

Filed on behalf of: Blue Coat Systems LLC
By: Michael T. Rosato (mrosato@wsgr.com)
 Andrew S. Brown (asbrown@wsgr.com)

WILSON SONSINI GOODRICH & ROSATI
701 Fifth Avenue, Suite 5100
Seattle, WA 98104-7036

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

BLUE COAT SYSTEMS LLC,

Petitioner,

v.

FINJAN, INC.,

Patent Owner.

Patent No. 9,219,755
Case No. IPR2017-00997

PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 9,219,755

i

TABLE OF CONTENTS

I. Introduction .. 1

A. The ’755 Patent ... 2

B. The Prosecution History and Related Cases .. 6

C. The Scope and Content of the Prior Art .. 10

i. Jaeger .. 11

ii. CORBA .. 14

iii. TBAV ... 15

iv. Arnold... 17

D. The Level of Skill in the Art ... 18

II. Grounds for Standing .. 18

III. Mandatory Notices under 37 C.F.R. § 42.8 ... 19

A. Real Party in Interest (§ 42.8(b)(1)) .. 19

B. Related Matters (§ 42.8(b)(2)) .. 19

C. Lead and Back-Up Counsel (§ 42.8(b)(3)) .. 20

D. Service Information (§ 42.8(b)(4)) .. 20

IV. Statement of the Precise Relief Requested for Each Claim Challenged 20

V. Claim Construction ... 21

A. “downloadable” .. 21

B. “extension call” ... 22

C. “downloadable engine” ... 22

VI. Detailed Explanation Of Grounds For Unpatentability 23

ii

A. [Ground 1] Claims 1-4 are Obvious under 35 U.S.C. § 103(a)

over Jaeger in view of CORBA ... 23

i. Independent claims 1 and 3 ... 25

ii. Claims 2 and 4 .. 56

B. [Ground 2] Claim 5 is Obvious under 35 U.S.C. § 103(a) over

Jaeger in view of CORBA and further in view of TBAV 58

C. [Ground 3] Claims 6-8 are Obvious under 35 U.S.C. § 103(a)

over Jaeger in view of CORBA and further in view of Arnold 61

i. Claim 6 ... 61

ii. Claim 7 ... 63

iii. Claim 8 ... 65

VII. Conclusion .. 69

VIII. Certificate of Compliance ... 70

IX. Payment of Fees under 37 C.F.R. §§ 42.15(a) and 42.103........................... 71

X. Appendix – List of Exhibits .. 72

1

I. INTRODUCTION

Petitioner Blue Coat Systems LLC (“Blue Coat”) hereby requests inter

partes review of United States Patent No. 9,219,755 to Touboul (“the ’755

patent,” EX1001), which issued on December 22, 2015, and is currently assigned

to Finjan, Inc. (“Patent Owner”). This Petition demonstrates by a preponderance of

the evidence that claims 1-8 of the ’755 patent are unpatentable for obviousness

under 35 U.S.C. § 103(a).
1
 Thus, claims 1-8 of the ’755 patent should be held

unpatentable and canceled.

The challenged claims generally recite systems for protecting one or more

personal computers or other network accessible devices or processes from

undesirable or otherwise malicious operations from a downloaded executable

application program, referred to as a “downloadable.” Each independent claim

recites a processor and memory storing elements including instructions associated

with the elements, the elements including: (1) a downloadable engine; (2) certain

operating system probes; (3) a runtime environment monitor for comparing

messages relating to operating system and extension calls against a security policy;

and (4) a response engine for allowing or blocking calls based on whether they

violate a security policy.

1
 Citations to 35 U.S.C. §§ 102 and 103 are to the pre-AIA statute.

2

Prior to the alleged invention, however, the increasing threat of malware had

already led to the development of new protection systems for reviewing operating

system (“OS”) calls to control access to system objects. Such systems were known

in the art prior to the alleged invention of the ’755 patent.

A. The ’755 Patent

The ’755 patent is entitled “MALICIOUS MOBILE CODE RUNTIME

MONITORING SYSTEM AND METHODS.” Generally, the ’755 patent is

directed to systems for reviewing OS calls issued by a downloadable including

probes associated with requests to various OS components, comparing the various

requests to a security policy, and either allowing or blocking the requests based on

the comparison. See, e.g., EX1001, claims 1 and 3; EX1002 ¶¶15-20.

The ʼ755 patent has a total of 8 claims, including two independent claims—

claims 1 and 3. Both claims 1 and 3 are directed to a system for reviewing an OS

call issued by a downloadable. Each independent claim recites closely related

subject matter, including a processor and memory, an OS probe, a runtime

environment monitor, a response engine, a downloadable engine, a request broker,

a file system probe, and a network system probe. The systems use the probes to

detect behavior of a downloadable, compare that behavior to security policies

using the runtime environment monitor, and uses the response engine to block calls

that violate the security policy while allowing them otherwise. EX1002, ¶16.

3

For example, claim 3 reads as follows:

3. A system for reviewing an operating system call issued

by a downloadable, comprising:

at least one processor for accessing elements stored in at

least one memory associated with the at least one processor and

for executing instructions associated with the elements, the

elements including:

a downloadable engine for intercepting a request message

being issued by a downloadable to an operating system,

wherein the request message includes an extension call;

a request broker for receiving a notification message

from the downloadable engine regarding the extension call;

a file system probe and a network system probe each

being associated with an operating system function for

receiving the request message from the downloadable engine,

intercepting an operating system call being issued by the

downloadable to an operating system and associated with the

operating system function and providing an event message

regarding the operating system call;

a runtime environment monitor for receiving the

notification message and the event message and comparing the

extension call and the operating system call against a

predetermined security policy before allowing the operating

system to process the extension call and the operating system

call; and

a response engine for receiving a violation message from

4

the runtime environment monitor when one of the extension

call and the operating system call violate one or more rules of

the predetermined security policy and blocking extension calls

and operating system calls that are forbidden according to the

predetermined security policy, and for allowing extension calls

and operating system calls that are permitted according to the

predetermined security policy.

Claim 1 recites the same elements as claim 3, and adds certain additional

elements relating to an OS probe; interactions between the probe, the runtime

environment monitor, and the response engine; and an event router. These

additional elements are discussed in the grounds below.

The challenged dependent claims of the ’755 patent—2 and 4-8—each

depend from claim 1 or 3. Claims 2 and 4 depend from claims 1 and 3,

respectively, and further recite that the downloadable is one of a Java component,

an ActiveX control, executable code, or interpretable code. Claims 5-8 depend

from claim 3, and further actions that are taken by the response engine—in claim 5

the response engine stores comparison results in an event log, in claim 6 the

response engine informs the user, in claim 7 the response engine stores information

in a database, and in claim 8 the response engine discards the downloadables when

it violates the security policy. EX1002, ¶17.

To understand the claims of the ’755 patent, one must look into its tangled

chain of priority documents. The specification of the ’755 patent lacks support for

5

its claims; in particular, nowhere does the specification of the ’755 patent itself

disclose an OS probe, a runtime environment monitor, a response engine, or

various other elements of the ’755 patent claims. EX1002, ¶18. The earliest

priority document that mentions such elements is U.S. Patent No. 6,167,520 (“the

’520 patent,” EX1008), which discusses a system with OS probes, a runtime

environment monitor, and a response engine. See, e.g., EX1008 at 2:1-23.

The ’755 patent itself is now expired. The application that led to the ’520

patent was filed on January 29, 1997, making it the earliest-filed non-provisional

application to which the ’755 patent claims priority. The ’755 patent received no

patent term adjustment, and accordingly expired on January 29, 2017.

As far as priority is concerned, the ’755 patent is not entitled to any priority

date prior to January, 29, 1997. The ’755 patent also claims priority to U.S.

Provisional Application No. 60/030,639 (“the ’639 provisional,” EX1010), filed

November 8, 1996. The ’639 provisional, however, also fails to provide support for

the claims of the ’755 patent. EX1002, ¶19. For example, nowhere does the ’639

provisional disclose an OS probe, a response engine, or various other elements

recited in independent claims 1 and 3 of the ’755 patent. Id.

Additionally, at least two of the patents in the priority chain of the ’755

patent fail to make a specific reference to the ’639 provisional as required by 35

U.S.C. § 120. That is, U.S. Patent Nos. 7,613,926 and 7,058,822 both lack a

6

specific reference to the ’639 provisional. These patents are necessary links in the

priority chain. Notably, the application that led to U.S. Patent No. 7,613,926 was

the only application pending in the chain from June 6, 2006 to May 26, 2009; the

application that led to U.S. Patent No. 7,058,822 was the only application pending

in the chain from October 12, 2004 to March 7, 2006; and the two applications

were co-pending alone in the chain from March 7, 2006 to June 6, 2006. See

EX1001 at [59]; EX1004 at 0051-52, 1463-64. Because of this break in the priority

chain, the ’755 patent cannot rightfully claim priority benefit to the ’639

provisional. See Encyclopaedia Britannica, Inc. v. Alpine Elecs. of Am., 609 F.3d

1345 (Fed. Cir. 2010); see also Medtronic CoreValve, LLC v. Edwards

Lifesciences Corp., 741 F. 3d 1359 (Fed. Cir. 2014).

Accordingly, the priority date of the ’755 patent is no earlier than January

29, 1997, the filing date of the ’520 patent.

B. The Prosecution History and Related Cases

Several references used in this Petition—Jaeger, TBAV, and Arnold—were

disclosed among several Information Disclosure Sheets, which collectively

disclosed over 1000 different references. See EX1004 at 1518, 1527, 1667. None

of these references, however, were ever used by the examiner in a rejection nor

were they ever cited or mentioned by the examiner in any other context. The

CORBA reference was not disclosed to the examiner during prosecution.

7

Though the prosecution of the application that led to the ’755 patent is

relatively unenlightening, there has been activity in the prosecution of applications

to which the ’755 patent claims priority that is relevant to this IPR.

In particular, U.S. Patent No. 6,480,962 (“the ’962 patent,” EX1013) is one

of several patents that issued from parent applications of the ’755 patent, with

claims substantially similar to the ’755 patent claims, that had all claims

subsequently canceled in reexamination. While the ’755 patent was pending, the

’962 patent was subject to an inter partes reexamination (Control No. 95/001,836)

challenging claims 1-55 of the ’962 patent.
2
 The examiner rejected each claim on

multiple art grounds, including grounds of anticipation and obviousness over

Jaeger similar to those presented below. On February 29, 2016, after the issuance

of the ’755 patent, the Board issued a decision affirming the examiner’s rejection

2
 During prosecution of the ’755 patent, the examiner rejected all claims for

nonstatutory double patenting, because the claims are not patentably distinct from

claims 29-32 and 50-51 of the ’962 patent. EX1004 at 1488-89. Patent Owner

obviated the rejection with a terminal disclaimer. Id. at 1609.

