
(12) United States Patent
Boucher et al.

(54) INTELLIGENT NETWORK INTERFACE
SYSTEM AND METHOD FOR PROTOCOL
PROCESSING

(71) Applicant: Alacritech, Inc., San Jose, CA (US)

(72) Inventors: Laurence B. Boucher, Saratoga, CA
(US); Stephen E. J. Blightman, San
Jose, CA (US); Peter K. Craft, San
Franscisco, CA (US); David A. Higgen,
Apopka, FL (US); Clive M. Philbrick,
San Jose, CA (US); Daryl D. Starr,
Milpitas, CA (US)

(73) Assignee: A-Tech LLC, Newark, DE (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 0 days.

(21) Appl. No.: 14/038,297

(22) Filed: Sep.26,2013

(65) Prior Publication Data

US 2014/0059155 Al Feb. 27, 2014

Related U.S. Application Data

(63) Continuation of application No. 09/692,561, filed on
Oct. 18, 2000, now Pat. No. 8,631,140, which is a
continuation of application No. 091067,544, filed on
Apr. 27, 1998, now Pat. No. 6,226,680.

(60) Provisional application No. 601061,809, filed on Oct.
14, 1997.

(51) Int. Cl.
G06F 15116
H04L29106
H04L29108
H04L29112
H04L 12156
H04Q3100
G06F SilO

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

111111 111
US008805948B2

(10) Patent No.: US 8,805,948 B2
Aug. 12,2014 (45) Date of Patent:

(52)

(58)

(56)

U.S. Cl.
CPC H04L 61125 (2013.01); H04L 691168

(2013.01); H04L 69/08 (2013.01); H04Q
2213/13204 (2013.01); H04L 69116 (2013.01);
H04L 29106 (2013.01); H04L 69/22 (2013.01);

H04L 67134 (2013.01); H04Q 2213/1332
(2013.01); H04L 29112009 (2013.01); H04L

691166 (2013.01); H04L 451245 (2013.01);
H04L 671325 (2013.01); H04L 67110

(2013.01); H04L 691163 (2013.01); H04L
45100 (2013.01); H04L 691165 (2013.01);

H04Q 310029 (2013.01); H04L 69/12
(2013.01); H04L 691161 (2013.01); H04L

61110 (2013.01); H04L 4919094 (2013.01);
H04L 671327 (2013.01); H04L 29112018

(2013.01); H04L 4919063 (2013.01); H04Q
2213/13103 (2013.01); G06F SilO (2013.01);

H04L 691162 (2013.01); H04Q 2213/13345
(2013.01); H04L 69/32 (2013.01); H04Q

2213/13093 (2013.01); H04L 49190 (2013.01);
H04L 491901 (2013.01); H04Q 2213/13299

(2013.01)
USPC 7091212; 709/224; 370/474

Field of Classification Search
CPC H04L 69119; H04L 691161; H04L 691163;

H04L 691165; H04L 691168
USPC 709/200-202,212,224,230,236,238;

370/389,392,419,463,469,479
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4,366,538 A
4,485,455 A
4,485,460 A
4,589,063 A
4,700,185 A
4,991,133 A
5,056,058 A
5,058,110 A
5,097,442 A
5,129,093 A
5,163,131 A
5,212,778 A

12/1982 Johnson et al.
1111984 Boone et al.
1111984 Stambaugh

5/1986 Shah et al.
10/1987 Balph et al.
2/1991 Davis et al.

10/1991 Hirata et al.
10/1991 Beach et al.
3/1992 Ward et al.
7/1992 Muramatsu et al.

1111992 Row et al.
5/1993 Dally et al.

US 8,805,948 B2
Page 2

5,274,768 A 1211993 Traw et al. 5,926,642 A 7/1999 Favor
5,280,477 A 111994 Trapp 5,930,830 A 7/1999 Mendelson et al.
5,281,963 A 111994 Ishikawa et al. 5,931,918 A 8/1999 Row et al.
5,289,580 A 211994 Latif et al. 5,935,205 A 8/1999 Murayama et al.
5,303,344 A 411994 Yokoyama et al. 5,935,249 A 8/1999 Stern et al.
5,412,782 A 511995 Hausman et al. 5,937,169 A 8/1999 Connery et al.
5,418,912 A 511995 Christenson 5,941,969 A 8/1999 Ram et al.
5,448,566 A 911995 Richter et al. 5,941,972 A 8/1999 Hoese et al.
5,485,455 A 111996 Dobbins et al. 5,950,203 A 9/1999 Stakuis et al.
5,485,460 A 111996 Schrier et al. 5,963,876 A 10/1999 Manssen et al.
5,485,579 A 111996 Hitz et al. 5,970,804 A 10/1999 Robbat, Jr.
5,506,966 A 411996 Ban 5,978,844 A 1111999 Tsuchiya et al.
5,511,169 A 411996 Suda 5,987,022 A 1111999 Geiger et al.
5,517,668 A 511996 Szwerinski et al. 5,991,299 A 1111999 Radogna et al.
5,524,250 A 611996 Chesson et al. 5,996,013 A 1111999 Delp et al.
5,535,375 A 711996 Eshel et al. 5,996,024 A 1111999 Blumenau
5,548,730 A 811996 Young et al. 6,005,849 A 12/1999 Roach et al.
5,553,241 A 911996 Shirakhar 6,009,478 A 12/1999 Panner et al.
5,566,170 A 1011996 Bakke et al. 6,014,380 A 112000 Hendel et al.
5,574,919 A 1111996 N etravali et al. 6,014,557 A 112000 Morton et al.
5,588,121 A 1211996 Reddin et al. 6,016,513 A 112000 Lowe
5,590,328 A 1211996 Seno et al. 6,021,446 A 212000 Gentry et al.
5,592,622 A 111997 Isfeld et al. 6,021,507 A 212000 Chen
5,596,574 A 111997 Perlman et al. 6,026,452 A 212000 Pitts
5,598,410 A 111997 Stone 6,034,962 A 3/2000 Ohno et al.
5,619,650 A 411997 Bach et al. 6,034,963 A 3/2000 Minami etal.
5,629,933 A 511997 Delp et al. 6,038,562 A 3/2000 Anjur et al.
5,633,780 A 511997 Cronin 6,041,058 A 3/2000 Flanders et al.
5,634,099 A 511997 Andrews et al. 6,041,381 A 3/2000 Hoese
5,634,127 A 511997 Cloud et al. 6,044,438 A 3/2000 Olnowich
5,642,482 A 611997 Pardillos 6,047,323 A 4/2000 Krause
5,664,114 A 911997 Krech, Jr. et al. 6,047,356 A 4/2000 Anderson et al.
5,671,355 A 911997 Collins 6,049,528 A 4/2000 Hendel et al.
5,678,060 A 1011997 Yokoyama et al. 6,057,863 A 5/2000 Olarig
5,682,534 A 1011997 Kapoor et al. 6,061,368 A 5/2000 Hitzelberger
5,684,954 A 1111997 Kaiserwerth et al. 6,065,096 A 5/2000 Dayet al.
5,692,130 A 1111997 Shobu et al. 6,067,569 A 5/2000 Khakietal.
5,699,317 A 1211997 Sartore et al. 6,070,200 A 5/2000 Gates et al.
5,699,350 A 1211997 Kraslavsky 6,078,564 A 6/2000 Lakshman et al.
5,701,434 A 1211997 Nakagawa 6,078,733 A 6/2000 Osborne
5,701,516 A 1211997 Cheng et al. 6,097,734 A 8/2000 Gotesman et al.
5,706,514 A 111998 Bonola 6,101,555 A 8/2000 Goshey et al.
5,727,142 A 311998 Chen 6,111,673 A 8/2000 Chang et al.
5,742,765 A 411998 Wong etal. 6,115,615 A 912000 Ota et al.
5,749,095 A 511998 Hagersten 6,122,670 A 912000 Bennett et al.
5,751,715 A 511998 Chan et al. 6,141,701 A 1012000 Whitney
5,751,723 A 511998 Vanden Heuvel et al. 6,141,705 A 1012000 Anand et al.
5,752,078 A 511998 Delp et al. 6,145,017 A 1112000 Ghaffari
5,758,084 A 511998 Silverstein et al. 6,157,944 A 1212000 Pedersen
5,758,089 A 511998 Gentry et al. 6,157,955 A 1212000 Narad et al.
5,758,186 A 511998 Hamilton et al. 6,172,980 Bl 112001 Flanders et al.
5,758,194 A 511998 Kuzma 6,173,333 Bl 112001 Jolitz et al.
5,768,618 A 611998 Erickson et al. 6,181,705 Bl 112001 Branstad et al.
5,771,349 A 611998 Picazo, Jr. et al. 6,202,105 Bl 3/2001 Gates et al.
5,774,660 A 611998 Brendel et al. 6,219,693 Bl 4/2001 Napolitano et al.
5,778,013 A 711998 Jedwab 6,223,242 Bl 4/2001 Sheafor et al.
5,778,419 A 711998 Hansen et al. 6,226,680 Bl 5/2001 Boucher et al.
5,790,804 A 811998 Osborne 6,233,242 Bl 5/2001 Mayer et al.
5,794,061 A 811998 Hansen et al. 6,243,667 Bl 6/2001 Kerr et al.
5,799,150 A 811998 Hamilton et al. 6,246,683 Bl 6/2001 Connery et al.
5,802,258 A 911998 Chen 6,247,060 Bl 6/2001 Boucher et al.
5,802,580 A 911998 McAlpine 6,279,051 Bl 8/2001 Gates et al.
5,809,328 A 911998 Nogales et al. 6,289,023 Bl 9/2001 Dowling et al.
5,809,527 A 911998 Cooper et al. 6,298,403 Bl 10/2001 Suri et al.
5,812,775 A 911998 Van Seters et al. 6,324,649 Bl 1112001 Eyres et al.
5,815,646 A 911998 Purcell et al. 6,334,153 B2 12/2001 Boucher et al.
5,819,111 A 1011998 Davies et al. 6,343,345 Bl 112002 Hilla et al.
5,828,835 A 1011998 Isfeld et al. 6,343,360 Bl 112002 Feinleib
5,848,293 A 1211998 Gentry et al. 6,345,301 Bl 212002 Burns et al.
5,870,394 A 211999 Oprea 6,345,302 Bl 212002 Bennett et al.
5,872,919 A 211999 Wakeland et al. 6,356,951 Bl 3/2002 Gentry et al.
5,878,225 A 311999 Bilansky et al. 6,370,599 Bl 4/2002 Anand et al.
5,878,227 A 311999 Wade et al. 6,385,647 Bl 5/2002 Willis et al.
5,892,903 A 411999 Klaus 6,389,468 Bl 5/2002 Muller et al.
5,898,713 A 411999 Melzer et al. 6,389,479 Bl 5/2002 Boucher et al.
5,913,028 A 611999 Wang et al. 6,393,487 B2 5/2002 Boucher et al.
5,915,094 A 611999 Kouloheris et al. 6,418,169 Bl 7/2002 Datari
5,917,828 A 611999 Thompson 6,421,742 Bl 7/2002 Tillier
5,920,566 A 711999 Hendel et al. 6,421,753 Bl 7/2002 Hoese et al.

