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The constituents of concern found in wastewater are removed by physical, chemical, 
and biological methods. The individual methods usually are classified as physical unit 
operations, chemical unit processes, and biological unit processes. Treatment methods 
in which the application of physical forces predominate are known as physical unit 
operations. Examples of physical unit operations include screening, mixing, sedimen­
tation, gas transfer, filtration, and adsorption. Treatment methods in which the removal 
or conversion of constituents is brought about by the addition of chemicals or by other 
chemical reactions are known as chemical unit processes. Examples of chemical unit 
processes include disinfection, oxidation, and precipitation. Treatment methods in 
which the removal of constituents is brought about by biological activity are known as 
biological unit processes. Biological treatment is used primarily to remove the 
biodegradable organic constituents and nutrients in wastewater. Examples of biological 
treatment processes include the activated-sludge and trickling-filter processes. Unit 
operations and processes occur in a variety of combinations in treatment flow diagrams. 

From practical observations, the rates at which physical, chemical, and biological 
reactions and conversions occur are important, as they will affect the size of the treat­
ment facilities that must be provided (see Fig. 4-1). The rate at which reactions and 
conversions occur, and the degree of their completion, is generally a function of the 
constituents involved, the temperature, and the type of reactor (i.e., container or tank in 
which the reactions take place). Hence, both the effects of temperature and the type of 
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reactor employed are important in the selection of treatment processes. In addition, a 
variety of environmental and other physical constraints must be considered in process 
selection. The fundamental basis for the analysis of the physical, chemical, and biolog­
ical unit operations and processes used for wastewater treatment is the materials mass 
balance principle in which an accounting of mass is made before and after reactions 
and conversions have taken place. 

Therefore, the purpose of this chapter is to introduce and discuss (1) the types of 
reactors used for wastewater treatment; (2) the preparation of mass balances to determine 
process performance; (3) modeling ideal flow in reactors; (4) the analysis of reactor 
hydraulics using tracers; (5) modeling nonideal flow in reactors; (6) reactions, reaction 
rates, and reaction fate coefficients; (7) modeling treatment kinetics, which involves the 
coupling of reactors and reaction rates; (8) treatment processes involving mass transfer; 
and (9) important factors involved in process analysis and selection. The information in 
this chapter is intended to serve as an introduction to the subject of process analysis, and 
to provide a basis for the analysis of the unit operations and processes that will be pre­
sented in subsequent chapters. By dealing with the basic concepts first, it will be possi­
ble to apply them (without repeating the details) in the remaining chapters. Processes 
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Operations used for the treatment of wastewater in which change is brought about by 
means of or through the application of physical forces are known as physical unit oper­
ations. Because physical unit operations were derived originally from observations of 
the physical world, they were the first treatment methods to be used. Today, physical 
unit operations, as shown on Fig. 5-1, are a major part of most wastewater-treatment 
systems. 

The unit operations most commonly used in wastewater treatment include (1) screen­
ing, (2) coarse solids reduction (comminution, maceration, and screenings grinding), 
(3) flow equalization, (4) mixing and flocculation, (5) grit removal, (6) sedimentation, 
(7) high-rate clarification, (8) accelerated gravity separation (vortex separators), (9) flota­
tion, (10) oxygen transfer, (11) aeration, and (12) volatilization and stripping of volatile 
organic compounds (VOCs). The principal applications of these operations and treat­
ment devices used are summarized in Table 5-1. Physical unit operations that apply to 
advanced wastewater-treatment systems such as packed-bed filters, membrane separa­
tion systems, and ammonia stripping are discussed separately in Chap. 11. Unit opera­
tions associated with the processing of solids and biosolids (sludge) are covered in 
Chap. 14. 
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314 Chapter 5 Physical Unit Operations 

Table 5-1 
Typical physical unit operations used for wastewater treatment 

Screening, coarse Removal of coarse solids such as slicks, rags, 
and other debris in untreated wastewater by 
interception (surface straining) 

Bar rack 5-1 

Screening, fine Removal of small particles Fine screen 5-1 
Screening, micro Removal of fine solids, Floatable matter, and algae Microscreen 5-1, 11-5 
Comminution In-stream grinding of coarse solids to reduce size Comminutor 5-2 
Grinding/ Grinding of solids removed by bar racks Screenings grinder 5-2 
maceration Side-stream grinding of coarse solids Macerator 5-2 
Flow Temporary storage of flow to equalize flowrates Equalization tank 5-3 
equalization and mass loadings of BOD and suspended solids 

Mixing Blending chemicals with wastewater and for 
homogenizing and maintaining solids 

Rapid mixer 5-4 

in suspension 

Flocculation Promoting the aggregation of small particles into 
larger particles to enhance their removal by 
,gravity sedim·entation 

Flocculator 5-4 

Accelerated Removal of grit Grit chamber 5-6 
sedimentation Removal of grit and coarse solids Vortex separator 5-9 
Sedimentation Removal of settleable solids Primary clarifier 5-7 

High-rate clarifier 5-8 
Thickening of solids and biosolids Gravity thickener 14-6 

Flotation Removal of finely divided suspended solids and Dissolved-air 5-10 
particles with densities close to that of water; flotation (DAF) 14-6 
also thickens biosolids 

Removal of oil and grease Induced-air flotation 5-10 
Aeration Addition of oxygen to biological process Diffused-air aeration 5-12 

Mechanical aerator 5-12 
Postaeration of treated effluent Cascade aerator 5-12 

VOC control Removal of volatile and semivolatile organic Gas striper 5-13 
compounds from. Wastewaters Diffuse -air and 

mechanical aeration 5-12,5-13 Figure! 
Depth filtration Removal of residual suspended solids Depth filters 11-4 
Surface filtration Removal of residual suspended solids Discfilter® 11-5 

Definition sl 

Cloth-Media Disk Filter® 
of screens l 

wastewater 
Membrane Removal of suspended and colloidal solids and Microfiltration, 11-6 
filtration dissolved organic and inorganic matter ultrafiltration, nanofiltration, 

and reverse osmosis 

Air stripping Removal of ammonia, hydrogen sulfide, and other Packed tower 11-8 
gases from wastewater and digester supernatant 
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Drive assembly 

Grit influent 

~----------~-=----: 

' ' l ! 
' ' ' ' 

Grit receptacle 

(a) (b) 

Figure 5-38 

Example of grit separation and washing unit: (a) schematic and (b) view of typical installation. 

the storage hoppers, by applying air beneath the grit, and by the use of hopper vibrators. 
Drainage facilities for collection and disposal of drippings from the bottom-loading 
gates are desirable. Grab buckets operating on a monorail system may also be used to 
load trucks directly from the grit chambers. 

Pneumatic conveyors are sometimes used to convey grit short distances. Advan­
tages of pneumatic conveying include (1) no elevated storage hoppers are required, and 
(2) attendant odor problems associated with storage are eliminated. The principal dis­
advantage is the considerable wear on piping, especially at bends. 

5-7 PRIMARY SEDIMENTATION 
The objective of treatment by sedimentation is to remove readily settleable solids and 
floating material and thus reduce the suspended solids content. Primary sedimentation 
is used as a preliminary step in the further processing of the wastewater. Efficiently 
designed and operated primary sedimentation tanks should remove from 50 to 70 per­
cent of the suspended solids and from 25 to 40 percent of the BOD. 

Sedimentation tanks have also been used as stormwater retention tanks, which are 
designed to provide a moderate detention period (10 to 30 min) for overflows from 
either combined sewers or storm sewers. The purpose of sedimentation is to remove a 
substantial portion of the organic solids that otherwise would be discharged directly to 
the receiving waters. Sedimentation tanks have also been used to provide detention 
periods sufficient for effective disinfection of such overflows. 

The purpose of this section is to describe the various types of sedimentation facil­
ities, to consider their performance, and to review important design considerations. 
Sedimentation tanks used for secondary treatment are considered in Chap. 8. 
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Des(;B"iption 

Almost all treatment plants use mechanically cleaned sedimentation tanks of standard­
ized circular or rectangular design (see Fig. 5-39). The selection of the type of sedi­
mentation unit for a given application is governed by the size of the installation, by 
rules and regulations of local control authorities, by local site conditions, and by the 
experience and judgment of the engineer. Two or more tanks should be provided so that 
the process may remain in operation while one tank is out of service for maintenance 
and repair work. At large plants, the number of tanks is determined largely by size lim­
itations. Typical design information and dimensions for rectangular and circular sedi­
mentation tanks used for primary treatment are presented in Tables 5-20 and 5-21. 

Rectangular Yanlu. Rectangular sedimentation tanks may use either chain-and­
flight solids collectors or traveling-bridge-type collectors. A rectangular tank that uses 
a chain-and-flight-type collector is shown on Fig. 5-40. Equipment for settled solids 
removal generally consists of a pair of endless conveyor chains, manufactured of alloy 
steel, cast iron, or thermoplastic. Attached to the chains at approximately 3-m (lO-ft) 
intervals are scraper flights made of wood or fiberglass, extending the full width of the 
tank or bay. The solids settling in the tank are scraped to solids hoppers in small tanlcs 
and to transverse troughs in large tanks. The transverse troughs are equipped with col­
lecting mechanisms (cross collectors), usually either chain-and-flight or screw-type col­
lectors, which convey solids to one or more collection hoppers. In very long units (over 
50 m), two collection mechanisms can be used to scrape solids to collection points near 
the middle of the tank length. Where possible, it is desirable to locate solids pumping 
facilities close to the collection hoppers. 

