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Abstract - The Reduced Operation Protocol Engine (ROPE) presented here offtoads 
critical functions of a multiple-layer protocol stack, based on the "bypass concept" of a fast 
path for data transfer. The motivation for identifying this separate processing path is that it 
involves only a small subset of the complete protocol, which can then be implemented in 
hardware. Multiple-layer bypass also eliminates some inter-layer operations such as queue 
and buffer management, context switching and movement of data across layers, all of which 
are a significant overhead. ROPE is intended to support high-speed bulk data transfer. The 
paper describes the design of a ROPE chip for the OSI Session and Transport layer protocols, 
using VHDL. The design is practical in terms of chip complexity and area, using current gate 
array technology, and simulation shows that it can support a data rate approaching 1 gigabit 
per second, in a connection attached to an end-system. 
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1 Introduction 

The advent of Fibre Optic technology, which offers high bandwidth and low bit error 
rates, has shifted the performance bottleneck from the communications channel to the com­
munications processing in the end-points of the system [26]. Other trends such as improved 
quality-of-service guarantees will reinforce this effect. The heavy processing load is due to a 
combination of operating system overhead, protocol complexity, and per-octet processing on 
the data stream. To alleviate the end-system bottleneck one may consider new protocols [10], 
improved software implementation of existing protocols [5, 35], parallel processing techniques 
[14, 21, 38], special protocol structures [15, 30] and hardware assist [22] by offloading all or 
part of the protocol functions to an adaptor. This paper takes the latter approach. 

The key problems associated with offboard processing include: 

D Partitioning the functionality between the host and the adaptor is difficult and may easily 
lead to a complex additional protocol between the two parts, which may cancel out or 
offset the potential gain from offloading. For example, the buffer management task [36] 
may be offtoaded, but this leaves the problem of control for accessing it within the full 
protocol logic. 
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0 Non-protocol-specific processing is a large part of the total load, as shown in [35]. Exam­
ples include interrupt handling, context switching and data copying at layer boundaries 
in deeply layered protocol stacks. 

0 The choice of hardware for the adaptor depends on the complexity of the functions it 
supports. In [2, 22] where the transport protocol layer is offtoaded or in [7] where the 
full protocol stack can be offtoaded, general purpose microprocessors are used. Probably 
because of the complexity of existing protocols, VLSI [24] implementation above the 
data link layer has been disappointing so far. In [8], dedicated VLSI chips are used to 
support TCP checksums. Also, some newer lightweight transport protocols are specially 
designed for VLSI implementation [1, 3]. 

0 There is a tradeoff between performance, flexibility and cost. If the key functions of 
the frequently executed portion of the protocol remain relatively stable, there can be 
significant advantage in providing hardware support for these functions leaving the other 
tasks in the host software for flexibility. 

0 As host processing speed continues to outpace memory bandwidth and as the network 
bandwidth approaches the processor memory bandwidth, it is important to keep data 
movement on the workstations down to the minimum [4, 9, 28]. 

This paper presents a feasibility study for a new approach to hardware assistance. It 
combines the relatively simple operations needed for data transfer across multiple layers and 
provides a hardware "fast path" for them, which will be efficient for bulk data transfer. It is 
based on the "protocol bypass concept" [37] which is a generalization of Jacobson's "Header 
Prediction" algorithm [20] for TCP/IP. Bypass solves the problems identified above, which 
may limit the use of offboard processing, by implementing an entire service through all 
layers for certain cases. This simplifies the interface between the host and the adaptor chip 
and minimizes their interaction, which is supported by an access test, some DMA processing 
and a simple command protocol. The chip design based on bypassing is called ROPE, for 
Reduced Operation Protocol Engine. The contribution of this paper is to define the host/chip 
interface and the chip operation, and to report on a VHDL-based feasibility study of the 
chip design. It appears to be feasible to support an end-system single-connection data rate 
approaching 1 Gbps. 

The next section introduces the bypass concept, its architecture and implementation. 
Section 3 analyzes the key protocol processing overheads and discusses the requirements 
for a bypass VLSI implementation. Sections 4, 5 and 6 describe a design study of a ROPE 
chip using the industry standard hardware description language, VHDL, with conclusions in 
Section 7. 