8

of all
3
 claims over Jaeger alone or in combination with other references. See

Ex1016 at 2, 3, 9, 11-13. A reexamination certificate issued on January 12, 2017,

canceling all claims.

Certain claims of the ’962 patent that the Board found invalid over the

Jaeger reference are substantially similar to claims of the ’755 patent challenged

here. In the reexamination decision, the Board held that Jaeger anticipated claims

29, 32 and 50-51, and rendered obvious claims 30 and 31 of the ’962 patent

(EX1016 at 3-6, 9-11, 12). Claims 29-32 depend from claim 22 which reads:

22. A system for determining whether a Downloadable, which

is received by a Downloadable engine, is suspicious,

comprising:

means for monitoring substantially in parallel a plurality of

subsystems of the operating system during runtime for an event

caused from a request made by a Downloadable;

means for interrupting processing of the request;

means for comparing information pertaining to the

Downloadable against a predetermined security policy; and

means for performing a predetermined responsive action based

on the comparison.

3
 Claims 1, 5, 6, 12, 15, 21, 33, 37, 38, 45, 52, and 55 were not included in the

Board’s decision, because the Federal Circuit had already affirmed their invalidity

in Finjan, Inc. v. Symantec Corp., No. 2013-1682 (Fed. Cir. 2014) (rule 36).

9

The Board construed the “means” recited in this claim in a manner corresponding

to the elements recited in the ’755 patent claims; for example, the Board construed

the recited “means for monitoring” as including “class extensions, probes, and

equivalent functioning software between an application and an operating system,”

and concluded that Jaeger disclosed this element. EX1016 at 4. Claims 29-32 add

additional elements corresponding to claims 5-8 of the ’755 patent. Claims 50 and

51 of the ’962 patent are also substantially similar to claims 1-4 of the ’755 patent.

Claims 1 and 3 of the ’755 patent recite systems with substantially similar

elements to the unpatentable claims of the ’962 patent, including probes, a runtime

environment monitor, and a response engine. Claims 1-8 of the ’755 patent add

some additional details, but as the Examiner correctly found (see EX1004 at 1488-

89), none of these claims is patentably distinct from the unpatentable claims (e.g.,

claims 50 and 51) of the ’962 patent. As shown below in Grounds 1-3, the Board

was correct in finding Jaeger to anticipate each of the above-recited elements of the

’962 patent, and each of the elements added in the challenged claims is disclosed

by Jaeger or obvious in view of Jaeger and the other prior art references described

herein. The Board was correct in finding Jaeger to anticipate each of the above-

recited elements of the ’962 patent. As shown in the independent analysis below,

Jaeger also renders unpatentable numerous claims of the ’755 patent, as the

reference teaches or suggests nearly all aspects of the challenged claims.

10

C. The Scope and Content of the Prior Art

As explained in detail in the corresponding Declaration of Azer Bestavros,

Ph.D. (EX1002) and as addressed in further detail below (Section VI), a person of

ordinary skill in the art at the relevant time would have considered the challenged

claims obvious.

As described by Dr. Bestavros, in the early- to mid-1990s, the internet was

becoming increasingly popular. At the same time, it became increasingly apparent

that large computer networks such as the internet posed a danger. Files distributed

over such networks could contain malicious or otherwise dangerous code. This led

to a proliferation of new software intended to combat this danger. See, e.g.,

EX1012 at Table 2 (comparing an antivirus product to “four other shareware and

commercial virus detection products”). Accordingly, by 1996, the market for

antivirus protection was a crowded one, and the subject of a great deal of

continuing research and development. EX1002, ¶40.

One strategy for virus protection that was common at the time was to

enforce a system of access rights according to a security policy. EX1002, ¶41.

Untrusted programs from the internet were potentially dangerous, so programs

were written to monitor their behavior. This monitoring could include determining

whether a program attempted an operation that exceeded its access rights, and then

taking action to prevent such potentially malicious software from doing harm.

11

The claims of the ’755 patent are directed to systems that monitor

downloadables by reviewing their access requests and enforcing security policies

to allow or deny such requests. But as demonstrated in the prior art references

discussed below, systems to perform such methods were already known to

individuals in the field as of 1996. EX1002, ¶¶42-43.

i. Jaeger

“Building Systems that Flexibly Control Downloadable Executable

Content,” by Jaeger et al. (“Jaeger,” EX1005) was published in the Proceedings of

the Sixth USENIX UNIX Security Symposium in July 1996. See EX1005 at 0001.

Jaeger was distributed to attendees of the symposium in July 1996, as well as being

made available online. See EX1005; see also EX1002, ¶¶44-48.
4
 Accordingly,

Jaeger is prior art under 35 U.S.C. § 102(a) because it was published prior to the

January 29, 1997 effective filing date of the ’755 patent.

Jaeger discloses an architecture for “flexible control” of downloaded

executable content. EX1005 at 0002. The architecture provides that “downloaded

executable content is properly controlled,” thereby preventing a scenario in which

4
 To the extent Patent Owner would object to this evidence, all of these

documents, including the cover to EX1005, qualify as ancient documents for

purposes of the hearsay exception in Fed. R. Evid. 803(16). See also EX1002 at

¶¶44-48.

12

“a malicious remote principal may obtain unauthorized access to the downloading

principal’s resources.” Id. In Jaeger’s system, “operations are implemented by a

call to authorize which checks the content access rights prior to calling the actual

operation.” Id. at 0016. “Since these commands are only available in the browser

and are protected by the authorization operation, only authorized accesses to

system objects are possible.” Id. at 0016. Jaeger describes using “application

specific interpreters [that] control access to application objects and determine the

access rights of content within their domain.” Id. at Fig. 3. By controlling access

and determining access rights, Jaeger’s system enables the protection of system

resources and the detection of potentially malicious code. EX1002, ¶49.

The ’755 patent recites numerous calls and messages between various

system elements. However, Fig. 5 of Jaeger illustrates the same type of calls and

messages for access control using similar system elements, as shown below:

13

In the above figure, a downloadable (“Download,” “Content”) is executed

(“Execute Content”) and executes a limited operation requiring authorization for

access to an OS function (“Network Service,” “Local File,” etc.). A message

corresponding to a call to the appropriate OS subsystem is intercepted by software

in the “Browser” (probe). The message is forwarded to a runtime environment

monitor (“Authorize Operation”) to compare against rules of a security policy. The

result is sent to a response engine (“Execute Content”) that executes the requested

OS call if it is authorized by the security policy.

As discussed in the Grounds below, Jaeger discloses nearly every element of

the independent claims 1 and 3. For example, Jaeger discloses a system comprising

a processor and memory, and which executes software with elements including

14

probes for reviewing OS calls of a downloadable, a downloadable engine, a

runtime environment monitor, and a response engine.

ii. CORBA

“The Common Object Request Broker: Architecture and Specification”

(“CORBA,” EX1011) was published as a joint publication of the Object

Management Group and X/Open in 1993. CORBA states on its face that it was

published on December 29, 1993 as revision 1.2, OMG Document Number

93.xx.yy.
5
 The Object Management Group website maintains a copy of CORBA,

identified as document number 1993/93-12-43, for download in PDF or PostScript

formats at http://www.omg.org/spec/CORBA/1.2/. From 1993 on, CORBA was

widely distributed, including over the internet. EX1002, ¶50. For example, U.S.

Patent No. 5,857,102 to McChesney et al. (EX1015), filed on March 14, 1995,

states that “The Common Object Request Broker: Architecture and Specification,

Rev. 1.2, OMG TC Document Number 93-12-43 [is] available by anonymous ftp

to omg.org.” EX1015 at 4:27-31. Accordingly, CORBA is prior art under 35

U.S.C. § 102(a) and § 102(b) because it was published more than a year prior to

the January 29, 1997 effective filing date of the ’755 patent.

5
 To the extent Patent Owner would object to this evidence, all of these

documents qualify as ancient documents for purposes of the hearsay exception in

Fed. R. Evid. 803(16).

15

CORBA describes an architecture for distributed computing that uses an

Object Request Broker (“ORB”) to provide interoperability between applications

on different machines. EX1011 at 15. The ORB receives a request from a client

and forwards the request to an object implementation. Id. at 30, Fig. 2. The ORB

thus provides an interface for requesting execution of a code object that is

“completely independent of where the object is located, what programming

language it is implemented in, or any other aspect which is not reflected in the

object’s interface.” Id. at 30. In other words, the ORB acts as a middleman

between a client and an object requested for execution by the client. EX1002, ¶51.

As discussed in Ground 1 below, to the extent Jaeger does not explicitly

disclose the request broker recited in claims 1 and 3, the Common Object Request

Broker Architecture discloses this element.

iii. TBAV

The user manual for the ThunderBYTE antivirus scanner (“TBAV,”

EX1006) was published in 1995. The ThunderBYTE antivirus scanner was a

popular antivirus program in the mid-1990s, and TBAV was distributed as a

printed publication along with the ThunderBYTE antivirus scanner software. See,

e.g., EX1017 (“Qualified organizations, editors, reviewers or PC users groups who

prefer to receive a disk-based evaluation version of our software complete with a

printed manual, please e-mail us or contact one of our local distributors,” archived

16

Dec. 4, 1996); see also EX1018 (showing page offering an evaluation version of

the software along with the manual was visited nearly 1,000 times per day in April

of 1996); EX1002, ¶52.
6

Distribution of TBAV to the public is also demonstrated by U.S. Patent No.

5,696,822 (“the ’822 patent,” EX1012), filed September 28, 1995. The ’822 patent

lists the TBAV manual on its face and refers to the ThunderBYTE scanner in a list

of “shareware and commercial virus detection products.” EX1012 at 12:20-50,

Table 2 col. 5; see also EX1002, ¶53.

Accordingly, TBAV is prior art under 35 U.S.C. § 102(a) and § 102(b)

because it was published in 1995, more than a year prior to the January 29, 1997

effective filing date of the ’755 patent.

TBAV describes a software program that protects computer systems against

both known and unknown viruses. The TBAV software includes several utilities

for virus protection, including the TbLog utility. See EX1006 at 1-5, 139. The

TbLog utility generates log files in response to various alert messages from

TBAV’s virus detection utilities, including recording when a virus is detected.

6
 To the extent Patent Owner would object to this evidence, all of these

documents qualify as ancient documents for purposes of the hearsay exception in

Fed. R. Evid. 803(16).

17

EX1006 at 139. The logs generated include information such as a time stamp, the

machine where the event occurred, and a message describing what occurred and

what files were involved. Id. The TbLog utility is described as “primarily for

network users,” and allows a supervisor to “keep track of what’s going on.” Id.;

EX1002, ¶55.