US 8,805,948 B2
Page 3

6,427,169 Bl 7/2002 Elzur 7,627,001 B2 1212009 Craft et al.
6,427,171 Bl 7/2002 Craft et al. 7,627,684 B2 1212009 Boucher et al.
6,427,173 Bl 7/2002 Boucher et al. 7,640,364 B2 1212009 Craft et al.
6,434,620 Bl 8/2002 Boucher et al. 7,664,868 B2 212010 Boucher et al.
6,434,651 Bl 8/2002 Gentry, Jr. 7,664,883 B2 212010 Craft et al.
6,449,656 Bl 912002 Elzur et al. 7,673,072 B2 3/2010 Boucher et al.
6,452,915 Bl 912002 Jorgensen 7,694,024 B2 4/2010 Phil bri ck et al.
6,453,360 Bl 912002 Muller et al. 7,738,200 B2 6/2010 Jones et al.
6,453,406 Bl 912002 Sarnikowski et al. 200110004354 Al 6/2001 Jolitz
6,470,415 Bl 1012002 Starr et al. 200110013059 Al 8/2001 Dawson etal.
6,473,425 Bl 10/2002 Bellaton et al. 200110014892 Al 8/2001 Gaither et al.
6,480,489 Bl 1112002 Muller et al. 200110014954 Al 8/2001 Purcell et al.
6,483,804 Bl 1112002 Muller et al. 200110025315 Al 9/2001 Jolitz
6,487,202 Bl 1112002 Klausmeier et al. 200110037406 Al 1112001 Phil bri ck et al.
6,487,654 B2 1112002 Dowling 200110048681 Al 12/2001 Bilic et al.
6,490,631 Bl 1212002 Teich et al. 200110053148 Al 12/2001 Bilic et al.
6,502,144 Bl 1212002 Accarie 200210073223 Al 6/2002 Darnell et al.
6,523,119 B2 212003 Pav lin et al. 200210112175 Al 8/2002 Makofka et al.
6,526,446 Bl 212003 Yang etal. 200210156927 Al 1012002 Boucher et al.
6,542,504 Bl 4/2003 Mahler et al. 2003/0014544 Al 112003 Pettey
6,570,884 Bl 5/2003 Connery et al. 2003/0046330 Al 3/2003 Hayes
6,591,302 B2 7/2003 Boucher et al. 2003/0066011 Al 4/2003 Oren
6,591,310 Bl 7/2003 Johnson 2003/0067903 Al 4/2003 Jorgensen
6,594,261 Bl 7/2003 Boura et al. 2003/0110344 Al 6/2003 Szezepanek et al.
6,631,484 Bl 1012003 Born 2003/0165160 Al 912003 Minami etal.
6,648,611 B2 1112003 Morse et al. 2004/0010712 Al 112004 Hui et al.
6,650,640 Bl 1112003 Muller et al. 2004/0042458 Al 3/2004 Elzu
6,657,757 Bl 1212003 Chang et al. 2004/0042464 Al 3/2004 Elzur et al.
6,658,480 B2 1212003 Boucher et al. 2004/0049580 Al 3/2004 Boyd et al.
6,678,283 Bl 112004 Teplitsky 2004/0049601 Al 3/2004 Boyd et al.
6,681,364 Bl 112004 Calvignac et al. 2004/0054814 Al 3/2004 McDaniel
6,683,851 Bl 112004 Willkie etal. 2004/0059926 Al 3/2004 Angelo et al.
6,687,758 B2 212004 Craft et al. 2004/0088262 Al 5/2004 Boucher et al.
6,697,366 Bl 212004 Kim 2004/0153578 Al 8/2004 Elzur
6,697,868 B2 212004 Craft et al. 2004/0210795 Al 1012004 Anderson
6,751,665 B2 6/2004 Phil bri ck et al. 2004/0213290 Al 1012004 Johnson et al.
6,757,746 B2 6/2004 Boucher et al. 2004/0246974 Al 1212004 Gyugyi etal.
6,765,901 Bl 7/2004 Johnson et al. 2004/0249957 Al 1212004 Ekis et al.
6,807,581 Bl 1012004 Starr et al. 2005/0060538 Al 3/2005 Beverly
6,842,896 Bl 112005 Redding et al. 2005/0144300 Al 6/2005 Craft et al.
6,862,264 Bl 3/2005 Moura et al. 2006/0133386 Al 6/2006 McCormack et al.
6,912,522 B2 6/2005 Edgar 2006/0248208 Al 1112006 Walbeck et al.
6,938,092 B2 8/2005 Burns 2007/0083682 Al 4/2007 Bartley et al.
6,941,386 B2 912005 Craft et al. 2007/0140240 Al 6/2007 Dally et al.
6,965,941 B2 1112005 Boucher et al. 2008/0043732 Al 212008 Desai et al.
6,976,148 B2 1212005 Arimilli et al. 2008/0170501 Al 712008 Patel et al.
6,996,070 B2 212006 Starr et al. 2008/0209084 Al 8/2008 Wang etal.
7,016,361 B2 3/2006 Swonket al. 2008/0240 III Al 1012008 Gadelrab
7,042,898 B2 5/2006 Blightman et al. 200910063696 Al 3/2009 Wang etal.
7,047,320 B2 5/2006 Arimilli et al.
7,073,196 Bl 7/2006 Dowdetal. FOREIGN PATENT DOCUMENTS
7,076,568 B2 7/2006 Phil bri ck et al.
7,089,326 B2 8/2006 Boucher et al. EP 574140 Al 12/1993
7,093,099 B2 8/2006 Bodas et al. WO WO 98119412 5/1998
7,124,205 B2 1012006 Craft et al. WO WO 98/50852 1111998
7,133,940 B2 1112006 Blightman et al. WO WO 99104343 111999
7,167,926 Bl 112007 Boucher et al. WO WO 99/65219 12/1999
7,167,927 B2 112007 Phil bri ck et al. WO PCTlUS98/24943 3/2000
7,174,393 B2 212007 Boucher et al. WO WO 00/13091 312000
7,181,531 B2 212007 Pinkerton et al. WO WO 01104770 112001
7,185,266 B2 212007 Blightman et al. WO WO 01105107 112001
7,187,679 B2 3/2007 Dally et al. WO WO 01105116 112001
7,191,241 B2 3/2007 Boucher et al. WO WO 01105123 112001
7,191,318 B2 3/2007 Tripathyet al. WO WO 01140960 6/2001
7,237,036 B2 6/2007 Boucher et al. WO WO 2007/130476 1112007
7,254,696 B2 8/2007 Mittal et al.
7,260,518 B2 8/2007 Kerr et al. OTHER PUBLICATIONS
7,283,522 B2 10/2007 Siddabathuni
7,284,070 B2 10/2007 Boucher et al. U.S. Appl. No. 601053,240, filed Jul. 18, 1997, Jolitz et al.
7,287,092 B2 10/2007 Sharp

Form 10-K for Exelan, Inc., for the fiscal year ending Dec. 31, 1987
7,337,241 B2 212008 Boucher et al.
7,461,160 B2 1212008 Boucher et al. (10 pages).

7,472,156 B2 1212008 Phil bri ck et al. Form 10-K for Exelan, Inc., for the fiscal year ending Dec. 31, 1988

7,496,689 B2 212009 Sharp et al. (10 pages).

7,502,869 B2 3/2009 Boucher et al. Internet pages entitled: Technical White Paper-Xpoint 's Disk to
7,519,699 B2 4/2009 Jain LAN Acceleration Solution for Windows NT Server, printed Jun. 5,
7,543,087 B2 6/2009 Phil bri ck et al. 1997.
7,584,260 B2 912009 Craft et al. Jato Technologies Internet pages entitled: Network Accelerator Chip
7,620,726 B2 1112009 Craft et al. Architecture, twelve-slide presentation, printed Aug. 19, 1998.

US 8,805,948 B2
Page 4

EETIMES article entitled: Enterprise System Uses Flexible Spec,
dated Aug. 10, 1998, printed Nov. 25, 1998.
Internet pages entitled iReady About Us and iReady Products, printed
Nov. 25, 1998.
Internet pages entitled: Smart Ethernet Network Interface Cards
which Berend Ozceri is developing, and Internet pages entitled:
Hardware Assisted Protocol Processing, which Eugene Feinberg is
working on, printed Nov. 25, 1998.
Internet pages of Xaqti corporation entitled: GigaPower Protocol
Processor Product review, printed Nov. 25, 2009.
Internet pages entitled: DART: Fast Application Level Networking
via Data-copy Avoidance, by Robert J. Walsh, printed Jun. 3, 1999.
Internet pagees of InterProphet entitled: Frequently Asked Ques­
tions, by Lynne Jolitz, printed Jun. 14,2000.
Andrew S. Tanenbaum, Computer Networks, Third Edition, 1996,
ISBN: 0-13-349945-6.
iReady Corporation, article entitled "The 1-1000 Internet Tuner", 2
pages, date unknown.
iReady News Archive article entitled "Seiko Instruments Inc. {SII)
Introduces World's 2 First Internet-Ready Intelligent LCD Modules
Based on iReady Technology," Santa Clara, CA and Chiba, Japan,
Oct. 26, 1998. 2 pages, printed Nov. 2, 1998.
WindRiver article entitled "Tornado: For Intelligent Network Accel­
eration", copyright Wind River Systems, 2001, 2 pages.
WindRiver White Paper entitled "Complete TCP/IP Offload for
High-Speed Ethernet Networks", Copyright Wind River Systems,
2002, 7 pages.
Intel article entitled "Solving Server Bottlenecks with Intel Server
Adapters", Copyright Intel Corporation, 1999, 8 pages.
Chandranmenon, Girish P. et a!. "Trading Packet Headers for Packet
Processing." IEEEI ACM Transactions on Networking. vo!' 4, No.2.
Apr. 1996. pp. 141-152.
Starr, David D. et al. "Intelligent Network Storage Interface Device."
U.S. App!. No. 09/675,700, filed Sep. 29, 2000.
Boucher, Laurence B. et a!. "Intelligent Network Interface System
and Method for Accelerated Protocol Processing." U.S. App!. No.
09/692,561, filed Oct. 18,2000.
Starr, Daryl D., et a!. "Intelligient Network Storage Interface Sys­
tem." U.S. App!. No. 101261,051, filed Sep. 30, 2002.
Merritt, Rick. "Ethernet Interconnect Outpacing Infiniband at Inte!."
EE Times article. Sep. 11, 2002. 9 pages.
Craft, Peter K. et a!. "TCP Offload Device that Batches Session Layer
Headers to Reduce Interrupts as Well as CPU Copies."U.S. App!. No.
12/581,342, filed Oct. 19,2009.
Craft, Peter K. et al. "TCP Offload Send Optimization." U.S. App!.
No. 12/504,021, filed Ju!. 16,2009.
Philbrick, Clive M. et a!. "Freeing Transmit Memory on a Network
Interface Device Prior to Receiving an Acknowledgment That Trans­
mit Data Has Been Received by a Remote Device." U.S. App!. No.
12/470,980, filed May 22, 2009.
Starr, Daryl D. et a!. "Accelerating Data Transfer in a Virtual Com­
puter System with Tightly Coupled TCP Connections." U.S. App!.
No. 12/410,366, filed Mar. 24, 2009.
Boucher, Laurence B. et al. "Obtaining a Destination Address So
That a Network Interface Device Can Write Network Data Without
Headers Directly Into Host Memory." U.S. App!. No. 12/325,941,
filed Dec. 1, 2008.
Boucher, Laurence B. et a!. "Enabling an Enhanced Function of an
Electronic Device." U.S. App!. No. 111985,948, filed Nov. 19,2007.
Starr, Daryl D. et a!. "Network Interface Device With 10 Gb/s Full­
Duplex Transfer Rate." U.S. App!. No. 111799,720, filed May 1,
2007.
Craft, Peter K. et al. "Peripheral Device That DMAS the Same Data
to Different Locations in a Computer." U.S. App!. No. 111788,719,
filed Apr. 19,2007.
Boucher, Laurence B. et a!. "TCP/IP Offload Network Interface
Device." U.S. App!. No. 111701,705, filed Feb. 2, 2007.
Starr, Daryl D. et a!. "TCP/IP Offload Device With Reduced Sequen­
tial Processing." U.S. App!. No. 111348,810, filed Feb. 6, 2006.
Craft, Peter K. et al. "Transferring Control of TCP Connections
Between Hierarchy of Processing Mechanisms." U.S. App!. No.
111249,006, filed Oct. 11,2005.

Boucher, Laurence B. et al. "Network Interface Device That Can
Transfer Control of a TCP Connection to a Host CPU." U.S. App!.
No. 111029,863, filed Jan. 4, 2005.
Craft, Peter K. et a!. "Protocol Stack That Offloads a TCP Connection
From a Host Computer to a Network Interface Device." U.S. App!.
No, filed Dec. 30, 2004.
Craft, Peter K. et a!. "Protocol Stack That Offloads a TCP Connection
From a Host Computer to a Network Interface Device." U.S. App!.
No. 111016,642, filed Dec. 16,2004.
Boucher, Laurence B. et a!. "Method and Apparatus for Dynamic
Packet Batching With a High Performance Network Interface." U.S.
App!. No. 0/678,336, filed Oct. 3, 2003.
Philbrick Clive M. et a!. "Method and Apparatus for Data Re-Assem­
bly with a High Performance Network Interface." U.S. App!. No.
10/634,062, filed Aug. 4, 2003.
Boucher, Laurence B. et a!. "High Network Interface Device System
for Accelerated Communication." U.S. App!. No. 10/601,237, filed
Jun. 19, 2003.
Boucher, Laurence B. et a!. "Method and Apparatus for Distributing
Network Traffic Processing on a Multiprocessor Computer." U.S.
App!. No. 10/438,719, filed May 14, 2003.
Boucher, LaurenceB. eta!. "Parsing a Packet Header." U.S. App!. No.
101277,604, filed Oct. 18,2002.
Internet pages entitled "Hardware Assisted Protocol Processing",
(which Eugene Feinber is working on), 1 page, printed Nov. 25,1998.
Zilog product Brief entitled "Z85C30 CMOS SCC Serial Commu­
nication Controller", Zilog Inc., 3 pages, 1997.
Internet pages of Xpoint Technologies, Inc. entitled "Smart LAN
Work Requests", 5 pages, printed Dec. 19, 1997.
Internet pages entitled: Asante and 100BASE-T Fast Ethernet. 7
Pages, printed May 27, 1997.
Internet pages entitled: A Guide to the Paragon XP/S-A7
Supercomputer at Indiana University. 13 pages printed Dec. 21,
1998.
Richard Stevens, "TCP/IP Illustrated, vo!' 1, The Protocols", pp.
325-326 (1994).
Internet pages entitled: Northridge/Southbridge vs. Intel Hub Archi­
tecture, 4 pages, printed Feb. 19, 2001.
Gigabit Ethernet Technical Brief, Achieving End-to-End Perfor­
mance. Alteon Networks, Inc., First Edition, Sep. 1996.
Internet pages directed to Technical Brief on Alteon Ethernet Gigabit
NIC technology, www.alteon.com.14pages.printed Mar. 15, 1997.
VIA Technologies, Inc. article entitled "VT8501 Apollo MVP4", pp.
i-iv, 1-11, cover and copyright page, revision 1.3, Feb. 1,2000.
iReady News Archives article entitled "iReady Rounding Out Man­
agement Team with Two Key Executives", http://www.ireadyco.
corniarchives/keyexec.htrnl, 2 pages, printed Nov. 28, 1998.
"Toshiba Delivers First Chips to Make Consumer Devices Internet­
Ready Based on iReady's Design," Press Release Oct. 1998,3 pages,
printed Nov. 28, 1998.
Internet pages from iReady Products, web site: http://www.ireadyco.
corniproducts,htrnl, 2 pages, downloaded Nov. 25, 1998.
iReady News Archives, Toshiba, iReady shipping Internet chip, I
page, printed Nov. 25, 1998.
Interprophet article entitled "Technology", http://www.interprophet.
cornitechnology.htrnl, 17 ages, printed Mar. 1,2000.
iReady Corporation, article entitled "The 1-1000 Internet Tuner", 2
pages, date unknown.
iReady article entitled "About Us Introduction", Internet pages from
http://wwwiReadyco.comiabout.htrnl.3pages.printed Nov. 25,
1998.
iReady News Archive article entitled "Revolutionary Approach to
Consumer Electronics Internet Connectivity Funded", San Jose, CA,
Nov. 20, 1997.2 pages, printed Nov. 2, 1998.
iReady News Archive article entitled "Seiko Instruments Inc. (SII)
Introduces World's First Internet-Ready Intelligent LCD Modules
Based on iReady Technology," Santa Clara, CA and Chiba, Japan,
Oct. 26, 1998.2 pages, printed Nov. 2, 1998.
NEWSwatch article entitled "iReady internet Tuner to Web Enable
Devices", Tuesday, Nov. 5, 1996, printed Nov. 2, 1998,2 pages.
EETimes article entitled "Tuner for Toshiba, Toshiba Taps iReady for
Internet Tuner", by David Lammers, 2 pages, printed Nov. 2, 1998.

