
IEEE Global Telecommunications Conference

I
·:i II 1·· I ·I ::1 II :: 1·· • I ··1 II ·11 ·11 ' 111:: I
111 II II II II II I II 11111

Phoenix, Arizona • December 2-5, 1991

"COUNTDOWN TO THE NEW MILLENNIUM"
Featuring a Mini-Theme on:
Personal Communications Services (PCS) ·

Conference Record

VOLUME

1

2

3

tt ICC •. ~··.
IEEE 'U

GLOBE COM

DAY

Tuesday

Wednesday

Thursday

Sponsored by the
IEEE Communications Socie!y
and the Phoenix IEEE Section

Vol. 3 of 3

SESSIONS PAGES

1-20 1·694

21-42 695-1531

43-608 1533-2150

m m _,
~
)> -!; .
°' r-
m
0
0
""Cl
-<

DEFS-ALAOO 10601

Additional sets of Volumes 1, 2, and 3 may be ordered from:

IEEE Service Center
Publications Sales Departmenl
445 Hoes Lane
P.O. Box 1331
Piscataway, New Jersey 08855-1331

IEEE GLOBECOM '91

IEEE Catalog No.:
ISBN Numbers:

9ICH2980-l
0-87942-697-7
0-87942-698-5
0-8794 2-699-3

Softbound
Case bound
Microfiche

Library of Congress No.: 87-640337 Serial

COPYRIGHT AND REPRINT PERMISSION5.;.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limits of U.S.
copyright law for private use of patrons those artides in this volume that carry a code at the. bottom of the first page,
provided the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 20 Congress St.,
Salem, Mass. 01970. Instructors are permitted to photocopy isolated articles for noncommercial classroom use
without fee. For other copying, reprint or republications permission, write to Director, Publishing Services, IEEE,
345 East 47th St., New York, NY 10017. All rights reserved. Copyright© 1991 by the Institute of Electrical and
Electronics Engineers, Inc.

ii.

m
m en _,
~)> -s;
all r­m
0
0
~

DEFS-ALAOO 10602

•:.t ..

AN OUTDOARD PROCESSOR FOR HlGH PERFORMANCE IMPLEMENTATION OF

TRANSPORT LAYER PROTOCOLS

R. ANDREW MACLEAN and SCOTT E. BARVICK1

Bellcore, 444 Hoes Lane, Piscataway, NJ 08854

AllSTllACT: Tho high throughputs promised by cmcrclnc
nct\York tochnologlcs ar• ancn difficult la a<hic\'t •pplicotion­
lo·•ppllc•tlon boOIU>C or host transport protocol boUJtntcks.
This pupcr describes an cxptrlmcntal prt1totypc lmplemcnta.
lion or on outboard protocol processor which eliminates these
butUcnttk• by performing transport layer fundlons In dcdf.
coted hi>rdwu...,, The architecture conslslJ of stpnr•I< tr•ns·
mil and tccdvc CPUs, each wllh checksum and DMA circuiu.
Mca<uromonts madc.UJ<lnc an lmplcmcntalion orthc TCP pro·
locol Indicate thol this orchllccturc can wpporl ond·lo·cnd
thruuchpuu in excess of 11,000 p:u:kcts/&cc bctw«:n UNIX,
hosts.

I. INTRODUCTION

M EASUREMENTS of the end-to-end pcrform3ncc or
LANc indic:ite \hat lransport ond network layer protocol

implementation$ often limit lhroughput between communicat·
ing applications (1). Several solutions huve been proposed, the
most common or which can be ca1egori1.cd as follows:

I) increase the size of Lhe transport protocol data Wlit (TPDU),
2) optimize the protocol software,
3) change to a more cffiCienl protocol and
4) use a more powerful host processor.

The idea behind Lhe first method is to increase Lhc rn1io or
1fota bits to he:ider hits so lhat the protocol proccs!ing required
per data hit i~ reduced. Depending upon the underlying net·
work, however, thi~ appro3ch may lead lo incrca~ed lmcncy in
the network, or Lhc need for fragmentation 1111d reassembly in
the lower layers.

