CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 001

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 002

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 003

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 004

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 005

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 006

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 007

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 008

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 009

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 010

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 011

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 012

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 013

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 014

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 015

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 016

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 017

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 018

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 019

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 020

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 021

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 022

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 023

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 024

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 025

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 026

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 027

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 0?28

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 029

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 030

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 031

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 03?2

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 033

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 034

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 035

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 036

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 037

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 038

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 039

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 040

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 041

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 04?2

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 043

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 044

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 045

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 046

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 047

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 048

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae N40

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 050

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 051

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 052

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 053

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 054

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 055

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 056

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 057

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 058

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 059

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 060

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 061

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 062

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae O3

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage O0R4

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 065

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 066

AT OT" &NET YN0

processor will construct the data required and transfer it. Reads to this memory will
generate 00 for data.

6.2.2.1 Network Processor

The following four byte registers, beginning at location h00 of the network processor’s
allocated memory, are defined.

00—~ Interrupt Status Pointer -- Initialized by the host to point to a four byte area
where status is stored

04— Interrupt Status — Returned status from host. Sent after one or more
status conditions have been reset. Also an interlock for storing any
new status. Once status has been stored at the Interrupt Status Pointer
location, no new status will be stored until the host writes the Interrupt
Status Register. New status will be ored with any remaining
uncleared status (as defined by the contents of the returned status)
and stored again at the Interrupt Status Pointer location. Bits are
as follows:
Bit 31 — ERR - Error bits are set
Bit 30 - RCV — Receive has occurred
Bit 29 - XMT - Transmit command complete
Bit 25 — RMISS — Receive drop occurred due to no buffers

08 — Interrupt Mask — Written by the host. Interrupts are masked for each
of the bits in the interrupt status when the same bit in the mask
register is set. When the Interrupt Mask register is written and as
a result a status bit is unmasked, an interrupt is generated. Also,
when the Interrupt Status Register is written, enabling new status
to be stored, when it is stored if a bit is stored that is not masked
by the Interrupt Mask, an interrupt is generated.

0C -~ Header Buffer Address — Written by host to pass a set of header buffers to the
INIC.

10— Data Buffer Handle — First register to be written by the Host to transfer a receive
data buffer to the INIC. This data is Host reference data. It is not used by the
INIC, it is returned with the data buffer. However, to insure integrity of the
buffer, this register must be interlocked with the Data Buffer Address register.
Once the Data Buffer Address register has been written, neither register can be
written until after the Data Buffer Handle register has been read by THE
MICROPROCESSOR.

14— Data Buffer Address — Pointer to the data buffer being sent to the INIC by the
Host. Must be interlocked with the Data Buffer Handle
register.

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 067

L
o
S
==
=~
-
o
4
i
i
=
=
e
o~
pes

Buffer Address XMTO with the local address replacing the host
Address.

1C~ Command Buffer Address SMT1
20~ Command Buffer Address SMT2
24 — Command Buffer Address SMT3

28— Response Buffer Address -- Pointer to a set of response buffers sent
by the Host. These will be treated in the same fashion as the
Command Buffer Address registers.

6.2.2.2 Utility Processor

Ending status will be handled by the utility processor in the same fashion as it is handled
by the network processor. At present two ending status conditions are defined B31 —
command complete, and B30 — error. When end status 1s stored an interrupt is
generated.

Two additional registers are defined, Command Pointer and Data Pointer. The Host is
responsible for insuring that the Data Pointer is valid and points to sufficient memory
before storing a command pointer. Storing a command pointer initiates command decode
and execution by the debug processor. The Host must not modify either command or
Data Pointer until ending status has been received, at which point a new command may
be initiated. Memory space is write only by the Host, reads will receive 00, The¢ format
is as follows:

00— Interrupt Status Pointer - Initialized by the host to point to a four byte area
where status is stored

04 — Interrupt Status — Returned status from host. Sent after one or more
status conditions have been reset. Also an interlock for storing any
new status. Once status has been stored at the Interrupt Status Pointer
location, no new status will be stored until the host writes the Interrupt
Status Register. New status will be ored with any remaining
uncleared status (as defined by the contents of the returned status)
and stored again at the Interrupt Status Pointer location. Bits are
as follows:

Bit 31 - CC - Command Complete
Bit 30 — ERR -- Error

Bit29 — Transmit Processor Halted
Bit28 — Receive Processor Halted
Bit27 - Utility Processor Halted

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 068

LB TOT" BT SO0S

when the Interrupt Status Register is written, enabling new status
to be stored, when it is stored if a bit is stored that is not masked
by the Interrupt Mask, an interrupt is generated.

0C- Command Pointer — Points to command to be executed. Storing
this pointer initiates command decode and execution.

10— Data Pointer — Points to the data buffer. This is used for both read and write data,
determined by the command function.

7 Debug Interface

In order to provide a mechanism to debug the microcode running on the microprocessor
sequencers, a debug process has been defined which will run on the utility sequencer.
This processor will interface with a control program on the host processor over PCIL.

7.1 PCI Interface

This interface is defined in the combination of the Utility Processor and the Host
Interface Strategy sections, above.

7.2 Command Format

The first byte of the command, the command byte, defines the structure of the remainder
of the command. The first five bits of the command byte are the command itself. The
next bit is used to specify an alternate processor, and the last two bits specify which
processors are intended for the command.

7.2.1 Command Byte

7-3 2 1-0
Command Alt. Proc. Processor

7.2.2 Processor Bits

00 — Any Processor

01 - Transmit Processor
10 — Receive Processor
11 — Utility Processor

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 069

CARE NN R

3
L

A ERTOT" G0

7.2.3 Alternate Processor

This bit defines which processor should handle debug processing if the utility processor
is defined as the processor in debug.

0 — Transmit Processor
1 — Receive Processor

7.2.4 Single Byte Commands
00 — Halt

This command asynchronously halts the processor.
08 — Run

This command starts the processor.
10— Step

This command steps the processor.

7.2.5 Eight Byte Commands

18 — Break
0 1 2-3 4-7
Command Reserved Count Address

This command sets a stop at the specified address. A count of 1 causes the specified
processor to halt the first time it executes the instruction. A count of 2 or more causes the
processor to halt after that number of executions. The processor is halted just before
executing the instruction. A count of 0 does not halt the processor, but causes a sync
signal to be generated. If a second processor is set to the same break address, the count
data from the first break request is used, and each time either processor executes the
instruction the count is decremented.

20 — Reset Break

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 070

ey

S Eeh T B O RN

This command resets a previously set break point at the specified address. Reset break
fully resets that address. If multiple processors were set to that break point, all will be
reset.

28 — Dump
0 1 2.3 4-7
Command Descriptor Count Address

This command transfers to the host the contents of the descriptor. For descriptors larger
than four bytes, a count, in four byte increments is specified. For descriptors utilizing an
address the address field is specified.

7.2.6 Descriptor

00 - Register

This descriptor uses both count and address fields. Both fields are four byte based (a
count of 1 transfers four bytes).

01 — Sram
This descriptor uses both count and address fields. Count is in four byte blocks. Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address.

02 — Dram
This descriptor uses both count and address fields. Count is in four byte blocks. Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address

03 — Cstore
This descriptor uses both count and address fields. Count is in four byte blocks. Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address

Stand-alone descriptors:

The following descriptors do not use either the count or address fields. They transfer the
contents of the referenced register.

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 071

LBt T B DE T SRS

06 — ADDR_REGA

07 - ADDR_REGB

08 - RAM_BASE

09 - FILE_BASE

0A —INSTR_REG_L

0B - INSTR_REG_H

0C - MAC_DATA

0D -DMA_EVENT

OE —~ MISC_EVENT

OF —Q_IN_RDY

10-Q OUT_RDY

11 -LOCK STATUS

12 — STACK - This returns 12 bytes

13— Sense _ Reg
This register contains four bytes of data. If error status is posted for a command, if the
next command that is issued reads this register, a code describing the error in more detail

may be obtained. If any command other than a dump of this register is issued after error
status, sense information will be reset.

30 - Load
0 1 2-3 4-7
Command Descriptor Count Address

This command transfers from the host the contents of the descriptor. For descriptors
larger than four bytes, a count, in four byte increments is specified. For descriptors
utilizing an address the address field is specified.

7.2.7 Descriptor

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 072

LABhTUOT" HOBTI00D

01 — Sram

This descriptor uses both count and address fields. Count is in four byte blocks. ; Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address.

02 - Dram
This descriptor uses both count and address fields. Count is in four byte blocks. Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address

03 - Cstore
This descriptor uses both count and address fields. Count is in four byte blocks. Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address. This applies to WCS only.
Stand-alone descriptors:

The following descriptors do not use either the count or address ficlds. They transfer the
contents of the referenced register.

04 — ADDR_REGA

05 - ADDR_REGB

06 -RAM BASE

07 - FILE_BASE

08 - MAC _DATA

09 -Q_IN_RDY

0A-Q _OUT_RDY

0B - DBG_ADDR

38 —Map
This command allows an instruction in ROM to be replaced by an instruction in WCS.
The new instruction will be located in the Host buffer. It will be stored in the first eight

bytes of the buffer, with the high bits unused. To reset a mapped out instruction, map it
to location 00.

