
14
A Reduced Operation Protocol Engine (ROPE) for a
multiple-layer bypass architecture

Y.H .. Thia (*)1 and C.M. Woodside (**)

Newbridge Networks, Inc., Ottawa, Canada (*) and
Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada (**)

Abstract - The Reduced Operation Protocol Engine (ROPE) presented here offtoads
critical functions of a multiple-layer protocol stack, based on the "bypass concept" of a fast
path for data transfer. The motivation for identifying this separate processing path is that it
involves only a small subset of the complete protocol, which can then be implemented in
hardware. Multiple-layer bypass also eliminates some inter-layer operations such as queue
and buffer management, context switching and movement of data across layers, all of which
are a significant overhead. ROPE is intended to support high-speed bulk data transfer. The
paper describes the design of a ROPE chip for the OSI Session and Transport layer protocols,
using VHDL. The design is practical in terms of chip complexity and area, using current gate
array technology, and simulation shows that it can support a data rate approaching 1 gigabit
per second, in a connection attached to an end-system.

Keyword codes: C.2.2, B.4.1
Keywords: Network Protocols, Data Communications Devices

1 Introduction

The advent of Fibre Optic technology, which offers high bandwidth and low bit error
rates, has shifted the performance bottleneck from the communications channel to the com­
munications processing in the end-points of the system [26]. Other trends such as improved
quality-of-service guarantees will reinforce this effect. The heavy processing load is due to a
combination of operating system overhead, protocol complexity, and per-octet processing on
the data stream. To alleviate the end-system bottleneck one may consider new protocols [10],
improved software implementation of existing protocols [5, 35], parallel processing techniques
[14, 21, 38], special protocol structures [15, 30] and hardware assist [22] by offloading all or
part of the protocol functions to an adaptor. This paper takes the latter approach.

The key problems associated with offboard processing include:

D Partitioning the functionality between the host and the adaptor is difficult and may easily
lead to a complex additional protocol between the two parts, which may cancel out or
offset the potential gain from offloading. For example, the buffer management task [36]
may be offtoaded, but this leaves the problem of control for accessing it within the full
protocol logic.

This research was done while Dr. Thia was at Carleton University

G. Neufield et al. (eds.), Protocols for High Speed Networks IV
© Springer Science+Business Media Dordrecht 1995

ROPE for a multiple-layer bypass architecture 225

0 Non-protocol-specific processing is a large part of the total load, as shown in [35]. Exam­
ples include interrupt handling, context switching and data copying at layer boundaries
in deeply layered protocol stacks.

0 The choice of hardware for the adaptor depends on the complexity of the functions it
supports. In [2, 22] where the transport protocol layer is offtoaded or in [7] where the
full protocol stack can be offtoaded, general purpose microprocessors are used. Probably
because of the complexity of existing protocols, VLSI [24] implementation above the
data link layer has been disappointing so far. In [8], dedicated VLSI chips are used to
support TCP checksums. Also, some newer lightweight transport protocols are specially
designed for VLSI implementation [1, 3].

0 There is a tradeoff between performance, flexibility and cost. If the key functions of
the frequently executed portion of the protocol remain relatively stable, there can be
significant advantage in providing hardware support for these functions leaving the other
tasks in the host software for flexibility.

0 As host processing speed continues to outpace memory bandwidth and as the network
bandwidth approaches the processor memory bandwidth, it is important to keep data
movement on the workstations down to the minimum [4, 9, 28].

This paper presents a feasibility study for a new approach to hardware assistance. It
combines the relatively simple operations needed for data transfer across multiple layers and
provides a hardware "fast path" for them, which will be efficient for bulk data transfer. It is
based on the "protocol bypass concept" [37] which is a generalization of Jacobson's "Header
Prediction" algorithm [20] for TCP/IP. Bypass solves the problems identified above, which
may limit the use of offboard processing, by implementing an entire service through all
layers for certain cases. This simplifies the interface between the host and the adaptor chip
and minimizes their interaction, which is supported by an access test, some DMA processing
and a simple command protocol. The chip design based on bypassing is called ROPE, for
Reduced Operation Protocol Engine. The contribution of this paper is to define the host/chip
interface and the chip operation, and to report on a VHDL-based feasibility study of the
chip design. It appears to be feasible to support an end-system single-connection data rate
approaching 1 Gbps.

