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Abstract

Multicomputers built around a general network are now a vi-
able alternative to multicomputersbased on a system-specific
interconnect because of architectural improvements in two
areas. First, the host-network interface overhead can be
minimized by reducing copy operations and host interrupts.
Second, the network can provide high bandwidth and low
latency by using high-speed crossbar switches and efficient
protocol implementations. While still enjoying the flexibility
of general networks, the resulting network-based multicom-
puters achieve high performance for typical multicomputer
applications that use system-specific interconnects. We have
developed a network-based multicomputer called Nectar that
supports these claims.

1 Introduction

Current commercial parallel machines cover a wide spec-
trum of architectures: shared-memory parallel computers
such as the Alliant, Encore, Sequent, and CRAY Y-MP;
and distributed-memory computers including MIMD ma-
chines such as the Transputer [15], iWarp [5, 6], and various
hypercube-like systems [3, 17], and SIMD machines such as
the Connection Machine [26], DAP, and MasPar. Like SIMD
machines, distributed memory MIMD computers, or multi-
computers, are inherently scalable. Multicomputers however
can handle a larger set of applications than SIMD machines
because they allow different programs to run on different
processors. Multicomputers with over 1,000 processors have
been used successfully in some application areas [14].

Multicomputers are traditionally built by using system-
specific interconnections to link a set of dedicated processors.
Examples of these traditional multicomputers are any of the
high-performance hypercube systems such as the iPSC-2 and
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N-Cube machines. Like a proprietary internal bus in a con-
ventional machine, the interconnect is intended to connect
to a small set of specially-designed processor boards, and is
optimized to do so. System-specific interconnects are used
instead of general networks, such Ethernet or FDDI, mainly
for performance reasons. However, since they are system-
specific, these interconnects do not have the flexibility of
general networks: for example, they cannot be connected to
many types of existing hosts.

This paper argues that it is feasible to build high-
performance network-based multicomputers that use general
networks instead of system-specific interconnects. Such a
multicomputer is able to use existing hosts, including work-
stations and special-purpose processors, as its processors.
While enjoying a high degree of flexibility, the underlying
network can have performance comparable to that of a ded-
icated interconnect. This is true both for large messages,
where bandwidth is important, and for small messages, where
software overhead is typically the limiting factor. As a result,
the types of applications that run on existing multicomputers
also run efficiently on network-based multicomputers. At
the same time, network-based multicomputers are able to
take advantage of rapid advances in network and processor
technology.

The Nectar project is one of the first attempts to build
a high-performance network-based multicomputer. Nectar
is composed of a high-bandwidth crosspoint network and
dedicated network coprocessors. A prototype system using
100 Mb/s (megabits per second) links has been operational
since early 1989. The system has currently 26 hosts, includ-
ing a connection to a CRAY Y-MP via a 26 kilometer single-
mode fiber link. The Nectar prototype has been used as a
vehicle to study architectural issues in network-based multi-
computers and high-speed networks. This paper is based on
insights and experiences gained from the Nectar prototype.

To further pursue our ideas, we are collaborating with
an industrial partner (Network Systems Corporation) to de-
velop a gigabit Nectar system capable of sustaining gigabit
per second end-to-end communication. This new system will
support the 800 Mb/s HIPPI (High-Performance Parallel In-
terface) ANSI standard, and will also have a SONET/ATM



2 of 10

interface supported by phone carriers. The gigabit Nectar
system is one of the five testbeds in a US national effort to
develop gigabit per second wide-area networks [24].

This paper describes architectural features that are desir-
able for general-purpose networks if they are to be used
as interconnects for high-performance multicomputers. In
Section 2 we summarize the advantages and interconnec-
tion requirements of network-based multicomputers and in
Section 3 we give an overview of the prototype Nectar sys-
tem. We then look at design tradeoffs of critical network
components: the host-network interface (Section 4) and the
network interconnect (Section 5). We summarize our results
in Section 6.

2 Network-Based Multicomputers

We first summarize the advantages of network-based multi-
computers and then describe the architectural requirements
for their interconnect.