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 073

=
o
Aa

L
=
et
=
F
b

|8

8 HARDWARE SPECIFICATION
FEATURES

» Peripheral Component Interconnect (PCI) Interface

- Universal PCI interface supports both 5.0V and 3,3V signaling environments,

- Supports both 32-bit and 64 bit PCI interface.

- Supports PCI clock frequencies from 15MHz to 66MHz

- High performance bus mastering architecture.

- Host memory based communications reduce register accesses.
- Host memory based interrupt status word reduces register reads.
- Plug and Play compatible.

- PCI specification revision 2.1 compliant.

- PCI bursts up 1o 512 bytes.

- Supports cache line operations up to 128 bytes.

- Both big-cndian and little-endian byte alignments supported.
- Supports Expansion ROM.

« Network Interface

- Four internal 802.3 and ethernet compliant Macs.

- Media Independent Interface (MII) supports external PHYs.

- 10BASE-T, 100BASE-TX/FX and 100BASE-T4 supported.

- Full and half-duplex modes supported.

- Automatic PHY status polling notifies system of status change.
- Provides SNMP statistics counters.

- Supports broadcast and multicast packets.

- Provides promiscuous mode for network monitoring or multiple unicast address detection.

- Supports “huge packets™ up to 32KB.
- Mac-layer loop-back test mode.
- Supports auto-negotiating Phys.

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 074

e Memory Interface

- External Dram buffering of transmit and receive packets.

- Buffering configurable as 4MB, 8MB, 16MB or 32MB.

- 32-bit interface supports throughput of 224MB/s

- Supports external FLASH ROM up to 4 MB, for diskless boot applications.

- Supports external serial EEPROM for custom configuration and Mac addresses.

» Protocol Processor

- High speed, custom, 32-bit processor executes 66 million instructions per second.

- Processes IP, TCP and NETBIOS protocols.
- Supports up to 256 resident TCP/IP contexts.
- Writable control store (WCS) allows field updates for feature enhancements.

+ Power

- 3.3V chip operation.
- PCI controlled 5.0V/3.3V 1/O cell operation.

+ Packaging

- 272-pin plastic ball grid array.

- 91 PCI signals.

- 68 MII signals.

- 58 external memory signals.

- 1 clock signal.

- 54 signals split between power and ground.
- 272 total pins.

0 Bk TR R Y B TRE T S

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 075

OB T

Wi E TR

£

A"

E

GENERAL DESCRIPTION

The microprocessor is a 32-bit, full-duplex, four channel, 10/100-Megabit per second (Mbps), Intelligent
Network Interface Controller, designed to provide high-speed protocol processing for server applications. It
combines the functions of a standard network interface controller and a protocol processor within a single
chip. Although designed specifically for server applications, The microprocessor can be used by PCs,
workstations and routers or anywhere that TCP/IP protocols are being utilized.

When combined with four 802.3/MII compliant Phys and Synchronous Dram (SDram), the INIC comprises
four complete ethernet nodes. It contains four 802.3/ethernet compliant Macs, a PCI Bus Interface Unit (BIU),
a memory controller, transmit fifos, receive fifos and a custom TCP/IP/NETBIOS protocol processor. The
INIC supports 10Base-T , 100Base-TX, 100Base-FX and 100Base-T4 via the MII imerface awtachment of
appropriate Phys.

The INIC Macs provide statistical information that may be used for SNMP. The Macs operate in promiscuous
mode allowing the INIC to function as a network monitor, receive broadcast and multicast packets and
implement multiple Mac addresses for each node.

Any 802.3/MII compliant PHY can be utilized, allowing the INIC to support 10BASE-T, 10BASE-T2,
100BASE-TX, 100Base-FX and 100BASE-T4 as well as future interface standards. PHY identification and
initialization is accomplished through host driver imitialization routines. PHY status registers can be polled
continuously by the INIC and detected PHY status changes reported to the host driver. The Mac can be
configured to support a maximum frame size of 1518 bytes or 32768 bytes.

The 64-bit, multiplexed BIU provides a direct interface to the PCI bus for both slave and master functions.
The INIC is capable of operating in either a 64-bit or 32-bit PCI environment, while supporting 64-bit
addressing in either configuration. PCI bus frequencies up to 66MHz are supported yielding instantaneous bus
. transfer rates of 533MB/s. Both 5.0V and 3.3V signaling environments can be utilized by the INIC.
Configurable cache-line size up to 256B will accommodate future architectures, and Expansion ROM/Flash
support allows for diskless system booting. Non-PC applications are supported via programmable big and little
endian modes. Host based communication has been utilized to provide the best system performance possible.

The INIC supports Plug-N-Play auto-configuration through the PCI configuration space. External pull-up and
pull-down resistors, on the memory 1/0 pins, allow selection of various features during chip reset. Support of
an external eeprom allows for local storage of configuration information such as Mac addresses.

External SDram provides frame buffering, which is configurable as 4MB, 8MB, 16MB or 32MB using the
appropriate SIMMs. Use of -10 speed grades yields an external buffer bandwidth of 224MB/s. The buffer
provides temporary storage of both incoming and outgoing frames. The protocol processor accesses the frames
within the buffer in order to implement TCP/IP and NETBIOS. Incoming frames are processed, assembled
then transferred to host memory under the control of the protocol processor. For transmit, data is moved from
host memory to buffers where various headers are created before being transmitted out via the Mac.

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 076

B ENET S ey

AEhTOF"

BLOCK DIAGRAM

MIIA MIIB MIIC MIID
MacA MacB MacC MacD
XmtA XmtB XmtC XmtD
& & & &
RevA RevB RevC RevD
Seq Siq Siq Siq
REG FILE
EXTERNAL
8KI WCS
1Kt ROM MEMORY
| !
PROC 1KB X 128 Sram Eﬂiﬁ%
" & DMA Ctrl ctnl
] !
v
PCI BUS
INTERFACE UNIT
4

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 077

TEDa

PR B

OUTLINE

* Cores/Cells

LSI Logic Ethernet-110 Core, 100Base & 10Base Mac with MII interface.
LSI Logic single port Sram, triple port Sram and ROM available.

LSI Logic PCI 66MHz, 5V compatible I/0 cell.

LSI Logic PLL

« Die Size / Pin Count

LSI Logic G10 process.

MODULE DESCR AREA
Scratch RAM, 1Kx128 sport, 4.37 ns nom., 06.77 mm*
WCS, 8Kx49 sport, 6.40 ns nom., 18.29 mm®
MAP, 128x7 sport, 3.50 ns nom., 00.24 mm?
ROM, 1Kx49 32col, 5.00 ns nom., 00.45 mm*
REGs, 512x32 tport, 6.10 ns nom., 03.49 mm®
Macs, JI5mm’ x4 = 03.30 mm*
PLL, Smm! = 00.55 mm*
MISC LOGIC, 117,260 gates / (5035 gates / mm? = 23.29 mm’
TOTAL CORE 56.22 mm*
{Core side) = 56.22 mm’
Core side = 07.50 mm
Die side = core side + 1.0 mm (/O cells) = 08.50 mm
Die area = 8.5 mmx 8.5 mm = 72.25 mm*
Pads needed = 220 signals x 1.25 (vss, vdd) = 275 pins
LSI PBGA = 272 pins

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 078

¢ Datapath Bandwidth

(10MB/s/100Base) x 2 (full duplex) x 4 connections =
Average frame size =
Frame ratc = 80MB/s / 512B =
Cpu overhead / frame = (256 B context read) + (64B header read) +
(128B context write) + (128B misc.) =
Total bandwidth = (512B in) + (512B out) + (512B Cpu) -
Dram Bandwidth required = (1536B/frame) x (156,250 frames/s) =
Dram Bandwidth @ 60MHz = (32 bytes / 167ns) =
Dram Bandwidth @ 66MHz = (32 bytes / 150ns) =
PCI Bandwidth required =
PCI Bandwidth available @ 30 MHz, 32h, average =
PCI Bandwidth available @ 33 MHz, 32b, average =
PCI Bandwidth available @ 60 MHz, 32b, average -
PCI Bandwidth available @ 66 MHz, 32b, average -
PCI Bandwidth available @ 30 MHz, 64b, average =
PCI Bandwidth available @ 33 MHz, 64b, average =
PCI Bandwidth available @ 60 MHz, 64b, average =
PCI Bandwidth available @ 66 MHz, 64b, average =

¢ Cpu Bandwidth

Receive frame interval = 512B / 40MB/s -
Instructions / frame @ 60MHz = (12.8us/frame) / (50ns/instruction)
instructions/frame

Instructions / frame @ 66MHz = (12.8us/frame) / (45ns/instruction)
instructions/frame

Required instructions / frame (per Clive) =

80 MB/s
512B
156,250 frames / s

512B / frame

1536B / frame
240MB/s
202MB/s
224MB/s
80MB/s
46MB/s
S0MB/s
2MB/s
100MB/s
92MB/s
100MB/s
184MB/s
200MB/s

250 instructions/frame

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 079

¢ Performance Features

- 512 registers improve performance through reduced scratch ram accesses and reduced instructions.
- Register windowing eliminates context-switching overhead.