The next section introduces the bypass concept, its architecture and implementation.
Section 3 analyzes the key protocol processing overheads and discusses the requirements
for a bypass VLSI implementation. Sections 4, 5 and 6 describe a design study of a ROPE
chip using the industry standard hardware description language, VHDL, with conclusions in
Section 7.

2 The Bypass Concept

A bypass adds an additional path for certain operations, with minimal changes to the
original software. Conformance to the protocol is maintained by doing all the other operations
through the normal "heavyweight" path. A bypass path can be provided for send, for receive,
or for both together, and is compatible with other end-systems implemented without a bypass.

226

SPS
Standanl

·~"' (multi-

layer)

protocol

stack

2.1 Bypass Architecture

Part Five Protocols

Receive
Bypassed
Path

Bypass

Stack
(e.g. ROPE
chip)

Send
Bypassed

Path

SPS
Stan dan!
(multi-
layer)
protocol

stack

Figure 1 Bypass Architecture

''@··
·!·

Receive
Bypassed

Path

Bypass
Stack

.,. (e.g. ROPE

chip)

Bypassed

Path

Figure 1 illustrates the architecture of a bypass implementation for any standard protocol.
The standard protocol stack (SPS) is the processing path taken by all PDUs during a connection
without the bypass. The SPS may refer to a single layer or to multiple adjoining layers of a
layered protocol stack. The bypass has 4 key components:

0 Send Bypass Test;
0 Receive Bypass Test;
0 Bypass Stack;
0 Shared data for access by the two tests, the Bypass stack and the SPS.

The send bypass test identifies outgoing packets that are data packets in the data transfer
phase. The receive bypass test matches the incoming PDU headers with a template that
identifies the predicted bypassable headers. The bypass stack performs all the relevant
protocol processing in the data transfer phase. The shared data are used to maintain state
consistency between the SPS and the bypass stack, including window flow control parameters
and connection identifiers. Whenever there is a change in the processing path between the
SPS and the bypass stack, checks are performed to ensure that there are no outstanding packets
in the current path, i.e. "no in-transit PDUs", before the change is made. A more detailed
discussion on this is presented in another paper [33].

ROPE for a multiple-layer bypass architecture 227

2.2 Efficient logic for the bypass test
The "no-in-transit PDU" test can often be avoided. At the beginning of data transfer on a

new connection, it is automatically satisfied. It holds as long as no packet fails a bypass test,
and it is sufficient to maintain a flag to indicate this. Once a packet fails, and goes to the SPS,
then a full "no-in-transit PDU" test must be performed for each packet until the test succeeds,
after which control can go back to the flag. Token management and synchronization points of
the session layer [19, 18] which are mapped by equivalent application and presentation service
primitives can be used as synchronization points within the bypass architecture, as it switches
between the SPS and the bypass stack. Since they are only inserted periodically in bulk data
transfer and can be controlled by the application process, these overheads are not excessive.

2.3 Multiple-layer bypass
A bypass for multiple layers instead of just one gives additional gains by avoiding:

0 Overhead of encoding and decoding the interface control information passed between
layers;

0 Executing the full general protocol logic for the layers to decide how to manipulate the
data;

0 Queueing of data at layer boundaries.

The advantage is increased further in cases where some layers, like the network and application
layers, have been further subdivided into sublayers.

A multiple-layer bypass path is a concatenation of processing procedures performed by
the adjacent layers when they are simultaneously in the data transfer phase. Meanwhile, the
separate layers in the SPS path handle the other phases.

In summary, the separation of the bypass path offers the following advantages:

0 The processing path of data PDUs can be optimized;
0 The number of possible PDU formats in the bypass path is reduced to data transfer PDUs;
0 The finite state machine of the protocol is now reduced to only the "OPEN" state, for as

long as processing remains in the bypass path. The state of the system does not change
during the entire data transfer phase and the protocol processing is reduced to ensuring
reliable transfer of data across the communications network.

3 Design Considerations for a Hardware Bypass

3.1 Factors affecting system performance
This section summarizes the major factors affecting throughput performance in a deeply

layered stack on an end system. It follows the description by Heatley and Stokesberry [16].

Protocol procedures can be characterized as per-octet, per-packet or per-group-of-packets
operations. The per-octet operations take an average time A per octet (e.g., checksum), and
the per-packet procedures take time B per packet (e.g. address decoding and multiplexing).
Per-group-of-packets operations include for example transmission of acknowledgments, whose
frequency is implementation-dependent, and their timing will be aggregated and included in
parameter B.

