
DEFS-ALAOO 10586

The Association for Computing Machinery
11 West 42nd Street

New York, New York 10036

Copyright © 1988 by the Association for Computing Machinery, Inc. Copying, without
fee is permitted provided that the copies are not made or distributed for direct
commercial advantage, and credit to the source is given. Abstracting with credit
is permitted, For other copying of articles that carry a code at the bottom of
the first page, copying is permitted provided that the per-copy indicated in the
code is paid through the Copyright Clearance Center, 27 Congress Street, Salem, MA
01970. For permission to republish write to: Director of Publications,
Association for Computing Machinery. To copy otherwise, or republish, requires a
fee and/or specific permission.

ISBN 0-89791-279-9

Additional copies may be ordered prepaid from:

ACM Order Department
P.O. Box 64145
Baltimore, MD 21264

ACM Order Number:

ii

533880

Price:
Members •••••••• $20.00
All others •••••••• $26.00

DEFS-ALAOO 10587

The VMP Network Adapter Board (NAB):
High-Performance Network Communication

for Multiprocessors

Abstract

Hemant Kanakia
Computer Systems Laboratory

· Stanford University

High performance computer communication between multipro­
cessor nodes requires significant improvements over conven­
tional host-to-network adapters. Current host-to-network adapter
interfaces impose excessive processing, system bus and interrupt
overhead on a multiprocessor host Current network adapters are
either limited in function, wasting key host resources such as the
system bus and the processors, or else intelligent but too slow,
because of complex transport protocols and because of an in­
adequate internal memory architecture. Conventional transport
protocols are too complex for hardware implementation and too
slow without it.

In this paper, we describe the design of a network adapter
board for the VMP multiprocessor machine that addresses these
issues. The adapter uses a host interface that is designed for min­
imal latency, minimal interrupt processing overhead and mini­
mal system bus and memory access overhead. The network
adapter itself has a novel internal memory and processing ar­
chitecture that implements some of the key performance-critical
transport layer functions in hardware. This design is integrated
with VMTP, a new transport protocol specifically designed for
efficient implementation on an intelligent high-performance net­
work adapter. Although targeted for the VMP system, the design
is applicable to other multiprocessors as well as uni-processors.

1 Introduction

Performance of transport protocols on multi-megabit communi­
cation networks tends to be limited by overhead at both the trans­
mitter and receiver. For example, measurements of the V kernel
[5] indicate that network transmission time on Ethernet accounts
for only about 20 percent of the elapsed time for transport-level
communication operations, even with its highly optimized proto­
col. Similar performance figures have been reported in [15, 17].
Although processor and memory cycle times keep improving,
with communication networks moving to gigabit range, we ex­
pect the processing to persist as a bottleneck - unless significant
improvements in network adapter and transport protocol designs

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear.
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise. or to republish. requires a fee and/
or specific permission.

© 1988 ACM 0-89791-279-9/88/008/0175 $1.50

175

David R. Cheriton
Computer Science Department

Stanford University

are achieved. We identify three major problems with current
designs.

First, the host-to-network adapter interface imposes excessive
overhead, particularly on a multiprocessor host, in the form of
processor cycles, system bus capacity and host interrupts. The
processing overhead arises from calculating end-to-end check­
sums, packetizing and depacketizing as well as encryption, in
the case of secure communication. The memory-intensive pro­
cessing required by these functions reduces the average instruc­
tion execution rate especially for a high-performance proces­
sor such as MIPS [14] in which memory reference operations
are proportionally much slower than register-only operations.
This processing causes the data to move at least twice over the
system bus; once from global memory to the processor (or its
cache), and once when the packet is copied to a network adapter.
The increased traffic wastes system bus bandwidth, a critical re­
source in multiprocessor machines. In current host-to-network
adapter interfaces, a host is interrupted for each packet received
or transmitted. These per-packet interrupts force frequent con­
text switching with the attendant overheads, with a high penalty
in the multiprocessors system with processor caches, where it
may be necessary to fault code and data into the cache before
responding to the interrupt In addition, the context switch may
also incur contention overhead when data associated with the
network module is resident in another cache. The problem is fur­
ther aggravated by the prospect of networks moving to the 100
megabit up to the gigabit range using fiber optics (11, 13, 16].
For instance, in a file server attached to a 100 megabit network
with the interface interrupting on every 2 kilobyte packet, the
network interrupts every 200 microseconds under load, hardly
sufficient to do even minimal packet processing.

Second, the so-called "intelligent'' network adapters that im­
plement transport-level functions have lower performance at the
transport-level as compared to the alternative system where a net­
work adapter does programmed 1/0 transfers and a host performs
transport protocol functions. The primary reason is an inadequate
internal memory architecture. Currently, the data transfers into
and out of the buffer memory reduces the number of memory
cycles available for packet processing. The future system bus
technology, with a high transfer rate and the burst-mode transfer,
and the future networks, with a high data rate, will make this
problem even more acute.

Finally, conventional transport protocols are too complex or
awkward for hardware implementation and too slow without it.
For a large packet, the processing cost incurred in checksumming
and encryption dominates the packet processing, since the cost
increases in proportion to the size of a packet. Hardware im­
plementation for such key performance-critical functions would
substantially increase performance, but the packet formats of

DEFS-ALAOO 10588

conventional transport protocols are does not facilitate hardware
support or implementations.

An additional factor that motivates rethinking network adapter
architecture is the problem of a host being bombarded by packets
from one or more other hosts. The packet arrival rate, especially
in a high-speed network, can exceed the rate at which a host can
process and discard these packets, effectively incapacitating the
host for useful computation. Excessive packet traffic can arise
either from failures or malicious behavior of a remote host. A
well-designed network adapter acts as a "firewall" between the
network and the host

In this paper, we describe the Network Adapter Board (NAB)
for the VMP multiprocessor [3], focusing on the architectural
issues in the host interface, the adapter board, and the transport
protocol. The adapter host interface architecture is designed
for minimal latency, minimal interrupt processing overhead and
minimal data transfer on the system bus. The NAB uses a novel
internal memory and pipelined processing architecture that im­
plements some of the key performance-critical transport layer
functions in hardware. The design is coupled to a new transport
protocol called Versatile Message Transaction Protocol (VMTP)
[1]. VMTP is a request-response transport protocol specifically
designed to facilitate implementation by a high-performance net­
work adapter. VMTP assumes an underlying network (or inter­
network) service providing a datagram packet service, and in­
cludes support for multicast, real-time, security and streaming.
The interested reader is referred to an Internet RFC [l] for fur­
ther details. For brevity in this report, we focus on aspects of the
protocol relevant to the cost of communication and the design
of the VMP network adapter. We describe the expected perfor­
mance of the NAB prototype being built. Although targeted for
the VMP system, the design is applicable to other multiproces­
sors as well as uni-processors.

The next section describes the host-to-network adapter inter­
face architecture. Section 3 describes the internal architecture of
the network adapter board. Section 4 describes details of a pro­
totype of the network adapter. Section 5 indicates the (expected)
performance for this adapter. Section 6 compares our design to
related work on this problem. We conclude with a summary of
the current status, our plans to further evaluate this design and
the current open problems in this area.

2 Host-Network Adapter Interface

A request/response model of communications is used for infor­
mation exchange between a network device and a host. A host
requests network services with a control block sent to device, and
the device returns a response after the service is provided. These
messages are transferred across via an interface that appears to
the host software as a 1024-byte control register.

To transmit data, the host software writes a control block, the
Transmit AUlhorization Record (TAR), to this control register.
The TAR contains control information describing data to be sent
including the pointer to data in physical memory. If the data
fits entirely within the control register, the data segment descrip­
tion is omitted from TAR. In both cases, the network adapter
transmits the data, checksumming and encrypting (if required).
Interface interrupts host to inform that a TAR has been used to
successfully transmit the data.