US 8,805,948 B2
Page 5

"Comparison of Novell Netware and TCP/IP Protocol Architec­
tures", by J.S. Carbone, 19 pages, printed Apr. 10, 1998.
Adaptec article entitled "AEA-71IOC-A DuraSAN product", 11
pages, printed Oct. 1, 2001.
iSCSI HBA article entitled "iSCSI and 2Gigabit fibre Channel Host
Bus Adapters from Emulex, QLogic, Adaptec, JNI", 8 pages, printed
Oct. 1,2001.
iSCSI HBA article entitled "FCE-3210/6410 32 and 64-bit PCI-to­
Fibre Channel HBA", 6 pages, printed Oct. 1, 2001.
iSCSI HBA article entitled "iSCSI Sorage", 6 pages, printed Oct. 1,
2001.
"Two-Way TCP Traffic Over Rate Controlled Channels: Effects and
Analysis", by Kalampoukas et ai., IEEE Transactions on Network­
ing, voi. 6, No.6, Dec. 1998.
IReady News article entitled "Toshiba Delivers First Chips to Make
Consumer Devices Internet-Ready Based on iReady Design", Santa
Clara, CA and Tokyo, Japan, Oct. 14, 1998, printed Nov. 2, 1998.
U.S. Appi. No. 08/964,304, by Napolitano, et ai., entitled "File Array
Storage Architecture", filed Nov. 4, 1997.
"File System Design for an NFS File Server Appliance", Article by D.
Hitz, et ai., 13 pages.
Adaptec Press Release article entitled "Adaptec Announces
EtherStorage Technology", 2 pages, May 4, 2000, pnnted Jun. 14,
2000.
Adaptec article entitled "EtherStorage Frequently Asked Questions",
5 pages, printed Jui. 19,2000.
Adaptec article entitled "EtherStorage White Paper", 7 pages, printed
Jui. 19,2000.
CIBC World Markets article entitled "Computers; Storage", by J.
Bertino et al., 9 pages, dated Aug. 7, 2000.
Merrill Lynch article entitled "Storage Futures", by S. Milunovich,
22 pages, dated May 10, 2000.
CBS Market Watch article entitled "Montreal Start-Up Battles Data
Storage Botttieneck", by S. Taylor, dated Mar. 5, 2000, 2 pages,
printed Mar. 7, 2000.
Internet-draft article entitled "SCSI/TCP (SCSI over TCP)", by J.
Satran et al., 38 pages, dated Feb. 2000, printed May 19, 2000.
Article entitled LRP. A New Network Subsystem Architecture for
Server Systems:, by P. Druschel and G. Banga, Rice University, 15
pages.
Internet RFC/STD/FYI/BCP Archives article with heading
"RFC2140" entitled "TCP control Block Interdependence", web
address http://www.faqs.org/rfcs/rfc2140.htrnl.9pages.printed Sep.
20,2002.
I. Heizer et ai., Common Internet File System Protocol (CIFS/1.0),
Internet Draft, Internet Engineering Task Force (IETF), Jun. 13,
1996.
David D. Clark et ai., NETBLT: A Bulk Data Transfer Protocol,
Request for Comments (RFC) 998, Mar. 1987.
K. Sollins, The TFTP Protocol (Revision 2), Request for Comments
(RFC) 1350, Jui. 1992.
W. David Schwaderer, C Progranuner's Guide to NetBIOS, IPX, and
SPX, 1992, pp. 322-323.
Internet pages entitled Technical White Paper-Xpoint's Disk to LAN
Acceleration Solution for Windows NT Server, printed Jun. 5, 1997,
15 pages. . .
Jato Technologies article entitled Network Accelerator Chip Archi­
tecture, twelve-slide presentation, printed Aug. 19, 1998, 13 pages.
EETimes article entitled Enterprise System Uses Flexible Spec,
dated Aug. 1 0, 1998, printed Nov. 25, 1998, 3 pages.
Internet pages entitled "Smart Ethernet Network Interface Cards",
which Berend Ozceri is developing, printed Nov. 25, 1998,2 pages.
Internet pages of Xaqti corporation entitled "GigaPower Protocol
Processor Product Review," printed Nov. 25, 1999,4 pages.
U.S. Appi. No. 601283,896, Titled: CRC Calculations for Out of
Order PUDs, filed Apr. 12, 2003, Inventor: Amit Oren, Assignee:
Siliquent Technologies Ltd.
Internet pages entitled "DART: Fast Application Level Networking
via Data-Copy Avoidance," by Robert J. Walsh, printed Jun. 3, 1999,
25 pages.
Andrew S. Tanenbaum, Computer Networks, Third Edition, 1996,
ISBN 0-13-349945-6.
Article from Rice University entitled "LRP: A New Network Sub­
system Architecture for Server Systems", by Peter Druschel and
Gaurav Banga, 14 pages.

Internet RFD/STD/FYI/BCP Archives article with heading
"RFC2140" entitled "TCP Control Block Interdependence", web
address http://www.faqs.org/rfcs/rfc2140.html.9pages.printed Sep.
20,2002.
Wind River article entitled "Tornado: For Intelligent Network Accel­
eration", copyright Wind River Systems, 2001, 2 pages.
Schwaderer et al., IEEE Computer Society Press publication entitled,
"XTP in VLSI Protocol Decomposition for ASIC Implementation",
from 15th Conference on Local Computer Networks, 5 pages, Sep.
30-0ct. 3, 1990.
Beach, Bob, IEEE Computer Society Press publication entitled,
"UitraN et: An Architecture for Gigabit Networking", from 15th Con­
ference on Local Computer Networks, 18 pages, Sep. 30-0ct. 3,
1990.
Chesson et ai., IEEE Syposium Record entitled, "The Protocol
Engine Chipset", from Hot Chips III, 16 pages, Aug. 26-27,1991.
Maclean et ai., IEEE Global Telecommunications Conference,
Globecom '91, presentation entitled, "An Outboard Processor for
High Performance Implementation of Transport Layer Protocols", 7
pages, Dec. 2-5, 1991. . .
Ross etai., IEEE article entitled "FXI000: Ahlgh performance smgle
chip Gigabit Ethernet NIC", from Compean '97 Proceedings, 7
pages, Feb. 23-26, 1997.
Strayer et ai., "Ch. 9: The Protocol Engine" from XTP: The Transfer
Protocol, 12 pages, Jui. 1992.
Publication entitled "Protocol Engine Handbook", 44 pages, Oct.
1990.
Koufopavlou et ai., IEEE Global Telecommunications Conference,
Globecom '92, presentation entitled, "Parallel TCP for High Perfor­
mance Communication Subsystems", 7 pages, Dec. 6-9, 1992.
Lilienkamp et ai., Publication entitled "Proposed Host-Front End
Protocol", 56 pages, Dec. 1984.
Thia et ai. Publication entitled "High-Speed OSI Protocol Bypass
Algorithm with Window Flow Control," Protocols for High Speed
Networks, pp. 53-68, 1993.
U.S. Appi. No. 601053,240, Titled: TCP/IP Network Accelerator and
Method of Use, filed Jui. 17, 1997, Inventor: William Jolizt et ai.
Thia et ai. Publication entitled "A Reduced Operational Protocol
Engine (ROPE) for a multiple-layer bypass architecture," Protocols
for High Speed Networks, pp. 224-239, 1995.
Thia, YH. Publication entitled "High-Speed OSI Protocol Bypass
Algorithm with Window Flow Control", Protocols for High Sgeed
Networks, pp. 53-68, 1993.
Thia, YH. Publication entitled"A Reduced Operational Protocol
Engine (ROPE) for a multiple layer bypass architecture", Protocols
for High Speed Networks, pp. 224-239, 1995.

Primary Examiner - Moustafa M Meky
(74) Attorney, Agent, or Firm - Mark Lauer; Silicon Edge
Law Group LLP

(57) ABSTRACT

A system for protocol processing in a computer network .has
an intelligent network interface card (INIC) or commumca­
tion processing device (CPD) associated with a host com­
puter. The INIC or CPD provides a fast-path that avoids host
protocol processing for most large multipacket messages,
greatly accelerating data communication. The INIC or CPD
also assists the host for those message packets that are chosen
for processing by host software layers. A communication
control block (CCB) for a message is defined that allows
DMA controllers of the INIC to move data, free of headers,
directly to or from a destination or source in the host. ~he
CCB can be passed back to the host for message processmg
by the host. The INIC or CPD contains hardware circuits
configured for protocol processing that can perform that spe­
cific task faster than the host cpu. One embodiment includes
a processor providing transmit, receive and management pro­
cessing, with full duplex communication for four fast Ether­
net nodes.

22 Claims, 14 Drawing Sheets

u.s. Patent

22

REMOTE
I-lOST

25

(50

Aug. 12,2014 Sheet 1 of 14 US 8,805,948 B2

I--------------------------l 20
I HOST 1_'
I --

35 I
I
I
I
I
I
I
I
I

30 I
I

I
I
I
I

STORAGE

CPD

'------

FIG. 1

(
UPPER

42,,- LAYER

28

CPU

33

46

UPPER LAYER 48,
CONTEXT "J INTERFACE

~ STORAGE

54 ~ ro TRANSPORT 35

38"""'-
NETWORK \ ~8 52

"-- 44

36
DATA LINK

56

30~
~

INIC/CPD

FIG. 2

u.s. Patent Aug. 12,2014 Sheet 2 of 14 US 8,805,948 B2

RECEIVE PACKET
FROM NETWORK 47

BYCPD

VALIDATE PACKET,
SUMMARIZE 57

HEADERS

61

5~

FAST PATH NO
SEND PACKET TO

CANDIDATE?
STACK FOR SLOW-
PATH PROCESSING

67 65 YES 53

NO SEND PACKET TO
MATCH WITH STACK FOR SLOW-

CCB? PATH PROCESSING

69

SEND TO
DESTINATION CREATE CCB FOR
IN HOST VIA :MESSAGE
FAST-PATH

51

FIG. 3

u.s. Patent

REMOTE
HOST

REMOTE
HOST

22

25

22

25

32

Aug. 12,2014 Sheet 3 of 14 US 8,805,948 B2

42
SESS

1
TRANS 40 35 1

NETW 38 ~
DLTNK 36

~44

FIG.4A

SESS �-------�

~-L-f~~~---~I In 66 :
'---.l~=~=~+__I TRANS 40 35 : :

L--__ ~-----'---------',,.'RECETVE LOGIC
NETW 38 '----1 :
DUNK 36 L ______ ~

22

REMOTE
HOST 25

REMOTE
HOST

22

32J-------

FIG.4B

32
FIG.4C

FIG.4D

56

42
40
38
36

~44

SESS
TRANS
NETW
DUNK

~44

82

1-------1

: 1 2 :
35 1 1

~ 66 70:

66

1
1

L... ______ J

1
L ______ ..J

u.s. Patent

REMOTE
HOST

22

25

Aug. 12,2014 Sheet 4 of 14 US 8,805,948 B2

42 99
92

--1

1~~L-i-~SE~S~S~r---L-~~l :
TRANS ~---' 1

1
NETW 1 901

1 1
DLnITZ ---r-- J

/

35----

FIG. 5
~44

15l
150", 170 185

r- ~-- --~l--- -----\-- -,
1

1 1

1
PROCESSOR

1

1 1

1 S 1

I 1

I HARDWARE LOGIC 1

I
- - - ~- - - - - - - - - - -

1
L ____ I.

t'----- 155 171

152-,{----------------,
I

FAST-PATH 1

:~ SOURCEIDEST
1

168 -t ,'1.

1 APPLICA nON 166 ~..L
1
1

164--t TRANSPORT
1

162--i--
1 NETWORK

160~
SLOW-PATH 1

DATA LINK

C157
.! -----~1-58-----

I
I
I
I
I
I
I
1

I
I
I
I
1

1
1

I
1
1
1
1
1

1

'If
FIG. 6

u.s. Patent Aug. 12,2014 Sheet 5 of 14 US 8,805,948 B2

MEDIA ACCESS
~172

CONTROLLER

I

ASSEMBLY ~174)178)1
REGISTER

76

FLYBY
PACKET

CONTROL
SEQUENCER , , SEQUENCER

MUL TIPLEXOR ~180

,) 182) 183

SRAM
SRAM

CONTROL

DRAM CONTROL

(186
,

DRAM ~188 184~
QUEUE

MANAGER

FIG. 7

u.s. Patent

178

Aug. 12,2014 Sheet 6 of 14 US 8,805,948 B2

PACKET
176 ________ CONTROL

SEQUENCER

ASSEMBLY
f----~

REGISTER

MAC r------ 191
1-00II.1--------;

SEQUENCER -

,

NETWORK --- 192
14-------1

SEQUENCER -

TRANSPORT r----- 194

SEQUENCER
t.---------i

1r

SESSION --- 195
SEQUENCER~~r-----~

MULTIPLEXER

FIG. 8

u.s. Patent Aug. 12,2014 Sheet 7 of 14 US 8,805,948 B2

1- - - - - - - - - - - - - - - ~

~~ 244 200.... 230 264 27_~O r---23;AST-PA::2~; SOURCElDES:, i

V-------~---~} _-1___ -- : APPLICATION :
1 - --\- . -\ 1 220 - 1

i PROCESSOR) i r :
,--...,.'~""HARDWARELOGIC4: 217i TRANSPORT :
262 ' 1 1 1

'-Yr""HARDWARELOGIC3 S 1 215--+., :
2421 ' I: NETWORK 1
"j' I"" HARDWARE LOGIC 2 : 231 212\..! 1 r'T' i', I? '----'- 1

1 HARDWARE LOGIC 1 I 1 \ SLOW-PATH : MAC :
1 1 1 1 '----------' 1

, , L _ _ _ _ _ _ _ _ _ . -)- _ _ _ _ _ _ - - - J :......----r~----!.~I - - - - - - -1- - - - - - -