228 Part Five Protocols

The throughput bound imposed by protocol processing alone, >-max in octets per second,
is then given by the equation:

X

Amax(x) = A.x + B.fx/Ml (3.1.1)

where x is the size of the user message in octets and M is the maximum PDU size. In bulk
data transfer, as x becomes large,

lim 1
X--+ 00 Amax(x) =A+ B/M (3.1.2)

The protocol processing load on an end system is typically shared between the host and the
network adaptor. As the raw data bit rate supported by optical networks approaches the main
memory bandwidth of the end system, the cost of moving data and of per-octet processing
limits the effective throughput presented to the application process, especially for bulk data
transfer. The data portion of a PDU may be physically moved for the following reasons:

Copying between the adaptor buffer and the host system memory;
Crossing protection domains (address spaces) - e.g. at the user/kernel boundary. This
problem becomes more pronounced in microkernels which treats a protocol task as a
server process outside the kernel domain [II];
Per-octet processing like presentation conversion and checksum routines.

Hardware implementation is particularly efficient for per-octet operations.

3.2 Requirements of a bypass VLSI implementation
The problems associated with separate or offboard processing, which were discussed in

the introduction, are addressed by the VLSI design as follows:

0 A clean separation of functionality requiring only a simple protocol to communicate
between the host and adaptor is desired, and is provided by a bypass. Its particular set of
functions are complete in themselves and have a focussed interface with the host software
at the packet entry point. There is relatively infrequent switching between the SPS and
the bypass stack;

0 Reduced non-protocol-specific processing overhead. For example the processing of ac­
knowledgment packets is dominated by interrupt handling, typically a few hundred in­
structions, rather than by the protocol processing itself. Our approach removes acknowl­
edgment handling altogether from the host. Also, the bypass system can be extended to
incorporate multiple-layer stacks and remove overhead that way;

0 VLSI implementation complexity: only the data transfer functions are implemented.
0 Tradeoff between performance, flexibility and cost. The host software processes non-data­

transfer packets which are typically small but require more flexible and more complex
processing. They are also only per-packet, so they have less impact overall. They can be
efficiently handled by the host given the projected increase in host processing speed [17].
The operations implemented in VLSI are understood to have less need of flexibility.

ROPE for a multiple-layer bypass architecture 229

I Per·Octet Per-Packet Per-Group-Of-Packets

I
Layer Procedure Bypass Chip Host

(A) (B) Aggregated to Per-Packet Remarks

for bulk data transfer (8)

Encoding X X

Presentation
Encryption X X

Compression X X

Context Alteration X X

Synchronization
X X

Session
Management

Token management X X

t"lleckswn (Optional) X X

Timer Management X X X Depends on
T111llSport Implementation
(Class4)

Generation of ACK
X X

packets (Flow Control)

Resequencing X X

Header Construction X X

Header Decode X X

X X MininUzed
Buffer Management (Simple scheme)

AU 3layers Context Switching X X X
Moved away

frombostOS

With multiple-layer
X

Use of dual-
Data Copying bypass. data Copying ported memory

witb..in layers is andOMA ..
ebninated.

Table I Bypassable versus Non-bypassable functions

0 Remove operations that are inefficient on the host It is important to look at both
the processing requirements and data movement of the Application PDUs. The critical
resource is often the host bus/memory path, and caching is used to increase its efficiency.
However long traverses through the data for per-octet operations like checksum and
encoding interfere with efficient caching, so it is particularly appropriate to offload them.

Table I identifies procedures which are strong candidates for implementation in the bypass
chip, and those which are better handled by the host, during the data transfer phase. Besides
these, the send bypass test is done on the host and the receive bypass test is done on the
Network Interface Adaptor.

4 VLSI implementation of a Reduced Operation Protocol
Engine (ROPE) chip using VHDL

The VHSIC Hardware Description Language (VHDL) [6, 27] was used to model and
synthesize the chip. VHDL is an industry standard language which can be used to represent
all levels of abstraction, from logic gates to the system level. By utilizing VHDL as a
specification tool, it is possible to begin simulation and debugging of complex systems

230 Part Five Protocols

Host Host
Processor Memory

/ I Host Processor Bus

A(DI

I Presentationt I A!D I Internal DMA

I I Module Dual
Ported

!Checksum~ I Internal I Memory
Module Registers I

8-1 Protocol I A!D/ Network Interface
Processing I / Adaptor (NIA)
Engine

(e.g. FDDI or ATM)

Reduced Operation Protocol Engine (ROPE) I
Transmission Medium

Figure 2 Block Diagram of VLSI bypass system

before details regarding the implementation are fully specified. It also offers the potential
of an automatic path from the protocol specification to VLSI implementation, in which any
modifications to the specification can be easily propagated to the gate level design.

