
United States Patent r19i

Bach et al.

[54] NETWORK PROCESSOR FOR
TRANSFORMING A MESSAGE
TRANSPORTED FROM AN 1/0 CHANNEL
TO A NETWORK BY ADDING A MESSAGE
IDENTIFIER AND THEN CONVERTING THE
MESSAGE

[75] Inventors: Maurice J. Bach, Haifa, Israel; Robert
B. Hoppes, Hyde Park, N.Y.; Clifford
B. Meltzer, Ossining, N.Y.; Kenneth J.
Parchinski, Wappingers Falls, N.Y.;
Gary J. Whelan, Rhinebeck, N.Y.

[73] Assignee: International Business Machines
Corporation, Armonk, N.Y.

[21] Appl. No.: 531,579

[22] Filed: Sep. 21, 1995

Related U.S. Application Data

[63] Continuation of Ser. No. 966,821, Dec. 31, 1992, aban­
doned.

[51] Int. Cl. 6
.. G06F 13/00

[52] U.S. Cl 395/200.01; 395/200.14;
395/285; 370/466; 370/469

[58] Field of Search 395/650, 500,

[56]

395/200.01, 200.14, 285, 800; 370/85.1,
85.13, 60

References Cited

U.S. PATENT DOCUMENTS

4,428,043 1/1984 Catiller et al. 364/200

I lllll llllllll Ill lllll lllll lllll lllll lllll lllll lllll lllll llllll Ill lllll llll
US005619650A

[11] Patent Number:

[45] Date of Patent:

5,619,650
Apr. 8, 1997

4,768,150
4,855,905
4,941,089
5,124,909
5,142,622
5,251,205
5,287,537
5,307,346
5,309,437
5,327,558
5,490,252

8/1988 Chang et al. 364/300
8/1989 Estrada et al. 364/200
7 /1990 Fischer 3641200
611992 Blakely 395/200
8/1992 Owens 395/200

10/1993 Callon et al 370/60
2/1994 Newmark et al 395/800
4/1994 Fieldhouse 370/85.1
5/1994 Perlman et al 370/85.13
711994 Burke et al 395/650
2/1996 Macera et al 395/200.01

Primary Examiner-Thomas C. Lee
Assistant Examiner-Duo Chen
Attorney, Agent, or Firm-Gerald R. Woods

[57] ABSTRACT

A system and method for distributing application-to-appli­
cation network communications protocol processing. Host
computers implement distributed API processing across a
high speed I/O channel increasing throughput. The applica­
tion API conforms to standard protocols but protocol pro­
cessing is distributed using a cross-channel distributed sock­
ets API at the session layer. This API allows multiplexing of
data from one or more hosts to one or more front end routers
managing network communications. Multiplexing increases
network performance through parallel processing and
advantageously employs host high speed I/O functions.
Front end routers perform lower level protocol tasks neces­
sary to exchange data over the communications network.

7 Claims, 16 Drawing Sheets

System 370/390

J I Data
Jt-1006

write Application '-

+ j
DSI Header
command Header

'"'"''~: = 1008 DSL
DSI Header
command Header Channel Program

Data I

1()02

Channel r '1010

Front End Router

I DATAMSGr-

J " 1012
+ CID

DSI Header
command Header

Data

1004

DATAMSG '""~l DSM
Issue

OSI Header write()
command Header

l Data

I Data I
I TCP/IP I

DEFS-ALA0007042

U.S. Patent Apr. 8, 1997 Sheet 1of16 5,619,650

Computer A

112
Protocol

Application 7
Processor

Presentation 6

Session 5

108 Transport 4

Network 3

Data Link 2

102 /" Physical 1 Media

10t_ LAN

104 ~ Physical 1 Media

Data Link 2

Network 3
110 Transport 4

Session 5
- Presentation 6

Application 7
Protocol
Processor

114

Computer B

FIG. 1

DEFS-ALA0007043

U.S. Patent Apr. 8, 1997 Sheet 2of16 5,619,650

System 370/390

Protocol
Processor

v-

Application
202

- Presentation

Session

Transport

Network

Data Link

Physical Ch annel
~

20 4
Bus & Tag

212-..,
Physical PCA

Control Data Link v-206
Unit

Data Link
214-.., Physical

208~ LAN

Physical

Data Link

Network
Application

Transport

Session

Presentation

Protocol
Processor

Workstation

FIG. 2 Prior Art

LAN
Board

L AN
oard B

v- 210

DEFS-ALA0007044

U.S. Patent Apr. 8, 1997

System 370/390

Protocol
Processor

Application

Computer B

FIG. 3

Sheet 3of16

310

Application

Protocol
Processor

5,619,650

~302

DEFS-ALA0007045

U.S. Patent Apr. 8, 1997

r-----1~f 11 n I

'C
c
w
..... c
0 ...
u.

FIG. 4

Sheet 4of16

O>
c a:
c
())

..x:
0
I-

5,619,650

DEFS-ALA0007046

U.S. Patent

192.1.2.2

TCP/JP

Apr. 8, 1997 Sheet 5of16

System 3701390

Application
504

!UCV
Threads

$18

DSL sockets AP!

5JQ User
exit

Sooket ~ute. r. -·· __. reads

5,619,650

502

3rd Party
Drivers

' ~ 1· l---~.l--A~---JC---r-tL-..L.~--4! '

Program Program Program 'i ! _ Channel Channel Channe!I I I I-,
Thread Thread Thread i

'"---~~~_.__.... '===~-r-~__.._~--r--..r-----'---~~~j'--~--.-~~

516

192.1.3.2

OEM

552 l. l 556
560 562 564

FIG. 5

DEFS-ALA000704 7

U.S. Patent

602

•

608

612

Apr. 8, 1997

9.114.1.1

PCNESCON

CID Driver

Sheet 6of16

128.21.1

•• I

Th ad Gr up Thread Group

3172 Emulator
Down Up DSM

616
Stream Stream

Accept

TCP/IP Protocol Stack

5,619,650

604

192.2.1.1

610

600

Lan Media Driver Lan Media Driver Lan Media Driver

624 626 628

FIG. 6

DEFS-ALA0007048

U.S. Patent Apr. 8, 1997 Sheet 7of16 5,619,650

DSL/DSM Socket Relationship

Application

SCB
706

704

702

CCB
708

Application

FIG. 7

DEFS-ALA0007049

U.S. Patent Apr. 8, 1997 Sheet 8of16 5,619,650

DSL Control Blocks

Application A
socket (TCP)
bind(s, family, port, ip)
listen()
accept()
accept()