Optimization of the communications soflwo.re for through·
put has been discussed for I.he case of TCP/IP [2J. The melhod·
ology adopted is to change the existing implementation
soflwarc to reduce the protocol processing overhead. Perfor­
mance comparisons of optimized and non·optimized implc·
mcntations of TCP/IP foWld in ! I) indicate that significant
pcrfonnance increases can be realiwd using such tcc:hniques ..

The TCP and OSI TP4 protocols have been dC$igncd pri­
marily for robustness and utility rather Uw1 throughput. Sev·
cral 'lightweight' tllmsport layer protocols have been proposed
which oITcr performance improvcmenlS: NErBLT [3), XTP
[4}, NACK [5), SNR(7}, and VMTP (6) are examples of such
protocols. With respect 10 lhc hardware, typically, the data link
layer (to use OSI terminology) has been handled by some kind
or host network adapter and the network layer and above has

I. Scott Barvick b now with Wellnce1 Communitalior,,,
15 Crosby Orivc. Bedford, MA 01730

2. UNIX is a rcgi~terod l!Udcmuk of UNIX Syncrn Lthor:itorics Inc.

been the responsibility of the host processor. Thus there nrc
potentially two areas where processing power can be added,
the host or the communications adapter.

While the use of more powerful host processors is a com·
mon solution, there is a growing trend towards increasing lhc
front end intelligence of the 1/0. There Me two primary reasons
for this; firstly, lhc IJO subsystem often demands response
limes which ·cannot be guaranteed by the host processor or
would cauM: the host to behave inefficie11tly or erratically. Sec­
ondly, it is often the case that !%rt.ain compute intensive runc­
tions can be perfonned more quickly or more cost effectively
by speciali1.ed hardware than by the host processor. Several
outboard processor designs have been reported [7H 12). Our
objective for this project has been to explore the outbonrd
approach by designing an cxperiment:il prototype processor as
a plat!onn for analyr.ing transport layer protocols. We call this
processor the Protocol Accelerator (PA), and it is described in
lhe sections which follow. One of our u:timate aims is to
explore different high iq:ieed protocols using this processor as a
platfonn, in order to determine I.he most appropriate techniques
for transport of data on high speed Metropolitan Arca Net·
works.

2. PROTOCOL ACCELERATOR

1.1 System Configuration

llic Protocol Accelerator is a bo:lrd on the VME system
bus. Figure I shows how the PA integrates into the host sys·
tcm. On the network side, the PA is equipped with both input
and. output 32 bit parallel ports, each $upporting data transfer
ratc:s in excess of 320 Mbits/sec. Intentionally, no media acccs~
circuitry has been included on the PA; this provides us wiU1 the
capability to connect Ille Protocol Aecelerator to a variety of
network· types vill appropriate adapters, or, a.s in the case of
loop-back testing, to leave out the network circuitiy com­
pletely. ln future communications sul»ystcms, lhe transport
protocol acceleration circuitry probably would physic:illy
reside on the network adapter card.

Nl!TWOllXJ

t.OOl'IMCK

ORCUTT

FIGURE I. System Configuration

1'728

49.4.1
CH2980-119110000·1728 $1.00 © 1991 IEEE GLOBECOM '91

m m en _,
~
)> -
~
I
m
0
0
~

DEFS-ALAOO 10603

2.2 Functionality and Data Flow
The prc11io11.•ly rcponcd outboard processor$ can be catego­

rized into single aml muhiplc CPU architectures. The single
CPU implcmenu1ions [4, 10. 11) include peripheral suppon for
high llal.:l throughputs. The muhiproccs.sor implementations [i,
8, 9, 12! use up to eight CPUs, typically with no special pcriph­
crJl devices. In our design, we exploit fClltures from both of
these approaches with a dual CPU design and special purpose
peripheral circuitry in 11.11 architecture optimized for 1.ransport
layer processing.

