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AN OUTBOARD PROCESSOR FOR HIGH PERFORMANCE IMPLEMENTATION OF
TRANSPORT LAYER PROTOCQLS

R. ANDREW MACLEAN and SCOTT E. BARVICK'

Belicore, 444 Hoes Lanc, Piscataway, NJ 08854

ABSTRACT: The high throughputs promised by emerging
network technologles are often difficult to schicve application-
to-apptication becuuse of host transport protocel botilenecks.
This puper describes an experimental prototype implementa.
tion of an outbourd protocel processor which eliminates these
bottlenecks by performing transport layer functions in dedl-
coted hardware, The architecture consists of seporate trans.
mit ond reecive CPUs, each with checksum and DMA circuits.
Measurements made.using an implementation of the TCP pro-
tocol indicate that this architecture can support end-to-cnd
throughputs in cxcess of 11,000 packetsfsec between UNIX?
hosts.

1. INTRODUCTION

EASUREMENTS of the end-to-end performance of
LANs indicate that ransport and network laycr protocol
implementations often limit throughput between communicat-
ing applications (1}. Several solutions have been proposcd, the
most comumon of which can be caiegorized as follows:

1) increase the size of the transport protocol data unit (TPDU),
2) vptimize the protocol software,

3) change 1o & more cfficient protocol and

4) use a more powerful host processor.

The idea behind the first method is 1o increase the ratio of
duta bits to header bits so that the protocol processing required
per data hit is reduccd, Depending upon the underlying net-
work, however, this approach may lead to increased fueney in
the network, or the need for fragmentation and bly in
the lower layers.

Optimization of the communications software for through-
put has been discussed for the case of TCP/IP [2]. The method-
ology adopted is to change the existing implementation
sofiware 10 reduce the protocol processing overhead, Perfor-
mance comparisons -of optimized and non-optimized imple-
mentations of TCP/IP found in {1} indicaic that significant
performance increases can be realized using such technig

The TCP and OSI TP4 protocols have been designed pri-
marily for robustness and utility rather than throughput. Sev-
cral *lightweight’ tonsport layer protocols have been proposed
which offer performance improvements: NETBLT [3), XTP
{4}, NACK [3), SNR[7}), and YMTP [6] are examples of such
protocols. With respect to the hardware, typically, the data link
layer (1o use OS terminology) has been handled by some kind
of host network adapter and the network layer and above has

1. Scott Barvick is now with Welllleet Communications,
15 Crosby Drive, Bedlord, MA 01730
2. UNIX is a registered trademark of UNIX System Laboratorics Ine.

been the respansibility of the host processor. Thus there are
potentially two areas where processing power can be added,
the host or the communications adapter.

While the use of more powerful host processors is a com-
mon sofution, there is a growing trend towards increasing the
front end intelligence of the 1/0. There are two primary reasons
for this; firstly, the I/O subsystem often demands response
times which cannot be guaranteed by the host processor or
would cause the host 10 behave inefficiently or erratically. Sec-
ondly, it is often the case that certain compute intensive func-
tions can be performed more quickly or more cost effectively
by speciglized hardware than by the host processor. Several
outboard processor designs have been reported [7)-{12]. Our
objective for this project has been to explore the outboard
approach by designing an experimental prototype processor as
a platform for analyzing wransporl laycr protocals. We call this
processor the Prolocol Accelerator (PA), and it is described in
the scetions which follow. One of ouwr ultimaie aims is to
explore different high speed protocols using this processor as &
platform, in order to determine the most appropriate techniques
for transport of data on high speed Metropolitan Arca Net-
works. :

2, PROTOCOL ACCELERATOR

2.1 System Configuration

The Protocol Accelersior is a board on the VME sysiem
bus. Figure | shows how the PA integrates into the host sys-
tem. On the network side, the PA is equipped with both input
and. output 32 bit paralicl ports, each supporting data transfer
rates in excess of 320 Mbits/sec. Intentionally, no media access
circuitry has been included on the PA; this provides us with the
capability 10 conneet the Protocol Accelerator 10 & variety of
network- Lypes via appropriste adapters, or, as in the case of
loop-back testing, to leave out the network circuitry com-
pletely. In fulure ications subs; the ransport
protocol acceleration circuiry probably would physically

reside on the network adapter card.

