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AN OUTDOARD PROCESSOR FOR HlGH PERFORMANCE IMPLEMENTATION OF 

TRANSPORT LAYER PROTOCOLS 

R. ANDREW MACLEAN and SCOTT E. BARVICK1 

Bellcore, 444 Hoes Lane, Piscataway, NJ 08854 

AllSTllACT: Tho high throughputs promised by cmcrclnc 
nct\York tochnologlcs ar• ancn difficult la a<hic\'t •pplicotion­
lo·•ppllc•tlon boOIU>C or host transport protocol boUJtntcks. 
This pupcr describes an cxptrlmcntal prt1totypc lmplemcnta. 
lion or on outboard protocol processor which eliminates these 
butUcnttk• by performing transport layer fundlons In dcdf. 
coted hi>rdwu...,, The architecture conslslJ of stpnr•I< tr•ns· 
mil and tccdvc CPUs, each wllh checksum and DMA circuiu. 
Mca<uromonts madc.UJ<lnc an lmplcmcntalion orthc TCP pro· 
locol Indicate thol this orchllccturc can wpporl ond·lo·cnd 
thruuchpuu in excess of 11,000 p:u:kcts/&cc bctw«:n UNIX, 
hosts. 

I. INTRODUCTION 

M EASUREMENTS of the end-to-end pcrform3ncc or 
LANc indic:ite \hat lransport ond network layer protocol 

implementation$ often limit lhroughput between communicat· 
ing applications (1). Several solutions huve been proposed, the 
most common or which can be ca1egori1.cd as follows: 

I) increase the size of Lhe transport protocol data Wlit (TPDU), 
2) optimize the protocol software, 
3) change to a more cffiCienl protocol and 
4) use a more powerful host processor. 

The idea behind Lhe first method is to increase Lhc rn1io or 
1fota bits to he:ider hits so lhat the protocol proccs!ing required 
per data hit i~ reduced. Depending upon the underlying net· 
work, however, thi~ appro3ch may lead lo incrca~ed lmcncy in 
the network, or Lhc need for fragmentation 1111d reassembly in 
the lower layers. 

Optimization of the communications soflwo.re for through· 
put has been discussed for I.he case of TCP/IP [2J. The melhod· 
ology adopted is to change the existing implementation 
soflwarc to reduce the protocol processing overhead. Perfor­
mance comparisons of optimized and non·optimized implc· 
mcntations of TCP/IP foWld in ! I) indicate that significant 
pcrfonnance increases can be realiwd using such tcc:hniques .. 

The TCP and OSI TP4 protocols have been dC$igncd pri­
marily for robustness and utility rather Uw1 throughput. Sev· 
cral 'lightweight' tllmsport layer protocols have been proposed 
which oITcr performance improvcmenlS: NErBLT [3), XTP 
[4}, NACK [5), SNR(7}, and VMTP (6) are examples of such 
protocols. With respect 10 lhc hardware, typically, the data link 
layer (to use OSI terminology) has been handled by some kind 
or host network adapter and the network layer and above has 

I. Scott Barvick b now with Wellnce1 Communitalior,,, 
15 Crosby Orivc. Bedford, MA 01730 

2. UNIX is a rcgi~terod l!Udcmuk of UNIX Syncrn Lthor:itorics Inc. 

been the responsibility of the host processor. Thus there nrc 
potentially two areas where processing power can be added, 
the host or the communications adapter. 

While the use of more powerful host processors is a com· 
mon solution, there is a growing trend towards increasing lhc 
front end intelligence of the 1/0. There Me two primary reasons 
for this; firstly, lhc IJO subsystem often demands response 
limes which ·cannot be guaranteed by the host processor or 
would cauM: the host to behave inefficie11tly or erratically. Sec­
ondly, it is often the case that !%rt.ain compute intensive runc­
tions can be perfonned more quickly or more cost effectively 
by speciali1.ed hardware than by the host processor. Several 
outboard processor designs have been reported [7H 12). Our 
objective for this project has been to explore the outbonrd 
approach by designing an cxperiment:il prototype processor as 
a plat!onn for analyr.ing transport layer protocols. We call this 
processor the Protocol Accelerator (PA), and it is described in 
lhe sections which follow. One of our u:timate aims is to 
explore different high iq:ieed protocols using this processor as a 
platfonn, in order to determine I.he most appropriate techniques 
for transport of data on high speed Metropolitan Arca Net· 
works. 