Application B
socket (UDP)
Bind(s, family, port, ip)

Socket
Descriptor 802 L-L...__.___.._.._,_..__ ___ __._,.._._ __ __._,_.. ______ _____. Table

1999

Accept
Queue

Data

• • •

SCB

806

808

SCB

812

804

818 SCB

810

SCB

SLB

FIG. 8

816
SCB

SCB

814
SLB

Primary
Socket Control Block

820 Multiple Link
Socket Control

Block

TCP
Socket Control

Block

822
Server Link

Block

DEFS-ALA0007050

U.S. Patent Apr. 8, 1997 Sheet 9of16 5,619,650

DSM Control Blocks

HLB Chain

Primary CCB Chain HLB
902

Secondary CCB Chain

CCB

CCB

HLB
904

908
CCB

912 • CCB

• • • • •
• •
•

FIG. 9

DEFS-ALA0007051

U.S. Patent Apr. 8, 1997 Sheet 10 of 16 5,619,650

System 370/390

I Data ~1006 write J l
Application

+ j
OSI Header -

1002

command Header Build Frame

= 1008
DSL

OSI Header
command Header Channel Program

Data I
Channel ---.........1010

Front End Router

I DATAMSG~ '--1012
+

CID
1004

OSI Header
command Header

Data
-
-

DATAMSG Build API DSM
Issue

OSI Header write()
command Header j Data

I Data
I

I TCP/IP I

FIG. 10

DEFS-ALA0007052

U.S. Patent Apr. 8, 1997 Sheet 11 of 16

1120

1122

1124

1126

postih

j

j

j

TCP/UDP socket(} call

System 370/390

Processing

socket()
I

Socket Routing

!
Build OSI Headers

i 1106

Channel Program

Channel

Recv Thread Send Thread

t
Get DATA Buffer

J,

Call Listen Routine Return socket
message

-.
Enqueue DATAMSG Build CCB

t
create down stream

Issue socket() thread

5,619,650

Application

1104

DSL

1108

CID
1138

DSM

ll 1136

Down
ll 1134Stream

Thread

TCP/IP

11 28) I first dispatch 'l 1130
_J

1132

Front End Router

FIG. 11

DEFS-ALA0007053

U.S. Patent

1204

Down
Stream
Thread

1208

TCP/IP
1210

1212

1214

Apr. 8, 1997 Sheet 12of16

UDP/TCP bind()

System 370/390

Processing

Bind()

Socket Routing

Build DSI Headers Return Code

Channel Program

Channel

Recv Thread

Validate Request

Issue bind()

No

Create Upstream
Thread

Send Thread

Bind Return
Message

Front End Router

FIG. 12

5,619,650

Application

DSL

1218

CID

DSM

1216

DEFS-ALA0007054

U.S. Patent

1304

postih

Down
Stream
Thread

TCP/IP

1324

Apr. 8, 1997 Sheet 13 of 16

TCP connect() flow

System 370/390

Processing

connect()
I

Socket Routing

+
Build OSI Headers I I Return Code

i 1
Channel Program

Channel

Recv Thread Send Thread

' Enqueue DATAMSG

• lf 320
Validate Request

•
Issue connect()

connect Return
Message

• 'l.1322 ~132
Create Upstream

J

Front End Router

FIG. 13

5,619,650

Application

DSL

330

CID

DSM

6

DEFS-ALA0007055

U.S. Patent

1404

postih

Down
Stream
Thread

TCP/IP

1414

Apr. 8, 1997 Sheet 14 of 16

TCP listen() flow

System 370/390

Processing

Listen()
I

Socket Routing

~
Build OSI Headers I I Return Code

i
Channel Program

Channel

Recv Thread Send Thread

• '

Enqueue DATAMSG

1
J410

Validate Request

1
Issue listen()

Listen Return
Message

• l.1412
I

l..142

Create accept thread

j

Front End Router

FIG. 14

5,619,650

Application

DSL

CID

DSM

0

DEFS-ALA0007056

U.S. Patent Apr. 8, 1997 Sheet 15 of 16 5,619,650

TCP accept() flow

System 370/390

Processing

accept()
I I A pp Ii cation

151~
If accept on a then build scsj-- return

11....1520 socket

+ I

1512

postih

Down
Stream
Thread

1540
)

1542

•

Bui\d accept message l \ Enqueue on SCB

~
Channel Program I

Channel

Recv Thread Send Thread I
•

Enqueue DAT AMSG asynchronous
accept message

t ·~

Validate Request

t
store DSL socket build CCB

.
t

Create up & down

I
Accept()

Stream threads

J

Front End Router

FIG. 15

153
OSL

0

CID

"-1552

DSM

It-. 1550

HTCP/IPI

DEFS-ALA0007057

U.S. Patent Apr. 8, 1997 Sheet 16 of 16 5,619,650

TCP/UDP Data Flow

System 370/390

Processing

Sendto or () write() Recvfrom() or read(l_
1650 Fast I I

Release Socket Routing Application

+ + f
I

Build DSI Headers I Dequeue Recv DSL
160~

+ + i 1655
Channel Program

Channel

Recv Thread Send Thread CID
1610

+ i 1666

Get DAT A Buffer Enqueue DATAMSG ,...__

• i i--1664

issue v DSM Call Listen Routine
recvfrom() or read()

1620\ • t Up

Enqueue DAT AMSG Get DAT A Buffer
Stream TCP/IP

postih Thread
t T ~'"" 1662 Down issue

Stream sendto() or write() Select() & IOCTL()

Thread
J l..

1622 1660

Front End Router

FIG. 16

DEFS-ALA0007058

5,619,650
1

NETWORK PROCESSOR FOR
TRANSFORMING A MESSAGE

TRANSPORTED FROM AN 1/0 CHANNEL
TO A NETWORK BY ADDING A MESSAGE

IDENTIFIER AND THEN CONVERTING THE
MESSAGE

The application is a continuation, of application Ser. No.
07/966,821 filed Dec. 31, 1992 now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to systems for communicat­

ing between application programs over a telecommunica­
tions network. More particularly, the present invention
relates to application to application communication using a
defined protocol such as TCP/IP between systems which
may include high performance input/output mechanisms.