Tue internal functions and data nows of !he protocol accel·
er.nor are shown in Figure 2. We use a dual CPU approach to
protocol processing, with one CPU subsyst.cm dedicated to lhc
transmission, and lhc other to the reception. The transmit am.I
receive CPUs arc both 68020 (25 MHz) based, each with its
own private resources: ROM, parallel VO, interrupt circuitry
~ml 128 kilobytes of random access memory (RAM). Jn addi·
tion !here is 128 kilobytes of RAM shared by both CPUs which
is ulso accessible to lhc two host busses, VME and VSB. Using
both host busscs simuhancously, it is p0ssiblc for the PA to
move data blocks both to and from host memory. The trnnsmit
and receive CPUs have VME bus master capability. All the
dau p~Lhs shown are 32 bits wide.

2.J Openition
On transmit., dai.a can be piped from one of three locations;

host memory, shared memory, or transmit CPU memory into
!he network port, while the transmit CPU liUJlCrviscs transfer$
ond compiles headers. No intermediate buffering of the appli­
cation data takes place. We believe this is key to high speed
operation.

On receive, p:irallcl dau from the network is pipelined to
the hoSl memory, loc:al r~ive CPU memory, or shared mcm·
ory. In normal operation. the receive CPU will OMA the
header to local memory, perform initial proccs..~ing to csublish
header integrity and paytoad dcstination, and then start a DMA

RS:n!Vll

CJ'\J
SUBSYS'TliM

H~TWOllK
ll'PVTBUS

RfiC!ilVli DUS

llECillVE

ClCECXSUM

RECEIVE
MEMORY

sn>1Nno
MF.MORY

process to transfer the data segment of thc packet either to host
memory or to lhe shared memory region. While s1orage of the
payload is proceeding, the receive CPU completes its procm­
ing of the header infonnation. Messages arc passed between
the transmit/receive CPUs and the host either hy u.•ing the
shared memory region or by using interrupt mechanisms which
exist among all CPUs (h0$t, transmit or receive).

The Protoc:ol Accelerator enables a rapid data flow to and
from the network by intraducing a high degree of concwncy
into the communication mechanism. Several activities execute
simulwieously:

I) host processing (of higher layers and application),
2) transmit protocol processing, ·
3) receive protocol processing,
4) data transfer from host memory 10 the networl<: adapter,
S) data transfer from the network adapter to host memory,
6) receive data checksumming,
7) transmit data checksumming, a11d
8) MAC frame proccning.

2.4 Din!ct Memory Access
An impon.ant feature of the hardware architecture is the

dual dircet memory access controllers (DMACs). The DMACs
are capable of moving 32 bit data words al rates of up to 33
Mbytes/sec over VME or 30 MBytcs/scc over !he VSB bus
directly to and from the network pons. Scatter-gather type
operations are fully supported both to and from the application
memory. Data paths also exist for OMA of data between the
network ports and any other RAM area on !he PA (i.e. CPU
RAM space or shared RAM space) so that intermediate daLa
buffering is possible whenever necessary.

2.S Checlt.wmming
The on-board CPUs are capable of checksumming d~ta at a

rate in the region of 75 Mbitsfscc[l3] but operation at !his rate
would ·1ca11c no time for protocol processing. To maximi1.c our
data throughput., it was decided to include hardware

TRANS"'1T

MEMORY

TllJINSMITBIJS

TRANSMIT
CllECttSUM

SUAlEDDUS

IJOST V Mil llUS

FlGURE 2. Protocol Accelerator Fiinctional Block Oiagi:am

49.4.2

f ~;,

l r:J BtDlRF.C'llONAL
• D BUS
: TICAHSCEIVER

i r:11tE01STEREO :LJ BUJ-T-B
~ .. lo"

1729

DEFS-ALAOO 10604

checksumming in preference 10 using faster, more sophisti·
c~tcd proce.ssors for this function.

We use an 'on-thc-ny' technique for the checksum und in
order 10 take advant.agc of this hardware, the checksum field is ·
required to trail the fields being checked. In the c:ise of TCP
this requires that the checksum field be moved from ilJ usu~I
pl~ce in the header. Ahhough hardware schemes can be
devised which leave the checksum field in place, these arc
somewhat more difficult to implement, and because the intent
with this design was to produce a testbed suitable for many
protocols, the checksumming circuitry was not designed to be
protocol specific.