2.1 Network-Based Multicomputer Advantages

Network-based multicomputers offer substantial advantages
over traditional multicomputers that use dedicated intercon-
nects:

1. Supports heterogeneous architectures. A network-
based multicomputer can incorporate nodes specially
selected to suit a given application. Instead of having
computations with different characteristics use a sin-
gle architecture as in conventional computer systems,
network-based multicomputers support a new compu-
tation paradigm that matches architectures to different
computational needs.

2. Use of existing architectures. By incorporating existing
systems as hosts, a network-based multicomputer can
take advantage of rapid improvements of commercially
available computers. In addition, it can reuse existing
systems software and applications.

In fact, a network-based multicomputer provides a
graceful environment for moving applications to new
architectures such as special-purpose, parallel systems.
In the beginning, an application can execute part of the
computation on these new systems while using more
conventional systems to run the rest of the application.
The application can increase its use of the new systems
as more software and application code for the new sys-
tems is developed.

3. Availability of large data memory. In a network-based
multicomputer, applications can use the aggregate of
the memory available in all the nodes. Since each node
can have a sizable memory, the amount of memory is
potentially huge, and it becomes possible to solve very

large problems using relatively modest systems such as
workstations.

4. High-speed I/O. The underlying high-speed network is
inherently suited to support high-speed I/O to devices
such as displays, sensors, file systems, mass stores, and
interfaces to other networks. For example, via such
a network, disk arrays [18, 21] can deliver very high
data transfer rates to applications. Thus, because of the
combination of their I/O capability and their ability to
incorporate powerful computing nodes, network-based
multicomputers represent a balanced architectural ap-
proach capable of speeding up both computation and
I/O.

2.2 Multicomputer Interconnect Requirements

The requirements for a multicomputer network are a com-
bination of the requirements of general-purpose networks
and dedicated interconnects. In the first place they must
have the high performance of the dedicated interconnects
found in traditional multicomputers so that they can sup-
port multicomputer applications efficiently, but at the same
time, since they have to operate in the same environment
as a general-purpose network, multicomputer networks must
have the same flexibility and reliability as general-purpose
networks.

Performance has both throughput and latency require-
ments: for large messages, the network bandwidth deter-
mines how quickly a message can be delivered; however,
for small messages, having a low overhead on the sender
and receiver side is more important. In the case of network-
based multicomputers, the network efficiency must increase
in proportion to the computation rate of the hosts on the
network. For today’s traditional multicomputers, the band-
width of each interconnection link can be as high as several
100 Mb/s [5] and the communication latency between pro-
cesses on two processors can be as low as 50 to 500 mi-
croseconds [4]. These numbers set performance goals for
network-based multicomputers, and they have an impact on
both the design of the network and the host-networkinterface.

In terms of flexibility, the network must be general-purpose
enough to allow the attachment of many types of computers.
Moreover, the nodes of network-based multicomputers are
typically distributed over a building or campus so regular
interconnect architectures such as a torus or hypercube are
not practical. Although regular interconnects are attractive
when mapping regular algorithms on homogeneous multi-
computers, they are not flexible enough to allow the matching
of network bandwidth to the requirements of heterogeneous
hosts, or to handle the adding and removing of nodes while
the network is operating.

As in any general-purpose LAN, the underlying network
of a network-based multicomputer needs to cope with data er-
rors and network failures, since the same physical media are
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Figure 1: Nectar system

used in both cases. This is in contrast with traditional mul-
ticomputers, which typically assume that the interconnect is
reliable. One of the challenges of building multicomputers
around general networks is to make sure that the techniques
employed to insure reliability do not hamper the system per-
formance.

In the rest of the paper we describe methods of achieving
these requirements. We start by describing the Nectar system,
our first system experiment in this area.

3 Nectar System

To demonstrate the feasibility of network-based multicom-
puters, we started developing the Nectar system [2] in 1987.
Nectar is a high-bandwidth, low-latency computer network
for connecting high-performance hosts. Hosts are attached
using Communication Acceleration Boards (CABs). The
Nectar network consists of fiber-optic links and crossbar
switches (HUBs). The HUBs are controlled by the CABs
using a command set that supports circuit switching, packet
switching, multi-hop routing, and multicast communication.
Figure 1 gives an overview of the Nectar system.

3.1 Nectar Prototype

We have built a 26-host Nectar prototype system to support
early system software and applications development. The
prototype uses 100 Mb/s fiber links and 16� 16 HUBs. The
CAB is implemented as a separate board on the host VMEbus.