Rectangular tanks may also be cleaned by a bridge-type mechanism that travels up 
and down the tank on rubber wheels or on rails supported on the sidewalls. One or more 
scraper blades are suspended from the bridge. Some of the bridge mechanisms are 
designed so that the scraper blades can be lifted clear of the solids blanket on the return 
travel. 

l 
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398 Chapter 5 Physical Unit Operations 

I Table 5-20 
Typical design information for primary sedimentation tanksa 

Primary !>edimentation tanks followed by secondary treatment 

Detention time h 1.5-2.5 2.0 

Overflow rate 

Average flow gal/ft2·d 800-1200 1000 

Peak hourly flow gal/ft2·d 2000-3000 2500 

Weir loading gal/ft·d 1 O,OOQ-40,000 20,000 

Primary settling with waste activated-sludge return 

Detention time h 1.5-2.5 2.0 

Overflow rate 

Average flow gal/ft2·d 600-800 700 

Peak hourly flow gal/ft2·d 1200-1700 1500 

Weir loading gal/ft·d 1 0,000-40,000 20,000 

a comparable data for secondary clarifiers are presented in Chap. 8. 

Table 5-21 

h 

m3/m2·d 
m3/m2·d 
m3/m·d 

h 

m3/m2·d 

m3/m2·d 

m3/m·d 

1.5-2.5 

30-50 

80-120 

125-500 

1.5-2.5 

24-32 

48-70 

125-500 

2.0 

40 

100 

250 

2.0 

28 

60 

250 

Typical dimensional data for rectangular and circular sedimentation tanks used for primary treatment of 
wastewater 

Item 

Rectangular: 

Depth ft 10-16 14 m 3-4.9 4.3 

Length ft 50-300 80-130 m 15-90 24-40 

Width0 ft 10-80 16-32 m 3-24 4.9-9.8 

Flight speed ft/min 2-4 3 m/min 0.6-1.2 0.9 

Circular: 

Depth ft 10-16 14 m 3-4.9 4.3 

Diameter ft 10-200 40-150 m 3-60 12-45 

Bottom slope in/ft 3/4-2/ft 1 .0/ft mm/mm 1/16-1/6 1/12 

Flight speed r/min 0.02-0.05 0.03 r/min 0.02-0.05 0.03 

a If widths of rectangular mechanically cleaned tanks are greater than 6 m (20 ft), multiple bays with individual cleaning 
equipment may be used, thus permitting tank widths up to 24 m (80 ft) or more. 

Fi 
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Where cross collectors are not provided, multiple solids hoppers must be installed. 
Solids hoppers have operating difficulties, notably solids accumulation on the slopes 
and in. tl)e corners and arching over the solids drawoff piping. Wastewater may also be 
drawn through the solids hopper, bypassing some of the accumulated solids, resulting 
in a "rathole" effect. A cross collector is more advisable, except possibly in small 
plants, because a more uniform and concentrated solids can be withdrawn and many of 
the problems associated with solids hoppers can be eliminated. 

Because flow distribution in rectangular tanks is critical, one of the following inlet 
designs is used: (1) full-width inlet channels with inlet weirs, (2) inlet channels with 
submerged ports or orifices, (3) or inlet channels with wide gates and slotted baffles. 
Inlet weirs, while effective in spreading flow across the tank width, introduce a vertical 
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velocity component into the solids hopper that may resuspend the solids particles. Inlet 
ports can provide good distribution across the tank width if the velocities are main­
tained in the 3 to 9 m/min (10 to 30 ft/min) range. Inlet baffles are effective in reduc­
ing the high initial velocities and distribute flow over the widest possible cross-sectional 
area. Where full-width baffles are used, they should extend from 150 mm (6 in) below 
the surface to 300 mm (12 in) below the entrance opening. 

For installations of multiple rectangular tanlcs, below-grade pipe and equipment 
galleries can be constructed integrally with the tank structure and along the influent 
end. The galleries are used to house the sludge pumps and sludge draw off piping. The 
galleries also provide access to the equipment for operation and maintenance. Galleries 
can also be connected to service tunnels for access to other plant units. 

Scum is usually collected at the effluent end of rectangular tanks with the flights 
returning at the liquid surface. The scum is moved by the flights to a point where it is 
trapped by baffles before removal. Water sprays can also move the scum. The scum can 
be scraped manually up an inclined apron, or it can be removed hydraulically or 
mechanically, and for scum removal a number of means have been developed. For small 
installations, the most common scum drawoff facility consists of a horizontal, slotted 
pipe that can be rotated by a lever or a screw. Except when drawing scum, the open slot 
is above the normal tank water level. When drawing scum, the pipe is rotated so that the 
open slot is submerged just below the water level, permitting the scum accumulation to 
flow into the pipe. Use of this equipment results in a relatively large volume of scum 
liquor. 

Another method for removing scum is by a transverse rotating helical wiper 
attached to a shaft. Scum is removed from the water surface and moved over a short 
inclined apron for discharge to a cross-collecting scum trough. The scum may then be 
flushed to a scum ejector or hopper ahead of a scum pump. Another method of scum 
removal consists of a chain-and-flight type of collector that collects the scum at one 
side of the tank and scrapes it up a short incline for deposit in scum hoppers, whence it 
can be pumped to disposal units. Scum is also collected by special scum rakes in rec­
tangular tanlcs that are equipped with the carriage or bridge type of sedimentation tank 
equipment. In installations where appreciable amounts of scum are collected, the scum 
hoppers are usually equipped with mixers to provide a homogeneous mixture prior to 
pumping. Scum is usually disposed of with the solids and biosolids produced at the 
plant; however, separate scum disposal is used at many plants. 

Multiple rectangular tanks require less land area than multiple circular tanks and 
find application where site space is at a premium. Rectangular tanks also lend them­
selves to nesting with preaeration tanks and aeration tanlcs in activated-sludge plants, 
thus permitting common wall construction and reducing construction costs. They are 
also used generally where tanlc roofs or covers are required. 

Circul~r i©Jrl1klli. In circular tanks the flow pattern is radial (as opposed to hori­
zontal in rectangular tanks). To achieve a radial flow pattern, the wastewater to be set­
tled can be introduced in the center or around the periphery of the tank, as shown on 
Fig. 5-41. Both flow configurations have proved to be satisfactory generally, although 
the center-feed type is more commonly used, especially for primary treatment. In the 
center-feed design (see Fig. 5-41a), the wastewater is transported to the center of the 
tank in a pipe suspended from the bridge, or encased in concrete beneath the tank floor. 

Typical ci 

sediment 

(a) center 

(b) perip 

{Crites an 
Tchobano. 

Typical cir 

sedimental 
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Figure 5-41 

Typical circular primary 

sedimentation tanks: 

(a) center feed and 

(b) peripheral feed. 

(Crites and 
Tchobanoglous, 7 998.) 

Figure 5-42 

Typical circular primary 

sedimentation tank. 

(a) 

Flow lines for 
clarified liquid 

(b) 

5-7 Primary Sedimentation 401 

Flow lines for 
clarified liquid 

At the center of the tank, the wastewater enters a circular well designed to distribute the 
flow equally in all directions (see Fig. 5-42). The center well has a diameter typically 
between 15 and 20 percent of the total tank diameter and ranges from 1 to 2.5 m (3 to 
8 ft) in depth and should have a tangential energy-dissipating inlet within the feedwell. 

The energy-dissipating device (see Fig. 5-43) functions to collect influent from the 
center column and discharge it tangentially into the upper 0.5 to 0.7 m of the feedwell. 
The discharge ports are sized to produce a velocity of::::: 0.75 m/s at maxinmm flow and 
0.30 to 0.45 mls at average flow. The feedwell should be sized so that the maximum 
downward velocity does not exceed 0.75 m/s. The depth of the feedwell should extend 
about 1 meter below the energy-dissipating inlet ports (Randall et al., 1992). 

In the peripheral-feed design (see Fig. 5-41b), a suspended circular baffle forms an 
annular space into which the inlet wastewater is discharged in a tangential direction. 
The wastewater flows spirally around the tank and underneath the baffle, and the clari­
fied liquid is skimmed off over weirs on both sides of a centrally located weir trough. 
Grease and scum are confined to the surface of the annular space. Peripheral feed tanks 
are used generally for secondary clarification. 

Circular tanks 3.6 to 9 m (12 to 30ft) in diameter have the solids-removal equip­
ment supported on beams spanning the tank. Tanks 10.5 m (35ft) in diameter and larger 
have a central pier that supports the mechanism and is reached by a walkway or bridge. 
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Figure 5-43 

Typical energy­

dissipating and flow 
distribution inlet for a 

center-feed sedimentation 

tank. The inner ring is 

used to create a 

tangential flow pattern. 
(Randall, eta/., 1992.) 

The bottom of the tank is sloped at about 1 in 12 (vertical:horizontal) to form an inverted 
cone, and the solids are scraped to a relatively small hopper located near the center of 
the tank. 