2. Background and Related Art
Data processing systems are used for a large number of

functions in business, research and education. The computer
systems used for these functions are frequently geographi­
cally dispersed, but required to be interlinked for certain
purposes. This has led to the creation of telecommunication
networks linking computer systems and the creation of
telecommunications protocols to assist in the orderly com­
munication between systems.

2
port(4), Network(3), DataLink(2), and Physical(l). The
higher layers 4-7 operate on messages. The network layer 3
typically operates on packets, the datalink layer 2 on frames,
while the lowest level physical layer 1 operates on bits of

5 data.
In this illustration each computer has identical software

layers and each layer logically communicates to the same
layer at the other computer, except for the presentation layer.
The physical layer is the hardware interface adapter. This

10 portion physically connects to the other computer and con­
trols the signals on the communications media. The Data
Link layer provides the hardware interface routines usually
in terms of software. This layer generally handles the
interrupts, framing and unfrarning. The Network layer pro­
vides internet routing or forwarding packets to other com-

15 puters on the network. This is generally done with routing
tables. The Transport layer provides the flow control, assem­
bly and disassembly of data from one computer to another.
This layer has the most overhead in the protocol stack. The
Transport layer sends control messages as well as data

20 packets. The Session layer is the interface to the application
program. In terms of TCP/IP often layers 4 and 5 are
discussed conceptually as a single layer, known as the
Transport layer. Layer 6 is the presentation layer. This layer
provides common routines for applications but doesn't com-

25 municate with its matching component on the destination
computer. Layer 7 is the Applications layer. A file transfer
program would be an example of an application.

Several network protocols have been defined and are in
use in computer networks. These include TCP/IP, Systems
Network Architecture (SNA), and NetBios. The low level
physical connection can operate on known technologies
such as Ethernet, Token Ring, or long distance networks
provided by the telephone companies.

The TCP/IP protocol was defined by the U.S. government
and is used to link many research and educational institu­
tions that perform work for the government. Its widespread
use has resulted in many other companies adopting TCP/IP
to be able to communicate with existing TCP/IP sites.

Data processing application programs used with distrib­
uted computer systems often employ the client-server model 30

for network applications. In this model, one or more com­
puter systems are designated as "servers" able to respond to
requests from "clients" to perform various services. Server
applications may provide functions such as printing, file
storage, or processing resources. The server process is 35

typically started in one computer system and is caused to
wait and "listen" for a request by a client for service. Upon
receipt of that request, the server wakes up and provides the
requested service.

40 Although developed before the OSI model, TCP/IP compo­
nents can be mapped to the seven layer model. The TCP/IP
"process" layer encompasses OSI Presentation and Session
layers. Two Transport layers are defined, Transmission Con­
trol Protocol (TCP) which provides a connection based

Communications between client and server applications
take place according to a defined network protocol. A
protocol is a set of rules and conventions used by the
applications participating in a conversation. The set of rules
can become very complex and layered protocol models have
been adopted to help simplify and manage network protocol
definitions. The International Standards Organization (ISO)
has developed the Open Systems Interconnection Model
(OSI) for computer communications. The OSI model con­
sists of seven layers with well defined interfaces between the
layers. Most computer network protocols are described in
terms of the OSI model.

FIG. 1 presents an example of a network illustrating the
seven layer OSI model. Two computer systems are shown
102 and 104. The systems are connected by a Local Area
Network (LAN) 106. The OSI model is applicable not only
to local area networks, typically connecting multiple com­
puters within a building, but also to wide area networks
(WANs) connecting computers in different cities or coun­
tries and to internetworks (Internet) connecting several
physically separate networks (either LANs or WANs).

Application programs 108 and 110 communicate over
LAN 106 via protocol processors 112 and 114. Protocol
processors 112 and 114 are typically implemented as part of
the operating system of the computer running the application
program. The OSI protocol comprises the following seven
layers: Application(7), Presentation(6), Session(S), Trans-

45 protocol, and the User Datagram Protocol (UDP) which
provides a connection-less protocol. Internet Protocol (IP)
provides the Network layer for both TCP and UDP while the
DataLink layer is met by the appropriate hardware interface.

Returning to FIG. 1, application program 108 communi-
50 cates via the network using an Application programming

interface (API). The sockets protocol is one of the more
prevalent application to application APis. The sockets API
was developed for use on Digital Equipment Corporation
(DEC) VAX computers (DEC and VAX are trademarks of

55 Digital Equipment Corp.) by the University of California,
Berkeley, as the BSD operating system, a derivative of the
UNIX operating system. (UNIX is a trademark of Unix
System Laboratories.) The sockets API defines the format
and parameter content of the commands an application

60 program uses to establish communications with another
application. It defines the API for both client and server
applications and for connection-less and connection-based
links. The defined API functions cause the operating system
to issue the necessary commands to establish a communi-

65 cations link and to exchange data over that link.
The sockets API has been implemented on a variety of

computer systems from small microcomputers to large

DEFS-ALA0007059

5,619,650
3 4

defined limit on the number of sockets open or communi­
cations networks served.

It is yet a further object of the invention to provide a
system that supports distributed network protocol process-

mainframes. The sockets API has been implemented on IBM
ES/9000 mainframes (IBM and ES/9000 are trademarks of
the IBM Corp.) to provide network connectivity to programs
running on those systems. This implementation has not been
without problems, however, due to the differences in hard­
ware architectures between the IBM ES/9000 computer and
the DEC VAX computer for which the sockets API was
originally developed. IBM ES/9000 computers and other
"mainframe" computers typically are capable of processing

5 ing.

a large number of programs and provide very high speed 10

input output (I/O) capabilities. High speed I/O is necessary

The system of the present invention communicates with a
network having a specified protocol such as TCP/IP. Mul­
tiple application programs can be operating on the main
processor (host) and they can be communicating with a
number of other processors on different networks. The host
system of the present invention has a high speed input/
output (I/0) facility connected to a network front end router.
The host system implements a standard API for interacting
with application programs. The API messages are trans­
formed for network processing by the front end router. The
API is logically distributed from the host processor to the
front end router through the high speed I/O facility.

to provide the great throughput characteristic of mainframe
computers. I/O is typically implemented as I/O Channels on
these systems, with the channels having the ability to
transfer data into or out of the system without intervention 15

from the main processor. Channels can transfer several
hundred megabytes of data per second using data streaming
techniques. Most LANs, WANs, and telecommunication
networks, however, are more limited and transfer only a few
kilobytes to at most five megabytes per second. This data
transfer mismatch results in undesirable mainframe network
performance when implementing protocols such as TCP/IP.

