
United States Patent c191

Erickson et al.

[54] METHOD FOR PERFORMING SEQUENCE
OF ACTIONS IN DEVICE CONNECTED TO
COMPUTER IN RESPONSE TO SPECIFIED
VALUES BEING WRITTEN INTO SNOOPED
SUB PORTIONS OF ADDRESS SPACE

(75] Inventors: Gene R. Erickson; Douglas E.
Hundley, both of Poway; P. Keith
Muller; Curtis H. Stebley. both of San
Diego, all of Calif.

(73] Assignee: NCR Corporation. Dayton. Ohio

[21] Appl. No.: 577,678

(22] Filed: Dec. 21, 1995

[51] Int. CI.6
.. G06F 15/02

[52] U.S. CI. .. 3951829
[58] Field of Search 395/821, 823,

[56]

4,589,063
4,777,589
5.016,161
5,016,166
5,127,098
5,280,587
5,420,987
5,548,778
5,553,244
5,642,481
5,671,442

395/829, 832. 846, 882. 284, 309. 500.
473

References Cited

U.S. PPJENT DOCUMENTS

5/1986 Shah et al. 395/828
10/1988 Boetlner et al 395/823
5/1991 Van Loo et al. 395/678
5/1991 Van Loo et al 395/674
6/1992 Rosenthal et al 711/202
111994 Shimodaira et al. 395/880
5/1995 Reid et al 395/830
8/1996 Hirayama 395/823
9/1996 Norcross et al 395/280
6/1997 Pedrizetti 395/185.01
9/1997 Feeney et al 395/834

FOREIGN PPJENT DOCUMENTS

551148 7/1993 European Pat. Off ..

OTHER PUBLICATIONS

'The Performance of Message-Passing Using Restricted
Virtual Memory Remapping", by Shin-Yuan Tzou and
David P. Anderson. in Software-Practice & Experience, vol.
21(3). 251-267 (Mar. 1991).

I lllll llllllll Ill lllll lllll lllll lllll lllll lllll lllll lllll llllll Ill lllll llll
US005768618A

c111 Patent Number:

[451 Date of Patent:

5,768,618
Jun. 16, 1998

'The DASH Local Kemal Structure" by David P. Anderson
and Shin-Yuan Tzou, Report No. UCB/CSD 88/463. Nov. 7,
1988. Computer Science Division (EECS), University of
California, Berkeley 94720.

"A Users' Guide to PICL-A Portable Instrumented Com­
munication Library" By G.A. Geist et. al., Oak Ridge
National Laboratory, Mathematical Sciences Section. P.O.
Box 2009. Bldg. 9207-A. Oak Ridge, TN 37831-8083
(Aug. 1990).

"Architecture and Implementation of Vulcan" By Craig B.
Stunkel. et. al .• IBM Research Division. Yorktown Heights.
New York (Sep. 22. 1993).

"MPI-F: An MPI Prototype Implementation on IBM SPl"
by Hubertus Franke et. al.. pub. by IBM. T.J. Watson
Research Center. Yorktown Heights, New York 10598.

Primary Examiner-Moustafa M. Meky
Attorney, Agent, or Firm-Merchant. Gould. Smith. Edell.
Welter & Schmidt

[57] ABSTRACT

A method of controlling an input/output (I/0) device con­
nected to a computer to facilitate fast J/O data transfers. An
address space for the 1/0 device is created in the virtual
memory of the computer. wherein the address space com­
prises virtual registers that are used to directly control the
1/0 device. lo essence. control registers and/or memory of
the 1/0 device are mapped into the virtual address space. and
the virtual address space is backed by control registers
and/or memory on the J/O device. Thereafter, the J/O device
detects writes to the address space. As a result. a pre-defined
sequence of actions can be triggered in the 1/0 device by
programming specified values into the data written into the
mapped virtual address space.

19 Claims, 7 Drawing Sheets

TWO USER PROCESSES
VIRTUAL MEMORY W!TH

VIRTUAL HARDWARE

02 r-2

PHYSICAL MEMORY
ONi!OAo.i\f>"TER

DEVICE DRIVER
VIRTUAL M~MOAY
IN-KER~L

r--

--204

SINGLE PAGE

PER USER PROCESS
SECURE VIEW TO SINGLE PAGE

VIRTUAL HARDWARE

206

-
'.,__ ___ ___,

I

SENDER RECEIVER

FIG. 1 102 132

I APPLICATION I I APPLICATION I RS
~ 106 130 "-!..'.::

I USER BUFFER [- - - - I SOCKET LAYER (--- SYSTEM --~ SOCKETLAYER ~ - -- ------------1.:.......
. • - S2 1 . CALLINTERFACE --1 f R4 ------

104

~ • rJ').
•

;p
......
~ a

-108 126 ~

KERNAL
BUFFERING

--~~-

116

PROTOCOL
MODULES

110

INTERFACE l--112
DRIVER

114

I SS ~1 NETWORK MAC

CONVENTIONAL NETWORK INTERFACE

124 PROTOCOL
MODULES

122 --.J INTERFACE
DRIVER

120
118

R2 _

KERNAL
BUFFERING

NETWORK MAC I R1
I

CONVENTIONAL NETWORK INTERFACE

"""' $/"

"""' ~

g:
a
"""' e,
...:a

Ol
'I
~
QC
~
~
QC

TWO USER PROCESSES
VIRTUAL MEMORY WITH

VIRTUAL HARDWARE
r

i---t.

