
not

the
be

~ith

3a

24.2

TCP: Transmission Control

Protocol

Introduction

The Transmission Control Protocol, or TCP, provides a connection-oriented, reliable,
byte-stream service between the two end points of an application. This is completely
different from UDP’s connectionless, unreliable, datagram service.

The implementation of UDP presented in Chapter 23 comprised 9 functions and
about 800 lines of C code. The TCP implementation we’re about to describe comprises
28 functions and almost 4,500 lines of C code. Therefore we divide the presentation of
TCP into multiple chapters.

These chapters are not an introduction to TCP. We assume the reader is familiar
with the operation of TCP from Chapters 17-24 of Volume 1.

Code Introduction

The TCP functions appear in six C files and numerous TCP definitions are in seven
headers, as shown in Figure 24.1.

Figure 24.2 shows the relationship of the various TCP functions to other kernel
functions. The shaded ellipses are the nine main TCP functions that we coven Eight of
these functions appear in the TCP protosw structure (Figure 24.8) and the ninth is
tcp_output.

795

796 TCP: Transmission Control Protocol Chapter

~le

netinet/tcp.h
netinet/tcp_debug.h
netinet/tcp_fsm.h
netinet/tcp_seq.h
netinet/tcp_timer.h
netinet/tcp_var.h
netinet/tcpip.h

netinet/tcp_debug-c
netinet/tcp_input.c
netinet/tcp_output.c
netinet/tcp_subr.c
netinet/tcp_timer.c
netinet/tcp_usrreq.c

Description

tcphdr structure definition
t cp_debug structure definition
definitions for TCP’s finite state machine
macros for comparing TCP sequence numbers
definitions for TCP timers
t cpcb (control block) and tcp s t a t (statistics) structure definitions
TCP plus IP header definition

support for SO_DEBUG socket debugging (Section 27.10)
t cp_input and ancillary functions (Chapters 28 and 29)
tcp_output and ancillary functions (Chapter 26)
miscellaneous TCP subroutines (Chapter 27)
TCP timer handling (Chapter 25)
PRU xxx request handling (Chapter 30)

Figure 24.1 Files discussed in the TCP chapters.

system initialization

socket
receive buffer

software interrupt

various
system calls

_ D

getsockopt
setsockopt

Figure 24.2 Relationship of TCP functions to rest of the kernel.

¯ Section 24

Global

Statist

-~hapter 24

tions

,ckopt
ckopt

n 24.2 Code Introduction 797

}lobal Variables

Figure 24.3 shows the global variables we encounter throughout the TCP functions.

Variable

tcb
tcp_last_inpcb

tcpstat

tcp. outflags

tcp_recvspace
tcp_sendspace

tcp. iss

tcprexmtthresh

tcp_mssdflt
tcp rttdflt

tcp do rfc1323
tcp now

tcp_keepidle
tcp_keepintvl

tcp maxidle

Datatype

struct inpcb
struct inpcb *

struct tcpstat

u_char
u_long
u_long

tcp_seq

int

int
int

int
u_long

int
int

int

Description

head of the TCP Internet PCB list
pointer to PCB for last received segment: one-behind cache
TCP statistics (Figure 24.4)
array of output flags, indexed by connection state (Figure 24.16)
default size of socket receive buffer (8192 bytes)
default size of socket send buffer (8192 bytes)
initial send sequence number (ISS)
number of duplicate ACKs to trigger fast retransmit (3)
default MSS (512 bytes)
default RTT if no data (3 seconds)
if true (default), request window scale and timestamp options
500 ms counter for RFC 1323 timestamps
keepalive: idle time before first probe (2 hours)
keepalive: interval between probes when no response (75 sec)

(also used as timeout for connect)
keepalive: time after probing before giving up (10 min)

Figure 24.3 Global variables introduced in the following chapters.

Statistics

Various TCP statistics are maintained in the global structure tcpstat, described in Fig-
ure 24.4. We’ll see where these counters are incremented as we proceed through the
code.

Figure 24.5 shows some sample output of these statistics, from the netstat -s
command. These statistics were collected after the host had been up for 30 days. Since
some counters come in pairs--one counts the number of packets and the other the
number of bytes--we abbreviate these in the figure. For example, the two counters for
the second line of the table are tcps_sndpack and tcps_sndbyte.

The counter for tcps_sndbyte should be 3,722,884,824, not -22,194,928 bytes. This is an
average of about 405 bytes per segment, which makes sense. Similarly, the counter for
tcps_rcvackbyte should be 3,738,811,552, not -21,264,360 bytes (for an average of about 565
bytes per segment). These numbers are incorrectly printed as negative numbers because the
printf calls in the netstat program use %d (signed decimal) instead of %lu (long integer,
unsigned decimal). All the counters are unsigned long integers, and these two counters are
near the maximum value of an unsigned 32-bit long integer (232 - 1 = 4, 294, 967, 295).

798 TCP: Transmission Control Protocol
Chapter 24

tcpstat member

tcps_accepts
tcps_closed
tcps_connattempt
tcps_conndrops
tcps_connects
tcps_delack
tcps_drops
tcps_keepdrops
tcps_keepprobe
tcps_keeptimeo
tcps_pawsdrop
tcps_pcbcachemiss
tcps_persisttimeo
tcps~redack
tcps_preddat
tcps_rcvackbyte
tcps_rcvackpack
tcps_rcvacktoomuch
tcps_rcvafterclose
tcps_rcvbadoff
tcps_rcvbadsum
tcps_rcvbyte
tcps_rcvbyteafterwin
tcps_rcvdupack
tcps_rcvdupbyte
tcps_rcvduppack
tcps_rcvoobyte
tcps_rcvoopack
tcps_rcvpack
tcps_rcvpackafterwin
tcps_rcvpartdupbyte
tcps_rcvpartduppack
tcps_rcvshort
tcps_rcvtotal
tcps_rcvwinprobe
tcps_rcv%vinupd
tcps_rexmttimeo
tcps_rttupdated
tcps_segstimed
tcps_sndacks
tcps_sndbyte
tcps_sndctrl
tcps_sndpack
tcps_sndprobe
tcps_sndrexmitbyte
tcps_sndrexmitpack
tcps_sndtotal
tcps_sndurg
tcps_sndwinup
tcps_timeoutdrop

Description

#SYNs received in LISTEN state
#connections closed (includes drops)
#connections initiated (calls to connect)
#embryonic connections dropped (before SYN received)
#connections established actively or passively
#delayed ACKs sent
#connections dropped (after SYN received)
#connections dropped in keepalive (established or awaiting SYN)
#keepalive probes sent
#times keepalive timer or connection-establishment timer expire
#segments dropped due to PAWS
~times PCB cache comparison fails
#times persist timer expires
#times header prediction correct for ACKs
#times header prediction correct for data packets
#bytes ACKed by received ACKs
#received ACK packets
#received ACKs for unsent data
#packets received after connection closed
#packets received with invalid header length
#packets received with checksum errors
#bytes received in sequence
#bytes received beyond advertised window
#duplicate ACKs received
#bytes received in completely duplicate packets
#packets received with completely duplicate bytes
#out-of-order bytes received
#out-of-order packets received
#packets received in sequence
#packets with some data beyond advertised window
#duplicate bytes in part-duplicate packets
#packets with some duplicate data
#packets received too short
total #packets received
#window probe packets received
#received window update packets
#retransmit timeouts
#times RTT estimators updated
#segments for which TCP tried to measure RTT
#ACK-only packets sent (data length = 0)
#data bytes sent
#control (SYN, FIN, RST) packets sent (data length = 0)
#data packets sent (data length > 0)
#window probes sent (1 byte of data forced by persist timer)
#data bytes retransmitted
#data packets retransmitted
total #packets sent
#packets sent with URG-only (data length = 0)
#window update-only packets sent (data length = 0)
#connections dropped in retransmission timeout

Figure 24.4 TCP statistics maintained in the tcpstat structure.

Ised by I

~N!

Section 24

~, 655,
9,17
257,
862,
229
3,45
74,9
279,

8,801,9
6,61
235,
0 ac
4,67
46,g
22 c
3,44
77,1
1,8_c

1,7[
175,
1,03
60,~
279
0 di

144,02(
92,595
126,82(
237,74[
ii0, Oil

6,363,!
114,79’

86,
i, 173]
16,419

6,8
3,2

733,13
1,266,
i, 851,

SNMP’

24.2 Code Introduction 799

netstat -s output

10,655,999 packets sent
9,177,823 data packets (-22,194,928 bytes)
257,295 data packets (81,075,086 bytes) retransmitted
862,900 ack-only packets (531,285 delayed)
229 URG-only packets
3,453 window probe packets
74,925 window update packets
279,387 control packets

~,801,953 packets received
6,617,079 acks (for -21,264,360 bytes)
235,311 duplicate acks
0 acks for unsent data
4,670,615 packets (324,965,351 bytes) rcvd in-sequence
46,953 completely duplicate packets (1,549,785 bytes)
22 old duplicate packets
3,442 packets with some dup. data (54,483 bytes duped)
77,114 out-of-order packets (13,938,456 bytes)
1,892 packets (1,755 bytes) of data after window
1,755 window probes
175,476 window update packets
1,017 packets received after close
60,370 discarded for bad checksums
279 discarded for bad header offset fields
0 discarded because packet too short

144,020 connection requests
92,595 connection accepts
126,820 connections established (including accepts)
237,743 connections closed (including 1,061 drops)
110,016 embryonic connections dropped

6,363,546 segments updated rtt (of 6,444,667 attempts)
114,797 retransmit timeouts

86 connection dropped by rexmit timeout
1,173 persist timeouts
16,419 keepalive timeouts

6,899 keepalive probes sent
3,219 connections dropped by keepalive

733,130 correct ACK header predictions
1,266,889 correct data packet header predictions
1,851,557 cache misses

tcpstat members

tcps_sndtotal
tcps_snd{pack,byte}
tcps_sndrexmit{pack,byte}
tcps_sndacks,tcps_delack
tcps_sndurg
tcps_sndprobe
tcps_sndwinup
tcps_sndctrl

tcps_rcvtotal
tcps_rcvack{pack,byte]
tcps_rcvdupack
tcps_rcvacktoomuch
tcps_rcv{pack,byte)
tcps_rcvdup{pack,byte]
tcps_pawsdrop
tcps_rcvpartdup{pack,byte]
tcps_rcvoo{pack,byte}
tcps_rcv{pack,byte}afterwin
tcps_rcvwinprobe
tcps_rcvwindup
tcps_rcvafterclose
tcps_rcvbadsum
tcps_rcvbadoff
tcps_rcvshort

tcps_connattempt
tcps_accepts
tcps_connects
tcps_closed, tcps_drops
tcps_conndrops

tcps_{rttupdated, segstimed}
tcps_rexmttimeo
tcps_timeoutdrop
tcps_persisttimeo
tcps_keeptimeo
tcps_keepprobe
tcps_keepdrops

tcps_predack
tcps_preddat
tcps_pcbcachemiss

Figure 24.5 Sample TCP statistics.

SNMP Variables

Figure 24.6 shows the 14 simple SNMP variables in the TCP group and the counters
from the tcpstat structure implementing that variable. The constant values shown
for the first four entries are fixed by the Net/3 implementation. The counter
tcpCurrEstab is computed as the number of Internet PCBs on the TCP PCB list.

Figure 24.7 shows tcpTabl e, the TCP listener table.

800 TCP: Transmission Control Protocol Chapter 24

SNMP variable
t eps t at members Description

or constant

tcpRtoAlgorithm 4 algorithm used to calculate retransmission timeout value:
1 = none of the following,
2 = a constant RTO,
3 = MIL-STD-1778 Appendix B,
4= Van Jacobson’s algorithm.

t cpRt oMin 10 00 minimum retransmission timeout value, in milliseconds
t cpRt oMax 64 0 00 maximum retransmission timeout value, in milliseconds
t cpMaxConn - 1 maximum #TCP connections (-1 if dynamic)
t cpAct iveOpens t cps_connat tempt #transitions from CLOSED to SYN_SENT states
tcpPassiveOpenstcps_accepts #transitions from LISTEN to SYN_RCVD states
t cpAt t erupt Fa i 1 s t cps_conndrops #transitions from SYN_SENT or SYN_RCVD to CLOSED,

plus #transitions from SYN_RCVD to LISTEN
tcpEstabResets t cps_dro~)s !#transitions from ESTABLISHED or CLOSE_WAlT states to

CLOSED
t cpCurrEstab (see text) #connections currently in ESTABLISHED or CLOSE_WAIT

states
t cpI nS eg s t cps_r cvt o t a I total #segments received
tcpOutSegs tcps_sndtotal - total #segments sent, excluding those containing only

tcps_sndrexmitpack retransmitted bytes

tcpRetransSegs tcps_sndrexmitpack total #retransmitted segments
tcpInErrs tcps_rcvbadsum + total #segments received with an error

t cps_rcvbadof f +
tcps_rcvshor t

t cpOutRs t s (not implemented) total #segments sent with RST flag set

Figure 24.6 Simple SNMP variables in tep group.

tcpConnSt ate

tcpConnLocalAddress

tcpConnLocalPort

tcpConnRemAddress

tcpConnRemPort

index = < tcpConnLocalAddress >.< tcpConnLocalPort >.< tcpConnRemAddress >.< tcpConnRemPort >
SNMP variable PCB variable Description

t_state state of connection: 1 = CLOSED, 2 = LISTEN,
3 = SYN_SENT, 4 = SYN_RCVD, 5 = ESTABLISHED
6 = FIN_WAIT_l, 7 = FIN_WAIT_2, 8 = CLOSE_WAI
9 = LAST_ACK, 10 = CLOSING, 11 = TIME_WAIT,
12 = delete TCP control block.

inp_laddr local IP address
inp_iport local port number ~
inp_faddr foreign IP address
inp_fport foreign port number

Figure 24.7 Variables in TCP listener table: tcpTable.

The first PCB variable (t_state) is from the TCP control block (Figure 24.13) and
remaining four are from the Internet PCB (Figure 22.4).

le

24.4 TCP Header

!4.3 TCP protosw Structure

24.4

Figure 24.8 lists the TCP protosw structure, the protocol switch entry for TCR

Member

pr_type
pr_domain
pr_protocol
pr_flags
pr_input
pr_output
pr_ctlinput
pr_ctloutput
pr_usrreq
pr_init
pr_fasttimo
pr_slowtimo
pr_drain
pr_sysctl

inetsw[2]

SOCK_STREAM
&inetdomain
IPPROTO_TCP (6)
PR_CONNREQUIRED/PR WANTRCVD
tcp_input
0
~cp_ctlinput
[cp_ctloutput
tcp_usrreq
Ecp_init
tcp_fasttimo
tcp_slowtimo
Ecp_drain
0

Description

TCP provides a byte-stream service
TCP is part of the Internet domain
appears in the ±p~ field of the IP header
socket layer flags, not used by protocol processing
receives messages from IP layer
not used by TCP
control input function for ICMP errors
respond to administrative requests from a process
respond to communication requests from a process
initialization for TCP
fast timeout function, called every 200 ms
slow timeout function, called every 500 ms
called when kernel runs out of mbufs
not used by TCP

Figure 24.8 The TCP protosw structure.

TCP Header

801

The TCP header is defined as a tcphdr structure. Figure 24.9 shows the C structure
and Figure 24.10 shows a picture of the TCP header.

/* source port */
/* destination port */
/* sequence number */
/* acknowledgement number *!

/* (unused) */
/* data offset */

/* data offset */
/* (unused) */

/* ACK, FIN, PUSH, RST, SYN, URG */
/* advertised window */
/* checksum */
/* urgent offset */

40 struct tcphdr {
41 u_short th_sport;
42 u_short th_dport;
43 tcp_seq th_seq;
44 tcp_seq th_ack;
45 #if BYTE_ORDER =: LITTLE_ENDIAN
46 u_char th_x2:4,
47 th_off:4;
48 #endif
49 #if BYTE_ORDER == BIG_ENDIAN
50 u_char th_off:4,
51 th_x2:4;
52 #endif
53 u_char th_flags;
54 u_short th_win;
55 u_short th_sum;
56 u_short th_urp;
57 };

tcp.h

tcp.h

Figure 24.9 tcphdr structure.

802 TCP: Transmission Control Protocol

th_sport
16-bit source port number

15 16

th_dport
16-bit destination port number

th_seq
32-bit sequence number

th_of f
4-bit header

length

th_x2
reserved
(6 bits)

th_ack
32-bit acknowledgment numbe, r

UAPRSF
RCSSYI
GKHTNN

th_win
16-bit window size

th_sum
16-bitTCPchecksum

th_urp
16-bit urgent offset

options (if any)

data (if any)

Figure 24.10 TCP header and optional data.

Chapter

31

20bytes

Most RFCs, most books (including Volume 1), and the code we’ll examine call th_urp the
urgent pointer. A better term is the urgent offset, since this field is a 16-bit unsigned offset that
must be added to the sequence number field (th_seq) to give the 32-bit sequence number of
the last byte of urgent data. (There is a continuing debate over whether this sequence number
points to the last byte of urgent data or to the byte that follows. This is immaterial for the
present discussion.) We’ll see in Figure 24.13 that TCP correctly calls the 32-bit sequence num-
ber of the last byte of urgent data snd_up the send urgent pointer. But using the term pointer for
the 16-bit offset in the TCP header is misleading. In Exercise 26.6 we’ll reiterate the distinction
between the urgent pointer and the urgent offset.

The 4-bit header length, the 6 reserved bits that follow, and the 6 flag bits are
defined in C as two 4-bit bit-fields, followed by 8 bits of flags. To handle the difference
in the order of these 4-bit fields within an 8-bit byte, the code contains an # i fde f based
on the byte order of the system.

Also notice that we call the 4-bit th_of f the header length, while the C code calls it
the data offset. Both are correct since it is the length of the TCP header,
options, in 32-bit words, which is the offset of the first byte of data.

The th_flags member contains 6 flag bits, accessed using the names in Fig-
ure 24.11.

In Net/3 the TCP header is normally referenced as an IP header immediately
lowed by a TCP header. This is how tcp_input processes received IP datagrams and
how top_output builds outgoing IP datagrams. This combined IP/TCP header is a
tcpiphdr structure, shown in Figure 24.12.

24.5

th_flags

TH_ACK
TH_FIN
TH_ PUSH

TH_RST
TH_SYN
TH_ URG

TCP Control Block 803

38 struct tcpiphdr {
39 struct ipovly ti_i;
40 struct tcphdr ti_t;
41];

Description

the acknowledgment number (th_ack) is valid
the sender is finished sending data
receiver should pass the data to application without delay
reset the connection
synchronize sequence numbers (establish connection)
the urgent offset (th_urp) is valid

Figure 24.11 th_flags values.

42 #define ti_next
43 #define ti_prev
44 #define ti_xl
45 #define ti_pr
46 #define ti_len
47 #define ti_src
48 #define ti_dst
49 #define ti_sport
50 #define ti_dport
51 #define ti_seq
52 #define ti_ack
53 #define ti_x2
54 #define ti_off
55 #define ti_flags
56 #define ti_win
57 #define ti_sum
58 #define ti_urp

/* overlaid ip structure */
/* tcp header */

ti_i ih_next
ti_i ih_prev
ti_i ih_xl
ti_i ih__pr
ti_i ih_len
ti_i ih_src
ti_i ih_dst
ti_t th_sport
ti_t.th_dport
ti_t.th_seq
ti_t.th_ack
ti_t.th_x2
ti_t.th_off
ti_t.th_flags
ti_t.th_win
ti_t.th_sum
ti_t.th_urp

Figure 24.12 tcpiphdr structure: combined IP/TCP header.

tcpip.h

tcpip.h

38--58

24.5

The 20-byte IP header is defined as an ipovly structure, which we showed earlier
in Figure 23.12. As we discussed with Figure 23.19, this structure is not a real IP header,
although the lengths are the same (20 bytes).

TCP Control Block

In Figure 22.1 we showed that TCP maintains its own control block, a tcpcb structure,
in addition to the standard Internet PCB. In contrast, UDP has everything it needs in
the Internet PCB--it doesn’t need its own control block.

The TCP control block is a large structure, occupying 140 bytes. As shown in Fig-
ure 22.1 there is a one-to-one relationship between the Internet PCB and the TCP control
block, and each points to the other. Figure 24.13 shows the definition of the TCP control
block.

8O4 TCP: Transmission Control Protocol

tcp_var.h

41
42
43
44
45
46
47
48
49
50
51
52
53
54 /*
55 *
56 *
57
58
59
6O
61
62
63
64
65
66 /*
67
68
69
7O
71
72
73
74
75
76 /*
77
78
79 /*
8O
81
82

struct tcpcb {
struct tcpiphdr *seg_next;

/* reassembly queue of received segments */

struct tcpiphdr *seg_prev;
/* reassembly queue of received segments */

short t_state;
/* connection state (Figure 24.16) *!

short t_timer[TCPT_NTIMERS]; /* tcp timers (Chapter 25) */

short t_rxtshift; !* log(2) of rexmt exp. backoff */

short t_rxtcur; /* current retransmission timeout (#ticks) */

short t_dupacks; /* #consecutive duplicate ACKs received */

u_short t_maxseg; /* maximum segment size to send */

char t_force;
/* 1 if forcing out a byte (persist/OOB)

u_short t_flags; /* (Figure 24.14) */

struct tcpiphdr *t_template; /* skeletal packet for transmit *!

struct inpcb *t_inpcb; /* back pointer to internet PCB */

The following fields are used as in the protocol specification.
See RFC783, Dec. 1981, page 21.

*/
/* send sequence variables */

tcp_seq snd_una;
tcp_seq snd_nxt;
tcp_seq snd_up;
tcp_seq snd_wll;
tcp_seq snd_wl2;
tcp_seq iss;
u_long snd_wnd;

receive sequence variables */
u_long rcv_wnd;
tcp_seq rcv_nxt;
tcp_seq rcv_up;
tcp_seq irs;

/* send unacknowledged */
/* send next */
/* send urgent pointer */
/* window update seg seq number *!
/* window update seg ack number *!
/* initial send sequence number */

!* send window */

/* receive window */
/* receive next */
/* receive urgent pointer */
/* initial receive sequence number */

implementation.* Additional variables for this
*/
* receive variables */

tcp_seq rcv_adv;
retransmit variables */

tcp_seq snd_max;

!* advertised window by other end *!

/* highest sequence number sent;
* used to recognize retransmits */

congestion control (slow start, source quench, retransmit after loss)

u_long snd_cwnd;
u_long snd_ssthresh;

*/

/* congestion-controlled window */
/* snd_cwnd size threshhold for slow start

* exponential to linear switch */

83 /*
84 * transmit timing stuff. See below for scale of srtt and rttvar.

¯ "Variance" is actually smoothed difference.

/* inactivity time */
/* round-trip time */
/* sequence number being timed *!
/* smoothed round-trip time */
/* variance in round-trip time */
/* minimum rtt allowed */
/* largest window peer has offered */

85
86 */
87 short t_idle;
88 short t_rtt;
89 tcp_seq t_rtseq;
90 short t_srtt;
91 short t_rttvar;
92 u_short t_rttmin;
93 u_long max_sndwnd;

Section

24.6

24.6 TCP State Transition Diagram 805

24.6

94 /* out-of-band data */
95 char t_oobflags; /* TCPOOB_HAVEDATA, TCPOOB_HADDATA */
96 char t_iobc; /* input character, if not SO_OOBINLINE */
97 short t_softerror; /* possible error not yet reported */

98 /* RFC 1323 variables */
99 u_char snd_scale; /* scaling for send window (0-14) */

i00 u_char rcv_scale; /* scaling for receive window (0-14) */
I01 u_char request_r_scale; /* our pending window scale */
102 u_char requested_s_scale; /* peer’s pending window scale */

103 u_long is_recent; /* timestamp echo data */
104 u_long ts_recent_age; /* when last updated *!
105 tcp_seq last_ack_sent; /* sequence number of last ack field */
106];

107 #define intotcpcb(ip) ((struct tcpcb *) (ip)->inp_ppcb)
108 #define sototcpcb(so) (intotcpcb(sotoinpcb(so)))

Figure 24.13 t cpcb structure: TCP control block.
tcp_var.h

We’ll save the discussion of these variables until we encounter them in the code.
Figure 24.14 shows the values for the t_flags member.

t_flags

TF_ACKNOW
TF_DELACK
TF_NODELAY
TF_NOOPT
TF_SENTFIN

TF_RCVD_SCALE
TF_RCVD_TSTMP
TF_REQ_SCALE
TF_REQ_TSTMP

Description

send ACK immediately
send ACK, but try to delay it
don’t delay packets to coalesce (disable Nagle algorithm)
don’t use TCP options (never set)
have sent FIN

set when other side sends window scale option in SYN
set when other side sends timestamp option in SYN
have/will request window scale option in SYN
have/will request timestamp option in SYN

Figure 24.14 t_flags values.

TCP State Transition Diagram

Many of TCP’s actions, in response to different types of segments arriving on a connec-
tion, can be summarized in a state transition diagram, shown in Figure 24.15. We also
duplicate this diagram on one of the front end papers, for easy reference while reading
the TCP chapters.

These state transitions define the TCP finite state machine. Although the transition
from LISTEN to SYN_SENT is allowed by TCP, there is no way to do this using the ¯
sockets API (i.e., a connect is not allowed after a listen).

The t_state member of the control block holds the current state of a connection,
with the values shown in Figure 24.16.

This figure also shows the top_out flags array, which contains the outgoing flags
for top_output to use when the connection is in that state.

8O6 TCP: Transmission Control Protocol

starting point

~ CLOSED

timeout
send:

appl: passive open
send: <nothing>

close
FIN

appl:
send:

send: SYN, ACK
simultaneous open

tata transfer state

~ ~- - - - J simultaneous close
.- -~ recv: FIN
QFIN_WAIT_I~ ~ CLOSIN 3.)

recv" I ACK %ONyX’g4. recv: [ACK

send:l<n°thing>" --~ recv: " "¢y’’~ FIN ~’~ send:l<nOthing> ’1 "

(FIN WAIT 2) send:ACK
2MSL timeout

SYN_SENT

active open

recv~ ~ _I~.~CLOSE WAIT~
send: ACK !

!appl:! close
send: ! FIN

I
I

appl: close
or timeout

T~ "x~ recv: ACK
(LAB ACK~-~s

-.~
end: <nothing>

t_ J
passive close

active close

~̄. normal transitions for client----~. normal transitions for server
appl: state transitions taken when application issues operation
recv: state transitions taken when segment received
send: what is sent for this transition

Figure 24.15 TCP state transition diagram.

Section

Half-C

2417

24.7 TCP Sequence Numbers 807

t_state value

TCPS_CLOSED 0
TOPS_LISTEN 1
TOPS SYN SENT 2
TCPS SYN RECEIVED 3
TCPS_ESTABLISHED 4
TOPS_CLOSE_WAIT 5
TOPS FIN WAIT_I 6
TCPS_CLOSING 7
TCPS_LAST_ACK 8
TOPS FIN WAIT_2 9
TCPS_TIME_WAIT 10

Description
TH_RST

0
TH_SYN
TH_SYN

tcp_out flags []

/ TH_ACKclosed
listening for connection (passive open)
have sent SYN (active open)
have sent and received SYN; awaiting ACK
established (data transfer)
received FIN, waiting for application close
have closed, sent FIN; awaiting ACK and FIN
simultaneous close; awaiting ACK
received FIN have closed; awaiting ACK
have closed; awaiting FIN
2MSL wait state after active close

TH_FIN
TH_FIN
TH_FIN

[TH_ACK
TH_ACK
TH_ACK

/ TH_ACK
/ TH_ACK
/ TH_ACK

TH_ACK
TH_ACK

Figure 24.16 t_state values.

Figure 24.16 also shows the numerical values of these constants since the code uses
their numerical relationships. For example, the following two macros are defined:

#define TCPS_HAVERCVDSYN(s) ((s) >: TCPS_SYN_RECEIVED)
#define TCPS_HAVERCVDFIN(s) ((s) >: TCPS_TIME_WAIT)

Similarly, we’ll see that tcp_not i fy handles ICMP errors differently when the connec-
tion is not yet established, that is, when t_s tare is less than TCPS_ESTABLISHED.

The name TCPS_HAVERCVDSYN is correct, but the name TCPS_HAVERCVDFIN is misleading.
A FIN has also been received in the CLOSE_WAIT, CLOSING, and LAST_ACK states. We
encounter this macro in Chapter 29.

Half-Close

When a process calls shutdown with a second argument of 1, it is called a half-close.
TCP sends a FIN but allows the process to continue receiving on the socket. (Sec-
tion 18.5 of Volume 1 contains examples of TCP’s half-close.)

For example, even though we label the ESTABLISHED state "data transfer," if the
process does a half-close, moving the connection to the FIN_WAIT_I and then the
FIN_WAIT_2 states, data can continue to be received by the process in these two states.

24.7 TCP Sequence Numbers

Every byte of data exchanged across a TCP connection, along with the SYN and FIN
flags, is assigned a 32-bit sequence number. The sequence number field in the TCP
header (Figure 24.10) contains the sequence number of the first byte of data in the seg-
ment. The acknowledgment number field in the TCP header contains the next sequence
number that the sender of the ACK expects to receive, which acknowledges all data
bytes through the acknowledgment number minus 1. In other words, the acknowledg-
ment number is the next sequence number expected by the sender of the ACK. The
acknowledgment number is valid only if the ACK flag is set in the header. We’ll see

808 TCP: Transmission Control Protocol Chapter Secti.

that TCP always sets the ACK flag except for the first SYN sent by an active open (the
SYN_SENT state; see tcp_ou¢ f lags I2] in Figure 24.16) and in some RST segments.

Since a TCP connection is full-duplex, each end must maintain a set of sequence
numbers for both directions of data flow. In the TCP control block (Figure 24.13) there
are 13 sequence numbers: eight for the send direction (the send sequence space) and five
for the receive direction (the receive sequence space).

Figure 24.17 shows the relationship of four of the variables in the send sequence
space: snd_wnd, snd_una, snd_nxt, and snd_max. In this example we number the
bytes I through 11.

snd wnd : 6: offered window
(advertised by receiver)

usable window

7 8 9 10 11 .-.

sent and sent, not ACKed ~
acknowledged can send ASAP

snd_una = 4 snd_nxt = 7
oldest next send

unacknowledged sequence number
sequence number

can’t send until
window moves

snd_max : 7
max.imum send

sequence number

Figure 24.17 Example of send sequence space.

An acceptable ACK is one for which the following inequality holds:

snd_una < acknowledgment field <: snd_max

In Figure 24.17 an acceptable ACK has an acknowledgment field of 5, 6, or 7. An
acknowledgment field less than or equal to snd_una is a duplicate ACK--it acknowl-
edges data that has already been ACKed, or else snd_una would not have incremented
past those bytes.

We encounter the following test a few times in tcp_output, which is true if a seg-
ment is being retransmitted:

snd_nxt < snd_max

Figure 24.18 shows the other end of the connection in Figure 24.17: the receive
sequence space, assuming the segment containing sequence numbers 4, 5, and 6 has not
been received yet. We show the three variables rcv_nxt, rcv_wnd, and rcv_adv.

24.7 TCP Sequence Numbers 809

rcv_wnd = 6: receive window
(advertised to sender)

1 2 3 4 5 6 7 8 9 10 11 ¯ ¯ ¯

future sequence numbers
old sequence numbers not yet allowed

that TCP has ackn°wledged ~ ~
~

rcv_nxt = 4 rcv_adv = 10
next receive highest advertised

sequence number sequence number
plus 1

Figure 24.18 Example of receive sequence space.

The receiver considers a received segment valid if it contains data within the win-
dow, that is, if either of the following two inequalities is true:

rcv_nxt <: beginning sequence number of segment < rcv_nxt + rcv_wnd

rcv_nxt <= ending sequencenumberofsegment < rcv_nxt + rcv_wnd

The beginning sequence number of a segment is just the sequence number field in the
TCP header, ti_seq. The ending sequence number is the ~equence number field plus
the number of bytes of TCP data, minus 1.

For example, Figure 24.19 could represent the TCP segment containing the 3 bytes
with sequence numbers 4, 5, and 6 in Figure 24.17.

[-- 63-byte IP datagram ~

options
TCPIP header IP TCP header options

20 bytes 8 20 12 1 1 1

Figure 24.19 TCP segment transmitted as an IP datagram.

We assume that there are 8 bytes of IP options and 12 bytes of TCP options. Fig-
ure 24.20 shows the values of the relevant variables.

Variable Value

ip_hl 7
ip_len 63
ti_off 8
ti_seq 4

ti_len 3
6

Description

length of IP header + options in 32-bit words (= 28 bytes)
length of IP datagram in bytes (20 + 8 + 20 + 12 + 3)
length of TCP header + options in 32-bit words (= 32 bytes)
sequence number of first byte of data
#bytes of TCP data: ip_len - (ip_hl x 4) - (t i_o f £ x 4)
sequence number of last byte of data: t i_s eq + t i_l en - 1

Figure 24.20 Values of variables corresponding to Figure 24.19.

810
TCP: Transmission Control Protocol Chapter 24

ti_len is not a field that is transmitted in the TCP header. Instead, it is computed a -~
shown in Figure 24.20 and stored in the overlaid IP structure (Figure 24.12) once the
received header fields have been checksummed and verified. The last value in this fig-
ure is not stored in the header, but is computed from the other values when needed.

Modular Arithmetic with Sequence Numbers

typedef u_long tcp_seq;

The four macros shown in Figure 24.21 compare sequence numbers.

A problem that TCP must deal with is that the sequence numbers are from a finite 32-bit
number space: 0 through 4,294,967,295. If more than 232 bytes of data are exchanged
across a TCP connection, the sequence numbers will be reused. Sequence numbers
wrap around from 4,294,967,295 to 0.

Even if less than 232 bytes of data are exchanged, wrap around is still a problem
because the sequence numbers for a connection don’t necessarily start at 0. The initial
sequence number for each direction of data flow across a connection can start anywhere
between 0 and 4,294,967,295. This complicates the comparison of sequence numbers.

" reater than" 4,294,967,295, as we discuss below.For example, sequence number I is g
TCP sequence numbers are defined as unsigned longs in tcp. h:

tcp_seq.h

40 #define SEQ LT(a,b) ((int) ((a)-(b)) < 0)

41 #define SEQ_LEQ(a,b) ((int) ((a)- (b)) <: 0)

42 #define SEQ_GT(a,b) ((int) ((a)-(b)) > 0)

43 #define SEQ_GEQ(a,b) ((int) ((a)-(b)) >: 0)

Macros for TCP sequence number comparison.

tcp_seq.h

Figure 24.21

Example--Sequence Number Comparisons

Let’s look at an example to see how TCP’s sequence numbers operate. Assume 3-bit
sequence numbers, 0 through 7. Figure 24.22 shows these eight sequence numbers,
their 3-bit binary representation, and their two’s complement representation. (To
the two’s complement take the binary number, convert each 0 to a 1 and vice versa,
add 1.) We show the two’s complement because to form a - b we just add a to the two’s:
complement of b.

The final three columns of this table are 0 minus x, 1 minus x, and 2 minus x.
these final three columns, if the value is considered to be a signed integer (notice the cast
to int in all four macros in Figure 24.21), the value is less than 0 (the SEQ LT macro)
the high-order bit is 1, and the value is greater than 0 (the SEQ GT macr~ if the
order bit is 0 and the value is not 0. We show horizontal lin-es in these final three’~
columns to distinguish between the four negative and the four nonnegative values.

If we look at the fourth column of Figure 24.22, (labeled "0 - x"), we see that 0
x), is less than 1, 2, 3, and 4 (the high-order bit of the result is 1), and 0 is
6, and 7 (the high-order bit is 0 and the result is not 0). We show this rebtionship
rially in Figure 24.23.

Sect

TCP Sequence Numbers 81124.7

x

o

1

2

3
4

5

6

7

binary

00o

001

o10

Oll
10o

lOl

110

111

two’scomplement O-x 1- x 2-x

000 000 001 010

111 !11 000 001

ii0 ii0 iii 000

i01 i01 ii0 iii
i00 i00 i01 ii0

011 011 i00 i01

010 010 011 i00

001 001 010 011

Figure 24.22 Example using 3-bit sequence numbers.

5 6 7
~

1 2 3 4

0 is greater than 0 is less than
~ these numbers ~ 4 these numbers v

Figure 24.23 TCP sequence number comparisons for 3-bit sequence numbers.

Figure 24.24 shows a similar figure using the fifth row of the table (1 - x).

6 7 0 ~
2 3 4 5

Figure 24.24

1 is greater than 1 is less than
these numbers v 4 these numbers

~

TCP sequence number comparisons for 3-bit sequence numbers.

Figure 24.25 is another representation of the two previous figures, using circles to
reiterate the wrap around of sequence numbers.

0 0
7 1 7/,~ .1

tes$~" t 2 6/ thlTg 2
l’an 0 ~ greate6

/ ~ // t~:ant~r/
5 3 5~3

4 4

Figure 24.25 Another way to visualize Figures 24.23 and 24.24.

With regard to TCP, these sequence number comparisons determine whether a
given sequence number is in the future or in the past (a retransmission). For example,
using Figure 24.24, if TCP is expecting sequence number 1 and sequence number 6
arrives, since 6 is less than 1 using the sequence number arithmetic we showed, the data
byte is considered a retransmission of a previously received data byte and is discarded.
But if sequence number 5 is received, since it is greater than 1 it is considered a future

812 TCP: Transmission Control Protocol Section 2

data byte and is saved by TCP, awaiting the arrival of the missing bytes 2, 3, and
(assuming byte 5 is within the receive window).

Figure 24.26 is an expansion of the left circle in Figure 24.25, using TCP’s 32-bit
sequence numbers instead of 3-bit sequence numbers.

4,294,967,295 0 1

2,147,483,649 2,147,483,648

232

Figure 24.26 Comparisons against 0, using 32-bit sequence numbers.

The right circle in Figure 24.26 is to reiterate that one-half of the 32-bit sequence space
uses 231 numbers.

24.8 tcp_±n±t Function

The domaininit function calls TCP’s initialization function, tcp_init (Figure 24.27),

at system initialization time.