· The circuits uLilh:e 32 bit ones complement adders and
operate in tandem with the OMA controllers; every word
nmved by lhe OMA controller is simultaneously applied to the
checksum circuits. On the transmit processor, lhc circuit auto·
nia1ic.1lly imerts a 32 bit chccbum at the end or hoth the
header and lhe data segments. On 1hc receiver these fields arc
checked, again automatically.

3. TCP IMPLEMENTATION

3.1 Introduction
The ttansport protocol used to dcmons1.ratc the c:ipabilitics

of the Protocol Aca:lcrator is tbc Transmission Control Proto­
col (TCP). It was chosen because it is currcnll y one of the most
wide-spread transport protocols in ·use on networks today. It is
~!so the subject of a great deal of continuing re~h. nnd I.he
expanding use ofUNIX-b:lscd desktop workstations is increa.~­
ing its penetration. Along with the incre:ised use of TCP is the
fear that as network rates rise, network throughput may ,not
keep pace or may even decline as connection-oriented, window
now-conttollcd protocols sucll as TCP become a bonlcnocll:.
Some researchers do not believe lhat the protocol is to blame
for the low throughput observed when current TCP implcmcn·
talions arc run over experimental high speed networks l2J.
Instead, they cite inefficient implementations of the protocol
wu! interactions with lhe host operating system (UNIX) as the
causes of the poor performance. The intensity of this debate
"'ill grow as more hii;h pcrrormancc rruichincs running TCP
observe less t.h:ln ideal performance over high spc.cd net works.
Therefore, TCP was implemented to show th11t wilh an efficient
implementation on the proper hardware platform. even a proto­
col dC$igned for moderate-speed, error-prone networks can
achieve high throughput.

3.2 Implementation Details

The high performance aspects of Ille Protocol Accclcralor
such as lhc dual processors. DMA, and on·lhe-Oy check.sum
require the design of lhc transport protocol implementation io
re specific to the PA. Therefore, a custom implementation of
TCP was developed. The modules wm: written in C for Ille
main protocol processing functions wilh cmbetldcd 68020
Assembly language: code to pcrfonn many of the hardware rpc·
cilic tasks. such as setting up the OMA controller, controlling
1imcrs, and polling Jtatus flags. No operating sys1crn is used on
I.he PA. Many implcmenta1ion decisions were made to optimize
JPCCd and efficiency for lhe 'main palh' of protocol proceSling
n1 the expense of processing for infrequent error condilions.
These decisions ere jus1ificd given I.he low c:.rror mes chanic·
tcrisLic or high speed libcr networks.

The dual processor hardware archilccture of the Protocol
Accclcra1or leads naturally to the software archiLCctwc. The

TCP implementation consislJ of separate ll'ansmit and receive
processes n.inning their respective tasks on separate micropro­
cessors. The ll'll!ISmittcr and receiver do most of their process­
ing on data stored in private memory, but they do communicate
through lhe shared memory. The bulk of this communication
occurs through the Transmission Conttol Block (TCB). the
main TCP Stale informal.ion structure which resides in shared
memory. Al appropriate times, state changes in either the trnns­
milter or receiver ere updated in lhc TCB which may !hen oo
read by lhe olher processor in the course of itS work.

As noted in the hardware description, lhe generic nature of
the PA requires that chedcsums be placed afier the header and
after the data. 01.her than lhis difference, t.he implementation
provides all of !he TCP fW\Clions required t6 transmit and
receive data in the TCP (call) ESTABLISHED state. Among
others, these functions include maim:iining lhe retransmission
queue. providing resequencing for out or order packets, sup­
porting retran~mlssion timers, and packcti:ting hosl data imo
TCP scgmC'llts, or TI'OUs. ll must be noted that 10 minimize
data movement, host data is moved directly between host
memory and the nctworic interface. This precludes further scg·
mcntation/rca.<.'<Cmbly of lhe data at whai would be the lnLcmct
Protocol (IP) layer. Therefore, although certain functions of the
!? layer are rolled into tbc TCP header (IP address, length, pro­
tocol), IP functionality is not claimed.

