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A system for protocol processing in a computer network .has 
an intelligent network interface card (INIC) or commumca­
tion processing device (CPD) associated with a host com­
puter. The INIC or CPD provides a fast-path that avoids host 
protocol processing for most large multipacket messages, 
greatly accelerating data communication. The INIC or CPD 
also assists the host for those message packets that are chosen 
for processing by host software layers. A communication 
control block (CCB) for a message is defined that allows 
DMA controllers of the INIC to move data, free of headers, 
directly to or from a destination or source in the host. ~he 
CCB can be passed back to the host for message processmg 
by the host. The INIC or CPD contains hardware circuits 
configured for protocol processing that can perform that spe­
cific task faster than the host cpu. One embodiment includes 
a processor providing transmit, receive and management pro­
cessing, with full duplex communication for four fast Ether­
net nodes. 
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PROCESSING 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

This application claims the benefit under 35 U.S.c. §1200f 
(is a continuation of) U.S. patent application Ser. No. 09/692, 
561, filed Oct. 18, 2000, which in turn claims the benefit 
under 35 U.S.c. §120 of (is a continuation of) U.S. patent 
application Ser. No. 091067,544, filed Apr. 28, 1998, now 
U.S. Pat. No. 6,226,680, which claims the benefit under 35 
U.S.c. §119(e) of U.S. Patent Application Ser. No. 601061, 
809, filed Oct. 14, 1997. The complete disclosure of all of the 
above applications is incorporated by reference herein. 

TECHNICAL FIELD 

The present invention relates generally to computer or 
other networks, and more particularly to protocol processing 
for information communicated between hosts such as com­
puters connected to a network. 

BACKGROUND 

The advantages of network computing are increasingly 
evident. The convenience and efficiency of providing infor­
mation, communication or computational power to individu­
als at their personal computer or other end user devices has led 
to rapid growth of such network computing, including inter­
net as well as intranet systems and applications. 

As is well known, most network computer communication 
is accomplished with the aid of a layered software architec­
ture for moving information between host computers con­
nected to the network. The layers help to segregate informa­
tion into manageable segments, the general functions of each 
layer often based on an international standard called Open 
Systems Interconnection (OSI). OSI sets forth seven process­
ing layers through which information may pass when 
received by a host in order to be presentable to an end user. 
Similarly, transmission of information from a host to the 
network may pass through those seven processing layers in 
reverse order. Each step of processing and service by a layer 
may include copying the processed information. Another ref­
erence model that is widely implemented, called TCP/IP 
(TCP stands for transport control protocol, while IP denotes 
internet protocol) essentially employs five of the seven layers 
of OS I. 

Networks may include, for instance, a high -speed bus such 
as an Ethernet connection or an internet connection between 
disparate local area networks (LAN s), each of which includes 
multiple hosts, or any of a variety of other known means for 
data transfer between hosts. According to the OSI standard, 
physical layers are connected to the network at respective 
hosts, the physical layers providing transmission and receipt 
of raw data bits via the network. A data link layer is serviced 

2 
sion layers and split the data into smaller units for transmis­
sion to the other host's transport layer, which concatenates the 
data for presentation to respective presentation layers. Ses­
sion layers allow for enhanced communication control 
between the hosts. Presentation layers are serviced by their 
respective session layers, the presentation layers translating 
between data semantics and syntax which may be peculiar to 
each host and standardized structures of data representation. 
Compression and/or encryption of data may also be accom-

10 plished at the presentation level. Application layers are ser­
viced by respective presentation layers, the application layers 
translating between programs particular to individual hosts 
and standardized programs for presentation to either an appli-

15 cation or an end user. The TCP/IP standard includes the lower 
four layers and application layers, but integrates the functions 
of session layers and presentation layers into adjacent layers. 
Generally speaking, application, presentation and session 
layers are defined as upper layers, while transport, network 

20 and data link layers are defined as lower layers. 
The rules and conventions for each layer are called the 

protocol of that layer, and since the protocols and general 
functions of each layer are roughly equivalent in various 
hosts, it is useful to think of communication occurring 

25 directly between identical layers of different hosts, even 
though these peer layers do not directly communicate without 
information transferring sequentially through each layer 
below. Each lower layer performs a service for the layer 
immediately above it to help with processing the communi-

30 cated information. Each layer saves the information for pro­
cessing and service to the next layer. Due to the multiplicity of 
hardware and software architectures, systems and programs 
commonly employed, each layer is necessary to insure that 

35 the data can make it to the intended destination in the appro­
priate form, regardless of variations in hardware and software 
that may intervene. 

In preparing data for transmission from a first to a second 
host, some control data is added at each layer of the first host 

40 regarding the protocol of that layer, the control data being 
indistinguishable from the original (payload) data for all 
lower layers of that host. Thus an application layer attaches an 
application header to the payload data and sends the com­
bined data to the presentation layer of the sending host, which 

45 receives the combined data, operates on it and adds a presen­
tation header to the data, resulting in another combined data 
packet. The data resulting from combination of payload data, 
application header and presentation header is then passed to 
the session layer, which performs required operations includ-

50 ing attaching a session header to the data and presenting the 
resulting combination of data to the transport layer. This 
process continues as the information moves to lower layers, 
with a transport header, network header and data link header 
and trailer attached to the data at each of those layers, with 

55 each step typically including data moving and copying, 
before sending the data as bit packets over the network to the 
second host. 

by the physical layer of each host, the data link layers pro­
viding frame division and error correction to the data received 
from the physical layers, as well as processing acknowledg- 60 

ment frames sent by the receiving host. A network layer of 
each host is serviced by respective data link layers, the net­
work layers primarily controlling size and coordination of 
subnets of packets of data. 

The receiving host generally performs the converse of the 
above-described process, beginning with receiving the bits 
from the network, as headers are removed and data processed 
in order from the lowest (physical) layer to the highest (appli-
cation) layer before transmission to a destination of the 
receiving host. Each layer of the receiving host recognizes 
and manipulates only the headers associated with that layer, 
since to that layer the higher layer control data is included 
with and indistinguishable from the payload data. Multiple 

A transport layer is serviced by each network layer and a 65 

session layer is serviced by each transport layer within each 
host. Transport layers accept data from their respective ses- interrupts, valuable central processing unit (CPU) processing 
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time and repeated data copies may also be necessary for the 
receiving host to place the data in an appropriate form at its 
intended destination. 

4 
tial protocol processing stack which can be employed for 
setting up a fast-path connection or processing message 
exceptions. The specialized microprocessor and the host 
intelligently choose whether a given message or portion of a 
message is processed by the microprocessor or the host stack. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The above description of layered protocol processing is 
simplified, as college-level textbooks devoted primarily to 
this subject are available, such as Computer Networks, Third 
Edition (1996) by Andrew S. Tanenbaum, which is incorpo­
rated herein by reference. As defined in that book, a computer 
network is an interconnected collection of autonomous com­
puters, such as internet and intranet systems, including local 
area networks (LANs), wide area networks (WANs), asyn­
chronous transfer mode (ATM) , ring or token ring, wired, 
wireless, satellite or other means for providing communica­
tion capability between separate processors. A computer is 
defined herein to include a device having both logic and 
memory functions for processing data, while computers or 
hosts connected to a network are said to be heterogeneous if 
they function according to different operating systems or 
communicate via different architectures. 

FIG. 1 is a plan view diagram of a system of the present 
10 invention, including a host computer having a communica­

tion-processing device for accelerating network communica­
tion. 

FIG. 2 is a diagram of information flow for the host of FIG. 
1 in processing network communication, including a fast-

15 path, a slow-path and a transfer of connection context 
between the fast and slow-paths. 

FIG. 3 is a flow chart of message receiving according to the 
present invention. 

FIG. 4A is a diagram of information flow for the host of 
FIG. 1 receiving a message packet processed by the slow­
path. 

FIG. 4B is a diagram of infonnation flow for the host of 
FIG. 1 receiving an initial message packet processed by the 
fast-path. 

FIG. 4C is a diagram of infonnation flow for the host of 
FIG. 4B receiving a subsequent message packet processed by 
the fast-path. 

FIG. 4D is a diagram of information flow for the host of 
FIG. 4C receiving a message packet having an error that 
causes processing to revert to the slow-path. 

FIG. 5 is a diagram of information flow for the host of FIG. 
1 transmitting a message by either the fast or slow-paths. 