Multiple tanks are customarily arranged in groups of two or four. The flow is 
divided among the tanks by a flow-split structure, commonly located between the tanks. 
Solids are usually withdrawn by sludge pumps for discharge to the solids processing 
and disposal units. 

Combination Flocculator-Ciarifier. Combination flocculator-clarifiers are often 
used in water treatment and sometimes used for wastewater treatment, especially in 
cases where enhanced settling, such as for industrial wastewater treatment or for 

(a) 
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Slow-speed 
axial-flow 

Rapid mix circulator Tangential gates Effluent weir trough diffusion weir 

(a) 

Figure 5-44 

Typical flocculator­

clarifier: (a) schematic 

and (b) view of empty 

tank. In some designs, 

turbine or propeller 

mixers are included in 

the flocculation chamber. 

Annular hopper 

(b) 

Alternate 
influent 

biosolids concentration, is required. Inorganic chemicals or polymers can be added to 
improve flocculation. Circular clarifiers are ideally suited for incorporation of an inner, 
cylindrical flocculation compartment (see Fig. 5-44). Wastewater enters through a cen­
ter shaft or well and flows into the flocculation compartment, which is generally 
equipped with a paddle-type or low-speed mixer. The gentle stirring causes flocculent 
particles to form. From the flocculation compartment, flow then enters the clarification 
zone by passing down and radially outward. Settled solids and scum are collected in the 
same way as in a conventional clarifier. 

Stacked (Multilevel) Clarifiers. Stacked clarifiers originated in Japan in the 
1960s where limited land area is available for the construction of wastewater-treatment 
facilities. Since that time, stacked clarifiers have been used in the United States, the 
most notable installation of which is at the Deer Island Wastewater Treatment Plant 
constructed in Boston harbor. Design of these types of clarifiers recognizes the impor­
tance of settling area to settling efficiency. Operation of stacked rectangular clarifiers is 
similar to conventional rectangular clarifiers in terms of influent and effluent flow pat­
terns and solids collection and removal. The stacked clarifiers are actually two (or 

I I 
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Sludge 
withdrawal 

more) tanks, one located above the other, operating on a common water surface (see 
Fig. 5-45). Each clarifier is fed independently, resulting in parallel flow through the 
lower and upper tanks. Settled solids are collected from each tank with chain and flight 
solids collectors, discharging to a common hopper. In addition to saving space, advan­
tages claimed for stacked clarifiers include less piping and pumping requirements. 

Effluent weirs Air piping 
Scum trough \ Influent channel 

S:m "o"gh Eff~oo> '""""" ~ 'b ~] t 

Flow·· 

- Flow Baffle'--..~ 

Chain and flights 

- Flight direction 
I I 

. ~. .d. !>- •• .4 . . ~. 

Sludge hopper 

Scum trough Effluent weirs Effluent channel 

~--.,......,........~---! 1---.--:--::::>r--.........,...,.......,_=---~~ 

·"<:J . • -7 .. 4. : I>· 

Chain and flights 

Flow-

pipes - Flight direction 
I I 

Distorted scale 

(b) 

Figure 5-45 

Typical section through a stacked clarifier: (a) series flow and (b) parallel flow type used at the Deer Island Wastewater 

Treatment Plant, Boston, MA. Note: In the parallel flow type, the upper effluent weirs serve both the upper and lower clarifiers. 

Channels for the discharge of effluent from the lower to the upper clarifier are located on either side of the sludge collection 

mechanism in the upper clarifier. 
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Because the facilities are more compact and have less exposed surface area, better con­
trol of odors and volatile organic compound emissions is possible. Disadvantages 
include higher construction cost than conventional clarifiers and more complex struc­
tural design. Design criteria for stacked clarifiers, as regards overflow and weir rates, 
are similar to conventional primary and secondary clarifiers. 

Sedimentation Tank Performance 
The efficiency of sedimentation basins with respect to the removal of BOD and TSS is 
reduced by (1) eddy currents formed by the inertia of the incoming fluid, (2) wind­
induced circulation cells formed in uncovered tanks, (3) thermal convection currents, 
(4) cold or warm water causing the formation of density currents that move along the 
bottom of the basin and warm water rising and flowing across the top of the tank, and 
(5) thermal stratification in hot arid climates (Fair and Geyer, 1954). Factors that affect 
performance are considered in the following discussion. 

BOD and TSS Removal. Typical performance data for the removal of BOD and 
TSS in primary sedimentation tanks, as a function of the detention time and constituent 
concentration, are presented on Fig. 5-46. The curves shown on Fig. 5-46 are derived 
from observations of the performance of actual sedimentation tanks. The curvilinear 
relationships in the figure can be modeled as rectangular hyperbolas using the follow­
ing relationship (Crites and Tchobanoglous, 1998). 

t 
R=-­

a + bt 

where R = expected removal efficiency 
t = nominal detention time T 

a, b = empirical constants 
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cle, Hudson and Wolfner (1967) noted that "coagulants hydrolyze and begin to poly­
merize in a fraction of second after being added to water." Hahn and Stumm (1968) 
studied the coagulation of silica dispersions with Al(III). They reported that the time 
required for the formation of mono- and polynuclear hydroxide species appears to be 
extremely short, on the order of 10-3 s. The time of formation for the polymer species 
was on the order of 10-2 s. Further, they found that the rate-limiting step in the coagu­
lation process was the time required for the colloidal transport step brought about by 
Brownian motion (i.e., perikinetic flocculation) which was estimated to be on the order 
of 1.5 to 3.3 X 10-3 s. The importance of initial and rapid mixing is also discussed by 
Amirtharajah and Mills (1982) and Vrale and Jorden (1971). Clearly, based on the lit­
erature and actual field evaluations, the instantaneous rapid and intense mixing of metal 
salts is of critical importance, especially where the metal salts are to be used as coagu­
lants to lower the surface charge of the colloidal particles. It should be noted that 
although achieving extremely low mixing times in large treatment plants is often diffi­
cult, low mixing times can be achieved by using multiple mixers. Typical mixing times 
for various chemicals are reported in Table 6-19 in Sec. 6-8. 

CHEMICAL PRECIPITATION FOR IMPROVED 
PLANT PERFORMANCE 
Chemical precipitation, as noted previously, involves the addition of chemicals to alter 
the physical state of dissolved and suspended solids and facilitate their removal by sed­
imentation. In the past, chemical precipitation was often used to enhance the degree of 
TSS and BOD removal: (1) where there were seasonal variations in the concentration 
of the wastewater (such as in cannery wastewater), (2) where an intermediate degree of 
treatment was required, and (3) as an aid to the sedimentation process. Since about 
1970, the need to provide more complete removal of the organic compounds and nutri­
ents (nitrogen and phosphorus) contained in wastewater has brought about renewed 
interest in chemical precipitation. In current practice, chemical precipitation is used 
(1) as a means of improving the performance of primary settling facilities, (2) as a basic 
step in the independent physical-chemical treatment of wastewater, (3) for the removal 
of phosphorus, and (4) for the removal of heavy metals. The frrst two applications are 
considered in the following discussion. Phosphorus and heavy metals removal is con­
sidered in Sees. 6-4 and 6-5, respectively. 

Aside from the determination of the required chemical dosages, the principal 
design considerations related to the use of chemical precipitation involve the analysis 
and design of the necessary sludge processing facilities, and the selection and design of 
the chemical storage, feeding, piping, and control systems. Chemical storage, feeding, 
piping, and control systems are considered in Sec. 6-8. 

Chemical Reactions in Wastewater Precipitation Applications 
Over the years a number of different substances have been used as precipitants. The 
degree of clarification obtained depends on the quantity of chemicals used and the care 
with which the process is controlled. It is possible by chemical precipitation to obtain a 
clear effluent, substantially free from matter in suspension or in the colloidal state. The 
chemicals added to wastewater interact with substances that are either normally present 
in the wastewater or added for this purpose. The most common chemicals are listed in 
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Table 6-3 
Inorganic chemicals used most commonly for coagulation and precipitation processes in wastewater 
treatment 

Aluminum chloride 

Calcium hydroxide 
(lime) 

Ferric chloride 

Ferric sulfate 

Ferrous sulfate 
(copperas} 

Sodium aluminate 

AICI3 

Ca(OHb 

Fe2(S04b 

FeS04-7HP 

594.4 

133.3 

56.1 as CaO 

162.2 

400 

278.1 

163.9 

114 

44 

40 

91 

51.5 

139 

100 

Liquid 8.5 (AIP3l 
Lump 17(Aip3} 

Liquid 8.5 (AIP3l 
Lump 17(Aip3) 

Liquid 

Lump 63-73 as CaO 

Powder 85-99 

Slurry 15-20 

Liquid 20 (Fe} 

Lump 20 (Fe) 

Granular 18.5 (Fe} 

Granular 20 (Fe} 

Flake 46 (Aip3) 

a Number of bound water molecules will typically vary from 14 to 1 8. 

Table 6-3. Information on the handling, storage, and feeding of these compounds may 
be found iii Sec. 6-8. The reactions involved with (1) alum, (2) lime, (3) ferrous sulfate 
(copperas) and lime, (4) ferric chloride, (5) ferric chloride and lime, and (6) ferric sul­
fate and lime are considered in the following discussion (Metcalf & Eddy, 1935). 