As discussed in Ground 2 below, to the extent that Jaeger does not explicitly

disclose storing of comparison results related to malware in a log file, TBAV

teaches this.

iv. Arnold

 U.S. Patent No. 5,440,723 (“Arnold,” EX1007) was filed January 19, 1993

and issued August 8, 1995. Accordingly, Arnold is prior art under 35 U.S.C.

§ 102(b) as it was patented more than 1 year before the January 29, 1997 effective

filing date of the ’755 patent.

Arnold discloses a system for detecting “anomalous behavior that may

indicate the presence of an undesirable software entity such as a computer virus,

worm, or Trojan Horse.” EX1007 at Abstract. When such an entity is detected,

Arnold’s system extracts an identifying signature and adds the signature to a

database so it may be used by a scanner to prevent subsequent infections of the

system and other computers connected to the system in a network. Id.; see also

EX1002, ¶57.

18

As discussed in Ground 3, to extent that Jaeger does not explicitly disclose

them, Arnold teaches the elements of several dependent claims of the ’755 patent,

including responsive actions such as informing the user of dangerous program

activity, storing malware-related information in a database, and deleting suspicious

Downloadables.

D. The Level of Skill in the Art

As Dr. Bestavros explains, a person of ordinary skill in the relevant field

prior to January 29, 1997 would include someone who had, through education or

practical experience, the equivalent of a bachelor’s degree in computer science or a

related field and at least an additional three to four years of work experience in the

field of computer security. EX1002, ¶¶31-34. Such a person would have been

aware of and would have been working with computer security trends from the

early- to mid-1990s, including trends toward access rights control of downloaded

executable code using security policies. Id.; see also §I.C; Custom Accessories,

Inc. v. Jeffrey-Allan Indus. Inc., 807 F.2d 955, 962 (Fed. Cir. 1986) (“The person

of ordinary skill is a hypothetical person who is presumed to be aware of all the

pertinent prior art.”).

II. GROUNDS FOR STANDING

Petitioner certifies that, under 37 C.F.R. § 42.104(a), the ‘755 patent is

available for inter partes review, and Petitioner is not barred or estopped from

19

requesting inter partes review of the ‘755 patent on the grounds identified.

III. MANDATORY NOTICES UNDER 37 C.F.R. § 42.8

A. Real Party in Interest (§ 42.8(b)(1))

Blue Coat Systems LLC is the real party in interest. Blue Coat’s parent

company, Symantec Corp., is also a real party in interest.

B. Related Matters (§ 42.8(b)(2))

The ’755 patent has been asserted in Finjan, Inc. v. Blue Coat Systems, LLC,

No. 5:15-cv-03295-BLF (N.D. Cal.) (“Finjan v. Blue Coat II”), in an amended

complaint filed on March 1, 2016.

Blue Coat is aware of the following other district court litigation in which

the ’755 patent has been asserted: Finjan, Inc. v. ESET, LLC, et al.. No. 3:16-cv-

03731-JD (N.D. Cal.).

Blue Coat is not aware of any other patent office matters involving the ’755

patent.

Patent Owner has followed a prosecution strategy of seeking a large number

of patents with a large number of very similar claims. It has also pursued a

litigation strategy of asserting overlapping but nonidentical groups of those claims

against many different targets all at different times. Thus, proceedings involving

Patent Owner’s patents—both in district courts and at the Patent Office—have

proliferated. Accordingly, Blue Coat has only listed matters directly involving the

20

’755 patent and not matters only involving related patents.

C. Lead and Back-Up Counsel (§ 42.8(b)(3))

Lead Counsel: Michael T. Rosato (Reg. No. 52,182)

Back-Up Counsel: Andrew S. Brown (Reg. No. 74,177)

D. Service Information (§ 42.8(b)(4))

Blue Coat consents to electronic service.

Email: mrosato@wsgr.com; asbrown@wsgr.com

Post: WILSON SONSINI GOODRICH & ROSATI

701 Fifth Avenue Suite 5100

Seattle, WA 98104-7036

Tel.: 206-883-2529, Fax: 206-883-2699

IV. STATEMENT OF THE PRECISE RELIEF REQUESTED FOR EACH

CLAIM CHALLENGED

Blue Coat requests review and cancellation of claims 1-8 of the ’755 patent

under 35 U.S.C. § 311 and AIA § 6. The grounds for relief are as follows:

Ground Claims Description

1 1-4 Obvious under § 103(a) over Jaeger and CORBA

2 5 Obvious under § 103(a) over Jaeger, CORBA and TBAV

3 6-8 Obvious under § 103(a) over Jaeger, CORBA, and Arnold

21

V. CLAIM CONSTRUCTION

In an inter partes review of an expired patent, claim terms are given their

ordinary and accustomed meaning as would be understood by one of ordinary skill

in the art because the expired claims are not subject to amendment. See Panel

Claw, Inc. v. Sunpower Corp., IPR2014-00386, Paper 7 at 7; see also In re

Rambus, Inc., 694 F.3d 42, 46 (Fed. Cir. 2012), Phillips v. AWH Corp., 415 F.3d

1303, 1312-13 (Fed. Cir. 2005) (en banc). The Board routinely institutes inter

partes review of expired patents using this standard. See, e.g., Intel Corp. v.

Fuzzysharp Techs. Inc., IPR2014-00001, Paper 7 at 9; Harmonix Music Sys. Inc.,

v. Princeton Dig. Image Corp., IPR2014-00155, Paper 11 at 6-7. Because the ’755

patent has expired, claim terms are to be given their ordinary and accustomed

meaning, consistent with how they would be understood by one of ordinary skill in

the art, for purposes of this review. A few terms that warrant discussion are

identified and discussed below.

A. “downloadable”

The term “downloadable,” as used throughout the claims of the ’755 patent,

includes “an executable application program, which is downloaded from a source

computer and run on a destination computer.” This construction corresponds to the

definition of the term “downloadable” in the U.S. Pat. No. 6,092,194 (“the ’194

patent,” EX1009), from which the ’755 patent claims priority. EX1010 at 1:44-55;

22

see also EX1002 ¶36.

B. “extension call”

The meaning of the term “extension call,” as recited in independent claims 1

and 3, was objected to by the examiner as unclear during prosecution. EX1004 at

1485. Patent Owner did not provide a construction, but did point to portions of the

’962 patent as allegedly providing requisite support. EX1004 at 1601-04. These

sections included Figs. 3 and 4 of the ’962 patent, as well as parts of the

specification. For example, the ’962 patent states

The security system 135a includes Java™ class extensions 304,

wherein each extension 304 manages a respective one of the

Java™ classes 302. When a new applet requests the service of a

Java class 302, the corresponding Java™ class extension 304

interrupts the request and generates a message to notify the

request broker 306 of the Downloadable's request.

EX1013 at 4:10-17. The ’962 patent further states that the classes managed by the

extensions are “conventional Java™ classes 302. Each of the Java™ classes 302

performs a particular service such as loading applets, managing the network,

managing file access, etc.” EX1013 at 3:52-63.

Accordingly, for the purposes of this Petition, an extension call includes at

least “a request corresponding to a class of program objects.” See EX1002, ¶38.

C. “downloadable engine”

Independent claims 1 and 3 both recite a downloadable engine. The ’755

23

patent provides no support for such a structure. EX1002, ¶39. The ’520 patent

describes a “browser 245 [that] includes a Downloadable engine 250 for managing

and executing received Downloadables.” EX1008 at 3:29-30. The ’520 patent

gives the Java virtual machine and the ActiveX platform as examples of

downloadable engines. Id. at 3:42-46, 5:17-19. Accordingly, for the purposes of

this Petition, the term “downloadable engine” includes at least “software for

managing and executing downloadables.” See EX1002, ¶39.

VI. DETAILED EXPLANATION OF GROUNDS FOR

UNPATENTABILITY

A. [Ground 1] Claims 1-4 are Obvious under 35 U.S.C. § 103(a) over

Jaeger in view of CORBA

As described further below, claims 1-4 of the ’755 patent are obvious over

Jaeger in view of CORBA. EX1002, ¶¶58-138. See §I.C.

Jaeger discloses an architecture for “flexible control” of downloaded

executable content. EX1005 at 0002. Jaeger describes analyzing downloadable

content for suspicious or malicious aspects, stating the purpose of this architecture

as ensuring that “downloaded executable content [i.e., a ‘downloadable’] is

properly controlled,” because without such control, “a malicious remote principal

may obtain unauthorized access to the downloading principal’s resources.” Id. In

Jaeger’s architecture, “operations are implemented by a call to authorize which

checks the content access rights prior to calling the actual operation.” Id. at 0016.

24

“Since these commands are only available in the browser and are protected by the

authorization operation, only authorized accesses to system objects are possible.”

Id. In combination with the browser, Jaeger’s system uses “application specific

interpreters [that] control access to application objects and determine the access

rights of content within their domain.” Id. at Fig. 3. See EX1002, ¶49.

Jaeger discloses or renders obvious nearly every element of the independent

claims 1 and 3. For example, Jaeger discloses a system comprising a processor and

memory, and which executes software with elements including probes for

reviewing OS calls of a downloadable, a downloadable engine, a runtime

environment monitor, and a response engine. Though Jaeger does not expressly

disclose a request broker, including a request broker would have been obvious in

view of CORBA.

CORBA discloses request brokers, referred to as Object Request Brokers

(ORBs) to “provide[] interoperability between applications on different machines

in heterogeneous distributed environments and seamlessly interconnect[] multiple

object systems.” EX1011 at 15. It was a known use of request brokers such as

those disclosed in CORBA to facilitate communications between system

components in distributed architectures, such as that disclosed in Jaeger. EX1002,

¶¶51, 90.

The below discussion provides an element-by-element discussion of the

25

aspects of the claims with respect to the cited prior art.

i. Independent claims 1 and 3

The architecture described by Jaeger, in view of the request brokers of

CORBA, would have rendered independent claims 1 and 3 of the ’755 patent

obvious.

Claims 1 and 3 are similar, with claim 1 comprising each element of claim 3,

and adding a few additional claim elements. Each claim has the same preamble: “A

system for reviewing an operating system call issued by a downloadable,

comprising.” To the extent the preambles are limiting, Jaeger discloses each of

these elements, as shown in the following claim chart:

’755 Patent Jaeger and CORBA

[1.pre, 3.pre] A

system for reviewing

an operating system

call issued by a

downloadable,

comprising:

Jaeger discloses a system for flexible control of

downloadables: “In this paper, we describe an architecture

that flexibly controls the access rights of downloaded

content.” EX1005 at 0002.