< VME BUS
NETWORK/ ::D PROTOCOL HOsST ' WML

LOCPBACK
PROCESSOR MREMORY

CIRCUIT ¢ ACCELERATORS

FIGURE 1. Systcm Configuration
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2.2 Functionality and Data Flow

The previousty reported outboard processors can be catego-
rized into single and muliple CPU architactures. The single
CPU implecmentations {4, 10, 11] include peripheral support for
high data throughputs. The multiprocessor implementations [7,
8,9, 12} use up 1o cight CPUs, typically with no special periph-
eral devices, In our design, we cxploit festures lrom both of
these approaches with a duat CPU design and special purpose
peripheral circuitry in an architecture optimized for vansport
layer processing,

The internal functions and data flows of the protocal accel-
crator are shown in Figure 2. We use a dual CPU gpproach to
protocol processing, with one CPU subsystem dedicated to the
transmission, and the other 10 the reception. The transmit and
receive CPUs are both 68020 (25 MHz) based, each with its
own private resources: ROM, parallel YO, interrupt circuitry
and 128 kilobytes of random access memory (RAM). In addi-
tion there is 128 kilobytes of RAM shared by both CPUs which
is also sccessible to the iwo host busses, VME and VSB, Using
both host busscs simultancously, it is possibic for the PA 10
move data blocks both to and from host memory, The transmit
und receive CPUs have VME bus master capability. All the
data paths shown are 32 bits wide,

23 Operation

On transmit, dala can be piped from one of three locations;
host memory, shared memory, or transmit CPU memory into
the network port, while the transmit CPU superviscs transfers
ond compiles headers, No intermediate buffering of the appli-
cition data takes place. We believe this is key 10 high speed
aperation,

On receive, paralicl data from the network is pipelined 10
the host memory, local receive CPU memory, or shared mem-
ory, In normal opcration, the reccive CPU will DMA the
header 10 lacal memory, perform initial processing to establish
header integrity and payload destination, and then start a DMA

process 10 transfer the data segment of the packet cither 10 host
memory or to the shared memory region. While storage of the
payload is proceeding, the receive CPU completes its process-
ing of the header information. Messages are passed between
the transmit/receive CPUs and the host eithes by using the
shared memory region or by using interrupt mechanisms which
exist among all CPUs (host, ransmit or receive).

The Protocol Accelerator enables a rapid data flow to dnd
from the network by introducing a high degree of concurreney
into the communication mechanism. Several activities execute
simultaneously:

1) host processing (of higher layers and application),

2) uransmil protoco! processing,

3) receive protocol processing,

4) data transfer from host memory 10 the network adapter,

5) data ransfer from the network adapter to host memory,

6) receive data checkswnming,

7) transmil data checksurnming, and

8) MAC frame processing.

2.4 Direct Memory Access

An important feature of the hardware architecture is the
dual direct memory access controllers (DMACs). The DMACs
are capable of moving 32 bit dala words at rates of up 10 33
Mbytesfsec over VME or 30 MBytes/sec over the VSB bus
directly 10 and from the network ports. Scaiter-gather type
aperations are fully supported both to and from the application
memory. Data paths also exist for DMA of data between the
network ports and any other RAM area on the PA (i.e. CPU
RAM space or shared RAM space) so that intermediale data
buffering is possible whenever necessary.