Alum. When alum is added to wastewater containing calcium and magnesium bicar­
bonate alkalinity, a precipitate of aluminum hydroxide will form. The overall reaction 
that occurs when alum is added to water may be illustrated as follows: 

3 X 100 (as CaC03) 666.5 

3Ca(HC03)z + Al2(S04) 3·18H20 f-7 

Calcium 
bicarbonate 

(soluble) 

Aluminum 
sulfate 

(soluble) 

2 X 78 3 X 136 6 X 44 18 X 18 

2Al(0Hh + 3CaS04 + 6C02 + 18H20 
Aluminum 
hydroxide 
(insoluble) 

Calcium 
sulfate 

(soluble) 

Carbon 
dioxide 

(soluble) 

(6-9) 

The numbers above the chemical formulas are the combining molecular weights of the 
different substances and, therefore, denote the quantity of each one involved. The pre-
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cipitation reaction given above also occurs with the addition of aluminum chloride 
(A1Cl3). The insoluble aluminum hydroxide is a gelatinous floc that settles slowly 
through the wastewater, sweeping out suspended material and producing other changes. 
The reaction is exactly analogous when magnesium bicarbonate is substituted for the 
calcium salt. 

Because alkalinity in Eq. (6-9) is reported in terms of calcium carbonate (CaC03), 

the molecular weight of which is 100, the quantity of alkalinity required to react with 
10 mg/L of alum is 

[ 3 (100 gfmole) ] 
(10.0 mg/L) (66 / ) = 4.5 mg/L 

6.5 g mole 

If less than this amount of alkalinity is available, it must be added. Lime is commonly 
used for this purpose when necessary, but it is seldom required in the treatment of 
wastewater. 

Lime. When lime alone is added as a precipitant, the principles of clarification are 
explained by the following reactions for the carbonic acid [Eq. (6-10)] and the alkalin­
ity [Eq. (6-11)]: 

44 (as C02) 56 (as CaO) 100 2 X 18 

H2C03 + Ca(OH)z ~ CaC03 + 2H20 
Carbonic 

acid 
(soluble) 

Calcium 
hydroxide 
(slightly 
soluble) 

Calcium 
carbonate 

(somewhat 
soluble) 

100 (as CaC03) 56 (as CaO) 2 X 100 2 X 18 

Ca(HC03)z + Ca(OH)2 ~ 2CaC03 + 2H20 
Calcium 

bicarbonate 
(soluble) 

Calcium 
hydroxide 
(slightly 
soluble) 

Calcium 
carbonate 
(somewhat 

soluble) 

(6-10) 

(6-11) 

A sufficient quantity of lime must therefore be added to combine with all the free car­
bonic acid and with the carbonic acid of the bicarbonates (half-bound carbonic acid) to 
produce calcium carbonate. Much more lime is generally required when it is used alone 
than when sulfate of iron is also used (see the following discussion). Where industrial 
wastes introduce mineral acids or acid salts into the wastewater, these must be neutral­
ized before precipitation can take place. 

Ferrous Sulfate and Lime. In most cases, ferrous sulfate cannot be used alone 
as a precipitant because lime must be added at the same time to form a precipitate. 
When ferrous sulfate alone is added to wastewater, the following reactions occur: 

278 100 (as CaC03) 178 136 7 X 18 

FeS04·7H20 + Ca(HC03) 2 ~ Fe(HC03) 2 + CaS04 + 7H20 
Ferrous 
sulfate 

(soluble) 

Calcium 
carbonate 
(soluble) 

Ferrous 
bicarbonate 

(soluble) 

Calcium 
sulfate 

(soluble) 

(6-12) 
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278 4 X 89.9 

Fe(HC03h ~ Fe(OHh + C02 

Ferrous 
bicarbonate 

(soluble) 

Ferrous Carbon 
hydroxide dioxide 

(very slightly (soluble) 
soluble) 

(6-13) 

If sufficient alkalinity is not available, lime is often added in excess in conjunction with 
ferrous sulfate. The resulting reaction is 

178 2 X 56 (as CaO) 89.9 2 X 100 2 X 18 

Fe(HC03h + 2Ca(OHh ~ Fe(OHh + 2CaC03 + 2H20 (6-14) 
Ferrous 

bicarbonate 
(soluble) 

Calcium 
hydroxide 
(slightly 
soluble) 

Ferrous Calcium 
hydroxide carbonate 

(very slightly (somewhat 
soluble) soluble) 

The ferrous hydroxide can be oxidized to ferric hydroxide, the final form desired, by 
oxygen dissolved in the wastewater. The reaction is: 

89.9 1/4 X 32 1/2 X 18 106.9 

Fe(OHh + 1/402 + 1/2 H20 ~ Fe(OHh (6-15) 
Ferrous Oxygen 

hydroxide (soluble) 
(very slightly 

soluble) 

Ferric 
hydroxide 
(insoluble) 

The insoluble ferric hydroxide is formed as a bulky, gelatinous floc similar to the alum 
floc. The alkalinity required for a 10 mg/L dosage of ferrous sulfate [see Eq. (6-12)] is 

[ (100 glmole)] 
(10.0 mgiL) ( I ) = 3.6 mgiL 

278 g mole 

The lime required [see Eq. (6-14)] is 

[ 2(56 glmole)] 
(10.0 mgiL) ( I ) = 4.0 mgiL 

278 g mole 

The oxygen required [see Eq. (6-15)] is 

[ (32 glmole) ] 
(10.0 mgiL) 4 (278 glmole) = 0.29 mgiL 

Because the formation of ferric hydroxide is dependent on the presence of dissolved 
oxygen, the reaction given in Eq. (6-15) cannot be completed in most wastewaters, and, 
as a result, ferrous sulfate is not used commonly in wastewater. 

Ferric Chloride. Because of the many problems associated with the use of ferrous 
sulfate, ferric chloride is the iron salt used most commonly in precipitation applications. 
When ferric chloride is added to wastewater, the following reactions take place. 

2 X 162.2 3 X 100 (as CaC03) 2 X 106.9 

2FeC13 + 3Ca(HC03h ~ 2Fe(OH)3 + 3CaC12 + 6C02 

Ferric 
chloride 
(soluble) 

Calcium 
bicarbonate 

(soluble) 

Ferric 
hydroxide 
(insoluble) 

Calcium Carbon 
sulfate dioxide 

(soluble) (soluble) 

(6-16) 

Table 6-4 
Recommende 
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tanks for vari 
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Ferric Chloride and Lime. If lime is added to supplement the natural alkalinity 
of the wastewater, the following reaction can be assumed to occur: 

2 X 162.2 3 X 56 (as CaO) 2 X 106.9 3 X 111 

2FeC13 + 3Ca(0Hh ~ 2Fe(0Hh + 3CaC12 
Ferric 

chloride 
(soluble) 

Calcium 
hydroxide 
(slightly 
soluble) 

Ferric 
hydroxide 
(insoluble) 

Calcium 
chloride 
(soluble) 

(6-17) 

Ferric Sulfate and Lime. The overall reaction that occurs when ferric sulfate 
and lime are added to wastewater may be represented as follows: 

399.9 3 X 56 (as CaO) 2 X 106.9 3 X 136 

FeiS04) 3 + 3Ca(OH)2 ~ 2Fe(OH)3 + 3CaS04 
Ferric 
sulfate 

(soluble) 

Calcium 
hydroxide 
(slightly 
soluble) 

Ferric 
hydroxide 
(insoluble) 

Calcium 
sulfate 

(soluble) 

(6-18) 

Enhanced Removal of Suspended Solids in Primary Sedimentation 
The degree of clarification obtained when chemicals are added to untreated wastewater 
depends on the quantity of chemicals used, mixing times, and the care with which the 
process is monitored and controlled. With chemical precipitation, it is possible to 
remove 80 to 90 percent of the total suspended solids (TSS) including some colloidal 
particles, 50 to 80 percent of the BOD, and 80 to 90 percent of the bacteria. Compara­
ble removal values for well-designed and well-operated primary sedimentation tanks 
without the addition of chemicals are 50 to 70 percent of the TSS, 25 to 40 percent of 
the BOD, and 25 to 75 percent of the bacteria. Because of the variable characteristics 
of wastewater, the required chemical dosages should be determined from bench- or 
pilot-scale tests. Recommended surface loading rates for various chemical suspensions 
to be used in the design of the sedimentation facilities are given in Table ~-

Alum floca 

Iron floca 

Lime floca 

Untreated wastewater 

700-1400 

700-1400 

750-1500 

600-1200 

1200 

1200 

1500 

1200 

30-70 

30-70 

35-80 

30-70 

80 

80 

90 
80 

a Mixed with the settleable suspended solids in the untreated wastewater and colloidal or other 
suspended solids swept out by the floc. 
Note: m3/m2·d X 24.5424 = gal/ft2·d 
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5. Prepare a summary table of sludge masses and volumes without and with chem­
ical precipitation. 

Treatment 

Without chemical precipitation 

With chemical precipitation 

Sludge 

Mass, kg/d Volume, m3/d 

132.0 2.14 

802.3 10.0 

Comment The magnitude of the sludge disposal problem associated with high lime treatment for 
phosphorus removal as compared to biological phosphorus removal is illustrated in this 
example. 