2. PROTOCOL ACCELERATOR 

1.1 System Configuration 

llic Protocol Accelerator is a bo:lrd on the VME system 
bus. Figure I shows how the PA integrates into the host sys· 
tcm. On the network side, the PA is equipped with both input 
and. output 32 bit parallel ports, each $upporting data transfer 
ratc:s in excess of 320 Mbits/sec. Intentionally, no media acccs~ 
circuitry has been included on the PA; this provides us wiU1 the 
capability to connect Ille Protocol Aecelerator to a variety of 
network· types vill appropriate adapters, or, a.s in the case of 
loop-back testing, to leave out the network circuitiy com­
pletely. ln future communications sul»ystcms, lhe transport 
protocol acceleration circuitry probably would physic:illy 
reside on the network adapter card. 

Nl!TWOllXJ 

t.OOl'IMCK 

ORCUTT 

FIGURE I. System Configuration 
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2.2 Functionality and Data Flow 
The prc11io11.•ly rcponcd outboard processor$ can be catego­

rized into single aml muhiplc CPU architectures. The single 
CPU implcmenu1ions [4, 10. 11) include peripheral suppon for 
high llal.:l throughputs. The muhiproccs.sor implementations [i, 
8, 9, 12! use up to eight CPUs, typically with no special pcriph­
crJl devices. In our design, we exploit fClltures from both of 
these approaches with a dual CPU design and special purpose 
peripheral circuitry in 11.11 architecture optimized for 1.ransport 
layer processing. 

Tue internal functions and data nows of !he protocol accel· 
er.nor are shown in Figure 2. We use a dual CPU approach to 
protocol processing, with one CPU subsyst.cm dedicated to lhc 
transmission, and lhc other to the reception. The transmit am.I 
receive CPUs arc both 68020 (25 MHz) based, each with its 
own private resources: ROM, parallel VO, interrupt circuitry 
~ml 128 kilobytes of random access memory (RAM). Jn addi· 
tion !here is 128 kilobytes of RAM shared by both CPUs which 
is ulso accessible to lhc two host busses, VME and VSB. Using 
both host busscs simuhancously, it is p0ssiblc for the PA to 
move data blocks both to and from host memory. The trnnsmit 
and receive CPUs have VME bus master capability. All the 
dau p~Lhs shown are 32 bits wide. 

2.J Openition 
On transmit., dai.a can be piped from one of three locations; 

host memory, shared memory, or transmit CPU memory into 
!he network port, while the transmit CPU liUJlCrviscs transfer$ 
ond compiles headers. No intermediate buffering of the appli­
cation data takes place. We believe this is key to high speed 
operation. 

On receive, p:irallcl dau from the network is pipelined to 
the hoSl memory, loc:al r~ive CPU memory, or shared mcm· 
ory. In normal operation. the receive CPU will OMA the 
header to local memory, perform initial proccs..~ing to csublish 
header integrity and paytoad dcstination, and then start a DMA 

RS:n!Vll 

CJ'\J 
SUBSYS'TliM 

H~TWOllK 
ll'PVTBUS 

RfiC!ilVli DUS 

llECillVE 

ClCECXSUM 

RECEIVE 
MEMORY 

sn>1Nno 
MF.MORY 

process to transfer the data segment of thc packet either to host 
memory or to lhe shared memory region. While s1orage of the 
payload is proceeding, the receive CPU completes its procm­
ing of the header infonnation. Messages arc passed between 
the transmit/receive CPUs and the host either hy u.•ing the 
shared memory region or by using interrupt mechanisms which 
exist among all CPUs (h0$t, transmit or receive). 