- Separate instruction and data paths eliminate memory contention.

- Totally resident control store eliminates stalling during instruction fetch.

- Multiple logical processors eliminate context switching and improve real-time response.
- Pipelined architecture increases operating frequency.

- Shared register and scratch ram improve inter-processor communication.

- Fly-by state-Machine assists address compare and checksum calculation.

- TCP/IP-context caching reduces latency.

- Hardware implemented queues reduce Cpu overhead and latency.

- Horizontal microccde greatly improves instruction efficiency.

= Automatic frame DMA and status between Mac and dram buffer.

- Deterministic architecture coupled with context switching eliminates processor stalls.

g‘i
e
=
=
od
f;’-'.:
o
i
=
&
X1
=
;'___‘1-
=
&
~

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 080

PROCESSOR

The processor is a convenient means to provide a programmable state-machine which is capable of processing
incoming frames, processing host commands, directing network traffic and directing PCI bus traffic. Three
processors are implemented using shared hardware in a three-level pipelined architecture which launches and
completes a single instruction for every clock cycle. The instructions are executed in three distinct phases
corresponding to each of the pipeline stages where each phase is responsible for a different function.

The first instruction phase writes the instruction results of the last instruction to the destination operand,
modifies the program counter (Pc), selects the address source for the instruction to fetch, then fetches the
instruction from the control store. The fetched instruction is then stored in the instruction register at the end of
the clock cycle.

The processor instructions reside in the on-chip control-store, which is implemented as a mixture of ROM and
Sram. The ROM contains 1K instructions starting at address 0x0000 and aliases each 0x0400 locations
throughout the first 0x8000 of instruction space. The Sram (WCS) will hold up to 0x2000 instructions starting
at address 0x8000 and aliasing each 0x2000 locations throughout the last 0x8000 of instruction space. The
ROM and Sram are both 49-bits wide accounting for bits [48:0] of the instruction microword. A separate
mapping ram provides bits [55:49] of the microword (Mapaddr) to allow replacement of faulty ROM based
instructions. The mapping ram has a configuration of 128x7 which is insufficient to allow a separate map
address for each of the 1K ROM locations. To allow re-mapping of the entire 1K ROM space, the map ram
address lines are connected to the address bits Fetch[9:3]. The result is that the ROM is re-mapped in blocks
of 8 contiguous locations.

b
-

The second instruction phase decodes the instruction which was stored in the instruction register. It is at this

i point that the map address is checked for a non-zero value which will cause the decoder to force a Jmp

: instruction to the map address. If a non-zero value is detected then the decoder selects the source operands for
jd the Alu operation based on the values of the OpdASel, OpdBSel and AluOp fields. These operands are then
ot stored in the decode register at the end of the clock cycle. Operands may originate from File, Sram, or flip-
= flop based registers. The second instruction phase is also where the results of the previous instruction are
written to the Sram.

= The third instruction phase is when the actual Alu operation is performed, the test condition is selected and the
bk Stack push and pop are implemented. Results of the Alu operation are stored in the results register at the end
£ of the clock cycle.

g-{

ud Following is a block diagram which shows the hardware functions associated with each of the instruction

phases. Note that various functions have been distributed across the three phases of the instruction execution in
order to minimize the combinatorial delays within any given phase.

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 081

=

CERDH

2
¥

1

LBhTEOT " G E

Cpu BLOCK-DIAGRAM

CLK
v v v v vvlv vy | _
I"
! | Sram |LOAD|LOAD FLAG “é*;‘" FETCH| LOAD LOAD | LOAD
] ir
1
Vlon | oo | cm DEC STORE| o | ol cul | cm
]
1 ,:j
H A
L i | awr [Fe | FF | ALU [FLAG| o |INSTR |[FETCH| Sram |DEBUG|
: & BASED PC |STAck| Addr
1 | paa | crx | REGs | CC's | REG's REG | Addr &BASE| Addr
L
.. 512x32
::,.. . . FILE R S— =
¢ A
|| 4Kx32 sddr dout dout
1| scratch sl INCR INCR
A Sram A
i
i
i h 4 A v A h 4 h 4 \ 4
al S/ INSTRUCTION DECODER LOAD
& AND
! OPERAND MULTIPLEXER Cul
1
1
' A A A A A A A A Y ¥
ko i FILE | ALU | ALU | ALU | TEST | FLAG | QCH PGM Sram |[DEBU
1 & | ur PC |STAck| Addr
E CTX |OPD's| CC's | OP | SEL | SEL |QCMD Cul &BASE| Addr
oo GRS SGREY) [RRSS Tl owe SRUR e B . —-
e A A 4 Y A Y Y 3 A
- TEST QRAM STAck LOAD
i ALU < & 4 INCR |
! MUX QALU EXCHANGE Cul
1
3 .:)
1) 4) 4 h 4 r h 4 y A 4 ¥ h 4 Y
\ :I FILE | ALU | ALU | DEST | TEST | FLAG | QFLGS PGM Sram |[DEBUG
1 OFD & | ur PC |STAck| Addr
i RSLT QAddr Cul &.BASE.| Addr
1

eee

LriTE

e

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 082

ETSDDg

B

B TR

INSTRUCTION SET

The micro-instructions are divided into six types according to the program control directive. The micro-
instruction is further divided into sub-fields for which the definitions are dependent upon the instruction type.
The six instruction types are listed below.

INSTRUCTION-WORD FORMAT

TYRE ~(55:49) [48:47] [46:42] _ (41:33) _ [32:24) _ (23:16] [15:00]
Jee 0b0000000 oboo, AluOp, opdAsel, oOpdBsSel, TstSel, Literal
Jop 0b0oo0oQo00 obo1, Aluop, opdasel, oOpdBSel, FlgSel, Literal
J5T 0b0000000 oblo, Alulp, OpdASel, OpdBSel, FlgSel, Literal
Rts 0b0000000 obll, Alulp, opdasel, opdBsel, OhEE, Literal
Nxt 0b0000000 O0bll, Alulp. OpdASel, OpdBSel, ¥lgSel, Literal
Map MapAddr 0bXX, OBXOONK, ObXXXXXXXXX, OBXIOOOOMNNXK, OhXX, OhX0oC

All instructions include the Alu operation (AluOp), operand “A” select (OpdASel), operand “B” select
(OpdBSel) and Literal fields. Other field usage depends upon the instruction type.

The “jump condition code” (Jec) instruction causes the program counter to be altered if the condition selected
by the “test select” (TstSel) field is asserted. The new program counter (Pc) value is loaded from either the
Literal field or the AluOut as described in the following section and the Literal field may be used as a source
for the Alu or the ram address if the new Pc value is sourced by the Alu.

The “jump” (Jmp) instruction causes the program counter 1o be altered unconditionally. The new program
counter (Pc) value is loaded from either the Literal field or the AluOut as described in the following section.
The format allows instruction bits 23:16 to be used to perform a flag operation and the Literal field may be
used as a source for the Alu or the ram address if the new Pe value is sourced by the Alu.

The “jump subroutine™ (Jsr) instruction causes the program counter to be altered unconditionally. The new
program counter (Pc) value is loaded from either the Literal field or the AluOut as described in the following
section. The old program counter value is stored on the top location of the Pe-Stack which is implemented as a
LIFO memory. The format allows instruction bits 23:16 to be used to perform a flag operation ‘and the Literal
field may be used as a source for the Alu or the ram address if the new Pc value is sourced by the Alu.

The “Nxt” (Nxt) instruction causes the program counter to increment. The format allows instruction bits
23:16 10 be used to perform a flag operation and the Literal field may be used as a source for the Alu or the
ram address.

The “return from subroutine™ (Rts) instruction is a special form of the Nxt instruction in which the “flag
operation” (FlgSel) field is set to a value of Ohff. The current Pe value is replaced with the last value stored in
the stack. The Literal field may be used as a source for the Alu or the ram address.

The Map instruction is provided to allow replacement of instructions which have been stored in ROM and is
implemented any time the “map enable” (MapEn) bit has been set and the content of the “mag address”
(MapAddr) field is non-zero. The instruction decoder forces a jump instruction with the Alu operation and
destination fields set to pass the MapAddr field to the program control block.