~

PER USER PROCESS

SECURE VIEW TO
VIRTUAL HARDWARE -,.

,.

,______

....._

I

FIG. 2

...

204

--
... --

I

I
I

I

I

/ I
I I

I I
/ I

I /

I

/ I
I I

I

I
I

I

I
I

I

'

PHYSICAL MEMORY
ON I I 0 ADAPTER

SINGLE PAGE

SINGLE PAGE

206

'
....

....
.....

.....

....

....

....
....

' '

....
.....

....
....

....
....

....
.....

208

.....

'

.....
.....

' '

....

....

DEVICE DRIVER
VIRTUAL MEMORY

IN KERNAL

~

'}""~~~~~~~~~~~~~~~~

~ • rJ1
•

~
~ a

~

~
.......
$"
.......

~

g;
a
N

~
-...)

Ut
'1
~
QC>
~
~
QC>

302"'\ 304 FIG. 3

FAST APPLICATION I I FAST APPLICATION

,- I [-- I

314

316 318

VIRTUAL HARDWARE 11 VIRTUAL HARDWARE

COMMODITY
INTERFACE

SETUP DRIVER

306 SLOW
APPLICATION

308 ---1 NORMAL
STREAMS

PROCESSING

310

312_-i I
1

PASS - THROUGH
DRIVER

320 __ __._ ______ .__ ____

PHYSICAL HARDWARE REGISTERS

322

Cj
•
00 •

~
'"""'· ~ a

~

~
!"'
~

g:
!
t..J

~
~

fJI
~

......)

="" ~
~

="" lo-'
~

U.S. Patent Jun. 16, 1998 Sheet 4 of 7

FIG. 4

408

402 DAI I FRONT END

DATA IS ROUTED
DIRECTLY TO

THE APPLICATION
TRADITIONAL 14---~

OS INTERFACE

406

5,768,618

FIG. 5

I
I

SOFTWARE
I MAIN MEMORY I

REGISTER I
I
I

5oa7
I

HARDWARE RI W I

APPLICATION RO I
APPLICATION R I W I

HARDWARE RO I
I

~---------------------~

HARDWARE
REGISTER

\.504

~--------------

(506 (510

BUFFER PHYSICAL ADDRESS
POOL BUFFER MAP

502

ADAPTER MEMORY 512

ENDPOINT TABLE
(516

INDEXED BY PROTOCOL
APPLICATION ID SCRIPTS

(514

~ ENDPOINT
PROTOCOL DATA

OS DRIVER RI W
\.s1a HARDWARE RO

~ • rJJ.
•
~ = ~ a

w -.?--~
00
=-!!.
(l'I

~
....:i

Ol
'4

.....i
="' QC

'4

="' ~
QC

U.S. Patent Jun. 16, 1998 Sheet 6 of 7 5,768,618

FIG. 6
Hex Dec
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
a 10
b 11
c 12
d 13
e 14
f 15

10 16
11 17
12 18
13 19
14 20
15 21
16 22
17 23
18 24
19 25
1a 26
1b 27
1c 28
1d 29
1e 30
1f 31
20 32
21 33
22 34
23 35
24 36
25 37
26 38
27 39
28 40
29 41
2a 42

Ethernet
Header
(14 bytes)

604

IP
Header
(20 bytes)

606

UDP
Header
(8 bytes)

608

User 610
Data
(Variable)

1602

01 Target Ethernet Address
02 (6 bytes)
03
04
05
06
07 Source Ethernet Address
08 (6 bytes)
09
Oa
Ob
Oc
08 Protocol Type (OxOBOO =IP)
00
45 Version = 4. IP Header Len (Words) = 5
00 Service Tvoe

-----~~.=.;;_~.;;._~~.,.--~~--:--=""""'"..,.---,..-~

' 00 ' Total Length= Ox001d (29 bytes: 20-byte IP Header
1d olus 8-bvte UDP header olus 1-bvte user data)
eO Datagram Id= Oxe0a1
a1
40
00
40
11
da
1b

Flag Ox4 DO_NOT _FRAGMENT
Fraament Offset= OxOOO
Time-to-Live = Ox40
IP Protocol= Ox11 (UDP)
IP Header Checksum= Oxda1b