43 void
44 tcp_init()
45 {

46 tcp_iss : i; /* wrong */

47 tcb.inp_next = tcb.inp_prev : &tcb;

tcp_subr.c

48
49
50
51
52

if (max_protohdr < sizeof(struct tcpiphdr))

max_protohdr : sizeof(struct tcpiphdr);
if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)

panic("tcp_init");

tcp_subr.c

Figure 24.27 tcp_init function.

46

Set initial send sequence number (ISS)
The initial send sequence number (ISS), tcp_iss, is initialized to 1. As the com-

ment indicates, this is wrong. We discuss the implications behind this choice shortly,
when we describe TCP’s quiet time. Compare this to the initialization of the IP identifier<i
in Figure 7.23, which used the time-of-day clock.

47

48--51

MSL af

24.8 tcp_init Function 813

47

48-51

Initialize linked list of TCP Internet PCBs
The next and previous pointers in the head PCB (tcb) point to itself. This is an

empty doubly linked list. The remainder of the tcb PCB is initialized to 0 (all un-
initialized globals are set to 0), although the only other field used in this head PCB is
inp_lport, the next TCP ephemeral port number to allocate. The first ephemeral port
used by TCP will be 1024, for the reasons described in the solution for Exercise 22.4.

Calculate maximum protocol header length
If the maximum protocol header encountered so far is less than 40 bytes,

max_protohdr is set to 40 (the size of the combined IP and TCP headers, without any
options). This variable is described in Figure 7.17. If the sum of max_l inkhdr (nor-
mally 16) and 40 is greater than the amount of data that fits into an mbuf with a packet
header (100 bytes, MHLEN from Figure 2.7), the kernel panics (Exercise 24.2).

MSL and Quiet Time Concept

TCP requires any host that crashes without retaining any knowledge of the last
sequence numbers used on active connections to refrain from sending any TCP seg-
ments for one MSL (2 minutes, the quiet time) on reboot. Few TCPs, if any, retain this
knowledge over a crash or operator shutdown.

MSL is the maximum segment lifetime. Each implementation chooses a value for the
MSL. It is the maximum amount of time any segment can exist in the network before
being discarded. A connection that is actively closed remains in the CLOSE_WAIT state
(Figure 24.15) for twice the MSL.

RFC 793 [Postel 1981c] recommends an MSL of 2 minutes, but Net/3 uses an MSL of 30 sec-
onds (the constant TCPTV_MSL in Figure 25.3).

The problem occurs if packets are delayed somewhere in the network (RFC 793 calls
these wandering duplicates). Assume a N~t/3 system starts up, initializes tcp_iss to 1
(as in Figure 24.27) and then crashes just after the sequence numbers wrap. We’ll see in
Section 25.5 that TCP increments tcp_iss by 128,000 every second, causing the wrap
around of the ISS to occur about 9.3 hours after rebooting. Also, tcp_iss is incre-
mented by 64,000 each time a connect is issued, which can cause the wrap around to
occur earlier than 9.3 hours. The following scenario is one example of how an old seg-
ment can incorrectly be delivered to a connection:

1. A client and server have an established connection. The client’s port number is
1024. The client sends a data segment with a starting sequence number of 2.
This data segment gets trapped in a routing loop somewhere between the two
end points and is not delivered to the server. This data segment becomes a wan-
dering duplicate.

2. The client retransmits the data segment starting with sequence number 2, which
is delivered to the server.

3. The client closes the connection.

814 TCP: Transmission Control Protocol Chapter 24

The client host crashes.

The client host reboots about 40 seconds after crashing, causing TCP to initialize
t cp_i s s to 1 again.

Another connection is immediately established by the same client to the same
server, using the same socket pair: the client uses 1024 again, and the server uses
its well-known port. The client’s SYN uses sequence number 1. This new con-
nection using the same socket pair is called a new incarnation of the old connec-
tion.

The wandering duplicate from step 1 is delivered to the server, and it thinks this
datagram belongs to the new connection, when it is really from the old connec-
tion.

Figure 24.28 is a time line of this sequence of steps.

-- client sends data segment with seq# 2 (becomes wandering duplicate)

-- client retransmits data segment with seq# 2, delivered to server

-- client closes connection with server

-- client host crashes

-- client host reboots, ISS set to 1

--client-server establish new incarnation of previous connection

--wandering duplicate from step 1 delivered to server~-

> < MSL

time
Figure 24.28 Example of old segment delivered to new incarnation of a connection.

This problem exists even if the rebooting TCP were to use an algorithm based on its
time-of-day clock to choose the ISS on rebooting: regardless of the ISS for the previous
incarnation of a connection, because of sequence number wrap it is possible for the ISS !ii~i~.~!
after rebooting to nearly equal the sequence number in use before the reboot. 7

Besides saving the sequence number of all established connections, the only other
way around this problem is for the rebooting TCP to be quiet (i.e., not send any
segments) for MSL seconds after crashing. Few TCPs do this, however, since it takes
most hosts longer than MSL seconds just to reboot.

C]

!4.9

: 24 Exercises 815

Summary

This chapter is an introduction to the TCP source code in the six chapters that follow.
TCP maintains its own control block for each connection, containing all the variable and
state information for the connection.

A state transition diagram is defined for TCP that shows under what conditions
TCP moves from one state to another and what segments get sent by TCP for each tran-
sition. This diagram shows how connections are established and terminated. We’ll
refer to this state transition diagram frequently in our description of TCP.

Every byte exchanged across a TCP connection has an associated sequence number,
and TCP maintains numerous sequence numbers in the connection control block: some
for sending and some for receiving (since TCP is full-duplex). Since these sequence
numbers are from a finite 32-bit sequence space, they wrap around from the maximum
value back to 0. We explained how the sequence numbers are compared to each other
using less-than and greater-than tests, which we’ll encounter repeatedly in the TCP
code.

Finally, we looked at one of the simplest of the TCP functions, tcp_±n±t, which
initializes TCP’s linked list of Internet PCBs. We also discussed TCP’s choice of an ini-
tial send sequence number, which is used when actively opening a connection.

Exercises

24.1 What is the average number of bytes transmitted and received per connection from the
statistics in Figure 24.5?

24.2 Is the kernel panic in tcp_±n± ¢ reasonable?
24.3 Execute nets~a~ -a to see how many TCP end points your system currently has active.

25.1

25

TCP Timers

25.1 Introduction

We start our detailed description of the TCP source code by looking at the various TCP
timers. We encounter these timers throughout most of the TCP functions.

TCP maintains seven timers for each connection. They are briefly described here, in
the approximate order of their occurrence during the lifetime of a connection.

A connection-establishment timer starts when a SYN is sent to establish a new
connection. If a response is not received within 75 seconds, the connection
establishment is aborted.

A retransmission timer is set when TCP sends data. If the data is not acknowl-
edged by the other end when this timer expires, TCP retransmits the data. The
value of this timer (i.e., the amount of time TCP waits for an acknowledgment)
is calculated dynamically, based on the round-trip time measured by TCP for
this connection, and based on the number of times this data segment has been
retransmitted. The retransmission timer is bounded by TCP to be between 1
and 64 seconds.

A delayed ACK timer is set when TCP receives data that must be acknowledged,
but need not be acknowledged immediately. Instead, TCP waits up to 200 ms
before sending the ACK. If, during this 200-ms time period, TCP has data to
send on this connection, the pending acknowledgment is sent along with the
data (called piggybacking).

817

818 TCP Timers
Chapter 25

4. A persist timer is set when the other end of a connection advertises a window of
0, stopping TCP from sending data. Since window advertisements from the
other end are not sent reliably (that is, ACKs are not acknowledged, only data is
acknowledged), here s a chance that a future window update, allowing TCP tot ’
send some data, can be lost. Therefore, if TCP has data to send and the other
end advertises a window of 0, the persist timer is set and when it expires, 1 byte
of data is sent to see if the window has opened. Like the retransmission timer,
the persist timer value is calculated dynamically, based on the round-trip time.
The value of this is bounded by TCP to be between 5 and 60 seconds.

5. A keepalive timer can be set by the process using the SO_KEEPAL~VE socket ’~
option¯ If the connection is idle for 2 hours, the keepalive timer expires and a
special segment is sent to the other end, forcing it to respond. If the expected
response is received, TCP knows that the other host is still up, and TCP won’t "
probe it again until the connection is idle for another 2 hours. Other responses
to the keepalive probe tell TCP that the other host has crashed and rebooted. If .
no response is received to a fixed number of keepalive probes, TCP assumes that
the other end has crashed, although it can’t distinguish between the other end
being down (i.e., it crashed and has not yet rebooted) and a temporary lack of
connectivity to the other end (i.e., an intermediate router or phone line is down). :

A FIN_WAlT_2 timer. When a connection moves from the FIN WAIT 1 state to "

theFIN-WAIT-2state(FigureR4.15) andtheconnectioncannot~eceiv~-anymo
data (implying the process called close, instead of takin~ advanta e of TC
half-close with shutdown], this tim,~ ;o g pr,~,-~ ~o ~t to Iu minutes. When this timerexpires it is reset to 75 seconds, and when it expires the second time the connec-
tion is dropped. The purpose of this timer is to avoid leaving a connection in
the FIN_WAIT_2 state forever, if the other end never sends a FIN. (We don’t .;~::,~;![.
show this timeout in Figure 24.15.)

A r a4 _ VAlV timer, often called the 2MSL timer. The term 2MSL means twice i?:(!i:.i
the MSL, the maximum segment lifetime defined in Section 24¯8¯ It is set when a
connection enters the TIME_WAIT state (Figure 24.15), that is, when the connec-

2MSL wait state in detail¯ The timer is set to 1 minute (Net/3 uses an MSL of 30
seconds) when the connection enters the TIME_WAIT state and when it expires,
the TCP control block and Internet PCB are deleted, allowing that socket pair to
be reused¯

TCP has two timer functions: one is called every 200 ms (the fast timer) and the
other every 500 ms (the slow timer). The delayed ACK timer is different from the other
six: when the delayed ACK timer is set for a connection it means that a delayed ACK
must be sent the next time the 200-ms timer expires (i.e., the elapsed time is between 0
and 200 ms). The other six timers are decremented every 500 ms and only when the :~i
counter reaches 0 does the corresponding action take place. ’ :I:N

Sec~

25.;

ow of
n the
.ata is
CP to
other
byte

:imer,
time.

ocket
~nd a
ected
von’t
)nses
!d. If
that
end

ck of
~WT0.

tte to
~ore
’CP’s
imer
lnec-

m in
ton’t

wice
ten a
nec-
: the
)f 30
ires,
ir to

the

ther
~CK
_~n 0
the

Section 25.2 Code Introduction 819

25.2 Code Introduction

The delayed ACK timer is enabled for a connection when the TF_DEr.ACt< flag (Fig-
ure 24.14) is set in the TCP control block. The array t_t ±m÷r in the TCP control block
contains four (TCP~_NTTMERS) counters used to implement the other six timers. The
indexes into this array are shown in Figure 25.1. We describe briefly how the six timers
(other than the delayed ACK timer) are implemented by these four counters.

Constant Value
TCPT_REXMT 0
TCPT_PERSIST I
TCPT_KEEP 2
TCPT_2MSL 3

Description

retransmission timer
persist timer
keepalive timer or connection-establishment timer
2MSL timer or FIN_WAIT_2 timer

Figure 25.1 Indexes into the t_timer array.

Each entry in the t_t imer array contains the number of 500-ms clock ticks until the
timer expires, with 0 meaning that the timer is not set. Since each timer is a short, if
16 bits hold a short, the maximum timer value is 16,383.5 seconds, or about 4.5 hours.

Notice in Figure 25.1 that four "timer counters" implement six TCP "timers,"
because some of the timers are mutually exclusive. We’ll distinguish between the coun-
ters and the timers. The TCPT_KEEP counter implements both the keepalive timer and
the connection-establishment timer, since the two timers are never used at the same
time for a connection. Similarly, the 2MSL timer and the FIN_WAIT_2 timer are imple-
mented using the TCPT_2MSL counter, since a connection is only in one state at a time.
The first section of Figure 25.2 summarizes the implementation of the seven TCP timers.
The second and third sections of the table show how four of the seven timers are initial-
ized using three global variables from Figure 24.3 and two constants from Figure 25.3.
Notice that two of the three globals are used with multiple timers. We’ve already said
that the delayed ACK timer is tied to TCP’s 200-ms timer, and we describe how the
other two timers are set later in this chapter.

t_timer[TCPT_REXMT]
t_timer[TCPT_PERSIST]
t_timer[TCPT_KEEP] ¯

t_timer[TCPT_2MSL]
t_flags & TF_DELACK

tcp_keepidle (2hr)
tcp_keepintvl (75sec)
tcp_maxidle (10min)

2 * TCPTV_MSL (60sec)
TCPTV_KEEP_INIT (75sec) ¯

co~-m, delayed keep- FIN_- 2MSLestab, rexmit
ACK persist alive WAIT 2

Figure 25.2 Implementation of the seven TCP timers.

820 TCP Timers Chapter 25

Figure 25.3 shows the fundamental timer values for the Net/3 implementation.

Constant

TCPTV_MSL

TCPTV_MIN
TCPTV_REXMTMAX

TCPTV_PERSMIN
TCPTV_PERSMAX

TCPTV_KEEP_ INI T
TCPTV_KEEP_IDLE

TCPTV_KEEPINTVL

TCPTV_ SRTTBA SE
TCPTV_SRTTDFLT

#500-ms
clock ticks

60
2

128
10
120
150

14400
150

0
6

#sec Description

30 MSL, maximum segment lifetime
1 minimum value of retransmission timer

64 maximum value of retransmission timer
5 minimum value of persist timer

60 maximum value of persist timer
75 connection-establishment timer value

7200 idle time for connection before first probe (2 hours)
75 time between probes when no response

special value to denote no measurements yet for connection
3 default RTF when no measurements yet for connection

Figure 25.3 Fundamental timer values for the implementation.

Figure 25.4 shows other timer constants that we’ll encounter.

Constant Value

TCP_LINGERTIME 120
TCP_MAXRXTSHIFT 12
TCPTV_KEEPCNT 8

Description

maximum #seconds for SO_LINGER socket option
maximum #retransmissions waiting for an ACK
maximum #keepalive probes when no response received

Figure 25.4 Timer constants.

The TCPT_RANGESET macro, shown in Figure 25.5, sets a timer to a given value,
making certain the value is between the specified minimum and maximum.

tcp_timenh
102 #define TCPT_RANGESET(tv, value, tvmin, tvmax) { \
103 (tv) = (value); \
104 if ((tv) < (tvmin)) \
105 (tv) = (tvmin); \
106 else if ((iv) > (tvmax)) \
107 (tv) : (tvmax); \
108 }

Figure 25.5 TCPT_RANGESET macro.

tcp_timer.h

We see in Figure 25.3 that the retransmission timer and the persist timer have upper and
lower bounds, since their values are calculated dynamically, based on the measured
round-trip time. The other timers are set to constant values.

There is one additional timer that we allude to in Figure 25.4 but don’t discuss in
this chapter: the linger timer for a socket, set by the SO_LINGER socket option. This is
socket-level timer used by the close system call (Section 15.15). We will see in Fig-
ure 30.12 that when a socket is closed, TCP checks whether this socket option is set and:
whether the linger time is 0. If so, the connection is aborted with an RST instead of
TCP’s normal close.

Sectior

25.3

25.4

tcp_fasttimo FuncHon 821

25.4

tcp_canceltimers Function

]"he function tcp_canceltimers, shown in Figure 25.6, is called by tcp_input
when the TIME_WAIT state is entered. All four timer counters are set to 0, which turns
off the retransmission, persist, keepalive, and FIN_WAIT_2 timers, before tcp_input
sets the 2MSL timer.

107 void
108 tcp_canceltimers(tp)
109 struct tcpcb *tp;
ii0 {
Iii int i;

112
113
114 }

for (i = 0; i < TCPT_NTIMERS; i++)
tp->t_timer[i] = 0;

Figure 25.6 tcp_canceltimersfuncHon.

tcp_timer.c

tcp_timer.c

tcp_fasttimo Function

The function tcp_fasttimo, shown in Figure 25.7, is called by pr_fasttimo every
200 ms. It handles only the delayed ACK timer.

41 void
42 tcp_fasttimo()
43 {
44 struct inpcb *inp;
45 struct tcpcb *tp;
46 int s = splnet();

tcp_timer.c

47
48
49
50
51
52
53
54
55
56
57
58

inp = tcb.inp_next;
if (inp)

for (; inp != &tcb; inp = inp->inp_next)
if ((tp = (struct tcpcb *) inp->inp_ppcb) &&

(tp->t_flags & TF_DELACK)) {
tp->t_flags &= -TF_DELACK;
tp->t_flags [= TF_ACKNOW;
tcpstat.tcps_delack++;
(void) tcp_output(tp);

}
splx (S) ;

Figure 25.7 tcp_fast t imo func~on, which is called every 200 ms.
tcp_timer.c

Each Intemet PCB on the TCP list that has a corresponding TCP control block is
checked. If the TF_DELACK flag is set, it is cleared and the TF_ACKNOW flag is set
instead, tcp_output is called, and since the TF_ACKNOW flag is set, an ACK is sent.

822 TCP Timers

25.5

71

72--89

90-93

94

How can TCP have an Internet PCB on its PCB list that doesn’t have a TCP control
block (the test at line 50)? When a socket is created (the PRU_ATTACH request, in
response tO the socket system call) we’ll see in Figure 30.11 that the creation of the
Internet PCB is done first, followed by the creation of the TCP control block. Between
these two operations a high-priority clock interrupt can occur (Figure 1.13), which calls
tcp_fastt imo.

tcp_s lowt imo Function

The function tcp_slowtimo, shown in Figure 25.8, is called by pr slowtimo every
500 ms. It handles the other six TCP timers: connection establishment, retransmlsslon
persist, keepalive, FIN WAIT_2, and 2MSL.

tcp_maxidle is initialized to 10 minutes. This is the maximum amount of time
TCP will send keepalive probes to another host, waiting for a response from that host.
This variable is also used with the FIN_WAIT_2 timer, as we describe in Section 25.6. i/ii!~
This initialization statement could be moved to ¢cp in±t, since it only needs to be
evaluated when the system is initialized (see Exercise 25.2).

Check each timer counter in all TCP control blocks
Each Internet PCB on the TCP list that has a corresponding TCP control block is

checked. Each of the four timer counters for each connection is tested, and if nonzero, ~..~:-
the counter is decremented. When the timer reaches 0, a PRU_SLOWTTlViO request is
issued. We’ll see that this request calls the function cop t±mers, which we describe
later in this chapter.

The fourth argument to tcp_usrreq is a pointer to an mbuf. But this argument is
actually used for different purposes when the mbuf pointer is not required. Here we
see the index i is passed, telling the request which timer has expired. The funny-
looking cast of i to an mbuf pointer is to avoid a compile-time error.

Check if TCP control block has been deleted
Before examining the timers for a control block, a pointer to the next Internet PCB is

saved in ipnxt. Each time the PRU_SLOWTTMO request returns, t cp_s 1 owt imo checks
whether the next PCB in the TCP list still points to the PCB that’s being processed. If
not, it means the control block has been deleted--perhaps the 2MSL timer expired or
the retransmission timer expired and TCP is giving up on this connection--causing a
jump to tpgone, skipping the remaining timers for this control block, and moving on to
the next PCB. .~,~.~ ~

Count idle time
t_idle is incremented for the control block. This counts the number of 500-ms

clock ticks since the last segment was received on this connection. It is set to 0
¢cp_input when a segment is received on the connection and used for three
(1) by the keepalive algorithm to send a probe after the connection is idle for 2 hours,
to drop a connection in the FIN_WAIT_2 state that is idle for 10 minutes and 75 seconds,
and (3) by top_output to return to the slow start algorithm after the connection has.
been idle for a while.

Section"

64 void
65 tcp_slowtimo()
66 {
67 struct inpcb *ip, *ipnxt;
68 struct tcpcb *tp;
69 int s = splnet();
70 int i;

tcp_slowtimo Function 823

71
72
73
74
75
76
77
78
79
8O
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

i00
i01
102
103

tcp_timer.c

tcp_maxidle = TCPTV_KEEPCNT * tcp_keepintvl;
/*

¯ Search through tcb’s and update active timers.
*/

ip = tcb.inp_next;
if (ip == 0) {

splx(s);
return;

}
for (; ip !: &tcb; ip = ipnxt)

ipnxt : ip->inp_next;
tp = intotcpcb(ip);
if (tp :: 0)

continue;
for (i = 0; i < TCPT_NTIMERS; i++) {

if (tp->t_timer[i] && --tp->t_timer[i] == 0) {
(void) tcp_usrreq(tp->t_inpcb->inp_socket,

PRU_SLOWTIMO, (struct mbuf *) 0,
(struct mbuf *) i, (struct mbuf *)

if (ipnxt->inp_prev != ip)
goto tpgone;

}
]
tp->t_idle++;
if (tp->t_rtt)

tp->t_rtt++;
tpgone:

;
}
tcp_iss += TCP_ISSINCR / PR_SLOWHZ;
tcp_now++;
splx(s);

/* increment iss */
/* for timestamps */

0);

tcp_timer.c
Figure 25.8 tcp_s lowt imo function, which is called every 500 ms.

95--96

Increment RTT counter

If this connection is timing an outstanding segment, t_rtt is nonzero and counts
the number of 500-ms clock ticks until that segment is acknowledged. It is initialized to
1 by top_output when a segment is transmitted whose RTT should be timed.
tcp_s lowt imo increments this counter.

824

Ioi

75-79

25.6

TCP Timers
Chapter 25

Increment initial send sequence number
tcp_iss was initialized to 1 by tcp_init. Every 500 ms it is incremented by

64,000:128,000 (TCP_ISSINCR) divided by 2 (PR_SLOWHZ). This is a rate of about once
every 8 microseconds, although tcp_iss is incremented only twice a second. We’ll see
thatt cp_i s s is also incremented by 64,000 each time a connection is established, either
actively or passively.

RFC 793 specifies that the initial sequence number should increment roughly every 4 microsec-
onds, or 250,000 times a second. The Net/3 value increments at about one-half this rate.

Increment RFC 1323 timestamp value
t cp_now is initialized to 0 on bootstrap and incremented every 500 ms. It is used

by the timestamp option defined in RFC 1323 [Jacobson, Braden, and Borman 1992],
which we describe in Section 26.6.

Notice that if there are no TCP connections active on the host (tcb. inp_next is
null), neither tcp_iss nor top_now is incremented. This would occur only when the
system is being initialized, since it would be rare to find a Unix system attached to a
network without a few TCP servers active.

tcp_timers Function
¯ ’SThe function tcp_t imers is called by TCP PRU_SLOWTIMO request (Figure 30.10):

case PRU_SLOWTIMO:
tp = tcp_timers(tp, (int)nam);

when any one of the four TCP timer counters reaches 0 (Figure 25.8).
The structure of the function is a switch statement with one case per time5 as

outlined in Figure 25.9.
tcp_time~c

120 struct tcpcb *
121 tcp_timers(tp, timer)
122 struct tcpcb *tp;
123 int timer;
124 {
125 int rexmt;

126

256
257
258]

switch (timer) {

}
return (tp);

tcp_timenc

Figure 25.9 tcp_timers ~cHon: general org~haHon.

We now discuss three of the four timer counters (five of TCP’s timers), saving the
retransmission timer for Section 25.11.

Section

FIN_W/~

127--139

127--13~.

tcp_timers Function 825

:IN_WAIT_2 and 2MSL Timers

TCP’s TCPT_2MSL counter implements two of TCP’s timers.

FIN_WAIT_2 timer. When tcp_input moves from the FIN_WAIT_I state to
the FIN_WAIT_2 state and the socket cannot receive any more data (implying
the process called close, instead of taking advantage of TCP’s half-close with
shutdown), the FIN_WAIT_2 timer is set to 10 minutes (tcp_maxidle). We’ll
see that this prevents the connection from staying in the FIN_WAIT_2 state for-
ever.

2MSL timer. When TCP enters the TIME_WAIT state, the 2MSL timer is set to
60 seconds (TCPTV_MSL times 2).

Figure 25.10 shows the case for the 2MSL timer--executed when the timer reaches 0.

127
128
129
130
131
132
133
134
135
136
137
138
139

/, tcp_timenc
* 2 MSL timeout in shutdown went off. If we’re closed but
* still waiting for peer to close and connection has been idle
* too long, or if 2MSL time is up from TIME_WAIT, delete connection
* control block. Otherwise, check again in a bit.
*/

case TCPT_2MSL:
if (tp->t_state != TCPS_TIME WAIT &&

tp->t_idle <= tcp_maxidle)
tp->t_timer[TCPT_2MSL] = tcp_keepintvl;

else
tp = tcp_close(tp) ;

break;

Figure 25.10 tcp_timers function: expiration of 2MSL timer counter.

tcp_timer.c

127--139

127-139

2MSL timer

The puzzling logic in the conditional is because the two different uses of the
TCPT_2blSL counter are intermixed (Exercise 25.4). Let’s first look at the TIME_WAIT
state. When the timer expires after 60 seconds, tcp_close is called and the control
blocks are released. We have the scenario shown in Figure 25.11. This figure shows the
series of function calls that occurs when the 2MSL timer expires. We also see that set-
ting one of the timers for N seconds in the future (2 x N ticks), causes the timer to expire
somewhere between 2 x N - 1 and 2 x N ticks in the future, since the time until the first
decrement of the counter is between 0 and 500 ms in the future.

FIN_WAIT_2 timer
If the connection state is not TIME_WAIT, the TCPT_2MSL counter is the

FIN_WAIT_2 timer. As soon as the connection has been idle for more than 10 minutes
(tcp_raaxidle) the connection is closed. But if the connection has been idle for less
than or equal to 10 minutes, the FIN_WAIT_2 timer is reset for 75 seconds in the future.
Figure 25.12 shows the typical scenario.

826 TCP Timers

119 118 117

somewhere in here
connection enters

TIME_WAIT state, 2MSL
timer set for 60 seconds
(120 ticks) in the future

Figure 25.11

Chapter 25

119 clock ticks x 500 ms/tick = 59.5 seconds

3 2

500 ms
per tick

prslowt imo ()
calls

tcp_slowt imo ()
calls

t cp_usrreq (PRU_SLOWTIMO)
calls

tcp_timers (TCPT_2MSL)
calls

tcp_close ()

Setting and expiration of 2MSL timer in TIME_WAIT state.

150 ticks
1200 ticks ~ _~ ~

(10 minutes) (75 seconds)

enter FIN_WAIT_2 state;
FIN_WAIT_2 timer FIN_WAIT_2 timer expires;

FIN_WAIT_2 timer set to
expires; t_idle = 1198; ¢_idle = 1198+150;

1200 (tcp_maxidle);
FIN_WAIT_2 timer set to tcp_close ()

t_idle = 0
150 (tcp_keepintvl)

Figure 25.12 FIN_WAIT_2 timer to avoid infinite wait in FIN_WAIT_2 state.

The connection moves from the FIN_WAIT_I state to the FIN_WAIT_2 state on the
receipt of an ACK (Figure 24.15). Receiving this ACK sets t_idle to 0 and the
FIN WAIT_2 timer is set to 1200 (tcp_maxidle). In Figure 25.12 we show the up
arrow just to the right of the tick mark starting the 10-minute period, to reiterate that the
first decrement of the counter occurs between 0 and 500 ms after the counter is set.
After 1199 ticks the timer expires, but since t_idle is incremented after the test and
decrement of the four counters in Figure 25.8, t_idle is 1198. (We assume the connec-
tion is idle for this 10-minute period.) The comparison of 1198 as less than or equal to
1200 is true, so the FIN_WAIT_2 timer is set to 150 (tcp keepintvl). When the timer
expires again in 75 seconds, assuming the connection is shll idle, t_~_dle is now 1348,
the test is false, and tcp_c lose is called.

The reason for the 75-second timeout after the first 10-minute timeout is as follows:
a connection in the FIN_WAIT_2 state is not dropped until the connection has been idle

for more than 10 minutes. There’s no reason to test t_idle until at least 10 minutes
have expired, but once this time has passed, the value of t_idle is checked every 75
seconds. Since a duplicate segment could be received, say a duplicate of the ACK that

Section 2[

Persist"

I
210--220

~0)

he

lp
he
~t.
~d
!C-

to
er
:8,

tcp_timers FuncHon 827

Persist

moved the connection from the FIN_WAIT_I state to the FIN_WAIT_2 state, the
10-minute wait is restarted when the segment is received (since t_±dle will be set to 0).

Terminating an idle connection after more than 10 minutes in the FIN_WAIT_2 state violates
the protocol specification, but this is practical. In the FIN_WAIT_2 state the process has called
c 3.o s e, all outstanding data on the connection has been sent and acknowledged, the other end
has acknowledged the FIN, and TCP is waiting for the process at the other end of the connec-
tion to issue its close. If the other process never closes its end of the connection, our end can
remain in the FIN_WAIT_2 forever. A counter should be maintained for the number of con-
nections terminated for this reason, to see how often this occurs.

Timer

Figure 25.13 shows the case for when the persist timer expires.

210 /*
211 * Persistence timer into zero window.
212 * Force a byte to be output, if possible.
213 */
214 case TCPT_PERSIST:
215 tcpstat.tcps_persisttimeo++;
216 tcp_setpersist(tp) ;
217 tp->t_force : i;
218 (void) tcp_output(tp);
219 tp->t_force = 0;
220 break;

Figure 25.13 tcp_timers function: expiration of persist timer.

tcp_timer.c

tcp_timer.c

210--220

Force window probe segment
When the persist timer expires, there is data to send on the connection but TCP has

been stopped by the other end’s advertisement of a zero-sized window.
tcp_setpersist calculates the next value for the persist timer and stores it in the
TCPT_PERSIST counter. The flag t_force is set to 1, forcing tcp_output to send 1
byte, even though the window advertised by the other end is 0.

Figure 25.14 shows typical values of the persist timer for a LAN, assuming the
retransmission timeout for the connection is 1.5 seconds (see Figure 22.1 of Volume 1).

151516] 12 I 24 I 48 I 60 I 60 seconds ,, ~
0 5 10 16 28 52 100 160 220

Figure 25.14 Time line of persist timer when probing a zero window.

Once the value of the persist timer reaches 60 seconds, TCP continues sending window
probes every 60 seconds. The reason the first two values are both 5, and not 1.5 and 3, is
that the persist timer is lower bounded at 5 seconds. It is also upper bounded at 60 sec-
onds. The multiplication of each value by 2 to give the next value is called an
exponential backoff, and we describe how it is calculated in Section 25.9.

828 TCP Timers

Connection Establishment and Keepalive Timers

TCP’s TCPT_KEEP counter implements two timers:

When a SYN is sent, the connection-establishment timer is set to 75 seconds
(TCPTV_KEEP_INIT). This happens when connect is called, putting a connec-
tion into the SYN SENT state (active open), or when a connection moves from
the LISTEN to th~ SYN RCVD state (passive open). If the connection doesn’t
enter the ESTABLISHED-state within 75 seconds, the connection is dropped.

When a segment is received on a connection, tcp_input resets the keepalive
timer for that connection to 2 hours (tcp_keepidle), and the t_idle counter
for the connection is reset to 0. This happens for every TCP connection on the
system, whether the keepalive option is enabled for the socket or not. If the
keepalive timer expires (2 hours after the last segment was received on the con-
nection), and if the socket option is set, a keepalive probe is sent to the other
end. If the timer expires and the socket option is not set, the keepalive timer is
just reset for 2 hours in the future.

221--228

Figure 25.16 shows the case for TCP’s TCPT_KEEP counter.

Connection-establishment timer expires after 75 seconds
If the state is less than ESTABLISHED (Figure 24.16), the TCPT_KEEP counter is the

connection-establishment timer. At the label dropit, tcp_drop is called to terminate
the connection attempt with an error of ETIMEDOUT. We’ll see that this error is the
default error--if, for example, a soft error such as an ICMP host unreachable was
received on the connection, the error returned to the process will be changed to
EHOSTUNREACH instead of the default.

In Figure 30.4 we’ll see that when TCP sends a SYN, two timers are initialized: the
connection-establishment timer as we just described, with a value of 75 seconds, and the
retransmission timer, to cause the SYN to be retransmitted if no response is received.

Figure 25.15 shows these two timers.

connection 75 seconds ~establishment I 75
timer: 0

48 seconds
retransmission [6 I 24 I 7~8timer: 0 6 30

transmit retransmit retransmit tcp_drop ()

SYN SYN SYN

Figure 25.15 Connection-establishment timer and retransmission timer after SYN is sent.

The retransmission timer is initialized to 6 seconds for a new connection (Figure 25.19),
and successive values are calculated to be 24 and 48 seconds. We describe how
values are calculated in Section 25.7. The retransmission timer causes the SYN to

Section 2

229--230

221
222
223
224
225
226
227
228

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
25O
251
252
253
254
255

tcp_timers Function 829

* Keep-alive timer went off; send something
* or drop connection if idle for too long.

case TCPT_KEEP:
tcpstat.tcps_keeptimeo++;
if (tp->t_state < TCPS_ESTABLISHED)

goto dropit; /* connection establishment timer */

if (tp->t_inpcb->inp_socket->so_options & SO_KEEPALIVE &&
tp->t_state <= TCPS_CLOSE_WAIT)
if (tp->t_idle >= tcp_keepidle + tcp_maxidle)

goto dropit;
/*

* Send a packet designed to force a response
* if the peer is up and reachable:
* either an ACK if the connection is still alive,
* or an RST if the peer has closed the connection
* due to timeout or reboot.
* Using sequence number tp->snd_una-i
* causes the transmitted zero-length segment
* to lie outside the receive window;
* by the protocol spec, this requires the
* correspondent TCP to respond.
*/

tcpstat.tcps_keepprobe++;
tcp_respond(tp, tp->t_template, (struct mbuf *) NULL,

tp->rcv_nxt, tp->snd_una - i, 0);
tp->t_timer[TCPT_KEEP] = tcp_keepintvl;

} else
tp->t_timer[TCPT_KEEP] = tcp_keepidle;

break;
dropit:

tcpstat.tcps_keepdrops++;
tp = tcp_drop(tp, ETIMEDOUT);
break;

Figure 25.16 tcp_timers function: expiration of keepalive timer.

tcp_timer.c

tcp_timer.c

229--230

transmitted a total of three times, at times 0, 6, and 30. At time 75, 3 seconds before the
retransmission timer would expire again, the connection-establishment timer expires,
and tcp_drop terminates the connection attempt.
Keepalive timer expires after 2 hours of idle time

This timer expires after 2 hours of idle time on every connection, not just ones with
the $O_KEEPALIVE socket option enabled. If the socket option is set, probes are sent
only if the connection is in the ESTABLISHED or CLOSE_WAIT states (Figure 24.15).
Once the process calls close (the states greater than CLOSE_WAlT), keepalive probes
are not sent, even if the connection is idle for 2 hours.

830

231--232

233--248

TCP Timers

Chapter 25

Drop connection when no response
If the total idle time for the connection is greater than or equal to 2 hours

(tcp_keepidle) plus 10 minutes (tcp_maxidle), the connection is dropped. This
means that TCP has sent its limit of nine keepalive probes, 75 seconds apart
(tcp keepintvl), with no response. One reason TCP must send multiple keepalive
probes before considering the connection dead is that the ACKs sent in response do not
contain data and therefore are not reliably transmitted by TCP. An ACK that is a

response to a keepalive probe can get lost.

Send a keepalive probe
If TCP hasn’t reached the keepalive limit, tcp_respond sends a keepalive packet.

The acknowledgment field of the keepalive packet (the fourth argument to
tcp_respond) contains rcv_nxt, the next sequence number expected on the connec-
tion. The sequence number field of the keepalive packet (the fifth argument) deliber-
ately contains snd_una minus 1, which is the sequence number of a byte of data that
the other end has already acknowledged (Figure 24.17). Since this sequence number is
outside the window, the other end must respond with an ACK, specifying the next

sequence number it expects.
Figure 25.17 summarizes this use of the keepalive timer.

2 hours 75 75 75 75 75 75 75 75 75

~ (co~) 0 75 150 225 300 375 450 525 600 675

segment probe probe probe probe probe probe probe probe probe
received 1 2 3 4 5 6 7 8 9

tcp_drop

Figure 25.17 Summary of keepalive timer to detect unreachability of other end.

The nine keepalive probes are sent every 75 seconds, starting at time 0, through time
600. At time 675 (11.25 minutes after the 2-hour timer expired) the connection is
dropped. Notice that nine keepalive probes are sent, even though the constant
TCPTV_KEEPCNT (Figure 25.4) is 8. This is because the variable t_idle is incremented
in Figure 25.8 after the timer is decremented, compared to 0, and possibly handled.
When tcp_input receives a segment on a connection, it sets the keepalive timer to
14400 (tcp_keepidle) and t_idle to 0. The next time tcp_slowtimo is called, the
keepalive timer is decremented to 14399 and t_idle is incremented to I. About
hours later, when the keepalive timer is decremented from 1 to 0 and tcp_timerS
called, the value of t idle will be 14399. We can build the table in Figure 25.18 to see

the value of t_idle each time tcp_timers is called.
The code in Figure 25.16 is waiting for t_idle to be greater than or equal to 15600

(tcp_keepidle + tcp_maxidle) and that only happens at time 675 in Figure

after nine keepalive probes have been sent.

Section 25.

249-250

25.7

art

lot

~a

et.
to
~C-

-~r-

~at
is

.~xt

.p()

le

is
at
!d
d.
to

2
is
.~e

)0
7,

249--250

25.7

Retransmission Timer Calculations 831

probe#

1
2
3
4
5
6
7
8
9

fimein
t_idleFigure 25.17

0 14399
75 14549
150 14699
225 14849
300 14999
375 15149
450 15299
525 15449
600 15599
675 15749

Figure 25.18 The value of t_idle when tcp_timers is called for keepalive processing.

Reset keepalive timer
If the socket option is not set or the connection state is greater than CLOSE_WAIT,

the keepalive timer for this connection is reset to 2 hours (tcp_keepidle).

Unfortunately the counter tcps_keepdrops (line 253) counts both uses of the TCPT_KEEP
counter: the connection-establishment timer and the keepalive timer.