The system of the present invention connects one or more

20
host processors to each front end router and can connect one
or more front end routers to each host. Front end routers can
be connected in tum, to one or more telecommunication
networks.

The above described objects and other objects, features
25 and advantages of the invention will be apparent from the

following more particular description of a preferred embodi­
ment of the invention, as illustrated in the accompanying
drawing wherein like reference numbers represent like parts
of the invention.

FIG. 2 illustrates a prior art configuration for the connec­
tion of an IBM ES/9000 processor (having a System/370 or
System/390 architecture) to a local area network. (System/
370 and System/390 are trademarks of IBM Corp.) Proces­
sor 202 is connected through its channel 204 to a control unit
206 that is connected to the LAN 208. The protocol pro­
cessor in processor 202 performs all of the network protocol
functions such as formatting messages for transmission over 30

the LAN. Control unit 206 accepts the transmission packets
in physical adapter 212 which is adapted for channel attach­
ment and the receipt of high volumes of data, and places the
packets on the LAN via physical adapter 214 that is adapted
to attach to a network. The opposite flow takes place for 35

packets received from the LAN.
The processor 202 thus spends considerable processing

time handling the routine network tasks in protocol proces­
sor section, and is generally unable to take advantage of the
high speed I/O capabilities because of the limited receiving 40

abilities of LAN 208. The processing time spent in these
network tasks is therefore unavailable for more productive
processing thereby reducing the overall effectiveness of the
processor 202.

A technical problem of improving the performance of
45

large computer systems when engaging in network commu­
nications using standard protocols is therefore presented.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to offload
routine network tasks from the main processor while main­
taining standard network protocols.

50

It is a further object of the invention to provide multiple 55

paths from the main processor to the network so that
network traffic can be processed in parallel to increase
throughput.

It is yet another object of the invention to provide an
ability to process network traffic from multiple main pro­
cessors in a single network connected processor.

60

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a block diagram illustrating the layers of the
open system interconnect model.

FIG. 2 is a block diagram showing prior art host to
network interconnection structure.

FIG. 3 is a block diagram illustrating the preferred
embodiment of the present invention.

FIG. 4 is an overview of the interconnections permissible
in a system according to the present invention.

FIG. 5 is a block diagram illustrating selected host system
components of the preferred embodiment of the present
invention.

FIG. 6 is a block diagram illustrating selected front end
router components of the preferred embodiment of the
present invention.

FIG. 7 is an illustration of the logical structure of distrib­
uted sockets according to the present invention.

FIG. 8 is a block diagram illustrating the control block
structure of the host portion of the preferred embodiment of
the present invention.

FIG. 9 is a block diagram illustrating the control blocks
employed in the front end router.

FIG. 10 is an example of the process flow for network
messages in a system embodying the present invention.

FIGS. 11-16 are structured flowcharts illustrating the
logic and datafiow for selected API commands using the
preferred embodiment of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT It is yet another object of the invention to allow the main

processor to take advantage of its high speed I/O abilities
without sacrificing network API compatibility.

It is yet a further object of the invention to provide a
network protocol processing system that contains no pre-

The preferred embodiment of the present invention will
65 be described with reference to the figures. FIG. 3 presents an

overview of the preferred embodiment. Application pro­
grams 310 are processed by host processor 302. Application

DEFS-ALA0007060

5,619,650
5

to application network links are established using a standard
API such as sockets. The API accepts messages from the
Application 310 to the session/datalink 312. Session/
datalink 312 is connected through high speed 1/0 channel
314 to front end processor 304 without further protocol 5

conversion. Front end router 304 transforms the session
layer message received from session/datalink 312 to the
physical form required by network 316 using defined trans­
port, network, and datalink protocols. Network 316 manages
communication with the remote application 320 running in 10

processor 306.

6
invention is not limited as to the number of threads or front
end routers. The preferred embodiment is fully multi­
threaded allowing connections limited only by processor
resources. The process embodied in the channel program
threads will be described in greater detail below.

Host computer system 502 is able to process a number of
application programs 504 and 506. Host computer systems
are frequently partitioned into a number of address spaces
for running application programs. For example, in FlG. 5,
the TCP/IP process 550, the applications and DSL API and
related programs 509, and the third party drivers 554 run in
three separate address spaces. All applications running in
multithreaded address space 509 are able to access the
distributed sockets library (DSL) 508 for application to

The preferred embodiment of the distributed sockets
interface (DSI) is implemented with computer software
running in the host processor 302, a high speed interface
adapter between the host and front end router, and a software
configured front end router. The front end router of the
preferred embodiment is a microprocessor with a Micro
Channel bus, such as the IBM PS/2 computer. (Micro
Channel and PS/2 are trademarks of the IBM Corp.) Other
configurations are possible, however, including incorpora­
tion of the front end router function within the high speed
1/0 channel processing logic of the host processor.

15 application communications. Inclusion of the DSL API and
related channel program threads within a single address
space improves system performance by avoiding cross
address space transaction processing overhead.

A possible configuration of hosts and front end routers
according to the present invention is shown in FlG. 4. Hosts
402 and 404 are connected to front end routers 406, 408 and
410. Each front end processor can be connected to one or
more network topologies 412, 414 and 416 or to other
networks via Internet 418. The possible configurations
include multiple hosts connected to each front end router,
multiple routers connected to a single host, multiple net­
works connected to each front end router, and multiple
routers connected to each network or subnetwork. There is
therefore multiplexing at every level of the preferred
embodiment.