The CAB is connected to the network via a fiber port that
supports data transmission rates up to 100 Mb/s in each direc-
tion. The fiber port contains the optoelectronics interfaces
to the two fiber lines and FIFOs to buffer data transferred
over the fibers. Each CAB has 1 megabyte of data mem-
ory, 512 kilobytes of program memory, and a 16.5 MHz
SPARC processor. The CAB also has a DMA controller to

provide high speed transfers between the fiber port and the
data memory, and between the data memory and the VMEbus
interface.

3.2 Nectar Systems Software

The Nectar system software consists of a CAB runtime sys-
tem and libraries on the host that exchange messages with the
CAB on behalf of the application. The CAB runtime system
manages hardware devices such as timers and DMA con-
trollers, supports multiprogramming (the threads package),
and manages data buffers (the mailbox module). The threads
package, derived from the Mach C Threads package [9], sup-
ports lightweight threads in a single address space. Threads
provide a low cost, flexible method of sharing the CAB CPU
between concurrent activities, which is important for commu-
nication protocol implementation. Mailboxes provide flex-
ible and efficient management of buffer space in the CAB
memory and form the endpoints of communication between
processes on hosts or CABs.

The streamlined structure of the CAB software has made
it possible for Nectar to achieve low communication latency.
For the existing Nectar prototype, the latency to establish a
connection through a single HUB is under 1 microsecond.
The latency is under 100 microseconds for a message sent
between processes on two CABs, and about 200 microsec-
onds between processes residing in two workstation hosts.
The above figures do not include the fiber transmission la-
tency of approximately 5 microseconds per kilometer. These
performance results are similar to those of traditional multi-
computers.

The CAB runtime system currently supports several
transport protocols with different reliability/overhead trade-
offs [10]. They include the standard TCP/IP protocol suite
besides a number of Nectar-specific protocols. For TCP,
when TCP checksums are not computed, the throughput
between two CABs is over 80 Mb/s for 8 kilobyte pack-
ets. When checksums are computed, TCP throughput drops
to about 30 Mb/s. This indicates that hardware support
for checksum calculation can significantly improve perfor-
mance, at least for this type of system.

3.3 Nectar Applications

The network-based multicomputer architecture has made it
possible to parallelize a new class of large applications [19].
These applications were previously either too large or too
complex to be implemented on parallel systems. We have
successfully ported several such applications onto the Nectar
prototype system. Examples are COSMOS [7], a switch-
level circuit simulator; NOODLES [8], a solid-modeling
package; and a simulation of air pollution in the Los An-
geles area.

Because Nectar uses existing general-purpose computers
as hosts, applications can make direct use of code that has
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previously been developed for these computers, and as a
result, the Nectar implementation of the above applications
took relatively little effort in spite of their relatively high
complexity. In the distributed versions of both COSMOS
and Noodles, for example, each node executes a sequential
version of the program that was modified to do only part of
the computation.

The COSMOS simulator was ported to Nectar by partition-
ing the circuit across the Nectar nodes. This makes it possible
to simulate very large circuits, that cannot be handled on a
single node, and it illustrates the benefit of being able to use
the aggregate memory of a number of systems for a single ap-
plication. Other applications, such as a chemical flow sheet
application, were able to use a group of workstations plus a
Warp systolic array.

In addition to the use of existing code, the implemen-
tation of applications on Nectar has emphasized the use of
general-purpose supports for large-grain parallelization. This
development approach complements existing fine-grain ef-
forts in parallelizing inner-most loops of computations. The
combined capability should significantly increase the appli-
cability of parallel processing.

4 Host-Network Interface

The critical factor in parallelizing applications on a multi-
computer is how quickly tasks on different hosts can commu-
nicate. The latency is often determined by software overhead
on the sending and receiving hosts, so reducing this overhead
is a primary goal in the design of a host-network interface. In
Nectar we decreased message latency by reducing the number
of data copies for each message (each copy adds significant
latency because main memory bandwidth is limited on most
hosts), and by offloading protocol processing to an outboard
processor so that the number the number of host interrupts
is reduced (each host interrupt adds 10-20 microseconds to
latency [1]).

We first describe three design alternatives for the host-
network interface, and examine how different software im-
plementations can utilize these designs. We then discuss
specific hardware and software issues for building interfaces
for workstations, based on our experience with Nectar.