4.2 Architectural Description
Figure 2 shows the block diagram of the system. The host processor and NIA components

provide logical interfaces for simulation of behaviour, but they insert no timing delays. For
modeling purposes they were described as being infinitely fast, either as a source or as a sink.
This places the maximum stress on the ROPE chip.The architectural considerations involved
in the chip design can be summarized as follows:

0 Movement of data across the host bus interface are minimized by using an on-chip DMA
for fast block data transfer to/from the host system memory.

0 On-chip dual-ported memory is used, rather than the host memory, to avoid critical
constraints on bus access latency and throughput.

0 The control registers of the bypass chip are I/0 mapped to the host processor. This
enables the host processor to configure the bypass chip directly.

The presentation module shown in the Figure was allowed for in the data structures but
was not fully designed.

ROPE for a multiple-layer bypass architecture 231

4-3 First Design: Design Steps

Figure 3 shows the steps followed in this study. There were three stages, a behavioural
model, a structural or RTL model, and a gate level design. These gave us two kinds of
feasibility check, that the logic we specified will execute the protocol within the environment
we envisage, and that the design is technically feasible, for instance in a reasonable chip area.

A VHDL behavioral model for the system was initially written and tested. It includes
the bypass chip, the host processor with a simplified bus/memory architecture, and a vestigial
high-speed network interface adapter which acts simply as an infinite source/sink for data
packets. The first design implemented the Basic Combined Subset (BCS) of the session layer
and the Transport protocol class 2 (TP2) protocols. Only the logic for the data transfer phase
is included in this model, as it is during this phase that the bypass chip is active. A host
processor submodel generates a simple test sequence that initiates bypass connections and
a series of bypassable data packets. Non-bypassable packets are also inserted to simulate
for example the arrival of a connection release PDU. The test sequence allowed us to verify
the following:

Window flow control logic.
Generation of the header field including the sequence number.
Generation of acknowledgment packets on receive.
Synchronization between the SPS and the bypass stack.

Next, the behavioural model of the bypass chip was manually converted to a structural
(RTL) model for synthesis, leaving the other components as behavioral constructs. A
behavioral description has no implied architecture in its representation, while an RTL level
description has a definite architecture and clocking scheme, and characterizes the system
in terms of registers, switches (multiplexors), and operations. An initial assignment of
operations into clock cycles is also made. These descriptions, like behavioral descriptions,
are technology-independent (silicon library independent). In a VHDL RTL level description,
not all of the functionality of VHDL can be used because some of the language features
do not map into the RTL model. For example a WAIT FOR statement has no meaning
in hardware, but is useful in behavioral simulation. Features that can be easily mapped to
hardware include IF THEN ELSE statements and signal assignments. The same test sequence
was again generated by the host processor, and its results were compared with the original
model to ensure behavioral consistency.

The structural model was then passed through the SYNOPSYS synthesis tool [31] for
gate level generation with the 0.8 wn BiCMOS macro library from Texas Instruments [32].
The timing information generated by this process was back-annotated to the structural model
to obtain the simulation throughput results presented in section 5. This was sufficient for
our present purposes, to estimate the space complexity and timing of the chip, and the final
step of generating a chip layout for fabrication and fault analysis was not performed. As
the model was too large for the SYNOPSYS package we were using, it was divided into 3
submodels. The dual-ported SRAM was not synthesized as its gate counts and performance
characteristics can be easily extracted from data books.

The second design, with additional functionality, is described in the next section.

232

4.4 Behavioural description

Part Five Protocols

Behavioral Model

Behavioral

1------+1 Model
Simulations

(Manual Transformation)

(Timings back-annotated to
obtain throughput results)

Figure 3 Design jfow diagram

The sequence of operation in the bypass system is summarized as follows:

1) Four high level procedures are made available to the host processor to control the
bypass chip, namely: BYPASS_START, BYPASS_DMA, BYPASS_SYNC and BY­
PASS_RESTART. On receiving the first bypassable PDU, the BYPASS_START procedure
is called. This procedure sets up a bypassable connection by sending information like its
initial window flow control parameters and the DST_REF field to the bypass chip. These
are stored in a process control block for the particular connection in fixed on-chip mem­
ory locations and are also accessible by the host (1/0 mapped). The maximum number
of connections allowed for simultaneous bypassing will be equal to the number of these
control blocks allocated in the bypass chip (5 in this study- See figure 4).

