap­
plication developers what a remote principal can do
given a specific set of access rights. Thus, applica.tion
developers can decide whether they have specified a
satisfactory set of access control requirements.

References

[1J L. Badger, D. F. Sterne, D. L. Sherman, K.. M.
Walker, and S. A. Haghighat. Practical donnain
and type enforcement for UNIX. In IEEE Sympo­
sium on Security and Priv4cy, pages 66-77, 1995.

[2] M. Blaze, J. Feigenbaum, and J. Lacy. Decen­
tralized trust management. In Proceedings ol the
IEEE Symposium on Security and Privacy, 1996.

[3] N. S. Borenstein. Email with a mind of its own:
The Safe-Tel language for enabled mail. In UL­
PAA '94, 1994. Available via anonymous ftp
from ics.uci.edu in the file mrosefsafe-tcl/safe­
tcl.tar.Z.

[4) E. Born and H. Stiegler. Discretionary access
control by means of usage conditions. ComptJ1ters
& Security, 13(5):437-450, 1994.

[5] D. Dean, E. Felten, and D. Wallach. Java secu­
rity: From HotaJava to Netsca.pe and beyonol. In
Proceedings of the IEEE Symposium on Sect.lrity
and Privacy, 1996.

[6] R. Clauer et. al. A prototype upper atmospheric
collaboratory (UARC). AGU Monograph: Visu­
alization Techniques in Space and Atmospheric
Sciences. In press.

[7] S. Foley and J. Jacob. Specifying security for
CSCW systems. In Proceedings of the 8th IEEE
Computer Security Foundations Workshop, p:ages
136-145, 1995.

[8] A. 0. Freier, P. Karlton, and P. C. Kocher. The
ssl protocol version 3.0. Internet Draft, Ma.rch,
1996.

[9] M. Gasser and E. McDermott. An architecture
for practical delegation in a distributed system.

In IEEE Symposium on Security and Privacy,
pages 20-30, 1990.

(10) J. Gosling and H. McGilton. The Java language
environment: A white paper, 1995. Available
at URL http:/ fjava.sun.comfwhitePaperfjava­
w hitepaper-l.html.

[11] R. Hall, A. Mathur, F. J ahanian, A. Prakash, and
C. Rasmussen. Corona: A communication service
for scalable, reliable group collaboration systems.
In Proceedings of the Sixth ACM Conference on
Computer-Supported Cooperative Work, Novem­
ber 1996. To appear.

[12} T. Jaeger and A. Prakash. Support for the file
system security requirements of computational e­
mail systems. In Proceedings of the £nd ACM
Conference on Computer and Communications
Security, pages 1-9, 1994.

[13) T. Jaeger and A. Prakash. Implementation· of
a discretionary access control model for script­
based systems. In Proceedings of the 8th IEEE
Computer Security Foundations Workshop. pages
7Q-84, 1995.

[14) J. T. Kohl and B. C. Neuman. The Kerberos net­
work authentication service. Internet RFC 1510,
September, 1993.

[15] J. Lee, A. Prakash, and T. Jaeger. A software ar­
chitecture to support open distributed collabroa­
tories. In Proceedings of the Sizth ACM Confer­
ence on Computer-Supported Cooperative Work,
November 1996. To appear.

[16] J. Levy and J. Ousterhout. Safe Tel: A tool­
box for constructing electronic meeting places.
In The First USENIX Workshop on Electronic
Commerce, 1995. To appear.

[17] I. Mohammed and D. M. Dilts. Design for dy­
namic user-role-based security. Computers & Se­
curity, 13(8):661-671, 1994.

[18] National Institute of Standards and Technology,
U.S. Department of Commerce. NIST FIPS PUB
186, Secure Hash Standard, May 1993.

[19) National Institute of Standards and Technology,
U.S. Department of Commerce. NIST FIPS PUB
186, Digital Signature St~ndard, May 1994.

[20] B. C. Neuman. Proxy-based authorization and
accounting for distributed systems. In lnterna­
Uonal Conference on Distributed Computing Sys­
tems, pages 283-291, 1993.

USENIX Association 6th USENIX Security Symposium 147

[21] Open Software Foundation. Introduction to OSF
DCE, revision 1.0 edition, December 1992.

(22] A. Prakash and H. Shim. Distview: SupporL for
building efficient collabroative applications using
replicated objects. In Proceedings of the Fifth
A CM Conference on Computer-Supported Coop­
erative Work, October 1994.

[23] M. Reiter. A secure group membership proto­
col. IEEE Transactions on Software Engineering,
22(1):31-42, January 1996.

[24) D. M. Ritchie and K. Thompson. The UNIX
timesharing system. Communications of the
ACM, 17(7):365-375, July 1974.

[25) R. Rivest, A. Shamir, and L. Adleman. On digital
signatures and public-key cryptosystems. Com·
munications of the ACM, 21(2):12Q-126, Febru·
ary 1978.

[26] A. D. Rubin. Trusted distribution of software
over the internet. In Proceedings of the Internet
Society Symposium on Network and Distributed
System Security, 1996.

(27] M. Satyanaraya.na.n. Integrating security in a
large distributed system. ACM Transactions on
Computer Systems, 7(3):247-280, August 1989.

(28) B. Schneier. Applied Cryptography. Wiley &
Sons, 1994.

[29] J. G. Steiner, B. C. Neuman, and J. J. Schiller.
Kerberos: An authentication service for open
network systems. In Proceedings of the Usenix
Conference, pages 191-202, 1988.

[30] D. F. Sterne, T.V. Benzel, L. Badger, K. M.
Walker, K. A. Oostendorp, D. L. Sherman, and
M. J. Petkac. Browsing the web safely with D~
main and Type Enforcement. In IEEE Sympo·
sium on Security and Privacy, 1996. Abstract
for a 5-minute presentation.

[31] Computer Emergency Response Team. Java im·
plementations can allow connections to an ar­
bitrary host. CERT Advisory CA:96:05, 1996.
Available at URL
ftp:/ /info.cert.orgjpub / cert...advisories/CA·
96.05 .java.a.p plet..security _mgr.

[32] Trusted Information Systems, Inc. Trusted Mach
System Architecture, TIS TMACH Edoc·OOOl·
94A edition, August 1994.

[33] S. T. Vinter. Extended discretionary access con­
trols. In IEEE Symposium on Security and Pri­
vacy, pages 39-49, 1988.

[34] J. E. White. Telescript technology: The foun­
dation for the electronic marketplace. General
Magic White Paper.

[35] E. Wobber, M. Abadi, M. Burrows, and B. Lamp·
son. Authentication in the Taos operating sys-­
tem. ACM Transactions on Computer Systems,
12(1):3-32, February 1994.

[36] W. Wolf, E. Cohen, W. Corwin, A. Jones,
R. Levin, C. Pierson, and F. Pollack. HYDRA:
The kernel of a multiprocessor operating sys­
tem. Communications of the ACM, 17(6):337-
345, June 1974.

148 6th USENIX Security Symposium USENIX Association