The system reviews access requests (e.g., “system call”)

from downloadables: “Obviously, the access requests made

directly by content must be controlled.” Id. at 0005.

Calls to invoke procedures and access objects are reviewed:

Id. at 0015.

Control is provided to objects handled by an operating

26

system: “In general, access to the following types of

objects needs to be controlled … Application Objects …

File System … Applications … Processes … Environment

… Network Services … URLs.” Id. at 0005.

See also id. at Title, 0003, 0004, 0005, 0006-07, 0016 (“the

exec call”); EX1002, ¶¶60, 105-06.

Jaeger discloses a system for reviewing an OS call issued by a

downloadable. EX1005 at 0002. “Downloaded Executable Content” is a

downloadable. The system will “(1) authenticate the source of the content;

(2) determine the least privilege access rights for the content given its source; and

(3) enforce those access rights throughout the execution of the content.” Id. at

0004.

Jaeger describes the use of a “conventional protection model,” in which

“principals (e.g., users, groups, services, etc.) execute processes that perform

operations (e.g., read, write, etc.) on objects (e.g., files, devices, etc.).” EX1005 at

0003; EX1002, ¶60, 106. The system ensures compliance with the protection

model by reviewing OS calls. Id.

In particular, Jaeger lists several types of OS objects for which “access …

needs to be controlled.” EX1005 at 0005. These objects include including

applications, file system objects, processes, network services, and the environment

of each process. Id. To access each of these object types, a call would be made to

27

an OS. Id.; EX1002, ¶60, 106. For example, Jaeger’s system uses “I/O commands

… to control access to system objects” and includes an “operating system [that]

has an unmodified trusted computing base.” EX1005 at 0006-07. An I/O command

to access system objects is an OS call. EX1002, ¶60, 106. Accordingly, Jaeger

discloses a system for reviewing an OS call issued by a downloadable.

Jaeger in view of CORBA discloses elements [1.1] and [3.1]:

’755 Patent Jaeger and CORBA

[1.1, 3.1] at least one

processor for

accessing elements

stored in at least one

memory associated

with the at least one

processor and for

executing instructions

associated with the

elements, the

elements including:

Jaeger discloses its system as computer-based, thereby

including hardware and software components. The

architecture stores and executes downloadable content:

“Application performance can be improved because the

program (i.e., executable content) can be downloaded to

the location of the data (e.g., for a query) or the location of

the user (e.g., for an interface-driven task).” Id. at 0002. Id.

at 0006 (discussing “…computing base”).

Processes can read, write, and execute: “A process can

read and write objects in its memory [and] can perform

read, write, and execute operations.” Id. at 0005.

See also id. at 0005, 0010, 0019, Figs. 2, 5, 8 (showing

pseudocode for execution on a processor) EX1002, ¶¶61-

63, 107-08.

Claim elements [1.1] and [3.1] are identical, each reciting a processor for

28

accessing and executing elements stored in an associated memory. Jaeger’s system

includes these elements.

Jaeger’s system includes a processor capable of accessing and executing

instructions stored in memory. Jaeger discloses “an architecture that flexibly

controls the access rights of downloaded content” (EX1005 at 0002) that employs

an “operating system [with] an unmodified trusted computing base.” EX1005 at

0006; see also id. at Fig. 2 (“Network Computing Environments”). As described by

Dr. Bestavros, a person of ordinary skill in the art would understand that the

“computing base” would include a processor and associated memory, for executing

instructions. EX1002, ¶¶61, 107.

Jaeger confirms this interpretation, disclosing that access to several types of

programming objects needs to be controlled, including “Application Objects,” a

“File System,” and “Applications,” each of which relates to “a process.” EX 1005

at 0005; EX1002, ¶¶62, 107. This includes a “process [that] can read and write

objects in its memory.” Id. This “process,” running on a processor, would access

and execute commands stored in the “memory” described by Jaeger. EX1002, ¶63,

108.

Additionally, the use of processors and memory storing software elements

for execution would have been obvious. Such elements form the basic building

blocks of computer science, and a person of ordinary skill would have had a

29

reasonable expectation of success in using them. EX1002, ¶63, 108. Indeed, Jaeger

states that Jaeger’s “model is influenced most strongly by the access control

models of Hydra,” which is a “kernel of a multiprocessor system.” EX1005 at

0010, 0019.

Accordingly, Jaeger’s system includes the limitations as recited in claims 1

and 3.

Jaeger in view of CORBA discloses element [1.2]:

’755 Patent Jaeger and CORBA

[1.2] an operating

system probe

associated with an

operating system

function for

intercepting an

operating system call

being issued by a

downloadable to an

operating system and

associated with the

operating system

function;

Jaeger discloses a system with OS probes, which it refers to

as interpreters: “Trusted, application-independent

interpreters (which we will refer to as browsers from here

on) control access to system objects by the application-

specific interpreters and downloaded content. An

application-specific interpreter controls access to

application objects and specifies the access rights of

downloaded content within its limited domain.” EX1005 at

0007.

The probes authorize OS operations by intercepting OS

calls of downloadables: “[T]he browser authenticates the

content and sends the content to be run in the appropriate

application-specific interpreter. … Any controlled

operation run by the content is authorized by the

appropriate interpreter and if authorization is granted then

30

the operation is executed. Operations are executed in the

interpreter trusted with the operation.” Id. at 0008.

See also id. at 0005, Figs. 3, 5; EX1002, ¶¶64-71.

Claim element [1.2] does not have a corresponding element in claim 3,

although claim element [3.4], discussed below, is similar. Element [1.2] recites an

OS probe that receives an OS call from a downloadable. Jaeger’s system discloses

this element.

As discussed in more detail below, Jaeger’s interpreters are substantially

similar to the probes described in the ’520 patent, which the ’755 patent relies on

to support its claims. The ’520 patent describes “operating system probes” as

respectively receiving from the downloadable “instructions sent to the file system

… the network management system … the process system … [and] the memory

system.” EX1008 at 4:10-23; see also id. at Fig. 3 (showing the OS probes situated

between the OS and the remainder of the security system, similar to Jaeger’s

interpreters). Jaeger’s interpreters perform substantially the same function in

substantially the same way. EX1002, ¶¶65-67, 70.

Jaeger discloses interpreters that are OS probes as recited in claim 1. With

regard to the probes, Jaeger discloses a system including “browsers” that act as

“Trusted, application-independent interpreters” to “control access to system

objects” by “application-specific interpreters” that correspond to specific

31

applications and functions called by “downloaded content.” EX1005 at 0007; see

also id. at Fig. 3. Jaeger’s interpreters act as probes that intercept calls from

downloaded content to an OS. EX1002, ¶65. For example, Jaeger describes that the

interpreters review intercepted OS calls to authorize them: “[a]ny controlled

operation run by the content is authorized by the appropriate interpreter.” EX1005

at 0008. To review a call, the probe intercepts it and confirms that it conforms to a

security policy. See id. at Fig. 5; EX1002, ¶67.

These interpreters intercept messages corresponding to an OS call from a

downloadable. The messages include access requests to subsystems including

“Application Objects,” “File System,” “Processes,” “Environment,” or “Network

Services.” EX1005 at 0005; EX1002, ¶66. Jaeger teaches that each of these

subsystems must be monitored. Id. The subsystems for which the intercepted calls

request access include OS functions (such as “File System,” “Processes,” and

“Network Services,” for example). EX1002, ¶66.

Furthermore, Jaeger’s probes intercept calls “being issued” by a

downloadable as the downloadable is being executed. As Jaeger describes,

Content is executed as shown in Figure 5. … Any controlled

operation run by the content is authorized by the appropriate

interpreter and if authorization is granted then the operation is

executed. Operations are executed in the interpreter trusted with

the operation.

32

EX1005 at 0008. As Jaeger’s interpreters must authorize requests to the OS by a

downloadable before the request is executed, they act as probes that intercept an

OS call being issued by a downloadable to an OS and associated with the OS

function. EX1002, ¶67.

The protocol for content execution in Jaeger’s system is shown in Fig. 5:

As discussed above (see §I.C.i.), this figure shows that when content is executed,

33

calls are intercepted by a probe (e.g., the browser, an application-independent

interpreter), as indicated by the arrows leading from “Execute Content” to

“Authorize Operation.”

When a downloadable requests execution of an instruction by the OS, this

would be a “call being issued by a downloadable to an operating system and

associated with the operating system function.” By monitoring the OS’s

subsystems for such requests, and intercepting those requests, Jaeger’s interpreters

act as OS probes intercepting the calls. EX1002, ¶68-69.

Accordingly, Jaeger in view of CORBA discloses claim element [1.2].

EX1002, ¶71.

Jaeger in view of CORBA discloses element [1.3]:

’755 Patent Jaeger and CORBA

[1.3] a runtime

environment

monitor for

comparing the

operating system

call against a

predetermined

security policy

including multiple

security rules to

Jaeger’s access rights define a security policy: “The access

rights of a remote principals content in interpreter t active at

state s are the intersection of the rights of interpreter t and the

rights of the principal group to which the remote principal is

assigned in interpreter t at state s.” EX1005 at 0012.

The access rights determine what OS calls can be executed:

“Content is executed as shown in Figure 5. … This content

interpreter has access rights consistent with the identity of the

remote principal. Any controlled operation run by the content

34

determine if

execution of the

operating system

call violates one or

more of the

multiple security

rules before

allowing the

operating system

to process the

operating system

call and for

forwarding a

message to a

response engine

when the

comparison by the

runtime

environment

monitor indicates

a violation of one

or more of the

multiple security

rules;

is authorized by the appropriate interpreter and if

authorization is granted then the operation is executed.

Operations are executed in the interpreter trusted with the

operation.” Id. at 0008.

The rules are predetermined: “[W]e want delegation to be

implicit relative to some application rather than require the

downloading principal to specify access rights at runtime.” Id.

at 0014.

Fig. 9 shows pseudocode for a runtime environment monitor

comparing calls to multiple security rules, and sends a

message to the response engine:

See also id. at Figs. 5, 8, 9; EX1002, ¶¶72-76.

Claim element [1.3] does not have a corresponding element in claim 3,

35

although claim element [3.6], discussed below, is similar. Element [1.3] recites a

runtime environment monitor that compares the call against a security policy

comprising multiple security rules and sends a message to a response engine when

there is a security rule violation. Jaeger’s system discloses this element.

Jaeger discloses a runtime environment monitor (e.g., as shown in the

pseudocode of Fig. 9) that compares the OS call against a predetermined security

policy including multiple security rules. The security policies of Jaeger are

embodied in “access rights” for a downloadable, which are determined from the

rights of the interpreter assigned to the downloadable and the group rights of the

user (“rights of the principal group to which the remote principal is assigned”).

