

DM2\7951311.5

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

CAVIUM, INC.

Petitioner

v.

ALACRITECH, INC.

Patent Owner

Case IPR. No. Unassigned

U.S. Patent No. 8,805,948

Title: INTELLIGENT NETWORK INTERFACE SYSTEM AND METHOD FOR
PROTOCOL PROCESSING

Petition For Inter Partes Review of U.S. Patent No. 8,805,948 Under
35 U.S.C. §§ 311-319 and 37 C.F.R. §§ 42.1-.80, 42.100-.123

Mail Stop “PATENT BOARD”
Patent Trial and Appeal Board
U.S. Patent and Trademark Office
P.O. Box 1450
Alexandria, VA 22313-1450

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-i-
DM2\7951311.5

TABLE OF CONTENTS

Page

1. INTRODUCTION ... 1

2. REQUIREMENTS FOR PETITION FOR INTER PARTES REVIEW 1

2.1. Grounds for Standing (37 C.F.R. § 42.104(a)) 1

2.2. Notice of Lead and Backup Counsel and Service Information 1

2.3. Notice of Real-Parties-in-Interest (37 C.F.R. § 42.8(b)(1)) 2

2.4. Notice of Related Matters (37 C.F.R. § 42.8(b)(2)) 2

2.5. Fee for Inter Partes Review ... 13

2.6. Proof of Service ... 14

3. IDENTIFICATION OF CLAIMS BEING CHALLENGED
(§42.104(B)) .. 14

4. BACKGROUND OF TECHNOLOGY .. 14

A. Layered Network Protocols ... 15

B. TCP/IP ... 16

C. Protocol Offload and Fast-Path Processing ... 20

D. Direct Memory Access .. 22

5. OVERVIEW OF THE 948 PATENT .. 23

6. 948 PATENT PROSECUTION HISTORY .. 25

7. CLAIM CONSTRUCTION .. 27

7.1. Applicable Law ... 27

7.2. Construction of Claim Terms .. 27

8. PERSON HAVING ORDINARY SKILL IN THE ART 27

9. DESCRIPTION OF THE PRIOR ART .. 28

9.1. Thia .. 28

9.2. Tanenbaum96: A. Tanenbaum, Computer Networks, 3rd ed.
(1996) .. 32

9.3. Stevens2: TCP-IP Illustrated, Vol.2 .. 38

9.4. Motivations To Combine .. 40

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-ii-
DM2\7951311.5

9.4.1. Thia in combination with Tanenbaum96 40

9.4.2. Thia in combination with Tanenbaum96 and Stevens2 43

10. GROUND #1: .. 44

10.1. Claim 1 .. 45

10.1.1. [1.P] A method for network communication by a host
computer having a network interface that is connected
to the host by an input/output bus, the method
comprising.. 45

10.1.2. [1.1] running, on the host computer, a protocol
processing stack including an Internet Protocol (IP)
layer and a Transmission Control Protocol (TCP) layer,
with an application layer running above the TCP layer;
 .. 47

10.1.3. [1.2] initializing, by the host computer, a TCP
connection that is defined by source and destination IP
addresses and source and destination TCP ports; 50

10.1.4. [1.3] receiving, by the network interface, first and
second packets, wherein the first packet has a first TCP
header and contains first payload data for the
application, and the second packet has a second TCP
header and contains second payload data for the
application; ... 52

10.1.5. [1.4] checking, by the network interface, whether the
packets have certain exception conditions, including
checking whether the packets are IP fragmented,
checking whether the packets have a FIN flag set, and
checking whether the packets are out of order; 54

10.1.6. [1.5] if the first packet has any of the exception
conditions, then protocol processing the first TCP
header by the protocol processing stack; 56

10.1.7. [1.6] if the second packet has any of the exception
conditions, then protocol processing the second TCP
header by the protocol processing stack; 56

10.1.8. [1.7] if the packets do not have any of the exception
conditions, then bypassing host protocol processing of

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-iii-
DM2\7951311.5

the TCP headers and storing the first payload data and
the second payload data together in a buffer of the host
computer, such that the payload data is stored in the
buffer in order and without any TCP header stored
between the first payload data and the second payload
data. .. 57

10.2. Claim 3 .. 61

10.2.1. [3] The method of claim 1, wherein storing the first
payload data and the second payload data together in a
buffer of the host computer is performed by a direct
memory access (DMA) unit of the network interface. 61

10.3. Claim 6 .. 62

10.3.1. [6] The method of claim 1, including comparing, by the
network interface, the IP addresses and TCP ports of
the packets with the source and destination IP
addresses and source and destination TCP ports that
define the TCP connection. .. 62

10.4. Claim 7 .. 64

10.4.1. [7] The method of claim 1, wherein checking whether
the packets have certain exception conditions includes
checking whether the packets have a RST flag set. 64

10.5. Claim 8 .. 64

10.5.1. [8] The method of claim 1, wherein checking whether
the packets have certain exception conditions includes
checking whether the packets have a SYN flag set. 64

10.6. Claim 9 .. 65

10.6.1. [9.P] A method for network communication by a host
computer having a network interface that is connected
to the host by an input/output bus, the method
comprising: .. 65

10.6.2. [9.1] receiving, by the network interface, a first packet
having a header including source and destination
Internet Protocol (IP) addresses and source and
destination Transmission Control Protocol (TCP)
ports; .. 65

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-iv-
DM2\7951311.5

10.6.3. [9.2] protocol processing, by the host computer, the
first packet, thereby initializing a TCP connection that
is defined by the source and destination IP addresses
and source and destination TCP ports; 66

10.6.4. [9.3] receiving, by the network interface, a second
packet having a second header and payload data,
wherein the second header has IP addresses and TCP
ports that match the IP addresses and TCP ports of the
TCP connection; .. 67

10.6.5. [9.4] receiving, by the network interface, a third packet
having a third header and additional payload data,
wherein the third header has IP addresses and TCP
ports that match the IP addresses and TCP ports of the
TCP connection; .. 68

10.6.6. [9.5] checking, by the network interface, whether the
second and third packets have certain exception
conditions, including checking whether the packets are
IP fragmented, checking whether the packets have a
FIN flag set, and checking whether the packets are out
of order; .. 69

10.6.7. [9.6] if the second packet has any of the exception
conditions, then protocol processing the second packet
by the host computer; ... 69

10.6.8. [9.7] if the third packet has any of the exception
conditions, then protocol processing the third packet by
the host computer; .. 70

10.6.9. [9.8] if the second and third packets do not have any of
the exception conditions, then storing the payload data
of the second and third packets together in a buffer of
the host computer, such that the payload data is stored
in the buffer in order and without any TCP header
stored between the payload data of the second and third
packets. ... 70

10.7. Claim 11 .. 71

10.7.1. [11] The method of claim 9, wherein storing the
payload data of the second and third packets together

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-v-
DM2\7951311.5

in a buffer of the host computer is performed by a direct
memory access (DMA) unit of the network interface. 71

10.8. Claim 14 .. 71

10.8.1. [14] The method of claim 9, including comparing, by
the network interface, the IP addresses and TCP ports
of the second and third packets with the source and
destination IP addresses and source and destination
TCP ports that define the TCP connection. 71

10.9. Claim 15 .. 72

10.9.1. [15] The method of claim 9, wherein checking whether
the second and third packets have certain exception
conditions includes checking whether the packets have
a RST flag set. .. 72

10.10. Claim 16 .. 73

10.10.1. [16] The method of claim 9, wherein checking whether
the second and third packets have certain exception
conditions includes checking whether the packets have
a SYN flag set. ... 73

10.11. Claim 17 .. 74

10.11.1. [17.P] An apparatus for network communication, the
apparatus comprising: .. 74

10.11.2. [17.1] a host computer running a protocol stack
including an Internet Protocol (IP) layer and a
Transmission Control Protocol (TCP) layer, the
protocol stack adapted to establish a TCP connection
for an application layer running above the TCP layer,
the TCP connection being defined by source and
destination IP addresses and source and destination
TCP ports; .. 76

10.11.3. [17.2] a network interface that is connected to the host
computer by an input/output bus, the network interface
adapted to parse the headers of received packets to
determine whether the headers have the IP addresses
and TCP ports that define the TCP connection and to
check whether the packets have certain exception

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-vi-
DM2\7951311.5

conditions, including whether the packets are IP
fragmented, have a FIN flag set, or are out of order, the
network interface having logic that directs any of the
received packets that have the exception conditions to
the protocol stack for processing, and directs the
received packets that do not have any of the exception
conditions to have their headers removed and their
payload data stored together in a buffer of the host
computer, such that the payload data is stored in the
buffer in order and without any TCP header stored
between the payload data that came from different
packets of the received packets. ... 78

10.12. Claim 19 .. 82

10.12.1. [19] The apparatus of claim 17, wherein the network
interface includes a direct memory access (DMA) unit
that is adapted to store the payload data in the buffer. 82

10.13. Claim 21 .. 83

10.13.1. [21] The apparatus of claim 17, wherein the exception
conditions include having a RST flag set. 83

10.14. Claim 22 .. 84

10.14.1. [22] The apparatus of claim 17, wherein the exception
conditions include having a SYN flag set. 84

11. CONCLUSION .. 84

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-vii-
DM2\7951311.5

Exhibit List

Exhibit # Description

Ex.1001 U.S. Patent No. 8,805,948 (“948 Patent”)

Ex.1002
Excerpts from Prosecution File History of U.S. Patent No.
8,805,948 (“948 File History”)

Ex.1003 Declaration of Robert Horst

Ex.1004 Curriculum Vitae of Robert Horst

Ex.1005 U.S. Patent No. 5,768,618 (“Erickson”)

Ex.1006
Tanenbaum, Andrew S., Computer Networks, Prentice-Hall, Inc.,
New Jersey (1996). (“Tanenbaum96”)

Ex.1007
Transmission Control Protocol, “Darpa Internet Protocol
Specification”, RFC: 793, Sept. 1981. (“RFC 793”)

Ex.1008
Stevens, W. Richard, TCP/IP Illustrated Volume 1: The Protocols,
Addison-Wesley (1994). (“Stevens1”)

Ex.1009
Lilinkamp, J., Mandell. R. and Padlipsky, M., “Proposed Host-
Front End Protocol”, Network Working Group Request for
Comments: 929, Dec. 1984. (“RFC 929”)

Ex.1010 Not Used

Ex.1011
Librarian Declaration of Rice Mayors regarding Andrew S.
Tanenbaum, Computer Networks (3rd ed. 1996) (Ex.1006,
“Tanenbaum96”)

Ex.1012 Not Used

Ex.1013
Stevens, W. Richard and Gary R. Wright, TCP/IP Illustrated
Volume 2: The Implementation, Addison-Wesley (1995).
(“Stevens2”)

Ex.1014 Not Used

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-viii-
DM2\7951311.5

Exhibit # Description

Ex.1015

Thia, Y.H., Woodside, C.M., “A Reduced Operation Protocol
Engine (ROPE) for a Multiple-Layer Bypass Architecture”,
Protocols for High Speed Networks (Dordrecht), 1995. (“Thia and
Woodside”)

Ex.1016

Biersack, E. W., Rütsche E., “Demultiplexing on the ATM
Adapter: Experiments with Internet Protocols in User Space”,
Journal on High Speed Networks, Vol. 5, No. 2, May 1996.
(“Biersack”)

Ex.1017
Rütsche, E., Kaiserswerth, M., “TCP/IP on the Parallel Protocol
Engine”, Proceedings, IFIP Conference on High Performance
Networking, Liege (Belgium), Dec. 1992. (“Rütsche92”)

Ex.1018
Rütsche, E., “The Architecture of a Gb/s Multimedia Protocol
Adapter”, Computer Communication Review, 1993. (“Rütsche93”)

Ex.1019

Padlipsky, M. A., “A Proposed Protocol for Connecting Host
Computers to Arpa-Like Networks Via Directly-Connected Front
End Processors”, Network Working Group RFC #647, Nov. 1974.
(“RFC 647”)

Ex.1020 U.S. Patent No. 5,619,650 (“Bach”)

Ex.1021 U.S. Patent No. 5,915,124 (“Morris”)

Ex.1022
Cooper, E.C., et al., “Protocol Implementation on the Nectar
Communication Processor”, School of Computer Science, Carnegie
Mellon University, Sept. 1990. (“Cooper”)

Ex.1023
Kung, H.T., et al., “A Host Interface Architecture for High-Speed
Networks”, School of Computer Science, Carnegie Mellon

University and Network Systems Corporation. (“Kung”)

Ex.1024

Exhibit D to Declaration of Dr. Gregory L. Chesson in Support of
Microsoft’s Opposition to Alacritech’s Motion for Preliminary
Injunction: “Protocol Engine Handbook”, Protocol Engines
Incorporated, Oct. 1990. (“Chesson”)

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-ix-
DM2\7951311.5

Exhibit # Description

Ex.1025

Kanakia, H., Cheriton, D.R., “The VMP Network Adapter Board
(NAB): High-Performance Network Communication for
Multiprocessors”, Communications Architectures & Protocols,
Stanford University, Aug. 1988. (“Kanakia”)

Ex.1026
Kung, H.T., Cooper, E.C., et al., “Network-Based Multicomputers:
An Emerging Parallel Architectures”, School of Computer Science,
Carnegie Mellon University. (“Kung and Cooper”)

Ex.1027
Dalton, C., et al., “Afterburner: Architectural Support for High-
Performance Protocols”, Networks & Communications
Laboratories, HP Laboratories Bristol, July 1993. (“Dalton”)

Ex.1028
Murphy, E., Hayes, S., Enders, M., TCP/IP Tutorial and Technical
Overview Fifth Edition, Prentice-Hall, Inc. New Jersey, (1995).
(“Murphy”)