~ 210 _ ~ 260 "" ____ ~... 250 I

r 240 ' 205 202
... ~

FIG. 9

TDIUSERS ~ 382

380 ~
TDI FILTER DRIVER

& UPPER LAYER INTERFACE 383

--

360

370 I~ ATCP
TCP ~ 358

366 ~ IP IP ~ 355 350

363 ~ MAC MAC ~ 353
---- ---

375 ~ NDIS

)P.)~

,.r ,.r

377 ~ INIC MINIPORT DRIVER

FIG. 11

u.s. Patent Aug. 12,2014 Sheet 8 of 14

1-------------------------------
202 "-',_...1

1

330

325

322

320

1
1
1
1
1

~

~

~

~
1
1

~ 318~ UPPER LAYER
300

UPPER LAYER INTERFACE

TRANSPORT TRANSPORT

NETWORK NETWORK

DATA LINK DATALINI(

US 8,805,948 B2

1
1

..... 1

1
1
1
1
1
1

~316
1
1

~314
1
1

~312
1
1

1 ~
--~---~ --------- ----------------, r , ~ 310

306~ INIC MINIPORT DRIVER

I'
240~

~

200~

J ... INIC

(
,

210 ~I'

,~

INIC
~304

MEMORY

FIG. 10

--------------1 i------ CLIENT I
190,_/-~ I

168, A Sl\1B I. i
I
I

166~ ~ TNETBIOS :
I
I

164~ ~ TCP :
157
162

160

150

IP

MAC

INIC

159 237

210

FIG. 12

----------------1
r---- SERVER ~_/-'290

Sl\1B

NETBIOS

TCP

IP

MAC

INIC

240

244

242

222

220

217
231

215

212

200

~
7Jl
•
~
~
~
~ = ~

~
~
N
~

N
o
.j;o.

rFJ

=­('D
('D
\0
o
.j;o.

d
rJl
QO

00 = tit
\c
~
QO

= N

u.s. Patent Aug. 12,2014 Sheet 10 of 14 US 8,805,948 B2

210 400-, 240
"­

\

200",

r----
_________ L ___ _

1
1 ,-----''----------,

1
1
1

1 '-------,,---------'

410

426

REG FILE 480
WCS ".-
ROM 472

-,) 1438
I 1

------477,- AI'- 4~0 c r--

----- --~--- ---, 1 ,-----'-----~
MICRO- 1 1 DMA CTRL

PROCESSOR ::
486: 1
4841 :

1 1
1 1

SRAM
CTRL

1
1
1
1

:441
1

1 1 442 1
: I ___________ ,_J

1 482 : " 444 L ______________ _

464

1475
1

PCI BUS INTERFACE UNIT

1

244

432

440

SRAM

446

EXTERNAL
MEMORY

CTRL

1
1

1
1
1
1
1

1

1
1
1
1
1

1

1
1
1

450
1--- ____ 1

468

1

455 :

1
1
1
1
1

1

1 ______ ---------------------
____________________ J 460

257

FIG. 13

u.s. Patent Aug. 12,2014 Sheet 11 of 14 US 8,805,948 B2

CLOCK _______ ~ _______ L ______ L ______ ~ _______ L __
r
I
I
I
I
I
J

/

/
/

~

49
CONTROLS FOR FIRST REGISTER SET I

50S------
500/ , , 490,\

i \ 533,
~ I :I~------~----~~----~------~I

II I FIRST REGISTER SET
I "-------,-----.-----,-------,------,-----' RAM FILE

/

560/

I, REGISTER

I
I
I
I
I
I
I
I

)

,
/

/

>-

INSTRUCTION DECODER
AND

OPERAND MULTIPLEXER

"~ 496~
II : I.-----''---------'----'-------'--------''------'----...I.--------,

SECOND REGISTER SET
: I~ ___ ---,-_--,----~~-----,----~-----'
I
I

r
I

, ,
/

/

>- -------

I ~-------,

I QUEUE
I I STACK I
i EXCHANGE I

/ ~608

I ARITHMETIC LOGIC UNIT I

602) 503)
60W, ,

" I .-----''------__ --'-___ -'--__ ~'--__ __'_ ___ ...I.__------,

III I I THIRD REGISTER SET I
:I"-------, ___ ---,-_-~,----~~-----,----~-----' J: :"~ \;,.-- ____ ~Ol~--\;.------\;,.--- -;;.:__\;.--

FIG. 14

500 "'
\

\

\

\
L ----~---~---~---~----~---~~---~~--~--~---~----

\

\

\

Ir Ir

\

\ ISRAMILOADILOAD r CTRL CTRL CTRL
492\

i 502) I 504) I 506)
\

FLAG
DEC

508)

Ir • I" Ir

PIN ADDR

CTRL

510

,
LOAD
CTRL

51711
505~

\

\

\

\

, , , , 533, .. 535\
Ir \.. .. ,

: ADDR
~ & FILE ALU FLAG

(: (" DATA CTX CCS REGS
490: 520 1---,......l....-TT---1.::r~:...Lrr-~-.---

___ 522
------ -------. .. . Ir Ir

ADDR
C D~IINSTRIFETCH

REG IADDR
PC ISTACKIDEBUG

ADDR

RAM FILE
REGISTER f--

DOUT DOUT

ADDR ADDR

,

FIG. 15A

53871 540)1-~~4) I 548)

----------f----------

Ir Ir

~
7Jl
•
~
~
~
~ = ~

> =
~
N
~

N
o
.j;o.

rFJ

=­('D

a
N
o
.j;o.

d
rJl
QO

00 = tit
\c
~
QO

= N

560,
\

\

ADDR DIN
C C

[___ L~ ___________ ~ ___________ _

I
I
I
I
I

I ISCRATCH
: SRAM
I

i --]
I 565
I
I
I
I
I
I
I
I
I
I
I

i 498]
I
I
I
I
I
I

RAM FILE
REGISTER

INSTRUCTION DECODER
AND

OPERAND MULTIPLEXER

-~-----~ ----1----t ----1------

LOAD
CTRL

575

I
I
I

44:) [57:) [581 [58~) 158) 158~) 158~) 158:) 159~) 159) 15;4) 159~} I
I

FILE I ALU I ALU I ALU I TEST I FLAG I QCH&I LIT I PGM I PC ISTACKIDEBUGI
CTX OPDS CCS OP SEL SEL QCMD CTRL ADDR

-----1-----

..
FIG. 15B

505

~
7Jl
•
~
~
~
~ = ~

> =
~
N
~

N
0
.j;o.

rFJ

=-('D
('D
(.H

0
.j;o.

d
rJl
QO

00 = tit
\c
~
QO

= N

600 -,
\

~-~----~-----~----~----~----~----~-----~--------------------------

I
I
I

602) 1

..
ALU

.. .. I

TEST mQRAM
STACK

I &
EXCHANGE MUX QALU

16071 1606 608

: t ,. ,.

LOAD
CTRL

: DEST QFLGS
I FILE ALU ALU OPD TEST FLAG & LIT PGM PC STACK DEBUGI
: CTX OUT CCS RSLT RSLT SEL QADDR CTRL ADDR

I

: 616
I

FIG. 15C

505

~
7Jl
•
~
~
~
~ = ~

> =
~
N
~

N
0
.j;o.

rFJ

=­('D
('D
.j;o.

o
.j;o.

d
rJl
QO

00 = tit
\c
~
QO

= N

US 8,805,948 B2
1

INTELLIGENT NETWORK INTERFACE
SYSTEM AND METHOD FOR PROTOCOL

PROCESSING

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit under 35 U.S.c. §1200f
(is a continuation of) U.S. patent application Ser. No. 09/692,
561, filed Oct. 18, 2000, which in turn claims the benefit
under 35 U.S.c. §120 of (is a continuation of) U.S. patent
application Ser. No. 091067,544, filed Apr. 28, 1998, now
U.S. Pat. No. 6,226,680, which claims the benefit under 35
U.S.c. §119(e) of U.S. Patent Application Ser. No. 601061,
809, filed Oct. 14, 1997. The complete disclosure of all of the
above applications is incorporated by reference herein.

TECHNICAL FIELD

The present invention relates generally to computer or
other networks, and more particularly to protocol processing
for information communicated between hosts such as com­
puters connected to a network.

BACKGROUND

The advantages of network computing are increasingly
evident. The convenience and efficiency of providing infor­
mation, communication or computational power to individu­
als at their personal computer or other end user devices has led
to rapid growth of such network computing, including inter­
net as well as intranet systems and applications.

As is well known, most network computer communication
is accomplished with the aid of a layered software architec­
ture for moving information between host computers con­
nected to the network. The layers help to segregate informa­
tion into manageable segments, the general functions of each
layer often based on an international standard called Open
Systems Interconnection (OSI). OSI sets forth seven process­
ing layers through which information may pass when
received by a host in order to be presentable to an end user.
Similarly, transmission of information from a host to the
network may pass through those seven processing layers in
reverse order. Each step of processing and service by a layer
may include copying the processed information. Another ref­
erence model that is widely implemented, called TCP/IP
(TCP stands for transport control protocol, while IP denotes
internet protocol) essentially employs five of the seven layers
of OS I.

Networks may include, for instance, a high -speed bus such
as an Ethernet connection or an internet connection between
disparate local area networks (LAN s), each of which includes
multiple hosts, or any of a variety of other known means for
data transfer between hosts. According to the OSI standard,
physical layers are connected to the network at respective
hosts, the physical layers providing transmission and receipt
of raw data bits via the network. A data link layer is serviced

2
sion layers and split the data into smaller units for transmis­
sion to the other host's transport layer, which concatenates the
data for presentation to respective presentation layers. Ses­
sion layers allow for enhanced communication control
between the hosts. Presentation layers are serviced by their
respective session layers, the presentation layers translating
between data semantics and syntax which may be peculiar to
each host and standardized structures of data representation.
Compression and/or encryption of data may also be accom-

10 plished at the presentation level. Application layers are ser­
viced by respective presentation layers, the application layers
translating between programs particular to individual hosts
and standardized programs for presentation to either an appli-

15 cation or an end user. The TCP/IP standard includes the lower
four layers and application layers, but integrates the functions
of session layers and presentation layers into adjacent layers.
Generally speaking, application, presentation and session
layers are defined as upper layers, while transport, network

20 and data link layers are defined as lower layers.
The rules and conventions for each layer are called the

protocol of that layer, and since the protocols and general
functions of each layer are roughly equivalent in various
hosts, it is useful to think of communication occurring

25 directly between identical layers of different hosts, even
though these peer layers do not directly communicate without
information transferring sequentially through each layer
below. Each lower layer performs a service for the layer
immediately above it to help with processing the communi-

30 cated information. Each layer saves the information for pro­
cessing and service to the next layer. Due to the multiplicity of
hardware and software architectures, systems and programs
commonly employed, each layer is necessary to insure that

35 the data can make it to the intended destination in the appro­
priate form, regardless of variations in hardware and software
that may intervene.

In preparing data for transmission from a first to a second
host, some control data is added at each layer of the first host

40 regarding the protocol of that layer, the control data being
indistinguishable from the original (payload) data for all
lower layers of that host. Thus an application layer attaches an
application header to the payload data and sends the com­
bined data to the presentation layer of the sending host, which

45 receives the combined data, operates on it and adds a presen­
tation header to the data, resulting in another combined data
packet. The data resulting from combination of payload data,
application header and presentation header is then passed to
the session layer, which performs required operations includ-

50 ing attaching a session header to the data and presenting the
resulting combination of data to the transport layer. This
process continues as the information moves to lower layers,
with a transport header, network header and data link header
and trailer attached to the data at each of those layers, with

55 each step typically including data moving and copying,
before sending the data as bit packets over the network to the
second host.

by the physical layer of each host, the data link layers pro­
viding frame division and error correction to the data received
from the physical layers, as well as processing acknowledg- 60

ment frames sent by the receiving host. A network layer of
each host is serviced by respective data link layers, the net­
work layers primarily controlling size and coordination of
subnets of packets of data.

The receiving host generally performs the converse of the
above-described process, beginning with receiving the bits
from the network, as headers are removed and data processed
in order from the lowest (physical) layer to the highest (appli-
cation) layer before transmission to a destination of the
receiving host. Each layer of the receiving host recognizes
and manipulates only the headers associated with that layer,
since to that layer the higher layer control data is included
with and indistinguishable from the payload data. Multiple

A transport layer is serviced by each network layer and a 65

session layer is serviced by each transport layer within each
host. Transport layers accept data from their respective ses- interrupts, valuable central processing unit (CPU) processing

US 8,805,948 B2
3

time and repeated data copies may also be necessary for the
receiving host to place the data in an appropriate form at its
intended destination.

4
tial protocol processing stack which can be employed for
setting up a fast-path connection or processing message
exceptions. The specialized microprocessor and the host
intelligently choose whether a given message or portion of a
message is processed by the microprocessor or the host stack.

BRIEF DESCRIPTION OF THE DRAWINGS

The above description of layered protocol processing is
simplified, as college-level textbooks devoted primarily to
this subject are available, such as Computer Networks, Third
Edition (1996) by Andrew S. Tanenbaum, which is incorpo­
rated herein by reference. As defined in that book, a computer
network is an interconnected collection of autonomous com­
puters, such as internet and intranet systems, including local
area networks (LANs), wide area networks (WANs), asyn­
chronous transfer mode (ATM) , ring or token ring, wired,
wireless, satellite or other means for providing communica­
tion capability between separate processors. A computer is
defined herein to include a device having both logic and
memory functions for processing data, while computers or
hosts connected to a network are said to be heterogeneous if
they function according to different operating systems or
communicate via different architectures.

FIG. 1 is a plan view diagram of a system of the present
10 invention, including a host computer having a communica­

tion-processing device for accelerating network communica­
tion.

FIG. 2 is a diagram of information flow for the host of FIG.
1 in processing network communication, including a fast-

15 path, a slow-path and a transfer of connection context
between the fast and slow-paths.

FIG. 3 is a flow chart of message receiving according to the
present invention.

FIG. 4A is a diagram of information flow for the host of
FIG. 1 receiving a message packet processed by the slow­
path.

FIG. 4B is a diagram of infonnation flow for the host of
FIG. 1 receiving an initial message packet processed by the
fast-path.

FIG. 4C is a diagram of infonnation flow for the host of
FIG. 4B receiving a subsequent message packet processed by
the fast-path.

FIG. 4D is a diagram of information flow for the host of
FIG. 4C receiving a message packet having an error that
causes processing to revert to the slow-path.

FIG. 5 is a diagram of information flow for the host of FIG.
1 transmitting a message by either the fast or slow-paths.