Another objective of lhis work is to quantiry lhc eITccls or
the end host system on outboard protocol processing. To this
end a UNIX devici: driver, applications programming interface
(AP!), and application were developed for lhe host UNIX sys·
tcm. The relationships among lhe components are shown in
Figure 3.

UNIX
APPLICATION

AP!

TC!'
RF.CGIVFJI

FlOURE 3. System Software AtchileetUrc

Because many variations are possible wilh software in 1he
UNIX environment, auempts were made to keep the device

· driver, API, and application code as simple ..5 possible while
maintaining funclional similarity to current methodologies for
protoc0l/sys1em interl'ace.s. The results rriay then be used to
exttapolate meaningful performance expcetations of olhcr sys­
tems with different basic parameter! such as processor capabil·
ity, network packet site, or bus speeds.

49.4.3
1730

DEFS-ALAOO 10605

4. PERFORMANCE MEASUREMENTS I ANALYSIS

4.1 T~I Confii:uration
For these initial results, the circuit was operated in a hard­

ware loopbaelc configuration (see Figure 1) with the network
output port connected to the network inpw port via FIFO buJT·
crs. Thc. loopback caU$cs no Jou, errors, or reordering of pack­
ets :ind is thus a best case. For the host we used a VME b;ised
single board computer based on the Motorola 68030 processor
orcrating at 25 MHz. This processor was cquirpcd with an
mca or shared d)lllal'llic RAM (4 MBylCS) eca:~ible from both
the host processor subsystem and the VME bus.

The communications model U$ed to test the capabilities or
the Protocol Accc:lcr~tor is that of a rile server/client which c;in
cillicr provide or receive large messages at the throughput rates
or llrn PA. Performance measurements were Ulkcn based on the
UNIX host transmitting bulk data over the network which, in
this system, is a loopbaclc to the receiver side of the PA. In the
initial measw-cmcms we found !he tranSmittcr to be the rate­
\lctcnnining element in the end-to-end process, being roughly
filly percent slower than the receiver. We t!'iercforc focus ow­
discuuion on the transmiucr. In order to fully test the capabili·
tics or !he tl'lll1smit1cr, the received da1n is not run back to !he
UNIX host because thal \\/Quld cause excessive contention for
ihc VME bus. For these measurements only one host bus
(VME) was used.

~.2 Protocol Acceler:nor Performance
Figure 4 shows !he timing diagram for the now of TPDUs

through the PA transmiucr. The header generation time is the
time talccn for the pmccsscr to access the c!1rrcn1 sllltc informa·
tion nnd popul:i1c the header fields. Onee I.he payload OMA
1ransrcr is undcrwoy, further transport protocol processing pro·
cccds in parallel and docs not impede data transfer ll!llc.1s the
p~y!ond trwtsfcr time is shorter than the overall 1r.1nsport pro­
cessing time.

-1• ()jl.KC •l 53µ.soc

I llllADO!. I Cl:NCRATION TRANSPORT PROTOCOL PROCESSING

PAYLOAD OMA TRANSrtlR
(TIME IS PACKET SIZE DEPENDliNl)

TIMC:

FlGURE 4. Transmitter Per Packet Processing lime

The payload transfer time is simply the product of lhc pay­
load si1.e (in 32 bit words) and the da1a lral\sfcr cycle time. The
dii~ Lransfcr ~~cle time for our aystcm can be calculated by
adding the mm1mum DMA cycle time of80 nscc (asynchro­
nous) to the source (Ol dc.sllnalion) memory 8cccss time. 1111:
shared PA static RAM has an access time of 40 nsec:. leading to
a cycle time of 120 nscc per 32 bit word (i.e. peak data tr.insfcr
rate. in c::11"ss of 250 Mbits/scc). The VME mcm~on the
ava1l:ible host computer, on the other hand, has a measun::d
response time averaging 580 nscc, which n!duccs the peak
~iroughput to below SO Mbits/scc when this memory is used.
These figures assume no olher activity on lhc S)'lltcm bus. For
these preliminary findings we use a constant packet size or

2016 biu of which 1728 bits was payload. The total transport
processing time of our transmiuer TCP implementation is
66 µ.sec and this becomes the limiting throughput factor for
small payload paclcct.s. The header generation part of lhis time
is 13 J.UCC.