To receive data, the host software writes a control block, a
Receive Authorization Record (RAR), that "arms" the network

interface to receive packets, specifying the maximum size to
receive and providing a list of pointers to memory pages in host
memory into which to deliver the data. The RAR can specify
any one of: (1) a specific source, (2) a class of allowable sources
or, (3) any source for the received data. where source is either
a transport-level or network-level address.

The interface interrupts the host when the received packet(s)
satisfies one of these RARs, returning the RAR, along with the
packet header, to the appropriate host via the control register.
The returned RAR itself may contain small amounts of data in
addition to the corresponding packet header. When the RAR is
returned, the data has been already stored in the host memory at
the location pointer(s) contained in it, unless the data is contained
in the RAR. Incoming packets are discarded if they cannot be
matched to an outstanding RAR.

Type, a subfield in the control block, distinguishes the records
passed via the control register. Four major types of records, used
in transmission and reception of data, are an RAR with small
amounts of data, an RAR with data descriptors, a TAR with small
amounts of data and a TAR with data descriptors. To optimize
host-network adapter interactions, host is allowed to combine
issuing of a TAR and RAR, using the same buffers to send and
to receive data. Additional types of records are used by a host for
various purposes such as to add or delete acceptable destinations,
to restrict traffic from a source, to provide decryption/encryption
keys to the NAB, to get status information, and to reset the NAB.

The RARs and TARs include a packet header including a
network-level header, either small amounts of data or a list of
data descriptors, and various control information. The buffer
descriptors in a TAR point to locations in the physical memory
space where data to transmit is available. The buffer descriptors
in an RAR point to locations in the physical memory space
where the data is to be received. The returned RAR or TAR
contain in addition to the buffer descriptors the number of data
words actually received or transmitted. The control information,
used by NAB, includes a link field, type of RAR matching to be
used, transport-level source and destination addresses, interrupt
control, timeout control, a local host number, and a local process
identifier. The buffer descriptors are omitted for T ARs and RARs
containing small amounts of data. A link field, used by the
adaptor, allows chaining of these records as necessary. The type
of RAR matching to be done indicates if the RAR can be used
for receiving traffic only from the specified source or any source.

Interrupt control is used to determine when to interrupt the
host identified in the record. On reception, the host, indicated
by the host number, is interrupted either when the data of the
first packet is stored in the system memory or when the data is
completely received or both. The completed RAR is returned via
the control register with the length of data received before the
host indicated in RAR is interrupted. On transmission, one may
have the host interrupted either when the NAB begins processing
a TAR, or when the last of the data segment is transmitted.
The TAR is written into the control register before a host is
interrupted.

In the following, we discuss how this interface efficiently
handles small amounts of data, large amounts of data, and also
allows the interface to act as a firewall, protecting the host from
the network.

176

DEFS-ALAOO 10589

2.1 Short Message Handling

The latency with short messages is minimized because the short
message is written to the interface as part of the TAR and read
as part of the returned RAR on reception. The operating system
interrupt handlers for the network adapter can directly copy the
message data between the control register and the operating sys­
tem data structures, moving the higher-layer data to its intended
destination with minimal cost. For multiprocessor hosts with
per processor cache this procedure also avoids additional cache
and bus activity, as we expect the small amount of data to be
already available in cache before being sent with TAR or used
immediately after having received in an RAR. Thus, the delay
introduced in transmitting and receiving a packet with a small
amount of data is no more than that incurred with a host directly
handling the packet and using the interface as a staging area to
send and receive packets.

Note that including the packet header in the TAR means that
the processor writes a small amount of data to the interface for
transmission yet the network adapter has minimal processing
on the data to prepare packets for transmission. In particular,
for small data appended to header, the network adapter need
not do anything before starting network transmission, given that
checksumming and encryption occur as part of transmission.

2.2 Long Message Handling

Host overhead is minimized for the transmission and reception
of large amounts of data, typically in the range of 4-16 kilobytes,
by passing descriptors rather than actual data. On transmission,
the host writes one TAR and receives one completion interrupt,
with the network adapter transferring the data from host memory
with minimal bus overhead. 1 The network adapter handles the
per-packet overhead of packetizing, checksumming, encryption
and per-packet coordination. On reception, the host receives a
single interrupt for each RAR returned after the data has been
transferred into global memory. Again, the per-packet interrupt
overhead is handled by the network adapter.

Latency in transfer of large amounts of data is reduced by
ensuring minimal bus and memory references. Moving byte­
based processing functions such as checksumming and encryp­
tion to network adapter reduces memory references to one per
data word. Passing buffer descriptors to network adapter which
retrieves data from host memory ensures that only one bus trans­
fer per word transferred is required. For multiprocessors with
per-processor cache, the buffer-passing model helps reduce num­
ber of cache misses one would otherwise incur, as a cache is
neither likely to have most of the data transferred nor going to
use it in the near future. The cache pollution, resulting from us­
ing cache for network data transfers, would also increase cache
miss ratio for other applications. An additional factor reduc­
ing latency is the use of burst-mode transfer on host bus, which
decreases transfer time of data on the bus by a factor of 4.

In sending and receiving groups of packets, the interface can
afford to introduce some latency for the first packet of the group
as long as the whole transmission and reception has less delay
as compared to a host processor handling per packet processing.
That is, for a small number of packets K, it should be the case
that