6-5 CHEMICAL PRECIPITATION FOR REMOVAL 
OF HEAVY METALS AND DISSOLVED 
INORGANIC SUBSTANCES 
The technologies available for the removal of heavy metals from wastewater include 
chemical precipitation, carbon adsorption, ion exchange, and reverse osmosis. Of these 
technologies, chemical precipitation is most commonly employed for most of the met­
als. Common precipitants include hydroxide (OH) and sulfide (S2-). Carbonate (Co~-) 
has also been used in some special cases. Metal may be removed separately or copre­
cipitated with phosphorus. 

Precipitation Reactions 
Metals of interest include arsenic (As), barium (Ba), cadmium (Cd), copper (Cu), mer­
cury (Hg), nickel (Ni), selenium (Se), and zinc (Zn). Most of these metals can be pre­
cipitated as hydroxides or sulfides. Solubility products for free metal concentrations in 
equilibrium with hydroxide and sulfide precipitates are reported in Table 6-9. In waste­
water treatment facilities, metals are precipitated most commonly as metal hydroxides 
through the addition of lime or caustic to a pH of minimum solubility. However, several 
of these compounds are, as discussed previously, amphoteric (i.e., capable of either 
accepting or donating a proton) and exhibit a point of minimum solubility. The pH value 
at minimum solubility varies with the metal in question as illustrated on Fig. 6-17 for 
hydroxide precipitation. The solid line on Fig. 6-17 represents the total metal in solu­
tion in equilibrium with the precipitate. The curves were developed based on the 
mononuclear hydroxide species using the same procedures as illustrated on Fig. 6-8 for 
A13 '~- and FeH. It is important to remember that the location of the minimum solubility 

· will vary depending on the constituents in the wastewater. The curves given on Fig. 6-17 
are useful in establishing the pH ranges for testing. Metals can also be precipitated as 
the sulfides as illustrated on Fig. 6-18. The minimum effluent concentration levels that 

Table 6-
Solubility 
for free 
concentr 
equilibriu 
hydroxide 
sulfidesa,b 

Figure 6-1 

Residual solubl1 
concentration a 
function of pH f 
precipitation of 
hydroxides. Bee 
the wide variati, 
solubility and fo 
constants for the 
metal hydroxide 
curves presentee 
figure should on, 
used as a refere1 
guide (see also 1 
6-10). 
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Table 6-9 
Solubility products 
for free metal ion 
concentrations in 
equilibrium with 
hydroxides and 
sulfidesa,b 

Figure 6-17 

Residual soluble metal 
concentration as a 
function of pH for the 
precipitation of metals as 
hydroxides. Because of 
the wide variation in the 
solubility and formation 
constants for the various 
metal hydroxides, the 
curves presented in this 
figure should only be 
used as a reference 
guide (see also Table 
6-10). 

6-5 Chemical Precipitation for Removal of Heavy Metals and Dissolved Inorganic Substances 515 

Cadmium hydroxide Cd(OHb H Cd2+ + 20H- 13.93 

Cadmium sulfide CdS H Cd2+ + S2- 28 

Chromium hydroxide Cr(OHb H Cr3+ + 30H- 30.2 

Copper hydroxide Cu(OHb H Cu2+ + 20H- 19.66 

Copper sulfide CuS H Cu2+ + S2- 35.2 

Iron (II) hydroxide Fe(OHb H Fe2+ + 20H- 14.66 

Iron (II) sulfide FeS H Fe2+ + S2- 17.2 

Lead hydroxide Pb(OHb H Pb2+ + 20H- 14.93 

Lead sulfide PbS H Pb2+ + S2- 28.15 

Mercury hydroxide Hg(OHb H Hg2+ + 20H- 23 

Mercury sulfide HgS H Hg2+ + S2- 52 

Nickel hydroxide Ni(OHb H Ni2+ + 20H- 15 

Nickel sulfide NiS H Ni2+ + S2- 24 

Silver hydroxide · AgOH HAg+ + OH- 14.93 

Silver sulfide (AgbS H 2Ag+ + S2- 28.15 

Zinc hydroxide Zn(OHb H Zn2+ + 20H- 16.7 

Zinc sulfide ZnS H Zn2+ + S2- 22.8 

0 Adapted from Bard (1966). 
bTo obtain the complete solubility of a metal, all of the complex species must be 
considered such as reported in Table 6-2 for aluminum and iron. 

10~L---~--~----~---L--~----L---~ 
0 2 4 6 8 10 12 14 

pH 

I 
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516 Chapter 6 Chemical Unit Processes 

Figure 6-18 

Residual soluble metal 
concentration as a 
function of pH for the 
precipitation of metals as 
sulfides. Because of the 
wide variation in the 
solubility and formation 
constants for the various 
metal sulfides, the curves 
presented in this figure 
should only be used as a 
reference guide (see also 
Table 6-10). 

Table 6-10 
Practical effluent 
concentration levels 
achievable in heavy 
metals removal by 
preci pitation° 

1o-12 L_ _ __L_ _ __j __ ...J...._ _ __l, __ ...l.-_----1._----' 

0 2 4 6 8 10 12 

Arsenic 

Barium 

Cadmium 

Copper 

Mercury 

Nickel 

Selenium 

Zinc 

afrom Eckenfelder (2000). 

pH 

0.05 

0.005 

0.5 

0.05 

0.05 

0.008 

0.02--Q.Ol 

O.Ol--Q.02 

0.01-0.02 

0.001--Q.Ol 

0.0005--Q.005 

0.001-0.005 

0.12 

0.05 

0.1 

14 

Sulfide precipitation with filtration 

Ferric hydroxide coprecipitation 

Sulfate precipitation 

Hydroxide precipitation at pH 1 Q-11 

Coprecipitation with ferric hydroxide 

Sulfide precipitation 

Hydroxide precipitation 

Sulfide precipitation 

Sulfide precipitation 

Alum coprecipitation 

Ferric hydroxide coprecipitation 

lon exchange 

Hydroxide precipitation at pH 1 0 

Sulfide precipitation 

Hydroxide precipitation at pH 11 

can be achieved in the chemical precipitation of heavy metals are reported in Table 
6-10. In practice, the minimum achievable residual metal concentrations will also 
depend on the nature and concentration of the organic matter in the wastewater as well 
as the temperature. Because of the many uncertainties associated with the precipitation 
of metals, laboratory bench-scale or pilot-plant testing should be conducted. 
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548 Chapter 7 Fundamentals of Biological Treatment 

Objectives of Biological Treatment 
The overall objectives of the biological treatment of domestic wastewater are to (1) trans­
form (i.e., oxidize) dissolved and particulate biodegradable constituents into acceptable 
end products, (2) capture and incorporate suspended and nonsettleable colloidal solids 
into a biological floc or biofilm, (3) transform or remove nutrients, such as nitrogen and 
phosphorus, and (4) in some cases, remove specific trace organic constituents and com­
pounds. For industrial wastewater, the objective is to remove or reduce the concentra­
tion of organic and inorganic compounds. Because some of the constituents and com­
pounds found in industrial wastewater are toxic to microorganisms, pretreatment may 
be required before the industrial wastewater can be discharged to a municipal collection 
system. For agricultural irrigation return wastewater, the objective is to remove nutri­
ents, specifically nitrogen and phosphorus, that are capable of stimulating the growth of 
aquatic plants. Schematic flow diagrams of various treatment processes for domestic 
wastewater incorporating biological processes are shown on Fig. 7-1. 

Some Useful Definitions 
Common terms used in the field of biological wastewater treatment and their definitions 
are presented in Table 7-1. All of the terms presented in Table 7-1 are discussed in 
greater detail in the remainder of this chapter and in Chaps. 8, 9, and 10, which follow. 
The first five entries in Table 7-1 refer to the metabolic function of the processes. As 
reported, the principal processes used for the biological treatment of wastewater can be 
classified with respect to their metabolic function as aerobic processes, anaerobic 
processes, anoxic processes, facultative processes, and combined processes. Terminol­
ogy used to describe the types of treatment processes is presented in the second group 
of entries in Table 7-1. The principal processes used for wastewater treatment are clas­
sified as suspended-growth, attached-growth, or combinations thereof. The third group 
of terms are descriptors for the different types of treatment functions. 

Role of Microorganisms in Wastewater Treatment 
The removal of dissolved and particulate carbonaceous BOD and the stabilization of 
organic matter found in wastewater is accomplished biologically using a variety of 
microorganisms, principally bacteria. Microorganisms are used to oxidize (i.e., convert) 
the dissolved and particulate carbonaceous organic matter into simple end products and 
additional biomass, as represented by the following equation for the aerobic biological 
oxidation of organic matter. 

( 
. . ) 3 microorganisms 

v1 orgamc matenal + v20 2 + v3NH 3 + v4P04----~ 

v5 (new cells) + v6C02 + v7H 20 (7-1) 

where v; = the stoichiometric coefficient, as defined previously in Sec. 4-6 in Chap. 4. 

In Eq. (7-1), oxygen (02), ammonia (NH3), and phosphate (POl-) are used to rep­
resent the nutrients needed for the conversion of the organic matter to simple end prod­
ucts [i.e., carbon dioxide (C02) and water]. The term shown over the directional arrow 
is used to denote the fact that microorganisms are needed to carry out the oxidation 
process. The term new cells is used to represent the biomass produced as a result of the 
oxidation of the organic matter. Microorganisms are also used to remove nitrogen and 
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Grit Sludge 

Waste ! 