4.1 Host-Network Interface Design

The three components that play a role in the host-network
interface are the host CPU, main memory, and network in-
terface. Figure 2 shows three ways in which data can flow
between these components when sending messages. The
grey arrows indicate the building of the message by the ap-
plication; the black arrows are copy operations performed by
the system.

The architecture depicted in Figure 2(a) is the network
interface found in many computer systems, including most
workstations. When a system call is made to write data to

the network, the host operating system copies the data from
user space to system buffers. Packets are sent to the network
by providing a list of descriptors to the network controller,
which uses DMA to transfer the data to the network. The
main disadvantage of this design is that three bus transfers
are required for every word sent and received. However, this
is not really a problem if the speed of the network medium is
sufficiently slow compared to the memory bandwidth, as is
the case for current workstations connected to an Ethernet.

The communication activity relative to the processing ac-
tivity is much higher on multicomputers than on traditional
general-purpose networks, and as a result, the network speed
of multicomputers has to be a significant fraction of the pro-
cessor and memory bandwidth of the computer to avoid that
the network becomes a bottleneck. Existing workstations
connected to a high-speed network (100 Mb/s or higher band-
width) are an example. In these systems, the memory bus
will be a bottleneck if the architecture of Figure 2(a) is used
for the network interface. The performance can be improved
by reducing the number of data copies done over the mem-
ory bus by using external memory in the network interface.
Figures 2(b) and 2(c) show two alternative ways of utilizing
external memory.

Figure 2(b) depicts an alternative in which the system
buffers have been moved from host memory to external mem-
ory on the network interface. When data is sent or received,
the data is copied between the user buffer in main memory
and the system buffers in the network interface. The copy-
ing requires two bus transfers per word if it is done by the
CPU, and one bus transfer per word if it is done by a DMA
controller.

The approach used in Nectar is shown in Figure 2(c). With
this approach the user buffers are located on the network
interface (the CAB), and the data does not have to be copied:
data packets are formed and consumed in place by the user
process. As a result, communication latency is minimized
and main memory bandwidth is conserved.

4.2 Network Interface Software

The design alternatives shown in Figure 2 are linked to the
ways in which applications send and receive messages. With
the Unix socket interface [20] users specify messages with a
pointer-length pair. The semantics of the Unix socket read
call is that the call returns when the message is available in
the specified area. The socket write call returns when the
message can be overwritten. The semantics of both calls
requires that the data is logically copied as part of the call.
This requirement is naturally met by the standard host inter-
face implementation of Figure 2(a), although the design of
Figure 2(b) can also be used in the socket model.

To support the host interface of Figure 2(c), the Nectar
interface implements “buffered” send and receive primi-
tives [23] using the mailboxes mentioned in Section 3.2.
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Figure 2: Design alternatives for the host-network interface

With a buffered send, the application builds its message in a
message buffer that was previously obtained from the system.
As part of the send operation, the application gives up the
right to access the message buffer, so the system can free it
automatically when the data has been sent and appropriately
acknowledged. Similarly for a receive, the system returns a
pointer to a message buffer to the user process. The applica-
tion has to return the message buffer to the system after the
message has been consumed.

The advantage of buffered sends and receives over socket-
like primitives is that data no longer has to be copied as part
of the send and receive calls. This gives the implementation
more freedom in implementing the communication interface,
and can result in a lower overhead to the application and lower
message latency.

Our experience with the Nectar system indicates that
buffered primitives are faster for large messages, but that
the immediate (socket-like) primitives are faster for short
messages. The reason is that for immediate sends and re-
ceives of short messages, the data can be included with the
request that is exchanged between the host and the CAB.
For short messages, the extra complexity of the buffer man-
agement for buffered primitives is more expensive than the
cost of simply copying the data. In the Nectar prototype,
the buffered primitives are more efficient for messages larger
than about 50 words.

4.3 Design Choices

We review the major design choices that were made for the
prototype Nectar system and draw some general conclusions
based on our experience with the prototype.