Ex.1029
MacLean, A.R., Barvick, S. E., “An Outboard Processor for High
Performance Implementation of Transport Layer Protocols”, IEEE
Globecom ’91, Phoenix, AZ, Dec. 1991. (“MacLean”)

Ex.1030
Clark, D.D., et al., “An Analysis of TCP Processing Overhead”,
IEEE Communications Magazine, June 1989. (“Clark”)

Ex.1031
Provisional Application 60-061,809 (“Alacritech 1997 Provisional
Application”)

Ex.1032
Culler, E.C., et al., “Parallel Computing on the Berkeley NOW”,
Computer Science Division, University of California, Berkeley.
(“Culler”)

Ex.1033
“Gigabit Ethernet Technical Brief: Achieving End-to-End
Performance”, Alteon Networks, Inc. First Edition, Sept. 1996.
(“Alteon”)

Ex.1034
Smith, J.A., Primmer, M., “Tachyon: A Gigabit Fibre Channel
Protocol Chip”, Hewlett-Packard Journal, Article 12, Oc. 1996.
(“Smith”)

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-x-
DM2\7951311.5

Exhibit # Description

Ex.1035
Patterson, D.A., Hennessy, J.L., Computer Architecture: A
Quantitative Approach, Morgan Kaufmann Publishers, Inc., San
Mateo, CA (1990). (“Patterson”)

Ex.1036
Internet Protocol, “Darpa Internet Protocol Specification”, RFC:
791, Sept. 1981. (“RFC 791”)

Ex.1037 Not Used

Ex.1038
Woodside, C. M., K. Ravindran, and R. G. Franks. “The protocol
bypass concept for high speed OSI data transfer.” IFIP Workshop
on Protocols for High Speed Networks. 1990. (“Woodside”)

Exs.1039-1062 Not Used

Ex.1063
Librarian Declaration of Pamela Stansbury regarding Gary R.
Wright & W. Richard Stevens, TCP/IP Illustrated: The
Implementation (1995) (Ex.1013, “Stevens2”).

Ex.1064
Librarian Declaration of Lisa Rowlison de Ortiz re Y.H. Thia &
C.M. Woodside, A Reduced Operation Protocol Engine (ROPE) for
a Multiple-layer Bypass Architecture (1995) (Ex.1015, “Thia”)

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

DM2\7951311.5

1. INTRODUCTION

Pursuant to 35 U.S.C. §§ 311-319 and 37 C.F.R. §§ 42.1-.80, 42.100-.123,

Cavium, Inc. (“Petitioner” or “Cavium”) hereby petitions the Patent Trial and

Appeal Board to institute an inter partes review of claims 1, 3, 6-9, 11, 14-17, 19,

and 21-22 of U.S. Patent No. 8,805,948, titled “Intelligent Network Interface System

and Method for Protocol Processing” (Ex.1001, the “948 Patent”), and cancel those

claims as unpatentable.

2. REQUIREMENTS FOR PETITION FOR INTER PARTES REVIEW

2.1. Grounds for Standing (37 C.F.R. § 42.104(a))

Petitioner certifies that the 948 Patent is available for inter partes review and

that Petitioner is not barred or estopped from requesting inter partes review of the

challenged claims of the 948 Patent on the grounds identified herein.

2.2. Notice of Lead and Backup Counsel and Service Information

Pursuant to 37 C.F.R. §§ 42.8(b)(3), 42.8(b)(4), and 42.10(a), Petitioner

provides the following designation of Lead and Back-Up counsel.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-2-
DM2\7951311.5

Lead Counsel Back-Up Counsel
Patrick D. McPherson
Registration No. 46,255
(PDMcPherson@duanemorris.com)

Postal & Hand-Delivery Address:
Duane Morris LLP
505 9th Street, N.W., Suite 1000
Washington, DC 20004
T: (202) 776-5214;
F: (202) 776-7801

Attorney for Cavium, Inc.

David T. Xue, Ph.D.
Registration No. 54,554
(DTXue@duanemorris.com)

Postal & Hand-Delivery
Duane Morris LLP
2475 Hanover St.
Palo Alto, CA 94304
T: (650) 847-4153;
F: (650) 444-0459

Attorneys for Cavium, Inc.

2.3. Notice of Real-Parties-in-Interest (37 C.F.R. § 42.8(b)(1))

Petitioner, Cavium, Inc. is the real-party-in-interest. No other parties

exercised or could have exercised control over this Petition; no other parties funded

or directed this Petition. See Office Patent Trial Practice Guide, 77 Fed. Reg. 48759-

60.

2.4. Notice of Related Matters (37 C.F.R. § 42.8(b)(2))1

The following judicial or administrative matters may affect or be affected by

a decision in this proceeding: Alacritech, Inc. v. CenturyLink, Inc., 2:16-cv-00693-

JRG-RSP (E.D. Tex.); Alacritech, Inc. v. Wistron Corp., 2:16-cv-00692-JRG-RSP

(E.D. Tex.); Alacritech, Inc. v. Dell Inc., 2:16-cv-00695-RWS-RSP (E.D. Tex.). In

1 These petitions will be filed concurrently or within a few days.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-3-
DM2\7951311.5

addition to this Petition, Petitioner is filing petitions for U.S. Patent Nos. 7,237,036;

7,337,241; 7,673,072; 7,945,699; 8,131,880; 7,124,205; and 9,055,104.

The 948 Patent is subject to a pending request for IPR filed by Intel on May

9, 2017 (IPR-2017-01395).

Alacritech has asserted one or more of the Asserted Patents or patents related

to the Asserted Patents in the following actions:

1. U.S. Patent Nos. 6,427,171 and 6,697,868 are asserted in Alacritech,

Inc. v. Microsoft Corp., 3-04-cv-03284, (N.D. Cal);

2. U.S. Patent Nos. 7,124,205; 7,237,036; 7,337,241; 7,673,072;

8,131,880; 8,805,948; and 9,055,104 are asserted in Alacritech, Inc. v. Wistron

Corp., 2:16-cv-00692-JRG-RSP (E.D. Tex.);

3. U.S. Patent Nos. 7,124,205; 7,237,036; 7,337,241; 7,673,072;

8,131,880; 8,805,948; 9,055,104; and 7,945,699 are asserted in Alacritech, Inc. v.

Dell Inc., 2:16-cv-00695-RWS-RSP (E.D. Tex.);

4. U.S. Patent Nos. 7,124,205; 7,237,036; 7,337,241; 7,673,072;

8,131,880; 8,805,948; 9,055,104; and 7,945,699 are asserted in Alacritech, Inc. v.

CenturyLink, Inc., 2:16-cv-00693-JRG-RSP (E.D. Tex.).

The patent family to which the 036 Patent belongs contains 19 additional

U.S. patents:

1. U.S. Patent Application No. 11/821,820 (filed Jun. 25, 2007, issued

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-4-
DM2\7951311.5

Mar. 2, 2010 as 7,673,072 patent);

2. U.S. Patent Application No. 10/092,967 (filed Mar. 6, 2002, issued

Jul. 8, 2003 as 6,591,302 patent);

3. U.S. Patent Application No. 10/023,240 (filed Dec. 17, 2001, issued

Nov. 15, 2005 as 6,965,941 patent);

4. U.S. Patent Application No. 09/970,124 (filed Oct. 2, 2001, issued

Oct. 17, 2006 as 7,124,205 patent);

5. U.S. Patent Application No. 09/855,979 (filed May 14, 2001, issued

Nov. 7, 2006 as 7,133,940 patent);

6. U.S. Patent Application No. 09/802,426 (filed Mar. 9, 2001, issued

May 9, 2006 as 7,042,898 patent);

7. U.S. Patent Application No. 09/802,550 (filed Mar. 9, 2001, issued

Dec. 2, 2003 as 6,658,480 patent);

8. U.S. Patent Application No. 09/802,551 (filed Mar. 9, 2001, issued

Jul. 11, 2006 as 7,076,568 patent);

9. U.S. Patent Application No. 09/801,488 (filed Mar. 7, 2001, issued

Feb. 3, 2004 as 6,687,758 patent);

10. U.S. Patent Application No. 09/789,366 (filed Feb. 20, 2001, issued

Jun. 29, 2004 as 6,757,746 patent);

11. U.S. Patent Application No. 09/675,700 (filed Sept. 29, 2000, issued

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-5-
DM2\7951311.5

Dec. 31, 2013 as 8,621,101 patent);

12. U.S. Patent Application No. 09/675,484 (filed Sept. 29, 2000, issued

Oct. 19, 2004 as 6,807,581 patent);

13. U.S. Patent Application No. 09/514,425 (filed Feb. 28, 2000, issued

Jul. 30, 2002 as 6,427,171 patent);

14. U.S. Patent Application No. 09/464,283 (filed Dec. 15, 1999, issued

Jul. 30, 2002 as 6,427,173 patent);

15. U.S. Patent Application No. 09/439,603 (filed Nov. 12, 1999, issued

Jun. 12, 2001 as 6,247,060 patent);

16. U.S. Patent Application No. 09/416,925 (filed Oct. 13, 1999, issued

Oct. 22, 2002 as 6,470,415 patent);

17. U.S. Patent Application No. 09/384,792 (filed Aug. 27, 1999, issued

Aug. 13, 2002 as 6,434,620 patent);

18. U.S. Patent Application No. 09/141,713 (filed Aug. 28, 1998, issued

May 14, 2002 as 6,389,479 patent);

19. U.S. Patent Application No. 60/098,296 (expired);

20. U.S. Patent Application No. 09/067,544 (filed Apr. 27, 1998, issued

May 1, 2001 as 6,226,680 patent);

21. U.S. Patent Application No. 60/061,809 (expired).

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-6-
DM2\7951311.5

The patent family to which the 205 Patent belongs contains 5 additional U.S.

patents:

1. U.S. Patent Application No. 10/092,967 (filed Mar. 6, 2002, issued

Jul. 8, 2003 as 6,591,302 patent);

2. U.S. Patent Application No. 10/260,112 (filed Sept. 27, 2002, issued

Jul. 26, 2007 as 7,237,036 patent);

3. U.S. Patent Application No. 10/261,051 (filed Sept. 30, 2002, issued

Sept. 13, 2011 as 8,019,901 patent);

4. U.S. Patent Application No. 11/821,820 (filed Jun. 25, 2007, issued

Mar. 2, 2010 as 7,673,072 patent);

5. U.S. Patent Application No. 11/582,199 (filed Oct. 16, 2006, issued

Feb. 16, 2010 as 7,664,883 patent).

The patent family to which the 072 Patent belongs contains 19 additional U.S.

patents:

1. U.S. Patent Application No. 10/260,112 (filed Sept. 27, 2002, issued

Jul. 26, 2007 as 7,237,036 patent);

2. U.S. Patent Application No. 10/092,967 (filed Mar. 6, 2002, issued

Jul. 8, 2003 as 6,591,302 patent);

3. U.S. Patent Application No. 10/023,240 (filed Dec. 17, 2001, issued

Nov. 15, 2005 as 6,965,941 patent);

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-7-
DM2\7951311.5

4. U.S. Patent Application No. 09/970,124 (filed Oct. 2, 2001, issued

Oct. 17, 2006 as 7,124,205 patent);

5. U.S. Patent Application No. 09/855,979 (filed May 14, 2001, issued

Nov. 7, 2006 as 7,133,940 patent);

6. U.S. Patent Application No. 09/802,426 (filed Mar. 9, 2001, issued

May 9, 2006 as 7,042,898 patent);

7. U.S. Patent Application No. 09/802,550 (filed Mar. 9, 2001, issued

Dec. 2, 2003 as 6,658,480 patent);

8. U.S. Patent Application No. 09/802,551 (filed Mar. 9, 2001, issued

Jul. 11, 2006 as 7,076,568 patent);

9. U.S. Patent Application No. 09/801,488 (filed Mar. 7, 2001, issued

Feb. 3, 2004 as 6,687,758 patent);

10. U.S. Patent Application No. 09/789,366 (filed Feb. 20, 2001, issued

Jun. 29, 2004 as 6,757,746 patent);

11. U.S. Patent Application No. 09/675,700 (filed Sept. 29, 2000, issued

Dec. 31, 2013 as 8,621,101 patent);

12. U.S. Patent Application No. 09/675,484 (filed Sept. 29, 2000, issued

Oct. 19, 2004 as 6,807,581 patent);

13. U.S. Patent Application No. 09/514,425 (filed Feb. 28, 2000, issued

Jul. 30, 2002 as 6,427,171 patent);

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-8-
DM2\7951311.5

14. U.S. Patent Application No. 09/464,283 (filed Dec. 15, 1999, issued

Jul. 30, 2002 as 6,427,173 patent);

15. U.S. Patent Application No. 09/439,603 (filed Nov. 12, 1999, issued

Jun. 12, 2001 as 6,247,060 patent);

16. U.S. Patent Application No. 09/416,925 (filed Oct. 13, 1999, issued

Oct. 22, 2002 as 6,470,415 patent);

17. U.S. Patent Application No. 09/384,792 (filed Aug. 27, 1999, issued

Aug. 13, 2002 as 6,434,620 patent);

18. U.S. Patent Application No. 09/141,713 (filed Aug. 28, 1998, issued

May 14, 2002 as 6,389,479 patent);

19. U.S. Patent Application No. 60/098,296 (expired);

20. U.S. Patent Application No. 09/067,544 (filed Apr. 27, 1998, issued

May 1, 2001 as 6,226,680 patent);

21. U.S. Patent Application No. 60/061,809 (expired).

The patent family to which the 948 Patent belongs contains 2 additional U.S.