2) For subsequent bypassable packets, the host processor initiates the BYPASS_DMA
procedure which checks for free buffer space in the bypass chip and programs the DMA
by sending the starting address pointer where the PDU is located, and its total length.
The destination address is supplied by the bypass chip. Arbitration for the host processor
bus between the host and DMA is provided by the DMAreq and DMAack lines. DMA
transfers the PDU into the internal dual-ported SRAM (Static RAM). Buffers are pre­
allocated in fixed sizes and are accessed by a simple round robin scheme using a set of
buffer pointers.

3) The protocol engine polls the status field of a packet to check if there are any data to be
processed. If the status is FILLED, protocol processing of the bypass stack can proceed.
The dual-ported structure allows protocol processing to proceed concurrently with any
DMA transfer to/from the host processor. A precomputed header template is used to
construct the header field very quickly.

ROPE for a multiple-layer bypass architecture 233

4) Processed in-sequence packets within the transmit window are passed to the network
interface adapter, which in this study acted as an instantaneous sink.

5) Whenever the host processor encounters a switch in the processing path, i.e. from the
bypass stack to the SPS, it will issue a BYPASS_SYNC procedure. This procedure will
flush the bypass chip of any "in-transit PDU" for that particular connection and return any
updated information, for example window control parameters, from the bypass chip to the
host in order to maintain state consistency between the two paths. This may occur when
it receives, for example, a connection release primitive or a session control primitive of
the session layer (see section 6) during the data transfer phase.

6) Whenever the host processor wishes to re-enter the bypass path after a switch in the
processing path, the host will issue a BYPASS_RESTART procedure which will pass
only those data that were updated in the standard protocol stack, like window flow control
parameters, back to the bypass chip. Parameters like the DST-REF field which is not
changed for the duration of the connection need not be updated.

4.5 Second Design, including major procedures for Transport Class 4 (Implemented)

This section describes extensions to the first design, which only supports Session BCS
and TP2 functionality, to include some common TP4 functionality. Procedures for checksum,
retransmission on timeout and resequencing were implemented. Extensions to the Session
layer functionality and procedures for presentation layer conversion were not implemented,
but are also discussed in section 6.

4.5.1 OSI Checksum The transport protocol class 4 checksum algorithm [12] was imple­
mented. It is often difficult to perform it on the fly at the sender end as the two-byte checksum
field is placed in the variable part of the header. However, with the bypass system, the header
structure and the position of the checksum field are known in advance. Also, calculation of
the checksum can now be simplified further by precomputing the partial checksum of the
header fields.

4.5.2 Timers

During the data transfer phase TP4 uses a Retransmission timer (Tl), a Window timer
(W) and an Inactivity timer (I). Only the retransmission timer with one interval per connection
and the window timer were implemented here.

Timer management in software is an expensive process due to software interrupt handling
overhead and update processing of the timer queue [34], but can be easily handled by VLSI
implementation. On-chip timers are very efficient and can be executed concurrently with
other protocol processes. The only overhead is in starting and stopping the timers. Once it
is started, a timer is an autonomous process until an interrupt signal is activated. A separate
area of on-chip memory is reserved to store the state information of the timer list.

4.5.3 Retransmission and Resequencing

At the receiver end, out-of-sequence PDUs outside the flow-control window will be
discarded. Otherwise, a PDU is buffered for resequencing. Duplicate TPDUs can be detected

234

Block Address -
Control
Block I

Control
BlockN

Part Five Protocols

- 32Bits-

DMA Start Address

DMALength

Bypass chip FULL

Host Tag Header. Pointer

Data Pointer

Sequence Nwnber

Lower Window

Upper Window

DST-REF field

Class

Format Type

Options

Presentation Context_ID

Header Pointer

Sequence Nwnber

Lower Window Pointer -Data

Upper Window

DST-REF field

Class

Format Type

Options

Presentation Context_ID

-32Bits-

STATUS

Block Address Pointer

Reserved

Protocol Header

Reserved
Buffer
Space for Data

STATUS

Block Address

Reserved

Protocol Header

Reserved
Buffer

Space for Data

Host Tag: This tag is set on receipt of a host command, e.g BYPASS_START, BYPASS_DMA,

BYPASS_SYNC or BYPASS_RESTART.