Waste sludge 
(optional) 

Aeration 
tanks 

• . 
Secondary 

clarifier 

sludge ·-------1....---------1 
(optional) Return activated sludge 

Sludge 
Return sludge Sludge 

(optional) + 
... -------------""1 
I I 
I I 
I 

Aerated 
lagoon 

Grit 

Grit 
chamber 

Grit 

Sludge 

Sludge 

Settling 
pond Disinfection 

Waste sludge (optional) 

Effluent 

• . . 
P-----------------~ 
I 

Trickling 
filters 

Recycle 

Secondary 
clarifier 

Sludge 

Sludge 

Disinfection 

Effluent Grit 
chamber 

Primary 
clarifier 

ABC 
units Disinfection 

Effluent 

Typical (simplified) flow diagrams for biological processes used for wastewater treatment: (a) activated-sludge process, 
(b) aerated lagoons, (c) trickling filters, and (d) rotating biological contactors. 

phosphorus in wastewater treatment processes. Specific bacteria are capable of oxidiz­
ing ammonia (nitrification) to nitrite and nitrate, while other bacteria can reduce the 
oxidized nitrogen to gaseous nitrogen. For phosphorus removal, biological processes 
are configured to encourage the growth of bacteria with the ability to take up and store 
large amounts of inorganic phosphorus. 
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Because the biomass has a specific gravity slightly greater than that of water, the 
biomass can be removed from the treated liquid by gravity settling. It is important to 
note that unless the biomass produced from the organic matter is removed on a periodic 
basis, complete treatment has not been accomplished because the biomass, which itself 
is organic, will be measured as BOD in the effluent. Without the removal of biomass 
from the treated liquid, the only treatment achieved is that associated with the bacterial 
oxidation of a portion of the organic matter originally present. 

Types of Biological Processes for Wastewater Treatment 
The principal biological processes used for wastewater treatment can be divided into 
two main categories: suspended growth and attached growth (or biofilm) processes (see 
Table 7-1). Typical process applications for suspended and attached growth biological 
treatment processes are given in Table 7-2, along with other treatment processes. The 
successful design and operation of the processes listed in Table 7-2 require an under­
standing of the types of microorganisms involved, the specific reactions that they per­
form, the environmental factors that affect their performance, their nutritional needs, 
and their reaction kinetics. These subjects are considered in the sections that follow. 

Suspended Growth Processes. In suspended growth processes, the microor­
ganisms responsible for treatment are maintained in liquid suspension by appropriate 
mixing methods. Many suspended growth processes used in municipal and industrial 
wastewater treatment are operated with a positive dissolved oxygen concentration (aer­
obic), but applications exist where suspended growth anaerobic (no oxygen present) 
reactors are used, such as for high organic concentration industrial wastewaters and 
organic sludges. The most common suspended growth process used for municipal 
wastewater treatment is the activated-sludge process shown on Fig. 7-2 and discussed 
below. 

The activated-sludge process was developed around 1913 at the Lawrence Experi­
ment Station in Massachusetts by Clark and Gage (Metcalf and Eddy, 1930), and by 
Ardern and Lockett (1914) at the Manchester Sewage Works in Manchester, England. 
The activated-sludge process was so named because it involved the production of an 
activated mass of microorganisms capable of stabilizing a waste under aerobic condi­
tions. In the aeration tank, contact time is provided for mixing and aerating influent 
wastewater with the microbial suspension, generally referred to as the mixed liquor 
suspended solids (MLSS) or mixed liquor volatile suspended solids (MLVSS). Mechan­
ical equipment is used to provide the mixing and transfer of oxygen into the process. 
The mixed liquor then flows to a clarifier where the microbial suspension is settled and 
thickened. The settled biomass, described as activated sludge because of the presence 
of active microorganisms, is returned to the aeration tank to continue biodegradation of 
the influent organic material. A portion of the thickened solids is removed daily or peri­
odically as the process produces excess biomass that would accumulate along with the 
nonbiodegradable solids contained in the influent wastewater. If the accumulated solids 
are not removed, they will eventually find their way to the system effluent. 

An important feature of the activated-sludge process is the formation of floc parti­
cles, ranging in size from 50 to 200 JLm, which can be removed by gravity settling, leav­
ing a relatively clear liquid as the treated effluent. Typically, greater than 99 percent of 
the suspended solids can be removed in the clarification step. As will be discussed in Page 40 of 53 FWS1016



552 Chapter 7 Fundamentals of Biological Treatment 

Table 7-2 
Major biological treatment processes used for wastewater treatment. 

Aer©bi.: prcee"'ses 

Suspended gro¥flh 

Attached gro¥flh 

Hybrid (combined) 
suspended and attached 
gro¥flh processes 

Anoxic processes 

Suspended gro¥flh 

Attached gro¥flh 

Anaerobi«: pro<tesses 

Suspended growth 

Attached gro¥flh 

Sludge blanket 

Hybrid 

Activated-sludge process(es) 

Aerated lagoons 

Aerobic digestion 

Trickling filters 

Rotating biological contactors 

Packed-bed reactors 

Trickling filter/ activated sludge 

Suspended-gro¥flh denitrification 

Attached-gro¥flh denitrification 

Anaerobic contact processes 

Anaerobic digestion 

Anaerobic packed and fluidized bed 

Upflow anaerobic sludge blanket 

Upflow sludge blanket/ attached gro¥flh 

Combined aerobic, anoxic, and @i"'ia®r©lbic pr©lcesses 

Suspended gro¥flh Single- or multistage processes, 
various proprietary processes 

Hybrid Single- or multistage processes with 
packing for attached gro¥flh 

ll.ago@n processes 

Aerobic lagoons 

Maturation (tertiary) 
lagoons 

Facultative lagoons 

Anaerobic lagoons 

Aerobic lagoons 

Maturation (tertiary) lagoons 

Facultative lagoons 

Anaerobic lagoons 

a Adapted from Tchobanoglous and Schroeder (1985). 

Carbonaceous BOD removal, nitrification 

Carbonaceous BOD removal, nitrification 

Stabilization, carbonaceous BOD removal 

Carbonaceous BOD removal, nitrification 

Carbonaceous BOD removal, nitrification 

Carbonaceous BOD removal, nitrification 

Carbonaceous BOD removal, nitrification 

Denitrification 

Denitrification 

Carbonaceous BOD removal 

Stabilization, solids destruction, pathogen 
kill 

Carbonaceous BOD removal, waste 
stabilization, denitrification 

Carbonaceous BOD removal, especially 
high-strength wastes 

Carbonaceous BOD removal 

Carbonaceous BOD removal, nitrification, 
denitrification, and phosphorus removal 

Carbonaceous BOD removal, nitrification, 
denitrification, and phosphorus removal 

Carbonaceous BOD removal 

Carbonaceous BOD removal, nitrification 

Carbonaceous BOD removal 

Carbonaceous BOD removal, waste 
stabilization 

Influent 

(a-1) 

(a-2) 

I figl!Ere ?­

Suspended gr 
(b-1) schema! 
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Influent 

Complete mix 
aeration tank 

Return activated sludge Return activated sludge 

Sludge Sludge 
(a-1) (b-1) 

(a-2) (b-2) 

Figure 7-2 

Suspended growth biological treatiTlent process (a-1) schematic and (a-2) view of plug-flow activated-sludge process and 
(b-1) schematic and (b-2) view of complete-mix activated-sludge process. 

Chap. 8, the characteristics and thickening properties of the flocculent particles will 
affect the clarifier design and performance. 

AHached Growth Processes. In attached growth processes, the microorgan­
isms responsible for the conversion of organic material or nutrients are attached to an 
inert packing material. The organic material and nutrients are removed from the waste­
water flowing past the attached growth also known as a biofilm. Packing materials used 
in attached growth processes include rock, gravel, slag, sand, redwood, and a wide 
range of plastic and other synthetic materials. Attached growth processes can also be 
operated as aerobic or anaerobic processes. The packing can be submerged completely 
in liquid or not submerged, with air or gas space above the biofilm liquid layer. 

The most common aerobic attached growth process used is the trickling filter in 
which wastewater is distributed over the top area of a vessel containing nonsubmerged 
packing material (see Fig. 7-3). Historically, rock was used most commonly as the 
packing material for trickling filters, with typical depths ranging from 1.25 to 2 m ( 4 to Page 42 of 53 FWS1016
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Sludge 

Figure 7-3 

Attached growth biological treatment process (a-1) schematic and (a-2) view of tricking filter with rock packing and 

(b-1) schematic and (b-2) view of tower tricking filter with plastic packing (see Fig. 7-15b). The tower filter is 10 m high 

and 50 m in diameter. 

6ft). Most modem trickling filters vary in height from 5 to 10m (16 to 33ft) and are 
filled with a plastic packing material for biofilm attachment. The plastic packing mate­
rial is designed such that about 90 to 95 percent of the volume in the tower consists of 
void space. Air circulation in the void space, by either natural draft or blowers, provides 
oxygen for the microorganisms growing as an attached biofilm. Influent wastewater is 
distributed over the packing and flows as a nonuniform liquid film over the attached 
biofilm. Excess biomass sloughs from the attached growth periodically and clarification 
is required for liquid/solids separation to provide an effluent with an acceptable sus­
pended solids concentration. The solids are collected at the bottom of the clarifier and 
removed for waste-sludge processing. 