As networks grow increasingly popular and the infonna- 20 

tion communicated thereby becomes increasingly complex 
and copious, the need for such protocol processing has 
increased. It is estimated that a large fraction of the processing 
power of a host CPU may be devoted to controlling protocol 
processes, diminishing the ability of that CPU to perfonn 25 

other tasks. Network interface cards have been developed to 
help with the lowest layers, such as the physical and data link 
layers. It is also possible to increase protocol processing 
speed by simply adding more processing power or CPUs 
according to conventional arrangements. This solution, how- 30 

ever, is both awkward and expensive. But the complexities 
presented by various networks, protocols, architectures, oper­
ating systems and applications generally require extensive 
processing to afford communication capability between vari-
0us network hosts. 

FIG. 6 is a diagram of information flow for a first embodi­
ment of an intelligent network interface card (INIC) associ-

35 ated with a client having a TCP/IP processing stack. 

SUMMARY OF THE INVENTION 
FIG. 7 is a diagram of hardware logic for the INIC embodi­

ment shown in FIG. 6, including a packet control sequencer 
and a fly-by sequencer. 

The current invention provides a system for processing 
network communication that greatly increases the speed of 
that processing and the efficiency of moving the data being 
communicated. The invention has been achieved by question­
ing the long-standing practice of perfonning multilayered 
protocol processing on a general-purpose processor. The pro­
tocol processing method and architecture that results effec­
tively collapses the layers of a connection-based, layered 
architecture such as TCP/IP into a single wider layer which is 
able to send network data more directly to and from a desired 
location or buffer on a host. This accelerated processing is 
provided to a host for both transmitting and receiving data, 
and so improves perfonnance whether one or both hosts 
involved in an exchange of infonnation have such a feature. 

FIG. 8 is a diagram of the fly-by sequencer of FIG. 7 for 
40 analyzing header bytes as they are received by the INIC. 

FIG. 9 is a diagram of infonnation flow for a second 
embodiment of an INIC associated with a server having a 
TCP/IP processing stack. 

FIG. 10 is a diagram of a command driver installed in the 
45 host of FIG. 9 for creating and controlling a communication 

control block for the fast-path. 
FIG. 11 is a diagram of the TCP/IP stack and command 

driver of FIG. 10 configured for NetBios communications. 
FIG. 12 is a diagram of a communication exchange 

50 between the client of FIG. 6 and the server of FIG. 9. 

The accelerated processing includes employing represen­
tative control instructions for a given message that allow data 
from the message to be processed via a fast-path which 55 

accesses message data directly at its source or delivers it 
directly to its intended destination. This fast-path bypasses 
conventional protocol processing of headers that accompany 
the data. The fast-path employs a specialized microprocessor 
designed for processing network communication, avoiding 60 

the delays and pitfalls of conventional software layer process­
ing, such as repeated copying and interrupts to the cpu. In 
effect, the fast-path replaces the states that are traditionally 
found in several layers of a conventional network stack with 
a single state machine encompassing all those layers, in con- 65 

trast to conventional rules that require rigorous differentiation 
and separation of protocol layers. The host retains a sequen-

FIG. 13 is a diagram of hardware functions included in the 
INIC of FIG. 9. 

FIG. 14 is a diagram of a trio of pipelined microprocessors 
included in the INIC of FIG. 13, including three phases with 
a processor in each phase. 

FIG. 15A is a diagram of a first phase of the pipelined 
microprocessor of FIG. 14. 

FIG. 15B is a diagram of a second phase of the pipelined 
microprocessor of FIG. 14. 

FIG. 15C is a diagram of a third phase of the pipelined 
microprocessor of FIG. 14. 

DETAILED DESCRIPTION 

FIG. 1 shows a host 20 of the present invention connected 
by a network 25 to a remote host 22. The increase in process­
ing speed achieved by the present invention can be provided 
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with an intelligent network interface card (INIC) that is easily 
and affordably added to an existing host, or with a connnu­
nication processing device (CPD) that is integrated into a 
host, in either case freeing the host CPU from most protocol 
processing and allowing improvements in other tasks per­
formed by that cpu. The host 20 in a first embodiment 
contains a CPU 28 and a CPD 30 connected by a host bus 33. 
The CPD 30 includes a microprocessor designed for process­
ing connnunication data and memory buffers controlled by a 
direct memory access (D MA) unit. Also connected to the host 10 

bus 33 is a storage device 35, such as a semiconductor 
memory or disk drive, along with any related controls. 

Referring additionally to FIG. 2, the host CPU 28 controls 
a protocol processing stack 44 housed in storage 35, the stack 
including a data link layer 36, network layer 38, transport 15 

layer 40, upper layer 46 and an upper layer interface 42. The 
upper layer 46 may represent a session, presentation and/or 
application layer, depending upon the particular protocol 
being employed and message connnunicated. The upper layer 
interface 42, along with the CPU 28 and any related controls 20 

can send or retrieve a file to or from the upper layer 46 or 
storage 35, as shown by arrow 48. A connection context 50 
has been created, as will be explained below, the context 
sUlllllarizing various features of the connection, such as pro­
tocol type and source and destination addresses for each 25 

protocol layer. The context may be passed between an inter­
face for the session layer 42 and the CPD 30, as shown by 
arrows 52 and 54, and stored as a connnunication control 
block (CCB) at either CPD 30 or storage 35. 

When the CPD 30 holds a CCB defining a particular con- 30 

nection, data received by the CPD from the network and 
pertaining to the connection is referenced to that CCB and can 
then be sent directly to storage 35 according to a fast-path 58, 
bypassing sequential protocol processing by the data link 36, 
network 38 and transport 40 layers. Transmitting a message, 35 

such as sending a file from storage 35 to remote host 22, can 
also occur via the fast-path 58, in which case the context for 
the file data is added by the CPD 30 referencing a CCB, rather 
than by sequentially adding headers during processing by the 
transport 40, network 38 and data link 36 layers. The DMA 40 

controllers of the CPD 30 perform these transfers between 
CPD and storage 35. 

The CPD 30 collapses multiple protocol stacks each hav­
ing possible separate states into a single state machine for 
fast-path processing. As a result, exception conditions may 45 

occur that are not provided for in the single state machine, 
primarily because such conditions occur infrequently and to 
deal with them on the CPD would provide little or no perfor­
mance benefit to the host. Such exceptions can be CPD 30 or 
CPU 28 initiated. An advantage of the invention includes the 50 

manner in which unexpected situations that occur on a fast­
path CCB are handled. The CPD 30 deals with these rare 
situations by passing back or flushing to the host protocol 
stack 44 the CCB and any associated message frames 
involved, via a control negotiation. The exception condition is 55 

then processed in a conventional manner by the host protocol 
stack 44. At some later time, usually directly after the han­
dling of the exception condition has completed and fast-path 
processing can resume, the host stack 44 hands the CCB back 

6 
cessors for assisting and queuing. A preferred microprocessor 
embodiment includes a pipelined trio of receive, transmit and 
utility processors. DMA controllers are integrated into the 
implementation and work in close concert with the network 
microprocessor to quickly move data between buffers adja­
cent the controllers and other locations such as long term 
storage. Providing buffers logically adjacent to the DMA 
controllers avoids unnecessary loads on the PCI bus. 

FIG. 3 diagrams the general flow of messages received 
according to the current invention. A large TCP/IP message 
such as a file transfer may be received by the host from the 
network in a number of separate, approximately 64 KB trans­
fers, each of which may be split into many, approximately 1.5 
KB frames or packets for transmission over a network. Novel 
NetWare protocol suites running Sequenced Packet 
Exchange Protocol (SPX) or NetWare Core Protocol (NCP) 
over Internetwork Packet Exchange (IPX) work in a similar 
fashion. Another form of data connnunication which can be 
handled by the fast-path is Transaction TCP (hereinafter 
T/TCP or TTCP), a version ofTCP which initiates a connec­
tion with an initial transaction request after which a reply 
containing data may be sent according to the connection, 
rather than initiating a connection via a several-message ini­
tialization dialogue and then transferring data with later mes­
sages. In any of the transfers typified by these protocols, each 
packet conventionally includes a portion of the data being 
transferred, as well as headers for each of the protocol layers 
and markers for positioning the packet relative to the rest of 
the packets of this message. 