Retransmission Timer Calculations

The timers that we’ve described so far in this chapter have fixed times associated with
them: 200 ms for the delayed ACK timer, 75 seconds for the connection-establishment
timer, 2 hours for the keepalive timer, and so on. The final two timers that we describe,
the retransmission timer and the persist timer, have values that depend on the mea-
sured RTT for the connection. Before going through the source code that calculates and
sets these timers we need to understand how TCP measures the RTT for a connection.

Fundamental to the operation of TCP is setting a retransmission timer when a seg-
ment is transmitted and an ACK is required from the other end. If the ACK is not
received when the retransmission timer expires, the segment is retransmitted. TCP
requires an ACK for data segments but does not require an ACK for a segment without
data (i.e., a pure ACK segment). If the calculated retransmission timeout is too small, it
can expire prematurely, causing needless retransmissions. If the calculated value is too
large, after a segment is lost, additional time is lost before the segment is retransmitted,
degrading performance. Complicating this is that the round-trip times between two
hosts can vary widely and dynamically over the course of a connection.

TCP in Net/3 calculates the retransmission timeout (RTO) by measuring the round-
trip time (nticks) of data segments and keeping track of the smoothed RTT estimator
(srtt) and a smoothed mean deviation estimator (rttvar). The mean deviation is a good
approximation of the standard deviation, but easier to compute since, unlike the stan-
dard deviation, the mean deviation does not require square root calculations. [Jacobson
1988b] provides additional details on these RTT measurements, which lead to the fol-
lowing equations:

832 TCP Timers Chapter 25

delta = nticks - srtt

srtt <-- srtt + g x delta

rttvar ~- rttvar + h(I delta [- rttvar)

RTO = Srtt + 4 x rttvar

delta is the difference between the measured round trip just obtained (nticks) and the
current smoothed RTT estimator (srtt). g is the gain applied to the RTT estimator and
equals 1/~. h is the gain applied to the mean deviation estimator and equals 1,~. The two
gains and the multiplier 4 in the RTO calculation are purposely powers of 2, so they can
be calculated using shift operations instead of multiplying or dividing.

[Jacobson 1988b] specified 2 x rttvar in the calculation of RTO, but after further research,
[Jacobson 1990d] changed the value to 4 x rttvar, which is what appeared in the Net/1 imple-
mentation.

We now describe the variables and calculations used to calculate TCP’s retransmis-
sion timer, as we’ll encounter them throughout the TCP code. Figure 25.19 lists the vari-
ables in the control block related to the retransmission rimer.

tcp newt c~)cb #sec Descriptiontcpcb Units -member initial value

t_srtt ticksx8 0

t_rttvar ticksx4 24

t_rxtcur ticks 12
t_rttmin ticks 2

t_rxtshift n.a. 0

3
6
1

smoothed RTT estimator: srtt x 8
smoothed mean deviation estimator: rttvar x 4
current retransmission timeout: RTO
minimum value for retransmission timeout

index into tcp_backof f [] array (exponential backoff)

Figure 25.19 Control block variables for calculation of retransmission timer.

We show the tcp_backof f array at the end of Section 25.9. The tcp_newtcpcb func-
tion sets the initial values for these variables, and we cover it in the next section. The
term shift in the variable t_rxtshift and its limit TCP_MAXRXTSHIFT is not entirel’
accurate. The former is not used for bit shifting, but as Figure 25.19 indicates, it is
index into an array.

The confusing part of TCP’s timeout calculations is that the two smoothed estima-
tors maintained in the C code (t_srtt and t_rttvar) are fixedq
of floating-point values. This is done to avoid floating-point calculations
nel, but it complicates the code.

To keep the scaled and unscaled variables distinct, we’ll use the italic variables srtt
and rttvar to refer to the unscaled variables in the earlier equations, and t_srtt
t_rt tvar to refer to the scaled variables in the TCP control block.

Figure 25.20 shows four constants we encounter, which define the scale factors
for t_srtt and 4 for t_rttvar.

Section 25.8 tcp_newtcpcb FuncHon 833

25.8

Constant Value Description

TCP RTT SCALE 8 multiplier: t_srt t = srtt x 8
TCP RTT SHIFT 3 shift: t_srtt = srtt << 3

TCP_RTTVAR_SCALE 4 multiplier: t_rt tvar = rttvar x 4
TCP_RTTVAR_SHIFT 2 shift: t_rttvar : rttvar << 2

Figure 25.20 Multipliers and shifts for RTT estimators.

tcp_newt cpcb Function

A new TCP control block is allocated and initialized by tcp_newtcpcb, shown in Fig-
ure 25.21. This function is called by TCP’s PRU_ATTACH request when a new socket is
created (Figure 30.2). The caller has previously allocated an Internet PCB for this con-
nection, pointed to by the argument inp. We present this function now because it ini-
tializes the TCP timer variables.

167 struct tcpcb *
168 tcp_newtcpcb(inp)
169 struct inpcb *inp;
170 {
171 struct tcpcb *tp;

tcp_subr.c

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

tp = malloc(sizeof(*tp), M_PCB, M_NOWAIT);
if (tp -- NULL)

return ((struct tcpcb *) 0);
bzero((char *) tp, sizeof(struct tcpcb));
tp->seg_next = tp->seg~rev = (struct tcpiphdr *) tp;
tp->t_maxseg : tcp_mssdflt;
tp->t_flags : tcp do rfc1323 ? (TF_REQ_SCALE I TF_REQ_TSTMP) : 0;
tp->t_inpcb = inp;
/*

* Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
* rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
* reasonable initial retransmit time.
*/

tp->t_srtt : TCPTV_SRTTBASE;
tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << 2;
tp->t_rttmin : TCPTV_MIN;
TCPT_P~ANGESET(tp->t_rxtcur,

((TCPTV_SRTTBASE >> 2) + (TCPTV_SRTTDFLT << 2)) >> i,
TCPTV_MIN, TCPTV_REXMTMAX);

191
192

tp->snd_cwnd : TCP_MAXWIN << TCP_MAX_WINSHIFT;
tp->snd_ssthresh : TCP_MAXWIN << TCP_MAX_WINSHIFT;

193
194
195
196

inp->inp_ip.ip_ttl = ip_defttl;
inp->inp~pcb = (caddr_t) tp;
return_ (tp);

Figure 25.21 tcp_newtcpcb function: create and initialize a new TCP control block.

tcp_subr.c

834 TCP Timers
Chapter 25

167-175

176

177-179

180-185

186-187

188-190

The kernel’s malloc function allocates memory for the control block, and

sets it to 0.
The two variables seg_next and seg_prev point to the reassembly queue for out-

of-order segments received for this connection. We discuss this queue in detail in Sec-
tion 27.9.

The maximum segment size to send, t maxseg, defaults to 512 (tcp_mssdflt).
This value can be changed by the tcp mss function after an MSS option is received
from the other end. (TCP also sends an MSS option to the other end when a new con-
nection is established.) The two flags TF REQ SCALE and TF REQ TSTMP are set if the
system is configured to request window scaling and timestamps as defined in RFC 1323
(the global tcp_do_rfc1323 from Figure 24.3, which defaults to 1). The t_inpcb
pointer in the TCP control block is set to point to the Internet PCB passed in by the
caller.

The four variables t_srtt, t_rttvar, t_rttmin, and t_rxtcur, described in
Figure 25.19, are initialized. First, the smoothed RTT estimator t_srtt is set to 0
(TCPTV_SRTTBASE), which is a special value that means no RTT measurements have
been made yet for this connection, tcp_xmit_timer recognizes this special value
when the first RTT measurement is made.

The smoothed mean deviation estimator t rttvar is set to 24:3 (tcp_rttdflt,
from Figure 24.3) times 2 (PR_SLOWHZ) multiplied by 4 (the left shift of 2 bits). Since
this scaled estimator is 4 times the variable rftvar, this value equals 6 clock ticks, or 3

seconds. The minimum RTO, stored in t_rttmin, is 2 ticks (TCPTV_MIN).
The current RTO in clock ticks is calculated and stored in t_rxtcur. It is bounded

by a minimum value of 2 ticks (TCPTV_MIN) and a maximum value of 128 ticks
(TCPTV_REXMTMAX). The value calculated as the second argument to TCPT_RANGESET

is 12 ticks, or 6 seconds. This is the first RTO for the connection.
Understanding these C expressions involving the scaled RTT estimators can be a

challenge. It helps to start with the unscaled equation and substitute the scaled vari-
ables. The unscaled equation we’re solving is

RTO = srtt + 2 x rttvar

where we use the multipler of 2 instead of 4 to calculate the first RTO.

The use of the multiplier 2 instead of 4 appears to be a leftover from the original 4.3BSD Tahoe

code [Paxson 1994].

Substituting the two scaling relationships
t_srtt = 8x srtt

t_rttvar = 4 x rttvar

we get
t_srtt t_rttvar

RTO - 8 + 2 x 4 --
t_srtt + t_rttvar

4

Sectic

193--

25.~

493-

a

9e

Section 25.9 tcp_setpersist Function 835

191-192

193-194

which is the C code for the second argument to TCPT_RANGESET. In this code the vari-
able t_rttvar is not used--the constant TCPTV_SRTTDFLT, whose value is 6 ticks, is
used instead, and it must be multiplied by 4 to have the same scale as t_rttvar.

The congestion window (snd_cwnd) and slow start threshold (snd_s s thresh) are
set to 1,073,725,440 (approximately one gigabyte), which is the largest possible TCP
window if the window scale option is in effect. (Slow start and congestion avoidance
are described in Section 21.6 of Volume 1.) It is calculated as the maximum value for the
window size field in the TCP header (65535, TCP_MAXWIN) times 214, where 14 is the
maximum value for the window scale factor (TCP_MAX_WINSHIFT). We’ll see that
when a SYN is sent or received on the connection, tcp_mss resets snd_cwnd to a sin-
gle segment.

The default IP TTL in the Internet PCB is set to 64 (ip_defttl) and the PCB is set
to point to the new TCP control block.

Not shown in this code is that numerous variables, such as the shift variable
t_rxtshift, are implicitly initialized to 0 since the control block is initialized by
bzero.

25.9 tcp_setpersist Function

The next function we look at that uses TCP’s retransmission timeout calculations is
tcp_setpersist. In Figure 25.13 we saw this function called when the persist timer
expired. This timer is set when TCP has data to send on a connection, but the other end
is advertising a window of 0. This function, shown in Figure 25.22, calculates and stores
the next value for the timer.

493 void
494 tcp_setpersist(tp)
495 struct tcpcb *tp;
496 {
497 t = ((tp->t_srtt >> 2) + tp->t_rttvar) >> i;

498 if (tp->t_timer[TCPT_REXMT])
499 panic("tcp_output REXMT");
500 /*
501 * Start/restart persistance timer.
502 */
503 TCPT_RANGESET(tp->t_timer[TCPT_PERSIST],
504 t * tcp_backoff[tp->t_rxtshift],
505 TCPTV_PERSMIN, TCPTV_PERSMAX);
506 if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
507 tp->t_rxtshift++;
508 }

Figure 25.22

tcp_output.c

tcp_output.c

t c p_ s e t p e r s i s t function: calculate and store a new value for the persist timer.

Check retransmission timer not enabled
493-~99 A check is made that the retransmission timer is not enabled when the persist timer

is about to be set, since the two timers are mutually exclusive: if data is being sent, the

836 TCP Timers
Cha[

500-505

506-507

other side must be advertising a nonzero window, but the persist timer is being set only

if the advertised window is 0.
Galculate RTO

The variable t is set to the RTO value that was calculated at the beginning of the

function. The equation being solved is
RTO = srtt + 2 x rttvar

which is identical to the formula used at the end of the previous section. With substitu-

tion we get
t_srtt~ + t_rttvar

RTO = 4

which is the value computed for the variable t.

Apply exponential backoff
An exponential backoff is also applied to the RTO. This is done by multiplying the

RTO by a value from the tcp_baekof f array:

int tcp_backoff [TCP_MAXRXTSHIFT + i] =
{ i, 2, 4, 8, 16, 32, 64, 64, 64, 64, 64, 64, 64 };

When tcp_output initially sets the persist timer for a cormection, the code is

tp->t_rxtshift : 0;
tcp_setpersist (tp) ;

so the first time tcp_setpersist is called, t_rxtshift is 0. Since the value of
tcp_backoff [0] is I, t is used as the persist timeout The TCPT_RANGESET macro
bounds this value between 5 and 60 seconds, t_rxtshift is incremented by 1 until
reaches a maximum of 12 (TCP_MAXRXTSHIFT), since tcp_backoff [12] is the final

entry in the array.

25.10 tcp_xmit_timer Function
The next function we look at, t cp_xmi t_
ment is collected, to update the smoothed RTT estimator (srtt) and the smoothed
deviation estimator (rttvar).

The argument rtt is the RTT measurement to be applied. It is the value nticks +
using the notation from Section 25.7. It can be from one of two sources:

1. If the timestamp option is present in a received segment, the measured RTT
the current time (top_now) minus the timestamp value. We’ll examine
timestamp option in Section 26.6, but for now all we need to know is
top_now is incremented every 500 ms (Figure 25.8). When a data segment
sent, top_now is sent as the timestamp, and the other end echoes this
stamp in the acknowledgment it sends back.

timer, is called each time an RTT measure-

Sectior

1310--13.

,ter 25

only

~f the

the

le of
tacro
~til it
final

Jure-
[lean

;+1,

the
that
nt is
ime-

1310-1325

tcp_xmit_t imer Function 837

If timestamps are not in use and a data segment is being timed, we saw in Fig-
ure 25.8 that the counter ¢_rt t is incremented every 500 ms for the connection.
We also mentioned in Section 25.5 that this counter is initialized to 1, so when
the acknowledgment is received the counter is the measured RTT (in ticks)
plus 1.

Typical code in tcp_input that calls tcp_xmit_timer is
if (ts_present)

tcp_xmit_timer(tp, tcp_now - ts_ecr + I);

else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
tcp_xmit_timer(tp, tp->t_rtt);

If a timestamp was present in the segment (ts_present), the RTT estimators are
updated using the current time (tcp_now) minus the echoed timestamp (ts_ecr)
plus 1. (We describe the reason for adding I below.)

If a timestamp is not present, the RTT estimators are updated only if the received
segment acknowledges a data segment that was being timed. There is only one RTT
counter per TCP control block (t_rt¢), so only one outstanding data segment can be
timed per connection. The starting sequence number of that segment is stored in
t_rt seq when the segment is transmitted, to tell when an acknowledgment is received
that covers that sequence number. If the received acknowledgment number (t i_ack) is
greater than the starting sequence mimber of the segment being timed (t_rt s eq), the
RTT estimators are updated using t_rtt as the measured RTT.

Before RFC 1323 timestamps were supported, TCP measured the RTF only by counting clock
ticks in t_rtt. But this variable is also used as a flag that specifies whether a segment is being
timed (Figure 25.8): if t_rtt is greater than 0, then ¢cp_slowt ±mo adds 1 to it every 500 ms.
Hence when t_rtt is nonzero, it is the number of ticks plus 1. We’ll see shortly that
tcp_xmit_~imer always decrements its second argt.u-nent by 1 to account for this offset.
Therefore when timestamps are being used, 1 is added to the second argument to account for
the decrement by 1 in t cp_xmi t_t imer.

The greater-than test of the sequence numbers is because ACKs are cumulative: if
TCP sends and times a segment with sequence numbers 1-1024 (~_rtseq equals 1),
then immediately sends (but can’t time) a segment with sequence numbers 1025-2048,
and then receives an ACK with ¢±_ack equal to 2049, this is an ACK for sequence
numbers 1-2048 and the ACK acknowledges the first segment being timed as well as
the second (untimed) segment. Notice that when RFC 1323 timestamps are in use there
is no comparison of sequence numbers. If the other end sends a timestamp option, it
chooses the echo reply value (¢ s_ecr) to allow TCP to calculate the RTT.

Figure 25.23 shows the first part of the function that updates the estimators.

Update smoothed estimators
Recall that tcp_newtcpcb initialized the smoothed RTT estimator (t_srtt) to 0,

indicating that no measurements have been made for this connection, de 1 t a is the dif-
ference between the measured RTT and the current value of the smoothed RTT estima-
tor, in unscaled ticks, t_srtt is divided by 8 to convert from scaled to unscaled ticks.

838 TCP Timers
Chapter 25

1310
1311
1312
1313
1314
1315

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351

tcp_input.c
void
tcp_xmit_timer(tp, rtt)
struct tcpcb *tp;
short rtt;
{

short delta;

tcpstat.tcps_rttupdated++;
if (tp->t_srtt != 0) {

/*
* srtt is stored as fixed point with 3 bits after the
* binary point (i.e., scaled by 8). The following magic
* is equivalent to the smoothing algorithm in rfc793 with
* an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
* point). Adjust rtt to origin 0.
*/

delta = rtt - 1 - (tp->t_srtt >> TCP_RTT_SHIFT);
if ((tp->t_srtt += delta) <= 0)

tp->t_srtt : i;
/*

* We accumulate a smoothed rtt variance (actually, a
* smoothed mean difference), then set the retransmit
* timer to smoothed rtt + 4 times the smoothed variance.
* rttvar is stored as fixed point with 2 bits after the
* binary point (scaled by 4). The following is
* equivalent to rfc793 smoothing with an alpha of .75
* (rttvar = rttvar*3/4 + Ideltal / 4). This replaces
* rfc793’s wired-in beta.
*/

if (delta < 0)
delta = -delta;

delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
if ((tp->t_rttvar += delta) <= 0)

tp->t_rttvar = i;
} else {

/*
* No rtt measurement yet - use the unsmoothed rtt-
* Set the variance to half the rtt (so our first
* retransmit happens at 3*rtt).
*/

tp->t_srtt = rtt << TCP_RTT_SHIFT;
tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - i);

} tcp_input.c

Figure 25.23 t cp_xmi t_t imer function: apply new RTF measurement to smoothed estimators.

1326-1327 The smoothed RTT estimator is updated using the equation

srtt ~- srtt + g x delta

Since the gain g is 1/8, this equation is

Se~

1328

1343-

cfion 25.10 t cp_xmi t_t imer Function 839

~28-1342

[343-1350

8 x srtt ~- 8 x srtt + delta

which is

t_srtt (-- t_srtt +delta

The mean deviation estimator is updated using the equation

rttvar ~- rttvar + h(I delta I - rttvar)

Substituting ¼ for h and the scaled variable t_rt tvar for 4 x rttvar, we get
t_rttvar

I delta I
t_rttvar t_rttvar 4+

4 4 4
which is

t_rttvar
t_rttvar e- t_rttvar + I deItal

4
This final equation corresponds to the C code.

Initialize smoothed estimators on first RTr measurement
If this is the first RTT measured for this connection, the smoothed RTT estimator is

initialized to the measured RTT. These calculations use the value of the argument rtt,
which we said is the measured RTT plus 1 (nticks + 1), whereas the earlier calculation of
delta subtracted I from rtt.

srtt = nticks + 1

or

which is

t_srtt
- nticks + 1

8

t_srtt : (nticks + 1) x 8

The smoothed mean deviation is set to one-half of the measured RTT:

which is

rttvar -
srtt
2

t_rttvar nticks + 1
4 2

or

t_rttvar = (nticks + 1) x 2

The comment in the code states that this initial setting for the smoothed mean deviation
yields an initial RTO of 3 x srtt. Since the RTO is calculated as

RTO = srtt + 4 x rttvar

84O TCP Timers
Chapter 25

substituting for rttvar gives us
srtt

RTO = srtt + 4 x --
2

which is indeed
RTO = 3 x srtt

Figure 25.24 shows the final part of the ¢cp_xm±t_t imer function.

1352 tp->t_rtt = 0;
1353 tp->t_rxtshift = 0;

tcp_input.c

1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366

* the retransmit should happen at rtt + 4 * rttvar.
* Because of the way we do the smoothing, srtt and rttvar
* will each average +1/2 tick of bias. When we compute
* the retransmit timer, we want 1/2 tick of rounding and
* 1 extra tick because of +-1/2 tick uncertainty in the
* firing of the timer. The bias will give us exactly the

* 1.5 tick we need. But, because the bias is
* statistical, we have to test that we don’t drop below

* the minimum feasible timer (which is 2 ticks).

TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
tp->t_rttmin, TCPTV_REXMTMAX);

1367
1368
1369
1370
1371
1372
1373
1374
1375

* We received an ack for a packet that wasn’t retransmitted;
* it is probably safe to discard any error indications we’ve
* received recently. This isn’t quite right, but close enough
* for now (a route might have failed after we sent a segment,
* and the return path might not be syrmmetrical).

tp->t_softerror = 0;

Figure 25.24 tcp_xmit_timer function: finalpart.

1352-1353

1354-1366

The RTT counter (t_rtt) and the retransmission shift count (t_rxtshift) are
both reset to 0 in preparation for timing and transmission of the next segment.

The next RTO to use for the connection (t_rxtcur) is calculated using the macro

#define TCP_REXMTVAL(tp) \
(((tp)->t_srtt >> TCP_RTT_SHIFT) + (tp)->t_rttvar)

This is the now-familiar equation
RTO : srtt + 4 x rttvar

using the scaled variables updated by tcp_xmit_timer. Substituting these
variables for srtt and rttvar, we have

t_srtt t_rttvarRTO - + 4 x
8 4

Sec|

1367-

25.

Retransmission Timeout: tcp_timers Function 841

~67-1374

t_srtt
- +t_rttvar

8
which corresponds to the macro. The calculated value for the RTO is bounded by the
minimum RTO for this connection (t_rttmin, which t_newtcpcb set to 2 ticks), and
128 ticks (TCPTV_REXMTNAX).

Clear soft error variable

Since t cp_xmit_t imer is called only when an acknowledgment is received for a
data segment that was sent, if a soft error was recorded for this connection
(t_softerror), that error is discarded. We describe soft errors in more detail in the
next section.

25.11 Retransmission Timeout: tcp_timers Function

11.51 3
0 1.5

(1)

We now retum to the tcp_timers function and cover the final case that we didn’t
present in Section 25.6: the one that handles the expiration of the retransmission timer.
This code is executed when a data segment that was transmitted has not been acknowl-
edged by the other end within the RTO.

Figure 25.25 summarizes the actions caused by the retransmission timer. We
assume that the first timeout calculated by tcp_output is 1.5 seconds, which is typical
for a LAN (see Figure 21.1 of Volume 1).

[,24 [48 [64 [64 I 64 I 64 [64 [64 I 64 sec I
-46.5 94.5 158.5 222.5 286.5 350.5 414.5 478.5 542.5

(5) " -, L6), _ (7) (8) (9) (10) (11) (12) (13)

- _. tcp_drop ()
6 12 seconds - ~

4.5 10.5 22.5
(2) (3) (4) ~-- new value of t_rxesh± £e

Figure 25.25 Summary of retransmission timer when sending data.

The x-axis is labeled with the time in seconds: 0, 1.5, 4.5, and so on. Below each of these
numbers we show the value of ¢_rxtsh±ft that is used in the code we’re about to
examine. Only after 12 retransmissions and a total of 542.5 seconds (just over 9 min-
utes) does TCP give up and drop the connection.

RFC 793 recommended that an open of a new cormection, active or passive, allow a parameter
specifying the total timeout period for data sent by TCP. This is the total amount of time TCP
will try to send a given segment before giving up and terminating the connection. The recom-
mended default was 5 minutes.

RFC 1122 requires that an application must be able to specify a parameter for a cormection giv-
ing either the total number of retransmissions or the total timeout value for data sent by TCP.
This parameter can be specified as "infinity," meaning TCP never gives up, allowing, perhaps,
an interactive user the choice of when to give up.

842

146

TCP Timers Chapter 25

We’ll see in the code described shortly that Net/3 does not give the application any of this con-
troh a fixed number of retransmissions (12) always occurs before TCP gives up, and the total
timeout before giving up depends on the RTT.

The first half of the retransmission timeout case is shown in Figure 25.26.

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

tcp_tim~.c
/*

* Retransmission timer went off. Message has not
* been acked within retransmit interval. Back off
* to a longer retransmit interval and retransmit one segment.
*/

case TCPT_REXMT:
if (++tp->t_rxtshift > TCP_MAXRXTSHIFT) {

tp->t_rxtshift = TCP_MAXRXTSHIFT;
tcpstat.tcps_timeoutdrop++;
tp = tcp_drop(tp, tp->t_softerror ?

tp->t_softerror : ETIMEDOUT) ;
break;

}
tcpstat.tcps_rexmttimeo++;
re~t = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift]
TCPT_RANGESET(tp->t_rxtcur, rexmt,

tp->t_rttmin, TCPTV_REXMTMAX);
tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
/*

* If losing, let the lower level know and try for
* a better route. Also, if we backed off this far,
* our srtt estimate is probably bogus. Clobber it
* so we’ll take the next rtt measurement as our srtt;
* move the current srtt into rttvar to keep the current
* retransmit times until then.
*/

if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) {
in_losing(tp->t_inpcb);
tp->t_rttvar += (tp->t_srtt >> TCP_RTT_SHIFT);
tp->t_srtt = 0;

]
tp->snd_nxt = tp->snd_una;
/*

* If timing a segment in this window, stop the timer.
*/

tp->t_rtt = 0;

Figure 25.26 tcp_timers function: expiration of retransrnission timer, first half.

Increment shift count

The retransmission shift count (t rxtshift) is incremented, and if the value ~i~i¯̄ ¯ ¯ -
ping of a connection because an acknowledgment is not received from the other end in
response to data sent by TCP, and the keepalive timer, which drops a connection after

!4

156

168

ner.c

mer.c

ralue
~e of
trop-
~d in
~er a

147-152

153-157

158-167

168--170

25.11 Retransmission Timeout: tcp_timers Function 843

long period of inactivity and no response from the other end. Both report the error
ETIMEDOUT to the process, unless a soft error is received for the connection.

Drop connection

A soft error is one that doesn’t cause TCP to terminate an established connection or
an attempt to establish a connection, but the soft error is recorded in case TCP gives up
later. For example, if TCP retransmits a SYN segment to establish a connection, receiv-
ing nothing in response, the error returned to the process will be ETIMEDOUT. But if
during the retransmissions an ICMP host unreachable is received for the connection,
that is considered a soft error and stored in t_softerror by tcp_notify. If TCP
finally gives up the retransmissions, the error returned to the process will be
EHOSTUNREACH instead of ETIMEDOUT, providing more information to the process. If
TCP receives an RST on the connection in response to the SYN, that’s considered a hard
error and the connection is terminated immediately with an error of ECONNREFUSED
(Figure 28.18).

Calculate new RTO

The next RTO is calculated using the TCP_REXMTVAL macro, applying an exponen-
tial backoff. In this code, t_rxtshift will be 1 the first time a given segment is
retransmitted, so the RTO will be twice the value calculated by TCP_REXMTVAL. This
value is stored in-t_rxtcur and as the retransmission timer for the connection,
t_t ime r [TC PT_REXMT]. The value stored in t_rxt cur is used in t cp_inpu t when
the retransmission timer is restarted (Figures 28.12 and 29.6).

Ask IP to find a new route

If this segment has been retransmitted four or more times, ±n_l o s ± ng releases the
cached route (if there is one), so when the segment is retransmitted by tcp_output (at
the end of this case statement in Figure 25.27) a new, and hopefully better, route will be
chosen. In Figure 25.25 in_los±ng is called each time the retransmission timer
expires, starting with the retransmission at time 22.5.
Clear estimators

The smoothed RTT estimator (t_srtt) is set to 0, which is what t_newtcpcb did.
This forces tcp_xra±~_~±raer to use the next measured RTT as the smoothed RTT esti-
mator. This is done because the retransmitted segment has been sent four or more
times, implying that TCP’s smoothed RTT estimator is probably way off. But if the
retransmission timer expires again, at the beginning of this case statement the RTO is
calculated by TCP_REXMTVAL. That calculation should generate the same value as it
did for this retransmission (which will then be exponentially backed off), even though
e_srte is set to 0. (The retransmission at time 42.464 in Figure 25.28 is an example of
what’s happening here.)

To accomplish this the value of ~_rttvar is changed as follows. The next time the
RTO is calculated, the equation

t_srtt
RTO - + t_rt tvar

8
is evaluated. Since t_srtt will be 0, if t_rttvar is increased by t_srtt divided by

844 TCP Timers Chapter 25

171

172-1 75

8, RTO will have the same value. If the retransmission timer expires again for this seg-
ment (e.g., times 84.064 through 217.184 in Figure 25.28), when this code is executed
again t_srtt will be 0, so t_rttvar won’t change.

The next send sequence number (snd_nxt) is set to the oldest unacknowledged
sequence number (snd_una). Recall from Figure 24.17 that snd_nxt can be greater
than snd_una. By moving snd_nxt back, the retransmission will be the oldest seg-
ment that hasn’t been acknowledged.

Karn’s algorithm
The RTT counter, t_rtt, is set to 0, in case the last segment transmitted was being

timed. Karn’s algorithm says that even if an ACK of that segment is received, since the
segment is about to be retransmitted, any timing of the segment is worthless since the
ACK could be for the first transmission or for the retransmission. The algorithm is
described in [Karn and Partridge 1987] and in Section 21.3 of Volume 1. Therefore the
only segments that are timed using the t_rt t counter and used to update the RTT esti-
mators are those that are not retransmitted. We’ll see in Figure 29.6 that the use of
RFC 1323 timestamps overrides Karn’s algorithm.

Slow Start and Congestion Avoidance

176--205

206

208

The second half of this case is shown in Figure 25.27. It performs slow start and con-
gestion avoidance and retransmits the oldest unacknowledged segment.

Since a retransmission timeout has occurred, this is a strong indication of conges-
tion in the network. TCP’s congestion avoidance algorithm comes into play, and when a
segment is eventually acknowledged by the other end, TCP’s slow start algorithm will
continue the data transmission on the connection at a slower rate. Sections 20.6 and 21.6
of Volume I describe the two algorithms in detail.

win is set to one-half of the current window size (the minimum of the receiver’s
advertised window, snd_wnd, and the sender’s congestion window, snd_cwnd) in seg-
ments, not bytes (hence the division by L_maxseg). Its minimum value is two seg-
ments. This records one-half of the window size when the congestion occurred,
assuming one cause of the congestion is our sending segments too rapidly into the net-
work. This becomes the slow start threshold, t_ssthresh (which is stored in bytes,
hence the multiplication by t_maxseg). The congestion window, snd_cwnd, is set to
one segment, which forces slow start.

This code is enclosed in braces because it was added between the 4.3BSD and Net/1 releases
and required its own local variable (win).

The counter of consecutive duplicate ACKs, t_dupacks (which is used by the fast
retransmit algorithm in Section 29.4), is set to 0. We’ll see how this counter is used with
TCP’s fast retransmit and fast recovery algorithms in Chapter 29.

tcp_output resends a segment containing the oldest unacknowledged sequence
number. This is the retransmission caused by the retransmission timer expiring.

Secfi

Acc

25.11 Retransmission Timeout: tcp_timers Function 845

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
2O8
209

* Close the congestion window down to one segment
* (we’ll open it by one segment for each ack we get).
* Since we probably have a window’s worth of unacked
* data accumulated, this "slow start" keeps us from
* dumping all that data as back-to-back packets (which
* might overwhelm an intermediate gateway).

* There are two phases to the opening: Initially we
* open by one mss on each ack. This makes the window
* size increase exponentially with time. If the
* window is larger than the path can handle, this
* exponential growth results in dropped packet(s)
* almost immediately. To get more time between
* drops but still "phsh" the network to take advantage
* of improving conditions, we switch from exponential
* to linear window opening at some threshhold size.
* For a threshhold, we use half the current window
* size, truncated to a multiple of the mss.

* (the minimum cwnd that will give us exponential
* growth is 2 mss. We don’t allow the threshhold
* to go below ~his.)
*/

{
u_int win = min(tp->snd_wnd,
if (win < 2)

win = 2;
tp->snd_cwnd = tp->t_maxseg;
tp->snd_ssthresh = win * tp->t_maxseg;
tp->t_dupacks = 0;

}
(void) tcp_output(tp);
break;

tcp_timer.c

tp->snd_cwnd) / 2 / tp->t_maxseg;

Figure 25.27 tcp_timers function: expiration of retransmission timer, second half.

tcp_timer.c

Accuracy

How accurate are these estimators that TCP maintains? At first they appear too coarse,
since the RTTs are measured in multiples of 500 ms. The mean and mean deviation are
maintained with additional accuracy (factors of 8 and 4 respectively), but LANs have
RTTs on the order of milliseconds, and a transcontinental RTT is around 60 ms. What
these estimators provide is a solid upper bound on the RTI? so that the retransmission
timeout can be set without worrying that the timeout is too small, causing unnecessary
and wasteful retransmissions.

[Brakmo, O’Malley, and Peterson 1994] describe a TCP implementation that pro-
vides higher-resolution RTI? measurements. This is done by recording the system clock
(which has a much higher resolution than 500 ms) when a segment is transmitted and
reading the system clock when the ACK is received, calculating a higher-resolution RTT.

846 TCP Timers
Chapter 25

The timestamp option provided by Net/3 (Section 26.6) can provide higher-
resolution RTTs, but Net/3 sets the resolution of these timestamps to 500 ms.

25.12 An RTT Example

We now go through an actual example to see how the calculations are performed. We
transfer 12288 bytes from the host bsd± to vangogh, cs. berkeley, edu. During the
transfer we purposely bring down the PPP link being used and then bring it back up, to
see how timeouts and retransmissions are handled. To transfer the data we use our
sock program (described in Appendix C of Volume 1) with the -D option, to enable the
so DEBUG socket option (Section 27.10). After the transfer is complete we examine the
de~-ug records left in the kernel’s circular buffer using the ¢rp¢ (8) program and print
the desired timer variables from the TCP control block.

Figure 25.28 shows the calculations that occur at the various times. We use the
notation M:N to mean that sequence numbers M through and including N - 1 are sent.
Each segment in this example contains 512 bytes. The notation "ack M" means that the
acknowledgment field of the ACK is M. The column labeled "actual delta (ms)" shows
the time difference between the RTT timer going on and going off. The column labeled
"r¢¢ (arg.)" shows the second argument to the ¢cp_xra±t_¢±mer function: the num-
ber of clock ticks plus I between the RTT timer going on and going off.

The function tcp_newtcpcb initializes t_srtt, t_rttvar, and t_rxtcur to the

values shown at time 0.0.
The first segment timed is the initial SYN. When its ACK is received 365 ms later,

Cep_xm±¢_¢±mer is called with an rtt argument of 2. Since this is the first RTT mea-
surement (¢_srt¢ is 0), the else clause in Figure 25.23 calculates the first values of the
smoothed estimators.

The data segment containing bytes i through 512 is the next segment timed, and the
RTT variables are updated at time 1.259 when its ACK is received.

The next three segments show how ACKs are cumulative. The timer is started at
time 1.260 when bytes 513 through 1024 are sent. Another segment is sent with bytes
1025 through 1536, and the ACK received at time 2.206 acknowledges both data seg-
ments. The RTT estimators are then updated, since the ACK covers the starting
sequence number being timed (513).

The segment with bytes 1537 through 2048 is transmitted at time 2.206 and the
timer is started. Just that segment is acknowledged at time 3.132, and the estimators
updated.

The data segment at time 3.132 is timed and the retransmission timer is set to 5 ticks
(the current value of ¢_r×¢cur). Somewhere around this time the PPP link between
the routers sun and neCb is taken down and then brought back up, a procedure that
takes a few minutes. When the retransmission timer expires at time 6.064, the code in
Figure 25.26 is executed to update the RTT variables. ¢_r×¢sh± £t is incremented from
0 to 1 and ¢ r×¢eur is set to 10 ticks (the exponential backoff). A segment starting
with the oldest unacknowledged sequence number (snd_una, which is 3073) is retrans-
mitted. After 5 seconds the timer expires again, ¢_rx¢ sh± £¢ is incremented to 2, and
the retransmission timer is set to 20 ticks.

Section

An RTr Example 847

xmit
time

0.0
0.365
0.365
0.415
1.259

1.260
1.261
2.206

2.206
2.207
2.209
3.132
3.132
3.133
3.736
3.736
3.737
3.739
3.739
3.740
6.064

11.264
21.664
42.464
84.064

150.624
217.184
217.944

217.944
217.945
218.834
218.834
218.836
219.209
219.209
219.760

219.760
220.103
220.103
220.105
220.106
220.821

220.821
221.310
221.310
221.312
221.312
221.674
221.955

send

SYN

ACK
1:513

513:1025
1025:1537

1537:2049
2049:2561
2561:3073

3073:3585
3585:4097

4097:4609
4609:5121

5121:5633
5633:6145

3073:3585
3073:3585
3073:3585
3073:3585
3073:3585
3073:3585
3073:3585

6145:6657
6657:7169

7169:7681
7681:8193

8193:8705

8705:9217

9217:9729
9729:10241

10241:10753

10753:11265

11265:11777

11777:12289

SYN,ACK

ack 513

ack 1537

ack 2049

ack 2561

ack 3073

ack 6145

ack 6657

ack 7169

ack 7681

ack 8705

ack 9217

ack 9729

ack 10241

ack 10753
ack 11265

RTF

on

on

off

off

off
off
off
off
off
off
off

on

off

on

off

actual rtt t_srtt
delta (ms) arg. (ticks x 8)

0
365 2 16

844 2 15

946 3 16

926 3 16

16
16
16
0
0
0
0

890 3 24

926 2 22

1061 3 22

off 1134 3 22

t_rt tvar t_rxtcur
(ticks x 4) (ticks)

24 12
4 6

4 5

4 6

3 5

3 10
3 20
3 40
5 8O
5 128
5 128
5 128

6 9

7 9

6 8

5 7

Figure 25.28 Values of RTT variables and estimators during example.

t_rxtshift

1
2
3
4
5
6
7

848 TCP Timers
Chapter 25 ~!

When the retransmission timer expires at time 42.464, t_srtt is set to 0
t rttvar is set to 5. As we mentioned in our discussion of Figure 25.26, this leaves
calculation of t_rxtcur the same (so the next calculation yields 160), but by setting
t srtt to 0, the next time the RT]? estimators are updated (at time 218.834), the mea-
sured RTT becomes the smoothed RTT, as if the connection were starting fresh.

The rest of the data transfer continues, and the estimators are updated a few more

times.