The Protoc:ol Accelerator enables a rapid data flow to and 
from the network by intraducing a high degree of concwncy 
into the communication mechanism. Several activities execute 
simulwieously: 

I) host processing (of higher layers and application), 
2) transmit protocol processing, · 
3) receive protocol processing, 
4) data transfer from host memory 10 the networl<: adapter, 
S) data transfer from the network adapter to host memory, 
6) receive data checksumming, 
7) transmit data checksumming, a11d 
8) MAC frame proccning. 

2.4 Din!ct Memory Access 
An impon.ant feature of the hardware architecture is the 

dual dircet memory access controllers (DMACs). The DMACs 
are capable of moving 32 bit data words al rates of up to 33 
Mbytes/sec over VME or 30 MBytcs/scc over !he VSB bus 
directly to and from the network pons. Scatter-gather type 
operations are fully supported both to and from the application 
memory. Data paths also exist for OMA of data between the 
network ports and any other RAM area on !he PA (i.e. CPU 
RAM space or shared RAM space) so that intermediate daLa 
buffering is possible whenever necessary. 

2.S Checlt.wmming 
The on-board CPUs are capable of checksumming d~ta at a 

rate in the region of 75 Mbitsfscc[l3] but operation at !his rate 
would ·1ca11c no time for protocol processing. To maximi1.c our 
data throughput., it was decided to include hardware 

TRANS"'1T 

MEMORY 

TllJINSMITBIJS 

TRANSMIT 
CllECttSUM 

SUAlEDDUS 

IJOST V Mil llUS 

FlGURE 2. Protocol Accelerator Fiinctional Block Oiagi:am 
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checksumming in preference 10 using faster, more sophisti· 
c~tcd proce.ssors for this function. 

We use an 'on-thc-ny' technique for the checksum und in 
order 10 take advant.agc of this hardware, the checksum field is · 
required to trail the fields being checked. In the c:ise of TCP 
this requires that the checksum field be moved from ilJ usu~I 
pl~ce in the header. Ahhough hardware schemes can be 
devised which leave the checksum field in place, these arc 
somewhat more difficult to implement, and because the intent 
with this design was to produce a testbed suitable for many 
protocols, the checksumming circuitry was not designed to be 
protocol specific. 

· The circuits uLilh:e 32 bit ones complement adders and 
operate in tandem with the OMA controllers; every word 
nmved by lhe OMA controller is simultaneously applied to the 
checksum circuits. On the transmit processor, lhc circuit auto· 
nia1ic.1lly imerts a 32 bit chccbum at the end or hoth the 
header and lhe data segments. On 1hc receiver these fields arc 
checked, again automatically. 

3. TCP IMPLEMENTATION 

3.1 Introduction 
The ttansport protocol used to dcmons1.ratc the c:ipabilitics 

of the Protocol Aca:lcrator is tbc Transmission Control Proto­
col (TCP). It was chosen because it is currcnll y one of the most 
wide-spread transport protocols in ·use on networks today. It is 
~!so the subject of a great deal of continuing re~h. nnd I.he 
expanding use ofUNIX-b:lscd desktop workstations is increa.~­
ing its penetration. Along with the incre:ised use of TCP is the 
fear that as network rates rise, network throughput may ,not 
keep pace or may even decline as connection-oriented, window 
now-conttollcd protocols sucll as TCP become a bonlcnocll:. 
Some researchers do not believe lhat the protocol is to blame 
for the low throughput observed when current TCP implcmcn· 
talions arc run over experimental high speed networks l2J. 
Instead, they cite inefficient implementations of the protocol 
wu! interactions with lhe host operating system (UNIX) as the 
causes of the poor performance. The intensity of this debate 
"'ill grow as more hii;h pcrrormancc rruichincs running TCP 
observe less t.h:ln ideal performance over high spc.cd net works. 
Therefore, TCP was implemented to show th11t wilh an efficient 
implementation on the proper hardware platform. even a proto­
col dC$igned for moderate-speed, error-prone networks can 
achieve high throughput. 