patents:

1. U.S. Patent Application No. 09/692,561 (filed Oct. 18, 2000, issued

Jan. 14, 2014 as 8,631,140 patent);

2. U.S. Patent Application No. 09/067,544 (filed Apr. 27, 1998, issued

May 1,

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-9-
DM2\7951311.5

2001 as 6,226,680 patent);

3. U.S. Patent Application No. 60/061,809 (expired).

The patent family to which the 699 Patent belongs contains 14 additional U.S.

patents:

1. U.S. Patent Application No. 10/881,271 (filed Jun. 29, 2004, issued

Dec. 2, 2008 as 7,461,160 patent);

2. U.S. Patent Application No. 09/789,366 (filed Feb. 20, 2001, issued

Jun. 29, 2004 as 6,757,746 patent);

3. U.S. Patent Application No. 09/748,936 (filed Dec. 26, 2000, issued

Dec. 25, 2001 as 6,334,153 patent);

4. U.S. Patent Application No. 09/692,561 (filed Oct. 18, 2000, issued

Jan. 14, 2014 as 8,631,140 patent);

5. U.S. Patent Application No. 09/675,484 (filed Sept. 29, 2000, issued

Oct. 19, 2004 as 6,807,581 patent);

6. U.S. Patent Application No. 09/675,700 (filed Sept. 29, 2000, issued

Dec. 31, 2013 as 8,621,101 patent);

7. U.S. Patent Application No. 09/514,425 (filed Feb. 28, 2000, issued

Jul. 30, 2002 as 6,427,171 patent);

8. U.S. Patent Application No. 09/464,283 (filed Dec. 15, 1999, issued

Jul. 30, 2002 as 6,427,173 patent);

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-10-
DM2\7951311.5

9. U.S. Patent Application No. 09/439,603 (filed Nov. 12, 1999, issued

Jun. 12, 2001 as 6,247,060 patent);

10. U.S. Patent Application No. 09/416,925 (filed Oct. 13, 1999, issued

Oct. 22, 2002 as 6,470,415 patent);

11. U.S. Patent Application No. 09/384,792 (filed Aug. 27, 1999, issued

Aug. 13, 2002 as 6,434,620 patent);

12. U.S. Patent Application No. 09/141,713 (filed Aug. 28, 1998, issued

May 14, 2002 as 6,389,479 patent);

13. U.S. Patent Application No. 60/098,296 (expired)

14. U.S. Patent Application No. 09/067,544 (filed Apr. 27, 1998, issued

May 1, 2001 as 6,226,680 patent);

15. U.S. Patent Application No. 60/061,809 (expired);

16. U.S. Patent Application No. 13/108,729 (filed May 16, 2011, issued

Sept. 17, 2003 as 8,539,112 patent).

The patent family to which the 880 Patent belongs contains 6 additional U.S.

patents:

1. U.S. Patent Application No. 10/005,536 (filed Nov. 7, 2001, issued

Jan. 23, 2007 as 7,167,926 patent);

2. U.S. Patent Application No. 09/514,425 (filed Feb. 28, 2000, issued

Jul. 30, 2002 as 6,427,171 patent);

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-11-
DM2\7951311.5

3. U.S. Patent Application No. 09/464,283 (filed Dec. 15, 1999, issued

Jul. 30, 2002 as 6,427,173 patent);

4. U.S. Patent Application No. 09/384,792 (filed Aug. 27, 1999, issued

Aug. 13, 2002 as 6,434,620 patent);

5. U.S. Patent Application No. 09/141,713 (filed Aug. 28, 1998, issued

May 14, 2002 as 6,389,479 patent);

6. U.S. Patent Application No. 60/098,296 (expired);

7. U.S. Patent Application No. 09/067,544 (filed Apr. 27, 1998, issued

May 1, 2001 as 6,226,680 patent);

8. U.S. Patent Application No. 60/061,809 (expired).

The patent family to which the 104 Patent belongs contains 1 additional U.S.

patents:

1. U.S. Patent Application No. 10/413,256 (filed Apr. 22, 2003, issued

Jun. 2, 2009 as 7,543,087 patent);

U.S. Patent Application No. 60/374,788 (expired).

The patent family to which the 241 Patent belongs contains 19 additional U.S.

patents:

1. U.S. Patent Application No. 10/092,967 (filed Mar. 6, 2002, issued

Jul. 8, 2003 as 6,591,302 patent);

2. U.S. Patent Application No. 10/023,240 (filed Dec. 17, 2001, issued

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-12-
DM2\7951311.5

Nov. 15, 2005 as 6,965,941 patent);

3. U.S. Patent Application No. 09/464,283 (filed Dec. 15, 1999, issued

Jul. 30, 2002 as 6,427,173 patent);

4. U.S. Patent Application No. 09/439,603 (filed Nov. 12, 1999, issued

Jun. 12, 2001 as 6,247,060 patent);

5. U.S. Patent Application No. 09/067,544 (filed Apr. 27, 1998, issued

May 1, 2001 as 6,226,680 patent);

6. U.S. Patent Application No. 60/061,809 (expired);

7. U.S. Patent Application No. 09/384,792 (filed Aug. 27, 1999, issued

Aug. 13, 2002 as 6,434,620 patent);

8. U.S. Patent Application No. 09/141,713 (filed Aug. 28, 1998, issued

May 14, 2002 as 6,389,479 patent);

9. U.S. Patent Application No. 60/098,296 (expired);

10. U.S. Patent Application No. 09/416,925 (filed Oct. 13, 1999, issued

Oct. 22, 2002 as 6,470,415 patent);

11. U.S. Patent Application No. 09/514,425 (filed Feb. 28, 2000, issued

Jul. 30, 2002 as 6,427,171 patent);

12. U.S. Patent Application No. 09/675,484 (filed Sept. 29, 2000, issued

Oct. 19, 2004 as 6,807,581 patent);

13. U.S. Patent Application No. 09/675,700 (filed Sept. 29, 2000, issued

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-13-
DM2\7951311.5

Dec. 31, 2013 as 8,621,101 patent);

14. U.S. Patent Application No. 09/789,366 (filed Feb. 20, 2001, issued

Jun. 29, 2004 as 6,757,746 patent);

15. U.S. Patent Application No. 09/801,488 (filed Mar. 7, 2001, issued

Feb. 3, 2004 as 6,687,758 patent);

16. U.S. Patent Application No. 09/802,551 (filed Mar. 9, 2001, issued

Jul. 11, 2006 as 7,076,568 patent);

17. U.S. Patent Application No. 09/802,426 (filed Mar. 9, 2001, issued

May 9, 2006 as 7,042,898 patent);

18. U.S. Patent Application No. 09/802,550 (filed Mar. 9, 2001, issued

Dec. 2, 2003 as 6,658,480 patent);

19. U.S. Patent Application No. 09/855,979 (filed May 14, 2001, issued

Nov. 7, 2006 as 7,133,940 patent);

20. U.S. Patent Application No. 09/970,124 (filed Oct. 2, 2001, issued

Oct. 17, 2006 as 7,124,205 patent);

21. U.S. Patent Application No. 09/464,283 (filed Dec. 15, 1999, issued

Jul. 30, 2002 as 6,427,173 patent).

2.5. Fee for Inter Partes Review

The Director is authorized to charge the fee specified by 37 C.F.R. § 42.15(a),

and any other required fees, to Deposit Account No. 04-1679.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-14-
DM2\7951311.5

2.6. Proof of Service

Proof of service of this Petition on the Patent Owner at the correspondence

address of record for the 948 Patent is attached.

3. IDENTIFICATION OF CLAIMS BEING CHALLENGED (§42.104(B))

Ground #1: Claims 1, 3, 6-9, 11, 14-17, 19, and 21-22 of the 948 Patent are

invalid under (pre-AIA) 35 U.S.C. § 103(a) on the ground that they are obvious over

Y.H. Thia & C.M. Woodside, A Reduced Operation Protocol Engine (ROPE) for a

Multiple-layer Bypass Architecture (1995) (Ex.1015, “Thia”) in combination with

Andrew S. Tanenbaum, Computer Networks (3rd ed. 1996) (Ex.1006,

“Tanenbaum96”) in further combination with 2 Gary R. Wright & W. Richard

Stevens, TCP/IP Illustrated: The Implementation (1995) (Ex.1013, “Stevens2”).

4. BACKGROUND OF TECHNOLOGY

This section provides a brief background on the technology at issue, focusing

on layered network protocols generally, the TCP/IP protocol, offloading protocol

processing from a host to a NIC, and Direct Memory Access (“DMA”). Petitioner’s

declarant Dr. Horst provides a tutorial on the technology and discusses the state of

the art as well. Ex.1003, ¶¶21-88.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-15-
DM2\7951311.5

A. Layered Network Protocols

The seven-layer Open Systems Interconnect (OSI) model describes a logical

network layering model including physical, data link, network, transport, session,

presentation and application layers. Id. ¶23.

1. TCP/IP stands for Transmission Control Protocol/Internet Protocol.

TCP/IP is the main protocol used for Internet communications – Web pages are

served using TCP/IP. There is a well-known correspondence between TCP/IP layers

and the OSI model. The following figure shows the relationship between the OSI

and TCP/IP layering.

Available at http://mitigationlog.com/how-tcpip-and-reference-osi-model-works/.

Conceptually, each layer is responsible only for its respective functions.

Ex.1003, ¶25. This enables, for example, hiding the complexity of the physical data

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-16-
DM2\7951311.5

connection (that is, actually transmitting and receiving the data onto the physical

wires) from the data link, network and transport layers above. Id. Likewise, the

lowest layer must transmit and receive the data on the physical wires, but need not

worry about what application the data belongs to or whether the packets are received

in order. Id.

B. TCP/IP

The 948 Patent relates to an intelligent network interface card that provides a

“fast path” that avoids host protocol processing for most packets in a large

multipacket message. Ex.1001, Abstract. The claims are all directed to TCP/IP.

By October 14, 1996, the critical date of the 948 Patent, TCP/IP was one of

the most popular networking protocols, overtaking the OSI protocols. See Ex.1006,

.016 (“The OSI protocols have quietly vanished, and the TCP/IP protocol suite has

become dominant.”) TCP/IP was standardized in a series of publically available

Request for Comments (RFCs) published by the Internet Engineering Task Force,

including RFC 793, entitled “Transmission Control Protocol” and RFC 791, entitled

“Internet Protocol.” Ex.1007; Ex.1036. Free implementations of TCP/IP were

widely available and widely used. Ex.1003, ¶27.

TCP/IP consists of two parts: (1) Transmission Control Protocol (TCP), which

provides virtual bi-directional connections that are guaranteed in-order, error-free

delivery of arbitrary amounts of data between programs running on different

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-17-
DM2\7951311.5

computers over the Internet; and (2) Internet Protocol (IP), which provides delivery

of datagrams (IP packets) to any routable Internet address, without any reliability or

ordering guarantees. IP also provides for fragmentation and reassembly.

Fragmentation occurs when an IP packet must be divided (“fragmented”) into

smaller packets en route for transmission over an intermediate network with a small

packet size. TCP/IP can be transmitted over a variety of physical media, such as

Ethernet. Id. ¶28.

TCP runs on “top” of IP by first dividing application data to be transmitted

into segments that become the data payloads of TCP packets and concatenating each

payload with a TCP header to form a TCP packet, a process called TCP

segmentation. TCP/IP then places the resulting TCP packet (TCP header + payload)

into the data payload of an IP packet by concatenating the TCP packet (IP data

payload) with an IP header. The TCP packet is thus “encapsulated” in an IP packet.

For transmission on an Ethernet network, the IP packet is in turn encapsulated in an

Ethernet frame by concatenating a Media Access Control (MAC) header for Ethernet

with the IP packet, which becomes the payload of the Ethernet frame, and

concatenating a checksum trailer at the end of the frame. Id. ¶29.

As shown in the figure below, in typical TCP/IP processing, the packet is built

from the top down, i.e., each layer encapsulates what it receives from the above layer

by concatenating an additional header associated with that layer. Id. ¶30. When

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-18-
DM2\7951311.5

receiving a packet from the network, the layers work in reverse, with each layer

stripping its header and providing the resulting packet to the above layer. Id. The

user data without headers is eventually delivered to the relevant application.

Ex.1008, Fig. 1.7.

Starting from the lowest layer, the MAC (media access control) layer handles

the actual transmission on the physical media. The header for this layer, e.g., an

Ethernet header, includes a MAC address that is the address of the network interface

(e.g., on a computer or router) on a local area network. Ex.1003, ¶31.

Above the MAC layer is the Internet layer (IP layer). The IP header includes

source and destination IP addresses for identifying a computer at each end of the

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-19-
DM2\7951311.5

connection. Id. ¶33. The IP header also has a flag that indicates whether the packet

has been fragmented. Id.

Above the IP layer is the TCP (Transport) layer. The TCP header includes

“port numbers,” corresponding to the end points (e.g., client or server programs)

sending and receiving data on each end of the connection. Id. ¶34. The TCP layer

tracks the sequence of packets, ensuring assembly of packets in the proper order by

using sequence numbers in its headers. Id. ¶35. The transport services can be

performed by software or the network interface card. Id.

To provide guaranteed reliable, in order, delivery of arbitrary amounts of data,

the TCP layer tracks and acknowledges the sequence of packets, so that the sending

TCP layer can re-send lost (and therefore unacknowledged) data without the

application having to manage this process. The TCP layer assembles the data from

packet payloads in the proper order by using sequence numbers in the TCP packet

headers. Ex.1003, ¶35.

TCP maintains a finite state machine to manage the state of each connection.