The program control is determined by a combination of PgmCitrl, DstOpd, FigSel and TstSel. The behavior

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 083

e

3

} T

T bhE

e T

i

ol

of

if (MapEn & (MapAddr != 0b0000000)) { //re-map instr
Stackc = Stacke;
StackB = StackB;
StackA = StackA;
InstrAddr = 0hB000 | Pec[2:0] | (MapAddr << 3);
Pc = InstrAddr + (Execute & -DbgMd) ;
Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbghAddr + (Execute & DbgMd);}

else if (PgmCtrl == Jee){ //conditional jump

Stackc = Stacke;

StackB = StackB;

StackA = Stackd;

InstrAddr = -Tst@TstSel ? Pe: (AluDst==P¢) ? AluOut:Literal;
Pc = InatrAddr + (Execute & ~DbgMd)
Fatch = DhgMd ? DbgAddr:TnstrAddr;
DbgAddr = DbgAddr + (Execute & DbgMd);}

else if (PgmCtrl == Jmp){ //jump

stacke = Stacke;

StackB StackB;

StackdA = Stackh;

Instraddr (AluDst == Pc) 7 AluOut:Literal;
Pe InstrAddr + (Bxecute & ~Dbghd)
Fatch = Dbg¥d ? DbgAddr:InstrAddr;
Dbgaddr = DbgAddr + (Execute & DbgMd);}

else if (PgmCtrl == Jsr){ //jump subroutine

stacke = Stacks;

StackB Stacka;

Stackh Po;

Instraddr (AluDst == Pc) ? AluOut:Literal;
Pc = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;
Dbgaddr = DbgAddr + (Execute & DbgMd);}

else if (FlgSel == Rts) { //return subroutine
Instraddr = StackAh;
StackhA = StackB;

StackB = Stackc;
Stackc = ErrVec;
Pec = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr + (Execute & DbgMd);}
else |
InstrAddr = Pc; //eontinue

StackA = StackAh;
StackB = StackB;
Stackc = Stackc;
Pc = InstrAddr + (Execute & -DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr - DbgAddr + (Bxecute & Dbghd) ;}

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 084

O R TR

ey D

//bit clear

//legical and

//legical and

//logical and not

J/logical or

//logical or

//logical or not

//priority enc

//logical xor

//logical xor

Ccal Xor not

bytes

//swap doublets

AluOp OPERATION

0b00000 A= (A& -(1 << B));
C=0; V= (B> 32) 7 1:0;

0b00001 A= (A &B);
C=0; V=0;

0b00010 A = (Literal & B);
C=20; V=0;

0b00011 A = (~Literal & B);
C=0; V= 20;

0b00100 A= (A] (1 << B)); //bit set
C=0; V= (B> 32) 2 1:0;

0b00101 A= (a] B);
C=0; V= 0;

0b00110 A = (Literal | B);
C=0; V=o0;

0b00111 A = (~Literal | B);
C=20; Ve=0;

001000 for (i=31; i»=0; i--) if B[i] continue; A=i;
C=20; V= (B) 2 0:1;

0b01001 A= (rn"*B);
C=0; V= 0;

obo1010 A = ({Literal} * B);
C=0; V= 0;

0b01011 A = ({-Literal} * B); //1ogi
C=0; V=0;

0bo1100 A = B; / fmove
C=s0; V= 0;

0001101 A = B[31:24] * B[23:16] ~ B[(15:08] ™ B[07:00];//hash
C=0; V=20;

0b01110 A = {B[23:16),B[31:24],B[07:00] ,B[15:08]}; //owap
Cm0; V=0;

0b01111 A = {B[15:00], B[31:16]};
C=0; V=20;

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 085

Alulp
0b10000 A= (A+ B); [/add B
C= (A +B)[32]; V= 0;
0b10001 A= (A+B+0Q); //add B, carry
C=(A+ B+ QI[32]; V=0;
0bl0010 A = (Literal + B); //add constant
C = (Literal + B)([32]; V = 0;
0b10011 A = (-Literal + B); //sub constant
C = (-Literal + B) [32]; V = 0;
0b10100 A= (A - B); //sub B
C= (A - B)[32]; V=0;
0bl0101 A= (A-B- -C); f/sub B, borrow
¢C=(a-B- ~C)[32]; V=0;
0b10110 A= (-A+ B); f/sub A
C = (-A + B)[32); V= 0;
0bl0111 A= (-A+B - =C); //sub A, borrow
o C= (-A + B - ~C)[32]; V= 0;
jf 0b11000 A= (A <<B); //shift left A
= C = A[31]; V= (B >= 32) ? 0:1;
;
= 0bl1001 A = (B << Literal); //shift left B
C = B[31]; V = (Literal »= 32) ? 0:1;
_P':
ot 0b11010 A= (B e 1); //shift left B
= [« B[31]; Vv = 0;
B 0b11011 n=(aA-B); //compare
2 C= (A -B)[32]; V=0;
= 0b11100 A= (A >> B); //shift right A
& C = A[0); V= (B >= 32) ? 1:0;
-
T 0b11101 A = (B >> Literal); //shift right B
C= A[0]l; V= (Literal »= 32) ? 1:0;
obi1110 A= (B > 1); //shift right B
C = A[0]l; V=0;
0bl1111 n= (B - A); //compare

C= (B - AM32]; V=0;

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 086

SRR

0T BOE

et T

it

'

OpdSel

0b000Qaaaaa

0b000laaaaa

0b001XXXXXX

0b0100000XX

0b0100001XX

0b0100010XX

Ob0100011XX

0b01001XXXX

0b010100000

SELECTED OPERANDs

File

CpuReg

reserved

CpuStatus

reserved

Pc

DbgAddr

reserved

File@(OpdSel(4:0] | FileBase);
Allows paged access to any part of the register file.

File@{2'bll, Cpuld, OpdSel(4:0]};
Allows direct access to Cpu specific registers.

Reserved for future expansion.

0b0000000000000BHDOO000000000000CC

This is a read-only register providing information about the Cpu executing
(OpdSel[1:0]) cycles after the current cyele. "CC" represents a value
indicating the Cpu. Currently, only Cpuld values of 0, 1 and 2 are returned.
"H" represents the current state of Hlt, "D" indicates DhgMd and “B"
indicates BigMd. Writing this register has no effect.

Reserved for future expansion.

0x0000AAAR

Writing to this address causes the program control logic to use AluOut as the
new Pe value in the event of a Jmp, Jee or Jsr instruction for the Cpu
executing during the current cycle. If the current instruction is Nxt, Map, or
Rits, the register write has no effect. Reading this register returns the value in
Pe for the Cpu executing (OpdSel[1:0]) cycles afier the current cycle.

0xDOOOAAAR

‘Writing to this register alters the contents of the debug address register
(DbgAddr) for the Cpu executing (OpdSel[1:0]) cycles after the current

cycle. DbgAddr provides the fetch address for the control-store when

DbgMd has been selected and the Cpu is executing. DbgAddr is also used

as the control-store address when performing 2 WrWes@DbgAddr or
RdWcs@DbgAddr operation. “D” represents bit 31 of the register. It is a general
purpose flag that is used for event indication during simulation. Reading this
register returns a value of 0x00000000.

Reserved for future expansion.

RamAddr {0b1CCC, 0x000, Obl, AAAA}
RamAddr = AluOut[15] ? AluOut : (AluOut | RamBase);
PrevCC = AluOut[31]1 7 CCC : AluCC;

A read/write register. When reading this register, the Alu condition codes from the previous
instruction are returned together with RamAddr.

?}l_nm_..dminﬁm

30 PrevC
29 Prevv
28 PrevZ
27:16

15

Always 1.

Previous Alu Carry.
Previous Alu Overflow.
Previous Alu Zero.
Always 0.

Always 1.

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 087

i TOT " BTS00

s

OpdSel ~_ SELECTED OPERANDg
0b010100001 AddrRegA 0x0000AAAA
AddrRegA = AluOut;
A read/write operand which loads AddrRegA used to provide the address for read and write
operations.
‘When AddrRegA[15] is set, the contents will be presented directly to the ram. When AddrRegA[15] is
reset, the contents will first be ored with the contents of the RamBase register before presentation to
the
ram. Writing to this register takes priority over Literal loads using FlgOp. Reading this/ register returns
the current value of the register.
0b010100010 AddrRegB 0x0000AAAA
AddrRegB = AluQut;
A read/write operand which loads AddrRegB used to provide the address for read and write
operations.
When AddrRegB[15] is set, the contents will be presented directly to the ram. When AddrRegB[15] is
reset, the contents will first be ored with the contents of the RamBase register before presentation to
the
ram. Writing to this register takes priority over Literal loads using FlgOp. Reading this register returns
the current value of the register,
02010100011 AddrRegAb 0X0000ARAAA
AddrRegA = AluOut; AddrRegB = AluOut;
A destination only operand which loads AddrRegB and AddrRegA used to provide the address for
read
and write operations Writing to this register takes priority over Literal loads using FlgOp. Reading this
register returns the value 0x00000000.
0b010100100 RamBase 0x0000ARRA
RamBase = AluQut;
A read/write register which provides the base address for ram read and write cycles. When
RamAddr[15] is set, the contents will not be used, When RamAddr[15] is reset, the coments will first
be ored with the contents of the RamBase register before presentation to the ram. Reading this register
returns the value for the current Cpu.
0b010100101 FileBase 0b00000000000000000000000ARAAARARR
FileBase = AluQut;
FileAddr = OpdSel[8] ? OpdSel:(OpdSel + FileBase);
A read/write register which provides the base address for file read and write cycles. When OpdSel[8]
is
set, the contents will not be used and OpdSel will be presented directly to the address lines of the file.
When OpdSel[8] is reset, the contents will first be ored with the contents of the FileBase register
before presentation 1o the file. Reading this register returns the value for the current Cpu.
0b010100110 InstrRegL OxIIIIITII
This is a read-only register which returns the contents of InstrReg[31:0]. Writing to this register has no
effect.
0b010100111 InstrRegH 0x00ITITII

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 088

9

JRIN

4

EEhTDE" BOETE

Opdsel __ SELECTED OPERANDs

0b010101000

0b010101001

0b010101010

0b010101011

0b010101100

Minusl

FreeTime

LiteralL

LiteralH

DxfELLELESE
This is a read-only register which supplies a value Oxffffffff.. Writing to this
register has no effect.