80 IP Address of Source= 128.1.192. 7
01
co
07
80 IP Address of Destination = 128.1.192.8
01
co
08
00 Source Port= Ox0007 (echo datagram)
07
30 Destination Port = Ox3018
18
00 UDP Length= Ox0009 (8-byte UDP Header plus
09 1-bvte user data)
Oc UDP Checksum = Ox0cf8

1----1

f 8
67 1 byte user datagram.= "g"

U.S. Patent Jun. 16, 1998 Sheet 7 of 7 5,768,618

FIG. 7
Hex Dec I 702

0 0 Ethernet 01 Target Ethernet Address
1 1 Header 02 (6 bytes)
2 2 (14 bytes) 03
3 3 04
4 4 05
5 5 06
6 6 07 Source Ethernet Address
7 7 08 (6 bytes)
8 8 704 09 -
9 9 Oa
a 10 Ob
b 11 De
c 12 08 Protocol Type (Ox0800 =IP)
d 13 00
e 14 IP 45 Version= 4 IP Header Len (Words)= 5
f 15 Header - _0,9_ Service Tvoe

10 16
11 17

(20 bytes) I • Total Length
I I
I I

12 18
13 19

I • Datagram Id
I I ·- -- -14 20 40 Flag Ox4 DO_NOT _FRAGMENT

15 21 00 F raament Offset = OxOOO
16 22 40 Time-to-Live = Ox40
17 23
18 24
19 25

706
11 IP Protocol = Ox11 (UDP) --- -- I • IP Header Checksum

I I ·- ---1a 26 80 IP Address of Source = 128.1.192. 7
1b 27 01
1c 28 co
1d 29 07
1e 30 80 IP Address of Destination = 128.1.192.8
1f 31 01
20 32 co
21 33 08
22 34 UDP 00 Source Port= Ox0007 (echo datagram)
23 35 Header 07
24 36 (8 bytes) 30 Destination Port = Ox3018
25 37 18 ----26 38
27 39

I I UDP Length
708 I I - I I

28 40
29 41

I • UDP Checksum
I I ,_ --- I

5,768,618
1

METHOD FOR PERFORMING SEQUENCE
OF ACTIONS IN DEVICE CONNECTm TO
COMPUTER IN RESPONSE TO SPECIFIED
VALUES BEING WRITTEN INTO SNOOPm

2
space for the I/O device is created in the virtual memory of
the computer, wherein the address space comprises virtual
registers that are used to directly control the I/O device. In
essence, control registers and/or memory of the I/O device

SUB PORTIONS OF ADDRESS SPACE

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates in general to computer input/output
(I/O) device interfaces, and in particular. to a method of
using virtual registers to directly control an 110 device
adapter to facilitate fast data transfers.

5 are mapped into the virtual address space, and the virtual
address space is backed by control registers and/or memory
on the 110 device. Thereafter. the 110 device detects writes
to the address space. As a result. a pre-defined sequence of
actions can be triggered in the I/O device by programming

10 specified values into the data written into the mapped virtual
address space.

2. Description of Related Art

Modern computer systems are capable of running mul- 15

tiple software tasks or processes simultaneously. In order to
send information to a software process or receive informa­
tion from a software process. an input/output (110) device
interface is typically used. An I/O device interface provides
a standardized way of sending and receiving information. 20

and hides the physical characteristics of the actual I/O
device from the software process. Software processes which
use I/O device interfaces are typically easier to program and
are easier to implement across multiple types of computers
because they do not require knowledge or support for 25

specific physical 110 devices.

An I/O device interface is typically implemented by a
software program called an 110 device driver. The I/O device
driver must take information coming from an external
source. such as a local area network. and pass it along to the 30

appropriate software process. Incoming data is frequently
buffered into a temporary storage location in the device
driver's virtual address space (VAS). where it subsequently
copied to the VAS of the user process during a separate step.

However. as recent advances in communication technol- 35

ogy have rapidly increased the bandwidth of many I/O
devices. the copying step from the device 110 driver's VAS
to the user process' VAS represents a potential bottleneck.
For instance, the bandwidth for fiber optic link lines is now

40 typically measured in gigabits per second. This tremendous
bandwidth creates a problem when information is copied
within the computer. When information is copied. all data
passes through the computer processor. memory. and inter­
nal data bus several times. Therefore. each of these compo-

45 nents represents a potential bottleneck which will limit the
ability to use the complete communications bandwidth. 110
latency and bandwidth are impaired by this standard pro­
gramming paradigm utilizing intermediate copying.

BRIEF DESCRIPI10N OF THE DRAWINGS

FlG. 1 is a :flow diagram illustrating a conventional I/O
data :flow between a sender and a receiver;

FIG. 2 is a block diagram illustrating a virtual hardware
memory organization compatible with the present invention;

FlG. 3 is a :flow diagram describing the system data :flow
of fast and slow applications compatible with the present
invention;

FIG. 4 is a block diagram describing direct application
interface (DAI) and routing of data between processes and
an external data connection which is compatlble with the
present invention;

FlG. 5 is a block diagram illustrating the system organi­
zation between a main memory and an I/O device adapter
memory which is compatible with the present invention;

FlG. 6 is a block diagram illustrating a typical Ethernet­
based UDP datagram sent by a user process; and

FlG. 7 is a block diagram illustrating a UDP datagram
header template in the I/O device adapter's memory.