Connections begin in a CLOSED state. A server can move from CLOSED into a

LISTEN state, which waits passively for a client to open a connection by sending a

special packet called a SYN packet. After the server acknowledges the SYN packet,

the connection is in the ESTABLISHED state. Either side can close the connection

by sending a special packet called a FIN packet. The TCP finite state machine and

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-20-
DM2\7951311.5

associated messages are described in detail in RFC 793. RFC 793 describes the data

structure for storing the information needed to maintain a TCP connection as a

Transmission Control Block (TCB). Ex.1007, .016; Ex.1003, ¶36.

In sum, sending data over a TCP/IP connection using Ethernet has always

required: (1) TCP source and destination port numbers, (2) source and destination

IP addresses, and (3) source and destination MAC addresses. Id. ¶37.

Each user application typically has one or more areas of host memory in which

it can (1) place data for transmission so that the protocol stack can retrieve it,

encapsulate it in packets, and transmit it, and (2) receive data from the network

placed there by the protocol stack, after the protocol stack has stripped the MAC, IP

and TCP headers from the packet. Id. ¶38.

C. Protocol Offload and Fast-Path Processing

Protocol processing on a host computer requires that the host perform several

operations on the data. To increase performance and reduce the demands on a host

computer, many prior art solutions offload some (partial offload), or all (full

offload), of this processing to a separate device, e.g., a network interface controller

(NIC). Ex.1003, ¶40.

As early as 1974, front-end protocol offload (offloading protocol processing

to a processor outside of the host) was already being considered for standardization

as described in request-for-comments RFC 647, which describes a broad consensus

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-21-
DM2\7951311.5

that front-ending (i.e. protocol offloading) was desirable. Ex.1019; Ex.1003, ¶¶41-

42.

RFC 929, published in 1984, describes several motivations for offloading

protocol processing to an outboard processor:

There are two fundamental motivations for doing outboard processing.

One is to conserve the Hosts’ resources (CPU cycles and memory) in a

resource sharing intercomputer network, by offloading as much of the

required networking software from the Hosts to Outboard Processing

Environments (or “Network Front-Ends”) as possible. The other is to

facilitate procurement of implementations of the various intercomputer

networking protocols for the several types of Host in play in a typical

heterogeneous intercomputer network, by employing common

implementations in the OPE. A third motivation, of basing a network

security approach on trusted mandatory OPEs, will not be dealt with

here, but is at least worthy of mention.

Ex.1009, .002; Ex.1003, ¶43. RFC 929 identifies many protocols for offloading,

including TCP and UDP, and contemplates a wide range of protocol processing to

be offloaded, specified by a “mediation level parameter,” ranging from 9 for full

offload, 8-1 for various levels of partial offloads, to 0 for no offload. Ex.1009, .015-

.016; Ex.1003, ¶44.

Between the publication of RFC 929 in 1984 and the October 14, 1996 critical

date for the 1997 provisional application to which the 948 patent claims priority, a

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-22-
DM2\7951311.5

great deal of work was published in the area of protocol offloading and optimization.

See Ex.1003, ¶¶45-80. One common implementation, called Header Prediction,

examined TCP/IP packet headers to determine whether a received packet was a

normal one, meaning: the connection was in the ESTABLISHED state; no TCP

control flags (SYN, FIN, RST, and URG) were set; and the packet was received in

order. Id. ¶¶58-60. These normal packets were processed on the fast path. Id. ¶58.

Header Prediction for fast path processing on a NIC specifically teaches the alleged

ideas claimed in the 948 Patent.

TCP Header Prediction was developed by Van Jacobson, who wrote the

implementation of Header Prediction in the freely distributed and widely used BSD

TCP/IP stack available in 1996. Id. ¶59. Jacobson’s Header Prediction is discussed

in all of three of the references relied upon in this petition.

D. Direct Memory Access

Direct Memory Access (DMA) has been a well-known hardware technique

that allows peripherals including network interface devices to directly access host

memory without interrupting the host CPU. Ex.1003, ¶81. After received TCP/IP

packets are processed on the fast path by separate hardware, the resulting data must

be accessible to the application running on the host machine. Id. ¶82. DMA was a

common and efficient way to achieve this. Id. Tanenbaum96 suggests the use of

direct copying into the user buffer to avoid unnecessary copying. Ex.1006, .585.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-23-
DM2\7951311.5

The TCP/IP transport layer reassembles the original byte stream for use by the

application layer after the headers are processed. Id. at .055-.056, .541; Ex.1003,

¶88.

5. OVERVIEW OF THE 948 PATENT

The 948 Patent relates generally to offloading TCP protocol processing for

established TCP connections to a network interface card (NIC), which performs all

protocol processing through the TCP layer and stores the packet payload data

directly in its destination in application memory, bypassing the host protocol stack.

The 948 Patent refers to the disclosed network interface card as an “intelligent

network interface card (INIC).” Ex.1001, at Abstract. The INIC permits two modes

of operation: a “fast path” in which protocol processing from the physical layer

through the TCP layer is performed on the INIC, and a “slow path” in which network

frames are handed to the host at the MAC layer and passed up through the host

protocol stack conventionally. This concept is illustrated in Fig. 6, shown and

described below:

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-24-
DM2\7951311.5

A simplified intelligent network interface card (INIC) 150 is shown in

FIG. 6 to provide a network interface for a host 152. Hardware logic

171 of the INIC 150 is connected to a network 155, with a peripheral

bus (PCI) 157 connecting the INIC and host. The host 152 in this

embodiment has a TCP/IP protocol stack, which provides a slow-path

158 for sequential software processing of message frames received

from the network 155. The host 152 protocol stack includes a data link

layer 160, network layer 162, a transport layer 164 and an application

layer 166, which provides a source or destination 168 for the

communication data in the host 152…. The INIC 150 has a network

processor 170 which chooses between processing messages along a

slow-path 158 that includes the protocol stack of the host, or along a

fast-path 159 that bypasses the protocol stack of the host.

Ex.1001, Fig. 6; 9:11-29.

When a connection is created, the host computer creates a connection record

which the 948 patent calls a “Communication Control Block (CCB).” Id. at 5:22-

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-25-
DM2\7951311.5

29. Like the Transmission Control Block (TCB) described in the TCP Specification

RFC 791, the CCB of the 948 Patent contains connection and state information for

the connection. Id. at 12:32-39. When the INIC receives a packet, it looks for a

CCB to determine if a connection exists, and if so, processes the packet on the fast-

path, bypassing the host protocol stack:

The processor 170 chooses, for each received message packet held in

storage 185, whether that packet is a candidate for the fast-path 159

and, if so, checks to see whether a fast-path has already been set up for

the connection that the packet belongs to. To do this, the processor 170

first checks the header status summary to determine whether the packet

headers are of a protocol defined for fast-path candidates.… For fast-

path 159 candidates, the processor 170 checks to see whether the header

status summary matches a CCB held by the INIC. If so, the data from

the packet is sent along fast-path 159 to the destination 168 in the host.

If the fast-path 159 candidate’s packet summary does not match a CCB

held by the INIC, the packet may be sent to the host 152 for slow-path

processing to create a CCB for the message.

Id. at 11:57-12:10.

The claims of the 948 Patent are directed to this notion of fast-path TCP

receive processing when a connection is in the ESTABLISHED state.

6. 948 PATENT PROSECUTION HISTORY

The 948 Patent was filed on September 26, 2013 and issued less than 11

months later on August 12, 2014. There were no rejections or amendments.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-26-
DM2\7951311.5

The 948 Patent is a continuation of U.S. Patent Application No. 09/692,561,

filed October 18, 2000, which is a continuation of U.S. Patent No. 6,226,680, filed

April 28, 1998, which claims the benefit of U.S. Patent Application No. 60/061,809

filed October 14, 1997. Therefore, the earliest possible priority date of the 948 Patent

is October 14, 1997.

On December 19, 2013, Applicant filed an Information Disclosure Statement

with 383 patents, 41 applications, 13 foreign patents, and 112 non-patent literature

documents, including Thia and Tanenbaum96. See Ex.1002, .075-.099. Neither

Thia nor Tanenbaum96 were discussed during the prosecution of the application

leading to the 948 Patent.

The Examiner’s reasons for allowance follow:

None of the prior art of record taken singularly or in combination

teaches or suggest a network interface of a host computer for checking

whether received packets have certain exception conditions, including

whether the packets are IP fragmented, have FIN flag set, or out of

order; processing any of the received packet that have the exception

conditions, and storing payload data of the received packets that do not

have any of the exception conditions in a buffer of the host computer

and without any TCP header stored between the payload data of the

received packets.

Ex.1002, .117.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-27-
DM2\7951311.5

7. CLAIM CONSTRUCTION

7.1. Applicable Law

The “broadest reasonable construction in light of the specification of the

patent in which it appears” applies to the 948 Patent. 37 C.F.R. § 42.100(b).

7.2. Construction of Claim Terms

No relevant issues of claim construction are presented in the claims of the 948

Patent, and all terms should therefore simply be given their broadest reasonable

construction in light of the specification as commonly understood by those of

ordinary skill in the art.

8. PERSON HAVING ORDINARY SKILL IN THE ART

A person having ordinary skill in the art (“POSA”) with respect to the

technology described in the 948 Patent would be a person with at least the equivalent

of a B.S. degree in computer science, computer engineering or electrical engineering

with at least five years of industry experience including experience in computer

architecture, network design, network protocols, software development, and

hardware development. See Ex.1003, ¶19.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-28-
DM2\7951311.5

9. DESCRIPTION OF THE PRIOR ART

9.1. Thia2

Thia teaches a hardware protocol engine for fast-path data transfer, bypassing

the host protocol stack:

Abstract - The Reduced Operation Protocol Engine (ROPE) presented

here offloads critical functions of a multiple-layer protocol stack, based

on the “bypass concept” of a fast path for data transfer.

Ex.1015, .001. Thia is based on the Open Systems Interconnect (OSI) layered

networking model.

Thia describes a hardware protocol offload system that compares multiple

incoming packet headers, including consecutive packets, with a template that

identifies predicted bypassable headers using a receive bypass test (RX bypass test),

and performs all protocol processing for packets in the “data transfer phase,”

bypassing the standard protocol stack (SPS) (host protocol stack):

The receive bypass test matches the incoming PDU headers with a

template that identifies the predicted bypassable headers. The bypass

stack performs all the relevant protocol processing in the data transfer

phase.

2 Thia was published no later than March 20, 1996 and is prior art under 102(b).

See Ex.1064.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-29-
DM2\7951311.5

Ex.1015, .003. The “receive bypass test” is performed on the Network Interface

Adapter. Ex.1015, .006. The hardware is referred to as a reduced operation protocol

engine (“ROPE”) because it only operates on a subset of packets. Ex.1003, ¶100.

Id. Fig. 1 (annotated).

Thia teaches that the receive bypass test ensures that the protocol bypass on

the ROPE only handles normal packets − those in the data transfer phase (this is

what Stevens2 referred to as the ESTABLISHED state for TCP) and that the SPS

handles other phases:

A multiple-layer bypass path is a concatenation of processing

procedures performed by the adjacent layers when they are

simultaneously in the data transfer phase. Meanwhile, the separate

User A
receives a
packet
from
UserB

No bypass
– Host
processes
the packet Bypass –

ROPE
processes
the packet

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-30-
DM2\7951311.5

layers in the SPS [Standard Protocol Stack] path handle the other

phases.

Ex.1015, .004.

In summary, the separation of the bypass path offers the following

advantages:

· The processing path of data PDUs can be optimized;

· The number of possible PDU [Protocol Data Unit i.e. packet] formats

in the bypass path is reduced to data transfer PDUs;

· The finite state machine of the protocol is now reduced to only the

“OPEN” state, for as long as processing remains in the bypass path. The

state of the system does not change during the entire data transfer phase

and the protocol processing is reduced to ensuring reliable transfer of

data across the communications network.

Id. at .004. Thia’s receive bypass test is a generalization of Jacobson’s well-known

“Header Prediction Algorithm” for TCP/IP, which is also described in the

Tanenbaum96 and Stevens2 references discussed below. Id. at .002-.04.

The bypass stack on the ROPE performs header decoding and can perform the

checksum. Id., .006.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-31-
DM2\7951311.5

Ex.1015, Table 1.

Thia’s DMA copies the processed data from the bypass stack to Host Memory.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-32-
DM2\7951311.5

Id. at Fig. 2 (annotated).

As show in Table 1 above, data copying within layers is eliminated.

9.2. Tanenbaum96: A. Tanenbaum, Computer Networks, 3rd ed.
(1996)3

As described by the 948 Patent, Tanenbaum96 is a textbook devoted primarily

to layered protocol processing. Ex.1001, 3:4-19. It is a widely-cited textbook

3 Tanenbaum96 was published no later than August 9, 1996 and is prior art under 35

U.S.C. § 102(b). Ex.1006; see also Ex.1011. Tanenbaum96 was provided during

prosecution in an IDS listing 383 patents, 41 applications, 13 foreign patents, and

A packet is
received at the
NIA via
Transmission
Medium

Bypass – ROPE
processes the
packet and stores
the data in host
memory

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-33-
DM2\7951311.5

covering network hardware, software, protocols (including OSI and TCP/IP) and

standards. Ex.1003, ¶105. It was published no later than August 9, 1996 and is

therefore prior art to the October 14, 1997 provisional application to which the 948

Patent claims priority. See Ex.1011.