A free-running timer with a resolution of 1.00 microseconds and a maximum count
of 71 minutes. This timer is cleared during reset,

Instr{15:0]
A read-only register, Writing to this register has no effect

Instr[15:0] < < 16;
A read-only register. Writing to this register has no effect

MacData - Writing to this address loads the AluOut data into the MacData register for use
during Mac operations. The Mac operation, resulting from writing to the MacOp register,
determines the definition of the MacData register contents as follows.

MacOp
Mstop

WrMefg

WrMrng

RdPhy

WrPhy

MacData definition
ObXXKKKXHKKEXKKKAKKKKXAK K KKK KHKKKK
MacData is not used for the StopM operation.

hrstl, revd, rsvd, crcen, fulld, hrstl, hugen, nopre, paden, prtyl, xdl10, ipgr1[6:0],
ipgr2(6:0), ipgt{6:0].

Loads the MacCfg register with the contents of the MacData register. Refer to LSI Logic's
Etherner-110 Core Technical Manual for detailed definitions of these bits.

(1153930899 8980 009889990

Loads seed{10:0] into the Mac's random number penerator.

ObXXXXRRRRICOUP PR PXXXXOOO0OR XX
Reads register[R] of phy[P].

ObXXXXRRRRXXXXPPPPDDODDDDDODDDDDDD
Writes register[R] of phy[P] with MacData[15:0].

Reading this register returns prsd[15:0] of Mac0 which contains phy status data returned 1o the
Mac at the completion of a RdPhy command. This data is invalid while MacBsy is asserted

as a result of a RdPhy command. Refer to the appropriate phy technical manual for a
definition of the phy register contents,

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 089

AR TOT" BT 00

OpdsSel =~ SELECTED OPERANDs

0b010101101

0b010101110

flag.

0b010101110

0b010101111

MacOp - A write only register. Writing to this address loads the MacSel register and staRts
execution of the specified operation as follows.

AluOut deseription

03X OKM Mstop - Halts execution of a MacOp for Mac[M]. The user must wait for MacBsy to be
deasserted before issuing another d or changing the of MacData.

0K LXM ‘WrMcfg - Writes the contents of MacData to the MaeCIFg register of Mac[M]. The user
must wait for MacBsy 1o be deasserted before issuing another command or changing the
contents of MacData.

OXKIUXA2XM WrMrng - Writes the contents of MacData to the seed register of Mac[M]. The user must
wait for MacBsy to be deasserted before issuing another command or changing the contents
of MacData.

ORXAANAIXM RdPhy - Reads the coments of reg{R) for phy[P] on the MII management bus of Mac[M].
The contents may be read from MacData after MacBsy has been de-asserted.

DXXXXXX4 XM ‘WrPhy - Wrires the contents of MacData(15:0] to the reg[R] of phy(P] on the MII
management bus of Mac[M]. The user must wait for MacBsy to be deasserted befare issuing
another command or changing the contents of MacData.

OXXXXXXOXM WrAddrAL - Writes the contents of MacData[15:0] to MacAddrA[15:0) for Mae[M].

OXXXKXXIXM WrAddrAH - Writes the contents of MacData[11:0) to MacAddrA[47:16] for Mac[M).

03XXXXXXAXM ‘WrAddrBL - Writes the contents of MacDataf15:0] to MacAddrB[15:0] for, Mac[M].

032000OMKM ‘WrAddrBH - Writes the contents of MacData(11:0] 10 MacAddrB[47:16] for Mac[M].

ChCmd A write-only register,

bit . pame__ description S—

3l reserved Data written to these bits is ignored.

10:8 command 0 - Stops execution of the current operation and clears the corresponding event

1 - Transfer data from ExtMem to ExtMem.
2 - Transfer data from Pei to ExtMem.

3 - Transfer data from ExtMem to Pal.

4 - Transfer data from Sram to ExtMem.

5 - Transfer data from ExtMem to Sram.

6 - Transfer dam from Pci to Sram.

7 - Transfer dam from Sram to Pci.

a7:05 reserved Data written to these bits is ignored.

04:00 Chid Provides the channel number for the channel command.

ChEvnt A read-only register.

bit pame __ description

31:00 ChDn Each bit represents the done flag for the respective dma channel. These

bits are set by a dma sequencer upon completion of the channel
command. Cleared when the processor writes 0 to the corresponding

ChCmd register.
GenEvnt A read-only register.
bt name _ deseription : -
31 PciRdEvnt Indicates that a PCI initiator is aempting to read a pproc. register.
30 PciVWrEvnt Indicates that a PCI initiator has posted a write 1o a pproc. register.
29 TimeEvnt An event which occurs once every 2.00 milliscconds.
28:00 reserved Reserved for future use.

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paae 090

"
o]

JE T S

a

-
%
=
[

j
=
L

0b010110000

0b010110001

0b010110010

0b010110011

when

0b010110100

QCtrl A write-only register used to select and manipulate a Q.

bit . pame description
31:11 reserved Data written to these bits are ignored.
10:8 QSz Used only during InitQ) operations to specify the size of the QBdy in Dram.
7 - Queue depth is 32K entries (128KB).
6 - Queue depth is 16K entries (64KB).
5 - Queue depth is 8K entries (32KB).
4 - Queue depth is 4K entries (16KB).
Queue depth is 2K enmles (8KB).
depth is 1K entries (4XB).
depth is 512 entries (2KB).
depth is 256 entries (1KB).
the queue operation o perform.
Disables all queues.
Enables all queues.
Increments the QBdyRdPtr and increments the QTTWrPtr.
dy Decrements the QBdyWrPtr and increments the QHARdAPr.
Returns a queue entry in register QData..
Reserved. Not to be used.
Set the queue status 1o empty and initializes QSz.
Selects the QId to be utilized during writes 1o QData.

£l

T35

8
pizisial

EEL

4:0 Qld Specifies the queve on which to perform all operations except DblQ or EnQ.

QData A read/write register. Writing this register will result in the data being pushed on o
the selecied queve. Reading this register fetches queue data popped off during the
previous RAQ operation.

reserved Reserved for future expansion.

KevCrl A write-only register used to enable and disable Mac transmit and receive
sub-channels,

bit_ name__ description

31:09 reserved Data written to these bits are ignored.

8 enable When set, indicates to the Mac transmit or receive sequencer that the subchannel

contains a transmit or receive descriptor.
07:05 reserved Data written to these bits is ignored.

04 RevCh Selects a Mac receive subchannel when set. Selects a Mac transmit subchannel
cleared,

03 reserved Data written to this bit are ignored.

123 SubCh Selects subchannel B when set or A when reset.

01:00 Macld Provides the Mac number for the subchannel enable bit.

Lru 0x0000000A

A read/write operand indicating which of the 16 entries is least recently used. When
Reading This register the least recently used entry is returned, after which it is
automatically made the most recently used entry. This register should only be read
in conjunction with a "Move' operation of the ALU, else the results arc
unpredictable. Writing to this register forces the addressed entry to become the least
recently used entry.

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 091

00010111000 QInRdy A read-only register comprising QHd not full flags for each of the 32 queues.

0b010111001 QOutRdy A read-only register comprising QTI not empty flags for each of the 32 queues.
0b010111010 QEmpty A rcad-only register comprising QEmpty flags for cach of the 32 queues.
0b010111011 QFull A read-only register comprising QFull flags for each of the 32 quenes.
0b0101111XX reserved Reserved for future expansion.

obo110xxxxx Constants {obooo, opdsel(a:0]}

0b01110XXXX reserved Reserved for future expansion.