K * Pho.i > D + K * Pinter face
~~~~~~~~~~ 

1 The VMP memory supports block transfer using the VME serial bus protocol, 
thereby minimizing bus occupancy and arbitration overltead 

where writing the control record to the interface introduces a 
delay D in transmission over the host processor writing the data 
directly to the network, K is the number of packets to be trans­
mitted, Pho•t is the time for the host to packetize and send one 
full-sized packet and Pinter 1 ace is the time for the interface to 
transmit one full-sized packet. The value of K for which this is 
true should be as small as possible, ideally 1 but certainly less 
than the common size of a multi-packet packet group. In this 
interface, the value is close to l primarily because Pinter J ace is 
much smaller than Pho•t. 

177 

2.3 Network Firewall 

The interface architecture is designed to allow the network 
adapter to function as a firewall, protecting the host from network 
packet pollution, both accidental and malicious. In essence, a 
host incurs no overhead for network packets whose reception 
it has not authorized; the interface discards all packets that are 
not compatible with an RAR provided by the host and are not 
directed to an end-point registered with the adaptor. Some ex­
amples of its use follows. If the host does not provide an RAR 
for broadcast packets, then garbage broadcast packets incur zero 
overhead on the host processor(s). Multiple responses generated 
by a multicast request can be limited to only those that fit into 
the buffer area provided; the rest are discarded without incurring 
any host overhead. By providing RARs for only those sources 
it wants to listen to, a process could avoid host overhead re­
quired otherwise for pruning out the traffic from unauthorized 
sources. In general, the authorization model of packet reception 
plus the speed of the network adapter insulates the host from 
packet pollution on the network. 

3 Network Adapter Internal Architecture 

The network adapter internal architecture is designed to provide 
maximal performance between the host interface and the net­
work architecture. The internal architecture is structured as five 
major components, interconnected as shown in Figure 1. These 
components serve the following functions: 

Network access controller (NAC) : implements the network 
access protocol and transfers data between the network and 
the packet pipeline. 

Packet Pipeline : generates and checks transport-level check­
sums and performs encryption and decryption of data in 
secure communication. 

Buffer memory : a staging and speed-matching area for data in 
transit between the packet pipeline and the host memory. Its 
specialized buffer memory permits fast block data transfers 
between the network and host and provides the on-board 
processor with contention-free memory access to the packet 
data. 

Host block copier : moves data between the buffer memory 
and the host memory using a burst-transfer bus protocol, 
minimizing the latency as well as the bus and memory over­
head for transfers. 

On-board processor : a general-purpose processor that man­
ages the packet processing pipeline and various bookkeep­
ing functions associated with the protocol. 

DEFS-ALAOO 10590 



y Network Adapter 
Boerd (NAB) 

BUFFER 
llEllORY 

CONTROUfR 

Hf J CHECKSUll I EHCRYPllON I NET#ORK ACCESS 
'1 LOGIC LOGIC CONTROLLER 

PACKET Pl'BJIE IElWOllC Ull( 

• 
llOST llTEllFACE 

HOST BLOCK COPIER 

I 

• Host Bus 

Figure 1: Network Adapter Internal Architecture 

Transmission is handled in three steps. When a Transmission 
Authorization Record is written to the interface, it is moved into 
the interface from the host memory by the host block copier. 
The TAR provides a description of the segment of data in the 
host memory to transmit Next, the on-board processor forms the 
first packet from the TAR and first data blocks of the message 
and queues the packet for the packet pipeline using the infor­
mation provided by the TAR. Finally, the packet is processed 
and transmitted by the packet processing pipeline and NAC at 
the network data rate. The pipeline calculates a checksum and 
optionally encrypts the data as the packet is transmitted. 

On reception, a packet is accepted by the NAC and passed 
through the packet pipeline which decrypts the data, verifies 
the checksum, and deposits the received packet into the buffer 
memory. If the received checksum is verified, the packet is 
matched to the appropriate RAR. For the first packet in a group of 
packets, this may involve locating and allocating a non-specific 
RAR, making it dedicated to receiving more packets from this 
source. The packet data is then delivered into the host memory 
associated with this RAR. The reception of a packet into the 
buffer memory proceeds concurrently with both the checksum 
verification and the transfer to the host of previous packets. On 
reception of the final packet or on timeout, the host is interrupted 
and informed of the receipt of this packet group by returning 
the RAR in the interface control register. Thus, the host is 
interrupted only once per RAR used by the NAB. 

If there is no matching RAR for a packet, the adapter deter­
mines whether the destination address is locally acceptable. An 
address is locally acceptable if the address is in the local host's 
list of destination addresses, both individual and group addresses. 
The adapter then transmits a response to the local host indicat­
ing that the packet was discarded. When the destination address 
is valid but no RAR is found, the interface discards the seg­
ment data and returns an indication to the destination host via 
the control register. The interface does not time out a partially­
filled RAR; the partially-filled RAR is returned to the host only 

on an explicit request from a hosL The host handles sending 
out retransmission requests and various timeouts. The host also 
sends acknowledgments and handles retransmission requests by 
issuing a new TAR. 

Three key aspects to the design are the buffer memory, the 
packet processing pipeline, and the use of the general-purpose 
processor, as discussed in the following sections. 

3.1 The Buffer Memory 

The network adapter requires buffer memory in order to speed­
match between the host bus and the network as well as to pro­
vide a staging area for the transmission and reception of pack­
ets. Three issues arise with the buffer memory design. First, the 
buffer memory must provide sufficient contention-free memory 
access to support simultaneous uses by the on-board processor, 
NAC, and block copier, as occurs under load. The performance 
of many so-called "smart" network adapters suffer from this con­
tention. Second, the buffer memory must minimize latency for 
packet transmission and reception over direct transmission be­
tween the host memory and the network. Finally, a provision is 
required to prevent overcommitting the buffer memory to either 
transmission or reception, which would interfere with the func­
tioning of the adapter. Our approach to each of these issues is 
discussed below. 

178 

3.1.1 Buffer Memory Contention 

To minimize contention, the buffer memory uses dual-port static 
column RAM components, also referred to as Video RAM ICs. 
The Video RAM-based buffer memory, shown in Figure 2, pro­
vides multiple buffers to hold and to process packets while a 
packet is being received or being transmitted. This IC provides 

4 bb 18 Video Rim : 32-llil word 

Address Random-access 

Dll&Porl 

Figure 2: Video RAM-based Buffer Memory at Network Adapter 
Board (NAB) 

two independently accessed ports: one providing high-speed 
burst-mode transfer, and the other providing random-access. The 
serial-access port is used to move a packet from the network into 

DEFS-ALAOO 10591 



the buffer memory or the data from host memory to the buffer 
memory. The random-access port provides memory access for 
on-board processing of packets by the adapter's general-purpose 
processor. The serial access does not need address set-up and 
decoding time so read-write times on this port are faster than 
read-write times for a RAM array. For instance, in our proto­
type, memory is 32 bits wide, the serial access time is 40 ns per 
word and the cycle time for random read/write access is 200 ns. 
This gives an effective transfer rate of 800 megabits/second over 
the serial port and 160 megabits/second over the random-access 
port. To provide the equivalent memory bandwidth on a single 
ported standard 32-bit wide memory would require a memory IC 
with read/write cycle time of 33 ns. Currently, such fast mem­
ories are available, but they cost more and have less memory 
density than video RAMs. 

Data transfer operations in this memory proceed as follows. 
A packet (or data) is received from the network (or the host) via 
the serial port into the shift register contained in Video RAM 
ICs. The shift register acts as the temporary storage. When 
the block is completely received, it is transferred from the shift 
register, in a single memory cycle, to a row of the memory cell 
array constituting the buffer memory. The processor manipulates 
header fields of packets stored in the array via the random-access 
port. The processing of a packet continues without interference 
while the next packet is being received, except for one memory 
cycle stolen for each received packet transferred to the memory 
cell array from the shift register. 

Video RAM lCs provide performance that closely approxi­
mates the performance of true multiport memories, but at a frac­
tion of the cost. A triple-port memory cell would triple the area 
of the memory cell, reducing memory density and increasing its 