2.5 Checksumming

The on-board CPUs are capable of checksumming data at a
rate in the region of 75 Mbits/scc{13] but operation at this ratc
would Icave no time for protocol processing. To maximize our
data throughput, @t was decided 10 include hardware

RECEIVE TRANSMIT
o RECEIVE SHARTID TRANSMIT o
SURSYSTEM MEMORY MEMORY MEMORY SRS YT
@ RECTIVE BUS @ ™1 g ™ @ TRANSMIT BUS @
o in ¢ B — )
- L -
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' RICEIVE TRANSMIT
| s
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NUTWORK e NETWORK
IKPUT BUS
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FIGURE 2. Protocol Accelerator Functional Block Diagrem
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checksumming in preference 10 using faster, more sophisti-
caicd processors for this function.
We use an ‘on-the-fly” cchnigue for the checksum and in

order to take advantage of this hardware, the checksum field is *

required 10 tmil the fields being checked. In the case of TCP
this requires that the checksum field be moved from its usual
place in the hcader. Although hardware schemes can be
devised which lcave the checksum ficld in place, these are
somcwhat more difficult to implement, and because the intent
with this design was (0 produce a testbed suitable for many
protocols, the checksumming circuitry was not designed to be
protocol specific.

" The ecircuits utilize 32 bit oncs complement adders and
opcrate in tandem with the DMA controllers; every word
moved by the DMA controlicr is simultaneously applicd to the
cheeksum circuits. On the transmit processor, the circuil auto-
nutically inserts a 32 bit checksum at the end of hath the
header and the data segments. On the receiver these ficlds are
checked, again automatically.

3. TCP IMPLEMENTATION

3.1 Introduction

The transport protocol used to demonsirate the capabililics
of the Protocol Accelerator is the Transmission Control Proto-
col (TCP). It was chosen because it is currently one of the most
wide-spread transport prolocols in"use on networks today. It is
also the subject of a great deal of continuing rescarch, and the
expanding use of UNIX-based desktop workstations is increas-
ing its penctration. Along with the increased use of TCP is the
fcar that as nctwork rates rise, network throughput may ,not
keep pace or may cven decline as connection-oriented, window
fNlow-controlled protocols such as TCP become @ botdeneck,
Sume researchers do not belicve that the protocol is 10 blame
for the low throughput observed when current TCP implemen-
tations arc run over experimental high specd nctworks {24,
Instead, they cite inefficient implementations of the protocol
and interactions with the host operating systern (UNIX) as the
causes of the poor performance. The intensity of this debate
will grow 8s more high performance machines runaing TCP
observe Jess than ideal performance over high speed networks.
Therefore, TCP was implemented to show that with an efficient
implementation on (he proper hardware plaiform, cven a proto-
col designed for moderaie-speed, error-pronc nctworks can
achieve high throughput,
3.2 Implementation Details

The high performance aspects of the Protocol Accelerator
such as the dual processors, DMA, and on-the-{ly checksum
require the design of the transport protocol implementation to
be specific to the PA, Therefore, 2 custom implementation of
TCP was developed. The modules were written in C for the
main protocol processing functions with embesided 68020
Assembly language code 10 perform many of the hardware spe-
cific tasks. such as setting up the DMA convoller, controlling
timers, and polling status flags. No operating sysiem is used on
the PA. Many implementation decisions were made to optimize
speed and efficiency for the ‘main path® of protocol procesamg

TCP implementation consists of separste transmit and receive
processes running their respective tasks on separate micropro-
cessors, The ransmitter and receiver do most of their process-
ing on data stored in private memory, but they do communicate
through the shared memory. The bulk of this communication
occurs through the Transmission Control Block (TCB), the
main TCP state information structure which resides in shared
memory. At appropriale times, state changes in either the trans-
mitter or receiver are updated in the TCB which may then be
read by the other processor in the course of its work.