Using these results, it is sttaightforw111d to extrapolate the
perfonnance' of the PA transmitter for any memory access time
and packet size. An ex.ample is shown in Figure 5. Herc, the
payload throughput and Lhc packet throughput arc plotted
•g~inst packet siu: for dilferi:nt memory access times. The Ont
region of !he packet throughput cwves are in the region where
the protocol processor limits throughput. To the right of this
region, throughput is limited by memory bandwidth. Two cases
nrc shown, l 20 nst:(: and 660 nscc memory cycle times; these
represent the memory cycle times for the two cases described
previously. PA shared SRAM and host VME DRAM.

161-~---~

14 ··--·····s····---·· 250
/ ..

12 / l2Q cc 200

10 I llM"'CYCU.
I JI' , 150

lrl 8
I . .

I<!
100 ~ e

lS ~
~ 50 ~

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0

PACKET SIZE (IUJ YTESl

FIGURES. PA Tuoughput Based on Memory Access lime
and Packet Size

4..3 PA rerfonnanct In UNIX Environment

We now ex.amine the effect of host system soft ware on the
observed throughput to the application. Host system interac­
tions with outboard proccuors are critical because regardless
of how fast I.he data may depart from or arrive to the outboard
processor, it is not until Ille data ic actually in user space on the
host system !hat the communication is complete.

The UNIX overlie.ad time was measured for a number of
hosi mess.age sizes transmiucd from the PA. The UNIX over­
head c011sis1S or lhc lime between lhc user C4ll to the APl's
BSD-like write soclcel call and the rcccipl of !he command by
the PA on the inbound side plus the time between !he genera·
tion or the UNIX int.crrupt (signaling !he end of PA processing.
or the host meuage) and n:wm of control to the user at the md
of message U'BtlSmission. The cormection cstabli1hmcnt func­
tions of socltet and c:oanect are not included in these measure­
ment.& because they are llOI directly associated with !he per
message data tnul$fcr. The. syuem was kept unloaded except
for lllllldard S)'$11!m daemons in order to minimi7.c contention
for proce~sor and bus resources. The results of the UNIX over­
head measuremenU; for message transmission are shown in
Figure 6.

49.4.4
1731

DEFS-ALAOO 10606

I 2

~l ~ l
~
)(

z
:::>

5K IOK 15K 20K
JIOST MHSS/\06 SIZE (BYTHS)

FlvURE 6. Absolute and Relative UN IX Overhead vs. Host
Message Size

As the message size increases, the absolu1c UNIX overhead
increases while ii.I percentage of the !Dial operation time falls.
If the TCP interface process had been the only process running
on the host system, the absolute overhead would remain con­
~ton1 as host mC$sagc size increases. This is because the only
action required of lhe host is to change lhe command message
length delivered to the 1ransmitll.lr. The observed results arc
due to the accumulation of higher priority host processes while
the PA OMA is in control of the UNIX memory. As the me!·
s;igc size increases, the OMA conltols the host bus for more
time per message. The linear increase in absolute overhead also
indicates that the higher priority functions are generally peri­
odic. It should be noted that even as the absolute overhead
increases with meSJage size, the on-board TCP pnx:e.~sing time
remains constant on n JlCT segment ba.~is. This shows th~t the
increase in absolute overhead is nnt due to increa.~c.' in I inte
waiting for the host bus or other pc.r segment processing; it
occurs at the end of the packet proc:cSsing before control is
rc1umcd to the user process.

The declining percentage of overhead as host message size
is increased confirms 1>ur expccta1i0ns. As lhe host messnge
si1.c incrca.,es, the amount of time spent on UNIX overhead
processing relative to the overall l.Jllnsmission time decreases.
111i1 again is due to the constant amoun1 or code which must be
executed. The observed asymptotic approach to 25'1. rcprc·
scnts a balance between the decreasing percent.age or host pro­
cessing time per message and the increased amount of system
backlog which is serviced before the user process regains con·
trol. Figure 7 shows lhe overall performance of the PA in and
out of the UNIX cnvirorunc:n1.