As networks grow increasingly popular and the infonna- 20

tion communicated thereby becomes increasingly complex
and copious, the need for such protocol processing has
increased. It is estimated that a large fraction of the processing
power of a host CPU may be devoted to controlling protocol
processes, diminishing the ability of that CPU to perfonn 25

other tasks. Network interface cards have been developed to
help with the lowest layers, such as the physical and data link
layers. It is also possible to increase protocol processing
speed by simply adding more processing power or CPUs
according to conventional arrangements. This solution, how- 30

ever, is both awkward and expensive. But the complexities
presented by various networks, protocols, architectures, oper­
ating systems and applications generally require extensive
processing to afford communication capability between vari-
0us network hosts.

FIG. 6 is a diagram of information flow for a first embodi­
ment of an intelligent network interface card (INIC) associ-

35 ated with a client having a TCP/IP processing stack.

SUMMARY OF THE INVENTION
FIG. 7 is a diagram of hardware logic for the INIC embodi­

ment shown in FIG. 6, including a packet control sequencer
and a fly-by sequencer.

The current invention provides a system for processing
network communication that greatly increases the speed of
that processing and the efficiency of moving the data being
communicated. The invention has been achieved by question­
ing the long-standing practice of perfonning multilayered
protocol processing on a general-purpose processor. The pro­
tocol processing method and architecture that results effec­
tively collapses the layers of a connection-based, layered
architecture such as TCP/IP into a single wider layer which is
able to send network data more directly to and from a desired
location or buffer on a host. This accelerated processing is
provided to a host for both transmitting and receiving data,
and so improves perfonnance whether one or both hosts
involved in an exchange of infonnation have such a feature.

FIG. 8 is a diagram of the fly-by sequencer of FIG. 7 for
40 analyzing header bytes as they are received by the INIC.

FIG. 9 is a diagram of infonnation flow for a second
embodiment of an INIC associated with a server having a
TCP/IP processing stack.

FIG. 10 is a diagram of a command driver installed in the
45 host of FIG. 9 for creating and controlling a communication

control block for the fast-path.
FIG. 11 is a diagram of the TCP/IP stack and command

driver of FIG. 10 configured for NetBios communications.
FIG. 12 is a diagram of a communication exchange

50 between the client of FIG. 6 and the server of FIG. 9.

The accelerated processing includes employing represen­
tative control instructions for a given message that allow data
from the message to be processed via a fast-path which 55

accesses message data directly at its source or delivers it
directly to its intended destination. This fast-path bypasses
conventional protocol processing of headers that accompany
the data. The fast-path employs a specialized microprocessor
designed for processing network communication, avoiding 60

the delays and pitfalls of conventional software layer process­
ing, such as repeated copying and interrupts to the cpu. In
effect, the fast-path replaces the states that are traditionally
found in several layers of a conventional network stack with
a single state machine encompassing all those layers, in con- 65

trast to conventional rules that require rigorous differentiation
and separation of protocol layers. The host retains a sequen-

FIG. 13 is a diagram of hardware functions included in the
INIC of FIG. 9.

FIG. 14 is a diagram of a trio of pipelined microprocessors
included in the INIC of FIG. 13, including three phases with
a processor in each phase.

FIG. 15A is a diagram of a first phase of the pipelined
microprocessor of FIG. 14.

FIG. 15B is a diagram of a second phase of the pipelined
microprocessor of FIG. 14.

FIG. 15C is a diagram of a third phase of the pipelined
microprocessor of FIG. 14.

DETAILED DESCRIPTION

FIG. 1 shows a host 20 of the present invention connected
by a network 25 to a remote host 22. The increase in process­
ing speed achieved by the present invention can be provided

US 8,805,948 B2
5

with an intelligent network interface card (INIC) that is easily
and affordably added to an existing host, or with a connnu­
nication processing device (CPD) that is integrated into a
host, in either case freeing the host CPU from most protocol
processing and allowing improvements in other tasks per­
formed by that cpu. The host 20 in a first embodiment
contains a CPU 28 and a CPD 30 connected by a host bus 33.
The CPD 30 includes a microprocessor designed for process­
ing connnunication data and memory buffers controlled by a
direct memory access (D MA) unit. Also connected to the host 10

bus 33 is a storage device 35, such as a semiconductor
memory or disk drive, along with any related controls.

Referring additionally to FIG. 2, the host CPU 28 controls
a protocol processing stack 44 housed in storage 35, the stack
including a data link layer 36, network layer 38, transport 15

layer 40, upper layer 46 and an upper layer interface 42. The
upper layer 46 may represent a session, presentation and/or
application layer, depending upon the particular protocol
being employed and message connnunicated. The upper layer
interface 42, along with the CPU 28 and any related controls 20

can send or retrieve a file to or from the upper layer 46 or
storage 35, as shown by arrow 48. A connection context 50
has been created, as will be explained below, the context
sUlllllarizing various features of the connection, such as pro­
tocol type and source and destination addresses for each 25

protocol layer. The context may be passed between an inter­
face for the session layer 42 and the CPD 30, as shown by
arrows 52 and 54, and stored as a connnunication control
block (CCB) at either CPD 30 or storage 35.

When the CPD 30 holds a CCB defining a particular con- 30

nection, data received by the CPD from the network and
pertaining to the connection is referenced to that CCB and can
then be sent directly to storage 35 according to a fast-path 58,
bypassing sequential protocol processing by the data link 36,
network 38 and transport 40 layers. Transmitting a message, 35

such as sending a file from storage 35 to remote host 22, can
also occur via the fast-path 58, in which case the context for
the file data is added by the CPD 30 referencing a CCB, rather
than by sequentially adding headers during processing by the
transport 40, network 38 and data link 36 layers. The DMA 40

controllers of the CPD 30 perform these transfers between
CPD and storage 35.

The CPD 30 collapses multiple protocol stacks each hav­
ing possible separate states into a single state machine for
fast-path processing. As a result, exception conditions may 45

occur that are not provided for in the single state machine,
primarily because such conditions occur infrequently and to
deal with them on the CPD would provide little or no perfor­
mance benefit to the host. Such exceptions can be CPD 30 or
CPU 28 initiated. An advantage of the invention includes the 50

manner in which unexpected situations that occur on a fast­
path CCB are handled. The CPD 30 deals with these rare
situations by passing back or flushing to the host protocol
stack 44 the CCB and any associated message frames
involved, via a control negotiation. The exception condition is 55

then processed in a conventional manner by the host protocol
stack 44. At some later time, usually directly after the han­
dling of the exception condition has completed and fast-path
processing can resume, the host stack 44 hands the CCB back

6
cessors for assisting and queuing. A preferred microprocessor
embodiment includes a pipelined trio of receive, transmit and
utility processors. DMA controllers are integrated into the
implementation and work in close concert with the network
microprocessor to quickly move data between buffers adja­
cent the controllers and other locations such as long term
storage. Providing buffers logically adjacent to the DMA
controllers avoids unnecessary loads on the PCI bus.

FIG. 3 diagrams the general flow of messages received
according to the current invention. A large TCP/IP message
such as a file transfer may be received by the host from the
network in a number of separate, approximately 64 KB trans­
fers, each of which may be split into many, approximately 1.5
KB frames or packets for transmission over a network. Novel
NetWare protocol suites running Sequenced Packet
Exchange Protocol (SPX) or NetWare Core Protocol (NCP)
over Internetwork Packet Exchange (IPX) work in a similar
fashion. Another form of data connnunication which can be
handled by the fast-path is Transaction TCP (hereinafter
T/TCP or TTCP), a version ofTCP which initiates a connec­
tion with an initial transaction request after which a reply
containing data may be sent according to the connection,
rather than initiating a connection via a several-message ini­
tialization dialogue and then transferring data with later mes­
sages. In any of the transfers typified by these protocols, each
packet conventionally includes a portion of the data being
transferred, as well as headers for each of the protocol layers
and markers for positioning the packet relative to the rest of
the packets of this message.

When a message packet or frame is received 47 from a
network by the CPD, it is first validated by a hardware assist.
This includes determining the protocol types of the various
layers, verifying relevant checksums, and sunnnarizing 57
these findings into a status word or words. Included in these
words is an indication whether or not the frame is a candidate
for fast-path data flow. Selection 59 offast-path candidates is
based on whether the host may benefit from this message
connection being handled by the CPD, which includes deter­
mining whether the packet has header bytes denoting particu-
1ar protocols, such as TCP/IP or SPX/IPX for example. The
small percent of frames that are not fast-path candidates are
sent 61 to the host protocol stacks for slow-path protocol
processing. Subsequent network microprocessor work with
each fast-path candidate determines whether a fast-path con­
nection such as a TCP or SPX CCB is already extant for that
candidate, or whether that candidate may be used to set up a
new fast-path connection, such as for a TTCP/IP transaction.
The validation provided by the CPD provides acceleration
whether a frame is processed by the fast-path or a slow-path,
as only error free, validated frames are processed by the host
CPU even for the slow-path processing.

All received message frames which have been determined
by the CPD hardware assist to be fast-path candidates are
examined 53 by the network microprocessor or INIC com­
parator circuits to determine whether they match a CCB held
by the CPD. Upon confirming such a match, the CPD
removes lower layer headers and sends 69 the remaining
application data from the frame directly into its final destina­
tion in the host using direct memory access (DMA) units of

to the CPD.
This fallback capability enables the performance-impact­

ing functions of the host protocols to be handled by the CPD
network microprocessor, while the exceptions are dealt with

60 the CPD. This operation may occur innnediately upon receipt
of a message packet, for example when a TCP connection
already exists and destination buffers have been negotiated, or
it may first be necessary to process an initial header to acquire
a new set of final destination addresses for this transfer. In this by the host stacks, the exceptions being so rare as to negligi­

bly effect overall performance. The custom designed network 65

microprocessor can have independent processors for trans­
mitting and receiving network information, and further pro-

latter case, the CPD will queue subsequent message packets
while waiting for the destination address, and then DMA the
queued application data to that destination.

US 8,805,948 B2
7 8

35, as shown by arrow 72, bypassing the session layer 42,
transport layer 40, network layer 38 and data link layer 36.
The remaining data packets from the message can also be sent
by DMA directly to storage, avoiding the relatively slow
protocol layer processing and repeated copying by the CPU
stack 44.

FI G. 4 D shows the procedure for handling the rare instance
when a message for which a fast-path connection has been
established, such as shown in FIG. 4C, has a packet that is not
easily handled by the CPD. In this case the packet is sent to be
processed by the protocol stack 44, which is handed the CCB
for that message from cache 62 via a control dialogue with the
CPD, as shown by arrow 76, signaling to the CPU to take over
processing of that message. Slow-path processing by the pro-

A fast-path candidate that does not match a CCB may be
used to set up a new fast-path connection, by sending 65 the
frame to the host for sequential protocol processing. In this
case, the host uses this frame to create 51 a CCB, which is then
passed to the CPD to control subsequent frames on that con­
nection. The CCB, which is cached 67 in the CPD, includes
control and state information pertinent to all protocols that
would have been processed had conventional software layer
processing been employed. The CCB also contains storage
space for per-transfer information used to facilitate moving 10

application-level data contained within subsequent related
message packets directly to a host application in a form avail­
able for immediate usage. The CPD takes command of con­
nection processing upon receiving a CCB for that connection
from the host. 15 tocol stack then results in data CD3) 80 from the packet being

sent, as shown by arrow 82, to storage 35. Once the packet has
been processed and the error situation corrected, the CCB can
be handed back via a control dialogue to the cache 62, so that
payload data from subsequent packets of that message can

As shown more specifically in FIG. 4A, when a message
packet is received from the remote host 22 via network 25, the
packet enters hardware receive logic 32 of the CPD 30, which
checksums headers and data, and parses the headers, creating
a word or words which identify the message packet and status,
storing the headers, data and word temporarily in memory 60.
As well as validating the packet, the receive logic 32 indicates
with the word whether this packet is a candidate for fast-path
processing. FIG. 4A depicts the case in which the packet is
not a fast-path candidate, in which case the CPD 30 sends the
validated headers and data from memory 60 to data link layer
36 along an internal bus for processing by the host CPU, as
shown by arrow 56. The packet is processed by the host
protocol stack 44 of data link 36, network 38, transport 40 and
session 42 layers, and data CD) 63 from the packet may then be
sent to storage 35, as shown by arrow 65.

FIG. 4B, depicts the case in which the receive logic 32 of
the CPD determines that a message packet is a candidate for
fast-path processing, for example by deriving from the pack­
et's headers that the packet belongs to a TCP/IP, TTCP/IP or
SPX/IPX message. A processor 55 in the CPD 30 then checks

20 again be sent via the fast-path of the CPD 30. Thus the CPU
and CPD together decide whether a given message is to be
processed according to fast-path hardware processing or
more conventional software processing by the CPU.

Transmission of a message from the host 20 to the network
25 25 for delivery to remote host 22 also can be processed by

either sequential protocol software processing via the CPU or
accelerated hardware processing via the CPD 30, as shown in
FIG. 5. A message CM) 90 that is selected by CPU 28 from
storage 35 can be sent to session layer 42 for processing by

30 stack 44, as shown by arrows 92 and 96. For the situation in
which a connection exists and the CPD 30 already has an
appropriate CCB for the message, however, data packets can
bypass host stack 44 and be sent by DMA directly to memory
60, with the processor 55 adding to each data packet a single

35 header containing all the appropriate protocol layers, and
sending the resulting packets to the network 25 for transmis­
sion to remote host 22. This fast-path transmission can greatly
accelerate processing for even a single packet, with the accel-

to see whether the word that summarizes the fast-path candi­
date matches a CCB held in a cache 62. Upon finding no
match for this packet, the CPD sends the validated packet
from memory 60 to the host protocol stack 44 for processing. 40

Host stack 44 may use this packet to create a connection
context for the message, including finding and reserving a
destination for data from the message associated with the
packet, the context taking the form of a CCB. The present
embodiment employs a single specialized host stack 44 for
processing both fast-path andnon-fast-path candidates, while

eration multiplied for a larger message.
A message for which a fast-path connection is not extant

thus may benefit from creation of a CCB with appropriate
control and state information for guiding fast-path transmis­
sion. For a traditional connection-based message, such as
typified by TCP/IP or SPX/IPX, the CCB is created during

45 connection initialization dialogue. For a quick-connection
message, such as typified by TTCP/IP, the CCB can be cre­
ated with the same transaction that transmits payload data. In
this case, the transmission of payload data may be a reply to
a request that was used to set up the fast-path connection. In

in an embodiment described below fast-path candidates are
processed by a different host stack than non-fast-path candi­
dates. Some data CD!) 66 from that initial packet may option­
ally be sent to the destination in storage 35, as shown by arrow
68. The CCB is then sent to the CPD 30 to be saved in cache
62, as shown by arrow 64. For a traditional connection-based
message such as typified by TCP/IP, the initial packet may be
part of a connection initialization dialogue that transpires
between hosts before the CCB is created and passed to the
CPD30.