4.3.1 Shared Memory

One problem with the shared memory interface in the Nec-
tar prototype is the relatively high latency of CAB memory

accesses from the host. The access time to CAB memory
is approximately 2 to 3 times greater than to main memory,
depending on the particular host. A large part of this la-
tency is due to the asynchronous VME bus that requires both
the host and CAB to synchronize on every transfer. More
recently-developed, high-speed synchronous busses [12, 25]
couple the host more tightly to the I/O bus, thus reducing the
latency of accesses across the I/O bus.

Maintaining consistency between the host cache and the
CAB memory is another problem that must be addressed.
The current solution is to mark all buffers as uncacheable,
which increases the latency for accesses to messages that
are handled using buffered sends and receives. If the CAB
memory were cached, it would be necessary to invalidate
cache lines when new data arrives on the CAB.

Immediate sends and receives are implemented by having
the system software copy the data between the user buffer in
main memory and the CAB. Alternatively, the network inter-
face can implement block transfers between user buffers in
main memory and the network interface using DMA. Com-
pared with copying using the CPU, using DMA incurs an
overhead to pin the affected user virtual memory pages and
to invalidate cache lines. Whether CPU copies or DMA
transfers are more efficient depends on the relative costs for
the particular system. For large transfers these costs can often
be amortized, while for small transfers it is typically better
to have the CPU read and write the user buffers directly,
avoiding the overheads of DMA.

4.3.2 Checksum Hardware

Most software implementations calculate the transport-level
checksum in a separate pass over the data. As a result,
one memory read is added for every word sent or received.
This extra memory access can be avoided by calculating the
checksum while the data is copied, either using the CPU or
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special hardware in the DMA unit. The design shown in
Figure 2(b), together with copying and checksumming by
the CPU, corresponds to Jacobson’s proposed “WITLESS”
interface [16].

Since the cost of implementing checksum hardware is typ-
ically small, it is attractive to calculate the transport-level
checksum in hardware. In particular, when the user buffers
reside on the network interface, or when DMA is used to
transfer data between host memory and the network interface,
calculating the checksum on the network interface means that
the host system software does not have to touch the user data
at all.

4.3.3 Programmable CPU

The programmable CPU on the CAB is a key feature of the
Nectar prototype. The motivations for building the CAB
around a general-purpose CPU with a flexible runtime sys-
tem, were that we wanted to experiment with different pro-
tocol implementations and open up the CAB to applications.
For a prototype system, this flexibility is more important
than the increase in performance that could be achieved with
a complete hardware implementation.

In the Nectar prototype, protocol processing can be com-
pletely offloaded to the CAB. The main benefit of doing
so is that the interaction between the host and the network
interface is reduced to a single operation in which the ap-
plication presents or accepts the data. The actual protocol
processing overhead is small compared with the OS overhead
cost of handling interrupts and system calls. A comparison
of the host-host performance of the Nectar-native reliable
message protocol (RMP) and the standard TCP/IP protocol
shows that throughput is similar, although RMP has a smaller
latency [10].

Applications have access to the CAB so that they can
exploit the low CAB to CAB latency. How useful this capa-
bility is largely depends on whether restructuring application
software significantly improves performance. An example
in which this is the case is the dynamic load balancing per-
formed by the CAB CPU in applications such as NOODLES
(see Section 3.3). The centralized load balancer is placed on
a CAB, allowing it to repond to about 10,000 requests for
tasks per second.

4.3.4 Inter-Device DMA

The ability to transfer data directly from the CAB to another
device on the VME bus has been very useful in the prototype
Nectar. Data can be sent to or received from devices such
as frame buffers without going through host memory. Di-
rect DMA both reduces latency to the device and conserves
host memory bandwidth. The ability to provide this feature
depends on the specification of the target bus. Some newer
synchronous busses (such as TurboChannel) do not permit

inter-device transfers, the justification being that it compli-
cates the system design [12].

4.3.5 Other Host Architectures

Multicomputers based on general-purpose networks have the
advantage that they can include a variety of hosts. Some
of these hosts place special requirements on the network
interface. We look at the communication needs for some
interesting classes of hosts: special-purpose supercomputers
(such as iWarp and Connection Machine); general-purpose
supercomputers (such as Crays and IBM mainframes); and
“dumb” devices (such as disk farms and frame buffers).