8
~

15
PRgTOCOl. ACCfll.F.R/)TClll TCP

~ 13

~11 ~ "" PA.UNOl!lt UNIX
~h
~
I= 5,000 10.000 15,000 20,000

HOST MESSA Gil SIZE (BYTES)

FIGURE 7. Throughput vs. Host Mcs.o;:igc Size

1732

5. CONCLUSIONS
An outboard protocol aa:elerator optimized for transport

layer procc!'Sing has been implcmcntcd and tested. The design
consists of separate transmit and receive units, each with its
own CPU, checksum, and OMA hardware. Using an imple·
mentation of TCP, we demonstra1ed that this approach.can sup·
pon end 10 end throughput rates in excess of 15,000 packets/
sec bctwe.ert network and application. When integrated into the
UNIX cnvirorunc:nt, the protocol accelerato.r freed lhe host of
the traditional protocol procc.1sing tasks but led a 25% decrea~e
in average throughput due to the UNIX overllead.

ACKNOWLEDGEMENTS
We would like 10 thank Mike Koblcnu: for his major con1ri-

001ions and.Michael Stanton for his part in lhe initial design of
·the hard wore,

REFERENCES
[1) L. Svobodova, "Measured Performance of Transport Ser·

vice in LANs", Compuu:r Network.J and ISDN Systems,
vol 18, pp. 31.-45, 1989m.

{2) D. D. Clark, V. JacobSen, J. Romlc:cy and H. Salwen, "An
Analysis of TCP Processing Overhead", IEEE Comm.
Mag., pp 23-29, June 1989.

[31 D. D.QaTk, M. L. Lambert and L. Zhang, "NETBLT; Bulk
Data Transfer Protocol", Network Information Center
RFC-998, SRI lntcmalional, Menlo Park. CA, 1987.

(4) G. Chesson, E. Brendan, V. Schryver, A. Chercnson arid A.
Whaley, "XTP Protocol Definition." Protocol Engines Inc.,
1900 State St., Sanlll Barbera CA. 93101.

[5) R. P. Singh and A. Erramilli, "?rotocol Design and Model­
ing bi;uc~ in Broadhilnd Ne1work5", Prix:. ICC '90,
Atlanlll, GA, pp 1458, 1990.

!61 D. R. Cheritan, "VM'Il'; Versatile Message Transaction
Protocol, Protocol Specification'', Network Information
Centre RE'C-1045, SRI International, Menlo Park, CA,
1987.

[7) A. N. Netravali, W. D. Roome, K. Sabnani, "Design and
Implementation of a High-Speed Transpan Protocol",
IEEE Tra1U. 011 Communicazions, vol 38, no. 11, pp.2010,
Nov.1990.

[8) D. Giarrizzo, M. Kaiserswcrth, T. Wicki, R. C. Williunson,
"High Speed Parallel Protocol Implementation", H. Rudin
and R. C. Williamson, Protocols for High Spud Ncrworh,
Nonh-Holland, 1989.

[91 M. Zitterban, MHigh Speed Transport Components", IEEE
Network MagauM, January, 1991, pp. 54-63.

[10] H. Kanakia and D. R. Cheritan, '1lle· VMP Network
Adapter Board (NAB); High performance Networic Com·
munication for Multiprocessors.." PTCK:. ACM SJGCOM '88
Symposium 011 ComtnJlllicarions Architectures and Proto­
cols, Stanford University, CA, 1988, pp. 17.5·187.

[11] E. C. Cooper, P.A. SteenldSle, R. D. Sansom, B. D. Zill,
"Protocol lmplemcnllltion on the Nec:lllr Communication
Processor", Proc. SIGCOM '90, Philadelphia, PA, 1990
pp. 135.

(121 N. Jain, M. Schwaru, T. R. Ba.shkow, "Transport Protocol
Processing at GBPS Rates", Proc. SIGCOM '90,
Philadelphia. PA. 1990, pp. 188.

[13) R.Bradcn, D. Borman, C. Partridge; "Computing the
Internet Checksum", Network Information Center RFC-
1071, SRI International, Menlo Park, CA, t9RR.

49.4.5

DEFS-ALAOO 10607

