
United States Patent [19J

Morris, III

[54] METHOD AND APPARATUS FOR A FIRST
DEVICE ACCESSING COMPUTER MEMORY
AND A SECOND DEVICE DETECTING THE
ACCESS AND RESPONDING BY
PERFORMING SEQUENCE OF ACTIONS

[75] Inventor: George Lockhart Morris, III,
Escondido, Calif.

[73] Assignee: NCR Corporation, Dayton, Ohio

[21] Appl. No.: 08/778,938

[22]

[51]
[52]

[58]

[56]

Filed: Jan. 3, 1997

Int. Cl.6
.. G06F 13/00

U.S. Cl. 395/829; 395/826; 395/836;
395/856; 711/146

Field of Search 370/218; 395/520,
395/872, 828, 847, 836, 842, 829, 473;

707/201; 364/578, 528.21

References Cited

U.S. PATENT DOCUMENTS

4,725,971 2/1988 Doshi et al. 364/578
4,807,224 2/1989 Naron et al. 370/218
5,170,470 12/1992 Pindar et al. 395/828

I lllll llllllll Ill lllll lllll lllll lllll lllll 111111111111111111111111111111111
US005915124A

[11] Patent Number:

[45] Date of Patent:

5,915,124
Jun.22,1999

5,247,650
5,426,737
5,479,654
5,649,230
5,710,712
5,732,283
5,765,022

9/1993 Judd et al. 395/500
6/1995 Jacobs 395/847

12/1995 Squibb 707/201
7/1997 Lentz 395/872
1/1998 Labun 364/528.21
3/1998 Rose et al. 395/836
6/1998 Kaiser et al. 395/842

Primary Examiner-Thomas C. Lee
Assistant Examiner-Michael G. Smith
Attorney, Agent, or Firm-Gates & Cooper

[57] ABSTRACT

A method of controlling an input/output (110) device con­
nected to a computer to facilitate fast 1/0 data transfers. An
address space for the 1/0 device is created in the virtual
memory of the computer, wherein the address space com­
prises virtual registers that are used to directly control the
1/0 device. In essence, control registers and/or memory of
the 1/0 devices are mapped into the virtual address space,
and the virtual address space is backed by control registers
and/or memory on the 1/0 device. Thereafter, the 1/0 device
detects writes to the address space. As a result, a pre-defined
sequence of actions can be triggered in the 1/0 device by
programming specified values into the data written into the
mapped virtual address space.

27 Claims, 8 Drawing Sheets

TWO USER PROCESSES
VIRTUAL MEMORY WITH

VIRTUAL HARDWARE

202

PHYSICAL MEMORY
ON I I 0 ADAPTER

DEVICE DRIVER
VIRTUAL MEMORY

IN KERNEL

210
PER USER PROCESS

SECURE VIEW TO
VIRTUAL HARDWARE /

204

SINGLE PAGE

I

SINGLE PAGE
I

\206

' ' '

-
-
' '

'

' ' ' '

208-

' '
210 ''-----------1

212

'
' ' ' '

'
' '

'

DEFS-ALAOO 10646

0
m
"'Tl
(/)

i­
~
0
0
0
Q)
~
-..,J

SENDER RECEIVER

FIG. 1
102 132

S
I APPLICATION I I APPLICATION I

1 ~ 106 130 ~

I USER BUFFER t---i SOCKET LA YER (- - SYSTEM - -~ SOCKET LAYER ~ - - - -] USER BUFFER I
, S2 CALL INTERFACE R4

108

104

KERNAL
BUFFERING

116

PROTOCOL
MODULES

INTERFACE
DRIVER

I SS .. 1 NETWORK MAC

CONVENTIONAL NETWORK INTERFACE

110

L--112

114

124 PROTOCOL
MODULES KERNAL

BUFFERING

122 --J INTERFACE
DRIVER

120
118

NETWORK MAC I R1
1

CONVENTIONAL NETWORK INTERFACE

126

d
•
\JJ.
•
~
~
~ =

~

= ?
N
~N

'"""' \C
\C
\C

'Jl =­~
~

'"""' 0,
00

Ul
\C
~
Ul
~
N
~

0
m
"'Tl
(/)

i­
~
0
0
0
Q)
~
OJ

210

TWO USER PROCESSES
VIRTUAL MEMORY WITH

VIRTUAL HARDWARE

PER USER PROCESS
SECURE VIEW TO

VIRTUAL HARDWARE I ,,,.,--

FIG. 2

202

,,.

204

,,. ,,.

,,. ,,.
,,. ,,.

/

/
/

/

/ I
I I

I I
I I

I I
I I

I I
I I

I I
I I

I I
I I

I I

/
I

I
I

I
I

212

PHYSICAL MEMORY
ON I I 0 ADAPTER

SINGLE PAGE

SINGLE PAGE

206

' ' ' ' ' ' '

210

212

' ' ' ' ' ' '

208

' '

' '

' '

' '

~

'

DEVICE DRIVER
VIRTUAL MEMORY

IN KERNEL

d •
\JJ. •
~
~
~ =

~

= ?
N
~N

'"""' \C
\C
\C

'Jl =­~
~
N
0,
00

Ul
\C
~
Ul
~
N
~

0
m
"'Tl
(/)

i­
~
0
0
0
Q)
~
(!)

302..... 304 FIG. 3

FAST APPLICATION I I FAST APPLICATION

I I c-· =1

314

316 318

VIRTUAL HARDWARE I I VIRTUAL HARDWARE

COMMODITY
INTERFACE

306

308

310

SLOW
APPLICATION

NORMAL
STREAMS

PROCESSING

PASS- THROUGH
DRIVER

320-..----"---------'----.
PHYSICAL HARDWARE REGISTERS

322

d •
\JJ. •
~
~
~ =

~

= ?
N
~N

'"""' \C
\C
\C

'Jl =­~
~
~

0,
00

Ul
\C
~
Ul
~
N
~

U.S. Patent Jun.22,1999 Sheet 4 of 8 5,915,124

402

TRADITIONAL
OS INTERFACE ----

406

FIG. 4

408

DAI I FRONT END
410

---1+-----+i INTERCONNECT

DATA IS ROUTED
DIRECTLY TO

THE APPLICATION

DEFS-ALAOO 10650

0
m
"'Tl
(/)