2 The Bypass Concept 

A bypass adds an additional path for certain operations, with minimal changes to the 
original software. Conformance to the protocol is maintained by doing all the other operations 
through the normal "heavyweight" path. A bypass path can be provided for send, for receive, 
or for both together, and is compatible with other end-systems implemented without a bypass. 
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Figure 1 illustrates the architecture of a bypass implementation for any standard protocol. 
The standard protocol stack (SPS) is the processing path taken by all PDUs during a connection 
without the bypass. The SPS may refer to a single layer or to multiple adjoining layers of a 
layered protocol stack. The bypass has 4 key components: 

0 Send Bypass Test; 
0 Receive Bypass Test; 
0 Bypass Stack; 
0 Shared data for access by the two tests, the Bypass stack and the SPS. 

The send bypass test identifies outgoing packets that are data packets in the data transfer 
phase. The receive bypass test matches the incoming PDU headers with a template that 
identifies the predicted bypassable headers. The bypass stack performs all the relevant 
protocol processing in the data transfer phase. The shared data are used to maintain state 
consistency between the SPS and the bypass stack, including window flow control parameters 
and connection identifiers. Whenever there is a change in the processing path between the 
SPS and the bypass stack, checks are performed to ensure that there are no outstanding packets 
in the current path, i.e. "no in-transit PDUs", before the change is made. A more detailed 
discussion on this is presented in another paper [33]. 
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2.2 Efficient logic for the bypass test 
The "no-in-transit PDU" test can often be avoided. At the beginning of data transfer on a 

new connection, it is automatically satisfied. It holds as long as no packet fails a bypass test, 
and it is sufficient to maintain a flag to indicate this. Once a packet fails, and goes to the SPS, 
then a full "no-in-transit PDU" test must be performed for each packet until the test succeeds, 
after which control can go back to the flag. Token management and synchronization points of 
the session layer [19, 18] which are mapped by equivalent application and presentation service 
primitives can be used as synchronization points within the bypass architecture, as it switches 
between the SPS and the bypass stack. Since they are only inserted periodically in bulk data 
transfer and can be controlled by the application process, these overheads are not excessive. 

2.3 Multiple-layer bypass 
A bypass for multiple layers instead of just one gives additional gains by avoiding: 

0 Overhead of encoding and decoding the interface control information passed between 
layers; 

0 Executing the full general protocol logic for the layers to decide how to manipulate the 
data; 

0 Queueing of data at layer boundaries. 

The advantage is increased further in cases where some layers, like the network and application 
layers, have been further subdivided into sublayers. 

A multiple-layer bypass path is a concatenation of processing procedures performed by 
the adjacent layers when they are simultaneously in the data transfer phase. Meanwhile, the 
separate layers in the SPS path handle the other phases. 

In summary, the separation of the bypass path offers the following advantages: 

0 The processing path of data PDUs can be optimized; 
0 The number of possible PDU formats in the bypass path is reduced to data transfer PDUs; 
0 The finite state machine of the protocol is now reduced to only the "OPEN" state, for as 

long as processing remains in the bypass path. The state of the system does not change 
during the entire data transfer phase and the protocol processing is reduced to ensuring 
reliable transfer of data across the communications network. 

3 Design Considerations for a Hardware Bypass 

3.1 Factors affecting system performance 
This section summarizes the major factors affecting throughput performance in a deeply 

layered stack on an end system. It follows the description by Heatley and Stokesberry [16]. 