EX1005 at 0012; EX1002, ¶72. These rights are specified in advance to speed up

access rights determination at runtime. EX1005 at 0014; EX1002, ¶72.

36

Jaeger provides pseudocode in Figs. 8 and 9 illustrating how a requested

operation can be authorized and subsequently executed subject to that

authorization. Fig. 8 (above) illustrates a process for handling an operation, and

that process invokes the procedure in Fig. 9 (below) to determine whether the

operations required by the request are authorized. EX1002, ¶73; see also §I.C.i.

above (describing the “Authorize Content” step of Fig. 5.)

37

As described by Dr. Bestavros, the “operation” procedure in Fig. 8 processes

a request received from a downloadable by determining types (“arg_types”) of the

arguments (“args”) and the predicate operations (“ops”) required for the request,

then invokes the “authorize” procedure of Fig. 9 using this information. EX1002,

¶74. The “authorize” procedure then determines whether the request violates any

security rules, and returns its conclusion to the “operation” procedure, which

executes the request if authorized, and blocks it otherwise. Id. Accordingly, as

demonstrated by the “authorize” procedure, Jaeger comprises a runtime

environment monitor that compares OS calls to multiple security rules. EX1002,

¶¶72-74.

Jaeger’s system performs the comparison before allowing the OS to process

the OS call. As shown in Fig. 8 of Jaeger, the “operation” function does not

execute the procedure requested by the call until after evaluating whether it is

38

authorized. Indeed, the procedure is executed only if the comparison determines

that it is authorized. Furthermore, it would also be obvious to a person of ordinary

skill in the art that authorization must come before, not after execution, lest the

system risk executing a malicious instruction. EX1002, ¶74.

Jaeger’s runtime environment monitor forwards a message to a response

engine when the comparison by the runtime environment monitor indicates a

violation. As explained by Dr. Bestavros, the “authorize” function sends a message

“FALSE” as its return value whenever it determines that a security rule has been

violated, indicating that the operation is not authorized. EX1002, ¶75. Moreover,

although not required by the claims of the ’755 patent, it would have been obvious

to add additional information to Jaeger’s return message. For example, the message

could include more information regarding what operations were unauthorized, or

what rules were violated. See EX1002, ¶76. As explained by Dr. Bestavros, there

would be various reasons to do this, including debugging, allowing users to modify

access rights, and identifying attacks by malicious code. Id.; see also EX1014 at

Abstract (describing logging of rule violations). Indeed, Jaeger’s system already

produces such information, so it would be straightforward to send it to the response

engine as part of a message. EX1002, ¶76.

Accordingly, Jaeger in view of CORBA discloses claim element [1.3].

Jaeger in view of CORBA discloses element [1.4]:

39

’755 Patent Jaeger and CORBA

[1.4] a response

engine for

compiling each

rule violation

indicated in the

messages

forwarded by

the runtime

environment

monitor, for

blocking

execution of

operating

system calls that

are forbidden

according to the

security policy

when execution

of the operating

system calls

would result in a

violation of a

predetermined

combination of

multiple security

The response engine (e.g., Jaeger’s Fig. 8) executes authorized

requests: “Once authorized, the browser can execute the

procedure. EX1005 at 0015.

Authorization is required for a request to be executed by the

response engine: “Operations on application objects must be

authorized to ensure that the principal is permitted to modify the

object. Access to file system objects should be limited to

prevent unauthorized access to private objects.” Id. at 0005.

 Fig. 8 shows pseudocode for a response engine that compiles a

violation from the runtime environment monitor, then executes

the requested procedure if and only it is authorized:

40

rules of the

predetermined

security policy

and for allowing

execution of

operating

system calls that

are permitted

according to the

security policy;

See also id. at 0015, Figs. 8, 9; EX1014 at Abstract; EX1002,

¶¶77-81.

Claim element [1.4] does not have a corresponding element in claim 3,

although claim element [3.6], discussed below, is similar. Element [1.4] recites a

response engine that compiles any rule violation indicated in the message from the

runtime environment monitor and compares the rule violation to the security

policy, then allows permitted calls to be executed. Jaeger’s system discloses this

element.

The ’520 patent describes a “response engine” as software that responds to a

security violation compiled from the runtime environment monitor:

41

If the OS request does not violate a security rule 330, then the

response engine 318 in step 730 instructs the operating system

260 via the recognizing probe 310-316 to resume operation of

the OS request.

EX1008 at 6:41-51. When there is a rule violation, the response engine can

respond by “stopping execution of a suspicious Downloadable.” EX1008 at 6:6-13.

Jaeger teaches a response engine for compiling each rule violation indicated

in the messages forwarded by the runtime environment monitor. This function is

performed by the “operation” procedure, for example. See EX1005 at Fig. 8;

EX1002, ¶78; see also §I.C.i. above (describing the “Execute Content” step of Fig.

5). As explained by Dr. Bestavros, Jaeger’s example pseudocode shows that any

violation of the security rules is received as a message from the “authorize”

function (the runtime environment monitor) as a FALSE return value. EX1002,

¶78. For each rule violation detected, the return value of FALSE is recorded and

used to evaluate the IF statement in the line “If (authorize args arg_types

arg_ops).” When the IF statement evaluates a FALSE value, it skips the THEN line

that follows, thus avoiding execution of the requested operation. Id. As claim 1

does not recite a plurality of messages or violations, nor any particular content of

the messages (e.g., describing the violation), evaluating this “IF” function for each

message constitutes “compiling each rule violation indicated in the messages

forwarded.” EX1002, ¶78.

42

Nonetheless, it would also have been obvious to include additional

information in each message, characterizing one or more violations. EX1002, ¶79.

For example, it would have been obvious to identify which operations were found

to violate rules of the security policy for purposes such as debugging, rights

modification, or characterizing malicious code. Id. Moreover, such a modification

would have been straightforward, as Jaeger’s system already generates the

information in the “authorize” procedure. Id. Compiling such violation information

upon receipt would likewise be obvious, as failing to do so would defeat the

purpose in sending it. Id.; see also EX1014 at Abstract (“compiled program code is

allowed to execute and type enforcement violations are logged”).

Jaeger’s system blocks execution of OS calls that are forbidden according to

the security policy when execution of the OS calls would result in a violation of a

predetermined combination of multiple security rules of the predetermined security

policy. Jaeger’s “operation” function blocks execution of any operation that would

violate a security policy because the operation is only executed if the “authorize”

function returns the value TRUE. EX1005 at Figs. 8, 9; EX1002, ¶80. As discussed

above in claim element [1.3], the “authorize” function returns TRUE if the

operation comports with the security policy, and FALSE if it violates the security

policy.

Furthermore, Jaeger’s security policy is a predetermined combination of

43

security rules. Jaeger describes that the “access rights available to the content are

an intersection” of several different sets of rights. EX1005 at 0007. Such an

intersection is a predetermined combination of multiple security rules. EX1002,

¶80. This combination is used to allow or block execution by Jaeger’s “operation”

procedure. EX1005 at Fig. 8; EX1002, ¶80-81.

Accordingly, Jaeger in view of CORBA discloses a response engine as

described in claim element [1.4].

Jaeger in view of CORBA discloses elements [1.5] and [3.2]:

’755 Patent Jaeger and CORBA

[1.5, 3.2] a

downloadable

engine for

intercepting a

request message

being issued by

a downloadable

to an operating

system, wherein

the request

message

includes an

extension call;

Jaeger discloses controlling access requests from

downloadables: “Obviously, the access requests made directly

by content must be controlled.” EX1005 at 0005.

“Any controlled operation run by the content is authorized by

the appropriate interpreter and if authorization is granted then

the operation is executed.” Id. at 0008.

Jaeger suggests implementing class-based controls: “If the

software should be further restricted or if we want to be sure that

the software can be executed successfully, then we suggest the

creation of classes for software to represent this information.

Software classes contain strongly-typed constructors for

executing the software. Also, access control predicates can be

assigned to the arguments in the call.” Id. at 0016.

44

See also id. at 0002-05 (Java-enabled Netscape and Java

appletviewer), 0014, Fig. 6 (“class operations”); EX1002, ¶¶82-

87, 109-15.

Claim elements [1.5] and [3.2] are identical, each reciting “a downloadable

engine for intercepting a request message being issued by a downloadable to an

operating system, wherein the request message includes an extension call.”

Jaeger’s system discloses these elements.

Jaeger discloses such a downloadable engine. Jaeger states that “[o]bviously,

the access requests made directly by content must be controlled.” EX1005 at

0005.By controlling execution of downloaded content, Jaeger’s system manages

and executes downloadables. EX1002, ¶82-83, 109-111. This corresponds to the

meaning of “downloadable engine” in the ’755 patent, as discussed in §V.C above.

The downloadable engine intercepts request messages from downloadables to

handle access requests. Id; see also §I.C.i. above (describing Fig. 5, which includes

content execution in an application-specific interpreter).

Access request messages from downloadables would include extension calls.

Jaeger suggests including components to handle requests corresponding to classes

of program objects. See EX1005 at 0016; EX1002, ¶84, 112. Such requests would

be extension calls. See §V.B, above.

Furthermore, it would have been obvious to employ a downloadable engine,

45

such as the Java virtual machine of Java-enabled Netscape, as disclosed by Jaeger

(see EX1005 at 0002-03, 0004-05), for the execution of software such as applets.

See EX1002, ¶¶85-86, 113-14; see also EX1022 at 5:17-29. To obtain

authorization, Java extensions would generate request messages including an

extension calls. EX1002, ¶¶85, 113. The application of class-based access rights,

as suggested by Jaeger, to allow the interpreters of Jaeger to process Java extension

calls, would have been a routine matter for a person of ordinary skill in 1996. Id. at

87, 115.

Accordingly, Jaeger in view of CORBA discloses a downloadable engine as

described in elements [1.5] and [3.2].

Jaeger in view of CORBA discloses elements [1.6] and [3.3]:

’755 Patent Jaeger and CORBA

[1.6, 3.3] a

request

broker for

receiving a

notification

message from

the

downloadable

engine

regarding the

Jaeger discloses class-based rights that would include extension

calls:“[O]perations are implemented by a call to authorize which

checks the content access rights prior to calling the actual

operation. Since these commands are only available in the browser

and are protected by the authorization operation, only authorized

accesses to svstem obiects are not possible.” EX1005 at 0016.

“If the software should be further restricted or if we want to be

sure that the software can be executed successfully, then we

suggest the creation of classes for software to represent this

46

extension

call;

information. Software classes contain strongly-typed constructors

for executing the software. Also, access control predicates can be

assigned to the arguments in the call.” Id.