Referring now to FIG. 4C, when a subsequent packet from
the same connection as the initial packet is received from the
network 25 by CPD 30, the packet headers and data are
validated by the receive logic 32, and the headers are parsed

50 any case, the CCB provides protocol and status information
regarding each of the protocol layers, including which user is
involved and storage space for per-transfer information. The
CCB is created by protocol stack 44, which then passes the
CCB to the CPD 30 by writing to a command register of the

55 CPD, as shown by arrow 98. Guided by the CCB, the proces­
sor 55 moves network frame-sized portions of the data from
the source in host memory 35 into its own memory 60 using
DMA, as depicted by arrow 99. The processor 55 then
prepends appropriate headers and checksums to the data por-

60 tions, and transmits the resulting frames to the network 25,
consistent with the restrictions of the associated protocols.
After the CPD 30 has received an acknowledgement that all
the data has reached its destination, the CPD will then notifY

to create a summary of the message packet and a hash for
finding a corresponding CCB, the summary and hash con­
tained in a word or words. The word or words are temporarily
stored in memory 60 along with the packet. The processor 55
checks for a match between the hash and each CCB that is 65

the host 35 by writing to a response buffer.
Thus, fast-path transmission of data communications also

relieves the host CPU of per-frame processing. A vast major­
ity of data transmissions can be sent to the network by the

stored in the cache 62 and, finding a match, sends the data
CD2) 70 via a fast-path directly to the destination in storage

US 8,805,948 B2
9 10

generated in the fly-by sequencer 178 out to the SRAM 182
and to the beginning of the DRAM 188 buffer to be prep ended
to the packet data. The packet control sequencer 176 then
requests a queue manager 184 to enter a receive buffer
descriptor into a receive queue, which in tum notifies the
processor 170 that the packet has been processed by hardware
logic 171 and its status summarized.

fast-path. Both the input and output fast-paths attain a huge
reduction in interrupts by functioning at an upper layer level,
i.e., session level or higher, and interactions between the
network microprocessor and the host occur using the full
transfer sizes which that upper layer wishes to make. For 5

fast-path communications, an interrupt only occurs (at the
most) at the beginning and end of an entire upper-layer mes­
sage transaction, and there are no interrupts for the sending or
receiving of each lower layer portion or packet of that trans­
action.

FIG. 8 shows that the fly-by sequencer 178 has several
tiers, with each tier generally focusing on a particular portion

10 of the packet header and thus on a particular protocol layer,
for generating status pertaining to that layer. The fly-by
sequencer 178 in this embodiment includes a media access
control sequencer 191, a network sequencer 192, a transport

A simplified intelligent network interface card (INIC) 150
is shown in FIG. 6 to provide a network interface for a host
152. Hardware logic 171 of the INIC 150 is connected to a
network 155, with a peripheral bus (PCI) 157 connecting the
INIC and host. The host 152 in this embodiment has a TCP/IP
protocol stack, which provides a slow-path 158 for sequential
software processing of message frames received from the
network 155. The host 152 protocol stack includes a data link
layer 160, network layer 162, a transport layer 164 and an
application layer 166, which provides a source or destination
168 for the communication data in the host 152. Other layers
which are not shown, such as session and presentation layers,
may also be included in the host stack 152, and the source or
destination may vary depending upon the nature of the data
and may actually be the application layer.

The INIC 150 has a network processor 170 which chooses
between processing messages along a slow-path 158 that
includes the protocol stack of the host, or along a fast-path
159 that bypasses the protocol stack of the host. Each received
packet is processed on the fly by hardware logic 171 con­
tained in INIC 150, so that all of the protocol headers for a
packet can be processed without copying, moving or storing
the data between protocol layers. The hardware logic 171
processes the headers of a given packet at one time as packet
bytes pass through the hardware, by categorizing selected
header bytes. Results of processing the selected bytes help to
determine which other bytes of the packet are categorized,
until a summary of the packet has been created, including
checksum validations. The processed headers and data from
the received packet are then stored in INIC storage 185, as
well as the word or words summarizing the headers and status
of the packet.

The hardware processing of message packets received by
INIC 150 from network 155 is shown in more detail in FIG. 7.
A received message packet first enters a media access con­
troller 172, which controls INIC access to the network and
receipt of packets and can provide statistical information for
network protocol management. From there, data flows one
byte at a time into an assembly register 174, which in this
example is 128 bits wide. The data is categorized by a fly-by
sequencer 178, as will be explained in more detail with regard

15 sequencer 194 and a session sequencer 195. Sequencers per­
taining to higher protocol layers can additionally be provided.
The fly-by sequencer 178 is reset by the packet control
sequencer 176 and given pointers by the packet control
sequencer that tell the fly-by sequencer whether a given byte

20 is available from the assembly register 174. The media access
control sequencer 191 detennines, by looking at bytes 0-5,
that a packet is addressed to host 152 rather than or in addition
to another host. Offsets 12 and 13 of the packet are also
processed by the media access control sequencer 191 to deter-

25 mine the type field, for example whether the packet is Ether­
net or 802.3. If the type field is Ethernet those bytes also tell
the media access control sequencer 191 the packet's network
protocol type. For the 802.3 case, those bytes instead indicate
the length of the entire frame, and the media access control

30 sequencer 191 will check eight bytes further into the packet to
determine the network layer type.

For most packets the network sequencer 192 validates that
the header length received has the correct length, and check­
sums the network layer header. For fast-path candidates the

35 network layer header is known to be IP or IPX from analysis
done by the media access control sequencer 191. Assuming
for example that the type field is 802.3 and the network
protocol is IP, the network sequencer 192 analyzes the first
bytes of the network layer header, which will begin at byte 22,

40 in order to determine IP type. The first bytes of the IP header
will be processed by the network sequencer 192 to detennine
what IP type the packet involves. Detennining that the packet
involves, for example, IP version 4, directs further processing
by the network sequencer 192, which also looks at the proto-

45 col type located ten bytes into the IP header for an indication
of the transport header protocol of the packet. For example,
for IP over Ethernet, the IP header begins at offset 14, and the
protocol type byte is offset 23, which will be processed by
network logic to detennine whether the transport layer pro-

50 tocol is TCP, for example. From the length of the network
layer header, which is typically 20-40 bytes, network
sequencer 192 detennines the beginning of the packet's trans­
port layer header for validating the transport layer header.
Transport sequencer 194 may generate checksums for the

to FIG. 8, which examines the bytes of a packet as they fly by,
and generates status from those bytes that will be used to
summarize the packet. The status thus created is merged with
the data by a multiplexer 180 and the resulting data stored in
SRAM 182. A packet control sequencer 176 oversees the
fly-by sequencer 178, examines infonnation from the media
access controller 172, counts the bytes of data, generates
addresses, moves status and manages the movement of data
from the assembly register 174 to SRAM 182 and eventually 60

DRAM 188. The packet control sequencer 176 manages a
buffer in SRAM 182 via SRAM controller 183, and also
indicates to a DRAM controller 186 when data needs to be
moved from SRAM 182 to a buffer in DRAM 188. Once data
movement for the packet has been completed and all the data 65

has been moved to the buffer in DRAM 188, the packet
control sequencer 176 will move the status that has been

55 transport layer header and data, which may include infonna­
tion from the IP header in the case of TCP at least.

Continuing with the example of a TCP packet, transport
sequencer 194 also analyzes the first few bytes in the transport
layer portion of the header to determine, in part, the TCP
source and destination ports for the message, such as whether
the packet is NetBios or other protocols. Byte 12 of the TCP
header is processed by the transport sequencer 194 to deter­
mine and validate the TCP header length. Byte 13 of the TCP
header contains flags that may, aside from ack flags and push
flags, indicate unexpected options, such as reset and fin, that
may cause the processor to categorize this packet as an excep­
tion. TCP offset bytes 16 and 17 are the checksum, which is

US 8,805,948 B2
11

pulled out and stored by the hardware logic 171 while the rest
of the frame is validated against the checksum.

Session sequencer 195 determines the length of the session
layer header, which in the case of Net Bios is only four bytes,
two of which tell the length of the NetBios payload data, but
which can be much larger for other protocols. The session
sequencer 195 can also be used to categorize the type of
message as read or write, for example, for which the fast-path
may be particularly beneficial. Further upper layer logic pro­
cessing, depending upon the message type, can be performed 10

by the hardware logic 171 of packet control sequencer 176
and fly-by sequencer 178. Thus hardware logic 171 intelli­
gently directs hardware processing of the headers by catego­
rization of selected bytes from a single stream of bytes, with 15

the status of the packet being built from classifications deter­
mined on the fly. Once the packet control sequencer 176
detects that all of the packet has been processed by the fly-by
sequencer 178, the packet control sequencer 176 adds the
status information generated by the fly-by sequencer 178 and 20

any status information generated by the packet control
sequencer 176, and prepends (adds to the front) that status
information to the packet, for convenience in handling the
packet by the processor 170. The additional status informa­
tion generated by the packet control sequencer 176 includes 25

media access controller 172 status information and any errors
discovered, or data overflow in either the assembly register or
DRAM buffer, or other miscellaneous information regarding
the packet. The packet control sequencer 176 also stores
entries into a receive buffer queue and a receive statistics 30

queue via the queue manager 184.
An advantage of processing a packet by hardware logic 171

is that the packet does not, in contrast with conventional
sequential software protocol processing, have to be stored, 35

moved, copied or pulled from storage for processing each
protocol layer header, offering dramatic increases in process­
ing efficiency and savings in processing time for each packet.
The packets can be processed at the rate bits are received from
the network, for example 100 megabits/second for a 100 40

baseT connection. The time for categorizing a packet
received at this rate and having a length of sixty bytes is thus
about 5 microseconds. The total time for processing this
packet with the hardware logic 171 and sending packet data to
its host destination via the fast-path may be about 16 micro- 45

seconds or less, assuming a 66 MHz PCI bus, whereas con­
ventional software protocol processing by a 300 MHz Pen­
tium II® processor may take as much as 200 microseconds in
a busy system. More than an order of magnitude decrease in
processing time can thus be achieved with fast-path 159 in 50

comparison with a high-speed CPU employing conventional
sequential software protocol processing, demonstrating the
dramatic acceleration provided by processing the protocol
headers by the hardware logic 171 and processor 170, without
even considering the additional time savings afforded by the 55

reduction in CPU interrupts and host bus bandwidth savings.
The processor 170 chooses, for each received message

packet held in storage 185, whether that packet is a candidate
for the fast-path 159 and, if so, checks to see whether a
fast-path has already been set up for the connection that the 60

packet belongs to. To do this, the processor 170 first checks
the header status SUflllllary to determine whether the packet
headers are of a protocol defined for fast-path candidates. If
not, the processor 170 commands DMA controllers in the
INIC 150 to send the packet to the host for slow-path 158 65

processing. Even for a slow-path 158 processing of a mes­
sage, the INIC 150 thus performs initial procedures such as

12
validation and determination of message type, and passes the
validated message at least to the data link layer 160 of the
host.

For fast-path 159 candidates, the processor 170 checks to
see whether the header status summary matches a CCB held
by the INIC. If so, the data from the packet is sent along
fast -path 159 to the destination 168 in the host. If the fast-path
159 candidate's packet summary does not match a CCB held
by the INIC, the packet may be sent to the host 152 for
slow-path processing to create a CCB for the message.
Employment of the fast-path 159 may also not be needed or
desirable for the case of fragmented messages or other com­
plexities. For the vast majority of messages, however, the
INIC fast-path 159 can greatly accelerate message process­
ing. The INIC 150 thus provides a single state machine pro­
cessor 170 that decides whether to send data directly to its
destination, based upon information gleaned on the fly, as
opposed to the conventional employment of a state machine
in each of several protocol layers for determining the destiny
of a given packet.

In processing an indication or packet received at the host
152, a protocol driver of the host selects the processing route
based upon whether the indication is fast-path or slow-path. A
TCP/IP or SPX/IPX message has a connection that is set up
from which a CCB is formed by the driver and passed to the
INIC for matching with and guiding the fast-path packet to
the connection destination 168. For a TTCP/IP message, the
driver can create a connection context for the transaction from
processing an initial request packet, including locating the
message destination 168, and then passing that context to the
INI C in the form of a CCB for providing a fast-path for a reply
from that destination. A CCB includes connection and state
information regarding the protocol layers and packets of the
message. Thus a CCB can include source and destination
media access control (MAC) addresses, source and destina­
tion IP or IPX addresses, source and destination TCP or SPX
ports, TCP variables such as timers, receive and transmit
windows for sliding window protocols, and information
denoting the session layer protocol.

Caching the CCBs in a hash table in the INIC provides
quick comparisons with words summarizing incoming pack­
ets to determine whether the packets can be processed via the
fast-path 159, while the full CCBs are also held in the INIC
for processing. Other ways to accelerate this comparison
include software processes such as a B-tree or hardware
assists such as a content addressable memory (CAM). When
INIC microcode or comparator circuits detect a match with
the CCB, a DMA controller places the data from the packet in
the destination 168, without any interrupt by the CPU, pro­
tocol processing or copying. Depending upon the type of
message received, the destination of the data may be the
session, presentation or application layers, or a file buffer
cache in the host 152.