25.13 Summary

The two functions tcp_fasttimo and tcp_slowtimo are called by the kernel every
200 ms and every 500 ms, respectively. These two functions drive TCP’s per-connection
timer maintenance.

TCP maintains the following seven timers for each connection:

¯ a connection-establishment timer,
¯ a retransmission timer,
¯ a delayed ACK timer,
¯ a persist timer,
¯ a keepalive timer,
¯ a FIN_WAIT_2 timer, and
¯ a 2MSL timer.

The delayed ACK timer is different from the other six, since when it is set it means a
delayed ACK must be sent the next time TCP’s 200-ms timer expires. The other six
timers are counters that are decremented by 1 every time TCP’s 500-ms timer expires
When any one of the counters reaches 0, the appropriate action is taken: drop the con-
nection, retransmit a segment, send a keepalive probe, and so on, as described in this
chapter. Since some of the timers are mutually exclusive, the six timers are really imple-
mented using four counters, which complicates the code.

This chapter also introduced the recommended way to calculate values for the
retransmission timer. TCP maintains two smoothed estimators for a connection: the
round-trip time and the mean deviation of the RTT. Although the algorithms are simple
and elegant, these estimators are maintained as scaled fixed-point numbers (to provide
adequate precision without using floating-point code within the kernel), which compli-
cates the code.

Chap

e

e

e

e

i-

~ter 25 Exercises 849

Exercises

25.1 How efficient is TCP’s fast timeout function? (Hint: Look at the number of delayed ACKs
in Figure 24.5.) Suggest alternative implementations.

25.2 Why do you think the initialization of tcp_max±dle is in the tcp_slow~±mo function
instead of the tcp_±n±~ function?

25.3 tcp_s]_owt ±too increments ~_±dle, which we said counts the clock ticks since a segment
was last received on the connection. Should TCP also count the idle time since a segment
was last sent on a connection?

25.4 Rewrite the code in Figure 25.10 to separate the logic for the two different uses of the
TCPT_2MSL counter.

25.5 75 seconds after the connection in Figure 25.12 enters the FIN_WAIT_2 state a duplicate
ACK is received on the connection. What happens?

25.6 A connection has been idle for 1 hour when the application sets the SO_KEEPALIVE
option. Will the first keepalive probe be sent 1 or 2 hours in the future?

25.7 Why is tcp_rttdflt a global variable and not a constant?

25.8 Rewrite the code related to Exercise 25.6 to implement the alternate behavior.

26.1

TCP Output

26.1 Introduction

The function tcp_output is called whenever a segment needs to be sent on a connec-
tion. There are numerous calls to this function from other TCP functions:

¯ tcp_usrreq calls it for various requests: PRU_CONNECT to send the initial SYN,
PRU_SHUTDOWN to send a FIN, PRU_RCVD in case a window update can be sent
after the process has read some data from the socket receive buffer, PRU_SEND to
send data, and PRU_SENDOOB to send out-of-band data.

¯ tcp_fasttimo calls it to send a delayed ACK.
¯ tcp_timers calls it to retransmit a segment when the retransmission timer

expires.
¯ tcp_t imers calls it to send a persist probe when the persist timer expires.
¯ tcp_drop calls it to send an RST.
¯ tcp_disconnect calls it to send a FIN.
¯ tcp_input calls it when output is required or when an immediate ACK should

be sent.
¯ tcp_input calls it when a pure ACK is processed by the header prediction

code and there is more data to send. (A pure ACK is a segment without data that
just acknowledges data.)
tcp_input calls it when the third consecutive duplicate ACK is received, to
send a single segment (the fast retransmit algorithm).

851

852

26.2

61

62-68

69--70

26.3

TCP Output Chapter 26

tcp_output first determines whether a segment should be sent or not. TCP out-
put is controlled by numerous factors other than data being ready to send to the other
end of the connection. For example, the other end might be advertising a window of
size 0 that stops TCP from sending anything, the Nagle algorithm prevents TCP from
sending lots of small segments, and slow start and congestion avoidance limit the
amount of data TCP can send on a connection. Conversely, some functions set flags just
to force tcp_output to send a segment, such as the TF_ACKNOW flag that means an
ACK should be sent immediately and not delayed. If tep_output decides not to send
a segment, the data (if any) is left in the socket’s send buffer for a later call to this func-
tion.

t cp_output Overview

tcp_output is a large function, so we’ll discuss it in 14 parts. Figure 26.1 shows the
outline of the function.
Is an ACK expected from the other end?

idle is true if the maximum sequence number sent (snd max) equals the oldest
unacknowledged sequence number (snd_una), that is, if an ACK is not expected from
the other end. In Figure 24.17 idle would be 0, since an ACK is expected for sequence
numbers 4-6, which have been sent but not yet acknowledged.
Go back to slow start

If an ACK is not expected from the other end and a segment has not been received
from the other end in one RTO, the congestion window is set to one segment
(t_maxseg bytes). This forces slow start to occur for this connection the next time a
segment is sent. When a significant pause occurs in the data transmission ("significant"
being more than the RTT), the network conditions can change from what was previ-
ously measured on the connection. Net/3 assumes the worst and returns to slow start.

Send more than one segment
When send is jumped to, a single segment is sent by calling ip_output. But if

tcp_output determines that more than one segment can be sent, sendalot is set to 1,
and the function tries to send another segment. Therefore, one call to tcp_output can
result in multiple segments being sent.

Determine if a Segment Should be Sent

Sometimes tcp_output is called but a segment is not generated. For example, the
PRU_RCVD request is generated when the socket layer removes data from the socket’s
receive buffer, passing the data to a process. It is possible that the process removed
enough data that TCP should send a segment to the other end with a new window
advertisement, but this is just a possibility, not a certainty. The first half of tcp_output
determines if there is a reason to send a segment to the other end. If not, the function
returns without sending a segment.

Section

~ Section 26.3 Determine if a Segment Should be Sent 853

43 int
44 tcp_output(tp)
45 struct tcpcb *tp;
46 {
47 struct socket *so = tp->t_inpcb->inp_socket;
48 long len0 win;
49 int off, flags, error;
50 struct mbuf *m;
51 struct tcpiphdr *ti;
52 u_char opt[MAX_TCPOPTLEN];
53 unsigned optlen, hdrlen;
54 int idle, sendalot;

55
56
57
58
59
60
61
62
63
64
65
66
67
68

tcp_output.c

* Determine length of data that should be transmitted
* and flags that will be used.
* If there are some data or critical controls (SYN, RST)
* to send, then transmit; otherwise, investigate further.
*/

idle - (tp->snd_max == tp->snd_una);
if (idle && tp->t_idle >= tp->t_rxtcur)

* We have been idle for "a while" and no acks are
* expected to clock out any data we send --
* slow start to get ack "clock" running again.

tp->snd_cwnd = tp->t_maxseg;

69 again:
70 sendalot = 0; /* set nonzero if more than one segment to output */

218
219
220
221

* No reason to send a segment, just return.
*/

return (0);

222 send:

489
490
491
492 }

if sendalot)
goto again;

return (0);

Figure 26.1 tcp_output function: overview.

tcp_output.c

854 TCP Output Chapter 26

71--72

73

Figure 26.2 shows the first of the tests to determine whether a segment should
sent.

71
72

off : tp->snd_nxt - tp->snd_una;
win = min(tp->snd_wnd, tp->snd_cwnd);

tcp_output.c

73
74
75
76
77
78
79
8O
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

I00
i01
102
103
104
105

flags : tcp_outflags[tp->t_state];
/*

* If in persist timeout with window of 0, send 1 byte.
* Otherwise, if window is small but nonzero
* and timer expired, we will send what we can
* and go to transmit state.
*/

if (tp->t_force) {
if (win == 0) {

If we still have some data to send, then
clear the FIN bit. Usually this would
happen below when it realizes that we
aren’t sending all the data. However,
if we have exactly 1 byte of unsent data,
then it won’t clear the FIN bit below,
and if we are in persist state, we wind
up sending the packet without recording
that we sent the FIN bit.

* We can’t just blindly clear the FIN bit,
* because if we don’t have any more data
* to send then the probe will be the FIN
* itself.

-,/

if (off < so->so_snd.sb_cc)
flags &= -TH_FIN;

win : I;
} else {

tp->t_timer[TCPT_PERSIST] = 0;
tp->t_rxtshift = 0;

}

Figure 26.2 tcp_output function: data is being forced out.

tcp_output.c

o f f is the offset in bytes from the beginning of the send buffer of the first data byte
to send. The first off bytes in the send buffer, starting with snd_una, have already
been sent and are waiting to be ACKed.

win is the minimum of the window advertised by the receiver (snd_wnd) and the
congestion window (snd_cwnd).

The tcp_out flags array was shown in Figure 24.16. The value of this array that
is fetched and stored in flags depends on the current state of the connection, f lags
contains the combination of the TH_ACK, TH_FIN, TH_RST, and TH_SYN flag bits to
send to the other end. The other two flag bits, TH_PUSH and TH_URG, will be logically
ORed into f lags if necessary before the segment is sent.

Section 26.3

74--105

ba~

FI1~

byt

the

to ~

106
107
108
109
ii0
iii
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130

106

the
Ib
be~

tion 26.3 Determine if a Segment Should be Sent 855

74-i05 The flag t_force is set nonzero when the persist timer expires or when out-of-
band data is being sent. These two conditions invoke tcp_outpu~ as follows:

tp >t_force = i;
error : tcp_output(tp);
tp->t_force : 0;

This forces TCP to send a segment when it normally wouldn’t send anything.
If w±n is 0, the connection is in the persist state (since ¢_£orce is nonzero). The

FIN flag is cleared if there is more data in the socket’s send buffer, w±n must be set to 1
byte to force out a single byte.

If w±n is nonzero, out-of-band data is being sent, so the persist timer is cleared and
the exponential backoff index, t_rxt shi f t, is set to 0.

Figure 26.3 shows the next part of tcp_output, which calculates how much data
to send.

106
107
108
109
ii0
iii
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

fen : min(so->so_snd.sb_cc, win) - off;
if (fen < 0) {

* If FIN has been sent but not acked,
* but we haven’t been called to retransmit,
* len will be -i. Otherwise, window shrank
* after we sent into it. If window shrank to 0,
* cancel pending retransmit and pull snd_nxt
* back to (closed) window. We will enter persist
* state below. If the window didn’t close completely,
* just wait for an ACK.

len = 0;
if (win == 0) {

tp->t_timer[TCPT_REXMT] = 0;
tp->snd_nxt = tp->snd_una;

}
}
if (len > tp->t_maxseg) {

len : tp->t_maxseg;

sendalot : i;
}
if (SEQ_LT(tp->snd_nxt + len,

flags &: ~TH_FIN;

tcp_output.c

tp->snd_una + so->so_snd.sb_cc))

130 win : sbspace(&so->so_rcv);

Figure26.3 tcp_output ~nction:calculatehow much datatosend.

tcp_output.c

106

Calculate amount of data to send
len is the minimum of the number of bytes in the send buffer and w±n (which is

the minimum of the receiver’s advertised window and the congestion window, perhaps
1 byte if output is being forced), off is subtracted because that many bytes at the
beginning of the send buffer have already been sent and are awaiting acknowledgment.

Chapter 26 Section 26.

856

107--117

TCP Output

Check for window shrink
One way for 1 en to be less than 0 occurs if the receiver shrinks the window, that is,

the receiver moves the right edge of the window to the left. The following example
demonstrates how this can happen. First the receiver advertises a window of 6 bytes
and TCP transmits a segment with bytes 4, 5, and 6. TCP immediately transmits
another segment with bytes 7, 8, and 9. Figure 26.4 shows the status of our end after the
two segments are sent.

snd_wnd = 6: offered window
(advertised by receiver)

1 2 3 4 5 6 ~ 7 8 9 ...

snd_una : 4
oldest

unacknowledged
sequence number

sent, not ACKed

snd_nxt = 10
next send

sequence number

Figure 26.4 Send buffer after bytes 4 through 9 are sent.

Then an ACK is received with an acknowledgment field of 7 (acknowledging all data
up through and including byte 6) but with a window of 1. The receiver has shrunk the
window, as shown in Figure 26.5.

snd_wnd = I

sent, not ACKed

snd_una = 7 snd_nxt = I0
oldest next send

unacknowledged sequence number
sequence number

Figure 26.5 Send buffer after receivingackn°wledgment °f bytes 4 thr°ugh 6"

Performing the calculations in Figures 26.2 and 26.3, after the window is shrunk, we
have

off = snd_nxt - snd_una = i0 - 7 = 3
win = 1
len = min(so_snd.sb_cc, win) - off = min(3, I) - 3 = -2

assuming the send buffer contains only bytes 7, 8, and 9.

118--122

124--127

128--129

~, that is,
example
! 6 bytes
ransmits
after the

all data
:unk the

/Ilk, we

n 26.3

118--122

124--127

128--129

Determine if a Segment Should be Sent 85V

Both RFC 793 and RFC 1122 strongly discourage shrinking the window. Nevertheless, imple-
mentations must be prepared for this. Handling scenarios such as this comes under the
Robustness Principle, first mentioned in RFC 791: "Be liberal in what you accept, and conserva-
tive in what you send."

Another way for Ken to be less than 0 occurs if the FIN has been sent but not
acknowledged and not retransmitted. (See Exercise 26.2.) We show this in Figure 26.6.

3 4 5 6 7 8 9 FIN

sent and acknowledged

snd_una = 10 snd_nxt = 11
oldest next send

unacknowledged sequence
sequence number number

Figure 26.6 Bytes I through 9 have been sent and acknowledged, and then connection is closed.

This figure continues Figure 26.4, assuming the final segment with bytes 7, 8, and 9 is
acknowledged, which sets snd_una to 10. The process then closes the connection,
causing the FIN to be sent. We’ll see later in this chapter that when the FIN is sent,
snd nxt is incremented by 1 (since the FIN takes a sequence number), which in this
exan~ple sets snd_nxt to 11. The sequence number of the FIN is 10. Performing the
calculations in Figures 26.2 and 26.3, we have

off = snd_nxt - snd_una : ii - i0 : i
win : 6
len : min(so_snd.sb_cc, win) - off : min(O, 6) 1 : -I

We assume that the receiver advertises a window of 6, which makes no difference, since
the number of bytes in the send buffer (0) is less than this.

Enter persist state
len is set to 0. If the advertised window is 0, any pending retransmission is can-

celed by setting the retransmission timer to 0. snd_nxt is also pulled to the left of the
window by setting it to the value of snd_una. The connection will enter the persist
state later in this function, and when the receiver finally opens its window, TCP starts
retransmitting from the left of the window.

Send one segment at a time
If the amount of data to send exceeds one segment, len is set to a single segment

and the sendalot flag is set to 1. As shown in Figure 26.1, this causes another loop
through tcp_output after the segment is sent.

Turn off FIN flag if send buffer not emptied
If the send buffer is not being emptied by this output operation, the FIN flag must

be cleared (in case it is set in flags). Figure 26.7 shows an example of this.

858 TCP Output
Chapter 26

so_snd, sb_cc = 1025 (send buffer)

1 2 512 513 514 1024 1025

one segment one segment

snd_una = 1
oldest

unacknowledged
sequence number

snd_nxt = 513
next send

sequence number

Figure 26.7 Example of send buffer not being emptied when FIN is set.

In this example the first 512-byte segment has already been sent (and is waiting to be
acknowledged) and TCP is about to send the next 512-byte segment (bytes 512-1024).
There is still 1 byte left in the send buffer (byte 1025) and the process closes the connec-
tion. len equals 512 (one segment), and the C expression becomes

SEQ_LT (I025, 1026)

which is true, so the FIN flag is cleared.
couldn’t send byte 1025 to the receiver.

If the FIN flag were mistakenly left on, TCP

130

Calculate window advertisement
win is set to the amount of space available in the receive buffer, which becomes

TCP’s window advertisement to the other end. Be aware that this is the second use of
this variable in this function. Earlier it contained the maximum amount of data TCP
could send, but for the remainder of this function it contains the receive window adver-
tised by this end of the connection.

The silly window syndrome (called SWS and described in Section 22.3 of Volume 1)
occurs when small amounts of data, instead of full-sized segments, are exchanged
across a connection. It can be caused by a receiver who advertises small windows and
by a sender who transmits small segments. Correct avoidance of the silly window syn-
drome must be performed by both the sender and the receiver. Figure 26.8 shows silly
window avoidance by the sender.

142--143

144-146

147-148

Sender silly window avoidance
If a full-sized segment can be sent, it is sent.
If an ACK is not expected (±dle is true), or if the Nagle algorithm is disabled

(TF_NODELAY is true) and TCP is emptying the send buffer, the data is sent. The Nagle
algorithm (Section 19.4 of Volume 1) prevents TCP from sending less than a full-sized
segment when an ACK is expected for the connection. It can be disabled using the
TCP NODELAY socket option. For a normal interactive connection (e.g., Telnet or
Rlog~m), if there is unacknowledged data, this ± f statement is false, since the Nagle
algorithm is enabled by default.

If output is being forced by either the persist timer or sending out-of-band data,
some data is sent.

Sectionl

149--150

151--152

154--168

~ be
124).
aec-

?CP

nes

.~ of

CP
er-

, i)

le
!d
le

)r

te

149--150

151--152

154--168

Determine if a Segment Should be Sent 859

131 /*
132 *
133 *
134 *
135 *
136 *
137 *
138 *
139 *
140 */
141 if
142
143
144
145
146
147
148
149
150
151
152
153]

Sender silly window avoidance. If connection is idle
and can send all data, a maximum segment,
at least a maximum default-sized segment do it,
or are forced, do it; otherwise don’t bother.
If peer’s buffer is tiny, then send
when window is at least half open.
If retransmitting (possibly after persist timer forced us
to send into a small window), then must resend.

(len) {
if (len == tp->t_maxseg)

goto send;
if ((idle I I tp->t_flags & TF_NODELAY) &&

fen + off >= so >so_snd.sb_cc)
goto send;

if (tp->t_force)
goto send;

if (len >: tp->max_sndwnd / 2)
goto send;

if (SEQ_LT(tp->snd_nxt, tp->snd_max))
goto send;

Figure 26.8 tcp_output function: sender silly window avoidance.

tcp_output.c

tcp_output.c

If the receiver’s window is at least half open, data is sent. This is to deal with peers
that always advertise tiny windows, perhaps smaller than the segment size. The vari-
able raax_sndwnd is calculated by tcp_input as the largest window advertisement
ever advertised by the other end. It is an attempt to guess the size of the other end’s
receive buffer and assumes the other end never reduces the size of its receive buffer.

If the retransmission timer expired, then a segment must be sent. snd max is the
highest sequence number that has been transmitted. We saw in Figure 25.2~-that when
the retransmission timer expires, snd_nxt is set to snd una, that is, snd_nxt is
moved to the left edge of the window, making it less than sn~_raax.

The next portion of tcp_output, shown in Figure 26.9, determines if TCP must
send a segment just to advertise a new window to the other end. This is called a window
update.

The expression

min(win, (Iong)TCP_MAXWIN << tp->rcv_scale)

is the smaller of the amount of available space in the socket’s receive buffer (win) and
the maximum size of the window allowed for this connection. This is the maximum
window TCP can currently advertise to the other end. The expression

(tp- >rcv_adv - t p- >rcv_nxt)

is the number of bytes remaining in the last window advertisement that TCP sent to the
other end. Subtracting this from the maximum window yields adv, the number of

Section 2(~

860 TCP Output

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

169
170
171
172
173

* compare available window to amount of window

* knoWn to peer (as advertised window less

* next expected input). If the difference is at least two
* max size segmentS, or at least 50% of the maximum possible
* window, then want to send a window update to peer.

if (win > 0) {

* "adv" is the amount we can increase the window,
* taking into account that we are limited by

* TCP_MAXWIN << tp->rcv_scale.

long adv = min(win, (long) TcP_MAXWIN << tp->rcv_scale)

(tp->rcv_adv - tp->rcv_nxt);

if (adv >= (long) (2 * tp->t__maxseg))
gotO send;

if (2 * adv >= (long) so_>so_rcv.sb_hiwat)

gotO send;

Figure 26.9 tCp_outpUt function: check if a window update should be sent.

bytes by which the window has opened, rcv_nxt is incremented by tcp_input
when data is received in sequence, and rcv_adv is incremented by tcp_output in
Figure 26.32 when the edge of the advertised window moves to the right.

Consider Figure 24.18 and assume that a segment with bytes 4, 5, and 6 is received
and that these three bytes are passed to the process. Figure 26.10 shows the state of the
receive space at this point in tcp_output.

win = 6: space in receive buffer

5 7 8 9 10 11 12 13 14 ¯ ¯ ¯

rcv_nxt = 7 rcv_adv = I0

next receive highest advertised

sequence number sequence number
plus I

Figure 26.10 Transition from Figure 24.18 after bytes 4, 5, and 6 are received.

The value of adv is 3, since there are 3 more bytes of the receive space (bytes 10, 11, and

12) for the other end to fill.If the window has opened by two or more segments, a window update is sent.
When data is received as full-sized segments, this code causes every other received

1 71-i 72

1 74--1 7~

179--18,

181--18.

183-19

191--21

218--2;

171--172

174--178

179--180

181--182

183-190

Determine if a Segment Should be Sent861

segment to be acknowledged: TCP’s ACK-every-other-segment property. (We show an
example of this shortly.)

If the window has opened by at least 50% of the maximum possible window (the
socket’s receive buffer high-water mark), a window update is sent.

The next part of tcp_output, shown in Figure 26.11, checks whether various flags
require TCP to send a segment.

tcp_output.c

If our state indicates that FIN should be sent
and we have not yet done so, or we’re retransmitting the FIN,
then we need to send.

174 /*
175 * Send if we owe peer an ACK.
176 */
177 if (tp->t_flags & TF_ACKNOW)
178 goto send;
179 if (flags & (TH_SYN I TH_RST))
180 goto send;
181 if (SEQ_GT(tp->snd_up, tp->snd_una))
182 goto send;
183 /*
184 *
185 *
186 *
187 */
188 if (flags & TH_FIN &&
189 ((tp->t_flags & TF_SENTFIN) == 0 II tp->snd_nxt =: tp->snd_una))
190 goto send;

tcp_output.c
Figure26.11 tcp_outputfuncHon:shouldasegmentshouldbesent?

If an immediate ACK is required, a segment is sent. The TF_ACKNOW flag is set by
various functions: when the 200-ms delayed ACK timer expires, when a segment is
received out of order (for the fast retransmit algorithm), when a SYN is received during
the three-way handshake, when a persist probe is received, and when a FIN is received.

If flags specifies that a SYN or RST should be sent, a segment is sent.
If the urgent pointer, snd_up, is beyond the start of the send buffer, a segment is

sent. The urgent pointer is set by the PRU_SV.NDOOB request (Figure 30.9).
If flags specifies that a FIN should be sent, a segment is sent only if the FIN has

not already been sent, or if the FIN is being retransmitted. The flag TF_SENTFIN is set
later in this function when the FIN is sent.

191--21 7

218--221

At this point in tcp_output there is no need to send a segment. Figure 26.12
shows the final piece of code before tcp_output returns.

If there is data in the send buffer to send (so_snd. sb_cc is nonzero) and both the
retransmission timer and the persist timer are off, turn the persist timer on. This sce-
nario happens when the window advertised by the other end is too small to receive a
full-sized segment, and there is no other reason to send a segment.

tcp_output returns, since there is no reason to send a segment.

862 TCP Output

191
192

Chapter 26

193
194
195
196
197
198
199
20O
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

tcp_output.c

* TCP window updates are not reliable, rather a polling protocol
* using ,persist’ packets is used to ensure receipt of window
* updates. The three ’states’ for the output side are:

not doing retransmits or persists

* persisting to move a small or zero window

, (re)transmitting and thereby not persisting

, tp_>t_timer[TCPT_PERSIST!
is set when we are in persist state.

, tp->t_force
* is set when we are called to send a persist packet.

, tp_>t_timer[TCPT_REXHT]
* is set when we are retransmitting

* The output side is idle when both timers are zero.

* If send window is too small, there is data to transmit, and no
* retransmit or persist is pending, then go to persist state-

* If nothing happens soon, send when timer expires:

* if window is nonzero, transmit what we can,
* otherwise force out a byte.

if (so->So_snd.sb_cc && tp_>t_timer[TCPT_REXMT] == 0 &&
tp_>t_timer[TCPT_PERSIST] == 0) {
tp->t_rxtshift = 0;
tcp_setpersist(tp);

}

* No reason to send a segment, just return.

return (0); tcp_output.c

Figure 26.12 tcp_output function: enter persist state.

Example

A process writes 100 bytes, followed by a write of 50 bytes, on an idle connection.
Assume a segment size of 512 bytes. When the first write occurs, the code in Figure 26.8
(lines 144-146) sends a segment with 100 bytes of data since the connection is idle and
TCP is emptying the send buffer.

When 50-byte write occurs, the code in Figure 26.8 does not send a segment: the
amount of data is not a full-sized segment, the connection is not idle (assume TCP is
awaiting the ACK for the 100 bytes that it just sent), the Nagle algorithm is enabled by
default, t_force is not set, and assuming a typical receive window of 4096, 50 is not
greater than or equal to 2048. These 50 bytes remain in the send buffer, probably until
the ACK for the 100 bytes is received. This ACK will probably be delayed by the other
end, causing more delay in sending the final 50 bytes.

This example shows the timing delays that can occur when sending less than full-
sized segments with the Nagle algorithm enabled. See also Exercise 26.12.

Section 2~

Exampl~

.8
td

le

11-

26.3

Example

Determine if a Segment Should be Sent 863

This example demonstrates the ACK-every-other-segment property of TCP. Assume a
connection is established with a segment size of 1024 bytes and a receive buffer size of
4096. There is no data to send--TCP is just receiving.

A window of 4096 is advertised in the ACK of the SYN, and Figure 26.13 shows the
two variables rcv_nx¢ and roy_adv. The receive buffer is empty.

l,~
space in receive buffer = 4096

J

rcv_nxt = 1 rcv_adv = 4097
next receive highest advertised

sequence number sequence number
plus I

Figure 26.13 Receiver advertising a window of 4096.

The other end sends a segment with bytes 1-1024. tcp_input processes the seg-
ment, sets the delayed-ACK flag for the connection, and appends the 1024 bytes of data
to the socket’s receiver buffer (Figure 28.13). rcv_nx¢ is updated as shown in Fig-
ure 26.14.

1

space in receive buffer = 3072

1024

rcv_nxt = 1025 rcv_adv = 4097
next receive highest advertised

sequence number sequence number
plus 1

Figure 26.14 Transition from Figure 26.13 after bytes 1-1024 received.

The process reads the 1024 bytes in its socket receive buffer. We’ll see in Figure 30.6
that the resulting PRU_RCVD request causes ¢cp_ou¢pu¢ to be called, because a win-
dow update might need to be sent after the process reads data from the receive buffer.
When ¢cp_oucpu¢ is called, the two variables still have the values shown in Fig-
ure 26.14 and the only difference is that the amount of space in the receive buffer has.
increased to 4096 since the process has read the first 1024 bytes. The calculations in Fig-
ure 26.9 are performed:

adv : min(4096, 65535) (4097 - 1025)
= 1024

864

rcv_nxt = 2049 rcv adv = 4097

next receive highest advertised

sequence number sequence numberp usl

TCP Output

5 and we assume a receive window scale shift of 0. Since the win-TCp_bU~WIN is 655,3~,~rnents (2048), nothing is sent. But thedow has increased Dy ~ess t.n.a.n, ~w~,~ i2o~.-Z^~ ~.,~,~o~ an ACK will be sent.

¯ still set, so n tne ~uu-m~ u~,¢~ ~--v,
delayed-ACK flag ~s ~- ~-..~o ~025-2048, ~cp input processes

~en TCP receives the next segmem wmt oy -
the segment, sets the delayed-ACK flag for the co~ecfion (w~ch was already on), ~d
appends the 1024 bytes of data to the socket s receiver buffer, roy nx~ is updated as

shown in Figure 26.15. space ~ receive buffer = 30~
~ _

26.4

Figure 26.15 Transition from Figure 26.14 after bytes 1025-2048 received.

The process reads bytes 1025-2048 and ¢cp_ou~pu¢ is called. The two variables
still have the values shown in Figure 26.15, although the space in the receive buffer
increases to 4096 when the process reads the 1024 bytes of data. The calculations in Fig-

ure 26.9 are performed:
adv = rain(4096, 65535) (4097 - 2049)

This value is now greater than or equal to two segments, so a segment is sent with an
acknowledgment field of 2049 and an advertised window of 4096. This is a window
update. The receiver is willing to receive bytes 2049 through 6145. We’ll see later in this
function that when this segment is sent, the value of r cv_adv also gets updated to

6145.
This example shows that when receiving data faster than the 200-ms delayed ACK

timer, an ACK is sent when the receive window changes by more than two segments
due to the process reading the data. If data is received for the connection but the pro-data from the socket’s receive buffer, the ACK-every-other-
cess is not reading the occur. Instead the sender will only see the delayed ACKs, each

segment property won’t
advertising a smaller window, until the receive buffer is filled and the window goes

to 0.

TCP Options

The TCP header can contain options. We digress to discuss these options since the
piece of ~c~_ouCpu¢ decides which options to send and constructs the options in
outgoing segment. Figure 26.16 shows the format of the options supported by Net/3.

Section

26.4 TCP Options 865

End of option list:

1 byte

No operation:

byte

Maximum segment size:kind=2 len=4

1 byte I byte

maximum
segment

size (MSS)
2 bytes

Window scale factor: kind=3 len=3 cSoh~t

I byte 1 byte I byte

Timestamp: kind=8 len=10 timestamp value

I byte 1 byte 4 bytes

timestamp echo reply

4 bytes

Figure 26.16 TCP options supported by Net/3.

Every option begins with a 1-byte kind that specifies the type of option. The first
two options (with kinds of 0 and 1) are single-byte options. The other three are multi-
byte options with a Ien byte that follows the kind byte. The length is the total length,
including the kind and fen bytes.

The multibyte integers--the MSS and the two timestamp values--are stored in net-
work byte order.

The final two options, window scale and timestamp, are new and therefore not sup-
ported by many systems. To provide interoperability with these older systems, the fol-
lowing rules apply.

TCP can send one of these options (or both) with the initial SYN segment corre-
sponding to an active open (that is, a SYN without an ACK). Net/3 does this
for both options if the global top do rfc1323 is nonzero (it defaults to 1).
This is done in tcp_newtcpcb.

2. The option is enabled only if the SYN reply from the other end also includes the
desired option. This is handled in Figures 28.20 and 29.2.

3. If TCP performs a passive open and receives a SYN specifying the option, the
response (the SYN plus ACK) must contain the option if TCP wants to enable
the option. This is done in Figure 26.23.

866

26.5

26.6

TCP Output
Chapter 26

Since a system must ignore options that it doesn’t understand, the newer options
are enabled by both ends only if both ends understand the option and both ends want
the option enabled.The processing of the MSS option is covered in Section 27.5. The next two sections
summarize the Net/3 handling of the two newer options: window scale and timestamp.

Other options have been proposed, kinds of 4, 5, 6, and 7, called the selective-ACK and echo
options, are defined in RFC 1072 [Jacobson and Braden 1988]. We don’t show them in Fig-
ure 26.16 because the echo options were replaced with the timestamp option, and selective
ACKs, as currently defined, are still under discussion and were not included in RFC 1323.
Also, the T/TCP proposal for TCP transactions (RFC 1644 [Braden 1994], and Section 24.7 of
Volume 1) specifies three options with kinds of 11, 12, and 13.

Window Scale Option

The window scale option, defined in RFC 1323, avoids the limitation of a 16-bit window
size field in the TCP header (Figure 24.10). Larger windows are required for what are
called long fat pipes, networks with either a high bandwidth or a long delay (i.e., a long
RTT). Section 24.3 of Volume 1 gives examples of current networks that require larger
windows to obtain maximum TCP throughput.

The 1-byte shift count in Figure 26.16 is between 0 (no scaling performed) and 14.
This maximum value of 14 provides a maximum window of 1,073,725,440 bytes
(65535 x 214). Internally Net/3 maintains window sizes as 32-bit values, not 16-bit val-
ues.

The window scale option can only appear in a SYN segment; therefore the scale fac-
tor is fixed in each direction when the connection is established.

The two variables snd_scale and rcv_scale in the TCP control block specify the
shift count for the send window and the receive window, respectively. Both default to 0
for no scaling. Every 16-bit advertised window received from the other end is left
shifted by snd_scale bits to obtain the real 32-bit advertised window size (Fig-
ure 28.6). Every time TCP sends a window advertisement to the other end, the internal
32-bit window size is right shifted by rcv scale bits to give the value that is placed
into the TCP header (Figure 26.29).

When TCP sends a SYN, either actively or passively, it chooses the value of
rcv_scale to request, based on the size of the socket’s receive buffer (Figures 28.7
and 30.4).

Timestamp Option

The timestamp option is also defined in RFC 1323 and lets the sender place a timestamp .:>
in every segment. The receiver sends the timestamp back in the acknowledgment,
allowing the sender to calculate the RTT for each received ACK. Figure 26.17 summa-
rizes the timestamp option and the variables involved.

Section

tion 26.6 Timestamp Option 867

received
segment

transmitted
segment

last_ack_sent

ti-ackl.

i:~.> .0x0101080a timestamp

--- 12-byte timestamp option

timestamp timestamp
: OxOlOlO80a echo,reply

ts_val ts_ecr

~--- t s_recent_

echothnestamPreply

Figure 26.17 Summary of variables used with timestamp option.

The global variable tcp_now is the timestamp clock. It is initialized to 0 when the
kernel is initialized and incremented by 1 every 500 ms (Figure 25.8). Three variables
are maintained in the TCP control block for the timestamp option:

¯ gs_recent is a copy of the most-recent valid timestamp from the other end.
(We describe shortly what makes a timestamp "valid.")

¯ is_recent_age is the value of tcp_now when is_recent was last copied
from a received segment.

last_ack_sent is the value of the acknowledgment field (ti_ack) the last
time a segment was sent (Figure 26.32). This is normally equal to rcv_nxt, the
next expected sequence number, unless ACKs are delayed.

The two variables ts_val and ts_ecr are local variables in the function
tcp_input that contain the two values from the timestamp option.

¯ t s_val is the timestamp sent by the other end with its data.
¯ ts_ecr is the timestamp from the segment that is being acknowledged by the

received segment.

In an outgoing segment, the first 4 bytes of the timestamp option are set to
0x0101080a. This is the recommended value from Appendix A of RFC 1323. The 2
bytes of 1 are NOPs from Figure 26.16, followed by a kind of 8 and a len of 10, which
identify the timestamp option. By placing two NOPs in front of the option, the two
32-bit timestamps in the option and the data that follows are aligned on 32-bit bound-
aries. Also, we show the received timestamp option in Figure 26.17 with the recom-
mended 12-byte format (which Net/3 always generates), but the code that processes

TCP Output

received options (Figure 28.10) does not require this format. The 10-byte format
in Figure 26.16, without two preceding NOPs, is handled fine on input (but see Exer-
cise 28.4).

The RTT of a transmitted segment and its ACK is calculated as tcp_now nJnus
ts_ecr. The units are 500-ms clock ticks, since that is the units of the Net/3 time-
stamps.

The presence of the timestamp option also allows TCP to perform PAWS: protection
against wrapped sequence numbers. We describe this algorithm in Section 28.7. The
variable t s_recent_age is used with PAWS.

tcp_output builds a timestamp option in an outgoing segment by copying
t cp_now into the timestamp and t s_re cent into the echo reply (Figure 26.24). This is
done for every segment when the option is in use, unless the RST flag is set.

Which Timestamp to Echo, RFC 1323 Algorithm

The test for a valid timestamp determines whether the value in ts_recen~ is updated,
and since this value is always sent as the timestamp echo reply, the test for validity
determines which timestamp gets echoed back to the other end. RFC 1323 specified the
following test:

ti seq <= last ack sent < ti seq + ti len

which is implemented in C as shown in Figure 26.18.

if (is_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
SEQ LT(tp->last ack sent, ti->ti_seq + ti->ti_len))

tp->ts_recent_age = tcp_now;
tp->ts_recent = ts_val;

}

Figure 26.18 Typical code to determine if received timestamp is valid.

The variable ts_present is true if a timestamp option was received in the segment.
We encounter this code twice in tcp_input: Figure 28.11 does the test in the header
prediction code, and Figure 28.35 does the test in the normal input processing.

To see what this test is doing, Figure 26.19 shows show five different scenarios, cor-
responding to five different segments received on a connection. In each scenario
ti len is 3.

-The left edge of the receive window begins with sequence number 4. In scenario 1 :~i!i!!~:~
the segment contains completely duplicate data. The SEQ_LEQ test in Figure 28.11 is
true, but the SEQ_LT test fails. For scenarios 2, 3, and 4, both the SEQ_LEQ and SEQ_LT
tests are true because the left edge of the window is advanced by any one of these
segments, even though scenario 2 contains two duplicate bytes of data, and scenario
contains one duplicate byte of data. Scenario 5 fails the SEQ_LEQ test, because
doesn’t advance the left edge of the window. This segment is one in the future
not the next expected, implying that a previous segment was lost or reordered.

Unfortunately this test to determine whether to update ts_recent is
[Braden 1993]. Consider the following example.

Timestamp Option 869

scenario 1: 1 2 3

scenario 2:] 2

Figure 26.19

last ack sent

3 4I
scenario 3: [3 4 5

scenario 4:I 4 5

6 7 8 9

,test is false

test is true

6r
scenario 5: 5 ~ test is false

receive window

Example receive window and five different scenarios of received segment.

In Figure 26.19 a segment that we don’t show arrives with bytes 1, 2, and 3. The
timestamp in this segment is saved in ts_recent because last_ack_sent is
1. An ACK is sent with an acknowledgment field of 4,.and last_ack_sent is
set to 4 (the value of rcv_nxt). We have the receive window shown in Fig-
ure 26.19.
This ACK is lost.

The other end times out and retransmits the segment with bytes 1, 2, and 3.
This segment arrives and is the one labeled "scenario 1" in Figure 26.19. Since
the SEQ_r.T test in Figure 26.18 fails, ts_recent is not updated with the value
from the retransmitted segment.