Protocol procedures can be characterized as per-octet, per-packet or per-group-of-packets 
operations. The per-octet operations take an average time A per octet (e.g., checksum), and 
the per-packet procedures take time B per packet (e.g. address decoding and multiplexing). 
Per-group-of-packets operations include for example transmission of acknowledgments, whose 
frequency is implementation-dependent, and their timing will be aggregated and included in 
parameter B. 
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The throughput bound imposed by protocol processing alone, >-max in octets per second, 
is then given by the equation: 

X 

Amax(x) = A.x + B.fx/Ml (3.1.1) 

where x is the size of the user message in octets and M is the maximum PDU size. In bulk 
data transfer, as x becomes large, 

lim 1 
X--+ 00 Amax(x) =A+ B/M (3.1.2) 

The protocol processing load on an end system is typically shared between the host and the 
network adaptor. As the raw data bit rate supported by optical networks approaches the main 
memory bandwidth of the end system, the cost of moving data and of per-octet processing 
limits the effective throughput presented to the application process, especially for bulk data 
transfer. The data portion of a PDU may be physically moved for the following reasons: 

Copying between the adaptor buffer and the host system memory; 
Crossing protection domains (address spaces) - e.g. at the user/kernel boundary. This 
problem becomes more pronounced in microkernels which treats a protocol task as a 
server process outside the kernel domain [II]; 
Per-octet processing like presentation conversion and checksum routines. 

Hardware implementation is particularly efficient for per-octet operations. 

3.2 Requirements of a bypass VLSI implementation 
The problems associated with separate or offboard processing, which were discussed in 

the introduction, are addressed by the VLSI design as follows: 

0 A clean separation of functionality requiring only a simple protocol to communicate 
between the host and adaptor is desired, and is provided by a bypass. Its particular set of 
functions are complete in themselves and have a focussed interface with the host software 
at the packet entry point. There is relatively infrequent switching between the SPS and 
the bypass stack; 

0 Reduced non-protocol-specific processing overhead. For example the processing of ac­
knowledgment packets is dominated by interrupt handling, typically a few hundred in­
structions, rather than by the protocol processing itself. Our approach removes acknowl­
edgment handling altogether from the host. Also, the bypass system can be extended to 
incorporate multiple-layer stacks and remove overhead that way; 

0 VLSI implementation complexity: only the data transfer functions are implemented. 
0 Tradeoff between performance, flexibility and cost. The host software processes non-data­

transfer packets which are typically small but require more flexible and more complex 
processing. They are also only per-packet, so they have less impact overall. They can be 
efficiently handled by the host given the projected increase in host processing speed [17]. 
The operations implemented in VLSI are understood to have less need of flexibility. 
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Table I Bypassable versus Non-bypassable functions 

0 Remove operations that are inefficient on the host It is important to look at both 
the processing requirements and data movement of the Application PDUs. The critical 
resource is often the host bus/memory path, and caching is used to increase its efficiency. 
However long traverses through the data for per-octet operations like checksum and 
encoding interfere with efficient caching, so it is particularly appropriate to offload them. 

Table I identifies procedures which are strong candidates for implementation in the bypass 
chip, and those which are better handled by the host, during the data transfer phase. Besides 
these, the send bypass test is done on the host and the receive bypass test is done on the 
Network Interface Adaptor. 

4 VLSI implementation of a Reduced Operation Protocol 
Engine (ROPE) chip using VHDL 

The VHSIC Hardware Description Language (VHDL) [6, 27] was used to model and 
synthesize the chip. VHDL is an industry standard language which can be used to represent 
all levels of abstraction, from logic gates to the system level. By utilizing VHDL as a 
specification tool, it is possible to begin simulation and debugging of complex systems 
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Figure 2 Block Diagram of VLSI bypass system 

before details regarding the implementation are fully specified. It also offers the potential 
of an automatic path from the protocol specification to VLSI implementation, in which any 
modifications to the specification can be easily propagated to the gate level design. 

4.2 Architectural Description 
Figure 2 shows the block diagram of the system. The host processor and NIA components 

provide logical interfaces for simulation of behaviour, but they insert no timing delays. For 
modeling purposes they were described as being infinitely fast, either as a source or as a sink. 
This places the maximum stress on the ROPE chip.The architectural considerations involved 
in the chip design can be summarized as follows: 

0 Movement of data across the host bus interface are minimized by using an on-chip DMA 
for fast block data transfer to/from the host system memory. 

0 On-chip dual-ported memory is used, rather than the host memory, to avoid critical 
constraints on bus access latency and throughput. 

0 The control registers of the bypass chip are I/0 mapped to the host processor. This 
enables the host processor to configure the bypass chip directly. 