DEfAIIED DESCRIPTION OF THE
PREFERRED EMBODIMENT

In the following description of the preferred embodiment.
reference is made to the accompanying drawings which
form a part hereof. and in which is shown by way of
illustration a specific embodiment in which the invention
may be practiced. It is to be understood that other embodi­
ments may be utilized and structural changes may be made
without departing from the scope of the present invention.

Programming an input/output (110) device typically
involves a user software process making a call to the
operating system. This involves a context switch that swaps
information in system registers and memory in order to
process incoming data. Further. in many environments. the
routing of I/O data also entails one or more memory-to­
memory copies of the data before the physical I/O occurs on
the actual device. It will be recognized that I/O latency and
bandwidth are impaired by invoking the operating system
through the use of an exception handler. as well as by
performing multiple memory-to-memory copies of the data.

The present invention provides the capability for multiple

In addition. programming an 110 device driver usually 50
involves a user process making an operating system call.
which involves a context switch from the user process to the
operating system. This context switch further inhibits the
ability of computer systems to handle a high 1/0 data
bandwidth. 55 user processes in a single computing node to simultaneously

share direct access to an I/O device without the intervention
of the operating system for each data transfer as it occurs.
Further. the present invention is structured to accommodate
system and I/O device security by using the operating

Therefore. there is a need for multiple user processes in a
single computing node to be able to simultaneously share
direct access to an I/O device without intervention of the
operating system on a per I/O basis.

SUMMARY OF THE JNVENITON

To overcome the limitations in the prior art described
above. and to overcome other limitations that will become
apparent upon reading and understanding the present
specification, the present invention discloses a method of
controlling an input/output (I/O) device connected to a
computer to facilitate fast 110 data transfers. An address

60 system to initialize the virtual memory address space for the
user process. In addition. the number of simultaneous user
processes is scalable and is not constrained by the number of
physical registers within the I/O device. This is implemented
by mapping a small portion of the memory of the I/O device

65 directly into the virtual address space of the user process.
which provides a secure way for the user process to directly
trigger the execution of a prepared I/O script.

INTEL Ex.1005.009

5,768,618
3 4

Thus, it will be recognized that the present invention setting or "spanking" the J/O control registers in 210. 212,
increases the efficiency of J/O operations in the following which in turn causes the execution of the script.
ways: The memory mapping must be typically performed in

1. Writing information to and from a user address space increments of the page size for the particular system or
without intermediate memory-to-memory copies. 5 environment. Allocating memory in increments of the page

2. Accessing an JIO device simultaneously from multiple size allows each user process to have a virtual hardware
user processes in a single node. space 210. 212 that is secure from all other processes which

3. Eliminating calls to the operating system and the might be sharing the same J/O device adapter. This security
associated context switches on a per J/O basis. between software processes is maintained by the operating

IO system in conjunction with virtual memory capabilities
4. Maintaining system security for the J/O device by using offered by most processors.

the operating system to initialize the virtual memory Each user process creates a memory mapping by perform-
address space of the user process. ing an operating system request to open the J/O device

5. Accessing the J/O device under the full control of the adapter for access. Having the operating system create the
resource allocation policies and permissions granted by 15 virtual memory address space allows the operating system
the operating system. and J/O device driver to grant only very specific capabilities

6. Working with a plurality of well-known standard to the individual user process.
operating systems including. but not limited to, UNIX. A script is prepared by the operating system for the J/O
OS/2. Microsoft Windows, Microsoft Windows Nf. or device adapter to execute each time the specific user process
Novell Netware. 20 programs its specific virtual hardware. The user process is

7. Providing low-latency high-performance control of J/O given a virtual address in the user process' address space that
devices. allows the user process very specific access capabilities to

FlG. 1 is a flow diagram illustrating a conventional J/O the J/O device adapter.
data flow between a sender and a receiver. At 102. a sender Virtual hardware is also referred to as virtual registers.
application sends information across the memory bus to a 25 Virtual registers are frequently used to describe the view
user buffer 104. which in turn is then read back across the which a single user process has of the addressable registers
memory bus by protocol modules 110. The information is of a given J/O device adapter.
subsequently buffered through the operating system kernel Maintaining security between multiple software processes
108 before it is sent out through conventional network is important when sharing a single IJO device adapter. If the
interface 114 to the network media access control (MAC) 30 JJO device adapter controls a network interface. such as an
116. It will be noted that in this system model. the data Ethernet device. then the access rights granted to the user
makes at least three trips across the memory bus at S2. S3 process by the operating system could be analogous to a
and SS. For the receiving application. the steps are reversed Transmission Control Protocol (TCP) address or socket.
from those of the sender application, and once again the data A TCP socket is defined by a communications transport
makes at least three trips across the memory bus at RI. R4, 35 layer and defines a set of memory addresses through which
and RS. communication occurs. These transport address form a