CE T IT

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 092

OpdsSel = SELECTED OPERANDg
Ob01111XXXX Sram OPERATIONS

OpdSel (31 PostAddrOp
nop
RamAddr = RamAddr + (OpdSel(1:01);

transpose Ctrl
don't transpose
transpose bytes

RamOpdSz
quadlet
triplet
doublet
byce

uNHaE MOE o

—FRAM BEAD ATTRIBUZES.. — . SOURCEOFRRAND

endian trans- byte Sram

_mede = _pose offs data BE=0 8z=T sz=D Bz=B

little o o abed abed obed 00cd 000d

litkle] 1 abcX trap Oabe 00be 000c
- little 0 2 abXX trap trap 00ab 000b
M3 little 0 3 axx trap trap trap oooa
& little + 4 0 abed decba 0deb 00de oood
O little 1 1 abeX trap Ocba 00chb 000¢
ol little a 2 abxx trap trap 00ba 000b
& little 1 3 axxX ctrap trap trap 0O00a
| 22 BIG L] o abed abed oabe 00ab 000a
i BIG o 1 Xbed trap Obcd 00Obe 000b
= BIG o 2 XXod trap trap 00cd 000c
b BIG] 3 Xxxd trap trap txap oood
B BIG 1 L] abcd decba ocha 00ba 000a
. BIG 1 1 Xbed trap 0dch 00ch 000k
Y BIG 1 2 ed trap trap 0ode 000c
iy BIG 1 3 KxXd trap trap trap oood
faad

endian trans- Opd Alu

mode _pose size QF=0 QF=1 QF=2 QF=3
litrle 0 Q abcd abed trap trap trap
litcle o T ¥bed -bed bed- trap trap
litele a D XXed --cd =cd- cd-- trap
little 0 B X¥xd ---d --d- ~&-~ 4---
little 1 Q abcd dcba trap trap trap
little 1 T Xbed -deb deb- trap trap
little 1 D XXed --dc -de- de-- trap
litele 1 B Xxxd -==d --d- -d-- d---
big] Q abed abed trap trap trap
big 0 T Xbed bed- -bed trap trap
big 0 D Xxed ed-- -cd- --cd trap
big 0 B XXXd d--- -d-- =ed- =--d
big 1 Q abed dcba trap trap trap
big 1 T Xbed dcb- -decb trap trap
big 1 D XXcd dc-- -dc- -=dc trap
big 1 B Xod d--- -d-- --d- ---d

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 093

1

SO

w

=
A
L

A=

w il

i

ST OT "

TgtSel

ObX00XXXXX
O0bX0100000
0bX0100001
0bX0100010
0bX0100011
0bX0100100
0bX0100101
0bX0100110
0bX0100111
0bX0101000
0bX0101001
O0bX010101X
ObX01011XX

ObX0110XXX

ObXO111XXX
ObXOLXXAXX
ObX1XXXXXX

FlgSel

0b000C0000

0b00000001

0b00000010
0b0C000011
0b00000100
0b00000101
0b0000011X

0b00GOLXXX

SELECTED TEST

Tst = TstSel[7] * AluOut[TstSel[4:0]] J/Mlu bit
Tst = TstSel(7] ~ C //caxzy
Tst = TstSel(7] * WV //error
Tst = TstSel(?7] * 2 //zero

Tst = TstSel(7] ~ (2 | -Q) //less or equal
Tst = TstSel([7] * PrevC /{previous carry
Tst = TstSel[7] * PrevV //previous error
Tst = TstSel[7] * Previ //previous zero
Tst = TstSel[7] * (PrevZ & Z) //64b zero

Tst = TstSel[7] * QOpDn //queue op okay
Tst = reserved

Tat = reserved

Tat = reserved

Tst = TstSel[7] * Lock[TstSel[2:0]] Itests the current value of
Lock(TstSel[2:0]) = 1; Iithe Lock then set it.
Tst = Tatsel(7] * Lock[TstSel(2:0]) I/tests the value of Lock.
Tst = reserved

Test = reserved

FLAG OPERATION

No operation.

SelfRst Forces a self reset for the entire chip excluding the PCI configuration

registers

SelBigEnd Selects big-endian mode for ram accesses for the current Cpu,
SelLitEnd Selects little-endian mode for ram accesses for the current Cpu.
DbiMap Disable instruction re-mapping for the current Cpu.

EnbMap Enable instruction re-mapping for the current Cpu.

reserved

reserved

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 094

LERMTOT" BO0RETA00Y

FlgSel _ FLAG OPERATION

0b0010XXXX

0b0011XXXX

0b01000000

0b01000001

0b01000010

0b01000011

0b01000100

0b010001XX

0b010010XX

0b010011XX

0b010100XX

0b010101XX

0b01011XXX

O0b011XXXXX

AddrOp

FlgSell3:2] AddrSelect
RamAddr = Literal(15] 2 Literal : (Literal | RamBase);

Q
1 RamAddr = AddrRegA[15] 7 AddrRegA : (AddrRegA | RamBase);
2 RamAddr = AddrRegB[15] 7 AddrRegB : (AddrRegB | RamBase);
3 if (OpdA == RamAddr)
RamAddr = AluOutf15] ?AlOunt : (AluOut | RamBase);
else if (OpdA == ram)
RamAddr = AddrRegB(15] ? AddrRegB : (AddrRegB | RamBase);
clse
RamAddr = AddrRegA[15] ? AddrRegA : (AddrRegA | RamBase);
FlgSel(1:0] addr reg load
(] nop
1 AddrRegA = Literal;
2 AddrRegB = Literal;
3 AddrRegA = Literal; AddrRegB = Literal;

note: When specifying the same register for both the load and select ficlds, the current value of the
register, before it is loaded with the new value, will be used for the ram address.

reserved

WrWesL@Dbg Causes the bits [31:0] of the control-store at address DbgAddr to be
written with the curremt AluOut data.

WrWesH@Dbg Causes the bits [63:32] of the control-store at address DbgAddr to be
written with the current AluOut data then increments DbgAddr.

RdWesL@Dbg Causes the bits [31:0] of the control-store at address DbgAddr to be
moved to file address Ox1ff.

RdWesH@Dbg Causes the bits [63:32] of the control-store at address DbgAddr to be
moved to file address Ox1ff then increments DbgAddr.

reserved
Step Allows the Cpu (FlgSel[1:0]) cycles after the current cycle 1o execute a single
instruction. There is no effiect if the Cpu is pot halted. An offset of 0 is not allowed.
PcMd Selects the Pe as the address source for the control-store during
instruction fetches for the Cpu (FlgSel[1:0]) cycles after the current cycle.
DbgMd Selects the DbgAddr address register as the address source for the
control-store during instruction fetches for the Cpu (FigSel[1:0))
cycles after the current cycle.
"Hlt Halts the Cpu (FlgSel[1:0]) cycles afier the current cycle.
Run Clears Halt for the Cpu (FlgSel[1:0]) cycles after the current cycle.
reserved
reserved

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 095

LDHTOT" HOBTY009

DATA FLOW

A ol <+
Eectrl > P < —
F
S2p
b 3
Cpu
Pmo |(4—Pp
Cfg PR y
Eeprom| T Xdd
\ 4
4+—» D2p [<4—P»
D2s
< XmtX
“>» D2q | 1 |
<+—» Q2d
- RevX : o >
4—» S2d 4>
» P2d
h
Flash |« < v h 4
Pmi
l¢—p Sram
A N
P2s
h 4
Nefo N

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 096

PTROT" BORTSO0Y

u!z. ‘i".’

SRAM CONTROL SEQUENCER (SramCtrl)

Sram is the nexus for data movement within the INIC. A hierarchy of sequencers, working in concert,
accomplish the movement of data between dram, Sram, Cpu, ethernet and the Pci bus. Slave sequencers,
provided with stimulus from master sequencers, request data movement operations by way of the Sram, Pei
bus, Dram and Flash. The slave sequencers priorilize, service and acknowledge the requests

The preceding block diagram shows all of the master and slave sequencers of the INIC product. Request
information such as r/w, address, size, endian and alignment are represented by each request line.
Acknowledge information to master sequencers include only the size of the transfer being acknowledged.

The following block diagram illustrates how data movement is accomplished for a Pci slave write to Dram.
Note that the Psi (Pci slave in) module functions as both a master sequencer. Psi sends a write request to the
SramCtrl module. Psi requests Xwr to move data from Sram to dram, Xwr subsequently sends a read request
to the SramCtrl module then writes the data to the dram via the Xectrl module. As each piece of data is moved
from the Sram to Xwr, Xwr sends an acknowledge to the Psi module.

Praneq e
ol A Ace
. Mé Sram Hse
P Citr] P>
pou 2 U [
PCI BUS = Xwr Xetrl
< > . Daa »>
Psi 2
| - 7 -
Pl >
iReq P{Sramdds
;w

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 097

ABRTODT " HOET a0

SRAM CONTROL SEQUENCER (SramCtrl)

ReqO =« - v .- Req N Crri/ Curlf
Data 0 Daa N
L
——pp{ LK .
Arbiter
EEEE—
133MHz TOLK v
Register
—
Align
133MHz 2 ;
Register ’ Sram
v
Partial Align
133MHz E +
R ICLE .
Register
v
»{ Partial Align
v J

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.
Paage 098

T BIRTS00S

EiESAR"

o 1

The Sram control sequencer services requests to store to, or retrieve data from an Sram organized as 1024
Jocations by 128 bits (16KB). The sequencer operates at a frequency of 133MHz, allowing both a Cpu access
and a dma access to occur during a standard 66MHz Cpu cycle. One 133MHz cycle is reserved for Cpu
accesses during each 66MHz cycle while the remaining 133MHz cycle is reserved for dma accesses on a
prioritized basis.

The preceding block diagram shows the major functions of the Sram control sequencer. A slave sequencer
begins by asserting a request along with r/w, ram address, endian, data path size, data path alignment and
request size. SramCtrl prioritizes the requests. The request parameters are then selected by a multiplexer
which feeds the parameters to the Sram via a register. The requestor provides the Sram address which when
coupled with the other parameters controls the input and output alignment. Sram outputs are fed to the output
aligner via a register. Requests are acknowledged in parallel with the returned data.