3.2 Implementation Details 

The high performance aspects of Ille Protocol Accclcralor 
such as lhc dual processors. DMA, and on·lhe-Oy check.sum 
require the design of lhc transport protocol implementation io 
re specific to the PA. Therefore, a custom implementation of 
TCP was developed. The modules wm: written in C for Ille 
main protocol processing functions wilh cmbetldcd 68020 
Assembly language: code to pcrfonn many of the hardware rpc· 
cilic tasks. such as setting up the OMA controller, controlling 
1imcrs, and polling Jtatus flags. No operating sys1crn is used on 
I.he PA. Many implcmenta1ion decisions were made to optimize 
JPCCd and efficiency for lhe 'main palh' of protocol proceSling 
n1 the expense of processing for infrequent error condilions. 
These decisions ere jus1ificd given I.he low c:.rror mes chanic· 
tcrisLic or high speed libcr networks. 

The dual processor hardware archilccture of the Protocol 
Accclcra1or leads naturally to the software archiLCctwc. The 

TCP implementation consislJ of separate ll'ansmit and receive 
processes n.inning their respective tasks on separate micropro­
cessors. The ll'll!ISmittcr and receiver do most of their process­
ing on data stored in private memory, but they do communicate 
through lhe shared memory. The bulk of this communication 
occurs through the Transmission Conttol Block (TCB). the 
main TCP Stale informal.ion structure which resides in shared 
memory. Al appropriate times, state changes in either the trnns­
milter or receiver ere updated in lhc TCB which may !hen oo 
read by lhe olher processor in the course of itS work. 

As noted in the hardware description, lhe generic nature of 
the PA requires that chedcsums be placed afier the header and 
after the data. 01.her than lhis difference, t.he implementation 
provides all of !he TCP fW\Clions required t6 transmit and 
receive data in the TCP (call) ESTABLISHED state. Among 
others, these functions include maim:iining lhe retransmission 
queue. providing resequencing for out or order packets, sup­
porting retran~mlssion timers, and packcti:ting hosl data imo 
TCP scgmC'llts, or TI'OUs. ll must be noted that 10 minimize 
data movement, host data is moved directly between host 
memory and the nctworic interface. This precludes further scg· 
mcntation/rca.<.'<Cmbly of lhe data at whai would be the lnLcmct 
Protocol (IP) layer. Therefore, although certain functions of the 
!? layer are rolled into tbc TCP header (IP address, length, pro­
tocol), IP functionality is not claimed. 

Another objective of lhis work is to quantiry lhc eITccls or 
the end host system on outboard protocol processing. To this 
end a UNIX devici: driver, applications programming interface 
(AP!), and application were developed for lhe host UNIX sys· 
tcm. The relationships among lhe components are shown in 
Figure 3. 

UNIX 
APPLICATION 

AP! 

TC!' 
RF.CGIVFJI 

FlOURE 3. System Software AtchileetUrc 

Because many variations are possible wilh software in 1he 
UNIX environment, auempts were made to keep the device 

· driver, API, and application code as simple ..5 possible while 
maintaining funclional similarity to current methodologies for 
protoc0l/sys1em interl'ace.s. The results rriay then be used to 
exttapolate meaningful performance expcetations of olhcr sys­
tems with different basic parameter! such as processor capabil· 
ity, network packet site, or bus speeds. 

49.4.3 
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4. PERFORMANCE MEASUREMENTS I ANALYSIS 

4.1 T~I Confii:uration 
For these initial results, the circuit was operated in a hard­

ware loopbaelc configuration (see Figure 1) with the network 
output port connected to the network inpw port via FIFO buJT· 
crs. Thc. loopback caU$cs no Jou, errors, or reordering of pack­
ets :ind is thus a best case. For the host we used a VME b;ised 
single board computer based on the Motorola 68030 processor 
orcrating at 25 MHz. This processor was cquirpcd with an 
mca or shared d)lllal'llic RAM (4 MBylCS) eca:~ible from both 
the host processor subsystem and the VME bus. 