Tanenbaum96 recognizes that an “obstacle to fast networking is protocol

software,” and teaches “fast path” processing for TCP as a solution for normal

packets. Ex.1006, .583-84; Ex.1003, ¶107. Tanenbaum96 teaches TCP fast path

receive processing by looking up a TCP connection record, checking to see if it, the

packet, is a normal one in the ESTABLISHED state, that the data is not fragmented,

no special flags are set, and the packet is not out of sequence, and then putting the

data directly into user memory. This well-known scheme was called “header

prediction”:

Now let us look at fast path processing on the receiving side…. For

TCP, the connection record can be stored in a hash table for which some

simple function of the two IP addresses and two ports is the key. Once

the connection record has been located, both addresses and both ports

must be compared to verify that the correct record has been found….

the TPDU [Transport Protocol Data Unit, i.e. packet] is then checked

112 non-patent literature documents. See Ex.1002 at .092. It was not relied on by

the Examiner during prosecution of the 948 Patent.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-34-
DM2\7951311.5

to see if it is a normal one: the state is ESTABLISHED, neither side is

trying to close the connection, the TPDU is a full one, no special flags

are set,4 and the sequence number is the one expected. These tests take

just a handful of instructions. If all conditions are met, a special fast

path TCP procedure is called.

The fast path updates the connection record and copies the data to the

user. … The general scheme of first making a quick check to see if the

header is what is expected, and having a special procedure to handle

that case, is called header prediction. Many TCP implementations use

it.

Ex.1006, .584-.585 (underlining added, bold in original). The “connection record”

is used to maintain TCP state for each connection. Id. at .549. A structure for

maintaining TCP state information is also called a “Transmission Control Block

(TCB)” as described in RFC 793, the TCP Protocol Specification. Ex.1007, .024.

As the quotation above notes, header prediction was included in many TCP

implementations in 1996. This included the widely used BSD implementation

described in Stevens2 below. The original developer of header prediction, Van

4 As discussed below, the RST and FIN flags close the connection, i.e. take it out of

the ESTABLISHED state. The SYN flag establishes a connection (i.e., the

ESTABLISHED state), meaning that a SYN packet is not a part of a connection in

the ESTABLISHED state. Ex.1006, .584-585.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-35-
DM2\7951311.5

Jacobson, implemented header prediction in the BSD TCP/IP protocol stack.

Ex.1013, .960 (“Header Prediction was put into the 4.3BSD Reno release by Van

Jacobson”), .961-.962.5

Tanenbaum96 shows the finite state machine used by TCP/IP to maintain a

connection. The arrows indicate how the state changes in response to the flags

(SYN, FIN, ACK, RST) in the TCP header:

5 The 948 Patent claims priority to a 1997 Provisional, which indicates that “header

prediction” in FreeBSD was the basis for the receive fast-path processing: “The base

for the receive processing done by the INIC on an existing context is the fast-path or

“header prediction” code in the FreeBSD release.” Ex.1031, .057.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-36-
DM2\7951311.5

Ex.1006, Fig. 6-28

The SYN, FIN and RST flags directly affect whether a TCP connection is in

the ESTABLISHED state. SYN (synchronize) establishes a connection, FIN

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-37-
DM2\7951311.5

(finished) releases a connection, and RST (reset) is “used to reset a connection that

has become confused due to a host crash or some other reason.” Ex.1006, .545, Fig.

6-24. These flags in the TCP header are illustrated below in Fig. 6-24 of

Tanenbaum96 (annotated).

Id. Fig. 6-24

Tanenbaum96 also discloses the benefits of limiting the amount of

unnecessary data copying, including between multiple layers before it reaches the

receiving application process. Id. at .579, .582; Id. at .590 (“As we saw earlier,

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-38-
DM2\7951311.5

copying data is often the main source of overhead. Ideally, the hardware should

dump each incoming packet into memory as a contiguous block of data.”).

Tanenbaum96 teaches that the transport entity may be built into the network

interface card:

The hardware and/or software within the transport layer that does the

work is called the transport entity. The transport entity can be in the

operating system kernel, in a separate user process, in a library package

bound into network applications, or on the network interface card.

Id. at .498 (underlining added, bold in original).

9.3. Stevens2: TCP-IP Illustrated, Vol.26

Stevens2 is one of the most widely-read and referenced books on the

implementation of TCP/IP. Ex.1003, ¶123. It guides the reader through the source

code for the implementation of TCP/IP in the 4.4BSD-Lite distribution, which was

widely-used to implement TCP/IP by companies designing networking products. Id.

The discussion covers BSD’s implementation of Jacobson’s Header Prediction,

which was written by Jacobson himself. Ex.1013, .960 (“Header Prediction was put

into the 4.3BSD Reno release by Van Jacobson”), .961-.962 (“Header prediction

helps unidirectional data transfer by handling the two common cases. . . If TCP is

6 Stevens2 was published no later than April 7, 1995 and is prior art under 102(b).

See also Ex.1063.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-39-
DM2\7951311.5

receiving data, the next expected segment for this connection is the next in-sequence

data segment. . . a small set of tests determines if the next expected segment has been

received, and if so, it is handled in-line, faster than the general processing that

follows.”)

The following six conditions must all be true for the segment to be the

next expected data segment or the next expected ACK:

1. The connection must be ESTABLISHED

2. The following four control flags must not be on: SYN, FIN, RST,

or URG.

4. The starting sequence number of the segment (ti_seq) must equal

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-40-
DM2\7951311.5

the next expected receive sequence number (rcv_nxt). If this test is

false, then the received segment is …a segment beyond the one

expected.

Id. at .962-963 (emphasis added). Header Prediction checks to see if a packet is

eligible for fast path processing by ensuring that a connection is established; the

SYN, FIN, and RST flags are not set; and the sequence number is in order (i.e., it is

the next packet in a data transfer that does not need special processing). The code

above is implemented at the TCP layer, and thus, does not check for IP fragmentation

because the IP layer reassembles fragmented IP packets. Ex.1003, ¶126.

9.4. Motivations To Combine

9.4.1. Thia in combination with Tanenbaum96

Thia discloses a chip for fast path receive protocol processing and a bypass

test to offload protocol processing of packets in the data transfer phase for the OSI

Session and Transport layer protocols. Ex.1015, .001, .003. Thia discloses that its

protocol stack bypass could be used with “any standard protocol.” Id. at .003. A

POSA would be motivated to use Thia’s fast path protocol processing for TCP/IP,

which was among the most popular transport protocols in the world in 1996, to

achieve the many benefits described by Thia, including eliminating “inter-layer

operations such as queue and buffer management, context switching, and the

movement of data across layers, all of which are a significant overhead.” Id.at

.001.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-41-
DM2\7951311.5

A POSA seeking to use Thia’s chip with TCP/IP would naturally look to a

well-known “simplified . . . college-level textbook devoted primarily to th[e] subject

. . ., such as Computer Networks, Third Edition (1996) by Andrew S. Tanenbaum.”

Ex.1001, 3:4-8; Ex.1003, ¶128. Tanenbaum96 addresses both the OSI and TCP/IP

models, and notes that “the TCP/IP internet layer is very similar in functionality to

the OSI network layer,” and that the TCP/IP transport layer “is designed to allow

peer entities on the source and destination hosts to carry on a conversation, the same

as in the OSI transport layer.” Ex.1006, .054. Tanenbaum96 also discloses that

TCP/IP became the dominant protocol suite as the OSI model vanished. Id. at .016.

A POSA would thus be motivated to use Thia for TCP/IP. Ex.1003 at ¶131.

Importantly, Thia discloses that its fast path protocol bypass is a

generalization of Jacobson’s Header Prediction Algorithm for TCP/IP. Id. at .002.

Thia states that its “receive bypass test” matches incoming headers with a template

that identifies the predicted bypassable headers. Id. at ¶130.

Tanenbaum96 discloses Header Prediction and states that “[m]any TCP

implementations use it.” Ex.1006, .584-.585. Tanenbaum96 describes that Header

Prediction determines if the received packet is a normal one and describes the

conditions to check make that determination. Packets meeting those conditions are

eligible for fast path processing. This includes verifying that there is a connection

record matching the two IP addresses (one for source and one for destination) and

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-42-
DM2\7951311.5

two ports (one for source and one for destination) found in the header of the packet.

Id. at .585. Additionally, the connection “state is ESTABLISHED, neither side is

trying to close the connection, TPDU is a full one [i.e., not fragmented], no special

flags are set, and the sequence number is the one expected.” Id.

A POSA reading Thia in combination with Tanenbaum96 would have been

motivated to use Tanenbaum96’s conditions to determine normal packets eligible

for fast path processing as part of Thia’s received bypass test because, as clarified in

Section 9.4.2, both are based on Jacobson’s TCP/IP Header Prediction that is used

to improve performance by bypassing standard protocol processing for normal data

transfers that do not need special processing and avoiding multiple data copies and

encoding associated with multilayer processing. Ex.1003, ¶132; see Ex.1006, .584-

.585; Ex.1015, .002. Further, a POSA would have been motivated to reduce the

burden of protocol processing on the host processor such that it may perform other

necessary functions. Thus, a POSA would have been motivated to migrate to

TCP/IP and to offload processing for normal data transfers from a host processor to

separate hardware and implement direct memory access by storing data (stripped of

the TCP headers) to eliminate interlayer copying of data and improve performance.

Ex.1003, ¶132.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-43-
DM2\7951311.5

9.4.2. Thia in combination with Tanenbaum96 and Stevens2

A POSA would have been motivated to combine Stevens2 with Thia, in

combination with Tanenbaum96. Tanenbaum96 expressly references the sibling

volume of Stevens2 as providing a comprehensive treatment of TCP, IP and related

protocols. Ex.1006, .790. Similarly, Stevens2 expressly references the 1989 second

edition of Tanenbaum96 in its bibliography. Further, like Tanenbaum96, Stevens2

is another well-known textbook concerning the layered protocol TCP/IP. Stevens2

reproduces and explains Jacobson’s implementation of Header Prediction in freely

available and widely used BSD TCP/IP protocol stack implementation. Ex.1013,

.960-.963; Ex.1003, ¶133.

Stevens2 discloses that Header Prediction improves unidirectional data

transfer by handling the common (normal) case where TCP is receiving data and the

next expected segment for the connection is the next in-sequence data segment.

Ex.1013, .962. Header Prediction confirms the next expected segment has been

received by checking whether the connection is ESTABLISHED; the SYN, FIN, and

RST flags are not set, and the segment is not out of order, consistent with the

description of fast path processing in Tanenbaum96. Id. at .962-.963.

A POSA would be motivated to combine Thia’s receive bypass test with the

conditions of Jacobson’s Header Prediction as explained in Tanenbaum96 and

Stevens2 because a POSA would want to reduce the burden of protocol processing

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-44-
DM2\7951311.5

on the host processor to reduce the bottleneck recognized by Thia and Tanenbaum96

such that it may perform other necessary functions. Ex.1003, ¶133. Thus, a POSA

would be motivated to use Thia’s separate hardware to offload processing from a

host processor to efficiently process normal/expected packets that have a pre-

established connection in the data transfer mode. Id. at 135.

10. GROUND #1:

As set forth below, Thia in combination with Tanenbaum96 in further

combination with Stevens2 renders obvious claims 1, 3, 6-9, 11, 14-17, 19, and 21-

22 of the 948 Patent. Thia discloses receiving and checking transport layer packets

on a NIC to determine if they are in the data transfer phase, using the Reduced

Operation Protocol Engine (“ROPE”) chip (fast path that bypasses multiple protocol

layer processing on the host) to perform protocol processing for packets in the data

transfer phase and the Standard Protocol Stack (SPS, slow path) for others, and using

DMA to move data from the ROPE chip to the host memory. Ex.1003, ¶¶ 127-132.

Tanenbaum96 discloses a TCP/IP protocol stack, the details of a TCP/IP

connection and headers, and using Header Prediction to perform fast path protocol

processing for packets in the ESTABLISHED state (i.e. data transfer phase) and

copying received data to the user to avoid multiple data copies between layers. Id.

¶¶129-130. Stevens2 provides additional details of Jacobson’s Header Prediction,

which is referenced as the basis for the fast path processing in all three references.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-45-
DM2\7951311.5

Id. ¶¶133-135. In combination with Tanenbaum96 and Stevens2, it was obvious to

implement Thia’s concept of hardware bypass to conditionally bypass host

processing of TCP/IP packets in the ESTABLISHED state using Header Prediction

and subsequently move the payload data into host memory via DMA, thereby

rendering obvious claims 1, 3, 6-9, 11, 14-17, 19, and 21-22. Id. ¶¶127-135.

10.1. Claim 1

10.1.1. [1.P] A method for network communication by a host
computer having a network interface that is connected
to the host by an input/output bus, the method
comprising

To the extent that the preamble is limiting, Thia in combination with

Tanenbaum96 in further combination with Stevens2 discloses a method for network

communication by a host computer having a network interface that is connected to

the host by an input/output bus.

Specifically, Thia discloses a Reduced Operation Protocol Engine (“ROPE”)

chip and a Network Interface Adapter (“NIA”) (together “a network interface”), both

of which are connected to the Host Processor and Host Memory (together the “host

computer”) by a Host Processor Bus (“an input/output bus”), as shown below:

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-46-
DM2\7951311.5

Ex.1015, Fig. 2 (annotated).

A POSA would have understood that the combination of the ROPE chip with

the NIA is the “network interface” because they operate together and provide the

interface between the Transmission Medium (used for “network communication”)

and the Host Processor and Host Memory.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-47-
DM2\7951311.5

10.1.2. [1.1] running, on the host computer, a protocol
processing stack including an Internet Protocol (IP)
layer and a Transmission Control Protocol (TCP)
layer, with an application layer running above the TCP
layer;

Thia in combination with Tanenbaum96 in further combination with Stevens2

discloses this limitation.