When a message packet or frame is received 47 from a 
network by the CPD, it is first validated by a hardware assist. 
This includes determining the protocol types of the various 
layers, verifying relevant checksums, and sunnnarizing 57 
these findings into a status word or words. Included in these 
words is an indication whether or not the frame is a candidate 
for fast-path data flow. Selection 59 offast-path candidates is 
based on whether the host may benefit from this message 
connection being handled by the CPD, which includes deter­
mining whether the packet has header bytes denoting particu-
1ar protocols, such as TCP/IP or SPX/IPX for example. The 
small percent of frames that are not fast-path candidates are 
sent 61 to the host protocol stacks for slow-path protocol 
processing. Subsequent network microprocessor work with 
each fast-path candidate determines whether a fast-path con­
nection such as a TCP or SPX CCB is already extant for that 
candidate, or whether that candidate may be used to set up a 
new fast-path connection, such as for a TTCP/IP transaction. 
The validation provided by the CPD provides acceleration 
whether a frame is processed by the fast-path or a slow-path, 
as only error free, validated frames are processed by the host 
CPU even for the slow-path processing. 

All received message frames which have been determined 
by the CPD hardware assist to be fast-path candidates are 
examined 53 by the network microprocessor or INIC com­
parator circuits to determine whether they match a CCB held 
by the CPD. Upon confirming such a match, the CPD 
removes lower layer headers and sends 69 the remaining 
application data from the frame directly into its final destina­
tion in the host using direct memory access (DMA) units of 

to the CPD. 
This fallback capability enables the performance-impact­

ing functions of the host protocols to be handled by the CPD 
network microprocessor, while the exceptions are dealt with 

60 the CPD. This operation may occur innnediately upon receipt 
of a message packet, for example when a TCP connection 
already exists and destination buffers have been negotiated, or 
it may first be necessary to process an initial header to acquire 
a new set of final destination addresses for this transfer. In this by the host stacks, the exceptions being so rare as to negligi­

bly effect overall performance. The custom designed network 65 

microprocessor can have independent processors for trans­
mitting and receiving network information, and further pro-

latter case, the CPD will queue subsequent message packets 
while waiting for the destination address, and then DMA the 
queued application data to that destination. 
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35, as shown by arrow 72, bypassing the session layer 42, 
transport layer 40, network layer 38 and data link layer 36. 
The remaining data packets from the message can also be sent 
by DMA directly to storage, avoiding the relatively slow 
protocol layer processing and repeated copying by the CPU 
stack 44. 

FI G. 4 D shows the procedure for handling the rare instance 
when a message for which a fast-path connection has been 
established, such as shown in FIG. 4C, has a packet that is not 
easily handled by the CPD. In this case the packet is sent to be 
processed by the protocol stack 44, which is handed the CCB 
for that message from cache 62 via a control dialogue with the 
CPD, as shown by arrow 76, signaling to the CPU to take over 
processing of that message. Slow-path processing by the pro-

A fast-path candidate that does not match a CCB may be 
used to set up a new fast-path connection, by sending 65 the 
frame to the host for sequential protocol processing. In this 
case, the host uses this frame to create 51 a CCB, which is then 
passed to the CPD to control subsequent frames on that con­
nection. The CCB, which is cached 67 in the CPD, includes 
control and state information pertinent to all protocols that 
would have been processed had conventional software layer 
processing been employed. The CCB also contains storage 
space for per-transfer information used to facilitate moving 10 

application-level data contained within subsequent related 
message packets directly to a host application in a form avail­
able for immediate usage. The CPD takes command of con­
nection processing upon receiving a CCB for that connection 
from the host. 15 tocol stack then results in data CD3) 80 from the packet being 

sent, as shown by arrow 82, to storage 35. Once the packet has 
been processed and the error situation corrected, the CCB can 
be handed back via a control dialogue to the cache 62, so that 
payload data from subsequent packets of that message can 

As shown more specifically in FIG. 4A, when a message 
packet is received from the remote host 22 via network 25, the 
packet enters hardware receive logic 32 of the CPD 30, which 
checksums headers and data, and parses the headers, creating 
a word or words which identify the message packet and status, 
storing the headers, data and word temporarily in memory 60. 
As well as validating the packet, the receive logic 32 indicates 
with the word whether this packet is a candidate for fast-path 
processing. FIG. 4A depicts the case in which the packet is 
not a fast-path candidate, in which case the CPD 30 sends the 
validated headers and data from memory 60 to data link layer 
36 along an internal bus for processing by the host CPU, as 
shown by arrow 56. The packet is processed by the host 
protocol stack 44 of data link 36, network 38, transport 40 and 
session 42 layers, and data CD) 63 from the packet may then be 
sent to storage 35, as shown by arrow 65. 

FIG. 4B, depicts the case in which the receive logic 32 of 
the CPD determines that a message packet is a candidate for 
fast-path processing, for example by deriving from the pack­
et's headers that the packet belongs to a TCP/IP, TTCP/IP or 
SPX/IPX message. A processor 55 in the CPD 30 then checks 

20 again be sent via the fast-path of the CPD 30. Thus the CPU 
and CPD together decide whether a given message is to be 
processed according to fast-path hardware processing or 
more conventional software processing by the CPU. 

Transmission of a message from the host 20 to the network 
25 25 for delivery to remote host 22 also can be processed by 

either sequential protocol software processing via the CPU or 
accelerated hardware processing via the CPD 30, as shown in 
FIG. 5. A message CM) 90 that is selected by CPU 28 from 
storage 35 can be sent to session layer 42 for processing by 

30 stack 44, as shown by arrows 92 and 96. For the situation in 
which a connection exists and the CPD 30 already has an 
appropriate CCB for the message, however, data packets can 
bypass host stack 44 and be sent by DMA directly to memory 
60, with the processor 55 adding to each data packet a single 

35 header containing all the appropriate protocol layers, and 
sending the resulting packets to the network 25 for transmis­
sion to remote host 22. This fast-path transmission can greatly 
accelerate processing for even a single packet, with the accel-

to see whether the word that summarizes the fast-path candi­
date matches a CCB held in a cache 62. Upon finding no 
match for this packet, the CPD sends the validated packet 
from memory 60 to the host protocol stack 44 for processing. 40 

Host stack 44 may use this packet to create a connection 
context for the message, including finding and reserving a 
destination for data from the message associated with the 
packet, the context taking the form of a CCB. The present 
embodiment employs a single specialized host stack 44 for 
processing both fast-path andnon-fast-path candidates, while 

eration multiplied for a larger message. 
A message for which a fast-path connection is not extant 

thus may benefit from creation of a CCB with appropriate 
control and state information for guiding fast-path transmis­
sion. For a traditional connection-based message, such as 
typified by TCP/IP or SPX/IPX, the CCB is created during 

45 connection initialization dialogue. For a quick-connection 
message, such as typified by TTCP/IP, the CCB can be cre­
ated with the same transaction that transmits payload data. In 
this case, the transmission of payload data may be a reply to 
a request that was used to set up the fast-path connection. In 

in an embodiment described below fast-path candidates are 
processed by a different host stack than non-fast-path candi­
dates. Some data CD!) 66 from that initial packet may option­
ally be sent to the destination in storage 35, as shown by arrow 
68. The CCB is then sent to the CPD 30 to be saved in cache 
62, as shown by arrow 64. For a traditional connection-based 
message such as typified by TCP/IP, the initial packet may be 
part of a connection initialization dialogue that transpires 
between hosts before the CCB is created and passed to the 
CPD30. 

Referring now to FIG. 4C, when a subsequent packet from 
the same connection as the initial packet is received from the 
network 25 by CPD 30, the packet headers and data are 
validated by the receive logic 32, and the headers are parsed 

50 any case, the CCB provides protocol and status information 
regarding each of the protocol layers, including which user is 
involved and storage space for per-transfer information. The 
CCB is created by protocol stack 44, which then passes the 
CCB to the CPD 30 by writing to a command register of the 

55 CPD, as shown by arrow 98. Guided by the CCB, the proces­
sor 55 moves network frame-sized portions of the data from 
the source in host memory 35 into its own memory 60 using 
DMA, as depicted by arrow 99. The processor 55 then 
prepends appropriate headers and checksums to the data por-

60 tions, and transmits the resulting frames to the network 25, 
consistent with the restrictions of the associated protocols. 
After the CPD 30 has received an acknowledgement that all 
the data has reached its destination, the CPD will then notifY 

to create a summary of the message packet and a hash for 
finding a corresponding CCB, the summary and hash con­
tained in a word or words. The word or words are temporarily 
stored in memory 60 along with the packet. The processor 55 
checks for a match between the hash and each CCB that is 65 

the host 35 by writing to a response buffer. 
Thus, fast-path transmission of data communications also 

relieves the host CPU of per-frame processing. A vast major­
ity of data transmissions can be sent to the network by the 

stored in the cache 62 and, finding a match, sends the data 
CD2) 70 via a fast-path directly to the destination in storage 
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generated in the fly-by sequencer 178 out to the SRAM 182 
and to the beginning of the DRAM 188 buffer to be prep ended 
to the packet data. The packet control sequencer 176 then 
requests a queue manager 184 to enter a receive buffer 
descriptor into a receive queue, which in tum notifies the 
processor 170 that the packet has been processed by hardware 
logic 171 and its status summarized. 

fast-path. Both the input and output fast-paths attain a huge 
reduction in interrupts by functioning at an upper layer level, 
i.e., session level or higher, and interactions between the 
network microprocessor and the host occur using the full 
transfer sizes which that upper layer wishes to make. For 5 

fast-path communications, an interrupt only occurs (at the 
most) at the beginning and end of an entire upper-layer mes­
sage transaction, and there are no interrupts for the sending or 
receiving of each lower layer portion or packet of that trans­
action. 