FIG. 9 shows an INIC 200 connected to a host 202 that is
employed as a file server. This INIC provides a network
interface for several network connections employing the
802.3u standard, commonly known as Fast Ethernet. The
INIC 200 is connected by a PCI bus 205 to the server 202,
which maintains a TCP/IP or SPX/IPX protocol stack includ­
ing MAC layer 212, network layer 215, transport layer 217
and application layer 220, with a source/destination 222
shown above the application layer, although as mentioned
earlier the application layer can be the source or destination.
The INIC is also connected to network lines 210, 240, 242 and
244, which are preferably fast Ethernet, twisted pair, fiber
optic, coaxial cable or other lines each allowing data trans­
mission of 100 Mb/s, while faster and slower data rates are

US 8,805,948 B2
13

also possible. Network lines 210, 240, 242 and 244 are each
connected to a dedicated row of hardware circuits which can
each validate and summarize message packets received from
their respective network line. Thus line 210 is connected with
a first horizontal row of sequencers 250, line 240 is connected
with a second horizontal row of sequencers 260, line 242 is
connected with a third horizontal row of sequencers 262 and
line 244 is connected with a fourth horizontal row of sequenc-

14
has a data link layer 312, a network layer 314 and a transport
layer 316 for conventional, lower layer processing of mes­
sages that are not labeled as fast-path candidates and therefore
not processed by the command stack 300. Residing above the
lower layer stack 310 is an upper layer 318, which represents
a session, presentation and/or application layer, depending
upon the message communicated. The command driver 300
similarly has a data link layer 320, a network layer 322 and a

ers 264. After a packet has been validated and summarized by
one of the horizontal hardware rows it is stored along with its 10

status summary in storage 270.

transport layer 325.
The driver 300 includes an upper layer interface 330 that

determines, for transmission of messages to the network 210,
whether a message transmitted from the upper layer 318 is to
be processed by the command stack 300 and subsequently the
INIC fast-path, or by the conventional stack 310. When the

A network processor 230 determines, based on that sum­
mary and a comparison with any CCBs stored in the INIC
200, whether to send a packet along a slow-path 231 for
processing by the host. A large majority of packets can avoid
such sequential processing and have their data portions sent
by DMA along a fast-path 237 directly to the data destination
222 in the server according to a matching CCB. Similarly, the
fast-path 237 provides an avenue to send data directly from
the source 222 to any of the network lines by processor 230
division of the data into packets and addition of full headers
for network transmission, again minimizing CPU processing
and interrupts. For clarity only horizontal sequencer 250 is
shown active; in actuality each of the sequencer rows 250,
260, 262 and 264 offers full duplex communication, concur­
rently with all other sequencer rows. The specialized INIC
200 is much faster at working with message packets than even
advanced general-purpose host CPUs that processes those
headers sequentially according to the software protocol stack.

One of the most commonly used network protocols for
large messages such as file transfers is server message block
(SMB) over TCP/IP. 5MB can operate in conjunction with
redirector software that determines whether a required
resource for a particular operation, such as a printer or a disk
upon which a file is to be written, resides in or is associated
with the host from which the operation was generated or is
located at another host connected to the network, such as a file
server. 5MB and serverlredirector are conventionally ser­
viced by the transport layer; in the present invention 5MB and
redirector can instead be serviced by the INIC. In this case,
sending data by the DMA controllers from the INIC buffers
when receiving a large 5MB transaction may greatly reduce
interrupts that the host must handle. Moreover, this DMA
generally moves the data to its final destination in the file
system cache. An 5MB transmission of the present invention
follows essentially the reverse of the above described 5MB
receive, with data transferred from the host to the INIC and
stored in buffers, while the associated protocol headers are
prep ended to the data in the INIC, for transmission via a
network line to a remote host. Processing by the INIC of the
multiple packets and multiple TCP, IP, NetBios and 5MB
protocol layers via custom hardware and without repeated
interrupts of the host can greatly increase the speed of trans­
mitting an 5MB message to a network line.

As shown in FIG. 10, for controlling whether a given
message is processed by the host 202 or by the INIC 200, a
message command driver 300 may be installed in host 202 to
work in concert with a host protocol stack 310. The command
driver 300 can intervene in message reception or transmittal,
create CCBs and send or receive CCBs from the INIC 200, so
that functioning of the INIC, aside from improved perfor­
mance, is transparent to a user. Also shown is an INIC
memory 304 and an INIC miniport driver 306, which can
direct message packets received from network 210 to either
the conventional protocol stack 310 or the command protocol
stack 300, depending upon whether a packet has been labeled
as a fast-path candidate. The conventional protocol stack 310

15 upper layer interface 330 receives an appropriate message
from the upper layer 318 that would conventionally be
intended for transmission to the network after protocol pro­
cessing by the protocol stack of the host, the message is
passed to driver 300. The INIC then acquires network-sized

20 portions of the message data for that transmission via INIC
DMA units, prep ends headers to the data portions and sends
the resulting message packets down the wire. Conversely, in
receiving a TCP, TTCP, SPX or similar message packet from
the network 210 to be used in setting up a fast-path connec-

25 tion, miniport driver 306 diverts that message packet to com­
mand driver 300 for processing. The driver 300 processes the
message packet to create a context for that message, with the
driver 302 passing the context and command instructions
back to the WIC 200 as a CCB for sending data of subsequent

30 messages for the same connection along a fast-path. Hun­
dreds ofTCP, TTCP, SPX or similar CCB connections may be
held indefinitely by the INIC, although a least recently used
(LRU) algorithm is employed for the case when the INIC
cache is full. The driver 300 can also create a connection

35 context for a TTCP request which is passed to the INIC 200 as
a CCB, allowing fast-path transmission of a TTCP reply to the
request. A message having a protocol that is not accelerated
can be processed conventionally by protocol stack 310.

FIG. 11 shows a TCP/IP implementation of command
40 driver software for Microsoft® protocol messages. A conven­

tional host protocol stack 350 includes MAC layer 353, IP
layer 355 and TCP layer 358.A command driver360 works in
concert with the host stack 350 to process network messages.
The command driver 360 includes a MAC layer 363, an IP

45 layer 366 and an Alacritech TCP (ATCP) layer 373. The
conventional stack 350 and command driver 360 share a
network driver interface specification (NDIS) layer 375,
which interacts with the INIC miniport driver 306. The INIC
miniport driver 306 sorts receive indications for processing

50 by either the conventional host stack 350 or the ATCP driver
360. A TDI filter driver and upper layer interface 380 simi­
larly determines whether messages sent from a TDI user 382
to the network are diverted to the command driver and per­
haps to the fast-path of the INIC, or processed by the host

55 stack.
FIG. 12 depicts a typical 5MB exchange between a client

190 and server 290, both of which have communication
devices of the present invention, the communication devices
each holding a CCB defining their connection for fast-path

60 movement of data. The client 190 includes INIC 150, 802.3
compliant data link layer 160, IP layer 162, TCP layer 164,
NetBios layer 166, and 5MB layer 168. The client has a
slow-path 157 and fast-path 159 for communication process­
ing. Similarly, the server 290 includes INIC 200, 802.3 com-

65 pliant data link layer 212, IP layer 215, TCP layer 217, Net­
Bios layer 220, and 5MB 222. The server is connected to
network lines 240, 242 and 244, as well as line 210 which is

US 8,805,948 B2
15

connected to client 190. The server also has a slow-path 231
and fast-path 237 for connnunication processing.

Assuming that the client 190 wishes to read a 100 KB file
on the server 290, the client may begin by sending a Read
Block Raw (RBR) 5MB connnand across network 210 5

requesting the first 64 KB of that file on the server 290. The
RBR connnand may be only 76 bytes, for example, so the
INIC 200 on the server will recognize the message type
(SMB) and relatively small message size, and send the 76
bytes directly via the fast-path to NetBios of the server. Net- 10

Bios will give the data to 5MB, which processes the Read
request and fetches the 64 KB of data into server data buffers.
5MB then calls NetBios to send the data, and NetBios outputs
the data for the client. In a conventional host, NetBios would
call TCP output and pass 64 KB to TCP, which would divide 15

the data into 1460 byte segments and output each segment via
IP and eventually MAC (slow-path 231). In the present case,
the 64 KB data goes to the ATCP driver along with an indi­
cation regarding the client-server 5MB connection, which
denotes a CCB held by the INIC. The INIC 200 then proceeds 20

to DMA 1460 byte segments from the host buffers, add the
appropriate headers for TCP, IP and MAC at one time, and
send the completed packets on the network 210 (fast-path
237). The INIC 200 will repeat this until the whole 64 KB
transfer has been sent. Usually after receiving acknowledge- 25

ment from the client that the 64 KB has been received, the
INIC will then send the remaining 36 KB also by the fast-path
237.

16
240, 242 and 244 and the INIC 200 is controlled by MAC
units MAC-A 402, MAC-B 404, MAC-C 406 and MAC-D
408 which contain logic circuits for performing the basic
functions of the MAC sublayer, essentially controlling when
the INIC accesses the network lines 210, 240, 242 and 244.
The MAC units 402-408 may act in promiscuous, multicast or
unicast modes, allowing the INIC to function as a network
monitor, receive broadcast and multicast packets and imple­
ment multiple MAC addresses for each node. The MAC units
402-408 also provide statistical information that can be used
for simple network management protocol (SNMP).

The MAC units 402, 404, 406 and 408 are each connected
to a transmit and receive sequencer, XMT & RCV-A 418,
XMT & RCV-B 420, XMT & RCV-C 422 and XMT &
RCV-D 424, by wires 410, 412, 414 and 416, respectively.
Each of the transmit and receive sequencers can perform
several protocol processing steps on the fly as message frames
pass through that sequencer. In combination with the MAC
units, the transmit and receive sequencers 418-422 can com­
pile the packet status for the data link, network, transport,
session and, if appropriate, presentation and application layer
protocols in hardware, greatly reducing the time for such
protocol processing compared to conventional sequential
software engines. The transmit and receive sequencers 410-
414 are connected, by lines 426, 428, 430 and 432 to an
SRAM and DMA controller 444, which includes DMA con-
trollers 438 and SRAM controller 442. Static random access
memory (SRAM) buffers 440 are coupled with SRAM con­
troller 442 by line 441. The SRAM and DMA controllers 444 With INIC 150 operating on the client 190 when this reply

arrives, the INIC 150 recognizes from the first frame received
that this connection is receiving fast-path 159 processing
(TCP/IP, NetBios, matching a CCB), and the ATCP may use
this first frame to acquire buffer space for the message. This
latter case is done by passing the first 128 bytes of the NetBios
portion of the frame via theATCP fast-path directly to the host
NetBios; that will give NetBios/SMB all of the frame's head­
ers. NetBios/SMB will analyze these headers, realize by
matching with a request ID that this is a reply to the original
Raw Read connection, and give theATCP a 64K list of buffers
into which to place the data. At this stage only one frame has
arrived, although more may arrive while this processing is
occurring. As soon as the client buffer list is given to the
ATCP, it passes that transfer information to the INIC 150, and
the INIC 150 starts DMAing any frame data that has accu­
mulated into those buffers.

30 interact across line 446 with external memory control 450 to
send and receive frames via external memory bus 455 to and
from dynamic random access memory (DRAM) buffers 460,
which is located adjacent to the IC chip 400. The DRAM
buffers 460 may be configured as 4 MB, 8 MB, 16 MB or 32

35 MB, and may optionally be disposed on the chip. The SRAM
and DMA controllers 444 are connected via line 464 to a PCI
Bus Interface Unit (BIU) 468, which manages the interface
between the INIC 200 and the PCI interface bus 257. The
64-bit, multiplexed BIU 468 provides a direct interface to the

40 PCI bus 257 for both slave and master functions. The INIC
200 is capable of operating in either a 64-bit or 32-bit PCI
environment, while supporting 64-bit addressing in either
configuration.

A microprocessor 470 is connected by line 472 to the

FIG. 13 provides a simplified diagram of the INIC 200,
which combines the functions of a network interface control-

45 SRAM and DMA controllers 444, and connected via line 475
to the PCI BIU 468. Microprocessor 470 instructions and
register files reside in an on chip control store 480, which
includes a writable on-chip control store (WCS) of SRAM ler and a protocol processor in a single ASIC chip 400. The

INIC 200 in this embodiment offers a full-duplex, four chan­
nel, 10/100-Megabit per second (Mbps) intelligent network 50

interface controller that is designed for high speed protocol
processing for server applications. Although designed spe­
cifically for server applications, the INIC 200 can be con­
nected to personal computers, workstations, routers or other
hosts anywhere that TCP/IP, TTCP/IP or SPX/IPX protocols 55

are being utilized.
The INIC 200 is connected with four network lines 210,

240, 242 and 244, which may transport data along a number
of different conduits, such as twisted pair, coaxial cable or
optical fiber, each of the connections providing a media inde- 60

pendent interface (MID. The lines preferably are 802.3 com­
pliant and in connection with the INIC constitute four com­
plete Ethernet nodes, the INIC supporting 1 OBase-T, 10Base­
T2, 100Base-TX, 100Base-FX and 100Base-T4 as well as
future interface standards. Physical layer identification and 65

initialization is accomplished through host driver initializa­
tion routines. The connection between the network lines 210,

and a read only memory (ROM), and is connected to the
microprocessor by line 477. The microprocessor 470 offers a
progrannnable state machine which is capable of processing
incoming frames, processing host connnands, directing net­
work traffic and directing PCI bus traffic. Three processors
are implemented using shared hardware in a three level pipe­
lined architecture that launches and completes a single
instruction for every clock cycle. A receive processor 482 is
dedicated to receiving connnunications while a transmit pro­
cessor 484 is dedicated to transmitting connnunications in
order to facilitate full duplex connnunication, while a utility
processor 486 offers various functions including overseeing
and controlling PCI register access. The instructions for the
three processors 482, 484 and 486 reside in the on-chip con­
trol-store 480.

The INIC 200 in this embodiment can support up to 256
CCBs which are maintained in a table in the DRAM 460.
There is also, however, a CCB index in hash order in the
SRAM 440 to save sequential searching. Once a hash has

US 8,805,948 B2
17

been generated, the CCB is cached in SRAM, with up to
sixteen cached CCBs in SRAM in this example. These cache
locations are shared between the transmit 484 and receive 486
processors so that the processor with the heavier load is able
to use more cache buffers. There are also eight header buffers
and eight command buffers to be shared between the sequenc­
ers. A given header or command buffer is not statically linked
to a specific CCB buffer, as the link is dynamic on a per-frame
basis.