A front end router according to the preferred embodiment
20 of the present invention is shown in FlG. 6. Framing,

internet routing, and flow control, also known as the Data
Link, Network and Transport layers of the communications
protocol stack, are performed by the front end router. Front
end router 600 is attached to host 602 through a channel

25 cable 606. The connection can either be a parallel data bus
connection or a serial connection, such as the IBM ESCON
serial connection. (ES CON is a trademark of the IBM Corp.)
Each host connection has an associated Internet address
specified according to the well defined Internet class A, B,

30 or C four octet address standard. For example, the link via
cable 606 to host 602 has Internet address "9.114.1.1".

FlG. 5 illustrates the host components of the preferred
35

embodiment of the present invention. The network commu­
nication process is implemented using a distributed sockets
API function 508. This function 508 implements a Distrib­
uted Sockets Library (DSL) allowing the distribution of API

40
function from the host 502 to routers 560, 562 and 564 or the
use of undistributed network functions such as host based
TCP/IP 550 and control unit(s) 552 or other channel to
network drivers 554 and network adapter devices 556.
Provision of a standard sockets library allows programs

45
previously written to this interface to be used in the distrib­
uted environment of the present invention without modifi­
cation. Examples of application programs that could be used
include FTP file transfer program for accessing server files
remotely, and NFS, network file system, allowing use of 50
server files by remote file systems.

Channel cable 606 is attached to front end router 600
through one of two channel adapter card 608 and 610.
Although only two channel adapter cards are shown, the
number actually employed is limited only by the physical
constraints of the front end router enclosure. The channel
adapter cards 608 and 610 can be any known. adapter for
connecting a high speed channel output to a Micro Channel
bus or similar computer. Examples are the IBM PCA adapter
card and the IBM ESCON adapter card for connecting
respectively to parallel and serial channels. One or more
internet addresses is associated with each channel adapter
card.

Channel Interface Driver (CID) 612 manages communi­
cations with the host over the high speed channel. This
driver provides a session level interface for applications to
communicate with the host system channel. The CID is
multithreaded allocating a send and a receive thread to each
channel. CID driver 612, in turn, interfaces with one or more
Distributed Sockets Module (DSM) thread groups 614, 616

The distributed sockets API 508 is a multithreaded pro- and 618 or with a 3172 emulator 620. Emulator 620 is
cess operating on the host processor. Socket router 510 provided to handle communications routed by the socket
accepts DSL API commands and routes them to DSL chan- router through the prior art host based TCP/IP process. The
nel program 512, 514 and 516 or to an interprocess com- 55 DSM thread groups, which will be discussed in greater detail
munications thread 518 or user exit thread 520 depending on below, connect to the TCP/IP protocol stack 622 that pro-
the specified configuration, the API command and the sup- vides TCP/IP data transformation and placement of the data
plied parameters. The socket router supports the use of on one of the connected networks through LAN media
multiple front end routers by managing the mapping of drivers 624, 626 and 628. Each subchannel is assigned a
sockets to routers using the control block structures 60 thread group and each socket has an upstream, downstream
described below. The interprocessor threads 518 and user and, in the case of a TCP socket, accept thread within that
exit threads 520 and their downstream devices form no part thread group. The TCP/IP protocol stack and LAN media
of the present invention. drivers operate according to known principles and do not

Channel program threads 512, 514 and 516 manage form a part of the present invention.
communications with the front end routers 560, 562 and 65 The logical socket connection formed by the preferred
564. Although only three channel program threads and three embodiment of the invention is illustrated in FIG. 7. The
routers are shown, the preferred embodiment of the present socket protocol allows application to application communi-

DEFS-ALA0007061

5,619,650
7

cation to take place over what appears to be a direct
connection or pipe, 702. The distributed sockets system of
the present invention establishes a socket control block
(SCB) 706 associated with the host channel program thread
512 (the DSL) and a connection control block (CCB) 708 5
associated with the distributed sockets module (DSM) 614
of the front end router. The connection between SCB 706
and CCB 708 defines a second logical pipe 704 for passing
data between the host and the front end router.

8
810 and that SCB is provided to the application. The accept
queue is anchored off the primary SCB in a single link (front
end router) environment or off the multiple link SCB in a
multiple link environment.

Referring again to FIG. 8 the DSL process will be

Distributed Sockets Process Details
The standard sockets API has a set of commands to

establish the application to application socket connection
and to transfer data between the connected applications. The
commands used by server applications differ from those
used by client applications due to the nature of their pro­
cesses. As discussed above, the server is initialized to wait
for a client request and then act on it. The client, however,
only submits requests and accepts the results of those
requests. A subset of socket commands are critical to estab­
lish and maintain application to application network com­
munications. Several of these will be discussed in detail
below following a presentation of the control block structure
used to manage the distributed sockets and a review of the
threading model employed. Although all socket commands
are not discussed in detail, the implementation of other
commands will be clear to those skilled in the art based upon
the descriptions presented.

illustrated by two example process flows. Server application
A is being initialized to serve network client requests. The
first API call is "socket()". This command establishes a TCP
(connection based) socket for the application. In a similar

10 manner Application B issues a "socket()" to establish a UDP
(connectionless) socket. The "bind" command binds the
socket to the an IP address and port at that address. Finally,
application A, issues a "listen()" command prior to issuing

15 accepts for that connection. The "accept()" command is used
to accept connections from clients on the network.

The application A "socket()" command causes an entry to
be allocated to the application from the socket descriptor
table 802 and an SDT index returned to the application. The

20 SDT points to a primary socket control block (SCB) 804.
Chained to the TCP (connection) SCB 804 is an accept
queue 806. The accept queue chains the client connection
information waiting for the server application to issue an
accept(). The distributed sockets model allows asynchro-

Distributed Sockets Control Blocks

25 nous processing of certain commands and data across the
network. Thus, network connections from a client applica­
tion can be chained into accept queue 806 before application
A issues an "accept()" command asking for a connection.

The preferred embodiment of the present invention man­
ages the distribution of socket processing by establishing 30

control blocks in the host and front end router and by passing
data messages between the host and front end router over the
I/O channel. As described above, the logical link between
the host and front end router control blocks creates a logical
data pipe for communications. The host DSL control blocks 35

and front end router DSM control blocks will be described
with reference to FIG. 8 and FIG. 9 respectively.