Following is a timing diagram depicting two ram accesses during a single 66MHz clock cycle.

Cpu
CLOCK

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 099

LETEFOT " HOSTOnng

EXTERNAL MEMORY CONTROL (Xctrl)

Xctrl provides the facility whereby Xwr, Xrd, Defg and Eectrl access external Flash and Dram. Xetrl
includes an arbiter, i/o registers, data multiplexers, address multiplexers and control multiplexers. Ownership
of the external memory interface is requested by each block and granted to each of the requesters by the
arbiter function. Once ownership has been granted the multiplexers select the address, data and control signals
from owner, allowing access to external memory.

XrdReq
XrdAddr
XrdState
XrdCtrl
XrdData

XwrReq
XwrAddr
XwiState
XwrCrl
XwrData

DcfgReq
DcfgAddr
DcfgState
DefgCtrl
DefgData

EectriReq
EectrlAddr
EectrlState
EectrlCtrl
EectriData

bYVYy yYhvy vhvvd bdvvy

Arbiter

A 4

Mux

Y

N
Grant < P TO requestors
XAddr g »T0 Xmem
XData ¥ »TO Xmem
XCurl £ »TO Xmem

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paae 100

~

LHNMTOV" OB T

NNl

EXTERNAL MEMORY READ SEQUENCER (Xrd)

The Xrd sequencer acts only as a slave sequencer. Servicing requests issued by master sequencers, the Xrd
sequencer moves data from external sdram or flash to the Sram, via the Xetrl module, in blocks of 32 bytes
or less. The nature of the sdram requires fixed burst sizes for each of it's inlernal banks with ras precharge
intervals between each access. By selecting a burst size of 32 bytes for sdram reads and interleaving bank
accesses on a 16 byte boundary, we can ensure that the ras precharge interval for the first bank is satisfied
before burst completion for the second bank, allowing us to re-instruct the first bank and continue with
uninterrupted dram access. Sdrams require a consistent burst size be utilized each and every time ithe sdram is
accessed. For this reason, if an sdram access does not begin or end on a 32 byte boundary, sdram bandwidth
will be reduced due to less than 32 bytes of data being transferred during the burst cycle.

The following block diagram depicts the major functional blocks of the Xrd sequencer. The first step in
servicing a request 1o move data from sdram to Sram is the prioritization of the master sequencer requests.
Next the Xrd sequencer takes a snapshot of the dram read address and applies configuration information to
determine the correct bank, row and column address to apply. Once sufficient data has been read, the Xrd
sequencer issues a write request to the SramCtrl sequencer which in turn sends an acknowledge to the Xrd
sequencer. The Xrd sequencer passes the acknowledge along to the level two master with a size code
indicating how much data was written during the Sram cycle allowing the update of pointers and: counters. The
dram read and Sram write cycles repeat until the original burst request has been completed at which point the
Xrd scquencer prioritizes any remaining requests in preparation for the next burst cycle.

Contiguous dram burst cycles are not guaranteed to the Xrd sequencer as an algorithm is implemented which
ensures highest priority to refresh cycles followed by flash accesses, dram writes then dram reads.

Following is a timing diagram illustrating how data is read from sdram. The dram has been configured for a
burst of four with a latency of two clock cycles. Bank A is first selected/activated followed by a read
command two clock cycles later. The bank select/activate for bank B is next issued as read data begins
returning two clocks after the read command was issued to bank A. Two clock cycles before we need to
receive data from bank B we issue the read command. Once all 16 bytes have been received from bank A we
begin receiving data from bank B.

66MHz oo uninnn

controls YAEX XmeRX ™ XEX XX XX X X XX O D)

read date COCDEXEXEXIXEXEA

write daa X BOXST X2 XZ) COXTX=)

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 101

EXTERNAL MEMORY READ SEQUENCER (Xrd)

BT DT g

b

S TOT " &I

™
p»| Grant 4 »-To Requester
D2p — »| XAddr 1 pTo Xetrl
D2s —
D2d —P EN
E(—Srm:nG t
D2q —) ¢
Pso — p| XData SramData
XmtA —
XmtB —
KXmtC R e =
XmtD — = pi XCul 2 »To Xctrl
SE
b Sm'; »To Xctrl
—]
—Ack To requester
—p¥ctrlReq

XetrlDin —P Pp-SramReq

KetrlGnt —p

SramGnt —

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 102

=]

SHENIY

AL B TR " BIEE

EXTERNAL MEMORY WRITE SEQUENCER (Xwr)

The Xwr sequencer is a slave sequencer. Servicing requests issued by master sequencers, the Xwr sequencer
moves data from Sram to the external sdram or flash, via the Xctrl module, in blocks of 32 bytes jor less while
accumulating a checksum of the data moved. The nature of the sdram requires fixed burst sizes for each of it's
internal banks with ras precharge intervals between each access. By selecting a burst size of 32 bytes for
sdram writes and interleaving bank accesses on a 16 byte boundary, we can ensure that the ras prechage
interval for the first bank is satisfied before burst completion for the second bank, allowing us to re-instruct
the first bank and continue with uninterrupted dram access. Sdrams require a consistent burst size be utilized
each and every time the sdram is accessed. For this reason, if an sdram access does not begin or end on a 32
byte boundary, sdram bandwidth will be reduced due to less than 32 bytes of data being transferred during the
burst cycle.

The following block diagram depicts the major functional blocks of the Xwr sequencer. The first step in
servicing a request to move data from Sram to sdram is the prioritization of the level two master requests.
Next the Xwr sequencer takes a Snapshot of the dram write address and applies configuration information to
determine the correct dram, bank, row and column address to apply. The Xwr sequencer immediately issues a
read command to the Sram to which the Sram responds with both data and an acknowledge. The Xwr
sequencer passes the acknowledge (o the level two master along with a size code indicating how much data
was read during the Sram cycle allowing the update of pointers and counters. Once sufficient data has been
read from Sram, the Xwr sequencer issues a write command to the dram starting the burst cycle and
computing a checksum as the data flies by. The Sram read cycle repeats until the original burst request has
been completed at which point the Xwr sequencer prioritizes any remaining requesls in preparation for the
next burst cycle.

Contiguous dram burst cycles are not guaranteed to the Xwr sequencer as an algorithm is implemented which
ensures highest priority to refresh cycles followed by flash accesses then dram writes.

Following is a timing diagram illustrating how data is written to sdram. The dram has been configured for a
burst of four with a latency of two clock cycles. Bank A is first selected/activated followed by a write
command two clock cycles later. The bank select/activate for bank B is next issued in preparation for issuing
the second write command. As soon as the first 16 byte burst to bank A completes we issue the write
command for bank B and begin supplying data.

66MHz

controls
witc data Ao e b,) i Ad B 4,
st ol ol D b b X XE)

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 103

o I 5 T SRR

m

=

Bl T

EXTERNAL MEMORY WRITE SEQUENCER (Xwr)

P2d
S2d
D2d
Q2d
Psi
RevA
RevB
RevC
RevD

XetriGnt

SramGnt

bbbl

—>

Y

Grant

»TO Requester

»TO Xctrl

XData

»TO Xctrl

Y

XCrrl

P TO Xctrl

A 4

D2dChkSum

»TO D2d

A J

P2dChkSum

»TO P2d

Y

SEQ

State

—»TO Xctrl

—p-Ack TO requester
P XctrlReq

~—p-SramReq

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 104

N T = E T L

R

4

o By T

PCI MASTER-OUT SEQUENCER (Pmo)

The Pmo sequencer acts only as a slave sequencer. Servicing requests issued by master sequencers, the Pmo
sequencer moves data from an Sram based fifo to a Pei target, via the PeiMstrIO module, in bursts of up to
256 bytes. The nature of the PCI bus dictates the use of the write line command to ensure optimal system
performance. The write line command requires that the Pmo sequencer be capable of transferring a whole
multiple (1X, 2X, 3X, ...) of cache lines of which the size is set through the Pci configuration registers. To
accomplish this end, Pmo will automatically perform partial bursts until it has aligned the transfers on a cache
line boundary at which time it will begin usage of the write line command. The Sram fifo depth, of 256 bytes,
has been chosen in order to allow Pmo to accommodate cache line sizes up to 128 bytes. Provided the cache
line size is less than 128 bytes, Pmo will perform multiple, contiguous cache line bursts until it has exhausted

the supply of data.

Pmo receives requests from two separate sources; the dram to Pci (D2p) module and the Sram to Pei (S2p)
module. An operation first begins with prioritization of the requests where the S2p module is given highest
priority. Next, the Pmo module takes a Snapshot of the Sram fifo address and uses this to generate read
requests for the SramCtrl sequencer. The Pmo module then proceeds to arbitrate for ownership of the Pci bus
via the PeiMstrIO module. Once the Pmo holding registers have sufficient data and Pci bus mastership has
been granted, the Pmo module begins transferring data to the Pci target. For each successful transfer, Pmo
sends an acknowledge and encoded size to the master sequencer, allow it to update it's internal pointers,
counters and status. Once the Pci burst transaction has terminated, Pmo parks on the Pei bus unless another
initiator has requested ownership. Pmeo again prioritizes the incoming requests and repeats the process.