The communications model U$ed to test the capabilities or 
the Protocol Accc:lcr~tor is that of a rile server/client which c;in 
cillicr provide or receive large messages at the throughput rates 
or llrn PA. Performance measurements were Ulkcn based on the 
UNIX host transmitting bulk data over the network which, in 
this system, is a loopbaclc to the receiver side of the PA. In the 
initial measw-cmcms we found !he tranSmittcr to be the rate­
\lctcnnining element in the end-to-end process, being roughly 
filly percent slower than the receiver. We t!'iercforc focus ow­
discuuion on the transmiucr. In order to fully test the capabili· 
tics or !he tl'lll1smit1cr, the received da1n is not run back to !he 
UNIX host because thal \\/Quld cause excessive contention for 
ihc VME bus. For these measurements only one host bus 
(VME) was used. 

~.2 Protocol Acceler:nor Performance 
Figure 4 shows !he timing diagram for the now of TPDUs 

through the PA transmiucr. The header generation time is the 
time talccn for the pmccsscr to access the c!1rrcn1 sllltc informa· 
tion nnd popul:i1c the header fields. Onee I.he payload OMA 
1ransrcr is undcrwoy, further transport protocol processing pro· 
cccds in parallel and docs not impede data transfer ll!llc.1s the 
p~y!ond trwtsfcr time is shorter than the overall 1r.1nsport pro­
cessing time. 

-1• ()jl.KC •l 53µ.soc 

I llllADO!. I Cl:NCRATION TRANSPORT PROTOCOL PROCESSING 

PAYLOAD OMA TRANSrtlR 
(TIME IS PACKET SIZE DEPENDliNl) 

TIMC: 

FlGURE 4. Transmitter Per Packet Processing lime 

The payload transfer time is simply the product of lhc pay­
load si1.e (in 32 bit words) and the da1a lral\sfcr cycle time. The 
dii~ Lransfcr ~~cle time for our aystcm can be calculated by 
adding the mm1mum DMA cycle time of80 nscc (asynchro­
nous) to the source (Ol dc.sllnalion) memory 8cccss time. 1111: 
shared PA static RAM has an access time of 40 nsec:. leading to 
a cycle time of 120 nscc per 32 bit word (i.e. peak data tr.insfcr 
rate. in c::11"ss of 250 Mbits/scc). The VME mcm~on the 
ava1l:ible host computer, on the other hand, has a measun::d 
response time averaging 580 nscc, which n!duccs the peak 
~iroughput to below SO Mbits/scc when this memory is used. 
These figures assume no olher activity on lhc S)'lltcm bus. For 
these preliminary findings we use a constant packet size or 

2016 biu of which 1728 bits was payload. The total transport 
processing time of our transmiuer TCP implementation is 
66 µ.sec and this becomes the limiting throughput factor for 
small payload paclcct.s. The header generation part of lhis time 
is 13 J.UCC. 

Using these results, it is sttaightforw111d to extrapolate the 
perfonnance' of the PA transmitter for any memory access time 
and packet size. An ex.ample is shown in Figure 5. Herc, the 
payload throughput and Lhc packet throughput arc plotted 
•g~inst packet siu: for dilferi:nt memory access times. The Ont 
region of !he packet throughput cwves are in the region where 
the protocol processor limits throughput. To the right of this 
region, throughput is limited by memory bandwidth. Two cases 
nrc shown, l 20 nst:(: and 660 nscc memory cycle times; these 
represent the memory cycle times for the two cases described 
previously. PA shared SRAM and host VME DRAM. 

161-~---~ 

14 ··--·····s····---·· 250 
/ .. 

12 / l2Q cc 200 

10 I llM"'CYCU. 
I JI' , 150 

lrl 8 
I . . 