FIG. 8 shows that the fly-by sequencer 178 has several 
tiers, with each tier generally focusing on a particular portion 

10 of the packet header and thus on a particular protocol layer, 
for generating status pertaining to that layer. The fly-by 
sequencer 178 in this embodiment includes a media access 
control sequencer 191, a network sequencer 192, a transport 

A simplified intelligent network interface card (INIC) 150 
is shown in FIG. 6 to provide a network interface for a host 
152. Hardware logic 171 of the INIC 150 is connected to a 
network 155, with a peripheral bus (PCI) 157 connecting the 
INIC and host. The host 152 in this embodiment has a TCP/IP 
protocol stack, which provides a slow-path 158 for sequential 
software processing of message frames received from the 
network 155. The host 152 protocol stack includes a data link 
layer 160, network layer 162, a transport layer 164 and an 
application layer 166, which provides a source or destination 
168 for the communication data in the host 152. Other layers 
which are not shown, such as session and presentation layers, 
may also be included in the host stack 152, and the source or 
destination may vary depending upon the nature of the data 
and may actually be the application layer. 

The INIC 150 has a network processor 170 which chooses 
between processing messages along a slow-path 158 that 
includes the protocol stack of the host, or along a fast-path 
159 that bypasses the protocol stack of the host. Each received 
packet is processed on the fly by hardware logic 171 con­
tained in INIC 150, so that all of the protocol headers for a 
packet can be processed without copying, moving or storing 
the data between protocol layers. The hardware logic 171 
processes the headers of a given packet at one time as packet 
bytes pass through the hardware, by categorizing selected 
header bytes. Results of processing the selected bytes help to 
determine which other bytes of the packet are categorized, 
until a summary of the packet has been created, including 
checksum validations. The processed headers and data from 
the received packet are then stored in INIC storage 185, as 
well as the word or words summarizing the headers and status 
of the packet. 

The hardware processing of message packets received by 
INIC 150 from network 155 is shown in more detail in FIG. 7. 
A received message packet first enters a media access con­
troller 172, which controls INIC access to the network and 
receipt of packets and can provide statistical information for 
network protocol management. From there, data flows one 
byte at a time into an assembly register 174, which in this 
example is 128 bits wide. The data is categorized by a fly-by 
sequencer 178, as will be explained in more detail with regard 

15 sequencer 194 and a session sequencer 195. Sequencers per­
taining to higher protocol layers can additionally be provided. 
The fly-by sequencer 178 is reset by the packet control 
sequencer 176 and given pointers by the packet control 
sequencer that tell the fly-by sequencer whether a given byte 

20 is available from the assembly register 174. The media access 
control sequencer 191 detennines, by looking at bytes 0-5, 
that a packet is addressed to host 152 rather than or in addition 
to another host. Offsets 12 and 13 of the packet are also 
processed by the media access control sequencer 191 to deter-

25 mine the type field, for example whether the packet is Ether­
net or 802.3. If the type field is Ethernet those bytes also tell 
the media access control sequencer 191 the packet's network 
protocol type. For the 802.3 case, those bytes instead indicate 
the length of the entire frame, and the media access control 

30 sequencer 191 will check eight bytes further into the packet to 
determine the network layer type. 

For most packets the network sequencer 192 validates that 
the header length received has the correct length, and check­
sums the network layer header. For fast-path candidates the 

35 network layer header is known to be IP or IPX from analysis 
done by the media access control sequencer 191. Assuming 
for example that the type field is 802.3 and the network 
protocol is IP, the network sequencer 192 analyzes the first 
bytes of the network layer header, which will begin at byte 22, 

40 in order to determine IP type. The first bytes of the IP header 
will be processed by the network sequencer 192 to detennine 
what IP type the packet involves. Detennining that the packet 
involves, for example, IP version 4, directs further processing 
by the network sequencer 192, which also looks at the proto-

45 col type located ten bytes into the IP header for an indication 
of the transport header protocol of the packet. For example, 
for IP over Ethernet, the IP header begins at offset 14, and the 
protocol type byte is offset 23, which will be processed by 
network logic to detennine whether the transport layer pro-

50 tocol is TCP, for example. From the length of the network 
layer header, which is typically 20-40 bytes, network 
sequencer 192 detennines the beginning of the packet's trans­
port layer header for validating the transport layer header. 
Transport sequencer 194 may generate checksums for the 

to FIG. 8, which examines the bytes of a packet as they fly by, 
and generates status from those bytes that will be used to 
summarize the packet. The status thus created is merged with 
the data by a multiplexer 180 and the resulting data stored in 
SRAM 182. A packet control sequencer 176 oversees the 
fly-by sequencer 178, examines infonnation from the media 
access controller 172, counts the bytes of data, generates 
addresses, moves status and manages the movement of data 
from the assembly register 174 to SRAM 182 and eventually 60 

DRAM 188. The packet control sequencer 176 manages a 
buffer in SRAM 182 via SRAM controller 183, and also 
indicates to a DRAM controller 186 when data needs to be 
moved from SRAM 182 to a buffer in DRAM 188. Once data 
movement for the packet has been completed and all the data 65 

has been moved to the buffer in DRAM 188, the packet 
control sequencer 176 will move the status that has been 

55 transport layer header and data, which may include infonna­
tion from the IP header in the case of TCP at least. 

Continuing with the example of a TCP packet, transport 
sequencer 194 also analyzes the first few bytes in the transport 
layer portion of the header to determine, in part, the TCP 
source and destination ports for the message, such as whether 
the packet is NetBios or other protocols. Byte 12 of the TCP 
header is processed by the transport sequencer 194 to deter­
mine and validate the TCP header length. Byte 13 of the TCP 
header contains flags that may, aside from ack flags and push 
flags, indicate unexpected options, such as reset and fin, that 
may cause the processor to categorize this packet as an excep­
tion. TCP offset bytes 16 and 17 are the checksum, which is 
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pulled out and stored by the hardware logic 171 while the rest 
of the frame is validated against the checksum. 

Session sequencer 195 determines the length of the session 
layer header, which in the case of Net Bios is only four bytes, 
two of which tell the length of the NetBios payload data, but 
which can be much larger for other protocols. The session 
sequencer 195 can also be used to categorize the type of 
message as read or write, for example, for which the fast-path 
may be particularly beneficial. Further upper layer logic pro­
cessing, depending upon the message type, can be performed 10 

by the hardware logic 171 of packet control sequencer 176 
and fly-by sequencer 178. Thus hardware logic 171 intelli­
gently directs hardware processing of the headers by catego­
rization of selected bytes from a single stream of bytes, with 15 

the status of the packet being built from classifications deter­
mined on the fly. Once the packet control sequencer 176 
detects that all of the packet has been processed by the fly-by 
sequencer 178, the packet control sequencer 176 adds the 
status information generated by the fly-by sequencer 178 and 20 

any status information generated by the packet control 
sequencer 176, and prepends (adds to the front) that status 
information to the packet, for convenience in handling the 
packet by the processor 170. The additional status informa­
tion generated by the packet control sequencer 176 includes 25 

media access controller 172 status information and any errors 
discovered, or data overflow in either the assembly register or 
DRAM buffer, or other miscellaneous information regarding 
the packet. The packet control sequencer 176 also stores 
entries into a receive buffer queue and a receive statistics 30 

queue via the queue manager 184. 
An advantage of processing a packet by hardware logic 171 

is that the packet does not, in contrast with conventional 
sequential software protocol processing, have to be stored, 35 

moved, copied or pulled from storage for processing each 
protocol layer header, offering dramatic increases in process­
ing efficiency and savings in processing time for each packet. 
The packets can be processed at the rate bits are received from 
the network, for example 100 megabits/second for a 100 40 