The presentation module shown in the Figure was allowed for in the data structures but 
was not fully designed. 
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4-3 First Design: Design Steps 

Figure 3 shows the steps followed in this study. There were three stages, a behavioural 
model, a structural or RTL model, and a gate level design. These gave us two kinds of 
feasibility check, that the logic we specified will execute the protocol within the environment 
we envisage, and that the design is technically feasible, for instance in a reasonable chip area. 

A VHDL behavioral model for the system was initially written and tested. It includes 
the bypass chip, the host processor with a simplified bus/memory architecture, and a vestigial 
high-speed network interface adapter which acts simply as an infinite source/sink for data 
packets. The first design implemented the Basic Combined Subset (BCS) of the session layer 
and the Transport protocol class 2 (TP2) protocols. Only the logic for the data transfer phase 
is included in this model, as it is during this phase that the bypass chip is active. A host 
processor submodel generates a simple test sequence that initiates bypass connections and 
a series of bypassable data packets. Non-bypassable packets are also inserted to simulate 
for example the arrival of a connection release PDU. The test sequence allowed us to verify 
the following: 

Window flow control logic. 
Generation of the header field including the sequence number. 
Generation of acknowledgment packets on receive. 
Synchronization between the SPS and the bypass stack. 

Next, the behavioural model of the bypass chip was manually converted to a structural 
(RTL) model for synthesis, leaving the other components as behavioral constructs. A 
behavioral description has no implied architecture in its representation, while an RTL level 
description has a definite architecture and clocking scheme, and characterizes the system 
in terms of registers, switches (multiplexors), and operations. An initial assignment of 
operations into clock cycles is also made. These descriptions, like behavioral descriptions, 
are technology-independent (silicon library independent). In a VHDL RTL level description, 
not all of the functionality of VHDL can be used because some of the language features 
do not map into the RTL model. For example a WAIT FOR statement has no meaning 
in hardware, but is useful in behavioral simulation. Features that can be easily mapped to 
hardware include IF THEN ELSE statements and signal assignments. The same test sequence 
was again generated by the host processor, and its results were compared with the original 
model to ensure behavioral consistency. 

The structural model was then passed through the SYNOPSYS synthesis tool [31] for 
gate level generation with the 0.8 wn BiCMOS macro library from Texas Instruments [32]. 
The timing information generated by this process was back-annotated to the structural model 
to obtain the simulation throughput results presented in section 5. This was sufficient for 
our present purposes, to estimate the space complexity and timing of the chip, and the final 
step of generating a chip layout for fabrication and fault analysis was not performed. As 
the model was too large for the SYNOPSYS package we were using, it was divided into 3 
submodels. The dual-ported SRAM was not synthesized as its gate counts and performance 
characteristics can be easily extracted from data books. 

The second design, with additional functionality, is described in the next section. 
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The sequence of operation in the bypass system is summarized as follows: 

1) Four high level procedures are made available to the host processor to control the 
bypass chip, namely: BYPASS_START, BYPASS_DMA, BYPASS_SYNC and BY­
PASS_RESTART. On receiving the first bypassable PDU, the BYPASS_START procedure 
is called. This procedure sets up a bypassable connection by sending information like its 
initial window flow control parameters and the DST_REF field to the bypass chip. These 
are stored in a process control block for the particular connection in fixed on-chip mem­
ory locations and are also accessible by the host (1/0 mapped). The maximum number 
of connections allowed for simultaneous bypassing will be equal to the number of these 
control blocks allocated in the bypass chip (5 in this study- See figure 4). 

2) For subsequent bypassable packets, the host processor initiates the BYPASS_DMA 
procedure which checks for free buffer space in the bypass chip and programs the DMA 
by sending the starting address pointer where the PDU is located, and its total length. 
The destination address is supplied by the bypass chip. Arbitration for the host processor 
bus between the host and DMA is provided by the DMAreq and DMAack lines. DMA 
transfers the PDU into the internal dual-ported SRAM (Static RAM). Buffers are pre­
allocated in fixed sizes and are accessed by a simple round robin scheme using a set of 
buffer pointers. 