As noted in the hardware description, the generic nature of
the PA requires that checksums be placed after the header and
after the data. Other than this difference, the implementation
provides all of the TCP functions required to transmit and
receive data in the TCP (call) ESTABLISHED stale. Among
others, these [unctions include mainwining the retransmission
queue, providing resequencing for out of order packets, sup-
porting retransmission limers, and packetizing host dawa ino
TCP segments, or TPDUs, It must be noted that 10 minimizc
daws movement, host data is moved directly between host
memory and the network interface, This precludes further seg-
mentation/reassembly of the data at what would be the Iniernet
Protoco! (IP) layer, Therefore, although certain [unctions of the
1P layer are rolled into the TCP header (IP address, length, pro-
1ocol), IP functionality is not claimed.

Another objective of this work is to quamiily the efTects of
the cnd host system on oulboard protocol processing, To this

end a UNIX device driver, applications programming interface -

(AP1), and application were developed for the host UNIX sys-
iem. The relationships among the components are shown in
Figure 3.

UNIX
APPLICATION
APL

UNIX
TRANSMIT DEVICE
DRIVER DRIVER

TCP TCP
TRANSMITTER - RECEIVER

FIQURE 3. System Software Architecture

UNIX
RECEIVE DEVICE

Because many variations are possible with software in the
UNIX environment, attempts were made to keep the device

" driver, API and application code as simplc a8 possible while

at the expense of processing for infrequent errov di
These decisions are justified given the low error rates charac-
teristic of high speed fiber networks.

The dual processor hardware archilecture of the Protocol
Accelerator leads natwrally to the software architecture. The

mai g functional similarity to current methodologies for
prowcol/:yuem murl'aces The results may then be used 1o
extrapolale ingful perf exp of other sys-
tems with different basic parameters such as processor capabil-
ity, network packet size, or bus speeds.
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4, PERFORMANCE MEASUREMENTS / ANALYSIS

4.1 Test Configuration

For these initial results, the circuit was operated in a hard-
ware loopback configuration (see Figure 1) with the network
output port connected to the nctwork input port via FIFO bufl-
crs, The loopback causes no loss, errors, or reordesing of pack-

“eis and is thus a best case, For the host we used 8 VME based

singlc board computer based on the Motorola 68030 processor
operating at 25 MHz. This processor was cquipped with an
area of shared dynamic RAM (4 MBytes) sccessible from both
the host processor subsystem and the VME bus.

The communications model used to test the capabilitics of
the Protocol Accelerator is that of a file server/client which can
cither provide or receive large messages at the throughput rates
of e PA, Performance measurements were taken bascd on the
UNIX host transmiting bulk data over the network which, in
this system, is a loopback to the receiver side of the PA. In the
initial measurements we found the wansmitter to be the rae-
determining element in the end-to-end process, being roughly
fiflty percent slower than the receiver. We therclore focus ouwr
discussion on the ransmidcer, In order to fully test the capabili-
tics of the transmiticr, the received daia is not run back to the
UNIX host because that would cause excessive contention for
the VME bus. For these measurements only one host bus
(VME) was used.

4.2 Protocol Accelerator Performance

Figure 4 shows the timing diagram for the flow of TPDUs
through the PA transmitter. The header generation time is the
time taken for the processer 10 access the current state informa-
tion and populate the header ficlds. Once the payload DMA
wransfer is underway, further transport protocol processing pro-
ceeds in paralic! and does not impede data transfer unless the
payload transfer time is shoricr than the overzil transport pro-
cessing time,

-1 13 pxec [ 53 psec I
L 1 -
1IEADCR
GENGRATION TRANSPORT PROTOCOL, PROCESSING

PAYLOAD DMA TRANSFER
(TIME IS PACKET SIZE DEPENDENT)

TIMC

FIGURE 4. Transmitter Per Packet Processing Time

The payload transfer time is simply the product of the pay- -

load size (in 32 bil words) and the data transfer cycle time. The
data transfer eycle time for owr system can be calculated by
adding the minimum DMA cycle time of 80 nsec (asynchro-
nous) to the source (or destination) memory access time. The
shared PA static RAM has an access time of 40 nsec, leading to
a cycle time of 120 nsec per 32 bit word (i.¢. peak data transfer
natc in excess of 250 Mbits/sec). The VME memgryon the
available host computer, on the other hand, has & measured
response time averaging 580 nsec, which reduces the peak
hraughput to below S0 Mbits/sec when this memory is used.