STATUS : Indicates the status of the buffer, e.g. EMPTY, FILLING, FILLED or CLOSED.

Figure 4 Organization of internal bypass chip memory

easily because the sequence number matches that of a previously received TPDU. At the

sender end, if timer T1 expires, the transport entity can retransmit either the first TPDU,

or all TPDUs (Go-back-N) waiting for acknowledgment. In this design the Go-back-N

retransmission strategy was used. For a large window, the on-chip buffer may not be sufficient

to hold the unacknowledged data packets for retransmission or to buffer data packets for

resequencing, and slower external memory would be needed.

ROPE for a multiple-layer bypass architecture 235

Non
Total Area

Throughput
Combinational Combinational performance

Procedures Area (Equivalent (Equivalent

NAND2 gates)
Area (Equivalent

NAND2 gates)
with 1 Kbyte

NAND2 gates) packet length
(Mbps)

Session (BCS)!
Transport 6318 2929 9247 2,362.8

Class 2

Dual Ported N!A N!A
Approximately N!A

SRAM (4 Kbyte) 41,984

Session (BCS)I
Transport
Class 4 with the
addition of the 8334 4227 12561 313.3

Checksum
Procedure with
timer circuitries

Table 2 Throughput PerformiJnce and gate count of bypass VLSI chip

5 Results

The timing information obtained from the netlist was back-annotated to the structural

model to obtain throughput performance results. The operating parameters and assumptions
made in this study are:

0 A chip clock rate of 66 MHz.
0 1 Kbyte data packets
0 Window size of 64. An acknowledgment packet is sent for every 20 packets received.
0 The host bus/memory subsystem and network interface adapter were assumed to be infinite

sinks/source of data packets.
0 One thousand packets were processed for each iteration.
0 4 Kbyte of internal dual ported SRAM.

Table 2 shows the throughput performance of the ROPE chip. The throughput value
includes the time taken to move the data packet out from the internal memory of the bypass
chip to the network interface adapter, but not the data copy operation from the host memory.
Hence the throughput result includes just one copy operation of the data packet. The total gate

count for the bypass chip with Session (BCS), TP2 and 4 Kbyte internal dual ported SRAM
is 51,231 equivalent NAND2 gates. With the additional TP4 procedures like checksum and

timer circuitries, the total gate count increased to 54,545 gates. Texas Instruments offers a

236 Part Five Protocols

gate array package with 112,000 usable gates (TGB 1150). This leaves enough chip area for
extra on-chip memory or hardwired presentation procedures. With no per-octet operations, i.e.
just protocol processing of packet headers (TP2), the bypass stack could effectively achieve a
throughput of 2.362 Gbps. This is consistent with results presented by Clark [5] which claims
that TCP processing can achieve up to 800 Mbps (without checksum) on current RISC-based
processors. With OSI checksum, the throughput performance drops to 313.3 Mbps. This
is still more than an order of magnitude higher than an equivalent 19.2 Mbps optimized
hand assembled software implementation of the OSI checksum algorithm on the VAX 8800,
reported by Sklower [29].

6 Considerations for the Session and Presentation
layers (not implemented)

The next steps would logically be to enhance the Session [18, 19] processing to the BSS
(Basic Synchronized Subset) or BAS (Basic Activity Subset) level, or to add Presentation
processing

In the BSS, synchronization points occur but the session services do not actually save
session SDUs and do not themselves perform the recovery operations. These activities are the
responsibility of the application layer or the application program. The session layer merely
decrements the serial number back to the synchronization point and the user must apply it
to determine where to begin recovery procedures. Hence these activities are best handled on
the host processor and are not very suitable for bypassing. The benefit they would confer (if
bypassed) would be to reduce the frequency of switching paths.

Presentation processing can definitely be bypassed. During the data transfer phase, it
consists only of the Presentation data encoding/decoding functions. Substantial performance
gains could result if the presentation conversions are simple and are used consistently, although
the inflexibility of a hardware version is an evident weakness. One possible application of
ROPE with hardwired presentation conversion is in video servers with the proposed encoding
standards such as MPEG [13].