access time. Video RAMs provide full memory bandwidth to 
the processor at low cost. They also allow high-speed block 
data transfer between the buffer memory and the host and the 
network. The separate serial port avoids the processor losing 
memory bandwidth to arbitration overhead on the random access 
port. The serial transfer ports, accessed in parallel across a bank 
of video RAM ICs, maximizes the data unit to be transferred 
per arbitration between the host block copier and the NAC and 
minimizes the transfer time, thereby minimizing the arbitration 
penalty. 

High speed FIFOs could be used as an alternative to the buffer 
memory described above to speed-match between the host and 
the network. Intuitively, a FIFO-based design should have min­
imal delay for two reasons. With short FIFOs, one begins to 
process and transmit the packet before the entire packet has been 
copied. With FIFOs, one avoids the software overhead of man­
aging input and output packet queues. Nevertheless, our buffer 
memory design provides better performance for reasons outlined 
below. 

When the system bus is lightly loaded, our design compares 
favorably with the FIFO approach for large and small amounts 
of data transfers. For large data transfers, our design amortizes 
the buffering latency of the first packet over multiple packets. 
For a short single packet transfer, the difference in delay is small 
because the main source of delay in this case is the processing 
done at a host and the adapter, not the time of copying data to 
the interface. 

However, at even moderate levels of bus traffic, our design 
outperforms the FIFO-based approach. When the bus is con­
gested, the demand for bus access may not be satisfied in time 
to avoid underrunning or overrunning a FIFO, resulting in packet 

loss at a sender and at a receiver. The time thus lost in transmit­
ting aborted packets as well as the retransmission delay increases 
the total time needed to transfer a data segment. 

Mismatch between transmission data rates on the host bus 
and the network channel also supports using the buffer memory. 
When host bus speed is much higher than network channel speed, 
the additional delay for bringing the first packet in full before 
beginning transmission is negligible compared to the total trans­
mission time for a large data segment. When host bus speed is 
comparable to (or lower than) the network channel speed, bring­
ing in a full packet before starting transmission is necessary to 
avoid (frequent) loss of packets by contention on the bus. 

179 

3.1.2 Buffer Latency 

Buffer latency refers here to the additional delay caused by the 
on-board buffering of a packet over the direct transmission by 
host to network. We minimize it by using a hardware block 
copier and by using contention-less memory accessing. A block 
copier transfers data between host memory and NAB using a 
serial memory transfer protocol, which minimizes transfer time 
and bus occupancy. Moreover, the NAB memory design de­
scribed above facilitates high speed block data transfers 2 and 
provides contention-less memory accessing, both minimizing the 
buffering latency. 

In this design, the cost of the buffering latency of the first 
packet is amortized over the subsequent packets sent in the 
packet group. The subsequent packets are copied from the host 
memory or the network link in parallel with the processing of 
the previous packet transferred, hiding the cost of their buffer­
ing latency. For large amounts of data, the buffering latency of 
the first packet forms only a small fraction of the total delay, 
For instance, the minimum transmission time for 16 Kbytes of 
data over a 100 megabits/sec network is 1.31 ms; whereas, the 
buffering latency for the first packet in this packet group is ap­
proximately 25 microseconds, 3 which is less than 2 percent of 
the total transmission time. The latency is even less significant 
compared to request-response delay for large data transfers, as 
this delay includes processing times at the host processors. 

We note that the data transfer between host and interface 
buffer memory does not constitute an extra copy because the 
NAB performs all the functions that the host processor would 
have otherwise performed if it was performing the transfer. That 
is, the interface memory is required as a staging area for incom­
ing and outgoing network traffic in any case. 

3.1.3 Reception of Garbage Packets 

Ideally, the mechanism for matching a packet to an RAR is 
fast enough so that it canriot be overrun by receiving garbage 
packets from the network. The packets with correct node address 
or multicast packets may still be undesirable, if the host is being 
bombarded with them by a network malfunction. In the interface, 
the on-board processor is not involved in transferring packets 
into the interface memory, and can receive a number of packets 
without being interrupted by the NAC. In the prototype, the RAR 
matching algorithm run at the NAB is fast enough to keep up 

2 The maximum transfer rate, using currently available Video RAMs, may be 
as higll as 800 megabits/sec, assuming word width of 32 bits and 40 ns cycle time 
on the serial port. 

3 Calculated by assuming packel si:z.e of 1024 bytes and block transfer rate of 
320 megabits, available with the burst transfer on the VME bus. 

DEFS-ALAOO 10592 



with a packet rate in excess of 16,000 packets/sec. As long as 
the network throughput does not exceed this limit, the buffer 
memory cannot become full of packets that do not match an 
RAR, and the availability of buffer memory to receive authorized 
packets remains independent of the network pollution that may 
be talcing place. 

3.2 The Packet Pipeline 

The network adapter incorporates several hardware modules that 
constitute an interlocked packet pipeline, performing checksum­
ming, encryption and network access on transmission, and the 
reverse on reception, all operating at the network data rate. Each 
stage in this pipeline is a simple operation, such as memory 
read/write, compare, and one's complement, as needed for these 
algorithms. The data transfer unit between stages is 32 bits. A 
word is prefetched at each stage and stored until the function 
is completed. A short FIFO is included in the NAC to allow 
for setup delays for decryption and node address recognition on 
packet reception. The on-board processor updates packet head­
ers and queues the packets for transmission as well as processes 
packets on reception. 

Use of the packet pipeline, mandates the common format used 
for all VMTP packet types, shown in Figure 3, which is designed 
so as to minimize processing delay, overhead and complexity. 
The first field specifies the client entity associated with the mes-

I Ci.,t_D I Ltnglh I Alltollllld• Dita 

Figure 3: Common format for all VMTP packets 

sage transaction, the indicator for the decryption key to be used 
with the packet. The second field indicates the length of the 
packet and various address qualifiers. It is sent in the clear, 
providing the network adapter with some time to access the de­
cryption key before it encounters the encrypted portion of the 
packet. Various other fields follow that indicate the VMTP type 
of packet, its packet group and its position within the packet 
group. The order of these fields also corresponds to the order in 
which the reception logic needs to map the packet to a particu­
lar client, packet group and data within the packet group. The 
checksum field is located at the end of the packet, (rather than 
in the header) so that it can be calculated "on the fly" on both 
transmission and reception. The length field specifies the offset 
of the checksum field from the beginning of the packet. 

Reception processing proceeds as follows. When a packet 
starts to arrive at the network access controller, it checks the des­
tination address and then forwards the first words of the packet to 
the first stage of the decryption hardware. At this stage, the first 
data word received is delayed until a decryption key is located 
in the decryption key cache (indexed using a hardware hashing 
function on the destination address). If the key is located, the 
data proceeds through the decryption stages, each one of them 

performing a function in the decryption algorithm. 4 If the key is 
not located or decryption is not needed, the data stream proceeds 
to the checksumming stage with the decryption stages disabled. 
The start and end points for checksumming of data bytes is spec­
ified by the offset values initialized by the user. Each data word 
is passed through a l's complement sum to form two 16-bit 
partial checksums. 5 At the end of receiving a packet, a 32-bit 
checksum is calculated from the partial checksum and added to 
the buffer. The final step is to write the data word in the se­
rial staging register. When the end of the packet is received, 
the data is moved to a receive buffer address provided by the 
serial-port controller. The empty buffer addresses are provided 
to the controller by the on-board processor. The received buffer 
is queued for header processing by the on-board general-purpose 
processor. 

The received packet is lost if the buffer memory is full. A 
packet is also lost whenever the transmission is interrupted due to 
the lack of data in any stage of the pipeline. Both these unusual 
conditions require flushing and restarting of the pipeline, a task 
that is handled by the processor. 

A packet pipeline as described increases the performance due 
to the following reasons. The processing overhead of perform­
ing functions such as checksumming and encryption is hidden 
in the copying operation, i.e., the copying of packets from the 
network to the buffer memory. Otherwise, additional memory 