CORBA discloses a request broker: “FIG. 2 on page 30 shows a

request being sent by a client to an object implementation. The

Client is the entity that wishes to perform an operation on the

object and the Object Implementation is the code and data that

actually implements the object. The ORB is responsible for all of

the mechanisms required to find the object implementation for the

request, to prepare the object implementation to receive the

request, and to communicate the data making up the request.”

EX1011 at 30.

“[CORBA] is structured to allow integration of a wide variety of

object systems.” Id. at 29.

“The Basic Object Adapter will start a program to provide the

Object Implementation, in this example, a per-class server.” Id. at

152.

See also id. at 15, 20, Fig. 2; EX1005 at 0002, 0009, 0016, Fig. 5;

EX1002, ¶¶88-91, 116-20.

Claim elements [1.6] and [3.3] are identical, each reciting “a request broker

for receiving a notification message from the downloadable engine regarding the

extension call.” Jaeger in view of CORBA discloses these elements.

As discussed above, Jaeger sends messages from its downloadable engine to

47

a browser, as well as to application-specific interpreters, as appropriate. See, e.g.,

EX1005 at Fig. 5. No function other than receiving and forwarding a message is

attributed to the request broker of claims 1 and 3; accordingly, such a feature

would have been obvious in view of Jaeger alone. EX1002, ¶¶88-89, 116-18; see

also EX1005 at 0016 (discussing extension calls), Fig. 5.

Furthermore, it would have been obvious to include a request broker in

Jaeger’s architecture to receive and forward notification messages, as taught by

CORBA. CORBA illustrates the structure of an object request broker (“ORB”) in

Fig. 2, which “shows a request being sent by a client to an object implementation.”

EX1011 at 30. CORBA describes that “ORB is responsible for all of the

mechanisms required to find the object implementation for the request, to prepare

the object implementation to receive the request, and to communicate the data

making up the request.” Id.

CORBA also describes that the architecture is “structured to allow

integration of a wide variety of object systems.” Id. at 29. For example, the request

brokers of CORBA can receive and forward messages for objects in an object

oriented code, including objects organized by class. See, e.g., EX1011 at 152,

EX1002, ¶¶90, 119. CORBA explicitly discloses a request broker capable of

handling extension calls, Jaeger in view of CORBA discloses a request broker for

receiving a notification message from the downloadable engine regarding the

48

extension call. EX1002, ¶¶90, 119.

It would have been obvious to use a request broker, as disclosed in CORBA,

in the architecture of Jaeger. Jaeger discloses a distributed system architecture and

suggests using “classes of objects” to control access rights. E.g., EX1005 at 0002,

0009, 0016. Requests are forwarded from a downloadable to interpreters. Id. at

0007-08. CORBA discloses that request brokers can be used in to “provide[]

interoperability between applications on different machines in heterogeneous

distributed environments and seamlessly interconnect[] multiple object systems.”

EX1011 at 15. CORBA further explains that its “model is an example of a classical

object model, where a client sends a message to an object.” EX1011 at 20. This

parallels the system of Jaeger, where content messages are sent to objects for

execution. EX1002, ¶¶90-91, 119-20. Using the request broker of CORBA to pass

notification messages regarding an extension call in Jaeger’s system would be

obvious, as it would represent a combination of prior art elements according to

known methods to yield predictable results. Id.

Accordingly, Jaeger in view of CORBA discloses a request broker as

described in elements [1.6] and [3.3].

Jaeger in view of CORBA discloses elements [1.7] and [3.4]:

’755 Patent Jaeger and CORBA

[1.7, 3.4] a file system See [1.2] above, describing why Jaeger’s interpreters are

49

probe and a network

system probe each being

associated with an

operating system

function for receiving

the request message

from the downloadable

engine and intercepting

an operating system call

being issued by the

downloadable to an

operating system and

associated with the

operating system

function

OS probes.

Jaeger discloses interpreters that provide file and

network access for Java requests: “For example, content

run using Java-enabled Netscape is prevented from

performing any file system I/O and communicating with

third parties …. The Java appletviewer permits some

access rights to be granted to content.” EX1005 at 0003.

“By default, all these interpreters only grant content

(remote content in the case of Java) the right to

communicate to only ports at the IP address of the

content. The addition of read and write access rights to

files is possible in the appletviewer by specifying those

rights in the ~./hotjava/properties file.”

See also EX1005 at 0005, 0007, 0008, Figs. 3, 5

(showing Jaeger’s interpreter controlling network and

file access); EX1002, ¶¶92-96, 121-25.

Claim elements [1.7] and [3.4] are identical, each describing file system and

network system probes associated with an OS function that receive request

messages from the downloadable engine and intercept OS calls being issued by the

downloadable. Jaeger’s system discloses these elements.

As discussed above with regard to claim element [1.2], Jaeger discloses OS

probes as part of its interpreters, and that the probes intercept OS calls being issued

50

by the downloadable associated with OS functions. See also EX1002, ¶¶92-95,

121-24; §I.C.i. above (describing the “Browser” (probe) of Fig. 5 intercepting OS

requests for “Local File” and “Network Services” operations).

Among the sources of OS calls to be intercepted by Jaeger’s system would

be an extension call from an object corresponding to a class (such as a Java object),

where that call sought access to a file or network system. See, e.g., EX1005 at

0003 (discussing “file system I/O and communicating with third parties” being

allowed for “Java appletviewer.”), 0005 (discussing granting to Java applets “the

right to communicate to … IP addresses” and “read and write access rights to

files”); EX1002, ¶¶96, 125. Such a call is handled by sending a message to the

appropriate network or file system probe of Jaeger’s browser, as shown in Fig. 5.

EX1002, ¶¶96, 125. The probes of Jaeger that handle file and network access

requests are the recited file and network probes.

Accordingly, Jaeger in view of CORBA discloses file and network system

probes as described in elements [1.7] and [3.4].

Jaeger in view of CORBA discloses elements [1.8] and [3.5]:

’755 Patent Jaeger and CORBA

[1.8] an event router

for receiving the

notification message

Jaeger discloses receiving multiple types of requests at a

browser: “Lastly, the architecture provides support for

enforcing the access rights specified above while executing

51

from the request

broker regarding the

extension call and an

event message from

one of the file system

probe and the

network system

probe regarding the

operating system

call;

[3.5] providing an

event message

regarding the

operating system

call;

content and any external software and network services

used by the content. The browser: (1) authorizes content

operations; (2) provides safe implementations of these

operations; (3) enables controlled execution of external

software and network services.” EX1005 at 0015.

“[The browser] authenticates the remote principal and finds

the appropriate interpreter to execute the content. If the

remote principal is authorized to execute content in that

interpreter, then the content is executed.” Id. at Fig. 4.

See also id. at Fig. 5, EX1002, ¶¶97-98, 126.

Claim element [1.8] recites “an event router for receiving the notification

message from the request broker regarding the extension call and an event message

from one of the file system probe and the network system probe regarding the

operating system call.” Claim element [3.5] recites that the file and network system

probes provide an event message regarding the OS call. Jaeger’s system discloses

each of these elements.

As discussed in claim element [1.2], the OS probes of Jaeger (which would

include a file system probe and a network system probe) request authorization of

52

their respective OS calls. Such a request would be sent to the interpreter

component for authorization, as shown in the “Authorize Operation” step of Fig. 5

and the pseudocode of Figs. 8 and 9. See also EX1005 at Fig. 3, EX1002, ¶98, 126.

The requests for authorization received by Jaeger’s interpreters include the

claimed notification messages and event messages for authorizing extension calls

and OS calls. EX1002, ¶98, 126. As discussed above in element [1.2], event

messages are be generated for OS calls, and these would include file system and

network system calls handled by their respective probes. The part of Jaeger’s code

that receives each request would correspond to an event router, as recited in claim

element [1.8]. Id. Furthermore, it would have been obvious to include an event

router in Jaeger’s system, as each message requesting authorization must be

received by the authorization subroutines, as illustrated in Fig. 5. See EX1002, ¶98.

Jaeger in view of CORBA discloses elements [1.9] and [3.6]:

’755 Patent Jaeger and CORBA

[1.9, 3.6] [a/the]

runtime environment

monitor for receiving

the notification

message and the event

message [from the

event router] and

See [1.3] above, describing the runtime environment

monitor.

Jaeger’s security policy involves an intersection of sets of

access rights: “The access rights of a remote principals

content in interpreter t active at state s are the intersection

of the rights of interpreter t and the rights of the principal

group to which the remote principal is assigned in

53

comparing the

extension call and the

operating system call

against a

predetermined security

policy before allowing

the operating system

to process the

extension call and the

operating system call;

and

interpreter t at state s.” EX1005 at 0012.

The rights are used to authorize execution: “Any

controlled operation run by the content is authorized by

the appropriate interpreter and if authorization is granted

then the operation is executed. Operations are executed in

the interpreter trusted with the operation.” Id. at 0008.

See also id. at 0014, Figs. 5, 8, 9; EX1002, ¶¶99, 127-32.

Claim elements [1.9] and [3.6] both recite a runtime environment monitor

for receiving the notification and event messages and comparing the respective

calls against a security policy before allowing the OS to process them. Jaeger’s

system discloses these elements.

As discussed above with respect to claim element [1.3], Jaeger discloses a

runtime environment monitor (embodied in the “authorize” function of Fig. 9) that

receives messages related to calls such as extension and OS calls. See also §I.C.i.

above (describing the “Authorize Content” step of Fig. 5). Furthermore, as

discussed above, the runtime environment monitor of Jaeger compares each call to

a security policy before allowing the OS to process it. See EX1002, ¶¶99, 127-32.

Similar runtime environment monitor software would handle authorization for each

54

of the notification and event messages.

Moreover, as discussed in claim element [1.8], the extension and OS calls

would be received from an event router, which itself would be the portion of

Jaeger’s interpreter that receives function calls and invokes the “authorize”

procedure of the “operation” routine to authorize them. See EX1002, ¶¶97-99.

Accordingly, Jaeger in view of CORBA discloses a runtime environment

monitor as described in elements [1.9] and [3.6].

Jaeger in view of CORBA discloses elements [1.10] and [3.7]:

’755 Patent Jaeger and CORBA

[1.10, 3.7] [a/the] response

engine for receiving a

violation message from the

runtime environment monitor

when one of the extension

call and the operating system

call violate one or more rules

of the predetermined security

policy and blocking extension

calls and operating system

calls that are forbidden

according to the

predetermined security

policy, and for allowing

See [1.4] above, describing the response engine

shown in Fig. 8.

Jaeger’s response engine enables execution of

requests conditioned on a message received from

the authorize procedure: “Lastly, the architecture

provides support for enforcing the access rights

specified above while executing content and any

external software and network services used by the

content. The browser: (1) authorizes content

operations; (2) provides safe implementations of

these operations; (3) enables controlled execution

of external software and network services.”