baseT connection. The time for categorizing a packet 
received at this rate and having a length of sixty bytes is thus 
about 5 microseconds. The total time for processing this 
packet with the hardware logic 171 and sending packet data to 
its host destination via the fast-path may be about 16 micro- 45 

seconds or less, assuming a 66 MHz PCI bus, whereas con­
ventional software protocol processing by a 300 MHz Pen­
tium II® processor may take as much as 200 microseconds in 
a busy system. More than an order of magnitude decrease in 
processing time can thus be achieved with fast-path 159 in 50 

comparison with a high-speed CPU employing conventional 
sequential software protocol processing, demonstrating the 
dramatic acceleration provided by processing the protocol 
headers by the hardware logic 171 and processor 170, without 
even considering the additional time savings afforded by the 55 

reduction in CPU interrupts and host bus bandwidth savings. 
The processor 170 chooses, for each received message 

packet held in storage 185, whether that packet is a candidate 
for the fast-path 159 and, if so, checks to see whether a 
fast-path has already been set up for the connection that the 60 

packet belongs to. To do this, the processor 170 first checks 
the header status SUflllllary to determine whether the packet 
headers are of a protocol defined for fast-path candidates. If 
not, the processor 170 commands DMA controllers in the 
INIC 150 to send the packet to the host for slow-path 158 65 

processing. Even for a slow-path 158 processing of a mes­
sage, the INIC 150 thus performs initial procedures such as 

12 
validation and determination of message type, and passes the 
validated message at least to the data link layer 160 of the 
host. 

For fast-path 159 candidates, the processor 170 checks to 
see whether the header status summary matches a CCB held 
by the INIC. If so, the data from the packet is sent along 
fast -path 159 to the destination 168 in the host. If the fast-path 
159 candidate's packet summary does not match a CCB held 
by the INIC, the packet may be sent to the host 152 for 
slow-path processing to create a CCB for the message. 
Employment of the fast-path 159 may also not be needed or 
desirable for the case of fragmented messages or other com­
plexities. For the vast majority of messages, however, the 
INIC fast-path 159 can greatly accelerate message process­
ing. The INIC 150 thus provides a single state machine pro­
cessor 170 that decides whether to send data directly to its 
destination, based upon information gleaned on the fly, as 
opposed to the conventional employment of a state machine 
in each of several protocol layers for determining the destiny 
of a given packet. 

In processing an indication or packet received at the host 
152, a protocol driver of the host selects the processing route 
based upon whether the indication is fast-path or slow-path. A 
TCP/IP or SPX/IPX message has a connection that is set up 
from which a CCB is formed by the driver and passed to the 
INIC for matching with and guiding the fast-path packet to 
the connection destination 168. For a TTCP/IP message, the 
driver can create a connection context for the transaction from 
processing an initial request packet, including locating the 
message destination 168, and then passing that context to the 
INI C in the form of a CCB for providing a fast-path for a reply 
from that destination. A CCB includes connection and state 
information regarding the protocol layers and packets of the 
message. Thus a CCB can include source and destination 
media access control (MAC) addresses, source and destina­
tion IP or IPX addresses, source and destination TCP or SPX 
ports, TCP variables such as timers, receive and transmit 
windows for sliding window protocols, and information 
denoting the session layer protocol. 

Caching the CCBs in a hash table in the INIC provides 
quick comparisons with words summarizing incoming pack­
ets to determine whether the packets can be processed via the 
fast-path 159, while the full CCBs are also held in the INIC 
for processing. Other ways to accelerate this comparison 
include software processes such as a B-tree or hardware 
assists such as a content addressable memory (CAM). When 
INIC microcode or comparator circuits detect a match with 
the CCB, a DMA controller places the data from the packet in 
the destination 168, without any interrupt by the CPU, pro­
tocol processing or copying. Depending upon the type of 
message received, the destination of the data may be the 
session, presentation or application layers, or a file buffer 
cache in the host 152. 

FIG. 9 shows an INIC 200 connected to a host 202 that is 
employed as a file server. This INIC provides a network 
interface for several network connections employing the 
802.3u standard, commonly known as Fast Ethernet. The 
INIC 200 is connected by a PCI bus 205 to the server 202, 
which maintains a TCP/IP or SPX/IPX protocol stack includ­
ing MAC layer 212, network layer 215, transport layer 217 
and application layer 220, with a source/destination 222 
shown above the application layer, although as mentioned 
earlier the application layer can be the source or destination. 
The INIC is also connected to network lines 210, 240, 242 and 
244, which are preferably fast Ethernet, twisted pair, fiber 
optic, coaxial cable or other lines each allowing data trans­
mission of 100 Mb/s, while faster and slower data rates are 
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also possible. Network lines 210, 240, 242 and 244 are each 
connected to a dedicated row of hardware circuits which can 
each validate and summarize message packets received from 
their respective network line. Thus line 210 is connected with 
a first horizontal row of sequencers 250, line 240 is connected 
with a second horizontal row of sequencers 260, line 242 is 
connected with a third horizontal row of sequencers 262 and 
line 244 is connected with a fourth horizontal row of sequenc-

14 
has a data link layer 312, a network layer 314 and a transport 
layer 316 for conventional, lower layer processing of mes­
sages that are not labeled as fast-path candidates and therefore 
not processed by the command stack 300. Residing above the 
lower layer stack 310 is an upper layer 318, which represents 
a session, presentation and/or application layer, depending 
upon the message communicated. The command driver 300 
similarly has a data link layer 320, a network layer 322 and a 

ers 264. After a packet has been validated and summarized by 
one of the horizontal hardware rows it is stored along with its 10 

status summary in storage 270. 

transport layer 325. 
The driver 300 includes an upper layer interface 330 that 

determines, for transmission of messages to the network 210, 
whether a message transmitted from the upper layer 318 is to 
be processed by the command stack 300 and subsequently the 
INIC fast-path, or by the conventional stack 310. When the 

A network processor 230 determines, based on that sum­
mary and a comparison with any CCBs stored in the INIC 
200, whether to send a packet along a slow-path 231 for 
processing by the host. A large majority of packets can avoid 
such sequential processing and have their data portions sent 
by DMA along a fast-path 237 directly to the data destination 
222 in the server according to a matching CCB. Similarly, the 
fast-path 237 provides an avenue to send data directly from 
the source 222 to any of the network lines by processor 230 
division of the data into packets and addition of full headers 
for network transmission, again minimizing CPU processing 
and interrupts. For clarity only horizontal sequencer 250 is 
shown active; in actuality each of the sequencer rows 250, 
260, 262 and 264 offers full duplex communication, concur­
rently with all other sequencer rows. The specialized INIC 
200 is much faster at working with message packets than even 
advanced general-purpose host CPUs that processes those 
headers sequentially according to the software protocol stack. 

One of the most commonly used network protocols for 
large messages such as file transfers is server message block 
(SMB) over TCP/IP. 5MB can operate in conjunction with 
redirector software that determines whether a required 
resource for a particular operation, such as a printer or a disk 
upon which a file is to be written, resides in or is associated 
with the host from which the operation was generated or is 
located at another host connected to the network, such as a file 
server. 5MB and serverlredirector are conventionally ser­
viced by the transport layer; in the present invention 5MB and 
redirector can instead be serviced by the INIC. In this case, 
sending data by the DMA controllers from the INIC buffers 
when receiving a large 5MB transaction may greatly reduce 
interrupts that the host must handle. Moreover, this DMA 
generally moves the data to its final destination in the file 
system cache. An 5MB transmission of the present invention 
follows essentially the reverse of the above described 5MB 
receive, with data transferred from the host to the INIC and 
stored in buffers, while the associated protocol headers are 
prep ended to the data in the INIC, for transmission via a 
network line to a remote host. Processing by the INIC of the 
multiple packets and multiple TCP, IP, NetBios and 5MB 
protocol layers via custom hardware and without repeated 
interrupts of the host can greatly increase the speed of trans­
mitting an 5MB message to a network line. 