references would be required to perform checksumming or en­
cryption, wasting bus capacity as well as memory bandwidth, 
which are critical resources in a multiprocessor system (and in a 
network adapter). The latency due to the packet pipeline is kept 
low by using very few stages, and by restricting the width of 
the pipe. In the prototype, the pipeline uses fewer than 5 stages 
and a 32-bit wide data path. In contrast, if a larger unit of inter­
stage data transfer, such as a full packet, were used, the time to 
fill up the pipeline would be larger, thus increasing the latency 
to transmit a packet. Finally, many simple stages, implemented 
in hardware, and running in parallel provide better performance 
than a single fast processor performing the same functions. 

180 

The fine-grained, tightly synchronized processing achieved by 
the packet processing pipeline suggests that comparable perfor­
mance would be difficult, if not impossible, to achieve with mul­
tiple general-purpose processors working in parallel. In particu­
lar, with a single packet transmission or reception, the multipro­
cessor solution would perform at the level of a single processor, 
which is far below the performance of the NAB pipeline. With 
multi-packet transmissions and receptions, each processor has 
to wait for the reception of "its" packet before it can start pro­
cessing the packet. The combination of waiting for these large 
units of data, the processing overhead per packet and the limited 
number of packets in a "blast" makes this approach unattractive. 

A general-purpose multiprocessor solution is further ham­
pered by the degree of correlation observed between successive 
packets received from the network. For example, the measure­
ments of the VMTP traffic on a 10-MB Ethernet [4] show that 
statistically the packet currently being received belongs to the 
same message transaction to which the previous packet belongs. 
Because packets in the same message transaction share control 
block information at sender and receiver, this correlation results 
in interference among multiple processors for both memory ac-

4 For the prototype, we have used a single cycle of product cipher algorithm 
that is similar to the DES standard. 

s The complete checksum algorithm used is described in the specifications for 
VMrP[l]. 

DEFS-ALAOO 10593 



cess and synchronization. Thus, a general multiprocessor ar­
chitecture in which each processor works on a different packet 
appears significantly inferior to the pipelined architecture of the 
NAB. 

We have placed the packet pipeline between the buffer mem­
ory and the network, forcing it to run at the network data rate. 
The alternative would be to place it between the host bus and 
the buffer memory. The alternative placement is undesirable 
on many counts. Burst transfer rates on host buses are much 
higher than network rates, forcing one to operate the pipeline at 
higher data rates. The synchronization of the pipeline operation 
with the bus is also more difficult because the interface typi­
cally involves transfer of data from memory as well as control 
information from one or more host processors. Moreover, on 
reception we do not know where to put data until the received 
packet is decrypted, further complicating the pipeline design. 
Last but not least, placing the pipeline at the host-end precludes 
strict implementation of a network firewall; data is transferred 
across the system bus before detecting checksum errors or that 
the packet is not wanted. 

Most transport-level protocols preclude strict pipeline process­
ing as described here because the checksum field is included in 
the header. As a consequence, the checksum has to be calculated 
before the packet header can be transmitted, preventing signif­
icant pipelining. VMTP appends the checksum to the end of 
the packet to allow pipelining. It also uses a 32-bit checksum 
for compatibility with the pipeline width, as compared to the 
conventional 16-bit checksums used in TCP. 

It is the design of packet pipeline which causes the network 
adapter to be protocol-specific. It implements a specific check­
sum and encryption algorithm. Moreover, it uses the layout 
of VMTP packet to calculate various offsets to begin and end 
checksum operations. Adopting a common packet format shown 
in Figure 3, and using programmable control, the pipeline could 
be used for other transport protocols. The problems posed by 
variable network-level header, often found in Internet environ­
ment, can be dealt with by including a length of header field 
within this header. 

Each stage of the pipeline logic is simple and needs to use 
very low-level of integrations. This has the advantage that as the 
networks move to a gigabit range, the pipeline's rate of execution 
can be speeded up by implementing it in Gallium Arsenide based 
logic circuits, which currently provides above 1000 gates in a 
package and operates in gigabit range. 

3.3 The On-board Processor 

The network adapter includes a general-purpose processor that 
manages the buffer memory, the host block copier and the packet 
processing pipeline. A general-purpose processor was chosen for 
these functions because they are significantly more complex than 
other functions, offered less performance benefit in a specialized 
hardware realization, and were less understood than the packet 
pipeline and block copier functions. The cost of processing per­
formed by the NAB processor seems to be equally shared among 
various functions rather than being dominated by a few perfor­
mance critical functions, thus reducing any potential benefit of 
the hardware realization. Moreover, using a general-purpose 
processor instead of a special-purpose protocol processor allows 
one to benefit from the continual advances in microprocessor 
technology. 

181 

With the general-purpose processor, we can program the basic 
queueing and dequeuing required to manage the buffer memory 
as well as any functions required by the protocol. However, we 
have taken care to partition the processing between this on-board 
processor and the host processors as follows. The on-board pro­
cessor executes the "common case" packet processing, namely, 
the error-free transmission of packets; whereas, a host processor 
executes the "rare" case packet processing, which includes func­
tions such as acknowledgment and retransmission of messages. 
The distinction is made primarily to simplify and thus execute 
faster the functions critical for improving the whole transmission 
or reception. For example, when transmitting a VMTP packet 
group, the processor updates the header delivery mask and ap­
pends a new buffer of data to the packet header between packets, 
queuing the new packet for the packet pipeline. However, one 
of the host processors is charged with forming the header for the 
first packet of the group because this task is more complex and 
requires close interactions with the user process and the operat­
ing system. 

The on-board processor keeps a queue of TARs and RARs 
waiting for processing. The TARs for sending a single packet 
are directly queued for transmission. The others are added to 
a circular queue of TARs scanned periodically by a scheduler. 
The scheduling of TARs take into account the priority and the 
interpacket gaps timing constraints attached to each TAR. Typi­
cally, each ready TAR gets to send a packet before the next one 
can be sent from the same group of packets. 

A Hashing algorithm is used to match the incoming packet's 
destination address to the locally acceptable addresses. The hash 
table entry contains the acceptable destination, local host num­
ber, local process identifier, and a pointer to a queue of waiting 
RARs. For the first packet in a group of packets, the packet's 
destination address is first used to locate the appropriate queue 
of RARs and then to match the appropriate RAR. The matched 
RAR is assigned to this group of packets and added to a list of 
recently matched RARs. This list is scanned first for the subse­
quent packets of this group of packets. In addition to filtering 
done by matching of RARs, it is also possible to filter packets 
based on a small number of (network-level or transport-level) 
source addresses from which all traffic is refused. The facil­
ity implements the "firewall" function which allows the NAB 
resources to be protected to some extent from failures or ma­
licious behavior of a remote host processor or a user process. 
The selection of the appropriate source address to block on is 
done by a local host processor monitoring the traffic from the 
network. 

The RARs and TARs remain indefinitely at the NAB until ei­
ther the operation requested is completed or until a host requests 
them back by issuing a reset of the NAB. This "soft" reset opera­
tion allows a host to clear a destination's queue of waiting RARs 
or TARs, or all RARs and TARs at the NAB. Explicit timeouts 
per TAR or per RAR, based on the timeout values provided by 
a host, is an alternative way of handling the problem of unused 
RARs or TARs. The explicit requests to flush out the unused 
records minimizes the timer-related NAB processing, which is 
a non-trivial overhead especially at servers that may have many 
outstanding RARs and TARs. We expect the frequency of such 
flushes to be small, justifying the additional overhead of the 
"soft" resets. 

DEFS-ALAOO 10594 



4 Details about the Prototype 

The prototype Network Adapter Board (NAB) has been designed 
using Motorola's MC68020 as the on-board processor, running at 
16 Mhz clock rate; it uses about 200 hundred standard MSI and 
LSI components. The current version is designed for connect­