3) The protocol engine polls the status field of a packet to check if there are any data to be 
processed. If the status is FILLED, protocol processing of the bypass stack can proceed. 
The dual-ported structure allows protocol processing to proceed concurrently with any 
DMA transfer to/from the host processor. A precomputed header template is used to 
construct the header field very quickly. 
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4) Processed in-sequence packets within the transmit window are passed to the network 
interface adapter, which in this study acted as an instantaneous sink. 

5) Whenever the host processor encounters a switch in the processing path, i.e. from the 
bypass stack to the SPS, it will issue a BYPASS_SYNC procedure. This procedure will 
flush the bypass chip of any "in-transit PDU" for that particular connection and return any 
updated information, for example window control parameters, from the bypass chip to the 
host in order to maintain state consistency between the two paths. This may occur when 
it receives, for example, a connection release primitive or a session control primitive of 
the session layer (see section 6) during the data transfer phase. 

6) Whenever the host processor wishes to re-enter the bypass path after a switch in the 
processing path, the host will issue a BYPASS_RESTART procedure which will pass 
only those data that were updated in the standard protocol stack, like window flow control 
parameters, back to the bypass chip. Parameters like the DST-REF field which is not 
changed for the duration of the connection need not be updated. 

4.5 Second Design, including major procedures for Transport Class 4 (Implemented) 

This section describes extensions to the first design, which only supports Session BCS 
and TP2 functionality, to include some common TP4 functionality. Procedures for checksum, 
retransmission on timeout and resequencing were implemented. Extensions to the Session 
layer functionality and procedures for presentation layer conversion were not implemented, 
but are also discussed in section 6. 

4.5.1 OSI Checksum The transport protocol class 4 checksum algorithm [12] was imple­
mented. It is often difficult to perform it on the fly at the sender end as the two-byte checksum 
field is placed in the variable part of the header. However, with the bypass system, the header 
structure and the position of the checksum field are known in advance. Also, calculation of 
the checksum can now be simplified further by precomputing the partial checksum of the 
header fields. 

4.5.2 Timers 

During the data transfer phase TP4 uses a Retransmission timer (Tl), a Window timer 
(W) and an Inactivity timer (I). Only the retransmission timer with one interval per connection 
and the window timer were implemented here. 

Timer management in software is an expensive process due to software interrupt handling 
overhead and update processing of the timer queue [34], but can be easily handled by VLSI 
implementation. On-chip timers are very efficient and can be executed concurrently with 
other protocol processes. The only overhead is in starting and stopping the timers. Once it 
is started, a timer is an autonomous process until an interrupt signal is activated. A separate 
area of on-chip memory is reserved to store the state information of the timer list. 

4.5.3 Retransmission and Resequencing 

At the receiver end, out-of-sequence PDUs outside the flow-control window will be 
discarded. Otherwise, a PDU is buffered for resequencing. Duplicate TPDUs can be detected 
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easily because the sequence number matches that of a previously received TPDU. At the 

sender end, if timer T1 expires, the transport entity can retransmit either the first TPDU, 

or all TPDUs (Go-back-N) waiting for acknowledgment. In this design the Go-back-N 

retransmission strategy was used. For a large window, the on-chip buffer may not be sufficient 

to hold the unacknowledged data packets for retransmission or to buffer data packets for 

resequencing, and slower external memory would be needed. 
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5 Results 

The timing information obtained from the netlist was back-annotated to the structural 

model to obtain throughput performance results. The operating parameters and assumptions 
made in this study are: 

0 A chip clock rate of 66 MHz. 
0 1 Kbyte data packets 
0 Window size of 64. An acknowledgment packet is sent for every 20 packets received. 
0 The host bus/memory subsystem and network interface adapter were assumed to be infinite 

sinks/source of data packets. 
0 One thousand packets were processed for each iteration. 
0 4 Kbyte of internal dual ported SRAM. 