As shown in FIG. 10, for controlling whether a given 
message is processed by the host 202 or by the INIC 200, a 
message command driver 300 may be installed in host 202 to 
work in concert with a host protocol stack 310. The command 
driver 300 can intervene in message reception or transmittal, 
create CCBs and send or receive CCBs from the INIC 200, so 
that functioning of the INIC, aside from improved perfor­
mance, is transparent to a user. Also shown is an INIC 
memory 304 and an INIC miniport driver 306, which can 
direct message packets received from network 210 to either 
the conventional protocol stack 310 or the command protocol 
stack 300, depending upon whether a packet has been labeled 
as a fast-path candidate. The conventional protocol stack 310 

15 upper layer interface 330 receives an appropriate message 
from the upper layer 318 that would conventionally be 
intended for transmission to the network after protocol pro­
cessing by the protocol stack of the host, the message is 
passed to driver 300. The INIC then acquires network-sized 

20 portions of the message data for that transmission via INIC 
DMA units, prep ends headers to the data portions and sends 
the resulting message packets down the wire. Conversely, in 
receiving a TCP, TTCP, SPX or similar message packet from 
the network 210 to be used in setting up a fast-path connec-

25 tion, miniport driver 306 diverts that message packet to com­
mand driver 300 for processing. The driver 300 processes the 
message packet to create a context for that message, with the 
driver 302 passing the context and command instructions 
back to the WIC 200 as a CCB for sending data of subsequent 

30 messages for the same connection along a fast-path. Hun­
dreds ofTCP, TTCP, SPX or similar CCB connections may be 
held indefinitely by the INIC, although a least recently used 
(LRU) algorithm is employed for the case when the INIC 
cache is full. The driver 300 can also create a connection 

35 context for a TTCP request which is passed to the INIC 200 as 
a CCB, allowing fast-path transmission of a TTCP reply to the 
request. A message having a protocol that is not accelerated 
can be processed conventionally by protocol stack 310. 

FIG. 11 shows a TCP/IP implementation of command 
40 driver software for Microsoft® protocol messages. A conven­

tional host protocol stack 350 includes MAC layer 353, IP 
layer 355 and TCP layer 358.A command driver360 works in 
concert with the host stack 350 to process network messages. 
The command driver 360 includes a MAC layer 363, an IP 

45 layer 366 and an Alacritech TCP (ATCP) layer 373. The 
conventional stack 350 and command driver 360 share a 
network driver interface specification (NDIS) layer 375, 
which interacts with the INIC miniport driver 306. The INIC 
miniport driver 306 sorts receive indications for processing 

50 by either the conventional host stack 350 or the ATCP driver 
360. A TDI filter driver and upper layer interface 380 simi­
larly determines whether messages sent from a TDI user 382 
to the network are diverted to the command driver and per­
haps to the fast-path of the INIC, or processed by the host 

55 stack. 
FIG. 12 depicts a typical 5MB exchange between a client 

190 and server 290, both of which have communication 
devices of the present invention, the communication devices 
each holding a CCB defining their connection for fast-path 

60 movement of data. The client 190 includes INIC 150, 802.3 
compliant data link layer 160, IP layer 162, TCP layer 164, 
NetBios layer 166, and 5MB layer 168. The client has a 
slow-path 157 and fast-path 159 for communication process­
ing. Similarly, the server 290 includes INIC 200, 802.3 com-

65 pliant data link layer 212, IP layer 215, TCP layer 217, Net­
Bios layer 220, and 5MB 222. The server is connected to 
network lines 240, 242 and 244, as well as line 210 which is 
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connected to client 190. The server also has a slow-path 231 
and fast-path 237 for connnunication processing. 

Assuming that the client 190 wishes to read a 100 KB file 
on the server 290, the client may begin by sending a Read 
Block Raw (RBR) 5MB connnand across network 210 5 

requesting the first 64 KB of that file on the server 290. The 
RBR connnand may be only 76 bytes, for example, so the 
INIC 200 on the server will recognize the message type 
(SMB) and relatively small message size, and send the 76 
bytes directly via the fast-path to NetBios of the server. Net- 10 

Bios will give the data to 5MB, which processes the Read 
request and fetches the 64 KB of data into server data buffers. 
5MB then calls NetBios to send the data, and NetBios outputs 
the data for the client. In a conventional host, NetBios would 
call TCP output and pass 64 KB to TCP, which would divide 15 

the data into 1460 byte segments and output each segment via 
IP and eventually MAC (slow-path 231). In the present case, 
the 64 KB data goes to the ATCP driver along with an indi­
cation regarding the client-server 5MB connection, which 
denotes a CCB held by the INIC. The INIC 200 then proceeds 20 

to DMA 1460 byte segments from the host buffers, add the 
appropriate headers for TCP, IP and MAC at one time, and 
send the completed packets on the network 210 (fast-path 
237). The INIC 200 will repeat this until the whole 64 KB 
transfer has been sent. Usually after receiving acknowledge- 25 

ment from the client that the 64 KB has been received, the 
INIC will then send the remaining 36 KB also by the fast-path 
237. 

16 
240, 242 and 244 and the INIC 200 is controlled by MAC 
units MAC-A 402, MAC-B 404, MAC-C 406 and MAC-D 
408 which contain logic circuits for performing the basic 
functions of the MAC sublayer, essentially controlling when 
the INIC accesses the network lines 210, 240, 242 and 244. 
The MAC units 402-408 may act in promiscuous, multicast or 
unicast modes, allowing the INIC to function as a network 
monitor, receive broadcast and multicast packets and imple­
ment multiple MAC addresses for each node. The MAC units 
402-408 also provide statistical information that can be used 
for simple network management protocol (SNMP). 

The MAC units 402, 404, 406 and 408 are each connected 
to a transmit and receive sequencer, XMT & RCV-A 418, 
XMT & RCV-B 420, XMT & RCV-C 422 and XMT & 
RCV-D 424, by wires 410, 412, 414 and 416, respectively. 
Each of the transmit and receive sequencers can perform 
several protocol processing steps on the fly as message frames 
pass through that sequencer. In combination with the MAC 
units, the transmit and receive sequencers 418-422 can com­
pile the packet status for the data link, network, transport, 
session and, if appropriate, presentation and application layer 
protocols in hardware, greatly reducing the time for such 
protocol processing compared to conventional sequential 
software engines. The transmit and receive sequencers 410-
414 are connected, by lines 426, 428, 430 and 432 to an 
SRAM and DMA controller 444, which includes DMA con-
trollers 438 and SRAM controller 442. Static random access 
memory (SRAM) buffers 440 are coupled with SRAM con­
troller 442 by line 441. The SRAM and DMA controllers 444 With INIC 150 operating on the client 190 when this reply 

arrives, the INIC 150 recognizes from the first frame received 
that this connection is receiving fast-path 159 processing 
(TCP/IP, NetBios, matching a CCB), and the ATCP may use 
this first frame to acquire buffer space for the message. This 
latter case is done by passing the first 128 bytes of the NetBios 
portion of the frame via theATCP fast-path directly to the host 
NetBios; that will give NetBios/SMB all of the frame's head­
ers. NetBios/SMB will analyze these headers, realize by 
matching with a request ID that this is a reply to the original 
Raw Read connection, and give theATCP a 64K list of buffers 
into which to place the data. At this stage only one frame has 
arrived, although more may arrive while this processing is 
occurring. As soon as the client buffer list is given to the 
ATCP, it passes that transfer information to the INIC 150, and 
the INIC 150 starts DMAing any frame data that has accu­
mulated into those buffers. 

30 interact across line 446 with external memory control 450 to 
send and receive frames via external memory bus 455 to and 
from dynamic random access memory (DRAM) buffers 460, 
which is located adjacent to the IC chip 400. The DRAM 
buffers 460 may be configured as 4 MB, 8 MB, 16 MB or 32 

35 MB, and may optionally be disposed on the chip. The SRAM 
and DMA controllers 444 are connected via line 464 to a PCI 
Bus Interface Unit (BIU) 468, which manages the interface 
between the INIC 200 and the PCI interface bus 257. The 
64-bit, multiplexed BIU 468 provides a direct interface to the 

40 PCI bus 257 for both slave and master functions. The INIC 
200 is capable of operating in either a 64-bit or 32-bit PCI 
environment, while supporting 64-bit addressing in either 
configuration. 