Special-purpose supercomputers currently often lack ad-
equate external I/O bandwidth. Although the internal ag-
gregate memory and interprocessor bandwidths of these ma-
chines are very high, the bandwidth to external networks
and the amount of network buffer space are often small. In
addition, such machines are often not suited to tasks such
as calculating checksums. As a result, it is desirable that
the network interface of special-purpose supercomputer pro-
vides functionality similar to that provided by our CAB, such
as a large buffer area, checksumming hardware, and switch
control and datalink hardware.

General-purpose supercomputers are often capable of cal-
culating packet checksums at near-network bandwidth rates
using pipelined vector units. In addition, such machines have
paths into large central memories with rates greater than a gi-
gabit per second. Thus for general-purpose supercomputers
it is less desirable to provideexternal buffering and checksum
hardware.

For “dumb” devices, it is highly appropriate to have a
network interface with a general-purpose processor. Such an
interface can provide sufficient intelligence to allow a dumb
device to be connected directly to the network.

5 Interconnect Architecture

The other crucial component of a network-based multicom-
puter is the interconnect or network itself. This section de-
scribes alternatives for the interconnect and justifies how a
general network, as is used in Nectar, is suitable for a multi-
computer.

5.1 Interconnect Design

The requirements for an interconnect for a network-based
multicomputer are: high throughput (100-800 Mb/s avail-
able to each host); low latency (100-500 microseconds be-
tween hosts); good scalability (10-1000 attached computers);
support for high-bandwidth multicast communication; and
robustness so that recovery from network failures is simple.
Some of these requirements are similar to those for general-
purpose networks, while others, such as the performance
goals, are much stronger.
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General-purpose LANs based on a shared medium, such
as Ethernet, token ring, or FDDI, do not meet the bandwidth
and latency requirements of a multicomputer. As more com-
puters are attached to the medium, the bandwidth available
to each system decreases and the communication latency
increases. On the other hand, LANs based on high-speed
switches (such as Autonet [22], HPC [13] and Nectar) do
meet the performance requirements of a multicomputers. In
such LANs, each attached computer has an exclusive link to
a local switch and can communicate with other computers
on the same switch at the full bandwidth of the link. The
aggregate bandwidth of the network is very high.

During the design of Nectar, we concentrated on the net-
work features that are important for multicomputer usage.
For example, we concentrated on minimizing the overhead on
the network interface and during the design of the switch, we
concentrated on providing a low connection setup time and
hardware multicast (see Section 5.3.3), since these features
are important for multicomputer applications. Some features
that would be needed to operate a large network in a general-
purpose environment were not included. For example, we
do not attempt to provide automatic network reconfiguration,
since the configuration of a Nectar system is relatively stable
and changes can be made manually. These features would
result in additional hardware (including switch control pro-
cessors) and software to manage the network. Autonet on
the other hand explored the problems involved in managing
large, general, switch-based networks. It presents exactly the
same interface as an Ethernet to the workstations attached to
it and it supports automatic network reconfiguration when
hosts or switches are added to or removed from the network.

In the rest of this section, we briefly describe the Nectar
network and then discuss specific issues in the design of a
network for a multicomputer, including flow control, routing,
multicast, and robustness.

5.2 Nectar Network Overview

As described earlier in Section 3, the Nectar network is built
around HUBs, which are 16� 16 crossbar switches. A HUB
implements a command set that allows source CABs to open
and close connections through the switch. These commands
can be used by the CABs to implement both packet switching,
in which case the maximum packet size is determined by the
size of the input FIFO on each port of the switch, and circuit
switching, in which case the maximum amount of data that
can be sent is arbitrarily large.

In the prototype HUB, the latency to set up a connec-
tion and transfer the first byte of a packet through a single
HUB is ten cycles (700 nanoseconds). Once a connection
has been established, the latency to transfer a byte is five
cycles (350 nanoseconds), but the transfer of multiple bytes
is pipelined to match the 100 Mb/s peak bandwidth of each
fiber link. Furthermore, the HUB controller can set up a new

connection every 70 nanosecond cycle.
Because of the low switching and transfer latency of a sin-

gle HUB, the additional latency in a multi-HUB system is not
significant. Thus it is practical to build multicomputers con-
sisting of small numbers of these HUBs and up to 100 hosts.
Although it is possible to build larger multicomputers using
the current HUB, the network management and configuration
problems become greater with large numbers of HUBs (see
below). A larger HUB crossbar switch (for example, 32�32
or 64�64) would reduce these problems and allow networks
of hundreds of hosts to be built and managed.