Figure 7-4 

Typical internal slrL 

of cells: (a) prokar) 

and (b) eukaryotic. 
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616 Chapter 7 Fundamentals of Biological Treatment 

Metals. Metals are also of concern for nitrifiers, and Skinner and Walker (1961) 
have shown complete inhibition of ammonia oxidation at 0.25 mg/L nickel, 0.25 mg/L 
chromium, and 0.10 mg!L copper. 

Un-ionized Ammonia. Nitrification is also inhibited by un-ionized ammonia 
(NH3) or free ammonia, and un-ionized nitrous acid (HN02). The inhibition effects are 
dependent on the total nitrogen species concentration, temperature, and pH. At 20°C 
and pH 7.0, the NH4-N concentrations at 100 mg/L and 20 mg/L may initiate inhibition 
of NH4-N and N02-N oxidation, respectively, and N02-N concentrations at 280 mg/L 
may initiate inhibition of N02-N oxidation (U.S. EPA, 1993). 

7-1 0 BIOLOGICAL DENITRIFICATION 
The biological reduction of nitrate to nitric oxide, nitrous oxide, and nitrogen gas is 
termed denitrification. Biological denitrification is an integral part of biological nitro­
gen removal, which involves both nitrification and denitrification. Compared to alter­
natives of ammonia stripping (see Chap. 11), breakpoint chlorination (see Chap. 12), 
and ion exchange (see Chap. 11), biological nitrogen removal is generally more cost­
effective and used more often. Biological nitrogen removal is used in wastewater treat­
ment where there are concerns for eutrophication, and where groundwater must be pro­
tected against elevated N03~N concentrations where wastewater-treatment plant 
effluent is used for groundwater recharge and other reclaimed water applications. 

Process Description 
Two modes of nitrate removal can occur in biological processes, and these are termed 
assimilating and dissimilating nitrate reduction (see Fig. 7-20). Assimilating nitrate 
reduction involves the reduction of nitrate to ammonia for use in cell synthesis. Assim­
ilation occurs when NH4- N is not available and is in4ependent of DO concentration. On 
the other hand, dissimilating nitrate reduction or biological denitrification is coupled to 
the respiratory electron transport chain, and nitrate or nitrite is used as an electron 
acceptor for the oxidation of a variety of organic or inorganic electron donors. 

Two basic flow diagrams for activated-sludge denitrification and the conditions 
that drive the denitrification reaction rates are illustrated on Fig. 7-21. The frrst flow 
diagram (Fig. 7-21a) is for the Modified Ludzak-Ettinger (MLE) process (U.S. EPA, 
1993), the most common process used for biological nitrogen removal in municipal 
wastewater treatment. The process consists of an anoxic tank followed by the aeration 
tank where nitrification occurs. Nitrate produced in the aeration tank is recycled back 
to the anoxic tank. Because the organic substrate in the influent wastewater provides the 
electron donor for oxidation reduction reactions using nitrate, the process is termed sub­
strate denitrification. Further, because the anoxic process precedes the aeration tank, 
the process is known as a preanoxic denitrification. 

In the second process shown on Fig. 7-21b, denitrification occurs after nitrification 
and the electron donor source is from endogenous decay. The process illustrated on 
Fig. 7-21b is generally termed a postanoxic denitrification as BOD removal has 
occurred first and is not available to drive the nitrate reduction reaction. When a 
postanoxic denitrification process depends solely on endogenous respiration for energy, 
it has a much slower rate of reaction than for the preanoxic processes using wastewater 
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Organic nitrogen 
(proteins; urea) 

Bacterial 
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Assimilation Organic nitrogen Organic nitrogen Ammonia nitrogen 
(bacterial cells) r-- (net growth) 

t Lysis and autooxidation I 
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Organic carbon 

Nitrate feed 

Influent 

Return activated sludge Return activated sludge 

Sludge Sludge 
(a) (b) 

Figure 7-21 

Types of denitrification processes and the reactors us~d for their implementation: (a) substrate driven (preanoxic denitrification) 
and (b) endogenous driven (postanoxic denitrification). 

BOD. Often an exogenous carbon source such as methanol or acetate is added to 
postanoxic processes to provide sufficient BOD for nitrate reduction and to increase the 
rate of denitrification. Postanoxic processes include both suspended and attached growth 
systems. In one attached growth granular-medium filtration process, both nitrate reduc­
tion and effluent suspended solids removal occur in the same reactor. 
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centrations. A dissolved oxygen concentration of 0.2 mg/L and above has been reported 
to inhibit denitrification for a Pseudomonas culture (Skerman and MacRae, 1957; Terai 
and Mori, 1975) and by Dawson and Murphy (1972) for activated-sludge treating 
domestic wastewater. Nelson and Knowles (1978) reported that denitrification ceased 
in a highly dispersed growth at a DO concentration of 0.13 mg!L. The effect of nitrate 
and DO concentration on the biokinetics is accounted for by two correction factors to 
Eq. (7-109) expressed in the form of two saturation terms as follows: 

( kXS ) ( N03 ) ( K~ ) r =- -.- (71) 
su Ks + S Ks NO + N03 K~ + DO 

, 3 

where K~ = DO inhibition coefficient for nitrate reduction, mg!L 
Ks,No, = half velocity coefficient for nitrate limited reaction, mg!L 
Other terms are as defined previously. 

(7-110) 

The value of K~ is system-specific. Values in the range from 0.1 to 0.2 mg/L have been 
proposed forK~ and 0.1 mg/L for Ks,Nox (Barker and Dold, 1997). Assuming a K0 value 
of 0.1 mg/L the rate of substrate utilization with nitrate as the electron acceptor at DO 
concentrations of 0.1 0, 0.20, and 0.50 mg/L would be at 50, 33, and 17 percent of the 
maximum rate, respectively. 

Effed of Simulfl'al·u~ous Nitrification-Denitrifiq:ation. In activated-sludge 
systems, the issue of DO concentration is confounded by the fact that the measured bulk 
liquid DO concentration does not represent the actual DO concentration within the 
activated-sludge floc. Under low DO concentration conditions, denitrification can occur 
in the floc interior, while nitrification is occurring at the floc exterior. Also in activated­
sludge tanks operated at low DO concentrations, both aerobic and anaerobic zones exist 
depending on mixing conditions and distance from the aeration point, so that nitrifica­
tion and denitrification can be occurring in the same tank. Under these conditions, 
nitrogen removal that occurs in a single aeration tank is referred to as simultaneous 
nitrification and denitrification. Although both nitrification and denitrification are 
occurring at reduced rates as indicated by the DO effects described for both processes, 
if a sufficient SRT and 7 exist, the overall nitrogen removal can be significant. Rittman 
and Langeland (1985) reported greater than 90 percent nitrogen removal by nitrification 
and denitrification in an activated-sludge system used to treat municipal wastewater at 
DO concentrations below 0.50 mg/L and with values of 7 greater than 25 hours. 

Environmental 1Fad€»rs 
Alkalinity is produced in denitrification reactions and the pH is generally elevated, 
instead of being depressed as in nitrification reactions. In contrast to nitrifying organ­
isms, there has been less concern about pH influences on denitrification rates. No sig­
nificant effect on the denitrification rate has been reported for pH between 7.0 and 8.0, 
while Dawson and Murphy (1972) showed a decrease in the denitrification rate as the 
pH was decreased from 7.0 to 6.0 in batch unacclimated tests. 

7-11 BIOLOGICAL PHOSPHORUS REMOVAL 
The removal of phosphorus by biological means is known as biological phosphorus 
removal. Phosphorus removal is generally done to control eutrophication because 

l 
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624 Chapter 7 Fundamentals of Biological Treatment 

Figure 7-22 

Biological phosphorus 

removal: (a) typical 

reactor configuration. 

Photos below flow 

diagram are of 

(b) transmission electron 

microscope images of 

polyhydroxybutyrate 

storage and 

(c) polyphosphate 

storage granules. 

phosphorus is a limiting nutrient in most freshwater systems. Treatment plant effluent 
discharge limits have ranged from 0.10 to 2.0 mg/L of phosphorus depending on plant 
location and potential impact on receiving waters. Chemical treatment using alum or 
iron salts is the most commonly used technology for phosphorus removal (see Sec. 6-4 
in Chap. 6), but since the early 1980s success in full-scale plant biological phospho­
rus removal has encouraged further use of the technology. The principal advantages of 
biological phosphorus removal are reduced chemical costs and less sludge production 
as compared to chemical precipitation. 

Process Description 
In the biological removal of phosphorus, the phosphorus in the influent wastewater is 
incorporated into cell biomass, which subsequently is removed from the process as a 
result of sludge wasting. Phosphorus accumulating organisrps (PAOs) are encouraged to 
grow and consume phosphorus in systems that use a reactor configuration that provides 
PAOs with a competitive advantage over other bacteria. The reactor configuration utilized 
for phosphorus removal is comprised of an anaerobic tank having a T value of 0.50 to 1.0 
h that is placed ahead of the activated-sludge aeration tank (see Fig. 7-22). The contents 
of the anaerobic tank are mixed to provide contact with the return activated sludge and 
influent wastewater. Anaerobic contact tanks have been placed in front of many different 
types of suspended growth processes (see detailed discussion in Sec. 8-6 in Chap. 8), with 
aerobic SRT values ranging from 2 to 40 d. 