i­
~
0
0
0
Q)
01

MAIN MEMORY

HARDWARE RI W
APPLICATION RO

HARDWARE -
REGISTER

\.504

(506

BUFFER
POOL -

502

FIG. 5

I

SOFTWARE
I
I

REGISTER I
I
I

508)
I
I

I

APPLICATION R I W I

HARDWARE RO I
I

~---------------------~

(510

PHYSICAL ADDRESS
BUFFER MAP

ADAPTER MEMORY

ENDPOINT TABLE
INDEXED BY

APPLICATION ID

(514

OS DRIVER RI W
HARDWARE RO

512

(516

PROTOCOL
SCRIPTS

ENDPOINT
PROTOCOL DATA

\.518

d •
\JJ. •
~
~
~ =

~

= ?
N
~N

'"""' \C
\C
\C

'Jl =­~
~
Ul
0,
00

Ul
\C
~
Ul
~
N
~

U.S. Patent Jun.22,1999 Sheet 6 of 8 5,915,124

HEX DEC 602 FIG. 6
0 0 ETHERNET 01 TARGET ETHERNET ADDRESS
1 1 HEADER 02 (6 BYTES)
2 2 (14 BYTES) 03
3 3 04
4 4 05
5 5 06
6 6 604 07 SOURCE ETHERNET ADDRESS
7 7 08 (6 BYTES)
8 8 09
9 9 Oa
a 10 Ob
b 11 Oc
c 12 08 PROTOCOL TYPE (Ox0800 =IP)
d 13 00
e 14 IP HEADER 45 VERSION = 4 IP HEADER LEN WORDS = 5
f 15 (20 BYTES) 00 SERVICE TYPE

10 16 .. TOTAL LENGTH= Ox001d (29 BYTES: 20 - BYTE IP HEADER
11 17 I PLUS 8- BYTE UDP HEADER PLUS 1 - BYTE USER DATA)
12 18 . I DATAGRAM Id= Oxe0a1
13 19
14 20 40 FLAG Ox4 DO_NOT_FRAGMENT
15 21 00 FRAGMENT OFFSET= OxOOO
16 22 40 TIME - TO - LIVE = Ox40
17 23 606 11 IP PROTOCOL= Ox11 UDP
18 24 I • IP HEADER CHECKSUM= Oxda1 b
19 25
1a 26 80 IP ADDRESS OF SOURCE= 128.1.192.7
1b 27 01
1c 28 co
1d 29 07
1e 30 80 IP ADDRESS OF DESTINATION= 128.1.192.8
1f 31 01
20 32 co
21 33 08
22 34 UDP HEADER 00 SOURCE PORT= Ox0007 (ECHO DATAGRAM)
23 35 (8 BYTES) 07
24 36 30 DESTINATION PORT= Ox3018
25 37 608 18
26 38 II UDP LENGTH = Ox0009
27 39 •• (8- BYTE UDP HEADER PLUS 1 - BYTE USER DATA)
28 40 UDP CHECKSUM = Ox0cf8
29 41
2a 42 USER DATA 1 BYTE USER DATAGRAM= "g"

(VARIABLE)
610

DEFS-ALAOO 10652

U.S. Patent Jun.22,1999 Sheet 7 of 8 5,915,124

FIG. 7
HEX DEC 702

0 0 ETHERNET 01 TARGET ETHERNET ADDRESS
1 1 HEADER 02 (6 BYTES)
2 2 (14 BYTES) 03
3 3 04
4 4 05
5 5 06
6 6 704 07 SOURCE ETHERNET ADDRESS
7 7 08 (6 BYTES)
8 8 09
9 9 Oa
a 10 Ob
b 11 Oc
c 12 08 PROTOCOL TYPE (Ox0800 = IP)
d 13 00
e 14 IP HEADER 45 VERSION = 4 IP HEADER LEN WORDS = 5
f 15 (20 BYTES) 00 SERVICE TYPE

10 16 TOTAL LENGTH
11 17
12 18 DATAGRAM Id
13 19
14 20 40 FLAG Ox4 DO NOT FRAGMENT
15 21 00 FRAGMENT OFFSE-T = OxOOO
16 22 40 TIME - TO - LIVE = Ox40
17 23 706 11 IP PROTOCOL= Ox11 UDP
18 24 IP HEADER CHECKSUM
19 25
1a 26 80 IP ADDRESS OF SOURCE= 128.1.192.7
1b 27 01
1c 28 co
1d 29 07
1e 30 80 IP ADDRESS OF DESTINATION = 128.1.192.8
1f 31 01
20 32 co
21 33 08
22 34 UDP HEADER 00 SOURCE PORT= Ox0007 (ECHO DATAGRAM)
23 35 (8 BYTES) 07
24 36 30 DESTINATION PORT= Ox3018
25 37 708 18
26 38 UDP LENGTH
27 39
28 40 UDP CHECKSUM
29 41

DEFS-ALAOO 10653

U.S. Patent Jun.22,1999 Sheet 8 of 8 5,915,124

CPU

BUSA

806

BUS B

INTERRUPT

BUSC

SVH DEVICE

FIG. 8

808

DATA

HEADER

INTERRUPT

SYSTEM
MEMORY

804

PEER TARGET DEVICE i...-____ ,.._ - - - - - - - - - - - - _______ _...

810 812

DEFS-ALAOO 10654

5,915,124
1

METHOD AND APPARATUS FOR A FIRST
DEVICE ACCESSING COMPUTER MEMORY
AND A SECOND DEVICE DETECTING THE

ACCESS AND RESPONDING BY
PERFORMING SEQUENCE OF ACTIONS

CROSS-REFERENCE TO PARENT
APPLICATION

5

2
direct access to an 110 device without intervention of the
operating system on a per 110 basis.

SUMMARY OF THE INVENTION

To overcome the limitations in the prior art described
above, and to overcome other limitations that will become
apparent upon reading and understanding the present
specification, the present invention discloses a "Shared
Virtual Hardware" technique that provides the capability for This application is related to and commonly assigned U.S.

patent application Ser. No. 08/577,678, filed Dec. 21, 1995,
now U.S. Pat. No. 5,768,618 dated Dec. 1, 1998 , by G.
Erickson et al., entitled "DIRECT PROGRAMMED 110
DEVICE CONTROL METHOD USING VIRTUAL

10 multiple user processes in a single computing node to
simultaneously share direct access to an 110 device contain­
ing "Virtual Hardware" functionality without operating sys­
tem intervention.