A duplicate ACK is sent with an acknowledgment field of 4, but the timestamp
echo reply is ts_recent, the value copied from the segment in step 1. But
when the receiver calculates the RTT using this value, it will (incorrectly) take
into account the original transmission, the lost ACK, the timeout, the retrans-
mission, and the duplicate ACK.

For correct RTT estimation by the other end, the timestamp value from the retransmis-
sion should be returned in the duplicate ACK.

The tests in Figure 26.18 also fail to update ts_recent if the length of the received
segment is 0, since the left edge of the window is not moved. This incorrect test can also
lead to problems with long-lived (greater than 24 days, the PAWS limit described in Sec-
tion 28.7), unidirectional connections (all the data flow is in one direction so the sender
of the data always sends the same ACKs).

870 TCP Output

Chapter 26

The algorithm we’ll encounter in the Net/3 sources is from Figure 26.18. The correct
algorithm given in [Braden 1993] replaces Figure 26.18 with the one in Figure 26.20.

if (ts_present && TSTMP_GEQ(ts_val, tp->ts_recent) &&
SEQ_LEQ(ti->ti_seq, tp->last ack sent)) {

Figure 26.20 Correct code to determine if received timestamp is valid.

This doesn’t test whether the left edge of the window moves or not, it just verifies that
the new timestamp (ts_val) is greater than or equal to the previous timestamp
(ts_recent), and that the starting sequence number of the received segment is not
greater than the left edge of the window. Scenario 5 in Figure 26.19 would fail this new

test since it is out of orderThe macro TSTMP_GVQ is identical to SEQ_GEQ in Figure 24.21. It is used with
timestamps, since timestamps are 32-bit unsigned values that wrap around just like

sequence numbers.

Timestamps and Delayed ACKs

It is constructive to see how timestamps and RTT calculations are affected by delayed
ACKs. Recall from Figure 26.17 that the value saved by TCP in ts_recent becomes
the echoed timestamp in segments that are sent, which are used by the other end in cal-
culating its RTT. When ACKs are delayed, the delay time should be taken into account
by the side that sees the delays, or else it might retransmit too quickly. In the example
that follows we only consider the code in Figure 26.20, but the incorrect code in Fig-
ure 26.18 also handles delayed ACKs correctly.Consider the receive sequence space in Figure 26.21 when the received segment ~,~:...

rcv_wnd = 6: receive window

4 5 6 7 8 9 10 11

contains bytes 4 and 5.

rcv_nxt
last_ack_sent

received segment: ~

ti_seq

Figure 26.21 Receive sequence space when segment with bytes 4 and 5 arrives.

Section 26

26.7

223--234

235

26.7
Send a Segment 871

Since ti_seq is less than or equal to last_ack_sent, ts_recent is copied from the
segment, rcv_nxt is also increased by 2.

Assume that the ACK for these 2 bytes is delayed, and before that delayed ACK is
sent, the next in-order segment arrives. This is shown in Figure 26.22.

rcv_wnd = 6: receive window

I 4 5 6 7 8

last_ack_sent rcv_nxt

10 11

received segment: I 6 7

ti_seq

Figure 26.22 Receive sequence space when segment with bytes 6 and 7 arrives.

This time ti_seq is greater than last_ack_sent, so ts recent is not updated.
This is intentional. Assuming TCP now sends an ACK for s~-quence numbers 4-7, the
other end’s RTT will take into account the delayed ACK, since the echoed timestamp
(Figure 26.24) is the one from the segment with sequence numbers 4 and 5. These fig-
ures also demonstrate that rcv_nxt equals last ack sent except when ACKs are
delayed. - -

26.7

223--234

235

Send a Segment

The last half of tcp_output sends the segment--it fills in all the fields in the TCP
header and passes the segment to IP for output.

Figure 26.23 shows the first part, which sends the MSS and window scale options
with a SYN segment.

The TCP options are built in the array opt, and the integer opt len keeps a count of
the number of bytes accumulated (since multiple options can be sent at once). If the
SYN flag bit is set, snd_nxt is set to the initial send sequence number (iss). If TCP is
performing an active open, i s s is set by the PRU_CONNECT request when the TCP con-
trol block is created. If this is a passive open, tcp_input creates the TCP control block
and sets iss. In both cases, iss is set from the global tcp_iss.

The flag TF_NOOPT is checked, but this flag is never enabled and there is no way to
turn it on. Hence, the MSS option is always sent with a SYN segment.

In the Net/1 version of tcp_newtcpcb, the comment "s6nd options!" appeared on the line
that initialized t_flags to 0. The TF_NOOPT flag is probably a historical artifact from a pre-
Net/1 system that had problems interoperating with other hosts when it sent the MSS option,
so the default was to not send the option.

872 TCP Output

236--241

242--244

222 send:

223 /*
224

* Before ESTABLISHED, force sending of initial options

225 * unless TCP set not to do any options.

226
* NOTE: we assume that the IP/TCP header plus TCP options

227
* always fit in a single mbuf, leaving room for a maximum

228 * link header, i.e.

229 ¯ max_linkhdr + sizeof (struct tcpiphdr) + optlen <= F[HLEN

230 */
231 optlen = 0;

232 hdrlen = sizeof(struct tcpiphdr);

233 if (flags & TH_SYN) [

234 tp->snd_nxt = tp->iss;

235 if ((tp->t_flags & TF_NOOPT) == O) {

236 u_short mss;

237
238
239
240
241

242
243
244
245
246
247
248
249
250
251
252

Chapter 26

tcp output.c ~ :<

opt[0] = TCPOPT_MAXSEG;
opt[l] = 4;
mss = htons((u_short) tcp_mss(tp, 0)) ;
bcopy((caddr_t) & mss, (caddr_t) (opt + 2), sizeof(mss));

optlen = 4;

if ((tp->t_flags & TF_REQ_SCALE) &&
((flags & TH_ACK) == 0

(tp->t_flags & TF_RCVD_SCALE))) {*((u_long *) (opt + optlen)) = htonI(TCPOPT_NOP << 24

TCPOPT_WINDOW << 16
TCPOLEN_WINDOW << 8
tp_>request_r_scale);

optlen += 4;

} tcp_output.C

Figure 26.23 tcp_output function: send options with first SYN segment.

opt [0] is set to 2 (TCPOPT_MAXSEG) and opt [i] is set to 4, the length of the MSS
option in bytes. The function tcp_mss calculates the MSS to announce to the other
end; we cover this function in Section 27.5. The 16-bit MSS is stored in opt [2] and
opt [3] by bcopy (Exercise 26.5). Notice that Net/3 always sends an MSS announce-
ment with the SYN for a connection.
Should window scale option be sent? ;"

If TCP is to request the window scale option, this option is sent only if this is an
active open (TH_ACK is not set) or if this is a passive open and the window scale option
was received in the SYN from the other end. Recall that t_flags was set

TF REQ SCALE ITF REQ TSTMP when the TCP control block was created in
ure 25.21, if the global variable t cp_do_r f c 13 2 3 waS nonzero (its default value).

253-~

fion 26.7 Send a Segment 873

245--249

253-261

Build window scale option

Since the window scale option occupies 3 bytes (Figure 26.16), a 1-byte NOP is
stored before the option, forcing the option length to be 4 bytes. This causes the data in
the segment that follows the options to be aligned on a 4-byte boundary. If this is an
active open, request r scale is calculated by the PRU_CONNECT request. If this is a
passive open, the window scale factor is calculated by tcp_input when the SYN is
received.

RFC 1323 specifies that if TCP is prepared to scale windows it should send this
option even if its own shift count is 0. This is because the option serves two purposes:
to notify the other end that it supports the option, and to announce its shift count. Even
though TCP may calculate its own shift count as 0, the other end might want to use a
different value.

The next part of tcp_output is shown in Figure 26.24. It finishes building the
options in the outgoing segment.

253
254
255
256
257
258
259
260
261
262

263
264
265
266
267
268
269

270
271
272
273
274
275
276
277

/ * tcp_ou~ut.c
¯ Send a timestamp and echo-reply if this is a SYN and our side
¯ wants to use timestamps (TF_REQ_TSTMP is set) or both our side
¯ and our peer have sent timestamps in our SYN’s.
*/

if ((tp->t_flags & (TF_REQ_TSTMP I TF_NOOPT)) == TF_REQ_TSTMP &&
(flags & TH_RST) == 0 &&
((flags & (TH_SYN I TH_ACK)) =: TH_SYN] [

(tp->t_flags & TF_RCVD_TSTMP))) {
u_long *ip = (u_long *) (opt + optlen);

/* Form timestamp option as shown in appendix A of RFC 1323. */
*ip++ = htonI(TCPOPT_TSTAMP_HDR);
*ip++ = htonl(tcp_now);
*Ip = htonl(tp->ts_recent);
optlen += TCPOLEN_TSTAMP_APPA;

}
hdrlen += optlen;

* Adjust data length if insertion of options will
* bump the packet length beyond the t_maxseg length.

if (fen > tp->t_maxseg - optlen)
len = tp->t_maxseg - optlen;
sendalot = i;

}

Figure 26.24 tcp_output function: finish sending options.
tcp_output.c

Should timestamp option be sent?
If the following three conditions are all true, a timestamp option is sent: (1) TCP is

configured to request the timestamp option, (2) the segment being formed does not con-
tain the RST flag, and (3) either this is an active open (i.e., flags specifies the SYN flag

Chapter 26 Section
874

263--267

270-277

284-292

293--297

TCP Output

298--308

but not the ACK flag) or TCP has received a timestamp from the other end
(TF_RCVD_TSTMP)- Unlike the MSS and window scale options, a timestamp option can
be sent with every segment once both ends agree to use the option.

¯ The timestamp option (Section 26.6) consists of 12 bytes (TCPOLEN_TSTAM?_aPPA).
Build timestamp option

~e ~st & bytes a~e OxO~O~OSOa (the constant ~Op~_~S~_~), as ~escribe~
w~th ~re 26.]F. ~e ~mestamp va~ue ~s taken fro~ ~c~_now (tSe number of 500-ms
doc~ ticks s~ce the s~stem was initialized), a~d tSe timestamp echo reply ~s ta~e~ ~om
ts_recent, w~ch is set by tcp_input.

~he~k ff o~ons have ove~owed segment
~e size o[%he TCF header is ~cremen~ed by the number o[option bytes (opt 1 en).

If %he amo~ of da~a ~o send (len) exceeds %he MSS minus %he size o[the options
(optlen), the da%a len~fh is decreased accord~$1y and fhe sendalot ~a~ is seL ~o
force another loop tMough t~s ~nction after t~s segment is sent (Fibre 26.1).

~e MSS and window scale options only appear in SYN segments, w~ch Net/3
always sends without data, so this adjustment of the data length doesn’t apply. ~en
the Nmestamp opNon is ~ use, however, it appears in all segments. ~s reduces the
amo~t of data ~ each full-sized data segment from the a~o~ced MSS to the

a~o~ced MSS ~us 12 bytes.

The next part of tcp_output, shown in Figure 26.25, updates some statistics and
allocates an mbuf for the IP and TCP headers. This code is executed when the segment
being output contains some data (len is greater than 0).

Allocate an mbuf for IP and TCP headers
,am mbuf with a packet header is allocated by MGETHDR. This is for the IP and TCP ’.!.:~

headers, and possibly the data (if there’s room). Although tcp_output is often called
as part of a system call (e.g., write) it is also called at the software interrupt level by
tcp_input, and as part of the timer processing. Therefore ~4_DONTWAIT is specified.
If an error is returned, a jump is made to the label out. This label is near the end of the
function, in Figure 26.32.
Copy data into mbuf

If the amount of data is less than 44 bytes (100 -40 - 16, assuming no TCP options),
data is copied directly from the socket send buffer into the new packet header mbufthe

by m_copydata. Otherwise re_copy creates a new mbuf chain with the data from the.
socket send buffer and this chain is linked to the new packet header mbuf. Recall our
description of re_copy in Section 2.9, where we showed that if the data is in a
m copy just references that cluster and doesn’t make a copy of the data.

--

Update statistics
If t force is nonzero and TCP is sending a single byte of data, this is a window

probe, i-f snd nxt is less than snd max, this is a retransmission. Otherwise, this is
normal data transmission.

309-316

26.7 Send a Segment 875

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
3OO
301
302
303
304
3O5
306
307
3O8
309
310
311
312
313
314
315
316

* Grab a header mbuf, attaching a copy of data to
* be transmitted, and initialize the header from
* the template for sends on this connection.
*/

if (len)
if (tp->t_force && len == 1

tcpstat.tcps_sndprobe++
else if (SEQ_LT(tp->snd_nxt, tp->snd_max)) {

tcpstat.tcps_sndrexmitpack++;
tcpstat.tcps_sndrexmitbyte += len;

} else {
tcpstat.tcps_sndpack++;
tcpstat.tcps_sndbyte += len;

}
MGETHDR(m, M_DONTWAIT, MT_HEADER);
if (m := NULL) {

error : ENOBUFS;
goto out;

}
m->m_data += max_linkhdr;
m->m_len = hdrlen;
if (len <= MHLEN - hdrlen - max_linkhdr)

m_copydata(so->so_snd.sb_mb, off, (int) len,
mtod(m, caddr_t) + hdrlen);

m->m_len += len;
} else {

m->m_next = m_copy(so->so_snd.sb_mb, off, (int) len);
if (m->m_next == 0)

fen = 0;
}
/*

* If we’re sending everything we’ve got, set PUSH.
* (This will keep happy those implementations that
* give data to the user only when a buffer fills or
* a PUSH comes in.)
*/

if (off + fen == so->so_snd.sb_cc)
flags I= TH_PUSH;

tcp_output.c
Figure26.25 tcp_ou¢put ~nc~on:upda~sta~s~cs, allocate mbuf ~rIPand TCP headers.

tcp_output.c

309--316

Set PSH flag

If TCP is sending everything it has from the send buffer, the PSH flag is set. As the
comment indicates, this is intended for receiving systems that only pass received data to
an application when the PSH flag is received or when a buffer fills. We’ll see in
¢cp_±npu¢ that Net/3 never holds data in a socket receive buffer waiting for a
received PSH flag.

876 TCP Out-put
Chapter 26

The next part of tcp_output, shown in Figure 26.26, starts with the code that
executed when len equals 0: there is no data in the segment TCP is sending.

tcp output.c
317 } else { /* fen :: 0 */

318 if (tp->t_flags & TF_ACKNOW)
319 tcpstat.tcps_sndacks++;

320 else if (flags & (TH_SYN 1TH_FIN I TH_RST)

321 tcpstat.tcps_sndctrl++;

322 else if (SEQ_GT(tp->snd_up, tp->snd_una)

323 tcpstat.tcps_sndurg++;

324 else

325 tcpstat.tcps_sndwinup++;

326
327
328
329
330
331
332
333
334
335
336
337
338

318-325

326-335

336-338

339--346

MGETHDR(m, M_DONTWAIT, MT_HEADER);
if (m =: NULL) {

error : ENOBUFS;
goto out;

]
m->m_data += max_linkhdr;
m->m_len = hdrlen;

}
m->m~kthdr.rcvif = (struct ifnet *) 0;
ti = mtod(m, struct tcpiphdr *);
if (tp->t_template == 0)

panic("tcp_output");
bcopy((caddr_t) tp->t_template, (caddr_t) tl,

Figure 26.26

sizeof (struct tcpiphdr));
tcp_output.c

t cp_ou tpu t function: update statistics and allocate mbuf for IP and TCP headers.

Update statistics
Various statistics are updated: TF_ACKNOW and a length of 0 means this is an ACK-

only segment. If any one of the flags SYN, FIN, or RST is set, this is a control segment.
If the urgent pointer exceeds snd_una, the segment is being sent to notify the other end
of the urgent pointer. If none of these conditions are true, this segment is a window
update.
Get mbuf for IP and TCP headers

An mbuf with a packet header is allocated to contain the IP and TCP headers.

Copy IP and TCP header templates into mbuf
The template of the IP and TCP headers is copied from t_template into the mbuf

by bcopy. This template was created by tcp_template.

Figure 26.27 shows the next part of tcp_output, which fills in some remaining
fields in the TCP header.

Decrement snd_nxt if FIN is being retransmitted
If TCP has already transmitted the FIN, the send sequence space appears as shown

in Figure 26.28.

Section"

i:Section 26.7 Send a Segment 877

339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

364

365
366
367
368
369

/. tcp_output.c
* Fill in fields, remembering maximum advertised
* window for use in delaying messages about window sizes.
* If resending a FIN, be sure not to use a new sequence number.
*/

if (flags & TH_FIN && tp->t_flags & TF_SENTFIN &&
tp->snd_nxt == tp->snd_max)
tp->snd_nxt--;

* If we are doing retransmisslons, then snd_nxt will
* not reflect the first unsent octet. For ACK only
* packets, we do not want the sequence number of the
* retransmitted packet, we want the sequence number
* of the next unsent octet. So, if there is no data
* (and no SYN or FIN), use and_max instead of snd_nxt
* when filling in ti_seq. But if we are in persist
* state, snd_max might reflect one byte beyond the
* right edge of the window, so use snd_nxt in that
* case, since we know we aren’t doing a retranamission.
* (retransmit and persist are mutually exclusive...)
*/

if (len I I (flags & (TH_SYN I TH_FIN)) I I tp->t_timer[TCPT_PERSIST])
ti->ti_seq = htonl(tp->snd_nxt);

else
ti->ti_seq : htonl(tp->snd_max);

ti->ti_ack = htonl(tp->rcv_nxt);

if (optlen) {
bcopy((caddr_t) opt, (caddr_t) (ti + i), optlen);
ti->ti_off = (sizeof(struct tcphdr) + optlen) >> 2;

}
ti->ti_flags = flags;

Figure 26.27 tcp_output function: set ti_seq, ti_ack, and ti_flags.
tcp_output.c

3 4 5 6 7

sent and acknowledged

8 9 HN

snd_una = 10 snd_nxt = 11
and_max = 11

Figure 26.28 Send sequence space after FIN has been transmitted.

Therefore, if the FIN flag is set, and if the TF_SENTFIN flag is set, and if snd_nxt
equals snd_max, TCP knows the FIN is being retransmitted. We’ll see shortly (Fig-
ure 26.31) that when a FIN is sent, snd_nxt is incremented 1 one (since the FIN occu-
pies a sequence number), so this piece of code decrements snd_nxt by 1.

878

347-363

364

365-368

369

370-375

376-377

TCP Output
Chapter 26

378-379

Set sequence number field of segment
The sequence number field of the segment is normally set to snd_nxt, but is set to

snd max if (1) there is no data to send (len equals 0), (2) neither the SYN flag nor the
FIN-~ag is set, and (3) the persist timer is not set.

Set acknowledgment field of segment
The acknowledgment field of the segment is always set to rcv_nxt, the next

expected receive sequence number.
Set header length if options present

If TCP options are present (optlen is greater than 0), the options are copied into
the TCP header and the 4-bit header length in the TCP header (th_of f in Figure 24.10)
is set to the fixed size of the TCP header (20 bytes) plus the length of the options,
divided by 4. This field is the number of 32-bit words in the TCP header, including
options.

The flags field in the TCP header is set from the variable f lags.

The next part of code, shown in Figure 26.29, fills in more fields in the TCP header
and calculates the TCP checksum.
Don’t advertise less than one full-sized segment

Avoidance of the silly window syndrome is performed, this time in calculating the
window size that is advertised to the other end (t i_win). Recall that win was set at the
end of Figure 26.3 to the amount of space in the socket’s receive buffer. If win is less
than one-fourth of the receive buffer size (so_rcv. sb_hiwat) and less than one full-
sized segment, the advertised window will be 0. This is subject to the later test that pre-
vents the window from shrinking. In other words, when the amount of-available space
reaches either one-fourth of the receive buffer size or one full-sized segment, the avail-

able space will be advertised.
Observe upper limit for advertised window on this connection

If win is larger than the maximum value for this connection, reduce it to its maxi-
mum value.

Do not shrink window
Recall from Figure 26.10 that rcv_adv minus rcv_nxt is the amount of space still

available to the sender that was previously advertised. If win is less than this value,
win is set to this value, because we must not shrink the window. This can happen when
the available space is less than one full-sized segment (hence win was set to 0 at the
beginning of this figure), but there is room in the receive buffer for some data. Fig-
ure 22.3 of Volume I shows an example of this scenario.

Set urgent offset

381-383 If the urgent pointer (snd_up) is greater than snd_nxt, TCP is in urgent mode.
The urgent offset in the TCP header is set to the 16-bit offset of the urgent pointer from
the starting sequence number of the segment, and the URG flag bit is set. TCP sends the
urgent offset and the URG flag regardless of whether the referenced byte of urgent
is contained in this segment or not.

Secfio

Send a Segment 879

370
371
372
373
374
375
376
377
378
379
380

381
382
383
384
385
386
387
388
389
390
391

392
393
394
395
396
397
398
399

/, tcp_output.c
* Calculate receive window. Don’t shrink window,
* but avoid silly window syndrome.
*/

if (win < (long) (so->so_rcv.sb_hiwat / 4) && win < (long) tp->t_maxseg)
win : 0;

if (win > (long) TCP_MAXWIN << tp->rcv_scale)
win = (long) TCP_MAXWIN << tp->rcv_scale;

if (win < (long) (tp->rcv_adv - tp->rcv_nxt))
win = (long) (tp->rcv_adv - tp->rcv_nxt);

ti->ti_win = htons((u_short) (win >> tp->rcv_scale));

if (SEQ_GT(tp->snd_up, tp->snd_nxt)) {
ti->ti_urp = htons((u_short) (tp->snd_up - tp->snd_nxt));
ti->ti_flags I= TH_URG;

] else
/*

* If no urgent pointer to send, then we pull
* the urgent pointer to the left edge of the send window
* so that it doesn’t drift into the send window on sequence
* number wraparound.
*/

tp->snd_up : tp->snd_una; /* drag it along */

/*
* Put TCP length in extended header, and then
* checksum extended header and data.
*/

if (len + optlen)
ti->ti_len = htons((u_short) (sizeof(struct tcphdr) +

optlen + fen));
ti->ti_sum = in_cksum(m, (int) (hdrlen + len));

Figure 26.29
tcp_output.c

top_output function: fill in more TCP header fields and calculate checksum.

Figure 26.30 shows an example of how the urgent offset is calculated, assuming the
process executes

send(fd, buf, 3, MSG_OOB);

and the send buffer is empty when this call to send takes place. This shows that Berke-
ley-derived systems consider the urgent pointer to point to the first byte of data after the
out-of-band byte. Recall our discussion after Figure 24.10 where we distinguished
between the 32-bit urgent pointer in the data stream (snd_up), and the 16-bit urgent offset
in the TCP header (t i_urp).

There is a subtle bug here. The bug occurs when the send buffer is larger than 65535, regard-
less of whether the window scale option is in use or not. If the send buffer is greater than
65535 and is nearly full, and the process sends out-of-band data, the offset of the urgent
pointer from snd nxt can exceed 65535. But the urgent pointer is a 16-bit unsigned value,
and if the calculated value exceeds 65535, the 16 high-order bits are discarded, delivering a
bogus urgent pointer to the other end. See Exercise 26.6 for a solution.

880 TCP Output Chapter 26 Sectio

Figure 26.30

send queue
~so_snd. sb_¢c = 3~-~

4 5 6

snd_una snd_up = 7

snd_nxt set by

PRU_S ENDOOB

ttrgent offset = 3
~set by tcp_output~

Example of urgent pointer and urgent offset calculation.

384-391

392-399

400--405

406--417

418-419

420-428

If TCP is not in urgent mode, the urgent pointer is moved to the left edge of the
window (snd_una).

The TCP length is stored in the pseudo-header and the TCP checksum is calculated.
All the fields in the TCP header have been filled in, and when the IP and TCP header
template were copied from t template (Figure 26.26), the fields in the IP header that
are used as the pseudo-header were initialized (as shown in Figure 23.19 for the UDP
checksum calculation).

The next part of tcp_output, shown in Figure 26.31, updates the sequence num-
ber if the SYN or FIN flags are set and initializes the retransmission timer.

Remember starting sequence number
If TCP is not in the persist state, the starting sequence number is saved in

startseq. This is used later in Figure 26.31 if the segment is timed.

Increment snd_xlxt
Since both the SYN and FIN flags take a sequence number, snd_nxt is incremented

if either is set. TCP also remembers that the FIN has been sent, by setting the flag
TF_SENTFIN. snd_nxt is then incremented by the number of bytes of data (fen),
which can be 0.

Update s,,d max
If the new value of snd_nxt is larger than snd__max, this is not a retransmission.

The new value of snd max is stored.
If a segment is no~ currently being timed for this connection (t_rtt equals 0), the

timer is started (t_rtt is set to 1) and the starting sequence number of the segment
being timed is saved in t rtseq. This sequence number is used by tcp_input to
determine when the segrn~-nt being timed is acknowledged, to update the RTT estima-
tors. The sample code we discussed in Section 25.10 looked like

if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
tcp_xmit_timer(tp, tp->t_rtt) ;

Send a Segment 881

400
401
402
403
404
405

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

* In transmit state, time the transmission and arrange for
* the retransmit. In persist state, just set snd_max.
*/

if (tp->t_force := 0 II tp->t_timer[TCPT_PERSIST] :: 0) {
tcp_seq startseq : tp->snd_nxt;

* Advance snd_nxt over sequence space of this segment.
*/

if (flags & (TH_SYN I TH_FIN)) (
if (flags & TH_SYN)

tp->snd nxt++;
if (flags & TH_FIN) {

tp->snd_m_xt++;
tp->t_flags I: TF_SENTFIN;

]
}
tp->snd_nxt += fen;
if (SEQ_GT(tp->snd nxt, tp->snd_max)) {

tp->snd max = tp->snd nxt;
/*

* Time this transmission if not a retransmission and
* not currently timing anything.
*/

if (tp->t_rtt == 0) {
tp->t_rtt : i;
tp->t_rtseq : startseq;
tcpstat.tcps_segstimed++;

}

tcp_output.c

* Set retransmit timer if not currently set,
* and not doing an ack or a keepalive probe.
* Initial value for retransmit timer is smoothed
* round-trip time + 2 * round-trip time variance.
* Initialize counter which is used for backoff
* of retransmit time.
*/

if (tp->t_timer[TCPT_REXMT] == 0 &&
tp->snd_nxt !: tp->snd_una)
tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
if (tp->t_timer[TCPT_PERSIST]) {

tp->t_timer[TCPT_PERSIST] = 0;
tp->t_rxtshift = 0;

}
}

} else if (SEQ_GT(tp->snd_nxt + len, tp->snd_max))
tp->snd_max = tp->snd_nxt + len;

Figure 26.31
tcp_output.c

top_output function: update sequence number, initialize retransmit timer.

882 TCP Output Chapter 26

430-440

441--444

446-447

448--452

453-462

463-464

467-470

Set retransmission timer
If the retransmission timer is not currently set, and if this segment contains data, the

retransmission timer is set to t_rxtcur. Recall that t_rxtcur is set by
tcp_xmit timer, when an RTT measurement is made. This is an ACK-only segment
if snd_nx~-equals snd_una (since len was added to snd_nxt earlier in this figure),
and the retransmission timer is set only for segments containing data.

If the persist timer is enabled, it is disabled. Either the retransmission timer or the
persist timer can be enabled at any time for a given connection, but not both.

Persist state
The connection is in the persist state since t_force is nonzero and the persist timer

is enabled. (This else clause is associated with the if at the beginning of the figure.)
snd_max is updated, if necessary. In the persist state, 1 en will be one.

The final part of tcp_output, shown in Figure 26.32 completes the formation of
the outgoing segment and calls ip_output to send the datagram.

Add trace record for socket debugging
If the SO_DEBUG socket option is enabled, tcp_trace adds a record to TCP’s circu-

lar trace buffer. We describe this function in Section 27.10.
Set IP length, TTL, and TOS

The final three fields in the IP header that must be set by the transport layer are -.
stored: IP length, TTL, and TOS. These three fields are marked with an asterisk at the¯
bottom of Figure 23.19.

The comments xxx are because the latter two fields normally remain constant for a connection
and should be stored in the header template, instead of being assigned explicitly each time a
segment is sent. But these two fields cannot be stored in the IP header until after the TCP
checksum is calculated.

Pass datagram to IP
J_p_output sends the datagram containing the TCP segment. The socket options

are logically ANDed with SO_DONTROUTE, which means that the only socket option
passed to ±p_output is SO_DONTROUTE. The only other socket option examined by
ip_output is SO_BROADCAST, so this logical AND turns off the SO_BROADCAST bit, if
set. This means that a process cannot issue a connect to a broadcast address, even if it
sets the SO_BROADCAST socket option.

The error ENOBUFS is returned if the interface queue is full or if IP needs to obtain
an mbuf and can’t. The function tcp_quench puts the connection into slow start, by
setting the congestion window to one full-sized segment. Notice that tcp_output still
returns 0 (OK) in this case, instead of the error, even though the datagram was dis-
carded. This differs from udp_output (Figure 23.20), which returned the error. The
difference is that UDP is unreliable, so the ENOBUFS error return is the only indication
to the process that the datagram was discarded. TCP, however, will time out (if the seg-
ment contains data) and retransmit the datagram, and it is hoped that there will be
space on the interface output queue or more available mbufs. If the TCP segment

Sect

Send a Segment 883

448
449
450
451
452

453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478

479
480
481
482
483
484
485
486
487
488

489
490
491
492

tcp_output.c

* Trace.
*/

if (so->so_options & SO_DEBUG)
tcp_trace(TA_OUTPUT, tp->t_state, tp, ti, 0);

* Fill in IP length and desired time to live and
* send to IP level. There should be a better way
* to handle ttl and tos; we could keep them in
* the template, but need a way to checksum without them.

m->m_pkthdr.len = hdrlen + len;
((struct ip *) ti)->ip_len = m->m_pkthdr.len;
((struct ip *) ti)->ip_ttl = tp->t_inpcb->inp_ip.ip_ttl; /* XXX */

((struct ip *) ti)->ip_tos = tp->t_inpcb->inp_ip.ip_tos; /* XXX */

error = ip_output(m, tp->t_inpcb->inp_options, &tp->t_inpcb->inp_route,
so->so_options & SO_DONTROUTE, 0);

if (error) {
out:

if (error == ENOBUFS)
tcp_quench(tp->t_inpcb, 0);
return (0);

}
if ((error -- EHOSTUNREACH I I error == ENETDOWN)

&& TCPS_HAVERCVDSYN(tp->t_state)) {
tp->t_softerror - error;
return (0);

}
return (error);

}
tcpstat.tcps_sndtotal++;

* Data sent (as far as we can tell).
* If this advertises a larger window than any other segment,
* then remember the size of the advertised window.
* Any pending ACK has now been sent.
*/

if (win > 0 && SEQ_GT(tp->rcv_nxt + win, tp->rcv_adv))
tp->rcv_adv = tp->rcv_nxt + win;

tp->last_ack_sent = tp->rcv_nxt;
tp->t_flags &: -(TF_ACKNOW I TF_DELACK);

if (sendalot)
goto again;

return (0);

Figure 26.32 tcp_output function: call ip_output to send segment.

tcp_output.c

884

471--475

479--486

487

488

489-490

26.8

TCP Output

59-72

73-88

doesn’t contain data, the other end will time out when the ACK isn’t received and will
retransmit the data whose ACK was discarded.

If a route can’t be located for the destination, and if the connection has received a
SYN, the error is recorded as a soft error for the connection.

When tcp_output iS called by tcp_usrreq as part of a system call by a process
(Chapter 30, the PRU_CONNECT, pRU_SEND, pRU_SENDOOB, and PRU_SHUTDOWN
requests), the process receives the return value from tcp_output. Other functions that
call tcp_output, such as tcp_input and the fast and slow timeout functions, ignore
the return value (because these functions don’t return an error to a process).

Update rcv_adv and last_ack_sent
If the highest sequence number advertised in this segment (rcv_nxt plus win) is

larger than rcv_adv, the new value is saved. Recall that rcv_adv was used in Fig-
ure 26.9 to determine how much the window had opened since the last segment that
was sent, and in Figure 26.29 to make certain TCP was not shrinking the window.

The value of the acknowledgment field in the segment is saved in
last_ack_sent. This variable is used by tcp_input with the timestamp option

(Section 26.6).Any pending ACK has been sent, so the TF_ACKNOW and TF_DELACK flags are

cleared.

More data to send?
If the sendalot flag is set, a jump is made back to the label again (Figure 26.1).

This occurs if the send buffer contains more than one full-sized segment that can be sent
(Figure 26.3), or if a full-sized segment was being sent and TCP options were included
that reduced the amount of data in the segment (Figure 26.24).

tcp_template Function
The function tcp_newtcpcb (from the previous chapter) is called when the socket is
created, to allocate and partially initialize the TCP control block. When the first seg-
ment is sent or received on the socket (an active open is performed, the PRU_CONNECT
request, or a SYN arrives for a listening socket), tcp_template creates a template of
the IP and TCP headers for the connection. This minimizes the amount of work
required by tcp_output when a segment is sent on the connection.

Figure 26.33 shows the tcp_template function.

Allocate mbuf
The template of the IP and TCP headers is formed in an mbuf, and a pointer to the

mbuf is stored in the t template member of the TCP control block. Since this func-
tion can be called at th~ software interrupt level, from tcp_input, the M_DONTWAIT
flag is specified.
Initialize header fields

All the fields in the IP and TCP headers are set to 0 except as follows: t i__pr is set
to the IP protocol value for TCP (6); ti_len is set to 20, the default length of the

tcp_respond Function 885

73-88

26.9

tcp_subr.c
59 struct tcpiphdr *
60 tcp_template(tp)
61 struct tcpcb *tp;
62 {
63 struct inpcb *inp = tp->t_inpcb;
64 struct mbuf *m;
65 struct tcpiphdr *n;

66
67
68
69
70
71
72
73
74
75
76
77
78
79
8O
81
82
83
84
85
86
87
88
89
90

if ((n = tp->t_template) == 0)
m = m_get(M_DONTWAIT, MT_HEADER);
if (m == NULL)

return (0);
m->m_len = sizeof(struct tcpiphdr);
n = mtod(m, struct tcpiphdr *);

}
n->ti_next : n->ti~rev = 0;
n->ti_xl = 0;
n->ti~r : IPPROTO_TCP;
n->ti_len = htons(sizeof(struct tcpiphdr)
n->ti_src = inp->inp_laddr;
n->ti_dst = inp->inp_faddr;
n->ti_sport = inp->inp_iport;
n->ti_dport = inp->inp_fport;
n->ti_seq = 0;
n->ti_ack = 0;
n->ti_x2 = 0;
n->ti_off = 5;
n->ti_flags = 0;
n->ti_win = 0;
n->ti_sum : 0;
n->ti_urp = 0;
return (n);

sizeof(struct ip));

/* 5 32-bit words : 20 bytes */

Figure 26.33 tcp_template function: create template of IP and TCP headers.

tcp_subr.c

header; and t i_o f f is set to 5, the number of 32-bit words in the 20-byte TCP header.
Also the source and destination IP addresses and TCP port numbers are copied from the
Internet PCB into the TCP header template.
Pseudo-header for TCP checksum computation

The initializafion of many of the fields in the combined IP and TCP header simpli-
fies the computation of the TCP checksum, using the same pseudo-header technique as
discussed for UDP in Section 23.6. Exandning the udpiphdr structure in Figure 23.19
shows why t cp_t emp i at e initia~zes fields such as t i_next and t i_prev to 0.

tcp_respond Function

The function tcp_respond is a special-purpose function that also calls ip_output to
send IP datagrams, tcp_respond is called Ln two cases:

886 TCP Output

Chapter 26

1. by tep_input to generate an RST segment, with or without an ACK, and

2. by tep_t±mers to send a keepalive probe.

Instead of going through all the logic of tcp_output for these two cases, the special-
purpose function tcp_respond is called. We also note that the function tcp_drop
that we cover in the next chapter also generates RST segments by calling tcp_output.

Not all RST segments are generated by tcp_respond.
Figure 26.34 shows the first half of tcp_respond. ___------ tcp_subr.c

104 void
105 tcp_respond(tp, ti, m, ack, seq, flags)
106 struct tcpcb *tp;
107 struct tcpiphdr *ti;
108 struct mbuf *m;
109 tcp_seq ack, seq;
ii0 int flags;

Iii {
112 int tlen;

113 int win = 0;

114 struct route *to = 0;

115
116
117
118
119
120
121
122
123
124
125
126
127

128
129
130
131
132
133
134
135
136

104--110

if (tp) { sbspace(&tp->t inpcb->inp socket->so rcv);
win : - - -

&tp->t inpcb->inp route;

} /* generate keepalive probe */
if (m == 0) {

m = m_gethdr(M_DONTWAIT, MT_HEADER);
if (m =: NULL)

return;
/* no data is sent */

tlen = 0;
m->m_data += max_linkhdr;
*mtod(m, struct tcpiphdr *) = *ti;
ti : mtod(m, struct tcpiphdr *);

flags = TH_ACK;
* generate RST segment */

] else {
m_freem(m->m_next);
m->m_next = 0 ;
m->m_data = (caddr_t) tz;
m->m_len = sizeof(struct tcpiphdr);

tlen = 0;
#define xchg(a,b,type) { type t; t=a; a=b; b=t; }

xchg(ti->ti_dst.s_addr, ti->ti src.S addr, u long);
xchg(ti->ti_dport, ti->ti_sport, u_short);

~38
Figure 26.34 tcp_respond function: first half.

Figure 26.35 shows the different arguments to tcp respond for the three cases

which it is caUed.

Section 26.9

113--118

119--127

128-138

tp

IP/
RS[
seq

do~
me
wi!
wi~
set
cal

Se~

ali"
rec
mt
sin

ini

p1,

Tt
ch
m
sc
h~

Section 26.9 tcp_respond Func~on 887

113--118

119--127

128--138

generate RST without ACK

generate RST with ACK

generate keepaIive

Arguments

tp ti m ack

tp ti m 0

ti_seq +tp ti m
ti_len

tp t_template NULL rcv_nxt

seq

ti_ack

0

snd_una

flags

TH_RST

TH_RST
TH_ACK

0

Figure 26.35 Arguments to tcp_respond.

tp is a pointer to the TCP control block (possibly a null pointer); t i is a pointer to an
IP/TCP header template; m is a pointer to the mbuf containing the segment causing the
RST to be generated; and the last three arguments are the acknowledgment field,
sequence number field, and flags field of the segment being generated.