7 Summary

It can be concluded from this study that it is feasible to implement the bypass stack (at
least for the transport and session layers) in VLSI and that the performance would be at
least an order of magnitude higher than software protocol processing. The bypass system
offloads the critical protocol functions and the associated non-protocol-specific functions onto
a "Reduced Operation Protocol Engine" (ROPE). The gate count for the bypass chip can
easily fit into a commercially available gate array Integrated Circuit. Per-octet operations
are particularly efficient when performed on the chip. The host processor is relieved of a
significant proportion of protocol processing and can concentrate on the application processing.
The speed of communication processing in the host system can now match the transmission
bandwidth of high-speed networks, e.g. ATM technology, thereby increasing the application­
to-application throughput performance. (In an ATM system we assume that the segmentation

ROPE for a multiple-layer bypass architecture 237

and reassembly or SAR operation would also be in hardware, since it is done frequently.) The
host processor is also relieved of acknowledgment processing. An existing implementation
of the OSI stack can be adapted for bypassing with only a small modification of the original
software, thus providing an easy migration path for current systems.

The scope of functions included in a bypass may be narrowly defined, or more extended.
A bypass does not include fast connection setup but also does not interfere with it. There
is no segmentation/reassembly within the bypass path, but we do not see this as a major
restriction, as research suggests that fragmentation of PDUs should be restricted only to the
lower layers and should occur only once in the protocol stack [23]. The Segmentation and
Reassembly sublayer of the ATM adaptation layer is a good place for such functions [25].

In the first design, the bypass chip with a 66 MHz clock can support a throughput rate of
2.3 Gbps (Session BCS and TP2) for I Kbyte TPDU packets using current 0.8JLm BiCMOS
technology. In the second design, extended to include the TP4 checksum, retransmission
on timeout and resequencing procedures, the throughput decreased to 313.3 Mbps. Further
advances in speed can be obtained in proportion to technology improvements, making the
approach viable for some considerable time to come.

Acknowledgments

Bell-Northern Research provided the VHDL tools used in this study, and Dr. Simon
Curry, Hemi Thakar, Dr. Parviz Yousefpour, Bernard Doray, Mike Majid and Mustapha
Bourahla helped with their use. This research was supported by the Ontario government
program of Centers of Excellence, through the Telecom Software Methods Project of TRIO,
the Telecommunications Research Institute of Ontario.

References

[I] Balraj T.S. and Yemini Y., "Putting the Transport Layer on VLSI- the PROMPT protocol
chip". IFIP, Stockholm, May 13-15, 1992.

[2] Beach B., "UltraNet: An Architecture for Gigabit Networking," in Proc. 15th Conference
on Local Computer Networks, Minnesota Oct, 1990.

[3] Chesson G., "XTP/PE Design Considerations," in Proc. IFIP Workshop Protocols for
High-Speed Networks, Zurich, May 9-ll, pp. 27-33, 1989.

[4] Clark D. and Tennenhouse D., "Architectural Considerations for a New Generation of
Protocols," in ACM SIGCOMM 1990.

[5] Clark D., Jacobson V., Romkey J., and Salwen H., "An analysis of TCP processing
overhead," in IEEE Commum. Mag., vol. 27, pp. 23-29, June 1989.

[6] Coelho D.R., ''The VHDL Handbook," Kluwer Academic Publishers, 1989.

[7] Cooper E.C, Steenkiste P.A., Sansom R.D. and Zill B.D., "Protocol Implementation on
the Nectar Communication Processor," in ACM SIGCOMM'90, 1990.

238 Part Five Protocols

[8] Dalton C., Watson G., Banks D., Calamvokis C., Edwards A. and Lumley J., "Mter­
burner," in IEEE Network July 1993.

[9] Davie B.S., "Architecture and Implementation of a High-Speed host Interface," in IEEE
Journal on selected areas in communications, Vol. 11, No. 2, February 1993.

[10] Doeringer W.A., Dykeman D., Kaiserwerth M., Meister B., Rudin H., and Williamson
R., "A survey of Light-Weight Transport protocols for High Speed Networks," in IEEE
Trans. on Comm., vol. 38, No. 11, pp 2025-2039, Nov. 1990.

[11] Druschel P., Peterson L.L., "Fbufs: A High-Bandwidth Cross-Domain Transfer Facility",
in the Proceedings of the 14th ACM Symposium on Operating Systems Principles, Dec
1993.

[12] Fletcher J.G., "An Arithmetic Checksum for Serial Transmissions" in IEEE Transactions
on Communications, Vol. Com-30, No. 1, Jan 1982.

[13] Gall D.L., "MPEG," in Communications of the ACM, Apr. 1991.

[14] Giarrizzo D., Kaiserswerth M., Wicki T. and Williamson R., "High-Speed Parallel
Protocol hnplementation," in Proc. IFIP Workshop Protocols for High-Speed Networks,
Zurich, May 9-11, 1989.