REGISTERS", and which application is incorporated by
reference herein. 15

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates in general to computer input/output
(110) device interfaces, and in particular, to a method of
using virtual registers to directly control an 110 device
adapter to facilitate fast data transfers.

2. Description of Related Art

The Virtual Hardware functionality, which is described in
the co-pending application cited above, is a method of
controlling an input/output (110) device connected to a
computer to facilitate fast 110 data transfers. An address
space for the 110 device is created in the virtual memory of
the computer, wherein the address space comprises virtual

20 registers that are used to directly control the 110 device. In
essence, control registers and/or memory of the 110 device
are mapped into the virtual address space, and the virtual
address space is backed by control registers and/or memory
on the 110 device. Thereafter, the 110 device detects writes

25 to the address space. As a result, a predefined sequence of
actions can be triggered in the 110 device by programming
specified values into the data written into the mapped virtual
address space.

Modern computer systems are capable of running mul­
tiple software tasks or processes simultaneously. In order to
send information to a software process or receive informa­
tion from a software process, an input/output (110) device
interface is typically used. An 110 device interface provides The Shared Virtual Hardware technique of the present

invention extends the Virtual Hardware technique by incor­
porating additional capability into the Virtual Hardware in
order to share its functionality with peer devices. Therefore,
Shared Virtual Hardware enables significant performance

a standardized way of sending and receiving information, 30

and hides the physical characteristics of the actual 110
device from the software process. Software processes which
use 110 device interfaces are typically easier to program and
are easier to implement across multiple types of computers
because they do not require knowledge or support for
specific physical 110 devices.

35 enhancements to 110 devices which do not contain the
Virtual Hardware functionality.

An 110 device interface is typically implemented by a
software program called an 110 device driver. The 110 device
driver must take information coming from an external

40
source, such as a local area network, and pass it along to the
appropriate software process. Incoming data is frequently
buffered into a temporary storage location in the device
driver's virtual address space (VAS), where it subsequently
copied to the VAS of the user process during a separate step.

45
However, as recent advances in communication technol­

ogy have rapidly increased the bandwidth of many 110
devices, the copying step from the device 110 driver's VAS
to the user process' VAS represents a potential bottleneck.
For instance, the bandwidth for fiber optic link lines is now 50
typically measured in gigabits per second. This tremendous
bandwidth creates a problem when information is copied
within the computer. When information is copied, all data
passes through the computer processor, memory, and inter­
nal data bus several times. Therefore, each of these compo- 55
nents represents a potential bottleneck which will limit the
ability to use the complete communications bandwidth. 110
latency and bandwidth are impaired by this standard pro­
gramming paradigm utilizing intermediate copying.

In addition, programming an 110 device driver usually 60
involves a user process making an operating system call,
which involves a context switch from the user process to the
operating system. This context switch further inhibits the
ability of computer systems to handle a high 110 data
bandwidth. 65

Therefore, there is a need for multiple user processes in a
single computing node to be able to simultaneously share

User processes interacting with standard, off-the-shelf
devices may benefit from the Virtual Hardware technique. In
addition, the system bandwidth requirements for the control
of the off-the-shelf device may be reduced as the controlling
element moves closer in proximity to the device in multi­
tiered bus structures (from host processor to peer level
processor).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow diagram illustrating a conventional 110
data flow between a sender and a receiver;

FIG. 2 is a block diagram illustrating a Virtual Hardware
memory organization compatible with the present invention;

FIG. 3 is a flow diagram describing the system data flow
of fast and slow applications compatible with the present
invention;

FIG. 4 is a block diagram describing direct application
interface (DAI) and routing of data between processes and
an external data connection which is compatible with the
present invention;

FIG. 5 is a block diagram illustrating the system organi­
zation between a main memory and an 110 device adapter
memory which is compatible with the present invention;

FIG. 6 is a block diagram illustrating a typical Ethernet­
based UDP datagram sent by a user process;

FIG. 7 is a block diagram illustrating a UDP datagram
header template in the 110 device adapter's memory; and

FIG. 8 is a block diagram illustrating a Shared Virtual
Hardware implementation compatible with the present
invention.

DEFS-ALAOO 10655

5,915,124
3

DETAILED DESCRIPTION OF IBE
PREFERRED EMBODIMENT

In the following description of the preferred embodiment,
reference is made to the accompanying drawings which
form a part hereof, and in which is shown by way of
illustration a specific embodiment in which the invention
may be practiced. It is to be understood that other embodi­
ments may be utilized and structural changes may be made
without departing from the scope of the present invention.
Overview

Programming an input/output (110) device typically
involves a user process making a call to the operating
system. This involves a context switch that swaps informa­
tion in system registers and memory in order to process
incoming data. Further, in many environments, the routing
of 1/0 data also entails one or more memory-to-memory
copies of the data before the physical 1/0 occurs on the
actual device. It will be recognized that 1/0 latency and
bandwidth are impaired by invoking the operating system
through the use of an exception handler, as well as by
performing multiple memory-to-memory copies of the data.

The Virtual Hardware technique, described in co-pending
and commonly assigned U.S. patent application Ser. No.
08/577,678, filed Dec. 21, 1995, by G. Erickson et al.,
entitled "DIRECT PROGRAMMED 1/0 DEVICE CON­
TROL METHOD USING VIRTUAL REGISTERS", and
attorney's docket number 6368, which application is incor­
porated by reference herein, provides the capability for
multiple user processes in a single computing node to
simultaneously share direct access to an 1/0 device without
the intervention of the operating system for each data
transfer as it occurs. The present invention extends this
technique by describing how a device containing Virtual
Hardware functionality can be modified to include Shared
Virtual Hardware functionality to create the most efficient
method to transfer directly between the user process and
off-the-shelf devices resident on the same node.
Hardware Environment

FIG. 1 is a flow diagram illustrating a conventional 1/0
data flow between a sender and a receiver. At 102, a sender
application sends data across a memory bus to a user buffer
104 via socket layer 106. The data is subsequently buffered
through the operating system kernel 108 by the protocol
modules 110, before it is sent out by the interface driver 112
through conventional network interface 114 to the network
media access control (MAC) 116. It will be noted that in this
system model, the data makes at least three trips across the
memory bus at S2, S3 and SS.