ing two VMP multiprocessor system (3) with a 100 megabiUsec 
point-to-point connection. 

The 256 kilobytes of buffer memory available through the 
random-access port is divided into two physical memory banks 
of equal size. Serial ports are connected to two 1024 bytes 
of serial-access memories, internal to the memory ICs, one per 
physical memory bank. Data transfers between a serial-access 
memory and the random-access memory take approximately 200 
ns, and requires one to provide the row address on the address 
bus. A dual-port DRAM controller, an 8207, is used to arbitrate 
the use of the address bus by the packet pipeline, by the VMP 
bus, and by the MC68020. 

A crossbar switch connects two serial access memories to 
transmit and receive pipeline, and read and write operations from 
the VMP bus, controlled either by host interface or by a block 
copier on the NAB. The serial access ports connected to the 
VMP system bus, which is a VME bus, allows block transfer 
(with the maximum block size of 1024 bytes) at 320 megabiUsec, 
using the serial mode of the VME bus. The serial access ports 
connected to packet pipelines transfers data at network rates up 
to 100 megabits per second. The other port, the random-access 
port, is connected only to the on-board processor. The serial-port 
controller stores buffer addresses provided by the on-board pro­
cessor and controls the transfers between serial-access memories 
and the random-access memory. 

The buffers are divided into two logical areas: one that con­
tains packets received and one that contains data pulled in from 
the host memory. The mapping between the logical and the 
physical memory space is changed in order to move data from 
the host to the network without actually moving data. The cross­
bar swit.ch, controlled by the logical-to-physical map setup by 
the on-board processor, directs the incoming data from the host 
or the network to the appropriate physical memory bank. 

Transmit and receive packet pipelines are separate, allowing 
full-duplex communications over the network. These pipelines 
are 5 stages long, and use a 32-bit wide data path. The Receive 
pipeline also includes 4 words of FIFO storage, used for delay­
ing the data stream until the decryption key is located. These 
pipelines work with the clock signals supplied by the Network 
Access Control (NAC) hardware. 

The received packets are added to a queue of packets wait­
ing for on-board processing. Addresses of empty buffers wait­
ing for reception are buffered in a FIFO. The hardware reacts 
fast enough to accept back-to-back packets, with less than 500 
nanoseconds gap, as long as buffers are available. On receiv­
ing an interrupt from the NAC, the receive buffer is linked to 
the receive queue by the on-board processor. Consecutive row 
addresses are used to receive packets larger than 1024 bytes. 

The transmission and reception of packets over the network 
link are handled by the NAC hardware. The on-board processor 
sets up the pipeline to transmit the next packet. The packet is 
transmitted on a signal received from NAC, which implements 
the media access control protocol. The current version uses a 
point-to-point high-speed link, simplifying the media access con­
trol part of the NAC. The future versions of the NAC, designed 

to deal with multiaccess links such as the FDDI ring network 
(11), will have additional functions such as node address recog­
nition and CRC checks. When a packet is fully transmitted, 
the on-board processor is interrupted. The on-board processor 
returns the packet buffer to the pool of empty buffers and sets 
the pipeline for the next transmit packet. On transmission of 
packets, a timer is used to help in implementing a fine-grained 
rate-based flow control policy, such as the one used in VMTP. 
The timer can be programmed to provide the inter-packet gap 
desired so that packets in a packet group do not overrun the 
receiver. 

182 

Host processors directly transfer data to the network adapter 
using a 1024-byte control register that is a part of the global 
memory address map. As soon as the control register is writ­
ten by a host processor, its contents are transferred to a buffer 
that is queued for the attention of the on-board processor. The 
hardware is fast enough to permit back-to-back access to the 
control register without losing a host message, provided not all 
buffers are busy. The innermost loop of the software running 
at the NAB is examining these two receive queues and taking 
appropriate actions to receive packets, and to act on the RARs 
and TARs received from the VMP processor(s). 

Large data segments are directly transferred between memory 
and network adapter by the NAB block copier. The NAB block 
copier contends for the VMP bus access like any other VMP 
host processor and transfers data between the buffer memory 
and the host memory using the serial transfer protocol of the 
VMP system bus. A VMP host is interrupted, by writing its host 
number into an interrupt register, to inform it that information is 
available in the control register. 

5 Expected Performance 

The two important cases to consider are delays for a small 
amount of data and for large data transfers. In addition, we 
also consider the reduction in processing load at servers, and 
host bus bandwidth. The expected performance is based on the 
timing information obtained from the prototype NAB design, 
and software processing time, estimated from the measurements 
of the VMTP implementation in the V distributed system. A 
lightly-loaded 100 megabit/sec FDDI ring is assumed for calcu­
lating the network delay. 

5.1 Delay for Short Packets 

Delay is the key issue in considering the performance for short 
packets. Figure 4 shows the estimated request-response time 
for a VMTP message transaction with no segment data, which 
results in a packet of minimum length, i.e., 64 bytes plus a 
network header. 

The total delay includes the network latency, which is the 
waiting time to access the network, the packet transmission time, 
the bus transfer time, and the processing times at sender and re­
ceiver for both a request followed by a response packet. We 
assume the network latency of 100 microseconds, reflecting the 
average round-trip time in a moderate size lightly loaded FDDI 
ring. The packet size is 64 bytes of VMTP packet and net­
work header is less than 16 bytes. The network delay, ignor­
ing the small propagation delay, is the network latency plus the 
packet transmission time, 100 + (80 * 8 1100) microseconds, 
which is 106.4 microseconds. The estimated NAB processing 

DEFS-ALAOO 10595 



time at the sender is 50 microseconds, based on approximately 
150 instructions needed to process the TAR, and to schedule 
the transmission. The estimated NAB processing time at the 
receiver, which includes the RAR matching time and the pro­
cessing of a received packet, is 50 microseconds, assuming that 
an RAR is found. The packet processing times at a receiver 
and a sender, estimated from the actual CPU time observed for 
Send-Receive-Reply IPC in the V operating system, are 1576 
and 1536 microseconds, respectively. These measurements are 
for a request followed by a response packet, both without a data 
segment between two SUN 3 workstations communicating over 
the 10-MB Ethernet. Using these values, we find that the total 
request-response time is approximately 3534 microseconds. 

Request Packet Response Packet Tobi (microseconds) 

Host D I I c:::::J4- 311Z 

Buslrwir D D D 04 10 

NAB Processing D D D D• 200 

11ewoit Delay D D t1t 
Sm Rlcievr 

I· ~time ---... ••~- 3534 

Figure 4: Request-response time for single short packet transfer 

In Figure 4, we note that only about 12% of the total request­
response time is spent in network adapters. The dominant factor 
is the host processing of the request and the response packet 
(about 88%). The network latency time and the NAB processing 
are each about 5.6% of the total delay. Thus, it would appear 
that further optimization of the NAB architecture for this case 
would yield marginal returns. 

5.2 Throughput for Packet Groups 

Figure 5 shows the total request-response time for transferring 
large amounts of data. To estimate this delay, we first con­
sider the delay for host memory-to-memory data transfer. The 
request-response time is obtained by adding to this delay the host 
processing times at the sender and the receiver, plus the start­
up time at the NAB for beginning a packet group transmission. 
Memory-to-memory transfer time is the network transmission 
time for a packet group, with the assumption that the packet 
processing required is less than one packet transmission time on 
the network. This is indeed the case in our design, once a packet 
group transmission begins. We neglect the small propagation de­
lay of the medium, and we neglect the network latency, which 
in this case is small compared to the total data transmission time 
and could be made smaller by sending multiple packets in each 
access to the network. The packet size is 1024 bytes and the bus 
transfer rate is 320 megabit/sec. Thus, the buffering latency for 
the first packet is 25.6 microseconds. Finally, we conservatively 
estimate 50 microseconds as the start-up time at the NAB for 
beginning the packet group transmission. 

From Figure 5, we calculate that the (expected) effective 
throughput for 16 kilobyte transfers is 44.3 megabit/sec. The 
memory-to-memory transfer rate is 94.5 megabit/sec. The 
buffering latency of the first packet and the start-up time are, 

1.52 

1.02 

0.52 

<>-<> Bua Transfer Time 
o-o NetworkTranaferTim• 
•-• Memoiy-to-Memory Tranafer Time 
x-x Requeat-Rupon .. Delay 

7 13 1$ 

0.ta S.11ment Size (Kbytes) 