A block diagram of the host DSL control blocks is
presented in FIG. 8. The DSL program uses two types of
control blocks: the Server Link Block (SLB); and the Socket 40

Control Block (SCB).
One SLB, e.g. 814, is used to control each server link.

This allows the DSL to communicate with multiple DSMs
on multiple front end routers. In the preferred embodiment
this control block is allocated at DSL startup based on a 45
configuration file. The SLB maintains the information
needed to communicate with the channel interface.

Socket Control Blocks (SCB), e.g. 804, are used to
manage the application sockets. The SCBs are anchored off
of Socket Descriptor Table 802 which is an array of pointers 50

to the SCBs. An application requesting socket services is
returned an index into the Socket Descriptor Table 802. The
number of SCB chains depends upon whether a TCP or UDP
socket is requested. Primary SCBs 804 and 816 are the
controls blocks for the "socket()" API call and one exists for 55
each open socket. Multiple Link SCBs are created when
multiple front end routers are bound to the application. Each
front end router has a unique multiple link SCB which in
turn points back to the primary SCB.

Accept queue 806 and TCP SCBs 808 and 810 are present 60
.only for TCP sockets. Since TCP has a socket for every
connection, one SCB per connection is generated. The
accept queue maintains a chained list of asynchronous
accept messages. These messages are accepted from the
DSM and queued by the DSL prior to the application issuing 65

an "accept()" call. When an "accept()" call is issued, the
accept queue is accessed and a TCP SCB is created 808 and

Asynchronous processing allows an increase in network
throughput. In FIG. 8 Application A has issued two
"accept()" calls creating TCP socket control blocks 808 810.
TCP socket control blocks are associated with each
"accept()" and address the actual data 812 received over the
network via SLB 814. Data 812 is enqueued off SCB 808
waiting for application A to issue a read() call.

Application B in FIG. 8 has issued a socket command to
establish a connectionless UDP socket. This results in allo­
cation of an entry in socket descriptor table 802 and the
creation of primary socket control block 816. Application B
issues a "bind()" call with address ip=INADDR_ANY
causing primary SCB 816 to be linked to multiple link SCBs
818 820 that are in turn linked to the two front end routers
by SLBs 814 and 822. This illustrates the manner in which
the preferred embodiment supports the connection of a
single application to multiple front end routers and net­
works. Multiple link connections can be made in both TCP
and UDP sockets. In this example there is no data queued for
application B.

FIG. 9 illustrates the controls blocks used by the Distrib­
uted Sockets Module (DSM) in the front end router. A host
link block (HLB), such as 902 or 904, is allocated at startup
for each host link. The provision for multiple chained HLB
control blocks enables connection of the front end router to
multiple hosts or to multiple channels or subchannels on a
single host. The HLB stores the information necessary to
communicate with the channel adapter interface and stores
the pointers to the primary CCB chain.

Two Connection Control Block chains are used by the
DSM. The primary Connection Control Block CCB 906 is
chained to HLB 902. A primary CCB is created for each
"socket()" API call made on the link managed by associated
HLB and contains the information needed to maintain that
socket. Additional primary CCBs 908 associated with HLB
902 are chained to CCB 906. A secondary CCB chain, such
as 910 and 912, is created for each TCP socket. One
secondary CCB exists for each "accept()" API call issued by
the DSL.

DEFS-ALA0007062

5,619,650
9

Distributed Sockets Communication Flow
FIG. 10 illustrates the communication flow when a socket

"write()" API command is issued by an application in a host
processor. The "write()" API is issued by either a client or
server process to pass data across the network to be read by 5
the connected process. FIG. 10 illustrates the data flow of a
socket write() command issued by an application in a host
1002 and processed through the front end router 1004 using
the preferred embodiment of the present invention. The
application issues a "write()" socket API command with

10 associated data 1006. The DSL process according to the
present invention, builds a distributed sockets interface
(DSI) header 1008 and attaches it to the data before passing
it to the channel program. The header consists of a standard
protocol header used to communicate between the DSL and
DSM and a command specific header that is specific to the 15
API command issued. As discussed above, messages may be
asynchronous or synchronous depending upon the API com­
mand. The channel program passes the data over high speed
JJO channel 1010 to front end router 1004. The channel
interface driver (CID) constructs a DATAMSG header 1012 20
for the data received on the channel and passes the DATA­
MSG to the distributed sockets module process. DSM builds
the API call and causes a "write()" with the necessary data
to be placed on the TCP/IP protocol stack.

10
from the network. A "downstream thread" handles requests
from the host, while an "accept thread" handles TCP
"accept()" API commands from the server. When the DSM
receives a "bind()" command the "downstream" thread
started by the socket() call validates the request 1208. It next
issues a "bind()" command 1210 to the TCP/IP protocol
stack 1212. The DSM will change the IP address to the
address specified in the configuration file for that subchan­
nel. If the bind is for a TCP connection, an ''upstream
thread" is started 1214. Both TCP and UDP bind requests
return a "return message" 1216 to the DSL. DSL waits for
all return codes and provides an "ORed" return code 1218
back to the application.

The upstream thread created by the TCP "bind()" com­
mand issues a "recvfrom()" command to the network to
allow asynchronous communication and sends asynchro­
nous data messages to the DSL upon receipt.

TCP connections differ slightly depending on whether
issued by a client or a server application. The client issues
"socket()" and "connect()" calls while a server issues
"socket()", "bind()", "listen()", and then "accept()" for each
connection.

The TCP client "connect()" flow is illustrated in FIG. 13.
The DSL accepts the call and using the SDT, SCBs and SLB

API Command Logic Flow Diagrams
FIGS. 11-16 will be used to present the logic flow of the

preferred embodiment of the present invention. Logic flow
will be discussed for selected critical communications com­
mands. This logic is readily extensible to all other sockets
API commands.

25 sends 1304 the "connect()" to the DSM. The downstream
thread validates the request 1320 and issues a "connect()"
call to the TCP/IP protocol stack 1322. An upstream thread
is created 1324 and a return message generated and sent to
the DSL 1326. As with the "bind()" command, return

30 messages are gathered 1330 and returned to the application.
FIG. 11 illustrates the flow of a "socket()" call to initialize

a socket for application to application communication. Both
UDP and TCP connections start with a "socket()" call.