For the receiving application, the steps are reversed from
those of the sender application. The data is received via the
network media access control (MAC) 118 into conventional
network interface 120. The interface driver 122 and protocol
modules 124 buffer the data through the operating system
kernel 126. The protocol modules 124 then send the data to
user buffer 128, where it may be accessed by socket layer
130 or receiver application 132. It will be noted that in this
system model, the data makes at least three trips across the
memory bus at Rl, R2, and R4.
Virtual Hardware Memory Organization

FIG. 2 is a block diagram illustrating a Virtual Hardware
memory organization. 1/0 device adapters on standard 1/0
buses, such as ISA, EISA, MCA, or PCI buses, frequently
have some amount of memory and memory-mapped regis­
ters which are addressable from a device driver in the
operating system. User processes 202, 204 cause 1/0 opera­
tions by making a request of the operating system which
transfers control to the device driver. The sharing of a single

4
1/0 device adapter by multiple user processes is managed by
the device driver running in the kernel, which also provides
security.

The Virtual Hardware technique maps a portion of
5 memory 206 physically located on the 1/0 device adapter

into a device driver's address space 208. The Virtual Hard­
ware technique also maps sub-portions, e.g., pages, 210,
212, of the 1/0 device adapter's memory 206 into the
address spaces for one or more user processes 202, 204,

10 thereby allowing the user processes 202, 204 to directly
program the 1/0 device adapter without the overhead of the
operating system, including context switches. Those skilled
in the art will recognize that the sub-portions 210, 212 may
be mapped directly from the 1/0 device adapter's memory

15 206, or that the sub-portions 210, 212 may be mapped
indirectly from the 1/0 device adapter's memory 206
through the device driver's address space 208.

The 1/0 device adapter subsequently snoops the virtual
address space 210, 212 to detect any reads or writes. If a read

20 or write is detected, the 1/0 device adapter performs a
specific predefined script of actions, frequently resulting in
an 1/0 operation being performed directly between the user
process' address space 202, 204 and the 1/0 device adapter.
The user process triggers the execution of the script by

25 setting or "spanking" the 1/0 control registers in 210, 212,
which in turn causes the execution of the script.

The memory mapping must be typically performed in
increments of the page size for the particular system or
environment. Allocating memory in increments of the page

30 size allows each user process to have a Virtual Hardware
space 210, 212 that is secure from all other processes which
might be sharing the same 1/0 device adapter. This security
between user processes is maintained by the operating
system in conjunction with virtual memory capabilities

35 offered by most processors.
Each user process creates a memory mapping by perform­

ing an operating system request to open the 1/0 device
adapter for access. Having the operating system create the
virtual memory address space allows the operating system

40 and 1/0 device driver to grant only very specific capabilities
to the individual user process.

A script is prepared by the operating system for the 1/0
device adapter to execute each time the specific user process
programs its specific Virtual Hardware. The user process is

45 given a virtual address in the user process' address space that
allows the user process very specific access capabilities to
the 1/0 device adapter.

Virtual Hardware is also referred to as virtual registers.
Virtual registers are frequently used to describe the view

50 which a single user process has of the addressable registers
of a given 1/0 device adapter.

Maintaining security between multiple software processes
is important when sharing a single 1/0 device adapter. If the
1/0 device adapter controls a network interface, such as an

55 Ethernet device, then the access rights granted to the user
process by the operating system could be analogous to a
Transmission Control Protocol (TCP) address or socket.

A TCP socket is defined by a communications transport
layer and defines a set of memory addresses through which

60 communication occurs. These transport addresses form a
network-wide name space that allows processes to commu­
nicate with each other. A discussion of the form and structure
of TCP sockets and packets, which are well-known within
the art, may be found in many references, including Com-

65 puter Networks by Andrew S. Tanenbaum, Prentice-Hall,
New Jersey, 1981, pp. 326-327, 373-377, which is incor­
porated by reference herein.

DEFS-ALAOO 10656

5,915,124
5

Typically, the only capability to which the user process
can get direct access is to send and receive bytes over a
specified socket or transport address range. The user process
is not necessarily given permission to emit any arbitrary
packet on the media (e.g., an Ethernet network). It will be
recognized by those skilled in the art that the Virtual
Hardware technique applies not only to Ethernet or other
interconnect communication devices, but also to almost any
1/0 device adapter in use by a multi-user operating system.
Flow Diagram

FIG. 3 is a flow diagram describing the system data flow
of fast and slow applications 302, 304, and 306 compatible
with the Virtual Hardware technique. A traditional slow
application 306 uses normal streams processing 308 to send
data to a pass-through driver 310. The pass-through driver
310 initializes the physical hardware registers 320 of the 1/0
device adapter 314 to subsequently transfer the data through
the 1/0 device adapter 314 to the commodity interface 322.
With the Virtual Hardware technique, fast user applications
302 and 304 directly use a setup driver 312 to initialize the
physical hardware registers 320, then send the data directly
through the 1/0 device adapter 314 to the commodity
interface 322 via Virtual Hardware 316 and 318. Thus, the
overhead of the normal streams processing 308 and pass­
through driver 310 are eliminated with the use of the Virtual
Hardware 316 and 318, and fast applications 302 and 304
are able to send and receive data more quickly than slow
application 306. As a result, the Virtual Hardware technique
provides higher bandwidth, less latency, less system
overhead, and shorter path lengths.
Direct Application Interface

FIG. 4 is a block diagram describing a direct application
interface (DAI) and routing of data between processes and
an external data connection which is compatible with the
Virtual Hardware technique. Processes 402 and 404 transmit
and receive data directly to and from an interconnect 410
(e.g., 1/0 device adapter) through the DAI interface 408. The
data coming from the interconnect 410 is routed directly to
a process 402 or 404 by use of Virtual Hardware and
registers, rather than using a traditional operating system
interface 406.