Influent -....,..-...._ 

(a) 

(b) 

Aeration tank: 
biomass synthesis 

and decay, PHS 
utilization, and enhanced 

poly P uptake 

Return activated sludge 

(c) 

Clarifier 
Effluent 
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644 Chapter 7 Fundamentals of Biological Treatment 

7-14 BIOLOGICAL REMOVAL OF HEAVY METALS 
Metal removal in biological treatment processes is mainly by adsorption and complex­
ation of the metals with the microorganisms. In addition, processes that result in trans­
formations and precipitation of metals are possible. Microorganisms combine with met­
als and adsorb them to cell surfaces because of interactions between the metal ions and 
the negatively charged microbial surfaces. Metals may also be complexed by carboxyl 
groups found in microbial polysaccharides and other polymers, or absorbed by protein 
materials in the biological cell. 

The removal of metals in biological processes has been found to fit adsorption 
characteristics displayed by the Freundlich isotherm model (see Sec. 11-7 in Chap. 11) 
(Mullen et al., 1989; Kunz et al., 1976). A significant amount of soluble metal removal 
has been observed in biological processes, with removals ranging from 50 to 98 percent 
depending on the initial metal concentration, the biological reactor solids concentra­
tions, and system SRT. In anaerobic processes the reduction of sulfate to hydrogen sul­
fide can promote the precipitation of metal sulfides. A classic example is the addition 
of ferric or ferrous chloride to anaerobic digesters to remove sulfide toxicity by the for­
mation of iron sulfide precipitates. The precipitation of heavy metals by hydrogen sul­
fide is discussed in Sec. 6-5 in Chap. 6. 

PROBLEMS AND DISCUSSION TOPICS 
7-1 Prepare a recipe for an inorganic medium to be used in a laboratory chemostat to grow 500, 1000, 

or 1200 mg VSS/d (value to be selected by instructor) of bacteria biomass, assuming that the 
chemical formula for the biomass can be described as C5H7N02. Determine the concentration of 
essential inorganic compounds as reported in Table 7-4 for a feed rate of 1 Lid. Assume that 
phosphorus is added as KH2P04, sulfur as N~S04, nitrogen as NH4Cl, and other cations associ­
ated with chloride. 

7-2 Protein is a major component of bacterial enzymes. List the key cell components involved and 
the major steps that lead to protein production. 

7-3 From the literature (e.g., Journal of Applied and Environmental Microbiology) identify the key 
physiological, metabolic characteristics, and phylogenetic classification of a bacteria that may 
have a role in biological wastewater treatment or toxic degradation. Cite a minimum of 3 ref­
erences. 

7-4 From the literature, describe an application using molecular biology (e.g., molecular probes or 
other methods) techniques that can be related to biological wastewater treatment. Cite a minimum 
of 3 references. 

7-5 A 1-L sample contains 20, 28, or 36 g (value to be selected by instructor) of casein (C8H120 3N2). 

If 18 g of bacterial cell tissue (C5H7N02) is synthesized per 50 g of casein consumed, determine the 
amount of oxygen required to complete the oxidation of casein to end products and cell tissue. 
The end products of the oxidation are carbon dioxide (C02), ammonia (NH3), and water. Assume 
that the nitrogen not incorporated in cell-tissue production will be converted to ammonia. 
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Figure 8-28 

Operation of a Nitrox™ 

oxidation ditch process 

using intermittent 

aeration: (a) aerobic 

conditions, (b) anoxic 

conditions, and 

(c) variations in 

ORP, DO, ammonia, 

and nitrate. 

Intermittent Aeration Process Design 
Long SRT systems, such as oxidation ditch processes, may employ intermittent aeration 
to accomplish both nitrification and denitrification in a single tank. During the aeration­
off period, the aeration tank operates essentially as an anoxic reactor as nitrate is used in 
lieu of DO for BOD removal. During the anoxic period, the tank operation is similar to 
a preanoxic tank because influent BOD is added continuously to drive the denitrification 
reaction. 

Operation of an oxidation ditch using intermittent aeration is shown on Fig. 8-28. 
Intermittent aeration systems typically are operated with SRT values in the range of 18 
to 40 d and hydraulic detention times in excess of 16 h. During the anoxic reaction 
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period (Fig. 8-28b), aeration is stopped, a submerged mixer is turned on, and nitrate is 
used as the electron acceptor. The reactor is operated as a complete-mix activated­
sludge anoxic process. During the anoxic period, DO and nitrate are depleted and the 
ammonia concentration increases (see Fig. 8-28c). The time for the anoxic and aerobic 
periods is important in determining the system's treatment performance. 

The anoxic/aerobic cycle times may be adjusted manually as part of the system 
operation to optimize the process performance. Alternatively, a patented process, 
Nitrox™, uses an oxidation-reduction potential (ORP) measurement to control the 
intermittent operation. The ORP response during an aeration-off period is shown on 
Fig. 8-28c. As the DO concentrations decline, the ORP value decreases. When the 
N03-N is depleted, a dramatic decline in the ORP value occurs. The ORP decline is 
called the ORP knee and can be identified by calculating the ORP slope with time. In 
the Nitrox™ process, the ORP values are logged onto a computer, which is pro­
grammed to turn on the aeration based on the changing slope of the ORP. The aeration­
off periods are selected to occur during different times of the day; the more ideal time 
is when the influent BOD concentration is high so that nitrate reduction occurs at a 
faster rate. The process behaves much like an anoxic selector as improved SVIs have 
been reported (Stensel et al., 1995). 

Reported plant performance data for intermittent aeration processes indicate efflu­
ent NOrN concentrations range from 3.0 to 4.8 mg/L. The processes are also predicted 
to produce effluent total nitrogen (TN) concentrations <8.0 mg/L (U.S. EPA, 1993). 
The relatively long T values used provide sufficient dilution to minimize the effluent 
NH4-N concentrations during the OFF period. A sufficiently long SRT is also needed to 
provide enough nitrification capacity to allow the aeration system to be operated inter­
mittently. 

Because of the long SRT and T, the denitrification kinetics are related to the over­
all degradation of bCOD, pbCOD, and endogenous decay and are not as strongly influ­
enced by the rbCOD fraction as for the preanoxic denitrification application with the 
relatively shortT. During the complete-mix anoxic period in an intermittent oxidation 
ditch operation or in the anoxic zone of a continuously aerated oxidation ditch, the spe­
cific denitrification rate is affected by both the endogenous respiration rate and the 
bCOD in the influent wastewater as continuous feeding occurs. The average specific 
denitrification rate, which includes these effects, can be estimated by the following 
equation [based on Stensel (1981) and modified to account for the rate as a function of 
active heterotrophic biomass]: 

where SDNRb = specific denitrification rate relative to heterotrophic biomass 
concentration, g N03-N/g biomass·d 

An = net oxygen utilization coefficient, g 0 2/g bCOD removed 
Ynet = net yield for heterotrophic biomass, g VSS/g bCOD 

(8-54) 

0.175 = based on 2.86 g 0 2 equivalent/g N03-N and the assumption that 
only 50% of heterotrophic biomass can use nitrate in place of 
oxygen 
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962 Chapter 9 Attached Growth and Combined Biological Treatment Processes 

9-7 AnACHED GROWTH DENITRIFICATION PROCESSES 

Figure 9-28 

Postanoxic attached 

growth denitrification 

processes: (a) downflow 

packed-bed reactor, 

(b) upflow packed-bed 

reactor, (c) fluidized-bed 

denitrification reactor, 

and (d) submerged 

rotating biological 

contactor. 

Biological denitrification processes have been applied following secondary treatment 
nitrification processes to reduce the nitrate/nitrite produced. Typically, an exogenous 
carbon source is added to provide an electron donor that can be oxidized biologically 
using nitrate or nitrite. Both attached growth and suspended growth processes have 
been used for postanoxic denitrification with success. Suspended growth processes 
used for denitrification are discussed in Sec. 8-5 in Chap. 8. The different types of 
attached growth postanoxic processes, illustrated on Fig. 9-28, include (1) downflow 
and upflow packed-bed reactors, (2) upflow fluidized-bed reactors, and (3) submerged 
rotating biological contactors. All of the processes require carbon addition in the form 
of methanol to the influent. Methanol to N03-N dose ratios are in the range of 3.0 to 
3.5 kg methanol/kg NOrN. The general physical designs of the downflow Biocar­
bone® and upflow Biofor® and Biostyr® systems have been described in Sec. 9-6. 
Specific design loadings used for the various systems for attached growth postanoxic 
denitrification are presented and discussed in this section. Attached growth preanoxic 
denitrification processes are also considered. 

Downflow Packed-Bed Postanoxic Denitrification Processes 
Downflow packed-bed denitrification filters (see Fig. 9-28a) are deep bed filters [1.2 to 
2.0 m (4 to 6.5 ft)] that have been used in many installations (U.S. EPA, 1993) for 
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