EX1005 at 0015.

55

extension calls and operating

system calls that are

permitted according to the

predetermined security

policy.

“Any controlled operation run by the content is

authorized by the appropriate interpreter and if

authorization is granted then the operation is

executed.” Id. at 0008 (emphasis added).

See also id at Figs. 5, 8, 9; EX1002, ¶¶100-02,

133-36.

Claim elements [1.10] and [3.7] both recite a response engine for receiving a

violation message from the runtime environment monitor when a call violates a

security rule. The response engine blocks forbidden calls and allows permitted

calls. Jaeger’s system discloses these elements.

As discussed above with respect to claim element [1.4], Jaeger discloses a

response engine that receives a message when a rule is violated by a call, such as

an extension call or OS call. See also §I.C.i. above (describing the “Execute

Content” step of Fig. 5). Furthermore, as discussed in element [1.4], the response

engine determines whether or not the security policy is violated based on such

messages. See EX1002, ¶¶100-02, 133-36.

Jaeger discloses a response engine, as illustrated in Fig. 8, that allows

operations that are permitted and blocks operations that are forbidden according to

a received message. This function is indicated by the code “If (authorize args

arg_types arg_ops) then results = execute(procedure, args).” See EX1005 at Fig. 8,

56

EX1002, ¶¶100-01, 134-35. This code will execute the procedure requested by the

call if and only if it is permitted, as determined by the return value of the authorize

procedure. Id. In Jaeger’s security policy, a call is forbidden if the runtime

environment monitor indicates a rule violation, and permitted otherwise. Id.

Moreover, the same rules would apply for extension calls and OS calls, as Jaeger

states that “Any controlled operation run by the content is authorized by the

appropriate interpreter and if authorization is granted then the operation is

executed.” Id. at 0008 (emphasis added), see also id. at Fig. 5 (“if authorized the

browser access[es] system objects on behalf of content.”); EX1002, ¶102, 136.

Accordingly, Jaeger in view of CORBA discloses a runtime environment

monitor as described in elements [1.10] and [3.7].

Accordingly, independent claims 1 and 3 would have been obvious to a

person of ordinary skill in view of Jaeger and CORBA. EX1002, ¶139.

ii. Claims 2 and 4

Claims 2 and 4 depend from claims 1 and 3 respectively, and further recite

that the downloadable is one of a Java component, an ActiveX control, executable

code, or interpretable code. Jaeger in view of CORBA discloses this element, in

addition to the other elements discussed above with respect to claims 1 and 3.

As indicated by its title, Jaeger is directed to “Building Systems That

Flexibly Control Downloaded Executable Content.” Accordingly, Jaeger’s system

57

includes a downloadable in the form of executable code. EX1002, ¶104, 138; see

also EX1005 at Figs. 3, 5 (illustrating steps including “Download,” “Authenticate

Content Source,” “Authorize Operation,” and “Execute Content”). Similarly, each

of the other recited types of downloadable would have been obvious, as each was a

well-known type of Downloadable in 1996. EX1002, ¶104, 138; see also EX1005

at 0002-03.

Accordingly, claims 2 and 4 would have been obvious in view of Jaeger and

CORBA. In addition to the discussion above, the following claim chart shows in

further detail how Jaeger in view of CORBA renders claims 2 and 4 of the ’755

patent obvious. EX1002, ¶139.

’755 Patent Jaeger and CORBA

[2/4]. The system of

claim [1/3], wherein

the downloadable is

one of a Java

component, an

ActiveX control,

executable code, or

interpretable code.

See Claims 1 and 3 above.

“Building Systems That Flexibly Control Downloaded

Executable Content.” EX1005, Title.

See EX1005 at Figs. 3,5, 0002-03 (“download and run

executable content,” “Java-enabled Netscape, Java’s

Appletviewer, and Tcl’s safe interpreter”), 0014

(“Evaluation of arbitrary code”); EX1002, ¶¶103-04, 137-

38.

58

B. [Ground 2] Claim 5 is Obvious under 35 U.S.C. § 103(a) over

Jaeger in view of CORBA and further in view of TBAV

As described in further detail below, claim 5 of the ’755 patent would have

been obvious in view of Jaeger, CORBA, and TBAV. EX1002, ¶¶140-48.

Claim 5 depends from claim 3, and further recites that “the response engine

stores results of the comparison in an event log.” As discussed above with respect

to Ground 1, Jaeger in view of CORBA renders claim 3 obvious.

Jaeger also discloses generating an event log. For example, Jaeger states that

the contents of a file used to define mappings from object groups to system objects

“should be based on analysis, e.g., use in system that can log process actions of the

interpreter t.” EX1005 at 0013. Logging process actions of the interpreter would

include storing results of the interpreter’s comparison in a log. EX1002, ¶143.

To the extent that Jaeger does not explicitly disclose storing results of the

comparison in an event log, it would have been obvious to do so. Indeed, storing

such information in a log file was a well-established, routine practice when dealing

with potentially malicious files. EX1002, ¶145. For example, TBAV discloses the

generation of such log files.

TBAV is a user manual describing a software package for malware

protection that includes event logging. EX1002, ¶145. TBAV describes a utility

called “TbLog, which is designed primarily to create log files in response to

various TBAV alert messages.” EX1006 at 139. TBAV states that the TbLog

59

utility is “primarily for network users,” and provides convenient logging of activity

so that a “supervisor can easily keep track of what’s going on.” Id. TbLog is

described as a “utility that writes a record into a log file whenever one of the

resident TBAV utilities pops up with an alert message. It also records when a virus

is detected.” Id. TBAV also describes the contents of such a log entry:

A TbLog record provides three pieces of information: The time

stamp of when the event took place. The name of the machine

on which the event occurred. An informative message about

what happened and which files were involved. This information

is very comprehensive and takes only one line.

Id.; EX1002, ¶146.

It would have been obvious to store the results of Jaeger’s comparison in an

event log for the purpose of identifying suspicious downloadables. Jaeger describes

a purpose of the system as preventing a “malicious remote principal” from

“obtain[ing] unauthorized access to the downloading principal’s resources.”

EX1005 at 0002. If a downloadable attempted to access unauthorized resources,

that would indicate that it was suspicious. EX1002, ¶144. Indeed, Jaeger

recognizes that such behaviors are suspicious, stating that such a downloadable

“could try to perform, either accidentally or maliciously, unauthorized actions.”

EX1005 at 0004.

Logging software, as disclosed in TBAV, would have been obvious to use

60

for this purpose. EX1002, ¶147. Furthermore, there would have been a reasonable

expectation of success in making such a combination, as recording of data in log

files has long been routine. Id.

Accordingly, claim 5 would have been obvious in view of Jaeger and

TBAV. In addition to the discussion above, the following claim chart shows in

further detail how Jaeger in view of CORBA and TBAV renders claim 5 of the

’755 patent obvious. EX1002, ¶148.

’755 Patent Jaeger, CORBA, and TBAV

5. The

system of

claim 3,

wherein the

response

engine stores

results of the

comparison

in an event

log.

See Claim 3 above.

Jaeger discloses logging of process actions in its interpreters: “The

file … is used to define the mapping from object groups to system

objects for interpreter t. The contents of this file should be based on

analysis, e.g., use in system that can log process actions of the

interpreter t.” EX1005 at 0013.

TBAV discloses generation of log files: “TbLog, which is designed

primarily to create log files in response to various TBAV alert

messages” EX1006 at 139.

The log files contain information about what events happened: “A

TbLog record provides three pieces of information: The time stamp

of when the event took place. The name of the machine on which

the event occurred. An informative message about what happened

and which files were involved. This information is very

61

comprehensive and takes only one line.” Id.

The log files record when viruses are detected: “TbLog is a

memory resident TBAV utility that writes a record into a log file

whenever one of the resident TBAV utilities pops up with an alert

message. It also records when a virus is detected.” Id.

See also EX1005 at Fig. 8; EX1002, ¶¶142-48.

C. [Ground 3] Claims 6-8 are Obvious under 35 U.S.C. § 103(a) over

Jaeger in view of CORBA and further in view of Arnold

As described further below, claims 6-8 of the ’755 patent would have been

obvious to one of ordinary skill in the art in view of Jaeger, CORBA, and Arnold.

EX1002, ¶¶149-65.

Claims 6, 7, and 8 each depend from claim 3. As discussed above with

respect to Ground 1, Jaeger in view of CORBA renders claim 3 obvious. As

discussed below, each of the recited elements of claims 6-8 (informing the user,

storing relevant information in a database, and discarding a suspicious

downloadable) would have been obvious in view of Arnold.

i. Claim 6

Claim 6 of the ’755 patent depends from claim 3 and further recites that “the

response engine informs the user when the security policy has been violated.” To

the extent that Jaeger does not explicitly disclose that the response engine informs

the user when the security policy has been violated, such a feature would have

62

been obvious to include in Jaeger’s system in view of Arnold. EX1002, ¶¶151 -55.

There are several reasons that a notifying a user of a security violation would

be a desirable feature. For example, a security violation represents a danger, and

informing a user of such danger would be obvious. See, e.g., EX1005 at 0002,

0003, 0015; EX1002, ¶152. Furthermore, Jaeger’s system blocks commands that

violate the policy, so the user should be informed that a requested operation has

failed, to explain the resulting change in program behavior. EX1002, ¶152. Finally,

a security violation may occur when a program has been given the wrong domain

rights; if alerted, the user could correct this and allow the program to execute. Id.

Any or all of these reasons could motivate a person of ordinary skill to alert the

user of a security violation.

Additionally, it was well known in the art of virus detection that the user

should be alerted when potentially malicious content was detected. EX1002, ¶153.

For example, Arnold discloses a system for detecting “anomalous behavior that

may indicate the presence of an undesirable software entity such as a computer

virus, worm, or Trojan Horse.” EX1007 at Abstract. Arnold teaches that “a number

of commercial computer virus scanners are successful in alerting users to the

presence of viruses that are known apriori.” Id. at 1:64-66. Arnold further discloses

that “the use of the distress signal is appropriate to alert the user and/or an expert to

the existence of a confusing, potentially dangerous situation.” Id. at 20:62-64, see

63

also id. at Fig. 2; EX1006 at 75 (describing displaying a “virus alert window” if a

scanner “finds a file to be suspicious”); EX1002, ¶153. A program being blocked

due to a security violation would be an example of a “confusing, potentially

dangerous situation.” EX1002, ¶153.