10.1.2.1. running, on the host computer

As explained above in Section 9.1, Thia discloses a Standard Protocol Stack

(“SPS”) running on the host computer. Specifically, Thia discloses a bypass

architecture in which a “receive bypass test” (RX Bypass Test) on the Network

Interface Adapter (NIA) (Ex.1015, .006), determines whether a received packet is to

be processed by a fast path bypass stack on the ROPE chip or the SPS on the host.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-48-
DM2\7951311.5

Id. Fig. 1 (annotated).

See also id. at .010 (“Whenever the host processor encounters a switch in

the processing path, i.e., from the bypass stack to the SPS. . .”) (emphasis added),

.002 (“The contribution of this paper is to define the host/chip interface and the chip

operation.”).

H ost Com p uter

Network
I nter f ace

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-49-
DM2\7951311.5

10.1.2.2. a protocol processing stack including

Thia discloses that the SPS protocol processes packets that are not bypassed.

Ex.1015, .003 (“The standard protocol stack (SPS) is the processing path taken by

all PDU’s during a connection without the bypass.”).

10.1.2.3. an Internet Protocol (IP) layer and a
Transmission Control Protocol (TCP) layer

Thia in combination with Tanenbaum96 discloses an Internet Protocol (IP)

layer and a Transmission Control Protocol (TCP) layer. Thia discloses a hardware

offload of a multiple-layer protocol stack (the SPS), and specifically discloses the

design of a ROPE chip for the OSI Session and Transport layer protocols. Ex.1015,

.001. As explained above in Section 9.4.1, a POSA working with the protocol

processing of layered protocols in the OSI model would look to Tanenbaum96 and

have been motivated to migrate to the more dominant TCP/IP protocol suite as OSI

models vanished. Ex.1003, ¶128. Thus, the SPS would include IP and TCP layers

in place of the OSI Network and Transport layers and the Session layer and

Presentation layer could be incorporated into the Application layer. Id; see Ex.1006,

Tanenbaum96 at .054 (“the TCP/IP internet layer is very similar in functionality to

the OSI network layer . . . [t]he layer above the internet layer in the TCP/IP model

is now usually called the transport layer. It is designed to allow peer entities . . . to

carry on a conversation, the same as in the OSI transport layer”), .055 (“[the session

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-50-
DM2\7951311.5

and presentation layers] are of little use to most applications.”). Id. at .054. Thia’s

bypass test is based on Jacobson’s TCP/IP Prediction Header.

10.1.2.4. with an application layer running above the TCP
layer;

As illustrated above in the Background section, the OSI and TCP/IP models

have application layers above the transport layer.

Ex.1003, ¶24.

Accordingly, Thia in combination with Tanenbaum96 in further combination

with Stevens2 discloses a host processor and host memory (together a host

computer) with a Standard Protocol Stack (running a protocol processing stack)

including Internet Protocol and Transmission Control Protocol (TCP) layers with

an Application Layer running above the TCP layer. Id. ¶128.

10.1.3. [1.2] initializing, by the host computer, a TCP
connection that is defined by source and destination IP
addresses and source and destination TCP ports;

As shown by the following sections, Thia in combination with Tanenbaum96

in further combination with Stevens2 discloses this limitation.

10.1.3.1. initializing, by the host computer a TCP
connection

Thia discloses initializing connections by a host. Ex.1015, .004. As explained

in Section 10.1.2.3, a POSA would have been motivated to implement Thia’s SPS

using the TCP/IP protocol suite.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-51-
DM2\7951311.5

As explained in Section 4.B, a TCP/IP connection is initialized between two

machines as illustrated in Fig. 6-28.

Ex.1006, Fig. 6-28.

The SYN flag is used to initialize a connection, which transitions into the

ESTABLISHED state. Id. at .545, .550. A packet with a SYN flag fails the

conditions of the receive bypass test because it is not in the ESTABLISHED state

and processing must be performed by the SPS on the host. Accordingly, the host is

responsible for initializing the TCP connection. Id., .567; Ex.1003,

¶36.

10.1.3.2. that is defined by source and destination IP
addresses and source and destination TCP ports

As explained in Section 4.B, a TCP/IP connection is defined by the IP address

and TCP port for both sides of the connection. See also Ex.1006, .541 (“TCP service

is obtained by having both the sender and receiver create end points, called sockets

. . . [e]ach socket has a socket number (address) consisting of the IP address of the

host and a 16-bit number local to that host, called a port.”)

Accordingly, Thia in combination with Tanenbaum96 in further combination

with Stevens2 discloses initializing, by the host computer (SPS), a TCP connection

that is defined by source and destination IP addresses and source and destination

TCP ports.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-52-
DM2\7951311.5

10.1.4. [1.3] receiving, by the network interface, first and
second packets, wherein the first packet has a first
TCP header and contains first payload data for the
application, and the second packet has a second TCP
header and contains second payload data for the
application;

As shown by the following sections, Thia in combination with Tanenbaum96

in further combination with Stevens2 discloses this limitation.

10.1.4.1. receiving, by the network interface, first and
second packets

As explained above in Section 10.1.1, Thia’s Network Interface Adapter,

together with the ROPE chip, is the network interface. As explained above in

Section 9.1, the NIA receives multiple packets, including consecutive packets:

The receive bypass test matches the incoming PDU headers with a

template that identifies the predicted bypassable headers. The bypass

stack performs all the relevant protocol processing in the data transfer

phase.

Ex.1015, .003.

10.1.4.2. wherein the first/second packet has a first TCP
header and contains first/second payload data

A network interface connected to a TCP/IP network (as explained above in

Section 10.1.3.1) receives TCP/IP packets (segments), which contain TCP headers

and optionally payload data. Tanenbaum96 illustrates this well-known structure.

See e.g., Ex.1006, .544-547.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-53-
DM2\7951311.5

Id. Fig. 6-24 (annotated).

10.1.4.3. for the application

Thia discloses that the received data is for applications. See Ex.1015, .005

(protocol processing that might limit the “effective throughput [of data] presented

to the application processes, especially for bulk data transfer.”) (emphasis added);

see also id. Fig. 1 (providing data to the user).

As explained above in Section 10.1.2.4, the application layer is above the

Transport layer in TCP/IP and OSI model implementations. Ex.1006, .052-.053.

Accordingly, modifying Thia to use the TCP/IP packets, the payload data in the TCP

packet is for the Application layer (i.e., for the application). Ex.1003, ¶128.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-54-
DM2\7951311.5

Thus, Thia in combination with Tanenbaum96 in further combination with

Stevens2 discloses Thia’s NIA (part of the network interface) receiving packets

(receiving . . . first and second packets, wherein the packets have a TCP header and

payload data for the application).

10.1.5. [1.4] checking, by the network interface, whether the
packets have certain exception conditions, including
checking whether the packets are IP fragmented,
checking whether the packets have a FIN flag set, and
checking whether the packets are out of order;

As shown by the following sections, Thia in combination with Tanenbaum96

in further combination with Stevens2 discloses this limitation.

10.1.5.1. checking, by the network interface

As explained above in Section 9.1, Thia’s NIA (part of the network interface)

performs the receive bypass test (checking).

10.1.5.2. whether the packets have certain exception
conditions, including checking whether the
packets are IP fragmented, checking whether the
packets have a FIN flag set, and checking
whether the packets are out of order

As explained above in Sections 9.4.1 and 9.4.2, a POSA would have been

motivated to implement Header Prediction as disclosed in Tanenbaum96 and

Stevens2 as a part of Thia’s receive bypass test. Thia’s receive bypass test is a

generalization of Jacobson’s “Header Prediction Algorithm” for TCP/IP, which is

also described in the Tanenbaum96 and Stevens2 references discussed below.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-55-
DM2\7951311.5

Ex.1015, .002. Header Prediction checks the TCP headers of received packets to

determine if the packet is a normal one: the state is ESTABLISHED (i.e., no SYN

flag), neither side is trying to close the connection (i.e., no FIN or RST flag), the

TPDU is a full one (e.g., no IP fragmentation), no special flags are set (including the

SYN, FIN and RST flags), and the sequence number is the one expected (i.e., the

packets are not out of order). Ex.1003, ¶114; see Ex.1006, .583-.585 (many TCP

implementations use it); 585 (disclosing the test above), .545 (description of flags);

see also Ex.1013, .962-.963 (walkthrough of the BSD code for the test above, which

tests whether control flags SYN, FIN, RST are set). Thia discloses that bypass

processing is for simple bulk data transfer and excludes reassembly of fragmented

packets, which should be restricted to the lower layers. Ex.1015, .002, .014.

Thus, Thia in combination with Tanenbaum96 in further combination with

Stevens2 discloses the NIA (part of the network interface) performing a receive

bypass test (checking . . . whether the packets have certain exception conditions)

including checking for whether the packets are IP fragmented, checking whether the

packets have a FIN flag set, and checking whether the packets are out of order.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-56-
DM2\7951311.5

10.1.6. [1.5] if the first packet has any of the exception
conditions, then protocol processing the first TCP
header by the protocol processing stack;

Thia in combination with Tanenbaum96 in further combination with Stevens2

discloses that if the first packet has any of the exception conditions, then protocol

processing the first TCP header by the protocol processing stack.

As explained in Section 9.1, Thia teaches that packets that fail the receive

bypass test are processed by the Standard Protocol Stack (SPS) (the protocol

processing stack).

Ex.1015, Fig. 1.

Thus, packets failing the conditions of Header Prediction would fail the

receive bypass test and be processed by the SPS.

10.1.7. [1.6] if the second packet has any of the exception
conditions, then protocol processing the second TCP
header by the protocol processing stack;

Thia in combination with Tanenbaum96 in further combination with Stevens2

discloses this limitation.

The same receive bypass test applies to all packets. Ex.1015, .003 (“The

receive bypass test matches the incoming PDU headers with a template that

identifies the predicted bypassable headers.”). See Section 10.1.6 above.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-57-
DM2\7951311.5

10.1.8. [1.7] if the packets do not have any of the exception
conditions, then bypassing host protocol processing of
the TCP headers and storing the first payload data and
the second payload data together in a buffer of the host
computer, such that the payload data is stored in the
buffer in order and without any TCP header stored
between the first payload data and the second payload
data.

As shown by the following sections, Thia in combination with Tanenbaum96

in further combination with Stevens2 discloses this limitation.

10.1.8.1. if the packets do not have any of the exception
conditions, then bypassing host protocol
processing of the TCP headers

As explained in Section 9.1, Thia teaches that packets that pass the receive

bypass test are processed by the ROPE chip (part of the network interface),

bypassing the SPS (on the host computer), for processing.

Ex.1015, Fig. 1.

10.1.8.2. and storing the first payload data and the second
payload data together in a buffer of the host
computer

Thia teaches the use of DMA to move packet data from the ROPE chip to host

memory:

Movement of data across the host bus interface are minimized by using

an on-chip DMA for fast block data transfer to/from the host system

memory.

Id. at .007.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-58-
DM2\7951311.5

Id. Fig. 2 (annotated).

Thus, as packets are processed by the ROPE chip, their payload data is moved

by DMA from the ROPE chip to host memory (a host buffer). Ex.1003, ¶103.

10.1.8.3. such that the payload data is stored in the buffer
in order and without any TCP header stored
between the first payload data and the second
payload data

Thia in combination with Tanenbaum96 in further combination with Stevens2

would be understood by a POSA to disclose storing payload data in order without

intervening headers. Thia discloses that the ROPE chip (part of the network

interface) is responsible for decoding the packet header and optionally the checksum

and data copying within layers is eliminated.

A packet is
received at
the NIA via
Transmissi
onMedium Bypass –

ROPE
processes the
packet and
stores the data
in host
memor

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-59-
DM2\7951311.5

Ex.1015, Table 1 (annotated).

Thus, the header is already decoded and checked when the ROPE chip moves

the data in a packet to Host Memory. See Ex.1003, ¶128. Thia discloses moving

the data to host memory. Ex.1015, .007. A POSA would have appreciated that there

is no need to transfer the already decoded and checked headers to host memory. Id.

at .006; Ex.1003, ¶128.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-60-
DM2\7951311.5

Further, as taught by Tanenbaum, by the time the data reaches the application

in host memory, it is stored as a byte stream. Ex.1003, ¶112. Tanenbaum96 discloses

that an outbound byte stream of data is broken up and sent as separate IP datagrams

(each with their own header). On receipt, the original byte stream is reconstructed

(removing the headers from each datagram and arranging them in order) by a TCP

entity on a network interface card (such as Thia’s ROPE chip and NIA). See

Ex.1006, .498 (“The transport entity can be . . . on the network interface card”), .540

(“A TCP entity accepts user data streams from local processes, breaks them up into

pieces . . . and sends each piece as a separate IP datagram. When IP datagrams

containing TCP data arrive at a machine, they are given to the TCP entity, which

reconstructs the original byte streams.”).

Also, the fast path disclosed in Tanenbaum96, consistent with the option in

Thia, offloads the calculation of the checksum for the header, eliminating an extra

pass over the data by higher layers. Id. at .585-.589 (“The header and data should

be separately checksummed, for two reasons. First, to make it possible to checksum

the header but not the data. Second, to verify that the header is correct before starting

to copy the data into user space. It is desirable to do the data checksum at the time

the data are copied to user space, but if the header is incorrect, the copy may be to

the wrong process.”). Therefore, there is no need to transfer the header data to the

application. Ex.1003, ¶128.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-61-
DM2\7951311.5

Thus, a POSA would have been motivated to use Thia’s protocol engine for a

TCP network interface using the TCP disclosures found in Tanenbaum96 and

Stevens2. Id. As explained above, when incoming packets pass the receive bypass

test (packets do not have any of the exception conditions), they are processed by the

ROPE chip as opposed to the SPS (bypassing host protocol processing of the TCP

headers). The output from the ROPE chip is the original byte stream (in order and

without any TCP header stored between). A POSA would utilize Thia’s on-chip

DMA to transfer only the data blocks together in a buffer in host memory (storing

. . . together in a buffer of the host computer).