FIG. 14 shows an overview of the pipelined microproces­
sor 470, in which instructions for the receive, transmit and
utility processors are executed in three distinct phases accord­
ing to Clock increments I, II and III, the phases corresponding
to each of the pipeline stages. Each phase is responsible for
different functions, and each of the three processors occupies
a different phase during each Clock increment. Each proces­
sor usually operates upon a different instruction stream from
the control store 480, and each carries its own program
counter and status through each of the phases.

In general, a first instruction phase 500 of the pipelined
microprocessors completes an instruction and stores the
result in a destination operand, fetches the next instruction,
and stores that next instruction in an instruction register. A
first register set 490 provides a number of registers including
the instruction register, and a set of controls 492 for first
register set provides the controls for storage to the first reg­
ister set 490. Some items pass through the first phase without
modification by the controls 492, and instead are simply
copied into the first register set 490 or a RAM file register 533.

18
SRAM control 502 into an address register or data register of
SRAM address and data registers 520. A load control 504
similarly provides controls for writing a context for a file to
file context register 522, and another load control 506 pro­
vides controls for storing a variety of miscellaneous data to
flip-flop registers 525. ALU condition codes, such as whether
a carried bit is set, get clocked into ALU condition codes
register 528 without an operation performed in the first phase
500. Flag decodes 508 can perform various functions, such as

10 setting locks, that get stored in flag registers 530.
The RAM file register 533 has a single write port for

addresses and data and two read ports for addresses and data,
so that more than one register can be read from at one time. As
noted above, the RAM file register 533 essentially straddles

15 the first and second phases, as it is written in the first phase
500 and read from in the second phase 560. A control store
instruction 510 allows the reprogramming of the processors
due to new data in from the control store 480, not shown in
this figure, the instructions stored in an instruction register

20 535. The address for this is generated in a fetch control reg­
ister 511, which determines which address to fetch, the
address stored in fetch address register 538. Load control 515
provides instructions for a program counter 540, which oper­
ates much like the fetch address for the control store. A last-in

25 first-out stack 544 of three registers is copied to the first
register set without undergoing other operations in this phase.
Finally, a load control 517 for a debug address 548 is option­
ally included, which allows correction of errors that may
occur.

A second instruction phase 560 has an instruction decoder 30

and operand multiplexer 498 that generally decodes the
instruction that was stored in the instruction register of the
first register set 490 and gathers any operands which have
been generated, which are then stored in a decode register of

FIG. 15B depicts the second microprocessor phase 560,
which includes reading addresses and data out of the RAM
file register 533. A scratch SRAM 565 is written from SRAM
address and data register 520 of the first register set, which
includes a register that passes through the first two phases to
be incremented in the third. The scratch SRAM 565 is read by
the instruction decoder and operand multiplexer 498, as are

a second register set 496. The first register set 490, second 35

register set 496 and a third register set 501, which is employed
in a third instruction phase 600, include many of the same
registers, as will be seen in the more detailed views of FIGS.
15 A-C. The instruction decoder and operand multiplexer 498
can read from two address and data ports of the RAM file 40

register 533, which operates in both the first phase 500 and
second phase 560. A third phase 600 of the processor 470 has
an arithmetic logic unit (ALU) 602 which generally performs
any AL U operations on the operands from the second register
set, storing the results in a results register included in the third 45

register set 501. A stack exchange 608 can reorder register
stacks, and a queue manager 503 can arrange queues for the
processor 470, the results of which are stored in the third
register set.

most of the registers from the first register set, with the excep­
tion of the stack 544, debug address 548 and SRAM address
and data register mentioned above. The instruction decoder
and operand multiplexer 498 looks at the various registers of
set 490 and SRAM 565, decodes the instructions and gathers
the operands for operation in the next phase, in particular
determining the operands to provide to the ALU 602 below.
The outcome of the instruction decoder and operand multi­
plexer 498 is stored to a number of registers in the second
register set 496, including ALU operands 579 and 582, ALU
condition code register 580, and a queue channel and com­
mand 587 register, which in this embodiment can control
thirty-two queues. Several of the registers in set 496 are
loaded fairly directly from the instruction register 535 above
without substantial decoding by the decoder 498, including a
program control 590, a literal field 589, a test select 584 and
a flag select 585. Other registers such as the file context 522 of
the first phase 500 are always stored in a file context 577 of the

The instructions continue with the first phase then follow- 50

ing the third phase, as depicted by a circular pipeline 505.
Note that various functions have been distributed across the
three phases of the instruction execution in order to minimize
the combinatorial delays within any given phase. With a fre­
quency in this embodiment of 66 Megahertz, each Clock
increment takes 15 nanoseconds to complete, for a total of 45
nanoseconds to complete one instruction for each of the three
processors. The instruction phases are depicted in more detail

55 second phase 560, but may also be treated as an operand that
is gathered by the multiplexer 572. The stack registers 544 are
simply copied in stack register 594. The program counter 540
is incremented 568 in this phase and stored in register 592.
Also incremented 570 is the optional debug address 548, and in FIGS. 15A-C, in which each phase is shown in a different

figure.
More particularly, FIG.15A shows some specific hardware

functions of the first phase 500, which generally includes the
first register set 490 and related controls 492. The controls for
the first register set 492 includes an SRAM control 502,
which is a logical control for loading address and write data
into SRAM address and data registers 520. Thus the output of
the ALU 602 from the third phase 600 may be placed by

60 a load control 575 may be fed from the pipeline 505 at this
point in order to allow error control in each phase, the result
stored in debug address 598.

FIG. 15C depicts the third microprocessor phase 600,
which includes ALU and queue operations. The ALU 602

65 includes an adder, priority encoders and other standard logic
functions. Results of the ALU are stored in registers ALU
output 618, ALU condition codes 620 and destination oper-

US 8,805,948 B2
19 20

if the packets do not have any of the exception conditions,
then bypassing host protocol processing of the TCP
headers and storing the first pay load data and the second
payload data together in a buffer of the host computer,
such that the payload data is stored in the buffer in order
and without any TCP header stored between the first
payload data and the second payload data.

and results 622. A file context register 616, flag select register
626 and literal field register 630 are simply copied from the
previous phase 560. A test multiplexer 604 is provided to
determine whether a conditional jump results in a jump, with
the results stored in a test results register 624. The test mul­
tiplexer 604 may instead be perfonned in the first phase 500
along with similar decisions such as fetch control 511. A stack
exchange 608 shifts a stack up or down by fetching a program
counter from stack 594 or putting a program counter onto that
stack, results of which are stored in program control 634,
program counter 638 and stack 640 registers. The SRAM
address may optionally be incremented in this phase 600.
Another load control 610 for another debug address 642 may

2. The method of claim 1, including allocating the buffer by
the application, prior to storing the first payload data and the

10 second payload data together in the buffer.
3. The method of claim 1, wherein storing the first payload

data and the second payload data together in a buffer of the
host computer is performed by a direct memory access
(DMA) unit of the network interface.

4. The method of claim 1, including accumulating the
payload data in a memory on the network interface, such that
the payload data is stored in the memory in order and without
any TCP header stored between the first payload data and the
second payload data, prior to storing the first payload data and

be forced from the pipeline 505 at this point in order to allow 15

error control in this phase also. A queue RAM and queueALU
606 reads from the queue channel and command register 587,
stores in SRAM and rearranges queues, adding or removing
data and pointers as needed to manage the queues of data,
sending results to the test multiplexer 604 and a queue flags
and queue address register 628. Thus the queue RAM and
ALU 606 assumes the duties of managing queues for the three
processors, a task conventionally performed sequentially by
software on a CPU, the queue manager 606 instead providing
accelerated and substantially parallel hardware queuing.

20 the second payload data together in the buffer.
5. The method of claim 1, including sending an identifica­

tion of the TCP connection from the host computer to the
network interface, the identification including the source and
destination IP addresses and source and destination TCP

25 ports that define the TCP connection, prior to checking
whether the packets have certain exception conditions. The above-described system for protocol processing of

data communication results in dramatic reductions in the time
required for processing large, connection-based messages.
Protocol processing speed is tremendously accelerated by
specially designed protocol processing hardware as com­
pared with a general purpose CPU fUlllling conventional pro­
tocol software, and interrupts to the host CPU are also sub­
stantially reduced. These advantages can be provided to an
existing host by addition of an intelligent network interface
card (INIC) , or the protocol processing hardware may be 35

integrated with the cpu. In either case, the protocol process­
ing hardware and CPU intelligently decide which device pro­
cesses a given message, and can change the allocation of that
processing based upon conditions of the message.

6. The method of claim 1, including comparing, by the
network interface, the IP addresses and TCP ports of the
packets with the source and destination IP addresses and

30 source and destination TCP ports that define the TCP connec-
tion.

7. The method of claim 1, wherein checking whether the
packets have certain exception conditions includes checking
whether the packets have a RST flag set.

8. The method of claim 1, wherein checking whether the
packets have certain exception conditions includes checking
whether the packets have a SYN flag set.

9. A method for network communication by a host com­
puter having a network interface that is connected to the host

40 by an input/output bus, the method comprising:
The invention claimed is:
1. A method for network communication by a host com­

puter having a network interface that is connected to the host
by an input/output bus, the method comprising:

running, on the host computer, a protocol processing stack 45

including an Internet Protocol (IP) layer and a Transmis­
sion Control Protocol (TCP) layer, with an application
layer fUlllling above the TCP layer;

initializing, by the host computer, a TCP connection that is
defined by source and destination IP addresses and 50

source and destination TCP ports;
receiving, by the network interface, first and second pack­

ets, wherein the first packet has a first TCP header and
contains first payload data for the application, and the
second packet has a second TCP header and contains 55

second payload data for the application;
checking, by the network interface, whether the packets

have certain exception conditions, including checking
whether the packets are IP fragmented, checking
whether the packets have a FIN flag set, and checking 60

whether the packets are out of order;
if the first packet has any of the exception conditions, then

protocol processing the first TCP header by the protocol
processing stack;

if the second packet has any of the exception conditions, 65

then protocol processing the second TCP header by the
protocol processing stack;

receiving, by the network interface, a first packet having a
header including source and destination Internet Proto­
col (IP) addresses and source and destination Transmis­
sion Control Protocol (TCP) ports;

protocol processing, by the host computer, the first packet,
thereby initializing a TCP connection that is defined by
the source and destination IP addresses and source and
destination TCP ports;

receiving, by the network interface, a second packet having
a second header and payload data, wherein the second
header has IP addresses and TCP ports that match the IP
addresses and TCP ports of the TCP connection;

receiving, by the network interface, a third packet having a
third header and additional payload data, wherein the
third header has IP addresses and TCP ports that match
the IP addresses and TCP ports of the TCP connection;

checking, by the network interface, whether the second and
third packets have certain exception conditions, includ­
ing checking whether the packets are IP fragmented,
checking whether the packets have a FIN flag set, and
checking whether the packets are out of order;

if the second packet has any of the exception conditions,
then protocol processing the second packet by the host
computer;

if the third packet has any of the exception conditions, then
protocol processing the third packet by the host com-
puter;

US 8,805,948 B2
21

if the second and third packets do not have any of the
exception conditions, then storing the payload data of
the second and third packets together in a buffer of the
host computer, such that the payload data is stored in the
buffer in order and without any TCP header stored 5

between the payload data of the second and third pack­
ets.

10. The method of claim 9, including allocating the buffer
by an application running on the host computer, prior to
storing the payload data of the second and third packets 10

together in the buffer.
11. The method of claim 9, wherein storing the payload

data of the second and third packets together in a buffer of the
host computer is performed by a direct memory access
(DMA) unit of the network interface. 15

12. The method of claim 9, including accumulating the
payload data of the second and third packets in a memory on
the network interface, such that the payload data of the second
and third packets is stored in the memory in order and without
any TCP header stored between the payload data of the sec-
ond and third packets, prior to storing the payload data of the
second and third packets together in the buffer.

13. The method of claim 9, including sending an identifi­
cation of the TCP connection from the host computer to the
network interface, the identification including the source and
destination IP addresses and source and destination TCP
ports that define the TCP connection, prior to checking
whether the second and third packets have certain exception
conditions.

14. The method of claim 9, including comparing, by the
network interface, the IP addresses and TCP ports of the
second and third packets with the source and destination IP
addresses and source and destination TCP ports that define
the TCP connection.

15. The method of claim 9, wherein checking whether the
second and third packets have certain exception conditions
includes checking whether the packets have a RST flag set.

16. The method of claim 9, wherein checking whether the
second and third packets have certain exception conditions
includes checking whether the packets have a SYN flag set.

20

25

30

35

22
17. An ~p'paratus for network communication, the appara­

tus compnsmg:
a host computer running a protocol stack including an

Internet Protocol (IP) layer and a Transmission Control
Protocol (TCP) layer, the protocol stack adapted to
establish a TCP connection for an application layer run­
ning above the TCP layer, the TCP connection being
defined by source and destination IP addresses and
source and destination TCP ports;

a network interface that is connected to the host computer
by an input/output bus, the network interface adapted to
parse the headers of received packets to determine
whether the headers have the IP addresses and TCP ports
that define the TCP connection and to check whether the
packets have certain exception conditions, including
whether the packets are IP fragmented, have a FIN flag
set, or are out of order, the network interface having
logic that directs any of the received packets that have
the exception conditions to the protocol stack for pro­
cessing, and directs the received packets that do not have
any of the exception conditions to have their headers
removed and their payload data stored together in a
buffer of the host computer, such that the payload data is
stored in the buffer in order and without any TCP header
stored between the payload data that came from different
packets of the received packets.

18. The apparatus of claim 17, wherein the buffer is con­
trolled by the application.

19. The apparatus of claim 17, wherein the network inter­
face includes a direct memory access (DMA) unit that is
adapted to store the payload data in the buffer.

20. The apparatus of claim 17, wherein the network inter­
face includes a memory that is adapted to accumulate the
payload data without any TCP header stored between the
payload data that came from different packets of the received
packets.

21. The apparatus of claim 17, wherein the exception con­
ditions include having a RST flag set.

22. The apparatus of claim 17, wherein the exception con­
ditions include having a SYN flag set.

* * * * *