It is possible for tcp_input to generate an RST when a segment is received that
does not have an associated TCP control block. This happens, for example, when a seg-
ment is received that doesn’t reference an existing connection (e.g., a SYN for a port
without an associated listening server). In this case tp is null and the initial values for
win and ro are used. If tp is not null, the amount of space in the receive buffer will be
sent as the advertised window, and the pointer to the cached route is saved in ro for the
call to ip_output.

Send keepalive probe when keepalive timer expires

The argument m is a pointer to the mbuf chain for the received segment. But a keep-
alive probe is sent in response to the keepalive timer expiring, not in response to a
received TCP segment. Therefore m is null and m_gethdr allocates a packet header
mbuf to contain the IP and TCP headers, tlen, the length of the TCP data, is set to 0,
since the keepalive probe doesn’t contain any data.

Some older implementations based on 4.2BSD do not respond to these keepalive probes unless
the segment contains data. Net/3 can be configured to send 1 garbage byte of data in the
probe to elicit the response by defining the name TCP_COMPAT_42 when the kernel is com-
piled. This assigns 1, instead of 0, to tlen. The garbage byte causes no harm, because it is not
the expected byte (it is a byte that the receiver has previously received and acknowledged), so
it is thrown away by the receiver.

The assignment of * t i copies the TCP header template structure pointed to by t i
into the data portion of the mbuf. The pointer t i is then set to point to the header tem-
plate in the mbuf.

Send RST segment in response to received segment

An RST segment is being sent by tcp_input in response to a received segment.
The mbuf containing the input segment is reused for the response. All the mbufs on the
chain are released by re_free except the first mbuf (the packet header), since the seg-
ment generated by tcp_respond consists of only an IP header and a TCP header. The
source and destination IP address and port numbers are swapped in the IP and TCP
header.

888 TCP Output Chapter 26 Chapter 26

Figure 26.36 shows the final half of tcp_respond.

139-157

139 ti->ti_len = htons((u_short) (sizeof(struct tcphdr) + tlen));

140 tlen += sizeof(struct tcpiphdr);

141 m->m_len = tlen;
142 m->m_pkthdr.len = tlen;

143 m->m_pkthdr.rcvif = (struct ifnet *) 0;

144 ti->ti_next = ti->ti_prev = 0;

145 ti->ti_xl = 0;
146 ti->ti_seq = htonl(seq);

147 ti->ti_ack = htonl(ack);
148 ti->ti_x2 = 0;
149 ti->ti_off = sizeof(struct tcphdr) >> 2;

150 ti->ti_flags = flags;
151 if (tp)
152 ti->ti_win = htons((u_short) (win >> tp->rcv_scale));

153 else
154 ti->ti_win = htons((u_short) win);
155 ti->ti_urp = 0;
156 ti->ti_sum : 0;
157 ti->ti_sum = in_cksum(m, tlen) ;
158 ((struct ip *) ti)->ip_len = tlen;
159 ((struct ip *) ti)->ip_ttl = ip_defttl;
160 (void) ip_output(m, NULL, ro, 0, NULL);
161 }

Figure 26.36 tcp_respond function: second half.

tcp_subr.c

tcp_subr.c

The fields in the IP and TCP headers must be initialized for the TCP checksum com-
putation. These statements are similar to the way tcp_template initializes the
t_template field. The sequence number and acknowledgment fields are passed by
the caller as arguments. Finally ip_output sends the datagram.

26.10 Summary

This chapter has looked at the general-purpose function that generates most TCP seg-
ments (top_output) and the special-purpose function that generates RST segments
and keepalive probes (tcp_respond).

Many factors determine whether TCP can send a segment or not: the flags in the
segment, the window advertised by the other end, the amount of data ready to send,
whether unacknowledged data already exists for the connection, and so on. Therefore
the logic of t ep_output determines whether a segment can be sent (the first half of the
function), and if so, what values to set all the TCP header fields to (the last half of the
function). If a segment is sent, the TCP control block variables for the send sequence
space must be updated.

One segment at a time is generated by top_output, and at the end of the function
a check is made of whether more data can still be sent. If so, the function loops around
and tries to send another segment. This looping continues until there is no more data to

sen~
tra~

the
two
botl
opti
sen,
tain

Ex~

26.1

26.2

26.3

26.4

26.5

26.6

26.7

26.8

26.9

26.1

26.1

2hapter 26
Exercises 889

send, or until some other condition (e.g., the receiver’s advertised window) stops the
transmission.

A TCP segment can also contain options. The options supported by Net/3 specify
the maximum segment size, a window scale factor, and a pair of timestamps. The first
two can only appear with SYN segments, while the timestamp option (if supported by
both ends) normally appears in every segment. Since the window scale and timestamp
options are newer and optional, if the first end to send a SYN wants to use the option, it
sends the option with its SYN and uses the option only if the other end’s SYN also con-
tains the option.

Exercises

26.1 Slow start is resumed in Figure 26.1 when there is a pause in the sending of data, yet the
amount of idle time is calculated as the amount of time since the last segment was received
on the connection. Why doesn’t TCP calculate the idle time as the amount of time since
the last segment was sent on the connection?

26.2 With Figure 26.6 we said that len is less than 0 if the FIN has been sent but not acknowl-
edged and not retransmitted. What happens if the FIN is retransmitted?

26.3 Net/3 always sends the window scale and timestamp options with an active open. Why
does the global variable t cp_do_r £ c]_ 3 2 3 exist?

26.4

26.5

26.6

26.7

26.8

26.9

26.10

26.11

In Figure 25.28, which did not use the timestamp option, the RTT estimators are updated
eight times. If the timestamp option had been used in this example, how many times
would the RTT estimators have been updated?

In Figure 26.23]ocopg is called to store the received MSS in the variable ross. Why not cast
the pointer to opt [2 J into a pointer to an m~signed short and perform an assignment?

After Figure 26.29 we described a bug in the code, which can cause a bogus urgent offset to
be sent. Propose a solution. (Hint: What is the largest amount of TCP data that can be sent
in a segment?)

With Figure 26.32 we mentioned that an error of ENOBUFS is not returned to the process
because (1) if the discarded segment contained data, the retransmission timer will expire
and the data will be retransmitted, or (2) if the discarded segment was an ACK-only seg-
ment, the other end will retransmit its data when it doesn’t receive the ACK. What if the
discarded segment contains an RST?

Explain the settings of the PSH flag in Figure 20.3 of Volume 1.

Why does Figure 26.36 use the value of ±p_de £ t t 1 for the TTL, while Figure 26.32 uses
the value in the PCB?

Describe what happens with the mbuf allocated in Figure 26.25 when IP options are speci-
fied by the process for the TCP connection. Implement a better solution.

tcp_output is a long function (about 500 lines, including comments), which can appear
to be inefficient. But lots of the code handles special cases. Assume the function is called
with a full-sized segment ready to be sent, and no special cases: no IP options and no spe-
cial flags such as SYN, FIN, or URG. About how many lines of C code are actually exe-
cuted? How many functions are called before the segment is passed to ip_output?

890 TCP Output Chapter 26

26.12

26.13

In the example at the end of Section 26.3 in which the application did a write of 100 bytes ~~

followed by a write of 50 bytes, would anything change if the application called wr±tev .
once for both buffers, instead of calling wr±te twice? Does anything change with wr±¢ev
if the two buffer lengths are 200 and 300, instead of 100 and 50?

The timestamp that is sent in the timestamp option is taken from the global
which is incremented every 500 ms. Modify TCP to use a higher resolution timestamp
value.

27.°

27

TCP Functions

27.1 Introduction

This chapter presents numerous TCP functions that we need to cover before discussing
TCP input in the next two chapters:

¯ tcp_drain is the protocol’s drain function, called when the kernel is out of
mbufs. It does nothing.

¯ tcp_drop aborts a connection by sending an RST.
¯ tcp_close performs the normal TCP connection termination: send a FIN and

wait for the four-way exchange to complete. Section 18.2 of Volume 1 talks
about the four packets that are exchanged when a connection is closed.

¯ tcp_mss processes a received MSS option and calculates the MSS to announce
when TCP sends an MSS option of its own.

¯ tcp_ctlinput is called when an ICMP error is received in response to a TCP
segment, and it calls t cp_no¢ i fy to process the ICMP error, t cp_quench is a
special case function that handles ICMP source quench errors.

¯ The TCP_REASS macro and the ~cp_reass function manipulate segments on
TCP’s reassembly queue for a given connection. This queue handles the receipt
of out-of-order segments, some of which might overlap.

¯ tcp_trace adds records to the kernel’s circular debug buffer for TCP (the
SO_DEBUG socket option) that can be printed with the trpt(8) program.

891

892

27.2

27.3

TCP Functions Chapter 27

202--213

214--216

21 7

tcp_drain Function

The simplest of all the TCP functions is tcp_drain. It is the protocol’s pr_drain

function, called by m_reclaim when the kernel runs out of mbufs. We saw in Fig-
ure 10.32 that ip_drain discards all the fragments on its reassembly queue, and UDP
doesn’t define a drain function. Although TCP holds onto mbufs--segments that have
arrived out of order, but within the receive window for the socket--the Net/3 imple-
mentation of TCP does not discard these pending mbufs if the kernel runs out of space.
Instead, tcp_drain does nothing, on the assumption that a received (but out-of-order)
TCP segment is "more important" than an IP fragment.

tcp_drop Function

tcp_drop is called from numerous places to drop a connection by sending an RST and
to report an error to the process. This differs from closing a connection (the
tcp_disconnect function), which sends a FIN to the other end and follows the con-
nection termination steps in the state transition diagram.

Figure 27.1 shows the seven places where top_drop is called and the errne argu-
ment.

Function errno Description

tcp_input ENOBUFS SYN arrives on listening socket, but kernel out of mbufs for
t template.

tcp_input ECONNREFUSED RST received in response to SYN.

tcp_input ECONNRESET RST received on existing connection.

tcp_timers ETIMEDOUT Retransmission timer has expired 13 times in a row with no ACK from
other end (Figure 25.25).

tcp_timers ETIMEDOUT Connection-establishment timer has expired (Figure 25.15), or
keepalive timer has expired with no response to nine consecutive
probes (Figure 25.17)

tcp_usrreq ECONNABORTED PRU ABORT request.
tcp_usrreq 0 Socket closed and SO_LINGER socket option set with linger time of 0.

Figure 27.1 Calls to tcp_drop and errno argument.

Figure 27.2 shows the tcp_drop function.
If TCP has received a SYN, the connection is synchronized and an RST must be sent

to the other end. This is done by setting the state to CLOSED and calling tcp_output.
In Figure 24.16 the value of t cp_out f 1 ags for the CLOSED state includes the RST flag.

If the error is ETIMEDOUT but a soft error was received on the connection (e.g.,
EHOSTUNREACH), the soft error becomes the socket error, instead of the less specific
ETIMEDOUT.

t cp_c 1 ose finishes closing the socket.

Sectio~

27.4

Rout~

tcp_close Funclon 893

202 struct tcpcb *
203 tcp_drop(tp, errno)
204 struct tcpcb *tp;
205 int errno;
206 {
207 struct socket *so = tp->t_inpcb->inp_socket;

208 if (TCPS_HAVERCVDSYN(tp->t_state)) {
209 tp->t_state : TCPS_CLOSED;
210 (void) tcp_output(tp);
211 tcpstat.tcps_drops++;
212 } else
213 tcpstat.tcps_conndrops++;
214 if (errno == ETIMEDOUT && tp->t_$ofterror)
215 errno : tp->t_softerror;
216 so->so_error : errno;
217 return (tcp_close(tp));
218

Figure27.2 tcp_dropfuncHon.

tcp_subr.c

tcp_subr.c

27.4

Route

tcp_close Function

tcp_close is normally called by tcp_input when the process has done a passive
close and the ACK is received in the LAST_ACK state, and by tcp_t imers when the
2MSL timer expires and the socket moves from the TIME_WAIT to CLOSED state. It is
also called in other states, possibly after an error has occurred, as we saw in the previ-
ous section. It releases the memory occupied by the connection (the IP and TCP header
template, the TCP control block, the Internet PCB, and any out-of-order segments
remaining on the connection’s reassembly queue) and updates the route characteristics.

We describe this function in three parts, the first two dealing with the route charac-
teristics and the final part showing the release of resources.

Characteristics

Nine variables are maintained in the rt_metrics structure (Figure 18.26), six of which
are used by TCP. Eight of these can be examined and changed with the route(8) com-
mand (the ninth, rmx_pksent is never used): these variables are shown in Figure 27.3.

Additionally, the -lock modifier can be used with the route command to set the
corresponding RTV_xxx bit in the rinK_locks member (Figure 20.13). Setting the
RTV xxx bit tells the kernel not to update that metric.

When a TCP socket is closed, tcp_elose updates three of the routing metrics--the
smoothed RTT estimator, the smoothed mean deviation estimator, and the slow start
threshold--but only if enough data was transferred on the connection to yield mean-
ingful statistics and the variable is not locked.

Figure 27.4 shows the first part of top_close.

894 TCP Functions Sect’i,

234--248

250

251--264

265--273

rt_metrics
member

rmx_expire
rmx_hopcount
rmx_mtu
rmx_recvpipe
rmx_r t t
rmx_rt tvar
rmx_sendpipe
rmx_ss thresh

saved by
tcp_close?

used by
tcp_mss?

route(8)
modifier

-expire
-hopcount
-mtu
-recvpipe

-rtt
-rttvar
-sendpipe
-ssthresh

Figure 27.3 Members of the rt_metrics structure used by TCR

Check if enough data sent to update statistics
The default send buffer size is 8192 bytes (sb_hiwat), so the first test is whether

131,072 bytes (16 full buffers) have been transferred across the connection. The initial
send sequence number is compared to the maximum sequence number sent on the con-
nection. Additionally, the socket must have a cached route and that route cannot be the
default route. (See Exercise 19.2.)

Notice there is a small chance for an error in the first test, because of sequence number wrap, if
the amount of data transferred is within N x 232 and N x 232 + 131072, for any N greater than 1.
But few connections (today) transfer 4 gigabytes of data.

Despite the prevalence of default routes in the Internet, this information is still useful to main-
tain in the routing table. If a host continually exchanges data with another host (or network),
even if a default route can be used, a host-specific or network-specific route can be entered into
the routing table with the rou~e command just to maintain this information across connec-
tions. (See Exercise 19.2.) This information is lost when the system is rebooted.

The administrator can lock any of the variables from Figure 27.3, preventing them
from being updated by the kernel, so before modifying each variable this lock must be
checked.

Update RTT
t_srtt is stored as ticks x 8 (Figure 25.19) and rmx_rtt is stored as microseconds.

So t_srtt is multiplied by 1,000,000 (RTM_RTTUNIT) and then divided by 2
(ticks/second) times 8. If a value for rmx_rtt already exists, the new value is one-half
the old value plus one-half the new value. Otherwise the new value is stored in
rrax_rtt.

Update mean deviation
The same algorithm is applied to the mean deviation estimator. It too is stored as

microseconds, requiring a conversion from the t_rttvar units of ticks x 4.

Section 27.4 tcp_close FuncNon 895

225 struct tcpcb *
226 tcp_close(tp)
227 struct tcpcb *tp;
228 {
229 struct tcpiphdr *t;
230 struct inpcb *inp = tp->t_inpcb;
231 struct socket *so : inp->inp_socket;
232 struct mbuf *m;
233 struct rtentry *rt;

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

25O
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

tcp_subr.c

* If we sent enough data to get some meaningful characteristics,
* save them in the routing entry. ’Enough’ is arbitrarily
* defined as the sendpipesize (default 8K) * 16. This would
* give us 16 rtt samples assuming we only get one sample per
* window (the usual case on a long haul net). 16 samples is
* enough for the srtt filter to converge to within 5% of the correct
* value; fewer samples and we could save a very bogus rtt.

* Don’t update the default route’s characteristics and don’t
* update anything that the user "locked".
*/

if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
(rt = inp->inp_route.ro_rt) &&

((struct sockaddr_in *) rt_key(rt))->sin_addr.s_addr != INADDR_ANY) {
u_long i;

if ((rt->rt_rmx.rmx_locks & RTV_RTT) := 0) {
i : tp->t_srtt *

(RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
if (rt->rt_rmx.rmx_rtt && i)

/*
¯ filter this update to half the old & half
¯ the new values, converting scale.
¯ See route.h and tcp_var.h for a
¯ description of the scaling constants.
*/

rt->rt_rmx.rmx_rtt =
(rt->rt_rmx.rmx_rtt + i) / 2;

else
rt->rt_rmx.rmx_rtt = i;

}
if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {

i : tp->t_rttvar *
(RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));

if (rt->rt_rmx.rmx_rttvar && i)
rt->rt_rmx.rmx_rttvar :

(rt->rt_rmx.rmx_rttvar + i) / 2;
else

rt->rt_rmx.rmx_rttvar : i;
}

Figure 27.4 tcp_close function: update RT? and mean deviation.

tcp_subr.c

896
Chapter 27

TCP Functions

old

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

Figure 27.5 shows the next part of t cp_c los e, which updates the slow start thresh
for the route, tcp_subr.c

/*
* update the pipelimit (ssthresh) if it has been updated
* already or if a pipesize was specified & the threshhold
* got below half the pipesize. I.e., wait for bad news

* before we start updating, then update on both good

* and bad news.
*/

if ((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) := 0 &&
(i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh II
i < (rt->rt_rmx.rmx_sendpipe / 2)) {
/*

* convert the limit from user data bytes to

* packets then to packet data bytes.
*/
i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
if (i < 2)

i = 2;
i *= (u_!ong) (tp->t_maxseg + sizeof(struct tcpiphdr));

if (rt_>rt_rrax.rmx_ssthresh)
rt->rt_rmx.rmx_ssthresh :

(rt->rt_rmx.rmx_ssthresh + i) / 2;

else
rt->rt_rmx.rrax_ssthresh = i;

tcp_subr.c

Figure 27.5 tcp_close function: update slow start threshold.

274-283

284-290

291-297

The slow start threshold is updated only if (1) it has been updated already
(rmx_ssthresh is nonzero) or (2) rrax_sendp±pe is specified by the administrator
and the new value of snd_ssthresh is less than one-half the value of rmx_sendpipe.
As the comment in the code indicates, TCP does not update the value of
rmx as’thresh until it is forced to because of packet loss; from that point on it consid-
ers itself free to adjust the value either up or down.

The variable and ssthresh is maintained in bytes. The first conversion divides
this variable by the lV~SS (t_maxseg), yielding the number of segments. The addition
of one-half t_maxseg rounds the integer result. The lower bound on this result is two
segments.

The size of the IP and TCP headers (40) is added to the MSS and multipled by the
number of segments. This value updates rmx_s sthresh, using the same filtering as in
Figure 27.4 (one-half the old plus one-half the new).

Resource Release

The final part of t cp_c 1 o$ e, shown in Figure 27.6, releases the memory resources held
by the socket.

Section 27.5

29_~

30(
301
30~
302
304
30£
30~
30?
308
309
31_0

33_2
31_3
314
315
33.6
31_7
318

Reh

299--306

are
whi
dis(

Reh
307--311

blo(

Rel~
312--318

mar
is th

27.5 tcl

The

:tion 27.5 tcp_ms s Function 897

299-306

307--311

312--318

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

/* free the reassembly queue, if any */
t : tp->seg_next;
while (t !: (struct tcpiphdr *) tp) {

t = (struct tcpiphdr *) t->ti_next;
m = REASS_MBUF((struct tcpiphdr *) t->ti_prev);
remque(t->ti_prev);
m_freem(m);

}
if (tp->t_template)

(void) m_free(dtom(tp->t_template));
free(tp, M_PCB);
inp->inp__ppcb = O;
soisdisconnected(so);
/* clobber input pcb cache if we’re closing the cached connection */
if (inp == tcp_last_inpcb)

tcp_last_inpcb : &tcb;
in_pcbdetach(inp);
tcpstat.tcps_closed++;
return ((struct tcpcb *) 0);

Figure 27.6 tcp_close function: release connection resources.

tcp_subrc

tcp_subr.c

Release any mbufs on reassembly queue
If any segments are left on the connection’s reassembly queue, they are discarded.

This queue is for segments that arrive out of order but within the receive window. They
are held in a reassembly queue until the required "earlier" segments are received, at
which time they are reassembled and passed to the application in the correct order. We
discuss this in more detail in Section 27.9.

Release header template and TCP control block
The template of the IP and TCP headers is released by m_free and the TCP control

block is released by free. soisdisconnected marks the socket as disconnected.

Release PCB
If the Internet PCB for this socket is the one currently cached by TCP, the cache is

marked as empty by setting tcp_last_inpcb to the head of TCP’s PCB list. The PCB
is then detached, which releases the memory used by the PCB.

27.5 tcp_mss Function

The tcp_mss function is called from two other functions:

1. from tcp_output, when a SYN segment is being sent, to include an MSS
option, and

2. from tcp_input, when an MSS option is received in a SYN segment.

898
Chapter

TCP Functions

The tcp__mss function checks for a cached route to the destination and calculates the

M$$ to use for this connection.Figure 27.7 shows the first part of top_ross, which acquires a route to the destina-

tion if one is not already held by the PCB.
tcp_input.c

1391 int
1392 tcp_mss(tp, offer)
1393 struct tcpcb *tp;
1394 u_int offer;
1395 {
1396 struct route *ro;

1397 struct rtentry *rt;

1398 struct ifnet *ifp;

1399 int rtt, mss;

1400 u_long bufsize;

1401 struct inpcb *inp;

1402 struct socket *so;
1403 extern int tcp_mssdflt;

1404
1405

1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419

1391-1417

inp : tp->t_inpcb;
ro : &inp->inp_route;

if ((rt : ro->ro_rt) == (struct rtentry *) 0)
/* No route yet, so try to acquire one */
if (inp->inp_faddr.s_addr [= INADDR_ANY) {

ro->ro_dst.sa_family = AF_INET;
ro->ro_dst.sa_len = sizeof(ro->ro_dst)
((struct sockaddr_in *) &ro->ro_dst)->sin_addr =

inp->inp_faddr;
rtalloc(ro);

}
if ((rt = ro->ro_rt) == (struct rtentry *) 0)

return (tcp_mssdflt) ;

]
ifp : rt->rt_ifp;
so : inp->inp_socket; tcp_input.c

Figure 27.7 top_ms s function: acquire a route if one is not held by the PCB.

Acquire a route if necessary
If the socket does not have a cached route, rtalloc acquires one. The interface

pointer associated with the outgoing route is saved in i fp. Knowing the outgoing
interface is important, since its associated MTU can affect the MSS announced by TCP.
If a route is not acquired, the default of 512 (t cp_ms s d f 1 t) is returned immediately.

The next part of tcp_mss, shown in Figure 27.8, checks whether the route has met-
rics associated with it; if so, the variables t_rttmin, t_srtt, and t_rttvar can be
initialized from the metrics.

Sectior

1420-142

1433--14~

t cp_mss Function 899

tcp_input.c

1420-1432

1433--1439

1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432

1433
1434
1435
1436
1437
1438
1439

1440
1441
1442
1443

* While we’re here, check if there’s an initial rtt
* or rttvar. Convert from the route-table units
* to scaled multiples of the slow timeout timer.
*/

if (tp >t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
/*

* XXX the lock bit for RTT indicates that the value
* is also a minimum value; this is subject to time.
*/

if (rt->rt_rmx.rmx_locks & RTV_RTT)
tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ);

tp->t_srtt = rtt / (RTM_RTTUNIT ! (PR_SLOWHZ * TCP_RTT_SCALE));

if (rt->rt_rmx.rmx_rttvar)
tp->t_rttvar : rt->rt_rmx.rmx_rttvar /

(RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
else

/* default variation is +- 1 rtt *!
tp->t_rttvar :

tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;

TCPT_RANGESET(tp->t_rxtcur,
((tp->t_srtt >> 2) + tp->t_rttvar) >> i,
tp->t_rttmin, TCPTV_REXMTMAX);

Figure 27.8 tcp_mss function: check if the route has an associated RTT metric.

tcp_input.c

Initialize smoothed RTT estimator
If there are no RTT measurements yet for the connection (t_srtt is 0) and

rmx_rtt is nonzero, the latter initializes the smoothed RTT estimator t_srtt. If the
RTV_RTT bit in the routing metric lock flag is set, it indicates that rmx_rt t should also
be used to initialize the minimum RTT for this connection (t_rttmin). We saw that
tcp_newtcpcb initializes t_rttmin to 2 ticks.

rrax_rtt (in units of microseconds) is converted to t_srtt (in units of ticks x 8).
This is the reverse of the conversion done in Figure 27.4. Notice that t_rttmin is set to
one-eighth the value of t_srtt, since the former is not divided by the scale factor
TC P_RTT_SCALE.

Initialize smoothed mean deviation estimator
If the stored value of rmx_rttvar is nonzero, it is converted from units of

microseconds into ticks x 4 and stored in t_rttvar. But if the value is 0, t_rttvar is
set to t_rtt, that is, the variation is set to the mean. This defaults the variation to + 1
RTT. Since the units of the former are ticks x 4 and the units of the latter are ticks x 8,
the value of t_srtt is converted accordingly.

900

1440--1442

TCP Functions

Calculate initial RTO
The current RTO is calculated and stored in t_rxtcur, using the unscaled equa- i

tion
RTO = srtt + 2 x rttvar

A multipler of 2, instead of 4, is used to calculate the first RTO. This is the same equa-
tion that was used in Figure 25.21. Substituting the scaling relationships we get

t_srtt t_rttvarRTO = v 2 x
8 4

t_srtt Rt_rttvar
4

which is the second argument to TCPT_RANGESET.

The next part of tcp_mss, shown in Figure 27.9, calculates the MSS.

1444
1445
1446
1447
1448
1449
1450

1451
1452
1453
1454
1455
1456
1457

#if

* if there’s an mtu associated with the route, use it

if (rt->rt_rmx.rmx_mtu)
mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);

else {
mss = ifp->if_mtu - sizeof(struct tcpiphdr);

(MCLBYTES & (MCLBYTES - i)) =: 0
if (mss > MCLBYTES)

mss &= -(MCLBYTES - i);
#else

#endif

tcp_input.c

mss = mss / MCLBYTES * MCLBYTES;

1458 if (!in_localaddr(inp->inp_faddr))
1459 mss = min(mss, tcp_mssdflt);

14 6 0 } tcp_input.c

1444--1450

Figure 27.9 tcp_~ss function: calculate MSS.

Use MSS from routing table MTU
If the MTU is set in the routing table, ms s is set to that value. Otherwise ms s starts

at the value of the outgoing interface MTU minus 40 (the default size of the IP and TCP
headers). For an Ethernet, mss would start at 1460
Round MSS down to multiple of MCLBYTES

1451-1457 The goal of these lines of code iSxt:e~?~thB~ei~ft~: ~at~u~hoef
ple of the mbuf cluster size, if ross e ¯ is
cally 1024 or 2048) logically ANDed with the value minus 1 equals 0, then ~C~BYT~S
a power of 2. For example, 1024 (0x4 0 0) logically ANDed with 1023 (0x3 £ £) is 0.

Section

1458--145~

1461--147~

1473--148i

27.5 t cp_ms s Function 901

458-1459

The value of ms s is reduced to the next-lower multiple of MCLBYTES by clearing the
appropriate number of low-order bits: if the cluster size is 1024, logically ANDing mss
with the one’s complement of 1023 (0xf f f f f c0 0) clears the low-order 10 bits. For an
Ethernet, this reduces ross from 1460 to 1024. If the cluster size is 2048, logically AND-
ing ms s with the one’s complement of 2047 (0 x f f f f 8 0 0 0) clears the low-order 11 bits.
For a token ring with an MTU of 4464, this reduces the value of mss from 4424 to 4096.
If MCLBYTES is not a power of 2, the rounding down to the next-lower multiple of
MCLBYTES is done with an integer division followed by a multiplication.

Check if destination local or nonlocal
If the foreign IP address is not local (in_loealaddr returns 0), and if mss is

greater than 512 (tcp_mssdf lt), it is set to 512.

Whether an IP address is "local" or not depends on the value of the global
subnetsarelocal, which is initialized from the symbol SUBNETSARELOCAL when the ker-
nel is compiled. The default value is 1, meaning that an IP address with the same network ID
as one of the host’s interfaces is considered local. If the value is 0, an IP address must have the
same network ID and the same subnet ID as one of the host’s interfaces to be considered local.

This minimization for nonlocal hosts is an attempt to avoid fragmentation across wide-area
networks. It is a historical artifact from the ARPANET when the MTU across most WAN links
was 1006. As discussed in Section 11.7 of Volume 1, most WANs today support an MTU of
1500 or greater. See also the discussion of the path MTU discovery feature (RFC 1191 [Mogul
and Deering 1990]), in Section 24.2 of Volume 1. Net/3 does not support path MTU discovery.

1461-1472

1473-1483

The final part of tcp_mss is shown in Figure 27.10.
Other end’s MSS is upper bound

The argument o f fer is nonzero when this function is called from t cp_input, and
its value is the MSS advertised by the other end. If the value of ms s is greater than the
value advertised by the other end, it is set to the value of offer. For example, if the
function calculates an mss of 1024 but the advertised value from the other end is 512,
mss must be set to 512. Conversely, if ross is calculated as 536 (say the outgoing MTU is
576) and the other end advertises an MSS of 1460, TCP will use 536. TCP can always
use a value less than the advertised MSS, but it can’t exceed the advertised value. The
argument offer is 0 when this function is called by top_output to send an MSS
option. The value of ross is also lower-bounded by 32.

If the value of mss has decreased from the default set by tcp_newtcpcb in the
variable t_maxseg (512), or if TCP is processing a received MSS option (offer is
nonzero), the following steps occur. First, if the value of rmx_sendpipe has been
stored for the route, its value will be used as the send buffer high-water mark (Fig-
ure 16.4). If the buffer size is less than mss, the smaller value is used. This should never
happen unless the application explicitly sets the send buffer size to a small value, or the
administrator sets rmx_sendpipe to a small value, since the high-water mark of the
send buffer defaults to 8192, larger than most values for the MSS.

902 TCP Functions Chapter 27

1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490

1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

tcp_input.c
/*

* The current mss, t_maxseg, was initialized to the default value
* of 512 (tcp_mssdflt) by tcp_newtcpcb().
* If we compute a smaller value, reduce the current mss.
* If we compute a larger value, return it for use in sending
* a max seg size option, but don’t store it for use
* unless we received an offer at least that large from peer.
* However, do not accept offers under 32 bytes.
*/
if (offer)

mss = min(mss, offer);
mss = max(mss, 32); /* sanity */

if (mss < tp->t_maxseg II offer != 0) {

* If there’s a pipesize, change the socket buffer
* to that size. Make the socket buffers an integral
* number of mss units; if the mss is larger than
* the socket buffer, decrease the mss.
*/

if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
bufsize = so->so_snd.sb_hiwat;

if (bufsize < mss)
mss = bufsize;

else {
bufsize = roundup(bufsize, mss);
if (bufsize > sb_max)

bufsize = sb_max;
{void) sbreserve{&so->so_snd, bufsize);

}
tp->t_maxseg = mss;

if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
bufsize = so->so_rcv.sb_hiwat;

if (bufsize > mss) {
bufsize = roundup(bufsize, mss);
if {bufsize > sb_max)

bufsize = sb_max;
(void) sbreserve{&so->so_rcv, bufsize);

}
]
tp->snd_cwnd : mss;
if (rt->rt_rmx.rmx_ssthresh) {

/*
* There’s some sort of gateway or interface
* buffer limit on the path. Use this to set
* the slow start threshhold, but set the
* threshold to no less than 2*mss.
*/

tp->snd_ssthresh : max(2 * mss, rt->rt_rmx.rmx_ssthresh);

]
return (mss);

Figure 27.10 tcp_mss function: complete processing.

Section 27.5

RoL

1484-1489

bou
hig]
819~
MS~
for ;

1490

bec~
1491--1499

Initi;
1500--1509

rmx
(sn(

1510

ure
valu

Example

Let’~
tcp.

is re,

tion 27.5 t cp_ms s Function 903

484-1489

:1490

491-1499

1:1500--1509

Round buffer sizes to multiple of MSS
The send buffer size is rounded up to the next integral multiple of the MSS,

bounded by the value of sb_max (262,144 on Net/3, which is 256 x 1024). The socket’s
high-water mark is set by sbreserve. For example, the default high-water mark is
8192, but for a local TCP connection on an Ethernet with a cluster size of 2048 (i.e., an
MSS of 1460) this code increases the high-water mark to 8760 (which is 6 x 1460). But
for a nonlocal connection with an MSS of 512, the high-water mark is left at 8192.

The value of t_maxseg is set, either because it decreased from the default (512) or
because an MSS option was received from the other end.

The same logic just applied to the send buffer is also applied to the receive buffer.
Initialize congestion window and slow start threshold

The value of the congestion window, snd_cwnd, is set to one segment. If the
rmx_ssthresh value in the routing table is nonzero, the slow start threshold
(snd_ssthresh) is set to that value, but the value must not be less than two segments.

The value of ross is returned by the function, tcp_input ignores this value in Fig-
ure 28.10 (since it received an MSS from the other end), but tcp_output sends this
value as the announced MSS in Figure 26.23.

Example

Let’s go through an example of a TCP connection establishment and the operation of
t cp_mss, since it can be called twice: once when the SYN is sent and once when a SYN
is received with an MSS option.

The socket is created and tcp_newtcpcb sets t_maxseg to 512.

The process calls connect, and tcp_output calls tcp_mss with an offer
argument of 0, to include an MSS option with the SYN. Assuming a local desti-
nation, an Ethernet LAN, and an mbuf cluster size of 2048, ms s is set to 1460 by
the code in Figure 27.9. Since offer is 0, Figure 27.10 leaves the value as 1460
and this is the function’s return value. The buffer sizes aren’t modified, since
1460 is larger than the default (512) and a value hasn’t been received from the
other end yet. tcp_output sends an MSS option announcing a value of 1460.
The other end replies with its SYN, announcing an MSS of 1024. tcp_input
calls tcp_mss with an offer argument of 1024. The logic in Figure 27.9 still
yields a value of 1460 for mss, but the call to min at the beginning of Fig-
ure 27.10 reduces this to 1024. Since the value of offer is nonzero, the buffer
sizes are rounded up to the next integral multiple of 1024 (i.e., they’re left at
8192). t_maxseg is set to 1024.

It might appear that the logic of tcp_mss is flawed: TCP announces an MSS of 1460 but
receives an MSS of 1024 from the other end. While TCP is restricted to sending 1024-byte seg-
ments, the other end is free to send 1460-byte segments. We might think that the send buffer
should be a multiple of 1024, but the receive buffer should be a multiple of 1460. Yet the code
in Figure 27.10 sets both buffer sizes based on the received MSS. The reasoning is that even if
TCP announces an MSS of 1460, since it receives an MSS of 1024 from the other end, the other
end probably won’t send 1460-byte segments, but will restrict itself to 1024-byte segments.

904 TCP Functions Sectic

27.6 tcp_ctlinpu~ Function

Recall from Figure 22.32 that tcp_ct 1 input processes five types of ICMP errors: desti-
nation unreachable, parameter problem, source quench, time exceeded, and redirects.
All redirects are passed to both TCP and UDP. For the other four errors,
t c p_c t I input is called only if a TCP segment caused the error.

t c p_c t 1 i npu t is shown in Figure 27.11. It is similar to u dp_c t 1 input, shown in
Figure 23.30.

tcp_subr.c
355 void
356 tcp_ctlinput(cmd, sa, ip)
357 int cmd;
358 struct sockaddr *sa;
359 struct ip *ip;
360 {
361 struct tcphdr *th;
362 extern struct in_addr zeroin_addr;
363 extern u_char inetctlerrmap[];
364 void (*notify) (struct inpcb *, int) : tcp_notify;

365
366
367
368
369
370
371
372
373
374
375
376

if (cmd :: PRC_QUENCH)
notify : tcp_quench;

else if (!PRC IS REDIRECT(cmd) &&
((unsigned) cmd > PRC_NCMDS II inetctlerrmap[cmd] == 0))

return;
if (ip) {

th = (struct tcphdr *) ((caddr_t) ip + (ip->ip_hl << 2));
in_pcbnotify(&tcb, sa, th->th_dport, ip->ip_src, th->th_sport,

cmd, notify);

] else
in_pcbnotify(&tcb, sa, 0, zeroin_addr, 0, cmd, notify);

tcp_subr.c

Figure 27.11 tcp_ctlinput function.

365-366 The only difference in the logic from udp_ctlinput is how an ICMP source
quench error is handled. UDP ignores these errors since the PRC_QUENCH entry of
inetctlerrmap is 0. TCP explicitly checks for this error, changing the notify func-
tion from its default of t cp_not i fy to t cp_quench.

27.7 tcp_noti fy Function

t cp_not i fy is called by t cp_c t i input to handle destination unreachable, parameter
problem, time exceeded, and redirect errors. This function is more complicated than its
UDP counterpart, since TCP must intelligently handle soft errors for an established con-
nection. Figure 27.12 shows the tcp notify flmction.

328--3<

346--3~

27.7

328 void
329 tcp_notify(inp, error)
330 struct inpcb *inp;
331 int error;
332 {
333 struct tcpcb *tp = (struct tcpcb *) inp->inp_ppcb;
334 struct socket *so : inp->inp_socket;

328--345

346-353

t cp_noti fy Function 905

tcp_subr.c

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
35O
351
352
353
354

* Ignore some errors if we are hooked up.
* If connection hasn’t completed, has retransmitted several times,
* and receives a second error, give up now. This is better
* than waiting a long time to establish a connection that
* can never complete.
*/

if (tp->t_state := TCPS_ESTABLISHED &&
(error :: EHOSTUNREACH I I error :: ENETUNREACH I I
error == EHOSTDOWN)) {

return;
} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&

tp->t_softerror)
so->so_error : error;

else
tp->t_softerror - error;

wakeup((caddr_t) & so->so_timeo);
sorwakeup(so);
sowwakeup(so);

tcp_subr.c

Figure 27.12 tcp_notify function.