10.2. Claim 3

10.2.1. [3] The method of claim 1, wherein storing the first
payload data and the second payload data together in
a buffer of the host computer is performed by a direct
memory access (DMA) unit of the network interface.

Thia in combination with Tanenbaum96 in further combination with Stevens2

discloses the method of claim 1 (See Section 10.1) and this limitation.

As explained in Section 10.1.8.2, Thia teaches the use of DMA to move packet

data from the ROPE chip to host memory (a host buffer). Thia also teaches that

“data Copying within layers is eliminated.” Ex.1015, Table 1. Tanenbaum96

similarly identified a goal of system design for better performance was to avoid

unnecessary copying (“[a packet] is copied to a network layer buffer, then to a

transport layer buffer, and finally to the receiving application process.”) Ex.1003,

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-62-
DM2\7951311.5

¶129; Ex.1006, .579, .582. Thia’s fast-path processing and DMA support bulk data

transfer, eliminating the unnecessary copying to multiple buffers associated with the

network and transport layers.

Ex.1015, Table 1, .002, .006-.007.

10.3. Claim 6

10.3.1. [6] The method of claim 1, including comparing, by the
network interface, the IP addresses and TCP ports of
the packets with the source and destination IP
addresses and source and destination TCP ports that
define the TCP connection.

Thia in combination with Tanenbaum96 in further combination with Stevens2

discloses the method of claim 1 (See Section 10.1) and this limitation.

As explained above in Section 9.1, Thia’s NIA (part of the network interface)

receives packets and performs the receive bypass test (comparing). Thia also

discloses that “The receive bypass test matches the incoming PDU headers with a

template that identifies the predicted bypassable headers.” Ex.1015, .003.

Similarly in Tanenbaum96, the first step of the fast path test involves checking

the connection record against the incoming Transport Protocol Data Units (TPDUs)

(i.e., packets) as part of the check to determine whether the received TPDUs were

expected. Specifically, this check includes comparing the source and destination IP

addresses and TCP ports of the packets against the connection record. Ex.1006,

.584-.585 (“Step 1 is locating the connection record for the incoming TPDU. . . Once

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-63-
DM2\7951311.5

the connection record has been located, both addresses and both ports must be

compared to verify that the correct record has been found.”) See also Section

10.1.3.2 regarding the TCP/IP connection being defined by source and destination

IP addresses and source and destination TCP ports. Ex.1003, ¶114.

In combining Thia with Tanenbaum96 for TCP/IP offload, a POSA would

have been motivated to use a template for the comparison, such as the prototype

header provided by Tanenbaum96, for the receive bypass test. Id. ¶128. This

template includes source and destination IP addresses and source and destination

TCP Ports.

Ex.1006, Fig. 6-50 (annotated).

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-64-
DM2\7951311.5

10.4. Claim 7

10.4.1. [7] The method of claim 1, wherein checking whether
the packets have certain exception conditions includes
checking whether the packets have a RST flag set.

Thia in combination with Tanenbaum96 in further combination with Stevens2

discloses the method of claim 1 (See Section 10.1) and this limitation.

As explained in Section 10.1.5.2, Thia’s NIA (part of the network interface)

checks the packets for certain exception conditions as part of its receive bypass test.

As explained in Sections 9.4.1 and 9.4.2, a POSA would have been motivated to

implement the Jacobson-based Header Prediction disclosed in Tanenbaum96 and

Stevens2 as a part of Thia’s receive bypass test, which is also based on Jacobson’s

disclosure. Ex.1003, ¶128. As explained in Section 9.3, Jacobson’s Header

Prediction test determines whether the RST flag is set. Ex.1013, .962 (“The

following four control flags must not be on: SYN, FIN, RST, or URG.”)

10.5. Claim 8

10.5.1. [8] The method of claim 1, wherein checking whether
the packets have certain exception conditions includes
checking whether the packets have a SYN flag set.

Thia in combination with Tanenbaum96 in further combination with Stevens2

discloses the method of claim 1 (See Section 10.1) and this limitation.

As explained in Section 10.1.5.2, Thia’s NIA (part of the network interface)

checks the packets for certain exception conditions as part of its receive bypass test.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-65-
DM2\7951311.5

As explained in Sections 9.4.1 and 9.4.2, a POSA would have been motivated to

implement the Jacobson-based Header Prediction as disclosed in Tanenbaum96 and

Stevens2 as a part of Thia’s receive bypass test, which is also based on Jacobson’s

disclosure. Ex.1003, ¶128. As explained in Section 9.3, Jacobson’s Header

Prediction test determines whether the SYN flag is set. Ex.1013, .962 (“The

following four control flags must not be on: SYN, FIN, RST, or URG.”)

10.6. Claim 9

10.6.1. [9.P] A method for network communication by a host
computer having a network interface that is connected
to the host by an input/output bus, the method
comprising:

As explained in Section 10.1.1 for the identical preamble of Claim 1, to the

extent that the preamble is limiting, Thia in combination with Tanenbaum96 in

further combination with Stevens2 discloses a method for network communication

by a host computer having a network interface that is connected to the host by an

input/output bus.

10.6.2. [9.1] receiving, by the network interface, a first packet
having a header including source and destination
Internet Protocol (IP) addresses and source and
destination Transmission Control Protocol (TCP)
ports;

Thia in combination with Tanenbaum96 in further combination with Stevens2

discloses this limitation.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-66-
DM2\7951311.5

As explained above in Section 10.1.1, Thia’s NIA, together with the ROPE

chip, is the network interface. As explained above in Section 9.1, the NIA receives

consecutive packets. A network interface connected to a TCP/IP network (as

explained above in Section 10.1.3.1) receives TCP/IP packets. Ex.1003, ¶24.

As explained above in Section 10.1.4.2, TCP/IP packets have TCP headers.

Therefore, the first received packet has a TCP header.

As explained above in Section 10.3.1, a TCP/IP packet header contains Source

and Destination IP addresses and Source and Destination Ports.

Ex.1006, Fig. 6-50.

10.6.3. [9.2] protocol processing, by the host computer, the
first packet, thereby initializing a TCP connection that
is defined by the source and destination IP addresses
and source and destination TCP ports;

Thia in combination with Tanenbaum96 in further combination with Stevens2

discloses this limitation.

As explained above in Section 10.1.2, Thia in combination with

Tanenbaum96 in further combination with Stevens2 discloses a protocol processing

stack including an IP layer and a TCP layer running on the host computer, namely

the modified SPS.

As explained above in Section 10.1.3.1, Thia in combination with

Tanenbaum96 in further combination with Stevens2 discloses implementing

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-67-
DM2\7951311.5

Jacobson’s Header Prediction as part of Thia’s receive bypass test to determine

whether a packet is processed on the ROPE chip (fast-path) or on the SPS (slow-

path). A packet containing a SYN flag to initialize a connection fails such a receive

bypass test because it is not in the ESTABLISHED state and is protocol processed

by the SPS on the host (protocol processing, by the host computer, the first packet,

thereby initializing a TCP connection). Ex.1003, ¶36.

Ex.1006, Fig. 6-28

As explained above in Section 10.1.3.2, a TCP/IP connection is defined by

the IP address and TCP port for both sides of the connection.

10.6.4. [9.3] receiving, by the network interface, a second
packet having a second header and payload data,
wherein the second header has IP addresses and TCP
ports that match the IP addresses and TCP ports of the
TCP connection;

Thia in combination with Tanenbaum96 in further combination with Stevens2

discloses this limitation.

The first packet in limitation [1.3] discussed in Section 10.1.4 above

corresponds to the second packet in this limitation [9.3] because Claim 9 introduces

an earlier packet as part of the initialization (See Section 10.6.4). As explained above

in Section 10.1.4.1, Thia’s NIA receives packets and is part of the network interface.

As explained above in Section 10.1.4.2, modifying Thia to receive TCP/IP packets,

the received TCP/IP packets contain headers and optionally contain payload data.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-68-
DM2\7951311.5

This limitation [9.3] additionally requires that the packet header has IP

addresses and TCP ports that match those of the TCP connection. As explained

above in Section 4.B, when a connection is initialized, a connection record is

recorded containing the source and destination IP addresses and source and

destination TCP ports for that connection. As explained above in Section 10.3.1,

Thia’s modified receive bypass test searches for the matching connection record for

each incoming packet using the source and destination IP addresses and source and

destination TCP ports stored in each packet. Each packet is compared against a

template (connection record) to verify that the correct record has been found.

Ex.1003, ¶128.

10.6.5. [9.4] receiving, by the network interface, a third packet
having a third header and additional payload data,
wherein the third header has IP addresses and TCP
ports that match the IP addresses and TCP ports of the
TCP connection;

Thia in combination with Tanenbaum96 in further combination with Stevens2

discloses this limitation.

The limitations of [9.4] are identical to [9.3] in Section 10.6.4 (second packet),

but for them being in the context of a third packet. A TCP network interface is

designed to receive multiple TCP packets for the same TCP connection (e.g. data

transfer phase in Thia and Tanenbaum). Ex.1003, ¶¶100, 108. Thus, the disclosures

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-69-
DM2\7951311.5

for the limitations explained above in Section 10.6.4 also disclose this limitation for

the same reasons.

10.6.6. [9.5] checking, by the network interface, whether the
second and third packets have certain exception
conditions, including checking whether the packets are
IP fragmented, checking whether the packets have a
FIN flag set, and checking whether the packets are out
of order;

The limitations [9.5] are substantially identical to [1.4] in Section 10.1.5 as

both relate to checking multiple packets; [1.4] checks “the packets” whereas [9.5]

checks “the second and third packets” for the same exception conditions. As

explained above in Sections 10.1.5.1 and 10.1.5.2, Thia’s NIA (part of the network

interface) receives packets and performs the receive bypass test, which checks

whether the packets (including the second and third packets) have the claimed

exception conditions (IP fragmented, FIN flag, out of order).

10.6.7. [9.6] if the second packet has any of the exception
conditions, then protocol processing the second packet
by the host computer;

Thia in combination with Tanenbaum96 in further combination with Stevens2

discloses if the second packet has any of the exception conditions, then protocol

processing the second packet by the host computer.

As explained above in Section 10.6.4, the first packet in claim 1 corresponds

to the second packet in claim 9 (see Section 10.6.4) because claim 9 introduces an

earlier first packet as part of the initialization. As explained in Section 10.1.6,

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-70-
DM2\7951311.5

packets with any of the exception conditions fail Thia’s receive bypass test and are

protocol processed by the SPS (by the host computer).

10.6.8. [9.7] if the third packet has any of the exception
conditions, then protocol processing the third packet
by the host computer;

As explained above in Section 10.1.7, the same receive bypass test in Thia

applies to all packets. See Section 10.6.7 above.

10.6.9. [9.8] if the second and third packets do not have any of
the exception conditions, then storing the payload data
of the second and third packets together in a buffer of
the host computer, such that the payload data is stored
in the buffer in order and without any TCP header
stored between the payload data of the second and
third packets.

The limitations of [1.7] in Section 10.1.8 include the limitations in [9.8]. In

both sets of limitations, the payload data of the packets without exception conditions

are stored in order and without TCP headers between them in a buffer of the host

computer. Limitations in [1.7] have an additional limitation of bypassing host

protocol processing of the TCP headers, which is not found in [9.8]. Regardless, the

disclosures satisfying [1.7] also satisfy [9.8] for the same reasons. See Sections

10.1.8.1, 10.1.8.2, and 10.1.8.3.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-71-
DM2\7951311.5

10.7. Claim 11

10.7.1. [11] The method of claim 9, wherein storing the
payload data of the second and third packets together
in a buffer of the host computer is performed by a
direct memory access (DMA) unit of the network
interface.

Thia in combination with Tanenbaum96 in further combination with Stevens2

discloses the method of claim 9 (see Section 10.6), wherein storing the payload data

of the second and third packets together in a buffer of the host computer is performed

by a direct memory access (DMA) unit of the network interface.

This claim is substantially similar to claim 3 (see Section 10.2). Claim 3

requires “storing the first payload data and the second payload data together”

whereas this claim requires “storing the payload data of the second and third packets

together.” As previously noted, the first and second packets of claim 1 correspond

to the second and third packets of claim 9. See Section 10.2.1.

10.8. Claim 14

10.8.1. [14] The method of claim 9, including comparing, by
the network interface, the IP addresses and TCP ports
of the second and third packets with the source and
destination IP addresses and source and destination
TCP ports that define the TCP connection.

Thia in combination with Tanenbaum96 in further combination with Stevens2

discloses the method of claim 9 (see Section 10.6), including comparing, by the

network interface, the IP addresses and TCP ports of the second and third packets

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-72-
DM2\7951311.5

with the source and destination IP addresses and source and destination TCP ports

that define the TCP connection.

This claim is substantially similar to claim 6 (see Section 10.3). Claim 6

requires “comparing . . . the IP addresses and TCP ports of the packets” wherein

packets refer to the first and second packets. This claim requires “comparing . . . the

IP addresses and TCP ports of the second and third packets.” As previously noted,

the first and second packets of claim 1 correspond to the second and third packets of

claim 9. See Section 10.3.1.

10.9. Claim 15

10.9.1. [15] The method of claim 9, wherein checking whether
the second and third packets have certain exception
conditions includes checking whether the packets have
a RST flag set.