Figure 5: Request-response time for large data transfers 

respectively, 0.8% and 1.7% of the total request-response time 
for reading 16 kilobytes. From Figures 4 and 5, we see that in 
the NAB architecture the Request-Response delay for both short 
and large data transfers, is dominated by the host processing 
time. 

183 

5.3 Impact on Host Resources 

Server load as well as bus capacity used for communications 
is reduced by using host-network adapter interface, described in 
Section 2. In Figure 6, we h\lve shown reduction of server load 
as the data segment size increases. The 100% load representes 
the CPU busy time as measured for VMTP implementation on 
SUN/2. The reduced server load allows a server to multiplex 
several concurrent transactions, providing an aggregate through­
put approaching memory-to-memory transfer rates shown in Fig­
ure perfPG. 

Reduced use of host bus bandwidth is illustrated in Figure 7. 
For each data segment size, the bus bandwidth used is compared 
with that necessary to checksum, encrypt, and packetize a data 
at host transferring data over the bus. Although using a cache 
to store data while performing these operations significantly re­
duces bus bandwidth, still better reduction is achieved by using 
the proposed interface. 

5.4 Effect of Improving Processor 
Technology 

The performance would improve if a powerful CPU is used both 
as the on-board processor and as a host processor. The faster 
CPU reduces the processing times at hosts and the start-up time 
for beginning the packet group transmission. Moreover, the re­
duced packet processing time at NAB, the cost of which is hidden 
in our design in the packet transmission time, allows one to use 
shorter packets with shorter transmission times; the shorter pack­
ets reduce the buffer latency time further decreasing the overall 
delay. The future workstations are also expected to use newer 

DEFS-ALAOO 10596 



ii' 100 

j 00 

~ 80 
ill 

70 

60 

50 

40 

30 

20 

10 

Paci..t Sin= 1024 bytH 

A-A NAB Prototype 

00 ....... 2---.----e--•a--·1•0--•12--·1••--1•e--•1a __ _.20 
Dtlf• kgm1111t Sin (KbytH) 

Figure 6: Reduction in Server Load due to NAB Interface 

and faster system bus designs such as the FutureBus [7], which 
can transfer data at 1.6 gigabitlsec. Taking all these factors 
in account we estimated Request-Response delay for large data 
transfers using 20-MIPS processors Figure 8. The packet size 
-is 1024 bytes and the network speed is 100 megabiVsec. The 
processing times for processors with greater than 2 MIPS power 
are derived from our measurements on an MC68020, 2-MIPS 
machine, by reducing these figures by a factor proportional to 
the processor power relative to an MC68020. 

In Figure 8, we note that the estimated throughput for 16 
kilobyte transfers with the faster CPUs and a faster bus is 88.6 
megabiVsec, and the memory-to-memory rate is within 1 % of 
the network transfer rate (100 megabiVsec). 

A well-balanced NAB architecture would match the NAB pro­
cessor's capacity to the network data transfer rate, such that the 
time for processing a packet equals the time of receiving or trans­
mitting a packet. In Figure 9, we show the expected throughput 
as the processing power increases, assuming that the system is 
well-balanced. The effective throughput is calculated for trans­
fer of 16 kilobytes using maximum packet size of 1 kilobyte. 
The request-response throughput includes host processing time, 
which is 1575 microseconds at 2 MIPS, and which is propor­
tionally reduced for a faster processor. The packet processing 
time within a packet group is estimated to take 75 microseconds 
for a 2-MIPS processor, based on approximately 150 instructions 
required for on board processing at the receiver. The processing 
time is reduced proportionally to obtain processing times (and 
thus transmission time) as the processing power increases. At 
20-MIPS, as calculated from the the memory-to-memory transfer 
rate is approximately 1 gigabits/sec. The actual system perfor­
mance is likely to be limited by the system bus capacity or the 
memory bandwidth; both of these are assumed here to be ade­
quate. 

184 

l 100 

] go 

a B() 

I 70 

60 

50 

40 

30 

20 

10 

A • · ·A NAB using Cscha 
o-o NAB using UNDIP 

A· b ·A· rf:I •A• ob •6.• -0". •" .. • "• -6 ° • 0 

• ' •• • ·~ 

O._"°"'! __ .... __ .__. __ ..._..,. __ .._ __ ...__. ...... 
o 2 4 6 s ~ tt u n n ~ 

Dllhl Segem1tnt Siu (Kbyte•) 

Figure 7: Relative use of Host Bus 

6 Related Work 

Sandy Frazer's Universal Receiver Protocol [12], developed at 
Bell Laboratories for the Datakit network, is one of the early 
attempts at developing a lightweight transport protocol to facil­
itate its hardware implementation. The URP recognizes that the 
bottleneck is at the receiving end, and thus concentrates on sim­
plifying the receiver's state machine. It uses simple packet types 
and address fields. The packets are kept fairly small, reducing 
store-and-forward delay incurred at packet switches. Although 
useful in the environment it was developed, namely centralized­
hub type networks, URP is not flexible enough to operate over 
subnets with widely differing characteristics. 

Greg Chesson's Protocol Engine project [6) is a more recent 
example of the approach that depends on a lightweight trans­
port protocol. The Protocol Engine is a specialized processor, 
to be implemented in one or two VLSI chips, that uses fast 
context switching to reduce packet processing overhead. In the 
P-Engine architecture, a specialized hardware block supports ad­
dress recognition on reception of a packet. The other protocol 
functions such as retransmission, error control, and flow control 
are implemented in microcode. Although the protocol has more 
functionality than Sandy Frazer's URP protocol, on which it is 
based, it still lacks standard transport level features such as the 
support for encryption, multicasting, and process migration. Its 
error control scheme is a variation in the sliding window control 
scheme permitting only one gap in the sequence numbers of the 
received packets. Because of this variation, the performance is 
reduced in subnetworks that may reorder packets or split traffic 
across alternative routes to balance the load on the gateways. 

Other efforts that have modified the processor design or 
changed microcode for efficient message communications in­
clude the Message-Driven Processor (MOP) by William Daley 
et al. [10], and Alfred Spector's PhD thesis work at Stanford 
University [18]. The MDP is a processing node for a message­
passing concurrent computer. Spector microcoded an ALTO 
workstations to efficiently implement the small exchange of data 
over a network. Neither of these efforts were specifically focused 

DEFS-ALAOO 10597 



1.61 

1-40 

1-21 

1.01 

o_s1 

0.61 

0-40 

0.21 

<>-<> Bus Transfer Time 
•-• Memory-to-Memory Transfer Time 
x-x Request-Response Delay 

3 6 7 g 11 13 16 
Dela Segment Size (Kbytes) 

Figure&: Performance improvements obtained with a 20-MIPS 
processor 

on supporting transport-level functions_ 

Among the Ethernet devices and other network interfaces 
commercially available, one finds three basic models. We refer 
to these as the memory model, the DMA model and the proces­
sor model_ In the memory model, a host processor reads packets 
from. and writes packets, to the network adapter as though it is 
simply a portion of memory, except for performing some oper­
ation to restart network packet transmission and reception after 
every packet In the DMA model, the board accepts descriptors 
of packet buffers (possibly as scattered fragments of memory) 
and performs the packet transfer. In the processor model, the 
board copies data to and from the host memory plus provides 
some degree of processing capacity on-board. The VMP inter­
face follows the memory model for small amounts of data. and 
the processor model for large amounts of data. 

Several commercial produces use the memory model. The 
3C400 [19] is an early example, providing only one transmit 
buffer and two receive buffers. A more recent and competitive 
design, the SUN Microsystem's Ethernet interface [23] provides 
128 kilobytes of on-board memory plus network interface chip 
providing on-board scatter-gather DMA between the network and 
the on-board memory. One advantage cited for this design is that 
it allows direct DMA from a disk (for example) to the network 
interface, providing one bus transfer for data. However, this 
design assumes no software checksum and no encryption. Oth­
erwise, additional memory references are incurred. Note also, 
either all file system buffers reside on the network interface board 
or else data must be transferred to main memory in any case. 
With the feasibility of dedicating multi-megabytes of memory to 
disk cache on a shared file server, the benefit of direct transfer 
to the network interface seems limited. 

Several commercial products use the DMA model, including 
the DEC DEUNAIDEQNA boards [20]. This design forces a 
host processor to fully prepare a network packet for transmission 
in host memory, incurring at least 2 extra memory references 

185 

a 
~ i46 

:; 
846 ~ go 

e 
~ 

146 

646 

646 

446 

346 

246 

146 

46 
2 

Data Segment Size = 16 kilobyte 
VMTP Packet Size = 1024 bytes 

4 6 8 10 12 14 16 18 20 
Prot:flulng Power (Ill/PS) 

Figure 9: Throughput as Network Data Rate and NAB Process­
ing Power increases. 

and typically 4 if encryption is used. 6 Besides the copying 
cost, these interfaces interrupt on every packet transmission and 
reception, placing a significant overhead on the host processor(s). 
They also do not provide any "firewall" protection between the 
host and the network. In general, DMA network interfaces do 