If the connection is ESTABLISHED, the errors EHOSTUNREACH, ENETUNREACH, and
EHOSTDOWN are ignored.

This handling of these three errors is new with 4.4BSD. Net/2 and earlier releases recorded
these errors in the connection’s soft error variable (t_softerror), and the error was reported
to the process should the connection eventually fail. Recall that tcp_xmi t_t imer resets this
variable to 0 when an ACK is received for a segment that hasn’t been retransmitted.

If the connection is not yet established, TCP has retransmitted the current segment
four or more times, and an error has already been recorded in t_softerror, the cur-
rent error is recorded in the socket’s so_error variable. By setting this socket variable,
the socket becomes readable and writable if the process calls select. Otherwise the
current error is just saved in t_softerror. We saw that tcp_drop sets the socket
error to this saved value if the connection is subsequently dropped because of a time-
out. Any processes waiting to receive or send on the socket are then awakened to
receive the error.

~06 TCP Fu_nctions

27.8 tcp_quench Function

27.9

Chapter 27

tcp_quench, which is shown in Figure 27.13, is called by tcp_ctlinput when a
source quench is received for the connection, and by top_output (Figure 26.32) when
ip_output returns ENOBUFS.

381 void
382 tcp_quench(inp0 errno)

383 struct inpcb *inp;
384 int errno;

385 {
386 struct tcpcb *tp = intotcpcb(inp) ;

387 if (tp)

388 tp->snd_cwnd = tp->t_maxseg;

389 }

Figure 27.13 tcp_quench function.

tcp_subr.c

tcp_subr.c

The congestion window is set to one segment, causing slow start to take over. The
slow start threshold is not changed (as it is when top_timers handles a retransmis-
sion timeout), so the window will open up exponentially until snd_ssthresh is
reached, or congestion occurs.

TCP_REASS Macro and tcp_reass Function

TCP segments can arrive out of order, and it is TCP’s responsibility to place the misor-
dered segments into the correct order for presentation to the process. For example, if a
receiver advertises a window of 4096 with byte number 0 as the next expected byte, and
receives a segment with bytes 0-1023 (an in-order segment) followed by a segment with
bytes 2048-3071, this second segment is out of order. TCP does not discard the out-of-
order segment if it is within the receive window. Instead it places the segment on the
reassembly list for the connection, waiting for the missing segment to arrive (with bytes
1024-2047), at which time it can acknowledge bytes 1024-3071 and pass these 2048
bytes to the process. In this section we examine the code that manipulates the TCP
reassembly queue, before discussing top_input in the next two chapters.

If we assume that a single mbuf contains the IP header, TCP header, and 4 bytes of
TCP data (recall the left half of Figure 2.14) we would have the arrangement shown in
Figure 27.14. We also assume the data bytes are sequence numbers 7, 8, 9,
and 10.

The ipovly and tcphdr structures form the tcpiphdr structure, which we
showed in Figure 24.12. We showed a picture of the tcphdr structure in Figure 24.10.
In Figure 27.14 we show only the variables used in the reassembly: ti_next, ti_prev,
ti len, ti_sport, ti_dport, and ti_seq. The first two are pointers that form a
doubly linked list of all the out-of-order segments for a given connection. The head of
this list is the TCP control block for the connection: the seg_next and seg_pr~
bers, which are the first two members of the structure. The ti_next and ti

Section"

TCP_RE

54-63

Section 27.9 TCP_REASS Macro and tcp_reass Function 907

Figure 27.14

mbuf{ }
m_next
m_nextpkt

m_len
-m_data
m_type
m_flags
m_pkthdr, fen
m_pkt hdr. rcvi f

t i_next
ti_prev

1 Iti-len

ti_sport 1 ti_dpor t
ti_seq

NULL
NULL
44

MT_DATA
M_PKTHDR
44
9tr

[(20 bytes)
~4tr L ipovly{ }

~ tcphdr{ }

~(20 bytes)

bytes of data

Example mbuf with IP and TCP headers and 4 bytes of data.

pointers overlay the first 8 bytes of the IP header, which aren’t needed once the data-
gram reaches TCP. t i_len is the length of the TCP data, and is calculated and stored
by TCP before verifying the TCP checksum.

TCP_REASS Macro

54-63

When data is received by tcp_input, the macro TCP_REASS, shown in Figure 27.15, is
invoked to place the data onto the connection’s reassembly queue. This macro is called
from only one place: see Figure 29.22.

tp is a pointer to the TCP control block for the connection and t i is a pointer to the
tcpiphdr structure for the received segment. If the following three conditions are all
true:

1. this segment is in-order (the sequence number t i_seq equals the next expected
sequence number for the connection, rcv_nxt), and

Chapter 27 Section
908 TCP Functions

64-67

53 #define TCP_REASS(tp, ti, m, so, flags) { \ .

54 if ((ti)->ti_seq := (tp)->rcv_nxt && \ i:::<;

55 (tp)->seg_next :: (struct tcpiphdr *) (tp) && \ i!,’-~

56 (tp)->t_state :: TCPS_ESTABLISHED) { \ .

57 tp->t_flags I: TF_DELACK; \

58 (tp)->rcv_nxt ÷: (ti)->ti_len; \

59 flags = (ti)->ti_flags & TH_FIN; \

60 tcpstat.tcps_rcvpack++; \

61 tcpstat.tcps_rcvbyte += (ti)->ti_len; \

62 sbappend(&(so)->so_rcv, (m)); \

63 sorwakeup(so); \

64 } else { \

65 (flags) = tcp_reass((tp), (ti), (m)) ; \

66 tp->t_flags I= TF_ACKNOW; \

67 } \
68]

Figure 27.15 TCP_REASS macro: add data to reassembly queue for connection.

tcp_input.c

2. the reassembly queue for the connection is empty (seg_next points to itself,
not some mbuf), and

3. the connection is ESTABLISHED,

the following steps take place: a delayed ACK is scheduled, rcv_nxt is updated with
the amount of data in the segment, the flags argument is set to TH_FIN if the FIN flag
is set in the TCP header of the segment, two statistics are updated, the data is appended
to the socket’s receive buffer, and any receiving processes waiting for the socket are
awakened.

The reason all three conditions must be true is that, first, if the data is out of order, it
must be placed onto the connection’s reassembly queue and the "preceding" segments
must be received before anything can be passed to the process. Second, even if the data
is in order, if there is out-of-order data already on the reassembly queue, there’s a
chance that the new segment might fill a hole, allowing the received segment and one or
more segments on the queue to all be passed to the process. Third, it is OK for data to
arrive with a SYN segment that establishes a connection, but that data cannot be passed
to the process until the connection is ESTABLISHED--any such data is just added to the
reassembly queue when it arrives.

If these three conditions are not all true, the TCP_REASS macro calls the function
tcp_reass to add the segment to the reassembly queue. Since the segment is either
out of order, or the segment might fill a hole from previously received out-of-order seg-
ments, an immediate ACK is scheduled. One important feature of TCP is that a receiver
should generate an immediate ACK when an out-of-order segment is received. This
aids the fast retransmit algorithm (Section 29.4).

Before looking at the code for the tcp_reass function, we need to explain
done with the two port numbers in the TCP header in Figure 27.14, t i_sport

tcp_re

69--83

84--90

27.9 TCP_REASS Macro and tcp_reass Function909

t i_dport. Once the TCP control block is located and tcp_reass is called, these two
port numbers are no longer needed. Therefore, when a TCP segment is placed on a
reassembly queue, the address of the corresponding mbuf is stored over these two port
numbers. In Figure 27.14 this isn’t needed, because the IP and TCP headers are in the
data portion of the mbuf, so the dtom macro works. But recalling our discussion of
m_pullup in Section 2.6, if the IP and TCP headers are in a cluster (as in Figure 2.16,
which is the normal case for a full-sized TCP segment), the dtom macro doesn’t work.
We mentioned in that section that TCP stores its own back pointer from the TCP header
to the mbuf, and that back pointer is stored over the two TCP port numbers.

Figure 27.16 shows an example of this technique with two out-of-order segments for
a connection, each segment stored in an mbuf cluster. The head of the doubly linked list
of out-of-order segments is the seg_next member of the control block for this connec-
tion. To simplify the figure we don’t show the seg_prev pointer and the ti_next
pointer of the last segment on the list.

The next expected sequence number is 1 (rcv_nxt) but we assume that segment
was lost. The next two segments have been received, containing bytes 1461-4380, but
they are out of order. The segments were placed into clusters by m_devget, as shown
in Figure 2.16.

The first 32 bits of the TCP header contain a back pointer to the corresponding
mbuf. This back pointer is used in the tcp_reass function, shown next.

tcp_reass Function

69-83

84-90

Figure 27.17 shows the first part of the tcp_reass function. The arguments are: tp, a
pointer to the TCP control block for the received segment; t i, a pointer to the IP and
TCP headers of the received segment; and m, a pointer to the mbuf chain for the
received segment. As mentioned earlier, t i can point into the data area of the mbuf
pointed to by m, or t i can point into a cluster.

We’ll see that top_input calls ~cp_reass with a null ti pointer when a SYN is
acknowledged (Figures 28.20 and 29.2). This means the connection is now established,
and any data that might have arrived with the SYN (which tep_reass had to queue
earlier) can now be passed to the application. Data that arrives with a SYN cannot be
passed to the process until the connection is established. The label present is in Fig-
ure 27.23.

Go through the list of segments for this connection, starting at seg_next, to find
the first one with a sequence number that is greater than the received sequence number
(t i_s eq). Note that the i f statement is the entire body of the for loop.

Figure 27.18 shows an example with two out-of-order segments already on the
queue when a new segment arrives. We show the pointer q pointing to the next seg-
ment on the list, the one with bytes 10-15. In this figure we also show the two pointers
t i_next and t i_prev, the starting sequence number (t i_seq), the length (ti_len),
and the sequence numbers of the data bytes. With the small segments we show, each
segment is probably in a single mbuf, as in Figure 27.14.

910 TCP Functions Chapter 27 Sec~

¯

mbuf {)
m_next
m_nextpkt

m_len
m_data
m_type
m_flags
m_pkthdr.len
m_pkthdr.rcvif
m_ext.ext_buf
m_ext.ext_free
m_ext.ext_size

NULL
NULL
1500

MT DATA
M_~KTHDR

I M_EXT
1500
ptr

NULL
2048

2048-byte
cluster

ti_next
ti_prev

backpointer
ti_seq

1460 bytes
of data

1460

1461

mbuf { }
m_next
m_nextpkt

m_len
m_data
m_type
m_flags
m_pkthdr, len
m_pkt hdr. rcvif
m_ext, ext_bu f
m_ext, ext_free
m_ext, ext_size

:.,~:; - :

2048-byte
cluster

ti_next
t i_prev

back pointer
ti_seq

1460 bytes
of data

~8 bytes
(unused)

NULL
NULL
1500

MT_DA TA
M_ PK THDR
I M_EXT
1500
~tr

NULL
2048

Figure 27.16 Two out-of-order TCP segments stored in mbuf clusters.

TCP_REASS Macro and tcp_reass Function 911

69 int
70 tcp_reass(tp, ti, m)
71 struct tcpcb *tp;
72 struct tcpiphdr *ti;
73 struct mbuf *m;
74 {
75 struct tcpiphdr *q;
76 struct socket *so : tp->t_inpcb->inp_socket;
77 int flags;

78
79
8O
81
82
83

84
85
86
87
88
89
90

* Call with ti==0 after become established to
* force pre-ESTABLISHED data up to user socket.

if (ti =: 0)
goto present;

* Find a segment that begins after this one does.

for (q = tp->seg_next; q != (struct tcpiphdr *) tp;
q = (struct tcpiphdr *) q->ti_next)

if (SEQ_GT(q->ti_seq, ti->ti_seq))
break;

Figure 27.17 tcp_reass function: first part.

tcp_input.c

tcp_input.c

~] t i_len = 5 I
l ~ previous

ti_next] ti_prev 4]5[6 7]8 ~ segment
d on list

ti ti seq=4 ~

--~ ~e, ’~7 ,ti~len=4 ~)ti_ xt I ti_prev 9 10 new segment

,
q~ ti_seq=7 ~ ti len=6

t i_s eq = I0

Figure 27.18 Example of TCP reassembly queue with overlapping segments.

912 TCP Functions
Chapter 27

The next part of tcp_reass is shown in Figure 27.19.
tcp_input.c

91
92
93
94
95
96
97
98
99
i00
i01
102
103
104
105
106
107
108
109
Ii0
iii
112
113
114
115
116

* If there is a preceding segment, it may provide some of
* our data already. If so, drop the data from the incoming

* segment. If it provides all of our data, drop us.
*/

if ((struct tcpiphdr *) q->ti_prev != (struct tcpiphdr *) tp)

int i;
: (struct tcpiphdr *) q->ti_prev;

~* conversion to int (in i) handles seq wraparound */

i = q->ti_seq + q->ti_len - ti->ti_seq;
if (i > 0) {

if (i >= ti->ti_len) {
tcpstat.tcps_rcvduppack++;
tcpstat.tcps_rcvdupbyte += ti->ti_len;
m_freem(m);
return (0);

}
m_adj(m, i);
t±->ti_len -= i;
ti->ti_seq += i;

}
q = (struct tcpiphdr *) (q->ti_next);

tcpstat.tcps_rcvoopack++;
tcpstat.tcps_rcvoobyte += ti->ti_len;
REASS_MBUF(ti) = m; /* XXX */ tcp_input.c

91-107

108-112

116

Figure 27.19 tcp_reass function: second part.

If there is a segment before the one pointed to by q, that segment may overlap the
new segment. The pointer q is moved to the previous segment on the list (the one with
bytes 4-8 in Figure 27.18) and the number of bytes of overlap is calculated and stored

i = q->ti_seq + q->ti_len - ti->ti_seq;
=4+5-7
= 2

If i is greater than 0, there is overlap, as we have in our example. If the number of bytes
of overlap in the previous segment on the list (i) is greater than or equal to the size of
the new segment, then all the data bytes in the new segment are already contained in
the previous segment on the list. In this case the duplicate segment is discarded.

If there is only partial overlap (as there is in Figure 27.18), m_adj discards ± bytes of
data from the beginning of the new segment. The sequence number and length of the
new segment are updated accordingly, q is moved to the next segment on the list. Fig-
ure 27.20 shows our example at this point.

The address of the mbuf m is stored in the TCP header, over the source and destina’i
tion TCP ports. We mentioned earlier in this section that this provides a back

Section

117-15

ction 27.9 TCP_REASS Macro and tcp_reass Function 913

~ I I-_

ti_len = 5 ml previous

ti seq=4
I,~i-len =~I

segment

ti_seq ,~9 ti_len = 6

~ ti_$ext, ti_~,rev 10 , 11 , 12 , 13 , 14 , 15
ti_selq = I0

Figure 27.20 Update of Figure 27.18 after bytes 7 and 8 have been removed from new segment.

117--135

136--139

from the TCP header to the mbuf, in case the TCP header is stored in a cluster, meaning
that the macro dtom won’t work. The macro REASS_MBUF is

#define REASS_MBUF(ti) (*(struct mbuf **)&((ti}->ti_t})

ti_t is the tcphdr structure (Figure 24.12) and the first two members of the structure
are the two 16-bit port numbers. The comment xx× in Figure 27.19 is because this hack
assumes that a pointer fits in the 32 bits occupied by the two port numbers.

The third part of tcp_reass is shown in Figure 27.21. It removes any overlap from
the next segment in the queue.

If there is another segment on the list, the number of bytes of overlap between the
new segment and that segment is calculated in i. In our example we have

i = 9 + 2 - i0
= 1

since byte number 10 overlaps the two segments.
Depending on the value of i, one of three conditions exists:

If ± is less than or equal to O, there is no overlap.

If ± is less than the number of bytes in the next segment (q->~ ±_len), there is
partial overlap and ra_adj removes the first i bytes from the next segment on
the list.

If i is greater than or equal to the number of bytes in the next segment, there is
complete overlap and that next segment on the list is deleted.

The new segment is inserted into the reassembly list for this connection by insque.
Figure 27.22 shows the state of our example at this point.

Chapter 27 Sec
TCP Functions914

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

136
137
138
139

* while we overlap succeeding segments trim them or,
* if they are completely covered, dequeue them.
*/

while (q != (struct tcpiphdr *) tp) {
int i = (ti->ti_seq + ti->ti_len) - q->ti_seq;

if (i <= 0)
break;

if (i < q->ti_len) {
q->ti_seq += i;
q->ti_len = i;
m_adj(REASS_MBUF(q), i);
break;

}
q = (struct tcpiphdr *) q->ti_next;
m = REASS_MBUF((Struct tcpiphdr *) q->ti~rev);
remque (q->ti~rev) ;
m_freem (m) ;

}

* Stick new segment in its place.
*/

insque(ti, q->ti_prev);

Figure 27.21 tcp_reass function: third part.

tcp_input.c

tcp_input.c

9 ~ ti_len : 5 S

4 5 I 6 I 7 I 8-
"]previ°us

ti nextI ti~rev ~segment
- .) on list

ti_seq : 4 l~i_len = ~

ti~rev 9 [I0 }new

J ti_seq = 9

segment

t i_len : 5 S

ti_iext] ti-~,rev 11 I 12 I 13 [14] @

ti_s!q :]1

Figure 27.22 Update of Figure 27.20 after removal of all overlapping bytes.

Figure 27.23 shows the final part of tcp_reass. It passes the data to the process, if ili~!~i:~I

possible.

14

27.9 TCP_REASS Macro and tcp_reass Function 915

145-146

147-149

150-151

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

tcp_input.c
present:

/*
* Present data to user, advancing rcv_nxt through
* completed sequence space.
*/
if (TCPS_HAVERCVDSYN(tp->t_state) := 0)

return (0);
ti : tp->seg_next;
if (ti == (struct tcpiphdr *) tp I I ti >ti_seq [= tp->rcv_nxt)

return (0) ;
if (tp->t_state := TCPS_SYN_RECEIVED && ti >ti_len)

return (0);
do {

tp->rcv_nxt +: ti->ti_len;
flags = ti->ti_flags & TH_FIN;
remque(ti) ;
m = REASS_MBUF(ti);
ti = (struct tcpiphdr *) ti->ti_next;
if (so->so_state & SS_CANTRCVMORE)

m_freem(m);
else

sbappend(&so->so_rcv, m);
} while (ti [: (struct tcpiphdr *) tp && ti->ti_seq := tp->rcv_nxt);
sorwakeJp(so);
return (flags);

tcp_input.c

Figure27.23 tcp_reassfunction:fourth part.

If the connection has not received a SYN (i.e., it is in the LISTEN or SYN_SENT
state), data cannot be passed to the process and the function returns. When this func-
tion is called by TCP_REA$S, the return value of 0 is stored in the £1ags argument to
the macro. This can have the side effect of clearing the FIN flag. We’ll see that this side
effect is a possibility when TCP_REA$S is invoked in Figure 29.22, and the received seg-
ment contains a SYN, FIN, and data (not a typical segment, but valid).

t± starts at the first segment on the list. If the list is empty, or if the starting
sequence number of the first segment on the list (t ±->~ ±_seq) does not equal the next
receive sequence number (rcv_nx¢), the function returns a value of 0. If the second
condition is true, there is still a hole in the received data starting with the next expected
sequence number. For instance, in our example (Figure 27.22), if the segment with bytes
4-8 is the first on the list but rcv_nx¢ equals 2, bytes 2 and 3 are still missing, so bytes
4-15 cannot be passed to the process. The return of 0 turns off the FIN flag (if set),
because one or more data segments are still missing, so a received FIN cannot be pro-
cessed yet.

If the state is SYN_RCVD and the length of the segment is nonzero, the function
returns a value of 0. If both of these conditions are true, the socket is a listening socket
that has received in-order data with the SYN. The data is left on the connection’s queue,
waiting for the three-way handshake to complete.

916 TCP Functions Chapter 27 Se~

152-164 This loop starts with the first segment on the list (which is known to be in order)
and appends it to the socket’s receive buffer, rcv_nxt is incremented by the number of
bytes in the segment. The loop stops when the list is empty or when the sequence num-
ber of the next segment on the list is out of order (i.e., there is a hole in the sequence
space). When the loop terminates, the f 1 ags variable (which becomes the return value
of the function) is 0 or TH_FIN, depending on whether the final segment placed in the
socket’s receive buffer has the FIN flag set or not.

After all the mbufs have been placed onto the socket’s receive buffer, sorwakeup
wakes any process waiting for data to be received on the socket.

27.10

35-43

tcp_trace Function

In tcp_output, before sending a segment to IP for output, we saw the following call to
tcp_trace in Figure 26.32:

if (so >so_options & SO_DEBUG)
tcp_trace(TA_OUTPUT, tp->t_state, tp, ti, 0) ;

This call adds a record to a circular buffer in the kernel that can be examined with the
trpt(8) program. Additionally, if the kernel is compiled with TCPDEBUG defined, and
if the variable tcpconsdebug is nonzero, information is output on the system console.

Any process can set the SO_DEBUG socket option for a TCP socket, causing the information to
be stored in the kernel’s circular buffer. But trpt must read the kernel memory (/dev/kmem)

to fetch this information, and this often requires special privileges.

The SO_DEBUG socket option can be set for any type of socket (e.g., UDP or raw IP), but TCP is
the only protocol that looks at the option.

The information saved by the kernel is a top_debug structure, shown in Fig-
ure 27.24.

tcp_debug.h
35
36
37
38
39
40
41
42
43

53
54
55

struct tcp_debug {
n_time td_time; /* iptime(): ms since midnight, UTC */

short td_act; /* TA_xxx value (Figure 27.25) */

short td_ostate; /* old state */

caddr_t td_tcb; /* addr of TCP connection block */

struct tcpiphdr td_ti; /* IP and TCP headers */

short td_req; /* PRU_xxx value for TA_USER */

struct tcpcb td_cb; /* TCP connection block */

];

#define TCP_NDEBUG i00
struct tcp_debug tcp_debug[TCP_NDEBUG];
int tcp_debx; tcp_debug.h

Figure 27.24 tcp_debug structure.

This is a large structure (196 bytes), since it contains two other structures: the
tcpiphdr structure with the IP and TCP headers; and the tcpcb structure, the

Sa

27.10 tcp_trace Function 917

53-55

48-133

control block can be printed by trpt. Also, if trpt doesn’t print the variable we’re
interested in, we can modify the source code (it is available with the Net/3 release) to
print whatever information we would like from the control block. The RT]? variables in
Figure 25.28 were obtained using this technique.

We also show the declaration of the array tcp_debug, which is used as the circular
buffer. The index into the array (tcp_debx) is initialized to 0. This array occupies
almost 20,000 bytes.

There are only four calls to tcp_trace in the kernel. Each call stores a different
value in the td_act member of the structure, as shown in Figure 27.25.

td_ac t Description Reference

TA_DROP from tcp_input, when input segment is dropped Figure 29.27
TA_INPUT after input processing complete, before call to tcp_outputFigure 29.26
TA__OUTPUT before calling ip_output to send segment Figure 26.32
TA_USER from tcp_usrrecb af%er processing PRU xxx request Figure 30.1

Figure 27.25 td_act values and corresponding call to tcp_trace.

Figure 27.27 shows the main body of the tcp_trace function. We omit the code
that outputs directly to the console.

ostate is the old state of the connection, when the function was called. By saving
this value and the new state of the connection (which is in the control block) we can see
the state transition that occurred. In Figure 27.25, TA_OUTPUT doesn’t change the state
of the connection, but the other three calls can change the state.

Sample Output

Figure 27.26 shows the first four lines of tcpdump output corresponding to the three-
way handshake and the first data segment from the example in Section 25.12. (Appen-
dix A of Volume I provides additional details on the tcpdump output format.)

1 0.0 bsdi.1025 > vangogh.discard: S 20288001:20288001(0)
win 4096 <mss 512>

2 0.362719 0.3627) vangogh.discard > bsdi.1025: S 3202722817:3202722817(0)
ack 20288002 win 8192
<mss 512>

3 0.364316 0.0016)

4 0.415859 0.0515)

bsdi.1025 > vangogh.discard: . ack 1 win 4096

bsdi.1025 > vangogh.discard: . 1:513(512) ack 1 win 4096

Figure 27.26 tcpdump output from example in Figure 25.28.

Figure 27.28 shows the corresponding output from trpt.

This output contains a few changes from the normal trpt output. The 32-bit decimal
sequence numbers are printed as unsigned values (trpt incorrectly prints them as signed
numbers). Some values printed by trpt in hexadecimal have been output in decimal. The
values from t_rtt through t_rxtcur were added to trpt by the authors, for Figure 25.28.

918 TCP Functions

48
49
5O
51
52
53
54
55
56
57

58
59

60
61
62
63
64
65
66
67
68
69
70
71
72

void
tcp_trace(act, ostate, tp, ti0 req)
short act, ostate;
struct tcpcb *tp;
struct tcpiphdr *ti;
int req;

tcp_seq seq, ack;
int len, flags;
struct tcp_debug *td = &tcp_debug[tcp_debx++];

if (tcp_debx == TCP_NDEBUG)
tcp_debx = 0; /* circle back to start */

td->td_time = iptime();
td->td_act = act;
td->td_ostate = ostate;
td->td_tcb = (caddr_t) tp;
if (tp)

td->td_cb = *tp; /* structure assignment */
else

bzero((caddr_t) & td->td_cb, sizeof(*tp));
if (ti)

td->td_ti = *ti; /* structure assignment */
else

bzero((caddr_t) & td->td_ti, sizeof(*ti));
td->td_req = req;

73 #ifdef TCPDEBUG
74 if (tcpconsdebug == 0)
75 return;

Chapter 27

tcp_debug.c

132 #endi f
133 }

tcp_debug.c
Figure 27.27 tcp_trace function: save information in kemel’s circular buffer.

At time 953738 the SYN is sent. Notice that only the lower 6 digits of the millisec-
ond time are output--it would take 8 digits to represent I minute before midnight. The
ending sequence number that is output is wrong (20288005). Four bytes are sent with
the SYN, but these are the MSS option, not data. The retransmit timer is 6 seconds
(REXMT) and the keepalive timer is 75 seconds (KEEP). These timer values are in 500-ms
ticks. The value of I for t_rtt means this segment is being timed for an RTF measure-
ment.

This SYN segment is sent in response to the process calling connect. One millisec-
ond later the trace record for this system call is added to the kernel’s buffer. Even
though the call to connect generates the SYN segment, since the call to tcp_trace

Secti(

~Sec~on 27.10 t cp_t race Function 919

953738

953739

954103

954103

954153

SYN_SENT: output 20288001:20288005(4) @0 (win=4096)
<SYN> -> SYN_SENT
rcv_nx~ 0, rcv_wnd 0
snd_una 20288001, snd_nxt 20288002, snd_max 20288002
snd_wll 0, snd_wl2 0, snd_wnd 0
REXMT=I2 (t_rxtshift=0), KEEP:I50
t_rtt=l, t_srtt-0, t_rttvar=24, t_rxtcur=12

CLOSED: user CONNECT -> SYN_SENT
rcv_nxt 0, rcv_wnd 0
snd_una 20288001, snd_nxt 20288002, snd_max 20288002
snd_wll 0, snd_wl2 0, snd_wnd 0
REXMT=I2 (t_rxtshift=0), KEEP=IS0
t_rtt=l, t_srtt=0, t_rttvar:24, t_rxtcur=12

SYN_SENT: input 3202722817:3202722817(0) @20288002 (win=8192)
<SYN,ACK> -> ESTABLISHED
rcv_nxt 3202722818, rcv_wnd 4096
snd_una 20288002, snd_nxt 20288002, snd_max 20288002
snd_wll 3202722818, snd_wl2 20288002, snd_wnd 8192
KEEP=I4400
t_rtt=0, t_srtt=16, t_rttvar:4, t_rxtcur:6

ESTABLISHED: output 20288002:20288002(0) @3202722818 (win=4096)
<ACK> -> ESTABLISHED
rcv_nxt 3202722818, rcv_wnd 4096
snd_una 20288002, snd_nxt 20288002, snd max 20288002
snd_wll 3202722818, snd w12 20288002, snd_wnd 8192
KEEP-14400
t_rtt-0, t_srtt=16, t_rttvar:4, t_rxtcur:6

ESTABLISHED: output 20288002:20288514(512) @3202722818 (win=4096)
<ACK> -> ESTABLISHED
rcv_nxt 3202722818, rcv_wnd 4096
snd_una 20288002, snd_nxt 20288514, snd_max 20288514
snd_wll 3202722818, snd w12 20288002, snd_wnd 8192
REXMT=6 (t_r×tshift=0), KEEP=I4400
t_rtt-l, t_srtt=16, t_rttvar:4, t_rxtcur=6

Figure 27.28 trpt output from example in Figure 25.28.

appears after processing the PRU_CONNECT request, the two trace records appear back-
ward in the buffer. Also, when the process called connect, the connection state was
CLOSED, and it changes to SYN_SENT. Nothing else changes from the first trace
record to this one.

The third trace record, at time 954103, occurs 365 ms after the first. (tcpdump
shows a 362.7 ms difference.) This is how the values in the column "actual delta (ms)"
in Figure 25.28 were computed. The connection state changes from SYN_SENT to
ESTABLISHED when the segment with a SYN and an ACK is received. The RTT esti-
mators are updated because the segment being timed was acknowledged.

The fourth trace record is the third segment of the three-way handshake: the ACK
of the other end’s SYN. Since this segment contains no data, it is not timed (rtt is 0).

920 TCP Functions Chapter 27

After the ACK has been sent at time 954103, the conn÷c~ system call returns to the
process, which then calls wr±te to send data. This generates TCP output, shown in
trace record 5 at time 954153, 50 ms after the three-way handshake is complete. 512
bytes of data are sent, starting with sequence number 20288002. The retransmission
timer is set to 3 seconds and the segment is timed.

This output is caused by an application wrJ_te. Although we don’t show any more
trace records, the next four are from PRU_SI~2ND requests. The first PRU_$END request
generates the output of the first 512-byte segment that we show, but the other three do
not cause output, since the connection has just started and is in slow start. Four trace
records are generated because the system used for this example uses a TCP send buffer
of 4096 and a cluster size of 1024. Once the send buffer is full, the process is put to
sleep.

27.11 Summary

This chapter has covered a wide range of TCP functions that we’ll encounter in the fol-
lowing chapters.

TCP connections can be aborted by sending an RST or they can be closed down
gracefully, by sending a FIN and waiting for the four-way exchange of segments to
complete.

Eight variables are stored in each routing table entry, three of which are updated
when a connection is closed and six of which can be used later when a new connection
is established. This lets the kernel keep track of certain variables, such as the RTT esti-
mators and the slow start threshold, between successive connections to the same desti-
nation. The system administrator can also set and lock some of these variables, such as
the MTU, receive pipe size, and send pipe size, that affect TCP connections to that desti-
nation.

TCP is tolerant of received ICMP errors--none cause Net/3 to terminate an estab-
lished connection. This handling of ICMP errors by Net/3 differs from earlier Berkeley
releases.

Received TCP segments can arrive out of order and can contain duplicate data, and
TCP must handle these anomalies. We saw that a reassembly queue is maintained for
each connection, and this holds the out-of-order segments along with segments that
arrive before they can be passed to the application.

Finally we looked at tt~e type of information saved by the kernel when the
SO_DEBUG socket option is enabled for a TCP socket. This trace information can be a
useful diagnostic tool in addition to programs such as ecpdurnp.

i~2 Chapl

Chapter 27 Exercises 921

Exercises

27.1

27.2

27.3

Why is the errno value 0 for the last row in Figure 27.1?

What is the maximum value that can be stored in rrax_r t

To save the route information in Figure 27.3 for a given host, we enter a route into the rout-
ing table by hand for this destination. We then run the FTP client to send data to this host,
making certain we send enough data, as described with Figure 27.4. But after terminating
the FTP client we look at the routing table, and all the values for this host are still 0.
What’s happening?

28.1

28

TCP Input

28.1 Introduction

TCP input processing is the largest piece of code that we examine in this text. The func-
tion ~ep_±npu¢ is about 1100 lines of code. The processing of incoming segments is
not complicated, just long and detailed. Many implementations, including the one in
Net/3, closely follow the input event processing steps in RFC 793, which spell out in
detail how to respond to the various input segments, based on the current state of the
connection.

The ~¢p_±npu~ function is called by ±p±n~r (through the ~r_±n~u~ function in
the protocol switch table) when a datagram is received with a protocol field of TCP.
t ep_±nput executes at the software interrupt level.

The function is so long that we divide its discussion into two chapters. Figure 28.1
outlines the processing steps in tc~_±nput. This chapter discusses the steps through
RST processing, and the next chapter starts with ACK processing.

The first few steps are typical: validate the input segment (checksum, length, etc.)
and locate the PCB for this connection. Given the length of the remainder of the func-
tion, however, an attempt is made to bypass all this logic with an algorithm called header
prediction (Section 28.4). This algorithm is based on the assumption that segments are
not typically lost or reordered, hence for a given connection TCP can often guess what
the next received segment will be. If the header prediction algorithm works, notice that
the function returns. This is the fast path through

The slow path through the function ends up at the label c~odata, which tests a few
flags and calls top_output if a segment should be sent in response to the received seg-
ment.

923

924 TCP Input

void
tcp_input ()

{
checksum TCP header and data;

findpcb:
locate PCB for segment;
if (not found)

goto dropwithreset;

reset idle time to 0 and keepalive timer to 2 hours;

process options if not LISTEN state;

if (packet matched by header prediction) {
completely process received segment;
return;

)
switch (tp->t_state) {
case TCPS_LISTEN:

if SYN flag set, accept new connection request;
goto trimthenstep6;

case TCPS_SYN_SENT:
if ACK of our SYN, connection completed;

trimthenstep6:
trim any data not within window;
goto step6;

process RFC 1323 timestamp;

check if some data bytes are within the receive window;

trim data segment to fit within window;

if (RST flag set) {
process depending on state;
goto drop;

) /* Chapter 28 finishes here */

if (ACK flag set) { /* Chapter 29 starts here */
if (SYN_RCVD state)

passive open or simultaneous open complete;
if (duplicate ACK)

fast recovery algorithm;
update RTT estimators if segment timed;
open congestion window;
remove ACKed data from send buffer;
change state if in FIN_WAIT_I, CLOSING, or LAST_ACK state;

step6:
update window information;

process URG flag;

Chapter 28

28.2

70--2

28.2 Preliminary Processing 925

dodata:
process data in segment,

if (FIN flag is set)
process depending on

add to reassembly queue;

state;

if (SO_DEBUG socket option)
tcp_trace(TA_INPUT);

if (need output ! / ACK now)
tcp_ou£put () ;

return;

dropafterack:
tcp_output () to generate ACK;
return;

dropwi threse£ :
tcp_respond() to generate RST;
return;

drop :
if (SO_DEBUG socket option)

tcp_trace (TA_DROP) ;
return;

}

Figure 28.1 Summary of TCP input processing steps.

There are also three labels at the end of the function that are jumped to when errors
occur: dropafterack, dropwithreset, .and drop. The term drop means to drop the
segment being processed, not drop the connection, but when an RST is sent by
dropwi threset it normally causes the connection to be dropped.

The only other branching in the function occurs when a valid SYN is received in
either the LISTEN or SYN_SENT states, at the switch following header prediction.
When the code at trimthenstep6 finishes, it jumps to step6, which continues the
normal flow.

28.2

170-204

Preliminary Processing

Figure 28.2 shows the declarations and the initial processing of the received TCP seg-
ment.

Get IP and TCP headers in first mbuf

The argument iphlen is the length of the IP header, including possible IP options.
If the length is greater than 20 bytes, options are present, and. ip_stripoptions dis-
cards the options. TCP ignores all IP options other than a source route, which is saved
specially by IP (Section 9.6) and fetched later by TCP in Figure 28.7. If the number of
bytes in the first mbuf in the chain is less than the size of the combined IP/TCP header
(40 bytes), ra__pul lup moves the first 40 bytes into the first mbuf.

926 TCP Input
Chapter 28 <. ~i~i!:

170 void
171 tcp_input(m, iphlen)
172 struct mbuf *m;
173 int iphlen;

174 {
175 struct tcpiphdr *ti;

176 struct inpcb *inp;
177 caddr_t optp = NULL;

178 int optlen;

179 int len, tlen, off;

180 struct tcpcb *tp = 0;

181 int tiflags;

182 struct socket *so;
183 int todrop, acked, ourfinisacked, needoutput = 0;

184 short ostate;
185 struct in_addr laddr;
186 int dropsocket = 0;

187 int iss = 0;

188 u_long tiwin, ts_val, ts_ecr;

189 int ts_present = 0;

205--217

218--228

tcp_input.c

190
19].
192
193
194
195
196
197
198
199
2OO
201
202
203
204

tcpstat.tcps_rcvtotal++;
/*

* Get IP and TCP header together in first mbuf.

* Note: IP leaves IP header in first mbuf.
*/

ti = mtod(m, struct tcpiphdr *);
if (iphlen > sizeof(struct ip))

ip_stripoptions(m, (struct mbuf *) 0);

if (m->m_len < sizeof(struct tcpiphdr)) {
if ((m = m_pullup(m, sizeof(struct tcpiphdr)

tcpstat.tcps_rcvshort++;
return;

}
ti = mtod(m, struct tcpiphdr *);

) == 0)

tcp_input.c

Figure 28.2 top_input function: declarations and preliminary processing.

The next piece of code, shown in Figure 28.3, verifies the TCP checksum and offset
field.
Verify TCP checksum

tlen is the TCP length, the number of bytes following the IP header. Recall that IP
has already subtracted the IP header length from ip_l en. The variable l en is then set
to the length of the IP datagram, the number of bytes to be checksummed, including the
pseudo-header. The fields in the pseudo-header are set, as required for the checksum
calculation, as shown in Figure 23.19.
Verify TCP offset field

The TCP offset field, ti off, is the number of 32-bit words in the TCP header<i
including any TCP options. ~ is multiplied by 4 (to become the byte offset of the first.~

Section

230-236

Preliminary Processing 927

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

* Checksum extended TCP header and data.

tlen = ((struct ip *) ti)->ip_len;
len = sizeof(struct ip) + tlen;
ti->ti_next = ti->ti_prev = 0;

ti->ti_len = (u_short) tlen;
HTONS(ti->ti_len);
if (ti->ti_sum = in_cksum(m, len)) {

tcpstat.tcps_rcvbadsum++;
goto drop;

}

* Check that TCP offset makes sense,
pull out TCP options and adjust length.

off = ti->ti_off << 2;
if (off < sizeof(struct tcphdr)

tcpstat.tcps_rcvbadoff++;
goto drop;

}
tlen -= off;
ti->ti_len = tlen;

off > tlen) {

XXX

Figure 28.3 tcp_input function: verify TCP checksum and offset field.

tcp_input.c

tcp_input.c

230-236

data byte in the TCP segment) and checked for sanity. It must be greater than or equal
to the size of the standard TCP header (20) and less than or equal to the TCP length.