Thia in combination with Tanenbaum96 in further combination with Stevens2

discloses the method of claim 9 (see Section 10.6), wherein checking whether the

second and third packets have certain exception conditions includes checking

whether the packets have a RST flag set.

This claim is substantially similar to claim 7 (see Section 10.4). Claim 7

requires “wherein checking whether the packets have certain exception conditions

includes checking whether the packets have a RST flag set,” wherein “the packets”

refers to the first and second packets. This claim requires “wherein checking

whether the second and third packets have certain exception conditions includes

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-73-
DM2\7951311.5

checking whether the packets have a RST flag set.” As previously noted, the first

and second packets of claim 1 correspond to the second and third packets of claim

9. See Section 10.4.1.

10.10. Claim 16

10.10.1. [16] The method of claim 9, wherein checking whether
the second and third packets have certain exception
conditions includes checking whether the packets have
a SYN flag set.

Thia in combination with Tanenbaum96 in further combination with Stevens2

discloses the method of claim 9, wherein checking whether the second and third

packets have certain exception conditions includes checking whether the packets

have a SYN flag set.

This claim is substantially similar to claim 8 (see Section 10.510.6). Claim 8

requires “wherein checking whether the packets have certain exception conditions

includes checking whether the packets have a SYN flag set,” wherein “the packets”

refers to the first and second packets. This claim requires “wherein checking

whether the second and third packets have certain exception conditions includes

checking whether the packets have a SYN flag set.” As previously noted, the first

and second packets of claim 1 correspond to the second and third packets of claim

9. See Section 10.5.1.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-74-
DM2\7951311.5

10.11. Claim 17

10.11.1. [17.P] An apparatus for network communication, the
apparatus comprising:

To the extent that the preamble is limiting, Thia in combination with

Tanenbaum96 in further combination with Stevens2 discloses an apparatus for

network communication.

Thia discloses an apparatus for network communication. Specifically, Thia

discloses a Reduced Operation Protocol Engine (ROPE) chip and a Network

Interface Adaptor (NIA) connected to the Host Processor and Host Memory by a

Host Processor Bus (together the “apparatus”). The apparatus is connected to the

network through the Transmission Medium.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-75-
DM2\7951311.5

Ex.1015, .007 (annotated).

Thia discloses that the NIA (portion of the apparatus) is used for sending and

receiving packets (network communications). Ex.1015, .008 (describing the NIA as

a source/sink for data packets.)

App aratus

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-76-
DM2\7951311.5

10.11.2. [17.1] a host computer running a protocol stack
including an Internet Protocol (IP) layer and a
Transmission Control Protocol (TCP) layer, the
protocol stack adapted to establish a TCP connection
for an application layer running above the TCP layer,
the TCP connection being defined by source and
destination IP addresses and source and destination
TCP ports;

Claim 1 is a method claim. Claim 17 is an apparatus claim. The evidence and

disclosures from the following Sections for claim 1 also disclose the limitations of

the claimed apparatus. See Section 10.1.

As explained above in Sections 10.1.2.1 and 10.1.2.2, Thia in combination

with Tanenbaum96 in combination with Stevens2 discloses an SPS running on the

host (a host computer running a protocol stack). As explained above in Sections

10.1.2.3, and 10.1.2.4, Thia in combination with Tanenbaum96 in combination with

Stevens2 teach modifying the SPS to implement the TCP/IP protocol suite, which

includes an IP layer and a TCP layer with an application layer running above the

TCP layer (including an Internet Protocol (IP) layer and a Transmission Control

Protocol (TCP) layer).

As explained above in Section 10.1.3.1, Thia in combination with

Tanenbaum96 in combination with Stevens2 discloses that the SYN packets required

for the initialization fail the conditions of the receive bypass test, and thus must be

processed by the SPS on the host. Accordingly, the SPS is responsible for

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-77-
DM2\7951311.5

initializing the TCP connection for the application layer running above the TCP layer

(the protocol stack adapted to establish a TCP connection for an application running

above the TCP layer).

Ex.1006, Fig. 1-17 (annotated).

As explained above in Section and 10.1.3.2, Thia in combination with

Tanenbaum96 in combination with Stevens2 discloses that the TCP connection is

defined by the TCP ports and the IP addresses for both sides of the connection (the

TCP connection being defined by source and destination IP addresses and source

and destination TCP ports).

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-78-
DM2\7951311.5

10.11.3. [17.2] a network interface that is connected to the host
computer by an input/output bus, the network
interface adapted to parse the headers of received
packets to determine whether the headers have the IP
addresses and TCP ports that define the TCP
connection and to check whether the packets have
certain exception conditions, including whether the
packets are IP fragmented, have a FIN flag set, or are
out of order, the network interface having logic that
directs any of the received packets that have the
exception conditions to the protocol stack for
processing, and directs the received packets that do not
have any of the exception conditions to have their
headers removed and their payload data stored
together in a buffer of the host computer, such that the
payload data is stored in the buffer in order and
without any TCP header stored between the payload
data that came from different packets of the received
packets.

As shown by the following sections, Thia in combination with Tanenbaum96

in further combination with Stevens2 discloses this limitation.

10.11.3.1. a network interface that is connected to the host
computer by an input/output bus

As explained above in Section 10.1.1, Thia in combination with

Tanenbaum96 in further combination with Stevens2 discloses a host computer

having a network interface that is connected to the host by an input/output bus.

Ex.1015, Fig. 2.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-79-
DM2\7951311.5

10.11.3.2. the network interface adapted to parse the
headers of received packets

A POSA would have understood that parsing a header involves identifying

fields of the header to determine whether or not those fields individually or

collectively satisfy one or more criteria. Ex.1003, ¶102. Thia discloses a receive

bypass test (performed by the NIA, part of the network interface) in which fields of

the header of a received packet are compared to a template. Ex.1015, .003 (“The

receive bypass test matches the incoming PDU headers with a template that

identifies the predicted bypassable headers.”) A POSA would have understood that

before the NIA compares fields within a header, the header must be parsed. Ex.1003,

¶102.

10.11.3.3. to determine whether the headers have the IP
addresses and TCP ports that define the TCP
connection and

As explained in Section 10.3.1, Thia in combination with Tanenbaum96 in

further combination with Stevens2 discloses the NIA performing a modified receive

bypass test that checks whether the packet has source and destination IP addresses

and source and destination TCP ports that match the connection record. In doing so,

the NIA determines whether the headers have the IP addresses and TCP ports that

define the TCP connection. Id. ¶130.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-80-
DM2\7951311.5

10.11.3.4. to check whether the packets have certain
exception conditions, including whether the
packets are IP fragmented, have a FIN flag set,
or are out of order

As explained in Sections 10.1.5.1 and 10.1.5.2, the NIA (part of the network

interface) performs a modified receive bypass test as taught by Tanenbaum96 on

received packets to check whether each TCP header has an established connection,

neither side is trying to close the connection (i.e., no FIN or RST flag), the TPDU is

a full one (e.g., no IP fragmentation), no special flags are set (e.g., no FIN, RST or

SYN flag), and the sequence number is the one expected (i.e., the packets are not out

of order). See Ex.1006, .567 (disclosing the test above); see also Ex.1013, .936-.937

(providing a walkthrough of the BSD code for the test above).

10.11.3.5. the network interface having logic that directs
any of the received packets that have the
exception conditions to the protocol stack for
processing

As explained above in Section 10.1.6, Thia in combination with

Tanenbaum96 in further combination with Stevens2 discloses that packets that fail

the bypass test are processed by the SPS.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-81-
DM2\7951311.5

10.11.3.6. and directs the received packets that do not have
any of the exception conditions to have their
headers removed and their payload data stored
together in a buffer of the host computer, such
that the payload data is stored in the buffer in
order and without any TCP header stored
between the payload data that came from
different packets of the received packets.

As explained above in Section 10.1.8.1, Thia in combination with

Tanenbaum96 in further combination with Stevens2 discloses that packets that pass

the receive bypass test (packets that do not have any of the exception conditions) are

bypassed to the ROPE chip for processing.

Ex.1015, Fig. 1.

As explained above in Section 10.1.8.2, Thia in combination with

Tanenbaum96 in further combination with Stevens2 discloses that the system uses

DMA to move only packet data in order from the ROPE chip to host memory (to

have . . . their payload data stored together in a buffer of the host computer).

Ex.1015, Thia Fig. 2.

As explained above in Section 10.1.8.3, a POSA would have appreciated that

a packet passing the receive bypass test has a header decoded by the ROPE chip, and

thus there is no need to transfer the already-decoded header into host memory (to

have their header removed). Additionally, as explained in that same section, the

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-82-
DM2\7951311.5

TCP entity on the ROPE chip reconstructs the data from each packet into the original

byte stream (removing the headers from each datagram and arranging them in order).

Thus, a POSA would have been motivated to develop a TCP network interface

combining Thia’s protocol engine with the TCP disclosures found in Tanenbaum96

and Stevens2. As explained above, when incoming packets pass the modified receive

bypass test (the received packets that do not have any of the exception conditions),

they are directed to be processed by the ROPE chip as opposed to the SPS. The

output from the ROPE chip is the original byte stream (to have their headers

removed . . . in order and without any TCP header stored between the payload data

that came from different packets of the received packets). A POSA would have

utilized Thia’s on-chip Direct Memory Access (DMA) to transfer only the data

blocks in order to a buffer in host memory (and their payload data stored together

in a buffer of the host computer, such that the payload data is stored in the buffer).

Ex.1003, ¶128.

10.12. Claim 19

10.12.1. [19] The apparatus of claim 17, wherein the network
interface includes a direct memory access (DMA) unit
that is adapted to store the payload data in the buffer.

Thia in combination with Tanenbaum96 in further combination with Stevens2

discloses the apparatus of claim 17 (see Section 10.11), wherein the network

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-83-
DM2\7951311.5

interface includes a direct memory access (DMA) unit that is adapted to store the

payload data in the buffer.

Claim 1 is a method claim. Claim 19 depends from claim 17, which is an

apparatus claim. The evidence and disclosures from the following Sections for claim

1 also disclose the limitations of the claimed apparatus. See Section 10.1.

As explained in Section 10.1.8.2, Thia teaches the use of DMA to move packet

data from the ROPE chip to host memory (a host buffer).

10.13. Claim 21

10.13.1. [21] The apparatus of claim 17, wherein the exception
conditions include having a RST flag set.

Thia in combination with Tanenbaum96 in further combination with Stevens2

discloses the apparatus of claim 17 (see Section 10.11), wherein the exception

conditions include having a RST flag set.

Claims 1 and 7 are method claims. Claims 17 and 21 are apparatus claims.

The evidence and disclosures described above in Section 10.4.1 disclosing an

exception condition including a RST flag set for claim 7 also disclose the limitations

of this claim.

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

-84-
DM2\7951311.5

10.14. Claim 22

10.14.1. [22] The apparatus of claim 17, wherein the exception
conditions include having a SYN flag set.

Thia in combination with Tanenbaum96 in combination with Stevens2

discloses the apparatus of claim 17 (see Section 10.11), wherein the exception

conditions include having a SYN flag set.

Claims 1 and 8 are method claims. Claims 17 and 22 are apparatus claims.

The evidence and disclosures described above in Section 10.5.1 showing an

exception condition that includes having a SYN flag set meeting claim 8 also

disclose the limitations of this claim.

11. CONCLUSION

For the reasons set forth above, inter partes review of claims 1, 3, 6-9, 11, 14-

17, 19, 21, and 22 of the 948 Patent is requested.

Respectfully submitted,

DUANE MORRIS LLP

Dated: July 1, 2017 By: /Patrick D. McPherson/

Patrick D. McPherson,
Reg. No. 46,255
505 9th Street, N.W., Suite 1000
Washington, D.C. 20004
P: (202) 776-7800
F: (202) 776-7801
PDMcPherson@duanemorris.com

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

DM2\7951311.5

CERTIFICATE OF COMPLIANCE

Pursuant to 37 C.F.R. § 42.24 et seq., the undersigned certifies that this

document complies with the type-volume limitations. This document contains

13,912 words as calculated by the “Word Count” feature of Microsoft Word 2010,

the word processing program used to create it.

DUANE MORRIS LLP

Dated: July 1, 2017 By: /Patrick D. McPherson/

Patrick D. McPherson,
Reg. No. 46,255
505 9th Street, N.W., Suite 1000
Washington, D.C. 20004
P: (202) 776-7800
F: (202) 776-7801
PDMcPherson@duanemorris.com

Petition for Inter Partes Review of U.S. Patent No. 8,805,948

DM2\7951311.5

CERTIFICATE OF SERVICE

The undersigned certifies, in accordance with 37 C.F.R. § 42.105 and §
42.6(e), that service was made on the Patent Owner as detailed below.

Date of service July 1, 2017

Manner of service EXPRESS MAIL

Documents served Petition for Inter Partes Review of U.S. Pat. No. 8,805,948
with Exhibit List

Power of Attorney
Exhibits Ex.1001 - Ex.1064

Persons served Patent Owner’s Address of Record:
MARK LAUER
Silicon Edge Law Group LLP
7901 STONERIDGE DRIVE
SUITE 528
Pleasanton, California 94588
Fax: (925)621 -2119
Phone: 925-621-2121
Email: Mark@SiliconEdgeLaw.com

Additional Addresses Known as Likely to Effect Service:
Claude M Stern
Quinn Emanuel Urquhart & Sullivan - Redwood
555 Twin Dolphin Dr.
5th Floor
Redwood Shores, CA 94065
Phone: 650/801-5002
Fax: 650-801-5100
Email: claudestern@quinnemanuel.com

Dated: July 1, 2017 /Patrick D. McPherson/
Patrick D. McPherson
Lead Counsel for Petitioners
Registration No. 46,255