FlG. 2 is a block diagram illustrating a virtual hardware network-wide name space that allows processes to commu-
memory organization compatible with the present invention. nicate with each other. A discussion of the form and structure
J/O device adapters on standard I/O buses, such as ISA, of TCP sockets and packets, which are well-known within
EISA. MCA. or PCI buses. frequently have some amount of 40 the art, may be found in many references. including Com-
memory and memory-mapped registers which are address- puter Networks by Andrew S. Tanenbaum. Prentice-Hall,
able from a device driver in the operating system. User New Jersey. 1981. pp. 326-327. 373-377. which is herein
processes 202. 204 cause J/O operations by making a request incorporated by reference.
of the operating system which transfers control to the device Typically, the only capability to which the user process
driver. The sharing of a single I/O device adapter by multiple 45 can get direct access is to send and receive bytes over a
user processes is managed by the device driver running in specified socket or transport address range. The user process
the kernel. which also provides security. is not necessarily given permission to emit any arbitrary

The present invention maps a portion of memory 206, packet on the media (e.g .. an Ethernet network). It will be
physically located on the J/O device adapter into a device recognized by those skilled in the art that the present
driver's address space 208. The present invention also maps 50 invention applies not only to Ethernet or other interconnect
sub-portions. e.g., pages, 210, 212. of the J/O device adapt- communication devices. but also to almost any J/O device
er's memory 206 into the address spaces for one or more adapter in use by a multi-user operating system.
user processes 202. 204, thereby allowing the user processes FIG. 3 is a flow diagram describing the system data flow
202. 204 to directly program the I/O device adapter without of fast and slow applications 302. 304. and 306 compatible
the overhead of the operating system. including context 55 with the present invention. A traditional slow application
switches. Those skilled in the art will recognize that the 306 uses normal streams processing 308 to send information
sub-portions 210, 212 may be mapped directly from the J/O to a pass-through driver 310. The pass-through driver 310
device adapter's memory 206, or that the sub-portions 210. initializes the physical hardware registers 320 of the J/O
212 may be mapped indirectly from the J/O device adapter's device adapter 314 to subsequently transfer the information
memory 206 through the device driver's address space 208. 60 through the J/O device adapter 314 to the commodity

The UO device adapter subsequently snoops the virtual interface 322. With the present invention, fast user applica-
address space 210. 212 to detect any reads or writes. If a read tions 302 and 304 directly use a setup driver 312 to initialize
or write is detected. the JJO device adapter performs a the physical hardware registers 320. then send the informa-
specific predefined script of actions. frequently resulting in tion directly through the J/O device adapter 314 to the
an J/O operation being performed directly between the user 65 commodity interface 322 via virtual hardware 316 and 318.
process' address space 202. 204 and the UO device adapter. Thus. the overhead of the normal streams processing 308
The user process triggers the execution of the script by and pass-through driver 310 are eliminated with the use of

5,768,618
5 6

the virtual hardware 316 and 318 of the present invention, Typically. when a user process opens a device driver, the
and fast applications 302 and 304 are able to send and process specifies its type. which may include, but is not
receive information more quickly than slow application 306. limited to. a UDP datagram, source port number, or register
As a result. the present invention provides higher bandwidth, address. The user process also specifies either a synchronous
less latency. less system overhead. and shorter path lengths. 5 or asynchronous connection. The device driver sets up the

FIG. 4 is a block diagram describing a direct application registers 508 and 504, endpoint table 514. and endpoint
interface (DAI) and routing of data between processes and protocol data 518. The protocol script 516 is typically based
an external data connection which is compatible with the upon the endpoint data type. and the endpoint protocol data
present invention. Processes 402 and 404 transmit and 518 depends 00 protocol specific data.
receive information directly to and from an interconnect 410 10 The preferred embodiment of the present invention may
(e.g .. I/O device adapter) through the DAI interface 408. The be further enhanced by utilizing read-local. write-remote
information coming from the interconnect 410 is routed
directly to a process 402 or 404 by use of virtual hardware memory access. A user process typically causes a script to
and registers. rather than using a traditional operating sys- execute by using four virtual registers, which include
tern interface 406. STARl1NGADDRESS. LENGfH. GO. and STATUS. The

Conceptually, the present invention may be thought of as 15 user process preferably first writes information into memory
providing each user process with its own I/O device adapter, at the locations specified by the values in the STAR11N-
which makes the user process and I/O device adapter GADDRESS and LENGTH virtual registers. Next, the pro-
logically visible to each other. The user process initiates a cess then accesses the GO virtual register to commence
data transfer directly through a write to memory. thereby execution of the script. Finally. the user process accesses or
avoiding the overhead processing which would be incurred 20 polls the STATUS virtual register to determine information
if the operating system were used to service the data transfer about the operation or completion of this 110 request.
request. The user process determines the status of the data It will be recognized that if all four registers are located
transfer through a memory read. The operating system and in memory on the 110 device adapter. then less than optimal
110 device adapter remain free to allocate virtual hardware performance may result if the user process frequently polls
resources as needed. despite the presence of multiple user 25 the STATUS virtual register. It is possible to improve the
processes. performance of the present invention by implementing a