6
Scripts typically serve two functions. The first function is

to describe the protocol the software application is using.
This includes but is not limited to how to locate an appli­
cation endpoint, and how to fill in a protocol header template

5 from the application specific data buffer.
The second function is to define a particular set of

instructions to be performed based upon the protocol type.
Each type of protocol will have its own script. Types of
protocols include, but are not limited to, TCP/IP, UDP/IP,

10 BYNET lightweight datagrams, deliberate shared memory,
active message handler, SCSI, and File Channel.
System Organization

FIG. 5 is a block diagram illustrating the system organi­
zation between a main memory and an 1/0 device adapter

15 memory which is compatible with the Virtual Hardware
technique. The main memory 502 implementation includes
a hardware register 504 and a buffer pool 506. The 1/0
device adapter implementation includes a software register
508 and a physical address buffer map 510 in the adapter's

20 memory 512. An endpoint table 514 in the memory 512 is
used to organize multiple memory pages for individual user
processes. Each entry within the endpoint table 514 points to
various protocol data 518 in the memory 512 in order to
accommodate multiple communication protocols, as well as

25 previously defined protocol scripts 516 in the memory 512,
which indicate how data or information is to be transferred
from the memory 512 of the 1/0 device adapter to the
portions of main memory 502 associated with a user process.

Typically, when a user process opens a device driver, the
30 process specifies its type, which may include, but is not

limited to, a UDP datagram, source port number, or register
address. The user process also specifies either a synchronous
or asynchronous connection. The device driver sets up the
registers 508 and 504, endpoint table 514, and endpoint

35 protocol data 518. The protocol script 516 is typically based
upon the endpoint data type, and the endpoint protocol data
518 depends on protocol specific data.

The Virtual Hardware technique may be further enhanced
by utilizing read-local, write-remote memory access. A user

40 process typically causes a script to execute by using four
virtual registers, which include STARTINGADDRESS,
LENGTH, GO, and STATUS. The user process preferably
first writes information into memory at the locations speci­
fied by the values in the STARTINGADDRESS and

Conceptually, the Virtual Hardware technique may be
thought of as providing each user process with its own 1/0
device adapter, which makes the user process and 1/0 device
adapter logically visible to each other. The user process
initiates a data transfer directly through a write to memory,
thereby avoiding the overhead processing which would be
incurred if the operating system were used to service the data
transfer request. The user process determines the status of
the data transfer through a memory read. The operating 50

system and 1/0 device adapter remain free to allocate Virtual
Hardware resources as needed, despite the presence of
multiple user processes.

45 LENGTH virtual registers. Next, the user process then
accesses the GO virtual register to commence execution of
the script. Finally, the user process accesses or polls the
STATUS virtual register to determine information about the
operation or completion of this 1/0 request.

It will be recognized that if all four registers are located
in memory on the 1/0 device adapter, then less than optimal
performance may result if the user process frequently polls
the STATUS virtual register. It is possible to improve the
performance of the Virtual Hardware technique by imple-An 1/0 device adapter typically can have an arbitrary

amount of random access memory (RAM) ranging from
several hundred kilobytes to several megabytes, which may
be used for mapping several user processes in a single
communications node. Each user process that has access to
the Virtual Hardware is typically assigned a page-sized area
of physical memory on the 1/0 device adapter, which is then
mapped into the virtual address space of the user process.
The 1/0 device adapter typically is implemented with snoop­
ing logic to detect accesses within the page-sized range of
memory on the 1/0 device adapter. If the 1/0 device adapter
detects access to the physical memory page, a predefined
script is then executed by the 1/0 device adapter in order to
direct the data as appropriate.

55 menting a read-local, write-remote strategy. With such a
strategy, the Virtual Hardware technique stores values which
are likely to be read in locations which are closest to the
reading entity, whereas values which are likely to be written
are stored in locations which are farthest away from the

60 writing entity. This results in values which are likely to be
read by the user process being stored in cacheable main
memory, and thus minimizes the time required to access the
cached values. Values which are likely to be read by the 1/0
device adapter are stored in the non-cacheable memory on

65 the 1/0 device adapter. Thus, the registers
STARTINGADDRESS, LENGTH, and GO are physically
located preferably in the non-cacheable memory on the 1/0

DEFS-ALAOO 10657

5,915,124
7

adapter, whereas the STATUS register is preferably located
in a page of cacheable main memory mapped into the user
process' virtual address space.
UDP Datagram

FIG. 6 is a block diagram illustrating a UDP datagram 602 5
sent by a user process over Ethernet media. However, those
skilled in the art will recognize that the Virtual Hardware
technique is applicable to UDP datagrams, LAN protocols,
secondary storage devices such as disks, CDROMs, and
tapes, as well as other access methods or protocols.

10
The example of FIG. 6 shows the actual bytes of a sample

UDP datagram 602 as it might be transmitted over an
Ethernet media. There are four separate portions of this
Ethernet packet: (1) Ethernet header 604, (2) IP header 606,
(3) UDP header 608, and (4) user data 610. All of the bytes
are sent contiguously over the media, with no breaks or 15

delineation between the constituent fields, followed by suf­
ficient pad bytes on the end of the datagram 602, if neces­
sary.

8
FIG. 7 is a block diagram illustrating a UDP datagram

template 702 (without a user data area) residing in the 1/0
device adapter's memory. The user process provides the
starting address and the length for the user data in its virtual
address space, and then "spanks" a GO register to trigger the
1/0 device adapter's execution of a predetermined script.
The 1/0 device adapter stores the user data provided by the
user process in the 1/0 device adapter's memory, and then
transmits the completed UDP datagram 702 over the media.

An example of programming that triggers the 1/0 device
adapter is provided below:

udpscript(void *USERDATA_ADDRESS,
int USERDATA_LENGTH,

template_t *template)

char *physaddress;
template->lP.TotalLength ~ sizeof (IPHeader) +

sizeof(UDpHeader) + USERDATA_LENGTH;
template->IP.Datagram!D ~ nextid(); In the Virtual Hardware technique, the access privileges

given to the user processes are very narrow. Each user
process has basically pre-negotiated almost everything
about the datagram 602, except the actual user data 610. This
means most of the fields in the three header areas 604, 606,
and 608 are predetermined.