[15] Haas Z., "A Communication Architecture for High-Speed Networking," in IEEE
INFOCOM, pp. 433--441, June 1990.

[16] Heatley S., Stokesberry D., "Analysis of Transport Measurements Over a Local Area
Network," IEEE Communications Magazine, Jun 1989.

[17] Hennessy J.L and D.A. Patterson, "Computer Architecture: A quantitative approach," Palo
Alto, California, Morgan Kaufmann Publishers 1991.

[18] Information processing systems - OSI Basic connection oriented session protocol
specification, standard IS0-8327, 1987.

[19] Information processing systems - OSI Basic connection oriented session service
definition, standard IS0-8326, 1987.

[20] Jacobson V., "4BSD TCP Header Prediction," in ACM SIGCOMM, Comp. Commun.
Review, vol. 20, no. 2, pp. 13--16, Apr. 1990.

[21] Jain N., Schwartz M. and Bashkow T.R., "Transport Protocol Processing at Gbps rates,"
ACM SIGCOMM '90 Symp, Philadelphia, pp. 188-199, Sep. 24-27, 1990.

[22] Kanakia H. and Cheriton D., "The VMP network adapter board (NAB): High-performance
network communication for multiprocessors," ACM SIGCOMM '88 Symp., Stanford,
CA, pp. 175-187, Aug. 16-19, 1988.

[23] Kent C.A., Mogul J.C., "Fragmentation Considered Harmful," ACM SIGCOMM '87
Workshop Comp Commun Review, vol. 17, no. 5, Special Issue, Aug 1987.

[24] Khrishnakurnar A.S., Sabnani K., "VLSI Implementations of Communication Protocols
-A Survey," IEEE Journal on Selected Areas in Communications, vol. 7, no. 7, pp.
1082-1090, Sep 1989.

[25] Lyles J.B., Swinehart D.C., "The Emerging Gigabit Environment and the Role of Local
ATM," in IEEE Communications Magazine, Apr 1992.

ROPE for a multiple-layer bypass architecture 239

[26] Partridge C., "Gigabit Networking," in Addison Wesley Professional Computing Series,
1993.

[27] Perry D.L., "VHDL," McGraw-Hill Inc., 1991.
[28] Ramakrishnan K.K., "Performance Considerations in Desigining Network Interfaces".

IEEE Journal on Selected Areas in Communications, Vol. 11, No. 2, Feb 1993 ..
[29] Sklower K., "Improving the Efficiency of the OSI Checksum Calculation," in ACM

SIGCOMM Computer Communications Review, Vol. 19, No.5, pp. 32-43, Oct. 1989.
[30] Sterbenz J.P.G. and Parulkar G.M., "AXON: A High Speed Communications Architecture

for Distributed Applications," in IEEE INFOCOM, Jun 1990.
[31] SYNOPSYS Design Analyzer™ Reference Manual, Version 2.0, May 1991.
[32] TGB 1000 Series 0.8um BiCMOS Gate Arrays Macro Library Summary, Application

Specific Integrated Circuits, Texas Instruments, Dec. 1991.
[33] Thia Y.H., Woodside C.M., "High-Speed Protocol Bypass Algorithm with Window Flow

Control", in Proc. of the 3rd IFIP International Workshop on Protocols for High-Speed
Networks, Stockholm, May 13-15, 1992.

[34] Varghese G. and Lauck T., "Hashed and Hierarchical Timing Wheels: Data structures for
the efficient implementation of a Timer facility," in Proc. of the 11th ACM Symp. on
Operating System Principles, Nov. 1987.

[35] Watson R.W. and Mamrak S.M., "Gaining efficiency insmith transport services by
appropriate design and implementation choices," in ACM trans. on Computer Systems,
vol. 5, no. 2, pp. 97-120, May 1987.

[36] Woodside C.M. and Montealegre J.R., "The effect of buffering strategies on protocol
execution performance," in IEEE Trans. Commun., vol. COM-37, pp.545-554, June 1989.

[37] Woodside C.M., Ravindran K. and Franks R.G., "The protocol bypass Concept for High
Speed OSI Data transfer," in Proc. IFIP Workshop on Protocols for High-Speed Networks,
Zurich, May 9-11, 1990.

[38] Zitterbart M., "High-Speed Protocol Implementations based on Multiprocessor­
Architecture," in Proc. IFIP Workshop Protocols for High-Speed Networks, Zurich, May
9-11, 1989.