I<! 
100 ~ e 

lS ~ 
~ 50 ~ 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 

PACKET SIZE (IUJ YTESl 

FIGURES. PA Tuoughput Based on Memory Access lime 
and Packet Size 

4..3 PA rerfonnanct In UNIX Environment 

We now ex.amine the effect of host system soft ware on the 
observed throughput to the application. Host system interac­
tions with outboard proccuors are critical because regardless 
of how fast I.he data may depart from or arrive to the outboard 
processor, it is not until Ille data ic actually in user space on the 
host system !hat the communication is complete. 

The UNIX overlie.ad time was measured for a number of 
hosi mess.age sizes transmiucd from the PA. The UNIX over­
head c011sis1S or lhc lime between lhc user C4ll to the APl's 
BSD-like write soclcel call and the rcccipl of !he command by 
the PA on the inbound side plus the time between !he genera· 
tion or the UNIX int.crrupt (signaling !he end of PA processing. 
or the host meuage) and n:wm of control to the user at the md 
of message U'BtlSmission. The cormection cstabli1hmcnt func­
tions of socltet and c:oanect are not included in these measure­
ment.& because they are llOI directly associated with !he per 
message data tnul$fcr. The. syuem was kept unloaded except 
for lllllldard S)'$11!m daemons in order to minimi7.c contention 
for proce~sor and bus resources. The results of the UNIX over­
head measuremenU; for message transmission are shown in 
Figure 6. 

49.4.4 
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FlvURE 6. Absolute and Relative UN IX Overhead vs. Host 
Message Size 

As the message size increases, the absolu1c UNIX overhead 
increases while ii.I percentage of the !Dial operation time falls. 
If the TCP interface process had been the only process running 
on the host system, the absolute overhead would remain con­
~ton1 as host mC$sagc size increases. This is because the only 
action required of lhe host is to change lhe command message 
length delivered to the 1ransmitll.lr. The observed results arc 
due to the accumulation of higher priority host processes while 
the PA OMA is in control of the UNIX memory. As the me!· 
s;igc size increases, the OMA conltols the host bus for more 
time per message. The linear increase in absolute overhead also 
indicates that the higher priority functions are generally peri­
odic. It should be noted that even as the absolute overhead 
increases with meSJage size, the on-board TCP pnx:e.~sing time 
remains constant on n JlCT segment ba.~is. This shows th~t the 
increase in absolute overhead is nnt due to increa.~c.' in I inte 
waiting for the host bus or other pc.r segment processing; it 
occurs at the end of the packet proc:cSsing before control is 
rc1umcd to the user process. 

The declining percentage of overhead as host message size 
is increased confirms 1>ur expccta1i0ns. As lhe host messnge 
si1.c incrca.,es, the amount of time spent on UNIX overhead 
processing relative to the overall l.Jllnsmission time decreases. 
111i1 again is due to the constant amoun1 or code which must be 
executed. The observed asymptotic approach to 25'1. rcprc· 
scnts a balance between the decreasing percent.age or host pro­
cessing time per message and the increased amount of system 
backlog which is serviced before the user process regains con· 
trol. Figure 7 shows lhe overall performance of the PA in and 
out of the UNIX cnvirorunc:n1. 

8 
~ 

15 
PRgTOCOl. ACCfll.F.R/)TClll TCP 

~ 13 

~11 ~ "" PA.UNOl!lt UNIX 
~h 
~ 
I= 5,000 10.000 15,000 20,000 

HOST MESSA Gil SIZE (BYTES) 

FIGURE 7. Throughput vs. Host Mcs.o;:igc Size 
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5. CONCLUSIONS 
An outboard protocol aa:elerator optimized for transport 

layer procc!'Sing has been implcmcntcd and tested. The design 
consists of separate transmit and receive units, each with its 
own CPU, checksum, and OMA hardware. Using an imple· 
mentation of TCP, we demonstra1ed that this approach.can sup· 
pon end 10 end throughput rates in excess of 15,000 packets/ 
sec bctwe.ert network and application. When integrated into the 
UNIX cnvirorunc:nt, the protocol accelerato.r freed lhe host of 
the traditional protocol procc.1sing tasks but led a 25% decrea~e 
in average throughput due to the UNIX overllead. 
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