As discussed above, a person of ordinary skill would be motivated to inform

the user, as taught by Arnold, in response to a security violation in Jaeger’s system,

for various reasons. A person of ordinary skill would also have a reasonable

expectation of success in doing so, as generating alert messages has long been

routine practice. EX1002, ¶154. Accordingly, claim 6 would have been obvious in

view of Jaeger, CORBA, and Arnold.

ii. Claim 7

Claim 7 of the ’755 patent depends from claim 3 and further recites that “the

response engine stores information on the Downloadable in a suspicious

Downloadable database when it includes extension OS calls that are forbidden

according to the predetermined security policy.” To the extent that Jaeger does not

explicitly disclose storing information on the Downloadable in a suspicious

Downloadable database when it includes forbidden calls, such a feature would

have been obvious to include in Jaeger’s system. EX1002, ¶¶156-60.

Storing information in a database relating to potentially malicious content

was well known prior to 1997. EX1002, ¶¶157-58. For example, Arnold discloses

64

storing information on the Downloadable in a suspicious Downloadable database.

Arnold discloses a system in which, upon detection of a virus, an identifying

signature is extracted and added to a signature database. EX1007 at Abstract; see

also id. at Fig. 3, step E (“extract signature from code, add to scanner’s database”);

EX1002, ¶158. Extracting signatures of a detected virus helps detect copies, as

well as variants of the virus. EX1007 at 9:13-41; see also id. at 5:28-68, 19:38-43,

Fig. 2, step B.

A person of ordinary skill in the art would be motivated to store information

on the Downloadable in a suspicious Downloadable database, as taught by Arnold,

when Jaeger’s system detected a security violation, because such a violation

indicates that the content may be malicious. See EX1005 at 0002. By recording

information about such malicious content to a database, such as the database of

Arnold, would allow the system to more easily screen out future copies and

variants of the content. Moreover, maintaining and updating databases was a

common practice in computer science, and Arnold teaches that doing so helps

protect a system from malicious or otherwise dangerous content. A person of

ordinary skill would thus have a reasonable expectation of success in using the

database of Arnold with the system of Jaeger in this way. EX1002. ¶159.

Accordingly, claim 7 would have been obvious in view of Jaeger, CORBA, and

Arnold.

65

iii. Claim 8

Claim 8 of the ’755 patent depends from claim 3 and further recites that “the

response engine discards the Downloadable when it includes extension calls or

operating system calls that are forbidden according to the predetermined security

policy.” To the extent that Jaeger does not explicitly disclose discarding the

Downloadable when it includes forbidden calls, such a feature would have been

obvious to include in Jaeger’s system. EX1002, ¶¶161-65.

When Jaeger’s system detects a violation of a security policy, such as an

unauthorized request, this indicates that downloadable making the request may be

malicious. See, e.g., EX1005 at 0002. Such a downloadable is dangerous, so

discarding the downloadable upon detection (by deleting it, for example) is an

obvious response. EX1002,¶162. Jaeger’s system includes a file system that “can

perform read, write, and execute operations” (EX1005 at 0005), which would be

able to delete a file. EX1002, ¶162. Indeed, discarding a malicious downloadable

would have been standard practice in 1996. Id.

For example, Arnold teaches that a malicious downloadable should be

discarded when detected. Arnold describes that when malicious code is detected, a

“cleanup” process is performed that “involves killing active worm processes

(determined by tracing the process tree), and deleting worm executables and

auxiliary files from storage media.” EX1007 at 21:34-37; see also id. at Abstract

66

(describing detecting “undesirable software entities and taking remedial action if

they are discovered”), 5:61-65 (“virus removed (killed) by traditional methods,

such as … disinfection (removal of the virus from all of the software it has

infected.)”). Accordingly, Arnold teaches discarding of malicious code upon

detection. EX1002, ¶163.

A person of ordinary skill would be motivated to discard a Downloadable, as

taught by Arnold, when Jaeger’s system detected a security policy violation,

because a violation indicates that the Downloadable is likely to be malicious, and

should therefore be deleted. EX1002, ¶164. A person of ordinary skill would have

a reasonable expectation of success, as Arnold teaches that discarding a potentially

malicious Downloadable is one of the “traditional methods” for dealing with

malicious software. EX1007 at 5:61-65; EX1002, ¶164.

Accordingly, claim 8 would have been obvious in view of Jaeger, CORBA,

and Arnold.

In addition to the discussion above, the following claim chart shows in

further detail how Jaeger in view of CORBA and Arnold renders claims 6-8 of the

’755 patent obvious. EX1002, ¶155, 160, 165.

’755 Patent Jaeger, CORBA, and Arnold

6. The system of

claim 3, wherein the

See Claim 3 above.

67

response engine

informs the user when

the security policy

has been violated.

Arnold teaches that anomalous behavior is suspicious. See

EX1007 at Abstract.

Arnold teaches that users should be alerted of viruses:

“Currently, a number of commercial computer virus

scanners are successful in alerting users to the presence of

viruses that are known apriori.” Id. at 1:64-66.

Sending a distress signal is appropriate when a dangerous

situation is identified: “As such, the use of the distress

signal is appropriate to alert the user and/or an expert to

the existence of a confusing, potentially dangerous

situation.” Id. at 20:62-64.

See also id. at Fig. 2; EX1006 at 75; EX1002, ¶¶151-55.

7. The system of

claim 3, wherein the

response engine

stores information on

the Downloadable in

a suspicious

Downloadable

database when it

includes extension

calls or operating

system calls that are

forbidden according

See Claim 3 above.

Arnold teaches to extract a signature from a malicious

executable and store it in a database: “[E]xtracting an

identifying signature from the executable code portion and

adding the signature to a signature database.” EX1007 at

Abstract.

Storing information on a Downloadable such as a signature

allows future copies to be identified: “As was noted above,

the signature report(s) may be displayed on the display

device 20 and/ or are written to a database for use by the

virus scanner. As soon as the signature for the previously

68

to the predetermined

security policy.

unknown virus has been extracted, the scanner of Step B

uses the signature to search for all instances of the virus in

the system.” Id. at 19:38-43.

See also id. at 5:28-68, 9:13-41, Figs. 2, 3; EX1005 at

0002; EX1002, ¶¶156-60.

8. The system of

claim 3, wherein the

response engine

discards the

Downloadable when

it includes extension

calls or operating

system calls that are

forbidden according

to the predetermined

security policy.

See Claim 3 above.

Arnold teaches the deletion of malicious code: “Cleanup

involves killing active worm processes (determined by

tracing the process tree), and deleting worm executables

and auxiliary files from storage media.” EX1007 at 21:34-

37.

Remedial action should be taken when suspicious code is

discovered: “[A]utomatic scanning for occurrences of

known types of undesirable software entities and taking

remedial action if they are discovered.” Id. at Abstract.

Removal of a virus is a traditional method of dealing with

malicious code: “If the anomaly is found to be due to a

known virus or some slight alteration of it, the method

proceeds to Step B1 where the user is alerted, and the virus

removed (killed) by traditional methods, such as

restoration from backup (either automatically or manually

by the user) or disinfection (removal of the virus from all

of the software it has infected.)” Id. at 5:59-65.

69

See also id. at Fig. 2; EX1005 at 0002, 0005; EX1002,

¶¶161-65.

VII. CONCLUSION

For the reasons set forth above, the challenged claims of the ’755 patent are

unpatentable. Blue Coat therefore requests that an inter partes review of these

claims be instituted and the claims be canceled.

Respectfully submitted,

Dated: March 1, 2017 / Michael T. Rosato /

Michael T. Rosato, Lead Counsel

Reg. No. 52,182

70

VIII. CERTIFICATE OF COMPLIANCE

Pursuant to 37 C.F.R. §42.24(d), the undersigned certifies that this Petition

complies with the type-volume limitation of 37 C.F.R. §42.24(a). The word count

application of the word processing program used to prepare this Petition indicates

that the Petition contains 13,942 words, excluding the parts of the brief exempted

by 37 C.F.R. §42.24(a).

Respectfully submitted,

Dated: March 1, 2017 / Michael T. Rosato /

Michael T. Rosato, Lead Counsel

Reg. No. 52,182

71

IX. PAYMENT OF FEES UNDER 37 C.F.R. §§ 42.15(A) AND 42.103

The required fees are submitted herewith. If any additional fees are due at

any time during this proceeding, the Office is authorized to charge such fees to

Deposit Account No. 23-2415.

72

X. APPENDIX – LIST OF EXHIBITS

Exhibit No. Description

1001 U.S. Patent No. 9,219,755 to Shlomo Touboul

1002 Declaration of Dr. Azer Bestavros

1003 Curriculum Vitae of Dr. Azer Bestavros

1004 File History of U.S. Patent No. 9,219,755 (excerpts)

1005 Jaeger et al., “Building Systems that Flexibly Control

Downloadable Executable Content” (July 1996)

1006 ThunderBYTE Anti-Virus Utilities User Manual (1995)

1007 U.S. Pat. No. 5,440,723 to Arnold et al.

1008 U.S. Pat. No. 6,167,520 to Shlomo Touboul

1009 U.S. Pat. No. 6,092,194 to Shlomo Touboul

1010 U.S. Provisional Application No. 60/030,639

1011 “The Common Object Request Broker: Architecture and

Specification,” (December 1993)

73

1012 U.S. Pat. No. 5,696,822 to Carey Nachenberg

1013 U.S. Pat. No. 6,480,962 to Shlomo Touboul

1014 U.S. Pat. No. 5,867,647 to Haigh et al.

1015 U.S. Pat. No. 5,857,102 to McChesney et al.

1016 Decision in Reexam Control No. 95/001836

1017 ThunderBYTE Evaluation Request Page (1996)

1018 ThunderBYTE Server Statistics for April, 1996

1019 Proceedings of the Sixth Annual USENIX Security Symposium

1020 USENIX Proceedings Download Page for Jaeger (Nov. 14, 1996)

1021 USENIX Publication Order Form (Nov. 22, 1996)

1022 U.S. Pat. No. 5,754,830 to Butts et al.

1023 U.S. Pat. No. 5,819,093 to Davidson et al.

74

CERTIFICATE OF SERVICE

Pursuant to 37 C.F.R. §§ 42.6(e) and 42.105(a), this is to certify that I

caused to be served a true and correct copy of the foregoing Petition for Inter

Partes Review of U.S. Patent No. 9,219,755 (and accompanying Exhibits 1001-

1023) by overnight courier (Federal Express or UPS), on this 1st day of March,

2017, on the Patent Owner at the correspondence address of the Patent Owner as

follows:

FINJAN, INC.

2000 University Avenue

Suite 600

East Palo Alto, CA 94303

Dawn-Marie Bey

213 Bayly Court

Richmond, VA 23229

Respectfully submitted,

Dated: March 1, 2017 / Michael T. Rosato /

Michael T. Rosato, Lead Counsel

Reg. No. 52,182