Table 2 shows the throughput performance of the ROPE chip. The throughput value 
includes the time taken to move the data packet out from the internal memory of the bypass 
chip to the network interface adapter, but not the data copy operation from the host memory. 
Hence the throughput result includes just one copy operation of the data packet. The total gate 

count for the bypass chip with Session (BCS), TP2 and 4 Kbyte internal dual ported SRAM 
is 51,231 equivalent NAND2 gates. With the additional TP4 procedures like checksum and 

timer circuitries, the total gate count increased to 54,545 gates. Texas Instruments offers a 
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gate array package with 112,000 usable gates (TGB 1150). This leaves enough chip area for 
extra on-chip memory or hardwired presentation procedures. With no per-octet operations, i.e. 
just protocol processing of packet headers (TP2), the bypass stack could effectively achieve a 
throughput of 2.362 Gbps. This is consistent with results presented by Clark [5] which claims 
that TCP processing can achieve up to 800 Mbps (without checksum) on current RISC-based 
processors. With OSI checksum, the throughput performance drops to 313.3 Mbps. This 
is still more than an order of magnitude higher than an equivalent 19.2 Mbps optimized 
hand assembled software implementation of the OSI checksum algorithm on the VAX 8800, 
reported by Sklower [29]. 

6 Considerations for the Session and Presentation 
layers (not implemented) 

The next steps would logically be to enhance the Session [18, 19] processing to the BSS 
(Basic Synchronized Subset) or BAS (Basic Activity Subset) level, or to add Presentation 
processing 

In the BSS, synchronization points occur but the session services do not actually save 
session SDUs and do not themselves perform the recovery operations. These activities are the 
responsibility of the application layer or the application program. The session layer merely 
decrements the serial number back to the synchronization point and the user must apply it 
to determine where to begin recovery procedures. Hence these activities are best handled on 
the host processor and are not very suitable for bypassing. The benefit they would confer (if 
bypassed) would be to reduce the frequency of switching paths. 

Presentation processing can definitely be bypassed. During the data transfer phase, it 
consists only of the Presentation data encoding/decoding functions. Substantial performance 
gains could result if the presentation conversions are simple and are used consistently, although 
the inflexibility of a hardware version is an evident weakness. One possible application of 
ROPE with hardwired presentation conversion is in video servers with the proposed encoding 
standards such as MPEG [13]. 

7 Summary 

It can be concluded from this study that it is feasible to implement the bypass stack (at 
least for the transport and session layers) in VLSI and that the performance would be at 
least an order of magnitude higher than software protocol processing. The bypass system 
offloads the critical protocol functions and the associated non-protocol-specific functions onto 
a "Reduced Operation Protocol Engine" (ROPE). The gate count for the bypass chip can 
easily fit into a commercially available gate array Integrated Circuit. Per-octet operations 
are particularly efficient when performed on the chip. The host processor is relieved of a 
significant proportion of protocol processing and can concentrate on the application processing. 
The speed of communication processing in the host system can now match the transmission 
bandwidth of high-speed networks, e.g. ATM technology, thereby increasing the application­
to-application throughput performance. (In an ATM system we assume that the segmentation 
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and reassembly or SAR operation would also be in hardware, since it is done frequently.) The 
host processor is also relieved of acknowledgment processing. An existing implementation 
of the OSI stack can be adapted for bypassing with only a small modification of the original 
software, thus providing an easy migration path for current systems. 

The scope of functions included in a bypass may be narrowly defined, or more extended. 
A bypass does not include fast connection setup but also does not interfere with it. There 
is no segmentation/reassembly within the bypass path, but we do not see this as a major 
restriction, as research suggests that fragmentation of PDUs should be restricted only to the 
lower layers and should occur only once in the protocol stack [23]. The Segmentation and 
Reassembly sublayer of the ATM adaptation layer is a good place for such functions [25]. 

In the first design, the bypass chip with a 66 MHz clock can support a throughput rate of 
2.3 Gbps (Session BCS and TP2) for I Kbyte TPDU packets using current 0.8JLm BiCMOS 
technology. In the second design, extended to include the TP4 checksum, retransmission 
on timeout and resequencing procedures, the throughput decreased to 313.3 Mbps. Further 
advances in speed can be obtained in proportion to technology improvements, making the 
approach viable for some considerable time to come. 
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