An I/O device adapter typically can have an arbitrary read-local, write-remote strategy. With such a strategy. the
amount of random access memory (RAM) ranging from present invention stores values which are likely to be read in
several hundred kilobytes to several megabytes, which may locations which are closest to the reading entity. whereas
be used for mapping several user processes in a single 30 values which are likely to be written are stored in locations
communications node. Each user process that has access to which are farthest away from the writing entity. This results
the virtual hardware is typically assigned a page-sized area in values which are likely to be read by the user process
of physical memory on the I/O device adapter. which is then being stored in cacheable main memory. and thus minimizes
mapped into the virtual address space of the user process. the time required to access the cached values. Values which
The 110 device adapter typically is implemented with snoop- 35 are likely to be read by the 110 device adapter are stored in
ing logic to detect accesses within the page-sized range of the non-cacheable memory on the I/O device adapter. Thus.
memory on the I/O device adapter. If the 110 device adapter the registers STARTINGADDRESS. LENGTH. and GO are
detects access to the physical memory page. a predefined physically located preferably in the non-cacheable memory
script is then executed by the 110 device adapter in order to on the I/O adapter, whereas the STATUS register is prefer-
direct the data as appropriate. 40 ably located in a page of cacheable main memory mapped

Protocol scripts typically serve two functions. The first into the user process' virtual address space.
function is to describe the protocol the software application FIG. 6 is a block diagram illustrating a UDP datagram 602
is using. This includes but is not limited to how to locate an sent by a user process over Ethernet media. However. those
application endpoint. and how to fill in a protocol header skilled in the art will recognize that the invention is appli-
template from the application specific data buffer. The 45 cable to UDP datagrams. LAN protocols. secondary storage
second function is to define a particular set of instructions to devices such as disks, CDROMs. and tapes. as well as other
be performed based upon the protocol type. Each type of access methods or protocols.
protocol will have its own script. Types of protocols include. The example of FIG. 6 shows the actual bytes of a sample
but are not limited to. TCP/IP, UDP/IP, BYNEf lightweight UDP datagram 602 as it might be transmitted over an
datagrams. deliberate shared memory, active message 50 Ethernet media. There are four separate portions of this
handler. SCSL and File Channel Ethernet packet: (1) Ethernet header 604, (2) IP header 606.

FIG. 5 is a block diagram illustrating the system organi- (3) UDP header 608, and (4) user data 610. All of the bytes
zation between a main memory and an 110 device adapter are sent contiguously over the media. with no breaks or
memory which is compatible with the present invention. The delineation between the constituent fields. followed by suf-
main memory 502 implementation includes a hardware 55 ficient pad bytes on the end of the datagram 602. if neces-
register 504 and a buffer pool 506. The 110 device adapter sary.
implementation includes a software register 508 and a In the present application. the access privileges given to
physical address buffer map 510 in the adapter's memory the user processes are very narrow. Each user process has
512. An endpoint table 514 in the memory 512 is used to basically pre-negotiated almost everything about the data-
organize multiple memory pages for individual user pro- 60 gram 602. except the actual user data 610. This means most
cesses. Each entry within the endpoint table 514 points to of the fields in the three header areas 604. 606. and 608 are
various protocol data 518 in the memory 512 in order to predetermined.
accommodate multiple communication protocols, as well as In this example, the user process and the device driver has
previously defined protocol scripts 516 in the memory 512. pre-negotiated the following fields from FIG. 6: (1) Ethernet
which indicate how data or information is to be transferred 65 Header 604 (Target Ethernet Address. Source Ethernet
from the memory 512 of the I/O device adapter to the Address. and Protocol Type); (2) IP Header 606 (Version, IP
portions of main memory 502 associated with a user process. header Length. Service Type. Flag. Fragment Offset, Time_

5,768.618
7

to_Llve. IP Protocol. IP Address of Source. and IP Address
of Destination); and (3) UDP Header 608 (Source Port and
Destination Port). Only the shaded fields in FIG. 6, and the
user data 610. need to be changed on a per-datagram basis.

To further illustrate the steps performed in accordance
with the present invention. assume that the user processes
has initiated access to the J/O device adapter via the methods
described in this disclosure. Further. assume that the user
process has the user data 610 of the datagram 602 resident
in its virtual address space at the locations identified by the
values in the USERDATA_ADDRFSS and USERDATA_
LENGTH variables. Also. assume that the address for the
virtual registers 210. 212, 316. 318. or 508 in the memory of
the adapter are stored in the pointer "vhr_p" (virtual hard­
ware remote pointer) and the address for the control infor­
mation in the virtual address space of the user process 504
is stored in the pointer "vhl_p" (virtual hardware local
pointer).