The DSL first retrieves the next available slot from the
socket descriptor table and builds the SCB 1104. The socket 35
router must determine which front end router to direct the
message to based on supplied parameters. Once established
the router will ensure that the communication occurs over

The TCP server "listen()" flow is illustrated in FIG. 14.
The "listen()" command is accepted, the DSI and command
headers built and is sent to the front end router 1404. The
front end router validates the request 1410 and issues a
listen() command to the TCP/IP protocol stack 1412. If the
listen command to TCP/IP is successful an "accept thread"
is started 1414 in the front end router to manage "accepts"
and a message returned 1420 to the DSL.

Processing of a TCP server "accept()" API command is
illustrated in FIG. 15. When the client application issues a
connect() to the socket in the front end router the accept
thread wakes up with a connection or an new socket. This
thread than builds a Connection Control Block (CCB) for
the new socket 1550. This CCB is anchored on the primary
CCB which was created by the socket() api call. The DSM
then sends an asynchronous accept message 1552 to the
DSL. The socket number provided on the return is the
address of the CCB. The actual socket number is stored in
the CCB for future reference. The DSL will use this CCB
address for future write() api calls and the DSM will
reference the actual socket using the CCB. The DSL builds
an SCB 1510 if the application is waiting (blocked) on an
"accept()", returns the socket to the application 1520 and
returns an accept confirmation message to the DSM thus
creating the virtual socket shown in FIG. 7. Otherwise, the
DSL enqueues the accept request 1530 on the accept queue
for the appropriate primary SCB. When the application
issues an "accept()" the DSL similarly builds an SCB 1510,
enqueues it on the TCP SCB chain, sends an accept confir-

the appropriate SLB to HLB link using data from the
primary SCBs. The DSL builds the DSI headers 1106 and 40
message and sends the socket request to the channel pro­
gram 1108. The receive thread 1120 of the channel interface
driver builds the DATAMSG 1122, calls the listen routine
1124 and enqueues the datamsg 1126. The DSM postih
routine creates a CCB 1134 chained from the HLB and starts 45
a downstream thread 1128 for the new socket. The down­
stream thread issues a socket() api call 1130 to the TCP/IP
protocol stack. TCP/IP will return the actual socket addressa
and the DSM will store that address in the CCB. The DSM
then returns the address of the CCB 1136 as the socket 50
number to the DSL through the send thread 1138 of the CID.
Channel program 1108 receives the socket address and the
DSL stores this socket in the SCB and uses it for all
subsequent API calls, e.g. send, recv, write and read. The
DSM will use the actual socket stored in the CCB when 55
communicating with the TCP/IP stack in the front end router.
This technique gives instant addressability to the CCB when
the DSM is processing requests. The DSL finally returns the
socket descriptor to the application, which completes the
socket() api call. 60 mation message to the DSM 1512 and returns the socket to

the application 1520. The DSM accepts and validates the
message, stores 1540 the DSLsocket in the CCB, and creates
an upstream and downstream thread for the new socket

The UDPtrCP "bind()" API flow is illustrated in FIG. 12.
The "bind()" call causes the DSL to build a bind request and
send it to the DSM 1204. The DSL will send a bind() request
to all front end routers if multiple SLBs exist and
"INADDR_ANY" was specified as the address. 65

The DSM is multithreaded and manages three threads for
each socket. An "upstream thread" handles transactions

1542. This illustrates the asynchronous connection method
of the preferred embodiment.

The data flow between applications connected using the
above sockets protocol is illustrated in FIG. 16. The data

DEFS-ALA0007063

5,619,650
11

flows are similar for both TCP and UDP. UDP has an
upstream and downstream thread for each application socket
and TCP has an upstream and downstream thread for each
connection. When an application issues a "sendto()" (UDP)
or "write()" (TCP) api call, the DSL builds a send request 5
1604 and sends it to DSM running in the front end router.
The postih routine in the DSM enqueues the DATAMSG
1620 on the appropriate downstream thread. The down­
stream thread is selected based on the socket number in the
send request. The postih routine then makes that thread 10
dispatchable. Flow control over the network is handled by
this routine. The postih routine then returns control to the
recv thread 1610. When all data has been enqueued the recv
thread sleeps waiting for an interrupt. The downstream
thread next issues the sendto() (UDP) or write() (TCP) API 15
call 1622 to the TCP/IP stack in the front end router.

When an application issues a recvfrom() (UDP) or read()
(TCP) api call 1650, the DSL does not build a request for the
DSM. Since data is received asynchronously the DSL deter­
mines whether data has been previously enqueued. If data is 20
enqueued, the DSL dequeues data 1655 and passes it back to
the application.

The upstream thread running in the front end router waits
for data using the select() API call 1660. The thread issues

12
the host system and over the input output channel that
is different from the predetermined network transport
protocol, said data messages comprising distributed
processing identification information generated by said
host processor based on the data message content;

b). a network processor connected to at least one input/
output channel of the host system for exchanging data
with the host system over the input/output channel
using the host system data transfer protocol, said net­
work processor including means for transforming data
messages received over the input/output channel to a
format in which the transformed data messages are
forwarded into the point-to-point communications net­
work for transmission to remote computer systems
using the predetermined network transport protocol and
for transforming data messages received from the
point-to-point communications network to a form
which the messages are transmitted into the host system
through the input/output channel using the host system
data transfer protocol, wherein said message transform­
ing means adds a data message identifier to the received
data message and then converts the message in accor­
dance with the distributed processing identification
information when a message is transported from the
input/output channel to the point-to-point communica­
tion network.

an ioctl() call once data is presented to find out the data 25
buffer length and gets a data message and buffer 1662 from
the high speed buffer manager. The upstream thread then
issues the recvfrom() (UDP) or read() (TCP) for the newly
acquired buffer 1664. Finally the upstream thread enqueues
the DATAMSG 1666 for transmission on the send thread of
the hardware driver, which actually sends the data to the host
DSL. The DSL buffers the data waiting for an application to
issue a receive, as described above.