not appear to have any advantages over the memory model. 

A number of network interfaces in the processor model are 
available as commercial products. Examples include the Exce­
lan 1020 [22] and the CMC ENP-100 [21]_ In our experience, 
these interfaces are slower than commercial interfaces in the 
other models because of inadequate memory bandwidth on the 
board to serve the network transfers, hosts transfers and on-board 
processor accesses simultaneously. The on-board processor also 
introduces a delay between on-board reception of a packet and 
transfer to the network or host, depending on direction_ To be 
fair, these products are aimed at providing network access for 
existing operating systems and architectures with minimal mod­
ification to the operating system. For instance, the CMC ENP 
board comes with a TCP implementation that makes it appear 
similar to a terminal multiplexor. 

7 Concluding Remarks 

High-performance communication is essential for distributed 
systems of the future. Network adapters are required to make the 
performance of future 100-1000 megabit networks available to 

the developing multiprocessor machines with minimal host and 
network overhead. We have described the design of the VMP 
network adapter and argued that it achieves these objectives, at 
least for 100-Mb networks. 

We have presented a solution that incorporates several novel 
concepts in a host/adapter interface, a network adapter's internal 
architecture, and a communication protocol architecture. Al-

6 The authors are not aware of any software implementation that performs 
the copy and checksum simultaneously. In the absence of this optimization, an 
additional memory reference is required. 

DEFS-ALAOO 10598 



though design is applicable to other multiprocessors and net­
work protocols, the conventional independence between network 
adapter design, computer 1/0 system design, and transport pro­
tocol design seems incompatible with achieving the performance 
levels of interest here. In the following we summarize some of 
the important aspects of the design. 

Host-Network Adapter Interface: The host-to-adapter inter­
face treats small and large data transfers differently, han­
dling the small transfers using a programmed 1/0 interface 
and the large data transfers with "intelligent" DMA. The 
programmed 1/0 interface minimizes delay for small pack­
ets. The DMA interface for large transfers minimizes cache 
and system bus traffic. 

The adapter-to-host interface interrupts host on a data seg­
ment boundary and not for each packet transferred. For 
multi-packet transfers, this significantly reduces interrupt 
processing overhead, which is especially costly in multi­
processors systems, as one may need to trap data and code 
into the cache to handle interrupts. 

The authorization model for reception allows a host to con­
tinue functioning even when being bombarded by packets 
from one or more hosts. This "firewall" function is essential 
for connecting hosts to a high-speed network. 

Network Adapter Internal Architecture: On-board process­
ing of checksumming, encryption, and packetization of data 
minimizes bus transfers to 1 per unit of transfer, namely 
a 32-bit word. This also avoids having to transfer data to 
the processor cache, which may improve the cache perfor­
mance. 

A packet pipeline, executing some key performance criti­
cal functions such as checksumming and encryption is used 
to increase throughput, particularly for large data transfers. 
The pipeline latency for short packet transfers is reduced by 
using few stages and a small unit for data transfers between 
the stages. 

Contention-less memory accessing provided by a novel 
memory architecture based on Video RAMs reduces buffer­
ing latency and increases the packet processing rate. It al­
lows processing of a packet by the on-board processor to 
proceed in parallel with the transfer of subsequent packets 
from the host to the buffer memory and from the network 
to the buffer memory. 

Block copier hardware is used to transfer data at full blast 
between host memory and the adapter memory, thus reduc­
ing bus occupancy and buffering latency. 

Communication Protocol Architecture: VMTP is designed 
specifically to provide high performance communications. 
Many features of VMTP are exploited in this design. The 
packet group concept is exploited by the host/adapter inter­
face to minimize host interrupts. The packet group concept 
also simplifies the packet formation for packets in the same 
group. The NAB accepts a packet prototype of the first 
packet and forms headers of subsequent packets by making 
simple changes in it. 

VMTP uses fixed size headers with space for small amounts 
of data and segment pointers for larger amounts, a feature 
exploited by the host/adapter interface to efficiently handle 
both small and large data transfers. 

The VMTP checksum, which follows the data field, facili­
tates checksumming in hardware as the packet is transferred 
over the network, hiding its cost in a copying operation of 
transferring the data to the network. 

In the prototype using M68020 processor, the throughput of a 
single data stream at the user level we have estimated falls short 
of network performance for networks in the 100 megabit range or 
higher. The aggregate throughput for concurrent transactions is 
closer to the 100 megabit range. Upgrading the prototype to use 
a high performance processor such as MIPS we estimated would 
push the throughput of a single transaction closer to the 100 
megabit range. Further refinements in internal network adapter 
design and possibly host interface and transport protocols are 
required to push performance to a higher range. We see our 
current prototype and protocol design and implementation as but 
a first step to understanding how to design the next generation 
of network adapters. 

8 Acknowledgments 

This work was sponsored in part by the Defense Advanced Re­
search Projects Agency under contract N00039-86-K-0431, by 
the Digital Equipment Corporation, the National Science Foun­
dation Grant DCR-83-52048, AT&T Information Systems and 
Bell Northern Research. 

References 

186 

[l] D. R. Cheriton. VMTP: A Versatile Message Transaction 
Protocol. Technical Report RFC 1045, Defense Advanced 
Research Projects Agency, February 1988. 

[2] D. R. Cheriton and S.E. Deering. Host groups: A multi­
cast Extension for Datagram Intemetworks. In 9th Data 
Communication Symposium, IEEE Computer Society and 
ACM SIGCOMM, September 1985. 

(3) D. R. Cheriton, Gert Slavenberg, and Patrick Boyle. 
Software-Controlled Caches in the VMP Multiprocessor. 
Technical Report ST AN-CS-86-11 OS, Computer Science 
Dept., Stanford University, 1986. 

(4) D. R. Cheriton and C. L. Williamson. Network Mea­
surement of the VMTP Request-Response Protocol in the 
V Distributed System. In ACM S!GMETR!CS Confer­
ence on Measurement and Modeling of Computer Systems, 
pages 216-225, May 1987. 

[5] D. R. Cheriton and W. Zwaenepoel. The Distributed V 
Kernel and its Performance for Diskless Workstations. In 
Proceedings of 9th Symposium on Operating Systems Prin­
ciples, pages 129-140, ACM, October 1983. 

[6] G. Chesson Protocol Engine project. Silicon Graphics In­
corporated. A talk given at Stanford University, November 
12, 1987. 

[7] A special issue on computer bus standards. IEEE Micro. 
IEEE Computer Society, August 1984. 

[8] Connection Oriented Transport Protocol. International 
Standards Organization, 1983. DP 8073. 

DEFS-ALAOO 10599 



[9] W. Crowther, J. Goodhue, E. Starr, R. Thomas, W. 
Milkik:en, and T. Blakadar. Performance measurements on 
a 128-node butterfly parallel processor. In Proceedings of 
the 1985 International Conference on Parallel Processing, 
IEEE Computer Society, August 1985. 

[10] W. Daley et al. Architecture of a Message-Driven Proces­
sor. In Proceedings of the 14th Annual Intl. Symposium on 
Computer Architecture, Pittsburg, PA. June 2-5, 1987. 

[11] Draft Proposed American National Standard, FDDI Token 
Ring Media Access Control - ANSC X3T95, I986. 

[12] S. Fraser Universal Receiver Protocol. Internal memoran­
dum. Bell Laboratories, Murray Hill. 

[13] Z. Haas and D. R. Cheriton. A Case for Packet-Switching 
in High-Performance Wide-Area Networks. In Proceedings 
of SIGCOMM 87 Workshop, Stowe VT, Aug 11-13, 1987. 

[14] J. L. Hennessy, N. Jouppi, F. Baskett and J. Gill. MIPS: A 
VLSI Processor Architecture. In Proc. CMU Conference 
on VLSI Systems and Computations, October 1981. 

[15] H. Kanakia and F. Tobagi. Performance Measurements of a 
Data Link Protocol. In International Conference on Com­
munications, IEEE, June 22-25 1986. 

[16] F.A. Tobagi, F. Borgonova and L. Fratta Express-net: A 
High-performance Integrated-services Local Area Network. 
IEEE J. on Selected Areas in Comm., Vol SAC-1, No. 5, 
Nov. 1983, pp. 898-912. 

[17] J. Ousterhout, H. Da Costa, D. Harrison, J. Kunze, M. 
Kupfer, and J. Thompson. A Trace-driven Analysis of the 
UNIX 4.2 bsd File System. In Proceedings of the Tenth 
Symposium on Operating Systems Principles, pages 15-24, 
December 1985. 

[18] A. Spector Multiprocessing Architectures for Local Com­
puter Networks. Technical ReportSTAN-CS-81-874, Com­
puter Science Dept., Stanford University, 1981. 

[19] 3C400 Multibus Ethernet Controller: A Reference Manual. 
3Com Corporation, 1985. 

[20] DEUNA: User's Guide. Digital Equipment Corp., 1983. 

[21] Ethernet Interface: User's Guide. Communications Ma­
chinery Corp., 1985. 

[22] Excelan 1020: Network Interface - User's Guide. Excelan 
Corp., Mountain View, Calif., 1985. 

[23] SUN-3 Architecture: A Sun Technical Report. SUN Mi­
crosystems, Corp., 1985. 

187 

DEFS-ALAOO 10600 