5.3 Design choices

We review the major design choices that were made for the
prototype Nectar system and draw some general conclusions
based on our experience with the prototype.

5.3.1 Flow Control

The network must provide flow control hardware to ensure
that input buffers at the switches and hosts do not overflow.
Lost packets have to be retransmitted by (software on) the
sender and have a negative impact on both throughput and
latency. Because of the strict performance requirements for
multicomputers, avoiding lost packets is even more impor-
tant for multicomputer networks than for general-purpose
networks.

Flow control in Nectar is performed by hardware on the
CABs and HUBs under the control of CAB software. The
source CAB tests the status of the input buffer on its local
HUB before sending a packet. It can check the status of
buffers on intermediary HUBs and the destination CAB by
using HUB commands provided for this purpose. These
commands allow the next packet to start flowing when there
is room in the buffer at the other end of a link.

The acknowledgments that tell a CAB or a HUB that there
is space in the next buffer are generated by hardware on the
next HUB or by software on a destination CAB. On the
HUB, the acknowledgment is generated when a packet that
is currently stored in the input buffer starts flowing out of the
buffer. On the destination CAB, the acknowledgment is gen-
erated by the datalink software because only the software can
know when there will be space in the input buffer. Typically
the datalink software will send the acknowledgment when it
has started the DMA to transfer the packet in the buffer to
local memory.

Implementing flow control in software has a small over-
head cost: it reduces the datalink throughput by less than
10% for 1 kilobyte packets. Nectar implements the flow
control in software for flexibility reasons: we want to try
out and compare different strategies. Providing full hard-
ware flow control between HUBs and CABs would reduce
the overhead.
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5.3.2 Routing

For a network the size of Nectar, the routing need not be
dynamic or adaptive. Deterministic routing is sufficient, and
is in fact preferable since it avoids deadlocks. Deterministic
routing can be implemented using source routing. Source
routing has the advantage of making the switches very sim-
ple as they need no control software or hardware for rout-
ing. Source routing does place a small burden on the CAB
datalink software to determine routes to remote CABs and
to supply the commands needed to open inter-HUB links. A
CAB establishes a routing table as part of its initialization by
querying the local HUB to determine to which other HUBs it
is connected, and doing so recursively on these other HUBs.
As is the case with flow control, implementing routing in
software adds a small performance penalty: it costs about
1-2% in performance for 1 kilobyte packets.

Nectar uses deterministic source routing because it allows
the switches to be very simple. However, for larger networks,
source routing has a problem: for packets that must traverse
multiple HUBs, the probability of making a connection de-
creases rapidly with the number of hops. As a result, this
approach is only practical for a small number of HUBs. This
problem can be fixed in a number of ways. First, dynamic
or adaptive routing can be used. This can be done via source
routing or by using more intelligent switches that can try a
number of alternate routes based on the destination of the
packet. Alternatively, routers or bridges can be placed be-
tween subnetworks consisting of a small number of HUBs
to buffer data that has to travel across too many HUBs. In
practice, we expect that a combination of both approaches
will be needed for large networks.

5.3.3 Multicast Support

High-bandwidth multicast is more important for multicom-
puters than for general-purpose LANs because multicom-
puter applications make significant use of multicast for dis-
tributing large amounts of data [19]. Two examples of mul-
ticast usage are the initialization of data structures and the
distribution of data updates and commands by a master to
slave processes. Thus it is desirable that the interconnect
provides support for multicast as part of its routing support.
Strangely enough, most system-specific interconnects do not
provide support for multicast even though it would be useful
for applications.

The multicast used by multicomputer applications is dif-
ferent from the multicast or broadcast typically provided in
general-purpose networks. The multicast used for network
management in general-purpose networks is typically unreli-
able (i.e. there is no guarantee that all members will receive
the message) and the members are not known to the sender.
This form of multicast is typically used to retrieve informa-
tion from (replicated) servers whose location is not known.

The multicast implemented on Nectar is reliable, and the
multicast group is created by the sending application. It
is implemented by allowing a CAB to have multiple open
outgoing connections within one switch. Thus a CAB can
set up a multicast connection and send the same data packet
to multiple destination CABs.