2016 bits of which 1728 bits was payload. The total transport
processing time of ow tansmitler TCP impiementation is
66 psec and this becomes the limiting throughput factor for
small payload packets. The header generation part of this time
is 13 psec.

Using these results, it is swaightforward 10 exvapolate the

performance of the PA transmitter for any memory access time
and packet size. An example is shown in Figure 5. Here, the
payload throughput and the packet throughput are plotied
aguinst packet size for different memory access times. The fat
region of the packet throughput curves are in the region where
the protocol processar limits throughput. To the right of tis
region, throughput is limited by memory bandwidth. Two cascs
arc shown, 120 nscc and 660 nsec memory cycle times; these
represent the memory cycle times for the two cases deseribed
previously, PA shared SRAM and host VME DRAM,

1 -y

6 eevnmeme= 25D

14 ) '\J

124 120 fisee - 200 §

104 DMA CYQLE I

150

g ?
B &1 -100§
2 0 8

> -

/ 1 i L 1, i k] 1 i 0
05 1.0 1.5 20 2.5 3.0 35 45
PACKET SIZE (X8 YTES)

FIGURE S. PA Throughput Based on Memory Access Time
and Packet Size

43 PA Performance in UNIX Environment

We now examine the effect of host system softwarce on the
observed throughput to the application. Host system interac-
tions with outboard processors are critical because regardless
of how fast the data may depart from or arzive o the outboard
processor, it is not until the data is actually in user space on the

host sysiem that the is p

The UNIX overhesd time was measured for a number of
host message sizes transmitted from the PA. The UNIX over-
head consists of the time botween the user call o the APls
BSD-like write socket call and the receipt of the command by
the PA on the inbound side plus the time botween the genera-

tion of the UNIX interrupt (signaling the end of PA processing -

of the host message) and retum of control 1o the user st the end
of message vansmission. The comection establishment func-
tions of socket and connect are not included in thesc measure-
ments because they arc not directly associated with the per
message daa transfer. The system was kept unloaded except
for standard sysiem dacmons in order o minimize contention
for processor and bus resources, The results of the UNIX over-

Ad0D F18VIVAY 1538
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These figures assume no other activity on the sysiem bus. For head for ge ir ission are shown in
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FIGURE 6. Absolute and Relative UNIX Uverhead vs. Host
Message Size

As the message size increases, the absolute UNIX overhead
increascs while its percentage of the wial operation time fatls.
If the TCP interface process had been the only process running
on the host system, the absolute overhcad would remain con-
stant as host message size increascs. This is because the only
action required of the host is to change the command message
lengih delivered 1o the transmitter. The observed results are
duc to the accumulation of higher priority host processes while
the PA DMA is in controf of the UNTX memory. As the mes.
sage size increases, the DMA controls the host bus for more
time per message. The linear increase in absolute overhead also
indicates that the higher priority functions are generally peri-
odic. 1t should be noted thal even as the absolule overhead
increases with message size, the on-board TCP processing time
remains consiant on a per segment basis. This shows that the

- increase in absolute overhead is not duc to increases in tine

waiting for the host bus or other per segment processing, it
occurs at the end of the packet processing before conirol is
returmed to the user process,

The declining percentage of overhead as host message size

5, CONCLUSIONS

An outboard protocol accelerator optimized for transport
layer processing has been implemented and tested. The design
consists of separale transmit and receive units, cach with s
own CPU, checksum, and DMA hardware. Using an imple-
mentation of TCP, we demonstrated that this approach can sup-
port end to end throughput rates in excess of 15,000 packets/
sec between network and application. When integrated into the
UNIX cnvironment, the protoco! accelerator freed the host of

the waditonal protocol processing tasks but led a 25% decrease .

in average throughput due to the UNIX overhead.
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