A microprocessor 470 is connected by line 472 to the 

FIG. 13 provides a simplified diagram of the INIC 200, 
which combines the functions of a network interface control-

45 SRAM and DMA controllers 444, and connected via line 475 
to the PCI BIU 468. Microprocessor 470 instructions and 
register files reside in an on chip control store 480, which 
includes a writable on-chip control store (WCS) of SRAM ler and a protocol processor in a single ASIC chip 400. The 

INIC 200 in this embodiment offers a full-duplex, four chan­
nel, 10/100-Megabit per second (Mbps) intelligent network 50 

interface controller that is designed for high speed protocol 
processing for server applications. Although designed spe­
cifically for server applications, the INIC 200 can be con­
nected to personal computers, workstations, routers or other 
hosts anywhere that TCP/IP, TTCP/IP or SPX/IPX protocols 55 

are being utilized. 
The INIC 200 is connected with four network lines 210, 

240, 242 and 244, which may transport data along a number 
of different conduits, such as twisted pair, coaxial cable or 
optical fiber, each of the connections providing a media inde- 60 

pendent interface (MID. The lines preferably are 802.3 com­
pliant and in connection with the INIC constitute four com­
plete Ethernet nodes, the INIC supporting 1 OBase-T, 10Base­
T2, 100Base-TX, 100Base-FX and 100Base-T4 as well as 
future interface standards. Physical layer identification and 65 

initialization is accomplished through host driver initializa­
tion routines. The connection between the network lines 210, 

and a read only memory (ROM), and is connected to the 
microprocessor by line 477. The microprocessor 470 offers a 
progrannnable state machine which is capable of processing 
incoming frames, processing host connnands, directing net­
work traffic and directing PCI bus traffic. Three processors 
are implemented using shared hardware in a three level pipe­
lined architecture that launches and completes a single 
instruction for every clock cycle. A receive processor 482 is 
dedicated to receiving connnunications while a transmit pro­
cessor 484 is dedicated to transmitting connnunications in 
order to facilitate full duplex connnunication, while a utility 
processor 486 offers various functions including overseeing 
and controlling PCI register access. The instructions for the 
three processors 482, 484 and 486 reside in the on-chip con­
trol-store 480. 

The INIC 200 in this embodiment can support up to 256 
CCBs which are maintained in a table in the DRAM 460. 
There is also, however, a CCB index in hash order in the 
SRAM 440 to save sequential searching. Once a hash has 
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been generated, the CCB is cached in SRAM, with up to 
sixteen cached CCBs in SRAM in this example. These cache 
locations are shared between the transmit 484 and receive 486 
processors so that the processor with the heavier load is able 
to use more cache buffers. There are also eight header buffers 
and eight command buffers to be shared between the sequenc­
ers. A given header or command buffer is not statically linked 
to a specific CCB buffer, as the link is dynamic on a per-frame 
basis. 

FIG. 14 shows an overview of the pipelined microproces­
sor 470, in which instructions for the receive, transmit and 
utility processors are executed in three distinct phases accord­
ing to Clock increments I, II and III, the phases corresponding 
to each of the pipeline stages. Each phase is responsible for 
different functions, and each of the three processors occupies 
a different phase during each Clock increment. Each proces­
sor usually operates upon a different instruction stream from 
the control store 480, and each carries its own program 
counter and status through each of the phases. 

In general, a first instruction phase 500 of the pipelined 
microprocessors completes an instruction and stores the 
result in a destination operand, fetches the next instruction, 
and stores that next instruction in an instruction register. A 
first register set 490 provides a number of registers including 
the instruction register, and a set of controls 492 for first 
register set provides the controls for storage to the first reg­
ister set 490. Some items pass through the first phase without 
modification by the controls 492, and instead are simply 
copied into the first register set 490 or a RAM file register 533. 

18 
SRAM control 502 into an address register or data register of 
SRAM address and data registers 520. A load control 504 
similarly provides controls for writing a context for a file to 
file context register 522, and another load control 506 pro­
vides controls for storing a variety of miscellaneous data to 
flip-flop registers 525. ALU condition codes, such as whether 
a carried bit is set, get clocked into ALU condition codes 
register 528 without an operation performed in the first phase 
500. Flag decodes 508 can perform various functions, such as 

10 setting locks, that get stored in flag registers 530. 
The RAM file register 533 has a single write port for 

addresses and data and two read ports for addresses and data, 
so that more than one register can be read from at one time. As 
noted above, the RAM file register 533 essentially straddles 

15 the first and second phases, as it is written in the first phase 
500 and read from in the second phase 560. A control store 
instruction 510 allows the reprogramming of the processors 
due to new data in from the control store 480, not shown in 
this figure, the instructions stored in an instruction register 

20 535. The address for this is generated in a fetch control reg­
ister 511, which determines which address to fetch, the 
address stored in fetch address register 538. Load control 515 
provides instructions for a program counter 540, which oper­
ates much like the fetch address for the control store. A last-in 

25 first-out stack 544 of three registers is copied to the first 
register set without undergoing other operations in this phase. 
Finally, a load control 517 for a debug address 548 is option­
ally included, which allows correction of errors that may 
occur. 

A second instruction phase 560 has an instruction decoder 30 

and operand multiplexer 498 that generally decodes the 
instruction that was stored in the instruction register of the 
first register set 490 and gathers any operands which have 
been generated, which are then stored in a decode register of 

FIG. 15B depicts the second microprocessor phase 560, 
which includes reading addresses and data out of the RAM 
file register 533. A scratch SRAM 565 is written from SRAM 
address and data register 520 of the first register set, which 
includes a register that passes through the first two phases to 
be incremented in the third. The scratch SRAM 565 is read by 
the instruction decoder and operand multiplexer 498, as are 

a second register set 496. The first register set 490, second 35 

register set 496 and a third register set 501, which is employed 
in a third instruction phase 600, include many of the same 
registers, as will be seen in the more detailed views of FIGS. 
15 A-C. The instruction decoder and operand multiplexer 498 
can read from two address and data ports of the RAM file 40 

register 533, which operates in both the first phase 500 and 
second phase 560. A third phase 600 of the processor 470 has 
an arithmetic logic unit (ALU) 602 which generally performs 
any AL U operations on the operands from the second register 
set, storing the results in a results register included in the third 45 

register set 501. A stack exchange 608 can reorder register 
stacks, and a queue manager 503 can arrange queues for the 
processor 470, the results of which are stored in the third 
register set. 

most of the registers from the first register set, with the excep­
tion of the stack 544, debug address 548 and SRAM address 
and data register mentioned above. The instruction decoder 
and operand multiplexer 498 looks at the various registers of 
set 490 and SRAM 565, decodes the instructions and gathers 
the operands for operation in the next phase, in particular 
determining the operands to provide to the ALU 602 below. 
The outcome of the instruction decoder and operand multi­
plexer 498 is stored to a number of registers in the second 
register set 496, including ALU operands 579 and 582, ALU 
condition code register 580, and a queue channel and com­
mand 587 register, which in this embodiment can control 
thirty-two queues. Several of the registers in set 496 are 
loaded fairly directly from the instruction register 535 above 
without substantial decoding by the decoder 498, including a 
program control 590, a literal field 589, a test select 584 and 
a flag select 585. Other registers such as the file context 522 of 
the first phase 500 are always stored in a file context 577 of the 

The instructions continue with the first phase then follow- 50 

ing the third phase, as depicted by a circular pipeline 505. 
Note that various functions have been distributed across the 
three phases of the instruction execution in order to minimize 
the combinatorial delays within any given phase. With a fre­
quency in this embodiment of 66 Megahertz, each Clock 
increment takes 15 nanoseconds to complete, for a total of 45 
nanoseconds to complete one instruction for each of the three 
processors. The instruction phases are depicted in more detail 

55 second phase 560, but may also be treated as an operand that 
is gathered by the multiplexer 572. The stack registers 544 are 
simply copied in stack register 594. The program counter 540 
is incremented 568 in this phase and stored in register 592. 
Also incremented 570 is the optional debug address 548, and in FIGS. 15A-C, in which each phase is shown in a different 

figure. 
More particularly, FIG.15A shows some specific hardware 

functions of the first phase 500, which generally includes the 
first register set 490 and related controls 492. The controls for 
the first register set 492 includes an SRAM control 502, 
which is a logical control for loading address and write data 
into SRAM address and data registers 520. Thus the output of 
the ALU 602 from the third phase 600 may be placed by 

60 a load control 575 may be fed from the pipeline 505 at this 
point in order to allow error control in each phase, the result 
stored in debug address 598. 