20 ipchecksum (template);
template->UDPLength ~ sizeof (UDPHeader)

+ USERDATA_LENGTH;
physaddress ~ vtophys(USERDATA_ADDRESS,

USERDATA_LENGTH);
udpchecksum(physaddress, USERDATA_LENGTH, template);

25 } In this example, the user process and the device driver has
pre-negotiated the following fields from FIG. 6: (1) Ethernet
Header 604 (Target Ethernet Address, Source Ethernet
Address, and Protocol Type); (2) IP Header 606 (Version, IP
header Length, Service Type, Flag, Fragment Offset, Time_
to_Live, IP Protocol, IP Address of Source, and IP Address 30

of Destination); and (3) UDP Header 608 (Source Port and
Destination Port). Only the shaded fields in FIG. 6, and the
user data 610, need to be changed on a per-datagram basis.

To further illustrate the steps performed in accordance
with the Virtual Hardware technique, assume that the user 35

processes has initiated access to the 1/0 device adapter via
the methods described in this disclosure. Further, assume
that the user process has the user data 610 of the datagram
602 resident in its virtual address space at the locations
identified by the values in the USERDATA_ADDRESS and 40

USERDATA_LENGTH variables. Also, assume that the
address for the virtual registers 210, 212, 316, 318, or 508
in the memory of the adapter are stored in the pointer
"vhr_p" (Virtual Hardware remote pointer) and the address
for the control information in the virtual address space of the 45

user process 504 is stored in the pointer "vhl_p" (Virtual
Hardware local pointer).