The byte offset of the first data byte is subtracted from the TCP length, leaving ¢ 1 en
with the number of bytes of data in the segment (possibly 0). This value is stored back
into the TCP header, in the variable ¢ i_l en, and will be used throughout the function.

Figure 28.4 shows the next part of processing: handling of certain TCP options.
Get headers plus option into first mbuf

If the byte offset of the first data byte is greater than 20, TCP options are present.
m_pul lup is called, if necessary, to place the standard IP header, standard TCP header,
and any TCP options in the first mbuf in the chain. Since the maximum size of these
three pieces is 80 bytes (20 + 20 + 40), they all fit into the first packet header mbuf on the
chain.

Since the only way m_pullup can fail here is when fewer than 20 plus off bytes are in the IP
datagram, and since the TCP checksum has already been verified, we expect this call to
m_pullup never to fail. Unfortunately the counter tcps_rcvshort is also shared by the call
to m_pullup in Figure 28.2, so looking at the counter doesn’t tell us which call failed. Never-
theless, Figure 24.5 shows that after receiving almost 9 million TCP segments, this counter is 0.

928 TCP Input
Chapter 28

229
230
231
232

237-255

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

if (off > sizeof(struct tcphdr)) {
if (m->m_len < sizeof(struct ip) + off) {

if ((m = m_pullup(m, sizeof(struct ip) + off)) == 0)
tcpstat.tcps_rcvshort++;
return;

tcp_input.c

{

ti = mtod(m, struct tcpiphdr *);

}
optlen = off - sizeof(struct tcphdr);
optp = mtod(m, caddr_t) + sizeof(struct tcpiphdr);
/*

* Do quick retrieval of timestamp options ("options
* prediction?"). If timestamp is the only option and it’s
* formatted as recommended in RFC 1323 Appendix A, we
* quickly get the values now and not bother calling
* tcp_dooptions(), etc.
*/

if ((optlen == TCPOLEN_TSTAMP_APPA I I
(optlen > TCPOLEN TSTAMP_APPA &&
optp[TCPOLEN_TSTAMP_APPA] =: TCPOPT_EOL)) &&

*(u_long *) optp == htonI(TCPOPT_TSTAMP_HDR) &&
(ti->ti_flags & TH_SYN) == 0) {
ts~resent = i;
ts_val = ntohl(*(u_long *) (optp + 4));
ts_ecr : ntohl(*(u_long *) (optp + 8));
optp : NULL; /* we’ve parsed the options *!

tcp_input.~

Figure 28.4 tcp_input function: handle certain TCP options.

Process timestamp option quickly
optlen is the number of bytes of options, and optp is a pointer to the first option

byte. If the following three conditions are all true, only the timestamp option is present
and it is in the desired format:

1. (a) The TCP option length equals 12 (TCPOLEN_TSTAMP_APPA), or (b) the TCP
option length is greater than 12 and optp [12] equals the end-of-option byte.

2. The first 4 bytes of options equals 0x0101080a (TCPOPT_TSTAMP_HDR, which

we described in Section 26.6).
3. The SYN flag is not set (i.e., this segment is for an established connection, hence

if a timestamp option is present, we know both sides have agreed to use the
option).

If all three conditions are true, ts~present is set to 1; the two timestamp values are
fetched and stored in ts_val and ts_ecr; and optp is set to null, since all
have been parsed. The benefit in recognizing the timestamp option this way is to
calling the general option processing function tcp_dooptions later in the code.
general option processing function is OK for the other options that appear only with thei

Secfion~

257-264

]

265--279

t

i

�

�

257-264

265-279

Preliminary Processing 929

SYN segment that creates a connection (the MSS and window scale options), but when
the timestamp option is being used, it will appear with almost every segment on an
established connection, so the faster it can be recognized, the better.

The next piece of code, shown in Figure 28.5, locates the Internet PCB for the seg-
ment.

257 tiflags : ti->ti_flags ; tcp_input.c

258
259
260
261
262
263
264

* Convert TCP protocol

NTOHL(ti->ti_seq)
NTOHL(ti->ti_ack)
NTOHS(ti->ti_win)
NTOHS(ti->ti_urp)

specific fields to host format.

265 /*
266 * Locate pcb for segment.
267 */
268 findpcb:
269 inp = tcp_last_inpcb;
270 if (inp->inp_iport != ti->ti_dport I I
271 inp->inp_fport != ti->ti_sport I I
272 inp->inp_faddr.s_addr != ti->ti_src.s_addr I I
273 inp->inp_laddr.s_addr != ti->ti_dst.s_addr) {
274 inp = in_pcblookup(&tcb, ti->ti_src, ti->ti_sport,
275 ti->ti_dst, ti->ti_dport, INPLOOKUP_WILDCARD);
276 if (inp)
2?7 tcp_last_inpcb = inp;
278 ++tcpstat.tcps~cbcachemiss;
279]

tcp_input.c
Figure 28.5 tcp_input function: locate Internet PCB for segment.

Save input flags and convert fields to host byte order
The received flags (SYN, FIN, etc.) are saved in the local variable tiflags, since

they are referenced throughout the code. Two 16-bit values and the two 32-bit values in
the TCP header are converted from network byte order to host byte order. The two
16-bit port numbers are left in network byte order, since the port numbers in the Inter-
net PCB are in that order.

Locate Internet PCB

TCP maintains a one-behind cache (tcp_last_inpcb) containing the address of
the PCB for the last received TCP segment. This is the same technique used by UDP.
The comparison of the four elements in the socket pair is in the same order as done by
udp_input. If the cache entry does not match, in_pcblookup is called, and the cache
is set to the new PCB entry.

TCP does not have the same problem that we encountered with UDP: wildcard
entries in the cache causing a high miss rate. The only time a TCP socket has a wildcard
entry is for a server listening for connection requests. Once a connection is made, all

930 TCP Input Chapter 28

four entries in the socket pair contain nonwildcard values. In Figure 24.5 we see a cache
hit rate of almost 80%.

28O
281
282
283
284
285
286
287
288
289
290
291
292

293
294
295
296
297

Figure 28.6 shows the next piece of code.

* If the state is CLOSED (i.e., TCB does not exist) then
* all data in the incoming segment is discarded.
* If the TCB exists but is in CLOSED state, it is embryonic,

* but should either do a listen or a connect soon.

if (inp == 0)
goto dropwithreset;

tp = intotcpcb(inp) ;
if (tp =: 0)

goto dropwithreset;
if (tp->t_state == TCPS_CLOSED)

goto drop;

/* Unscale the window into a 32-bit value. */
if ((tiflags & TH_SYN) == 0)

tiwin : ti->ti_win << tp->snd_scale;
else

tiwin = ti->ti_win;

Figure 28.6 tcp_input function: check if segment should be dropped.

tcp_input.c

tcp_input.c

280--287

288--290

291--292

293--297

Drop segment and generate FIST
If the PCB was not found, the input segment is dropped and an RST is sent as a

reply. This is how TCP handles SYNs that arrive for a server that doesn’t exist, for
example. Recall that UDP sends an ICMP port unreachable in this case.

If the PCB exists but a corresponding TCP control block does not exist, the socket is
probably being closed (tcp_close releases the TCP control block first, and then
releases the PCB), so the input segment is dropped and an RST is sent as a reply.

Silently drop segment
If the TCP control block exists, but the connection state is CLOSED, the socket has

been created and a local address and local port may have been assigned, but neither
connect nor listen has been called. The segment is dropped but nothing is sent as a
reply. This scenario can happen if a client catches a server between the server’s call to
bind and listen. By silently dropping the segment and not replying with an RST, the
client’s connection request should time out, causing the client to retransmit the SYN.
Unscale advertised window

If window scaling is to take place for this connection, both ends must specify their
send scale factor using the window scale option when the connection is established. If
the segment contains a SYN, the window scale factor has not been established yet, so
tiwin is copied from the value in the TCP header Otherwise the 16-bit value Ln
header is left shifted by the send scale factor into a 32-bit value. ~

300-3

304--3

3ection 28.2 Preliminary Processing 931

300-303

304-319

The next piece of code, shown in Figure 28.7, does some preliminary processing if
the socket debug option is enabled or if the socket is listening for incoming connection
requests.

299
300
301
302
303 }
304 if
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323 #if BSD>=43
324
325 #endif
326
327

298 so : inp->inp_socket; tcp_input.c
if (so->so_options & (SO_DEBUG I SO_ACCEPTCONN)) {

if (so->so_options & SO_DEBUG) {
ostate : tp->t_state;
tcp_saveti = *ti;

328
329
330
331
332
333

(so->so_options & SO_ACCEPTCONN) {
so : sonewconn(so, 0);
if (so == 0)

goto drop;

* This is ugly, but

* Mark socket as temporary until we’re
* committed to keeping it. The code at
* ’drop’ and ’dropwithreset’ check the
* flag dropsocket to see if the temporary
* socket created here should be discarded.
* We mark the socket as discardable until
* we’re committed to it below in TCPS_LISTEN.

dropsocket++;
inp = (struct inpcb *) so->so_pcb;
inp->inp_laddr = ti->ti_dst;
inp->inp_iport = ti->ti_dport;

inp->inp_options = ip_srcroute();

tp = intotcpcb(inp);
tp->t_state = TCPS_LISTEN;

/* Compute proper sQaling value from buffer space */
while (tp->request r scale < TCP MAX WINSHIFT &&

TCP_MAXWIN << tp->request r scale < so->so_rcv.sb_hiwat)
tp->request r scale++;

Figure 28.7 tcp_input function: handle debug option and listening sockets.
tcp_input.c

Save connection state and IP/I’CP headers if socket debug option enabled
If the SO_DEBUG socket option is enabled the current connection state is saved

(ostate) as well as the IP and TCP headers (tcp_saveti). These become arguments
to tcp_trace when it is called at the end of the function (Figure 29.26).

Create new socket if segment arrives for listening socket

When a segment arrives for a listening socket (SO_ACCEPTCONN is enabled by
listen), a new socket is created by sonewconn. This issues the protocol’s

932 TCP Input Chapter 28

320-326

327

328-331

PRU ATTACH request (Figure 30.2), which allocates an Internet PCB and a TCP control
bloc~. But more processing is needed before TCP commits to accept the connection
request (such as the fundamental question of whether the segment contains a SYN or
not), so the flag dropsocket is set, to cause the code at the labels drop and
dropwithreset to discard the new socket if an error is encountered. If the received
segment is OK, dropsocket is set back to 0 in Figure 28.17.

inp and tp point to the new socket that has been created. The local address and
local port are copied from the destination address and destination port of the IP and
TCP headers. If the input datagram contained a source route, it was saved by
save rte. TCP calls ip_srcroute to fetch that source route, saving a pointer to the
mbuf-containing the source route option in inp_options. This option is passed to
ip_output by tcp_output, and the reverse route is used for datagrams sent on this
connection.

The state of the new socket is set to LISTEN. If the received segment contains a
SYN, the code in Figure 28.16 completes the connection request.
Compute window scale factor

The window scale factor that will be requested is calculated from the size of the
receive buffer. 65535 (TCP_MAXWIN) is left shifted until the result exceeds the size of the
receive buffer, or until the maximum window scale factor is encountered (14,
TCP MAX WINSHIFT). Notice that the requested window scale factor is chosen based
on t~e siz~ of the listening socket’s receive buffer. This means the process must set the
SO_RCVBUF socket option before listening for incoming connection requests or it inher-
its the default value in tcp_recvspace.

The maximum scale factor is 14, and 65535 x 214 is 1,073,725,440. This is far greater than the
maximum size of the receive buffer (262,144 in Net/3), so the loop should always terminate
with a scale factor much less than 14. See Exercises 28.1 and 28.2.

Figure 28.8 shows the next part of TCP input processing.
tcp_input.c

334 /*
335 * Segment received on connection.
336 * Reset idle time and keepalive timer.
337 */
338 tp->t_idle = 0;
339 tp->t_timer[TCPT_KEEP] = tcp_keepidle;

340 /*
341 * Process options if not in LISTEN state,
342 * else do it below (after getting remote address).
343 */
344 if (optp && tp->t_state != TCPS_LISTEN)
345 tcp_dooptions(tp, optp, optlen, ti,
346 &ts_present, &ts_val, &ts_ecr);

Figure 28.8

tcp input.c :::

t cp_input function: reset idle time and keepalive timer, process options. .:i~:ii::.i!~!

Secfic

334--3

340--3

28.3

Section 28.3 tcp_dooptions FuncHon 933

334--339

340--346

Reset idle time and keepalive timer
t_idle is set to 0 since a segment has been received on the connection. The keep-

alive timer is also reset to 2 hours.
Process TCP options if not in LISTEN state

If options are present in the TCP header, and if the connection state is not LISTEN,
tcp_dooptions processes the options. Recall that if only a timestamp option appears
for an established connection, and that option is in the format recommended by Appen-
dix A of RFC 1323, it was already processed in Figure 28.4 and optp was set to a null
pointer. If the socket is in the LISTEN state, tcp_dooptions is called in Figure 28.17
after the peer’s address has been recorded in the PCB, because processing the MSS
option requires knowledge of the route that will be used to this peer.

28.3 tcp_doopt ions Function

This function processes the five TCP options supported by Net/3 (Section 26.4): the
EOL, NOP, MSS, window scale, and timestamp options. Figure 28.9 shows the first part
of this function.

1213 void
1214 tcp_dooptions(tp, cp, cnt,
1215 struct tcpcb *tp;
1216 u_char *cp;
1217 int cnt;
1218 struct tcpiphdr *ti;
1219 int *ts_present;
1220 u_long *ts_val, *ts_ecr;
1221
1222 u_short mss;
1223 int opt, optlen;

ti, ts_present, ts_val, ts_ecr)

tcp_input.c

1224 for (; cnt > 0; cnt -= optlen, cp += optlen)
1225 opt = cp[0] ;
1226 if (opt == TCPOPT_EOL)
1227 break;
1228 if (opt == TCPOPT_NOP)
1229 optlen = i;
1230 else (
1231 optlen = cp[l];
1232 if (optlen <= 0)
1233 break;
1234 }
1235 switch (opt)

1236 default:
1237 continue;

Figure 28.9 tcp_dooptions function: handle EOL and NOP options.

tcp_input.c

934

1213--1229

1230--1234

1238--1246

1247--1254

1255-1273

28.4

TCP Input
Chapter 28

Fetch option type and length
The options are scanned and an EOL (end-of-options) terminates the processing,

causing the function to return. The length of a NOP is set to 1, since this option is not
followed by a length byte (Figure 26.16). The NOP will be ignored via the default in
the sw± t ch statement.

All other options have a length byte that is stored in opt len.
Any new options that are not understood by this implementation of TCP are also

ignored. This occurs because:

1. Any new options defined in the future will have an option length (NOP and
EOL are the only two without a length), and the for loop skips optlen bytes
each time around the loop.

2. The default in the switch statement ignores unknown options.

The final part of tcp_dooptions, shown in Figure 28.10, handles the MSS, win-
dow scale, and timestamp options.

MSS option
If the length is not 4 (TCPOLEN_MAXSEG), or the segment does not have the SYN

flag set, the option is ignored. Otherwise the 2 MSS bytes are copied into a local vari-
able, converted to host byte order, and processed by tcp_mss. This has the side effect
of setting the variable t_maxseg in the control block, the maximum number of bytes
that can be sent in a segment to the other end.
Window scale option

If the length is not 3 (TCPOLEN WINDOW), or the segment does not have the SYN
flag set, the option is ignored. N~-t/3 remembers that it received a window scale
request, and the scale factor is saved in requested s scale. Since only I byte is ref-
erenced by cp [2], there can’t be alignment problems. When the ESTABLISHED state is
entered, if both ends requested window scaling, it is enabled.
Timestamp option

If the length is not 10 (TCPOLEN_TIMESTAMP), the segment is ignored. Otherwise
the flag pointed to by ts_present is set to 1, and the two timestamps are saved in the
variables pointed to by t s_va 1 and t s e cr. If the received segment contains the SYN
flag, Net/3 remembers that a timestam~-request was received, ts_recent is set to the
received timestamp and t s_recent_age is set to tcp_now, the counter of the number
of 500-ms clock ticks since the system was initialized.

Header Prediction

We now continue with the code in t cp_input, from where we left off in Figure 28.8.
Header prediction was put into the 4.3BSD Reno release by Van Jacobson. The only

description of the algorithm, other than the source code we’re about to examine, is
[Jacobson 1990b], which is a copy of three slides showing the code.

i! Section 28.4
:.;

1238

1239
1240
1241
1242
1243
1244
1245
1246

1247
1248
1249
1250
1251
1252
1253
1254

1255
1256
1257
1258
1259
1260
1261
1262

1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275]

Fi

Hea
cases.

Header Prediction 935

1238
1239
1240
1241
1242
1243
1244
1245
1246

1247
1248
1249
1250
1251
1252
1253
1254

1255
1256
1257
1258
1259
1260
1261
1262

1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

case TCPOPT_MAXSEG:
if (optlen !- TCPOLEN_MAXSEG}

continue;
if (! (ti->ti_flags & TH_SYN))

continue;
bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
NTOHS(mss);
(void) tcp_mss(tp, mss); /* sets t_maxseg */
break;

tcp_input.c

}
}

case TCPOPT_WINDOW:
if (optlen != TCPOLEN_WINDOW)

continue;
if (! (ti->ti_flags & TH_SYN))

continue;
tp->t_flags I: TF_RCVD_SCALE;
tp->requested s scale = min(cp[2], TCP_MAX_WINSHIFT);
break;

case TCPOPT_TIMESTAMP:
if (optlen !: TCPOLEN_TIMESTAMP)

continue;
*ts~resent : i;
bcopy{(char *) cp + 2, (char *) ts_val, sizeof(*ts_val));
NTOHL(*ts_val);
bcopy((char *) cp + 6, (char *) ts_ecr, sizeof(*ts_ecr));
NTOHL(*ts_ecr);

* A timestamp received in a SYN makes
* it ok to send timestamp requests and replies.
*/

if (ti->ti_flags & TH_SYN) {
tp->t_flags I= TF_RCVD_TSTMP;
tp->ts_recent : *ts_val;
tp->ts_recent_age = tcp_now;

}
break;

tcp_input.c
Figure 28.10 tcp_doopt ions function: process MSS, window scale, and timestamp options.

Header prediction helps unidirectional data transfer by handling the two common
cases.

If TCP is sending data, the next expected segment for this connection is an ACK
for outstanding data.

If TCP is receiving data, the next expected segment for this connection is the
next in-sequence data segment.

936 TCP Input Chapter 28 Sec-

In both cases a small set of tests determines if the next expected segment has been
received, and if so, it is handled in-line, faster than the general processing that follows
later in this chapter and the next.

[Partridge 1993] shows an even faster version of TCP header prediction from a research imple-
mentation developed by Van Jacobson.

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

Figure 28.11 shows the first part of header prediction.

* Header prediction: check for the two common cases
* of a uni-directional data xfer. If the packet has
* no control flags, is in-sequence, the window didn’t
* change and we’re not retransmitting, it’s a
* candidate. If the length is zero and the ack moved
* forward, we’re the sender side of the xfer. Just
* free the data acked & wake any higher-level process
* that was blocked waiting for space. If the length
* is non-zero and the ack didn’t move, we’re the
* receiver side. If we’re getting packets in order
* (the reassembly queue is empty), add the data to
* the socket buffer and note that we need a delayed ack.
*/

if (tp->t_state == TCPS_ESTABLISHED &&
(tiflags & (TH_SYN I TH_FIN I TH_RST I TH_URG I TH_ACK))

(!ts_present I I TSTMP_GEQ(ts_val, tp->ts_recent)) &&
ti->ti_seq =: tp->rcv_nxt &&
tiwin && tiwin == tp->snd_wnd &&
tp->snd_nxt == tp->snd max) {

tcp_input.c

:: TH_ACK &&

347-366

367
368
369
370
371
372
373
374
375

if

* If last ACK falls within this segment’s sequence numbers,
record the timestamp.

(ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
tp->ts_recent_age = tcp_now;
tp->ts_recent : ts_val;

tcp_input.c

Figure 28.11 tcp_input ~nction: header predic~on, first part.

Check if segment is the next expected
The following six conditions must all be true for the segment to be the next expected

data segment or the next expected ACK:

The connection state must be ESTABLISHED.
The following four control flags must not be on: SYN, FIN, RST, or URG. The
ACK flag must be on. In other words, of the six TCP control flags, the ACK
must be set, the four just listed must be cleared, and it doesn’t matter whether

367-3

Header Prediction 937

367-375

376-379

PSH is set or cleared. (Normally in the ESTABLISHED state the ACK flag is
always on unless the RST flag is on.)

If the segment contains a timestamp option, the timestamp value from the other
end (¢ s_va 1) must be greater than or equal to the previous timestamp received
for this connection (ts_recent). This is basically the PAWS test, which we
describe in detail in Section 28.7. If ts_val is less than ts_recent, this seg-
ment is out of order because it was sent before the most previous segment
received on this connection. Since the other end always sends its timestamp
clock (the global variable top_now in Net/3) as its timestamp value, the
received timestamps of in-order segments always form a monotonic increasing
sequence.

The timestamp need not increase with every in-order segment. Indeed, on a
Net/3 system that increments the timestamp clock (top_now) every 500 ms,
multiple segments are often sent on a connection before that clock is incre-
mented. Think of the timestamp and sequence number as forming a M-bit
value, with the sequence number in the low-order 32 bits and the timestamp in
the high-order 32 bits. This 64-bit value always increases by at least 1 for every
in-order segment (taking into account the modulo arithmetic).

The starting sequence number of the segment (ti_seq) must equal the next
expected receive sequence number (rcv_nxt). If this test is false, then the
received segment is either a retransmission or a segment beyond the one
expected.

The window advertised by the segment (tiwin) must be nonzero, and must
equal the current send window (snd_wnd). This means the window has not
changed.

The next sequence number to send (snd_nxt) must equal the highest sequence
number sent (snd_max). This means the last segment sent by TCP was not a
retransmission.

Update ts_recent from received timestamp
If a timestamp option is present and if its value passes the test described with Fig-

ure 26.18, the received timestamp (ts_val) is saved in ts_recent. Also, the current
time (tcp_now) is recorded in ts_recent_age.

Recall our discussion with Figure 26.18 on how this test for a valid timestamp is flawed, and
the correct test presented in Figure 26.20. In this header prediction code the TSTMP_GEQ test in
Figure 26.20 is redundant, since it was already done as step 3 of the i f test at the beginning of
Figure 28.11.

The next part of the header prediction code, shown in Figure 28.12, is for the sender
of unidirectional data: process an ACK for outstanding data.
Test for pure ACK

If the following four conditions are all true, this segment is a pure ACK.

938 TCP Input

376
377
378
379
380
381
382
383
384
385
386
387
388

389
390
391
392
393
394

395
396
397
398
399
400
401
402
403
404
405
406
407

408
409
410
411
412
413

Chapter 28 ::

if (ti->ti_len :: 0) {
if (SEQ_GT(ti->ti_ack, tp->snd_una) &&

SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
tp->snd_cw-nd >= tp->snd_wnd) {
/*

* this is a pure ack for outstanding data.

*/
++tcpstat.tcps_predack;
if (ts_present)

tcp_xmit_timer(tp, tcp_now - ts_ecr + I);

else if (tp->t_rtt &&
SEQ_GT(ti->ti_ack, tp->t_rtseq))

tcp_xmit_timer(tp, tp->t_rtt);

acked : ti->ti_ack - tp->snd_una;
tcpstat.tcps_rcvackpack++;
tcpstat.tcps_rcvackbyte += acked;
sbdrop{&so->so_snd, acked);
tp->snd_una = ti->ti_ack;
m_freem(m);

tcp_input.c

* If all outstanding data is acked, stop

* retransmit timer, otherwise restart timer
* using current (possibly backed-off) value.
* If process is waiting for space,
, wakeup/selwakeup/signal. If data
* is ready to send, let tcp_output
* decide between more output or persist.

*/
if (tp->snd_una == tp->snd_max)

tp_>t_timer[TCPT_REXMT] = 0;

else if (tp_>t_timer[TCPT_PERSIST] == 0)
tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;

if (so->so_snd.sb_flags & SB_NOTIFY)
sowwakeup(so);

if (so->so_snd.sb_cc)
(void) tcp_output(tp);

return;

Figure 28.12 tcp input function: header prediction, sender processing.

tcp_input.c

1. The segment contains no data (ti_len is 0).
2. The acknowledgment field in the segment (t i_ack) is greater than the largest

unacknowledged sequence number (snd_una). Since this test is "greater than"
and not "greater than or equal to," it is true only if some positive amount of
data is acknowledged by the ACK.

3. The acknowledgment field in the segment (t i_aek) is less than or equal to th
maximum sequence number sent (snd_max).

Section

384--38&

389-394

395--40;

408--40:

410--41

414--41

28.4 Header Prediction 939

384-388

389--394

395--407

408--409

410--411

414--416

4. The congestion window (snd_cwnd) is greater than or equal to the current send
window (snd_wnd). This test is true only if the window is fully open, that is,
the connection is not in the middle of slow start or congestion avoidance.

Update RTT estimators

If the segment contains a timestamp option, or if a segment was being timed and
the acknowledgment field is greater than the starting sequence number being timed,
t cp_xrni t_t iraer updates the RTT estimators.

Delete acknowledged bytes from send buffer
acked is the number of bytes acknowledged by the segment, sbdrop deletes those

bytes from the send buffer. The largest unacknowledged sequence number (snd una)
is set to the acknowledgment field and the received mbuf chain is released. (Sin~-e the
length is 0, there should be just a single mbuf containing the headers.)
Stop retransmit timer

If the received segment acknowledges all outstanding data (snd_una equals
snd_max), the retransmission timer is turned off. Otherwise, if the persist timer is off,
the retransmit timer is restarted using t_rxtcur as the timeout.

Recall that when tcp_output sends a segment, it sets the retransmit timer only if
the timer is not currently enabled. If two segments are sent one right after the other, the
timer is set when the first is sent, but not touched when the second is sent. But if an
ACK is received only for the first segment, the retransmit timer must be restarted, in
case the second was lost.

Awaken waiting processes

If a process must be awakened ivhen the send buffer is modified, sowwakeup is
called. From Figure 16.5, SB_NOTIFY is true if a process is waiting for space in the buff-
er, if a process is selecting on the buffer, or if a process wants the SIGI© signal for
this socket.

Generate more output
If there is data in the send buffer, tcp_output is called because the sender’s win-

dow has moved to the right, snd_una was just incremented and snd_wnd did not
change, so in Figure 24.17 the entire window has shifted to the right.

The next part of header prediction, shown in Figure 28.13, is the receiver processing
when the segment is the next in-sequence data segment.

Test for next in-sequence data segment
If the following four conditions are all true, this segment is the next expected data

segment for the connection, and there is room in the socket buffer for the data.

1. The amount of data in the segment (ti_len) is greater than 0. This is the else
portion of the i f at the beginning of Figure 28.12.

2. The acknowledgment field (ti_ack) equals the largest unacknowledged
sequence number. This means no data is acknowledged by this segment.

94O TCP Input Chapter 28

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437

tcp_input.c
} else if (ti->ti_ack == tp->snd_una &&

tp->seg_next == (struct tcpiphdr *) tp &&
ti >ti_len <= sbspace(&so->so_rcv)) {

/*
* this is a pure, in-sequence data packet
* with nothing on the reassembly queue and
* we have enough buffer space to take it.
*/

++tcpstat.tcps_preddat;
tp->rcv_nxt += ti->ti_len;
tcpstat.tcps_rcvpack++;
tcpstat.tcps_rcvbyte += ti->ti_len;
/*

* Drop TCP, IP headers and TCP options then add data
* to socket buffer.
*/

m->m_data += sizeof(struct tcpiphdr) + off - sizeof(struct tcphdr);
m->m_len -= sizeof(struct tcpiphdr) + off - sizeof(struct tcphdr);
sbappend(&so->so_rcv, m);
sorwakeup(so);
tp->t_flags I= TF_DELACK;
return;

}

tcp_input.c

Figure 28.13 tcp_input function: header prediction, receiver processing.

3. The reassembly list of out-of-order segments for the connection is empty
(seg_next equals tp).

4. There is room in the receive buffer for the data in the segment.

423--435

Complete processing of received data
The next expected receive sequence number (rcv_nxt) is incremented by the num-

ber of bytes of data. The IP header, TCP header, and any TCP options are dropped from
the mbuf, and the mbuf chain is appended to the socket’s receive buffer. The receiving
process is awakened by sorwakeup. Notice that this code avoids calling the
TCP_REASS macro, since the tests performed by that macro have already been per-
formed by the header prediction tests. The delayed-ACK flag is set and the input pro-
cessing is complete.

Statistics

How useful is header prediction? A few simple unidirectional transfers were run across
a LAN (between bsdi and svr4, in both directions) and across a WAN (between
vangogh, cs .berkeley. edu and ftp. uu. net in both directions). The netstat
output (Figure 24.5) shows the two header prediction counters.

Sec

28.

438--,

443--{

Section 28.5

28.5

438-442

443--455

TCP Input: Slow Path Processing 941

On the LAN, with no packet loss but a few duplicate ACKs, header prediction
worked between 97 and 100% of the time. Across the WAN, however, the header pre-
diction percentages dropped slightly to between 83 and 99%.

Realize that header prediction works on a per-connection basis, regardless how
much additional TCP traffic is being received by the host, while the PCB cache works on
a per-host basis. Even though lots of TCP traffic can cause PCB cache misses, if packets
are not lost on a given connection, header prediction still works on that connection.

TCP Input: Slow Path Processing

We continue with the code that’s executed if header prediction fails, the slow path
through top_input. Figure 28.14 shows the next piece of code, which prepares the
received segment for input processing.

438
439
440
441
442

443
444
445
446
447
448
449
450

/, tcp_input.c
* Drop TCP, IP headers and TCP options.
*/

m->m_data += sizeof(struct tcpiphdr) + off - sizeof(struct tcphdr);
m->m_len -= sizeof(struct tcpiphdr) + off - sizeof(struct tcphdr);

* Calculate amount of space in receive window,
* and then do TCP input processing.
* Receive window is amount of space in rcv queue,
* but not less than advertised window.
*/
{

int win;

451 win : sbspace(&so->so_rcv);
452 if (win < 0}
453 win = 0;
454 tp->rcv_wnd = max(win, (int)
455 }

(tp->rcv_adv - tp->rcv_nxt));

Figure 28.14 tcp_input function: drop IP and TCP headers.

tcp_input.c

Drop IP and TCP headers, including TCP options
The data pointer and length of the first mbuf in the chain are updated to skip over

the IP header, TCP header, and any TCP options. Since o f f is the number of bytes in
the TCP header, including options, the size of the normal TCP header (20) must be sub-
tracted from the expression.

Calculate receive window
win is set to the number of bytes available in the socket’s receive buffer, rcv_adv

minus rcv_nxt is the current advertised window. The receive window is the maxi-
mum of these two values. The max is taken to ensure that the value is not less than the
currently advertised window. Also, if the process has taken data out of the socket

receive buffer since the window was last advertised, w±n could exceed the advertised
window, so TCP accepts up to w±n bytes of data (even though the other end should not
be sending more than the advertised window).

This value is calculated now, since the code later in this function must determine
how much of the received data (if any) fits within the advertised window. Any received

¯ data outside the advertised window is dropped: data to the left of the window is dupli-
cate data that has already been received and acknowledged, and data to the right
should not be sent by the other end.

28.6 Initiation of Passive Open, Completion of Active Open

If the state is LISTEN or SYN_SENT, the code shown in this section is executed. The
expected segment in these two states is a SYN, and we’ll see that any other received seg-
ment is dropped.

Initiation of Passive Open

Figure 28.15 shows the processing when the connection is in the LISTEN state. In this
code the variables tp and inp refer to the new socket that was created in Figure 28.7,
not the server’s listening socket.

456 switch (tp->t_state) { tcp_input.c

457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472

473
474
475
476
477
478

case

* If the state is LISTEN then ignore segment if it contains an RST.
* If the segment contains an ACK then it is bad and send an RST.
* If it does not contain a SYN then it is not interesting; drop it.
* Don’t bother responding if the destination was a broadcast.
* Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
* tp->iss, and send a segment:
* <SEQ=ISS><ACK=RCV NXT><CTL:SYN, ACK>

* Fill in remote peer address fields if not previously specified.
* Enter SYN_RECEIVED state, and process any other fields of this
* segment in this state.
*/
TCPS_LISTEN:{

struct mbuf *am;
struct sockaddr_in *sin;

Also initialize tp->snd nxt to tp->iss+l and tp->snd_una to tp->iss.~:i!~i<

if (tiflags & TH_RST)
goto drop;

if (tiflags & TH_ACK)
goto dropwithreset;

if ((tiflags & TH_SYN) == 0)
goto drop;

tcp_input.c
Figure 28.15 tcp_input function: check if SYN received for listening socket.

4

4 75

d
)t

e

28.6 Completion of Passive Open or Active Open 943

473-478

479-486

Drop if RST, ACK, or no SYN

If the received segment contains the RST flag, it is dropped. If it contains an ACK, it
is dropped and an RST is sent as the reply. (The initial SYN to open a connection is one
of the few segments that does not contain an ACK.) If the SYN flag is not set, the seg-
ment is dropped. The remaining code for this case handles the reception of a SYN for
a connection in the LISTEN state. The new state will be SYN_RCVD.

Figure 28.16 shows the next piece of code for this case.

479 /* tcp_input.c
480 * RFCII22 4.2.3.10, p. I04: discard bcast/mcast SYN
481 * in_broadcast() should never return true on a received
482 * packet with M_BCAST not set.
483 */
484 if (m->m_flags & (M_BCAST I M_MCAST) I I
485 IN_MULTICAST(ti->ti_dst.s_addr))
486 goto drop;

487
488
489
490
491
492
493
494
495
496

497
498
499
50O
501
502
503
504
505

am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
if (am :: NULL)

goto drop;
am->m_len = sizeof(struct sockaddr_in);
sin = mtod(am, struct sockaddr_in
sin->sin_family : AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_addr = ti->ti_src;
sin->sin~ort = ti->ti_sport;
bzero((caddr_t) sin->sin_zero,

if

sizeof(sin->sin_zero));

laddr : inp->inp_laddr;
if (inp->inp_laddr.s_addr :: INADDR_ANY)

inp->inp_laddr = ti->ti_dst;
(in~cbconnect(inp, am)) {
inp->inp_laddr = laddr;
(void) m_free(am);
goto drop;

}
(void) m_free (am) ;

Figure 28.16 tcp_input function: process SYN for listening socket.
tcp_input.c

Drop if broadcast or multicast

If the packet was sent to a broadcast or multicast address, it is dropped. TCP is
defined only for unicast applications. Recall that the M_BCAST and M MCAST flags were
set by ether_input, based on the destination hardware address ~f the frame. The
IN_~4ULTICAST macro tests whether the IP address is a class D address.

The comment reference to in_broadcast is because the Net/1 code (which did not support
multicasting) called that function here, to check whether the destination IP address was a
broadcast address. The setting of the M_BCAST and M_MCAST flags by ether_input, based
on the destination hardware address, was introduced with Net/2.

944

487-496

497-499

500-505

506-511

TCP Input Chapter 28

512--514

This Net/3 code tests only whether the destination hardware address is a broadcast address,
and does not call in_broadcast to test whether the destination IP address is a broadcast
address, on the assurnpdon that a packet should never be received with a destination IP
address that is a broadcast address unless the packet was sent to the hardware broadcast
address. This assumption is made to avoid calling in_broadcast. Nevertheless, if a Net/3
system receives a SYN destined for a broadcast IP address but a unicast hardware address, that
segment will be processed by the code in Figure 28.16.

The destination address argument to IN_MULTICAST needs to be converted to host byte order.

Get mbuf for client’s IP address and port
An mbuf is allocated to hold a sockaddr_in structure, and the structure is filled in

with the client’s IP address and port number. The IP address is copied from the source
address in the IP header and the port number is copied from the source port number in
the TCP header. This structure is used shortly to connect the server’s PCB to the client,
and then the mbuf is released.

The xx× comment is probably because of the cost associated with obtaining an mbuf just for
the call to in_pcbconnect that follows. But this is the slow processing path for TCP input.
Figure 24.5 shows that less than 2% of all received segments execute this code.

Set local address in PCB

laddr is the local address bound to the socket. If the server bound the wildcard
address to the socket (the normal scenario), the destination address from the IP header
becomes the local address in the PCB. Note that the destination address from the IP
header is used, regardless of which local interface the datagram was received on.

Notice that laddr cannot be the wildcard address, because in Figure 28.7 it is explicitly set to
the destination IP address from the received datagram.

Connect PCB to peer

in_pcbconnect connects the server’s PCB to the client. This fills in the foreign
address and foreign process in the PCB. The mbuf is then released.

The next piece of code, shown in Figure 28.17 completes the processing for this
case.

Allocate and initialize IP and TCP header template
A template of the IP and TCP headers is created by tcp_template. The call to

sonewconn in Figure 28.7 allocated the PCB and TCP control block for the new connec-
tion, but not the header template.

Process any TCP options
If TCP options are present, they are processed by tcp_dooptions. The call to this

function in Figure 28.8 was done only if the connection was not in the LISTEN state.
This function is called now for a listening socket, after the foreign address is set in the
PCB, since the foreign address is used by the tcp_mss function: to get a route to the
peer, and to check if the peer is "local" or "foreign" (with regard to the peer’s network
ID and subnet ID, used to select the MSS).

SectioJ

515--51~_