FIG. 15C depicts the third microprocessor phase 600, 
which includes ALU and queue operations. The ALU 602 

65 includes an adder, priority encoders and other standard logic 
functions. Results of the ALU are stored in registers ALU 
output 618, ALU condition codes 620 and destination oper-
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if the packets do not have any of the exception conditions, 
then bypassing host protocol processing of the TCP 
headers and storing the first pay load data and the second 
payload data together in a buffer of the host computer, 
such that the payload data is stored in the buffer in order 
and without any TCP header stored between the first 
payload data and the second payload data. 

and results 622. A file context register 616, flag select register 
626 and literal field register 630 are simply copied from the 
previous phase 560. A test multiplexer 604 is provided to 
determine whether a conditional jump results in a jump, with 
the results stored in a test results register 624. The test mul­
tiplexer 604 may instead be perfonned in the first phase 500 
along with similar decisions such as fetch control 511. A stack 
exchange 608 shifts a stack up or down by fetching a program 
counter from stack 594 or putting a program counter onto that 
stack, results of which are stored in program control 634, 
program counter 638 and stack 640 registers. The SRAM 
address may optionally be incremented in this phase 600. 
Another load control 610 for another debug address 642 may 

2. The method of claim 1, including allocating the buffer by 
the application, prior to storing the first payload data and the 

10 second payload data together in the buffer. 
3. The method of claim 1, wherein storing the first payload 

data and the second payload data together in a buffer of the 
host computer is performed by a direct memory access 
(DMA) unit of the network interface. 

4. The method of claim 1, including accumulating the 
payload data in a memory on the network interface, such that 
the payload data is stored in the memory in order and without 
any TCP header stored between the first payload data and the 
second payload data, prior to storing the first payload data and 

be forced from the pipeline 505 at this point in order to allow 15 

error control in this phase also. A queue RAM and queueALU 
606 reads from the queue channel and command register 587, 
stores in SRAM and rearranges queues, adding or removing 
data and pointers as needed to manage the queues of data, 
sending results to the test multiplexer 604 and a queue flags 
and queue address register 628. Thus the queue RAM and 
ALU 606 assumes the duties of managing queues for the three 
processors, a task conventionally performed sequentially by 
software on a CPU, the queue manager 606 instead providing 
accelerated and substantially parallel hardware queuing. 

20 the second payload data together in the buffer. 
5. The method of claim 1, including sending an identifica­

tion of the TCP connection from the host computer to the 
network interface, the identification including the source and 
destination IP addresses and source and destination TCP 

25 ports that define the TCP connection, prior to checking 
whether the packets have certain exception conditions. The above-described system for protocol processing of 

data communication results in dramatic reductions in the time 
required for processing large, connection-based messages. 
Protocol processing speed is tremendously accelerated by 
specially designed protocol processing hardware as com­
pared with a general purpose CPU fUlllling conventional pro­
tocol software, and interrupts to the host CPU are also sub­
stantially reduced. These advantages can be provided to an 
existing host by addition of an intelligent network interface 
card (INIC) , or the protocol processing hardware may be 35 

integrated with the cpu. In either case, the protocol process­
ing hardware and CPU intelligently decide which device pro­
cesses a given message, and can change the allocation of that 
processing based upon conditions of the message. 

6. The method of claim 1, including comparing, by the 
network interface, the IP addresses and TCP ports of the 
packets with the source and destination IP addresses and 

30 source and destination TCP ports that define the TCP connec-
tion. 

7. The method of claim 1, wherein checking whether the 
packets have certain exception conditions includes checking 
whether the packets have a RST flag set. 

8. The method of claim 1, wherein checking whether the 
packets have certain exception conditions includes checking 
whether the packets have a SYN flag set. 

9. A method for network communication by a host com­
puter having a network interface that is connected to the host 

40 by an input/output bus, the method comprising: 
The invention claimed is: 
1. A method for network communication by a host com­

puter having a network interface that is connected to the host 
by an input/output bus, the method comprising: 

running, on the host computer, a protocol processing stack 45 

including an Internet Protocol (IP) layer and a Transmis­
sion Control Protocol (TCP) layer, with an application 
layer fUlllling above the TCP layer; 

initializing, by the host computer, a TCP connection that is 
defined by source and destination IP addresses and 50 

source and destination TCP ports; 
receiving, by the network interface, first and second pack­

ets, wherein the first packet has a first TCP header and 
contains first payload data for the application, and the 
second packet has a second TCP header and contains 55 

second payload data for the application; 
checking, by the network interface, whether the packets 

have certain exception conditions, including checking 
whether the packets are IP fragmented, checking 
whether the packets have a FIN flag set, and checking 60 

whether the packets are out of order; 
if the first packet has any of the exception conditions, then 

protocol processing the first TCP header by the protocol 
processing stack; 

if the second packet has any of the exception conditions, 65 

then protocol processing the second TCP header by the 
protocol processing stack; 

receiving, by the network interface, a first packet having a 
header including source and destination Internet Proto­
col (IP) addresses and source and destination Transmis­
sion Control Protocol (TCP) ports; 

protocol processing, by the host computer, the first packet, 
thereby initializing a TCP connection that is defined by 
the source and destination IP addresses and source and 
destination TCP ports; 

receiving, by the network interface, a second packet having 
a second header and payload data, wherein the second 
header has IP addresses and TCP ports that match the IP 
addresses and TCP ports of the TCP connection; 

receiving, by the network interface, a third packet having a 
third header and additional payload data, wherein the 
third header has IP addresses and TCP ports that match 
the IP addresses and TCP ports of the TCP connection; 

checking, by the network interface, whether the second and 
third packets have certain exception conditions, includ­
ing checking whether the packets are IP fragmented, 
checking whether the packets have a FIN flag set, and 
checking whether the packets are out of order; 

if the second packet has any of the exception conditions, 
then protocol processing the second packet by the host 
computer; 

if the third packet has any of the exception conditions, then 
protocol processing the third packet by the host com-
puter; 
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if the second and third packets do not have any of the 
exception conditions, then storing the payload data of 
the second and third packets together in a buffer of the 
host computer, such that the payload data is stored in the 
buffer in order and without any TCP header stored 5 

between the payload data of the second and third pack­
ets. 

10. The method of claim 9, including allocating the buffer 
by an application running on the host computer, prior to 
storing the payload data of the second and third packets 10 

together in the buffer. 
11. The method of claim 9, wherein storing the payload 

data of the second and third packets together in a buffer of the 
host computer is performed by a direct memory access 
(DMA) unit of the network interface. 15 

12. The method of claim 9, including accumulating the 
payload data of the second and third packets in a memory on 
the network interface, such that the payload data of the second 
and third packets is stored in the memory in order and without 
any TCP header stored between the payload data of the sec-
ond and third packets, prior to storing the payload data of the 
second and third packets together in the buffer. 

13. The method of claim 9, including sending an identifi­
cation of the TCP connection from the host computer to the 
network interface, the identification including the source and 
destination IP addresses and source and destination TCP 
ports that define the TCP connection, prior to checking 
whether the second and third packets have certain exception 
conditions. 

14. The method of claim 9, including comparing, by the 
network interface, the IP addresses and TCP ports of the 
second and third packets with the source and destination IP 
addresses and source and destination TCP ports that define 
the TCP connection. 

15. The method of claim 9, wherein checking whether the 
second and third packets have certain exception conditions 
includes checking whether the packets have a RST flag set. 

16. The method of claim 9, wherein checking whether the 
second and third packets have certain exception conditions 
includes checking whether the packets have a SYN flag set. 
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17. An ~p'paratus for network communication, the appara­

tus compnsmg: 
a host computer running a protocol stack including an 

Internet Protocol (IP) layer and a Transmission Control 
Protocol (TCP) layer, the protocol stack adapted to 
establish a TCP connection for an application layer run­
ning above the TCP layer, the TCP connection being 
defined by source and destination IP addresses and 
source and destination TCP ports; 

a network interface that is connected to the host computer 
by an input/output bus, the network interface adapted to 
parse the headers of received packets to determine 
whether the headers have the IP addresses and TCP ports 
that define the TCP connection and to check whether the 
packets have certain exception conditions, including 
whether the packets are IP fragmented, have a FIN flag 
set, or are out of order, the network interface having 
logic that directs any of the received packets that have 
the exception conditions to the protocol stack for pro­
cessing, and directs the received packets that do not have 
any of the exception conditions to have their headers 
removed and their payload data stored together in a 
buffer of the host computer, such that the payload data is 
stored in the buffer in order and without any TCP header 
stored between the payload data that came from different 
packets of the received packets. 

18. The apparatus of claim 17, wherein the buffer is con­
trolled by the application. 

19. The apparatus of claim 17, wherein the network inter­
face includes a direct memory access (DMA) unit that is 
adapted to store the payload data in the buffer. 

20. The apparatus of claim 17, wherein the network inter­
face includes a memory that is adapted to accumulate the 
payload data without any TCP header stored between the 
payload data that came from different packets of the received 
packets. 

21. The apparatus of claim 17, wherein the exception con­
ditions include having a RST flag set. 

22. The apparatus of claim 17, wherein the exception con­
ditions include having a SYN flag set. 

* * * * * 