An example of user process programming that triggers the
1/0 device adapter is set forth below:

~~~~~~~~~~~~~~~~~~~~~~~-

The script that executes the above function provides the 
USERDATA_ADDRESS and USERDATA_LENGTH 
which the user process programmed into the adapter's 
memory. This information quite likely varies from datagram 
602 to datagram 602. The script is also passed the appro-
priate datagram 702 template based on the specific software 
register (508 in FIG. 5 or 316 in FIG. 3). There are different 
scripts for different types of datagrams 702 (e.g., UDP or 
TCP). Also, the script would most likely make a copy of the 
datagram 702 template (not shown here), so that multiple 
datagrams 602 for the same user could be simultaneously in 
transit. 

Within the udpscript procedure described above, the nex­
tido function provides a monotonically increasing 16-bit 
counter required by the IP protocol. The ipchecksum( ) 
function performs a checksum for the IP Header 706 portion 
of the datagram 702. The vtophys( ) function performs a 
translation of the user-provided virtual address into a physi-
cal address usable by the adapter. In all likelihood, the 
adapter would have a very limited knowledge of the user 
process' virtual address space, probably only knowing how 
to map virtual-to-physical for a very limited range, maybe as 
small as a single page. Pages in the user process' virtual 

senduserdatagram(void *USERDATA_ADDRESS, 
int USERDATA_LENGTH) 

50 address space for such buffers would need to be fixed. The 
udpscript procedure would need to be enhanced if the user 
data were allowed to span page boundaries. The 
udpchecksum( ) procedure generates a checksum value for 

/* wait till adapter available *I 
while (vhl_p->STATUS !~ IDLE) {}; 

vhr_p->STARTINGADDRESS ~ USERDATA_ADDRESS; 
vhr_p->LENGTH ~ USERDATA_LENGTH 

/* trigger adapter *I 
vhr_p->GO ~ 1; 

/* wait till adapter completes *I 
while(vhl_p->STATUS ~~ BUSY) {}; 
} 

Those skilled in the art will also recognize that the 
"spanking" of the vhr_p~Go register, i.e., by setting its 
value to 1, could be combined with the storing of the length 
value into the vhr_p~LENGTH register to reduce the 
number of 1/0 accesses required. 

55 

both the UDP Header 708 plus the user data (not shown). 
The adapter would not want to be forced to access the user 

data twice over the 1/0 bus, once for the calculation per­
formed by the udpchecksum( ) function, and a second time 
for transmission over the media. Instead, the adapter would 
most likely retrieve the needed user data from the user 

60 process' virtual address space using direct memory access 
(DMA) into the main memory over the bus and retrieving 
the user data into some portion of the adapter's memory, 
where it could be referenced more efficiently. The program­
ming steps performed in the udpscript( ) procedure above 

65 might need to be changed to reflect that. 
There are many obvious implementation choices, and the 

programming in the udpscript() procedure is not meant to be 

DEFS-ALAOO 10658 



5,915,124 
9 10 

protocol. This information enables the Shared Virtual Hard­
ware device 810 to associate a physical layer endpoint 
identifier (as defined by the physical layer protocol) directly 
to a user process buffer (in the system memory 804). In 

exhaustive. For example, a script could allow the user to 
specify a different UDP target port, or a different destination 
IP address. There are performance and security tradeoffs 
based upon the more options offered to the user process. The 
example given herein is intended merely to demonstrate the 
essence of this invention, and not to be exhaustive. 
Shared Virtual Hardware 

FIG. 8 is a block diagram illustrating a Shared Virtual 
Hardware implementation compatible with the present 
invention, wherein the exemplary hardware environment 
includes a CPU 802, system memory 804, bridges 806 and 
808, a Shared Virtual Hardware device 810 and a peer target 
device 812. The Shared Virtual Hardware device 810 con-

5 addition, the data structures enable the Shared Virtual Hard­
ware device 810 to link the user process buffer directly to the 
physical layer endpoint identifier of the peer target device 
812. 

The Shared Virtual Hardware device 810 is also able to 
10 directly control the peer target device 812. The control 

requirements are similar to those required locally on the 
Shared Virtual Hardware device 810. The main difference is 
that the control occurs through the upstream bus as opposed 

forms to the Virtual Hardware technique and also provides 
hardware and/or software assists to the peer target device 15 

812 that does not conform to the Virtual Hardware tech-

to the downstream (local) bus. 
Control functions include a number of operations. For 

inbound operations, header or partial header acquisition is 
performed by the Shared Virtual Hardware device 810 for 
endpoint identification, rather than the peer target device 
812. Further, data transfer control is performed by the user 

nique. In essence, the Shared Virtual Hardware device 810 
extends the Virtual Hardware technique by incorporating 
additional capability in order to share the Virtual Hardware 
functionality with the peer target device 812 that does not 
itself support the Virtual Hardware technique. Therefore, the 
Shared Virtual Hardware device 810 can provide significant 
performance enhancements to a "dumb" or off-the-shelf, 
peer target device 812. 

20 process executed by the CPU 802, rather than the peer target 
device 812. 

In addition, user processes executed by the CPU 802 25 

interacting with the peer target device 812 can benefit from 
the Shared Virtual Hardware technique. In addition, the 
system bandwidth requirements for the control of the peer 
target device 812 may be reduced as the controlling element, 
i.e., the Shared Virtual Hardware device 810, moves closer 30 

in proximity to the peer target device 812 in multi-tiered bus 
structures (as compared to the CPU 802 which normally 
controls the peer target device 812). 

For outbound operations, header and data transfer control 
is controlled from the CPU 802. Other control operations 
may include status acquisition. 

The Shared Virtual Hardware device 810 includes func­
tionality that allows it to address the peer target device 812. 
Further, the peer target device 812 routes interrupts that are 
normally directed to the CPU 802 are instead directed to the 
Shared Virtual Hardware device 810. This is generally 
accomplished via a direct, asynchronous interrupt or a 
synchronous write from the peer target device 812. 

The Shared Virtual Hardware device 810 is also able to 
detect and identify the interrupt generated at the peer target 
device 812. For example, a dedicated interrupt signal line 
between the two devices 810 and 812 may be used for this 
purpose. The Shared Virtual Hardware device 810 responds 
to the interrupt in the same manner as is required for the 
local response. 

For optimal flexibility, the Shared Virtual Hardware 

In the present invention, data structure usage and func­
tionality located on the Virtual Hardware device 810 and the 35 

system memory 804 is extended to provide the additional 
functionality required for the Shared Virtual Hardware tech­
nique. The Shared Virtual Hardware device 810 has the 
capability to associate data structures in the system memory 
804 to both the peer target device 812 and itself. 40 device 810 is able to distinguish between DAI and non-DAI 

(standard protocols) applications and support both. The 
determination of this mode are usually made through polling 
of data structures which have been initialized to indicate the 

The Shared Virtual Hardware technique maps a portion of 
memory physically located on the peer target device 812 into 
its local memory and into the system memory 804. Sub­
portions or pages of the system memory 804 are mapped into 
the address spaces for one or more user processes executed 45 

by the CPU 802, thereby allowing the user processes to 
directly program the peer target device 812 via the Shared 
Virtual Hardware device 810. The Shared Virtual Hardware 
device 810 subsequently snoops the address spaces for the 
user processes to detect any reads or writes thereto. If a read 

mode of operation, or may be determined from default 
settings where there is no associated data structures found. 

Therefore, for Shared Virtual Hardware functionality, 
non-DAI applications require that the Shared Virtual Hard­
ware device 810 allow the interrupt generated by the peer 
target device 812 to be redirected or steered to the main node 

50 controller. 
Conclusion 

In summary, the present invention discloses a method of 
using virtual registers to directly control an 1/0 device 
adapter to facilitate fast data transfers. The method initial­
izes a socket endpoint for a virtual register memory con­
nection within an 1/0 adapter's main memory. Incoming 
data is then written to the virtual memory and detected by 
polling or "snooping" hardware. The snooping hardware, 
after detecting the write to virtual registers, generates an 

or write is detected, the Shared Virtual Hardware device 810 
performs a specific predefined script of actions, frequently 
resulting in an 1/0 operation being performed directly 
between the user process' address space in the system 
memory 804 and the peer target device 812, which 1/0 55 

operation is mediated by the Shared Virtual Hardware 
device 810. The user process triggers the execution of the 
script by setting or "spanking" control registers in its address 
space in the system memory 804, which in turn causes the 
execution of the script. 

The data structures maintained in the system memory 804 
and the local memory of the Shared Virtual Hardware device 
810 include: (a) buffer descriptors which are initialized to 
link the user process data and header buffer pointers to the 
Shared Virtual Hardware device 810; and (b) endpoint 65 

descriptor buffers which link an endpoint (user process) to a 

60 exception for the system bus controller. The bus controller 
then transfers the data to the 1/0 device adapter and initiates 