An example of user process programming that triggers the
J/O device adapter is set forth below:

senduserdatagram (void *USERD..uA__ADDRESS,
int USERDXfA_LENG1H)

I* wait till adapter available */
{
while (vhl_p->STATIJS != IDIE) { };

vhr_p->STARTINGADDRESS = USERDATA....ADDRESS;
vhr_p->LENGIH = USERDAIA_LENG1H

I* trigger adapter */
vhr_p->GO

I* wait till adapter completes •/
while (vhLp->STATIJS = BUSY) {};
}

=I;

Those skilled in the art will also recognize that the
"spanking" of the vhr_p~GO register. i.e .. by setting its
value to 1. could be combined with the storing of the length
value into the vhr_p~LENGTH register to reduce the
number of YO accesses required.

FIG. 7 is a block diagram illustrating a UDP datagram
template 702 (without a user data area) residing in the YO
device adapter's memory. The user process provides the
starting address and the length for the user data in its virtual
address space. and then "spanks" a GO register to trigger the
J/O device adapter's execution of a predetermined script.
The YO device adapter stoces the user data provided by the
user process in the YO device adapter's memory. and then
transmits the completed UDP datagram 702 over the media

An example of programming that triggers the YO device
adapter is provided below:

udpscript (void *USERDA.TA_ADDRESS,
int USERDATA_LENGIH,

template_! •template)
{
char •physaddress;
template->IP.Tota!Lcngth = sizeof (IPHeader) +

sizeof(UDPHeader) + USERDATA..J..ENGTH;
template->IP .DatagramID = nextid() ;
ipchecksum (template) ;
template->UDE'Lellgth = sizeof (UDPHeader)

+ USERDAIA_LENG1H;
physaddress = vtophys (USERDATA-ADDRESS,

USERDAIA_LENGTH) ;
udpchecksum (physaddress, USERDATA_LENGlH, template);
}

8
memory. This information quite likely varies from datagram
602 to datagram 602. The script is also passed the appro­
priate datagram 702 template based on the specific software
register (508 in FIG. 5 or 316 in FIG. 3). There are different

5 scripts for different types of datagrams 702 (e.g .• UDP or
TCP). Also, the script would most likely make a copy of the
datagram 702 template (not shown here). so that multiple
datagrams 602 for the same user could be simultaneously in
transit.

10 Within the udpscript procedure described above. the
nextid() function provides a monotonically increasing
16-bit counter required by the IP protocol. The
ipchecksum() function performs a checksum for the IP
Header 706 portion of the datagram 702. The vtophys()

15 function performs a translation of the user-provided virtual
address into a physical address usable by the adapter. In all
likelihood. the adapter would have a very limited know ledge
of the user process' virtual address space, probably only
knowing how to map virtual-to-physical for a very limited

20 range. maybe as small as a single page. Pages in the user
process• virtual address space for such buffers would need to
be fixed. The udpscript procedure would need to be
enhanced if the user data were allowed to span page bound­
aries. The udpchecksum() procedure generates a checksum

25 value for both the UDP Header 708 plus the user data (not
shown).

The adapter would not want to be forced to access the user
data twice over the J/O bus, once for the calculation per­
formed by the udpchecksum() function. and a second time

30 for transmission over the media. Instead, the adapter would
most likely retrieve the needed user data from the user
process• virtual address space using direct memory access
(DMA) into the main memory over the bus and retrieving
the user data into some portion of the adapter's memory.

35 where it could be referenced more efficiently. The program­
ming steps performed in the udpscript() procedure above
might need to be changed to reflect that.

There are many obvious implementation choices. and the
programming in the udpscript() procedure is not meant to be

40 exhaustive. For example. a script could allow the user to
specify a different UDP target port, or a different destination
IP address. There are performance and security tradeoffs
based upon the more options offered to the user process. The
example given herein is intended merely to demonstrate the

45 essence of this invention. and not to be exhaustive.
In summary, the present invention discloses a method of

using virtual registers to directly control an J/O device
adapter to facilitate fast data transfers. The method initial­
izes a socket endpoint for a virtual register memory con-

50 nection within an YO adapter's main memory. Incoming
data is then written to the virtual memory and detected by
polling or "snooping" hardware. The snooping hardware.
after detecting the write to virtual registers. generates an
exception for the system bus controller. The bus controller

55 then transfers the data to the J/O device adapter and initiates
the registers of the J/O device adapter to execute a prede­
termined script to process the data

The preferred embodiment of the present invention typi­
cally implements logic on the J/O device adapter to translate

60 a read or write operation to a single memory address so that
it causes the execution of a predetermined script. Such a
script may also be dynamically modified to accommodate
environment characteristics such as the memory location or
the size of the YO device adapter's address space.