2. A system as defined in claim 1 wherein said host system
further includes multithreading control blocks for permitting
the host system and the network processor system to con-

30 currently process a plurality of data messages.
3. A computer system for exchanging data messages with

other computer systems through a point-to point communi­
cations network, said point-to-point communications net­
work using a TCP/IP transport protocol to transmit and

35
receive data messages, said computer system including:

The DSL and DSM have a built in flow control mecha­
nism to prevent one connection from using all the memory
resources in the host and the front end router. This mecha­
nism is in the form of asynchronous control messages that
pass between the DSM and DSL. The postih routine
enqueues a DATAMSG on the appropriate thread and checks
the enqueue count against a high water indicator. This 40
indicator is selected based on the number of connections and
the memory in the front end router. If the enqueue count has
reached the high water mark, the postih routine will send a
source quench control message to DSL. DSL will stop
sending data for that connection until the downstream thread 45
sends a resume data control message. The resume message
will be generated when the enqueue count decreases below
a low water mark.

It will be understood from the foregoing description that
various modifications and changes may be made in the 50

preferred embodiment of the present invention without
departing from its true spirit. It is intended that this descrip­
tion is for purposes of illustration only and should not be
construed in a limiting sense. The scope of this invention
should be limited only by the language of the following 55
claims.

We claim:
1. A computer system for exchanging data messages with

other computer systems through a point-to point communi­
cations network, said point-to-point communications net- 60
work using a predetermined network transport protocol to
transmit and receive data messages, said computer system
including:

a). a host system including a host processor for executing
application programs and at least one input/output 65
channel, said host system using a host system data
transfer protocol for transporting data messages within

a). a host system including a host processor for executing
application programs and at least one input/output
channel, said host system using a host system data
transfer protocol for transporting data messages within
the host system and over the input output channel that
is different from the TCP/IP transport protocol, said
data messages comprising of distributed processing
identification information generated by said host pro­
cessor based on the data message content;

b). a network processor connected to at least one input/
output channel of the host system for exchanging data
messages with the host system over the input/output
channel using the host system data transfer protocol,
said network processor including means for transform­
ing data messages received over the input/output chan­
nel to a format in which the transformed data messages
are forwarded into the point-to-point communications
network for transmission to remote computer systems
using the TCP/IP transport protocol and for transform­
ing data messages received from the point-to-point
communications network to a form which the messages
are transmitted into the host system through the input/
output channel using the host system data transfer
protocol, wherein said message transforming means
adds a data message identifier to the received data
message and then converts the data message in accor­
.dance with the distributed processing identification
information when a data message is transported from
the input/output channel to the point-to-point commu­
nication network.

4. In a computer system including a host system having a
processor for executing application programs and for

DEFS-ALA0007064

5,619,650
13 14

storing data, said host processor including means for accept­
ing data message in a first format, means for transforming
the data message in an augmented data message by adding
distributed processing identification information based upon

exchanging data messages with said application programs
through an application program interface and an input/
output channel for carrying data messages in accordance
with channel protocols and a network protocol processor
connected to the host system through the input/output chan­
nel and to one or more remote computer systems through a
point-to-point communication network, a method of offload­
ing network protocol processing from the host system to the
network protocol processor comprising the steps of:

5 the content of the data message and means for transmitting
said augmented data message through the high speed input/
output channels in accordance with a host system data
transfer protocol, a protocol processor including:

a). in the host system, augmenting a data message 10

received over the application program interface by
adding distributed processing identification informa­
tion as a function of the data message content and
transmitting the augmented data message from the host
system to the network protocol processor over the 15
input/output channel;

b). in the network protocol processor, further augmenting
the received message by adding a data message iden­
tifier and then converting the further augmented mes­
sage into a format suitable for transport through the 20

point-to-point communications network in accordance
with the distributed processing identification informa­
tion, said communications network carrying data mes­
sages in accordance with a predetermined network
transport protocol different from said host channel 25

protocol.
5. A computer system for exchanging data message with

other computer systems through a point-to-point communi­
cations network, said point-to-point communications net­
work using a predetermined network transport protocol to 30

transmit and receive data messages, said computer system
including:

means for connecting the protocol processor to said high
speed input/output channel;

means for receiving augmented data messages from the
host processor through the high speed input/output
channel;

means for further augmenting received augmented data
messages by adding a data message identifier;

means for transforming the further augmented data mes­
sages into network recognizable units based upon dis­
tributed processing identification information con­
tained within the data messages;

means for connecting said protocol processor to a net­
work, said network using a predetermined network
transport protocol different from the host system data
transfer protocol; and

means for transmitting the transformed further augmented
data messages into the network through said connecting
means.

7. For use in a system having a host processor, at least one
high speed input/output channel and storage means for
storing data, said host processor including means for accept­
ing a data message in a first format, means for transforming
the data message to an augmented data message by adding
distributed processing identification information based upon
the content of the data message and means for transmitting

35 said augmented data message through the high speed input/
output channel in accordance with a host system data
transfer protocol, a method to be performed at a protocol
processor connected to the host processor through the high
speed input/output channels and to a point-to-point network

a host system having a processor for executing application
programs and for exchanging data messages with said
application programs through an application program
interface and an input/output channel for carrying data
messages in accordance with a channel protocol, said
host system including means for modifying a data
message received at the application interface by adding
distributed processing identification information based
upon the content of the data message and means for
transmitting the modified data message over the input/
output channel, wherein said host system uses a host
system data transfer protocol different from said pre-

45
determined network transport protocol; and

40 through at least one network adapter, said method compris­
ing the steps of:

a network protocol processor connected to the input/
output channel for receiving the modified data message
from the host system, said network protocol processor
including means for further augmenting the received 50
modified data message by adding a data message
identifier and for converting the further augmented
message in accordance with the distributed processing
identification information into a format suitable for
transport through the point-to-point communications 55
network.

6. For use in a system having a host processor, at least one
high speed input/output channel and storage means for

receiving augmented data messages provided by the host
processor through the high speed input/output channel;

further augmenting the received augmented data mes­
sages by adding a data message identifier to each of
said message;

transforming said further augmented data messages into
network recognizable units based upon the distributed
processing identification information contained within
the data messages; and

transferring the transformed further augmented data mes­
sage into the point-to-point network, said point-to-point
network using a predetermined network transport pro­
tocol different from said host system data transfer
protocol.

* * * * *

DEFS-ALA0007065