The source routing used in Nectar makes multicast simple
as each host can independently establish its own multicast
groups. In networks with switch-based routing, routing in-
formation for multicast connections must be entered into
the routing tables in the switches. The processor manag-
ing the routing table in a switch must manage the multicast
groups and inform the hosts attached to the switch about the
network addresses that corresponds to particular multicast
groups. This adds complexity to the switch.

In either scheme, there must also exist higher-level proto-
cols that manage the membership of multicast groups [11].
These protocols allows hosts to use the same multicast group
address (e.g. IP address) to refer to the same set of hosts.

5.3.4 Robustness

Robustness is as important for multicomputer networks as
it is for general-purpose LANs. Although the error rates in
modern fiber-optic networks are relatively low, is still neces-
sary to implement end-to-end checksums and reliable proto-
cols above the physical layer. The network must be able to
recover from errors quickly, otherwise the performance of the
multicomputer will degrade rapidly. In contrast, traditional
multicomputers typically rely on parity or error correcting
codes, since their interconnects have extremely low error
rates. If an uncorrectable bit error is detected, the whole
multicomputer fails.

End-to-end protocols can recover from network errors that
corrupt user data, but dealing with errors that affect con-
trol information is more difficult. Network failures in this
category include events such as lost flow control acknowl-
edgements or corrupted HUB commands. In the prototype
Nectar system, it is the responsibility of the CABs to deal
with this type of errors. A source CAB attempts to recover
from a failure by resetting the input buffers at each of the
HUBs along the route to the current destination CAB. This
recovery attempt typically results only in a partial recovery:
although the source CAB will have ensured that it has left
no partially completed connections or packets in network
buffers, it will not have been able to reset the flow control
state information. If the loss of a flow control acknowledge-
ment was the cause of the failure, then recovery will not be
complete until the destination CAB notices that it has not
received a packet or the rest of packet, and sends out an extra
flow control acknowledgement.

In general, requiring the network interfaces to perform
error detection and recovery is difficult because they may not
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be able to gather complete information about the state of the
network and therefore cannot recover correctly from network
failures. For networks of switched media, error detection and
recovery should be supported within the switches to make the
network robust. The switches should close connections and
reset flow control information after some maximum time has
been exceeded. By having each switch reset its local state,
the failure modes in the whole network are simplified and
error recovery is automatic.

6 Summary and Concluding Remarks

Network-based multicomputers represent a new way of con-
structing parallel systems. In this approach, a parallel system
can incorporate existing hosts as its processors. Some of
the advantages are that one can select processing nodes that
match the requirements of the application, and that existing
system and application software can be reused (Section 2.1).

For a network-based multicomputer to deliver high-
performance, both its network must meet the following re-
quirements: the host-network interface must have low over-
head, and the network must have much lower communica-
tion latency and more predictable communication bandwidth
than general-purpose LANs. Moreover, the network needs to
have much greater flexibility and reliability than the system-
specific interconnect of a traditional multicomputer.

As described in this paper, we have found the Nectar pro-
totype to be a useful vehicle for learning about building
network-based multicomputers. To achieve high bandwidth,
it is important to minimize the number of copy operations
in the host-network interface. For short packets however,
the cost of copying the data is negligible, and minimizing
the interaction between the host and the network interface
is more important. Regarding the network interconnect, the
Nectar project concentrated on the network aspects that are
important for multicomputers. An interconnect based on
crossbar switches proves to be attractive, since it can provide
a high bandwidth in a cost effective way. Unlike traditional
broadcast based network, switch-based networks can deliver
increased bandwidth as nodes are added, and unlike the regu-
lar interconnects used in traditional multicomputers, they can
be configured to meet the needs of a continuously changing
set of heterogeneous systems. Hardware support for reliable
multicast to a specific subset of nodes, as opposed to the un-
reliable broadcast typically supported on general networks,
proved to be a useful feature for a lot of multicomputer ap-
plications.

Our experience with Nectar shows that network-based
multicomputers can achieve performance comparable to tra-
ditional multicomputers based on dedicated interconnects.
In this paper, we have described architectures capable of
achieving this goal for workstation hosts, and we have also
shown that the systems software can take advantage of the
architectural features. For these reasons, we believe that

network-based multicomputers are a viable architecture for
parallel processing.
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