the registers of the 1/0 device adapter to execute a prede­
termined script to process the data. 

set of buffer descriptors and the physical layer endpoint 

The preferred embodiment of the present invention typi­
cally implements logic on the 1/0 device adapter to translate 
a read or write operation to a single memory address so that 
it causes the execution of a predetermined script. Such a 

DEFS-ALAOO 10659 



5,915,124 
11 12 

pages of the first 110 device's memory into the address space 
for the first 110 device in the memory in the computer. 

script may also be dynamically modified to accommodate 
environment characteristics such as the memory location or 
the size of the 110 device adapter's address space. 

It will be recognized by those skilled in the art that using 
the Virtual Hardware implementation of the present inven­
tion does not preclude a user process from simultaneously 
using a standard device driver on the same 110 device 
adapter. That is, a user process can use the Virtual Hardware 

7. The method of claim 5 above, further comprising the 
step of securing the mapped portion of the memory from all 

5 other processes executed by the computer. 
8. The method of claim 1 above, wherein the predefined 

sequence of actions is represented by a script. 
9. The method of claim 1 above, wherein the triggering 

step further comprises the step of the triggering the pre-of the present invention to provide a direct streamlined path 
to a given 110 device adapter, while standard slower access 
to the 110 device adapter is concurrently provided to other 
user processes within the same system by normal streams or 
other device drivers. 

Those skilled in the art will also recognize that the present 
invention is applicable to any 110 device adapter that has a 
memory and is not limited to network adapters. The appli­
cation cited in the present specification is for illustrative 
purposes only and is not intended to be exhaustive or to limit 
the invention to the precise form disclosed. 

10 defined sequence of actions in the second 110 device by 
programming specified values into the data written into the 
snooped address space for the first 110 device, wherein the 
specified values are stored into control registers in the 
second 110 device. 

10. An apparatus for controlling a plurality of input/output 
15 (110) devices connected to a computer, comprising: 

In addition, those skilled in the art will recognize that the 20 
present invention is applicable to systems with different 
configurations of devices and components. The example 
configurations of devices and components cited in the 
present specification are provided for illustration only. 

In conclusion, the foregoing description of the preferred 25 
embodiment of the invention has been presented for the 
purposes of illustration and description. It is not intended to 
be exhaustive or to limit the invention to the precise form 
disclosed. Many modifications and variations are possible in 
light of the above teaching. It is intended that the scope of 30 
the invention be limited not by this detailed description, but 
rather by the claims appended hereto. 

What is claimed is: 
1. A method of controlling a plurality of input/output (110) 

devices connected to a computer, comprising the steps of: 35 
(a) creating an address space for a first 110 device in a 

memory of the computer, wherein the address space for 
the first 110 device is snooped by a second 110 device; 

(a) means for creating an address space for a first 110 
device in a memory of the computer, wherein the 
address space for the first 110 device is snooped by a 
second 110 device; 

(b) means for reading and writing data into the snooped 
address space for the first 110 device, wherein the 
second 110 device detects the reading and writing of the 
data into the snooped address space for the first 110 
device; and 

(c) means for triggering a predefined sequence of actions 
in the second 110 device by programming specified 
values into the data written into the snooped address 
space for the first 110 device, wherein the predefined 
sequence of actions interact with the first 110 device. 

11. An apparatus for controlling a plurality of input/output 
(110) devices connected to a computer, comprising: 

(a) a processor having a memory, first 110 device, and 
second 110 device coupled thereto; 

(b) means, performed by the processor, for creating an 
address space for the first 110 device in the memory, 
and for reading and writing data into the address space 
for the first 110 device; and 

(c) means, performed by the second 110 device, for 
detecting the reading and writing of the data into the 
address space for the first 110 device, and for triggering 
a predefined sequence of actions in response thereto. 

(b) reading and writing data into the snooped address 
space for the first 110 device, wherein the second 110 40 

device detects the reading and writing of the data into 
the snooped address space for the first 110 device; and 12. The apparatus of claim 10 above, further comprising 

means for creating an address space for the second 110 
device in the memory of the computer, wherein the address 

45 space for the second 110 device is snooped by a second 110 
device. 

( c) triggering a predefined sequence of actions in the 
second 110 device by programming specified values 
into the data written into the snooped address space for 
the first 110 device, wherein the predefined sequence of 
actions interact with the first 110 device. 

2. The method of claim 1 above, further comprising the 
step of creating an address space for the second 110 device 
in the memory of the computer, wherein the address space 
for the second 110 device is snooped by a second 110 device. 

3. The method of claim 2 above, further comprising the 
step of reading and writing data into the snooped address 
space for the second 110 device, wherein the second 110 
device detects the reading and writing of the data into the 
snooped address space for the second 110 device. 

13. The apparatus of claim 12 above, further comprising 
means for reading and writing data into the snooped address 
space for the second 110 device, wherein the second 110 

50 device detects the reading and writing of the data into the 
snooped address space for the second 110 device. 

14. The apparatus of claim 13 above, further comprising 
means for triggering a predefined sequence of actions in the 
second 110 device by programming specified values into the 

55 data written into the snooped address space for the second 
110 device. 

4. The method of claim 3 above, further comprising the 
step of triggering a predefined sequence of actions in the 
second 110 device by programming specified values into the 
data written into the snooped address space for the second 60 

110 device. 

15. The apparatus of claim 10 above, further comprising 
means for mapping at least a portion of the first 110 device's 
memory into the address space for the first 110 device in the 
memory of the computer. 

16. The apparatus of claim 15 above, wherein the means 
for mapping further comprises means for mapping one or 
more pages of the first 110 device's memory into the address 
space for the first 110 device in the memory in the computer. 

5. The method of claim 1 above, further comprising the 
step of mapping at least a portion of the first 110 device's 
memory into the address space for the first 110 device in the 
memory of the computer. 

6. The method of claim 5 above, wherein the mapping 
step further comprises the step of mapping one or more 

65 17. The apparatus of claim 15 above, further comprising 
means for securing the mapped portion of the memory from 
all other processes executed by the computer. 

DEFS-ALAOO 10660 



5,915,124 
13 

18. The apparatus of claim 10 above, wherein the pre­
defined sequence of actions is represented by a script. 

19. The apparatus of claim 10 above, wherein the means 
for triggering further comprises means for the triggering the 
predefined sequence of actions in the second 1/0 device by s 
programming specified values into the data written into the 
snooped address space for the first 1/0 device, wherein the 
specified values are stored into control registers in the 
second 1/0 device. 

20. The apparatus of claim 11 above, further comprising 10 

means for creating an address space for the second 1/0 
device in the memory of the computer, wherein the address 
space for the second 1/0 device is snooped by a second 1/0 
device. 

14 
23. The apparatus of claim 11 above, further comprising 

means for mapping at least a portion of the first 1/0 device's 
memory into the address space for the first 1/0 device in the 
memory of the computer. 

24. The apparatus of claim 23 above, wherein the means 
for mapping further comprises means for mapping one or 
more pages of the first 1/0 device's memory into the address 
space for the first 1/0 device in the memory in the computer. 

25. The apparatus of claim 23 above, further comprising 
means for securing the mapped portion of the memory from 
all other processes executed by the computer. 

26. The apparatus of claim 11 above, wherein the pre­
defined sequence of actions is represented by a script. 

27. The apparatus of claim 11 above, wherein the means 
for triggering further comprises means for the triggering the 
predefined sequence of actions in the second 1/0 device by 
programming specified values into the data written into the 

21. The apparatus of claim 20 above, further comprising 15 

means for reading and writing data into the snooped address 
space for the second 1/0 device, wherein the second 1/0 
device detects the reading and writing of the data into the 
snooped address space for the second 1/0 device. 

20 snooped address space for the first 1/0 device, wherein the 
specified values are stored into control registers in the 
second 1/0 device. 

22. The apparatus of claim 21 above, further comprising 
means for triggering a predefined sequence of actions in the 
second 1/0 device by programming specified values into the 
data written into the snooped address space for the second 
1/0 device. * * * * * 

DEFS-ALAOO 10661 