The script that executes the above function provides the 65

USERDATA_ADDRESS and USERDATA_LENGTH
which the user process programmed into the adapter's

n will be recognized by those skilled in the art that using
the virtual hardware implementation of the present invention
does not preclude a user process from simultaneously using

5,768,618
9

a standard device driver on the same I/O device adapter. That
is. a user process can use the virtual hardware of the present
invention to provide a direct streamlined path to a given I/O
device adapter, while standard slower access to the I/O
device adapter is concurrently provided to other user pm­
cesses within the same system by normal streams or other
device drivers.

Those skilled in the art will also recognize that the present
invention is applicable to any I/O device adapter that has a
memory and is not limited to network adapters. The appli­
cation cited in the present specification is for illustrative
purposes only and is not intended to be exhaustive or to limit
the invention to the precise form disclosed.

In addition. those skilled in the art will recognize that the
present invention is applicable to systems with dilferent
configurations of devices and components. The example
configurations of devices and components cited in the
present specification are provided for illustration only.

In conclusion. the foregoing description of the preferred
embodiment of the invention has been presented for the
purposes of illustration and description. It is not intended to

10
6. The method as set forth in claim 1 above. wherein the

predefined sequence of actions in the 110 device is repre­
sented by a script.

7. The method as set forth in claim 1 above, wherein the
5 triggering step further comprises the step of the triggering

the predefined sequence of actions in the 110 device by
programming specified values into the data written into the
snooped sub-portions of the address space, wherein the
specified values are stored into control registers in the 110

10 device.
8. The method as set forth in claim 1 above, further

comprising the step of opening the I/O device for access,
wherein the opening step further comprises the step of
creating the sub-portions of the address space in the memory

15 in the computer.
9. The method as set forth in claim 1 above, wherein the

address space is a noncontiguous space.
10. A method of controlling an input/output (YO) device

connected to a computer to facilitate fast YO data transfers.
20 comprising the steps of:

be exhaustive or to limit the invention to the precise form
disclosed. Many modifications and variations are possible in
light of the above teaching. It is intended that the scope of
the invention be limited not by this detailed description. but 25

rather by the claims appended hereto.

(a) snooping an address space for the 110 device in a
memory of the computer, wherein the address space is
comprised of a plurality of sub-portions, each of which
sub-portions maps to a different process executed by
the computer, and the snooping step comprises detect­
ing data being read and written into the snooped

What is claimed is:
1. A method of controlling an input/output (I/0) device

connected to a computer to facilitate fast I/O data transfers,
comprising the steps of:

(a) creating an address space for the YO device in a
memory of the computer, wherein the address space is
comprised of a plurality of sub-portions. each of which
sub-portions maps to a different process executed by
the computer. and each of which sub-portions is
snooped by the YO device;

(b) reading and writing data for the J/O device into the
snooped sub-portions of the address space in the
memory. wherein the YO device detects the reading and
writing of the data into the snooped sub-portions of the
address space; and

(c) triggering a predefined sequence of actions in the YO
device by programming specified values into the data
written into the snooped sub-portions of the address
space.

2. The method as set forth in claim 1 above. wherein the
address space in the memory of the computer is reserved for
a device driver for the 110 device.

3. The method as set forth in claim 1 above, further
comprising the step of mapping at least a portion of the 110
device's memory into the address space in the memory of
the computer.

30

sub-portions of the address space; and
(b) performing a predefined sequence of actions in the YO

device in response to specified values being written into
the snooped sub-portions of the address space.

11. The method as set forth in claim 10 above. further
comprising the step of programming the YO device by
altering the specified values being written into the snooped

35
sub-portions of the address space.

12. The method as set forth in claim 10 above. wherein the
address space in the memory of the computer is reserved for
a device driver for the 110 device.

13. The method as set forth in claim 10 above, further

40
comprising the step of mapping at least a portion of the 110
device's memory into the address space in the memory of
the computer.

14. The method as set forth in claim 13 above, wherein the
mapping step further comprises the step of mapping one or

45
more pages of the 110 device's memory into the address
space in the memory in the computer.

15. The method as set forth in claim 13 above. further
comprising the step of securing the mapped portion of the
memory from processes executed by the computer.

50
16. The method as set forth in claim 10 above, wherein the

4. The method as set forth in claim 3 above, wherein the
mapping step further comprises the step of mapping one or

55
more pages of the YO device's memory into the address
space in the memory in the computer.

predefined sequence of actions comprises an 110 operation.
17. The method as set forth in claim 10 above. wherein the

predefined sequence of actions is represented by a script.
18. The method as set forth in claim 10 above. wherein the

performing step further comprises the step of the storing the
specified values into control registers in the 110 device.

19. The method as set forth in claim 10 above, wherein the
5. The method as set forth in claim 3 above. further

comprising the step of securing the mapped portion of the
memory from processes executed by the computer.

address space is a noncontiguous space.

* * * * *