= Sram < i
A Ctrl N
= 3 0% s
S2p Pmo Pmstr | PCI BUS
. “——>
i 1 eheq < 4 > >
JSder - dh
pender 3 rena .

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paae 105

O

At TOT " O

PCI MASTER-IN SEQUENCER (Pmi)

The Pmi sequencer acts only as a slave sequencer. Servicing requests issued by master sequencers, the Pmi
sequencer moves data from a Pci target to an Sram based fifo, via the PciMstrIO module, in bursts of up to
256 bytes. The nature of the PCI bus dictates the use of the read multiple command to ensure optimal system
performance. The read multiple command requires that the Pmi sequencer be capable of transferring a cache
line or more of data. To accomplish this end, Pmi will automatically perform partial cache line bursts until it
has aligned the transfers on a cache line boundary at which time it will begin usage of the read multiple
command. The Sram fifo depth, of 256 bytes, has been chosen in order to allow Pmi to ac.commédexe cache
line sizes up 1o 128 bytes. Provided the cache line size is less than 128 bytes, Pmi will perform multiple,
contiguous cache line bursts until it has filled the fifo,

Pmi receive requests from two separate sources; the Pci to dram (P2d) module and the Pei to Sram (P2s)
module. An operation first begins with prioritization of the requests where the P2s module is given highest
priority. The Pmi module then proceeds to arbitrate for ownership of the Pci bus via the PeiMstrIO module.
Once the Pci bus mastership has been granted and the Pmi holding registers have sufficient data, the Pmi
module begins transferring data to the Sram fifo. For each successful transfer, Pmi sends an acknowledge and
encoded size to the master sequencer, allowing it to update it's internal pointers, counters and status. Once the
Pci burst transaction has terminated, Pmi parks on the Pei bus unless another initiator has requested
ownership. Pmi again prioritizes the incoming requests and repeats the process.

B Sram -
Addr Ctrl DO
Din ' N S mﬁ [
P2s Pmi Pmstr | PCI RUS
Das >
b 1 | 2 3
SramAddr 4;'5["“
PeiAddr - 6 A
Ak

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paae 106

PR

o=

AT BORT

Dram TO PCI SEQUENCER (D2p)

The D2p sequencer acts is a master sequencer, Servicing channel requests issued by the Cpu, the D2p
sequencer manages movement of data from dram to the Pci bus by issuing requests to both the Xrd sequencer
and the Pmo sequencer. Data transfer is accomplished using an Sram based fifo through which data is staged.

D2p can receive requests from any of the processor’s thirty-two dma channels. Once a command request has
been detected, D2p fetches a dma descriptor from an Sram location dedicated to the requesting channel which
includes the dram address, Pci address, Pci endian and request size. D2p then issues a request to the D2s
sequencer causing the Sram based fifo to fill with dram data. Once the fifo contains sufficient data for a Pei
transaction, D2s issues a request to Pmo which in turn moves data from the fifo to a Pei target. The process
repeats until the entire request has been satisfied at which time D2p writes ending status in to the Sram dma
descriptor arca and sets the channel done bit associated with that channel. D2p then monitors the dma channels
for additional requests. Following is an illustration showing the major blocks involved in the movement of data

from dram to Pci target.

N ——rT
Req IAddr Addr Aaor
Addr w
i pIN DO DIN
5 ek o Ack Ack Addr
4 jAdar Ack T 1l Pm
er Rq AD D Ack Lt 0
Xetrl - Dua Pmstr
e I e
4 D Ak beg ol
o - PR Reg <2
Srwe Akl = {Addr Umm PeiAddr
DeamAddr hadr Adds s
Ack Ak Ak :
8 4
>

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.

Paage 107

TS

)
4

LB TDT BOB

Dram TO PCI SEQUENCER (D2p)

CHANNEL
> m
Dram
PTR 4 »TO Xrd
PCI
> PR 4 —TO Pmo
XFR p
> COUNT P10 Xrd
FIFQ
» RD P -4 —»T0 Pmo
XrdAck —» —J
FIFO p
> WR_ Pu »TO Xnd
Xrd Status —p
XFR
» OPTIONS [
Pmo Ack —P
SEQ
State —
Pmo Status .
»FifoCnt
$Pmo Req
Sram Ack —> - Xrd Req
P SramBReq
EN
~ r———7From Sram

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 108

|

TR0

s BT

"
W

LTI " R

PCI TO DRAM SEQUENCER (P2d)

The P2d sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued
by the Cpu, the P2d sequencer manages movement of data from Pci bus to dram by issuing requests to both
the Xwr sequencer and the Pmi sequencer. Data transfer is accomplished using an Sram based fifo through

which data is staged.

P2d can receive requests from any of the processor’s thirty-two dma channels. Once 2 command request has
been detected, P2d, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the dram address, Pci address, Pci endian and request size. P2d then
issues a request to Pmo which in turn moves data from the Pci target to the Sram fifo. Next, P2d issues a
request to the Xwr sequencer causing the Sram based fifo contents to be written to the dram. The process
repeats until the entire request has been satisfied at which time P2d writes ending status in 1o the Sram dma
descriptor area and sets the channel done bit associated with that channel. P2d then monitors the dma channels
for additional requests. Following is an illustration showing the major blocks involved in the movement of data

from a Pei target o dram.

10, DI
eeq e naar
g bow
Addr Sram
o Ctel ‘_‘m
ad Din 11 s > andr -
Xetrl e e Pmi Pmstr
“«» Xwr 1144 3 25 b < -«
. g AD D Ak
- 13)‘ 9 E P2d 3 neq a3t
-, Cart
< = s
\ddr gL
124, [Addr PR ..

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paae 109

|
4

T
2

o Bt T O

PCI TO DRAM SEQUENCER (P2d)

XwrChksum

XwrAck

XwrStatus

PmiAck

PmiStatus

SramAck

CHANNEL
» ID
Dram
> PTR »TO Xwr
PCI
> PTR »TO Pmi
XFR)
P COUNT »TO Pmi
FIFO
WR Pur —TO Pmi
FIFO
» RD Pir —»-TO Xwr
XFR
» OPTIONS
SEQ
State
—pFifoCnt
PpPmiReq
»XwiRkeq
P-SramReq

EN

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 110

B L3 T S0y

k

BT

SRAM TO PCI SEQUENCER (S2p)

The S2p sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued
by the Cpu, the $2p sequencer manages movement of data from Sram to the Pci bus by issuing requests to the

Pmo sequencer

$2p can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, S2p, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the Sram address, Pci address, Pci endian and request size. SZp then
issues a request to Pmo which in turn moves data from the Sram to a Pci target. The process repeats until the
entire request has been satisfied at which time S2p writes ending status in to the Sram dma descriptor area and
sets the channel done bit associated with thar channel. S2p then menitors the dma channels for additional
requests. Following is an illustration showing the major blocks involved in the movement of data from Sram to

Pci target.

4 [Req
Addr
<
ddr Sram o
Cirl Flack
5 g lAddr »
Ll Lal
Pmo Pmstr
1.9 o 4Ly
AD D Adk
2,10
e
Req
S2p o
3 SramAddr
Peidddr
ik

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paae 111

SRAM TO PCI SEQUENCER (S2p)

CHANNEL
ID
PCI
1 4 PTR = —»T0 Pmo
XFR
o, » COUNT #»TO Pmo
;_.s_ Sram /J
:j‘i PTR »TO Pmo
e
_ XFR
by »| OPTIONS [
- PmoAck —»
= B0
Z » State —
PmoStatus P
$PmoReq
SramAck —p
| A R
P oAy
EN
From Sram
SramRdData — ramParams

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.
Paage 112

=

LA BhTOT" SOBTY .

PCI TO SRAM SEQUENCER (P2s)

The P2s sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued by
the Cpu, the P2s sequencer manages movement of data from Pei bus to Sram by issuing requests to the Pmi

sequencer,

P2s can receive requests from any of the processor’s thirty-two dma channels. Once a command request has
been detected, P2s, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the Sram address, Pci address, Pci endian and request size. P2s then
issues a request to Pmo which in turn moves data from the Pci target to the Sram. The process repeats until
the entire request has been satisfied at which time P2s writes ending status in to the dma deseriptor area of
Sram and sets the channel done bit associated with that channel. P2s then monitors the dma channels for
additional requests. Following is an illustration showing the major blocks involved in the movement of data
from a Pei target to dram.

< 6
(W riteg | Addr
.
de o i DO
Cerl Ack
Iin Addr
L Pmi Pmstr
19 R U < PR
R AD D Ak
- 3 . PEEN
P2s 1
lagar SramAddr
P peunddr
Phddr B Ak

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 113

LEBhTOY " GDRTAGDY

PCI TO SRAM SEQUENCER (P2s)

PmiAck

PmiStats

SramAck

SramRdData

—»

\
CHANNEL
D (—
PCI p
PTR $TO Pmi
XFR)
COUNT »TO Pmi
Sram A
PTR »TO Pmi
XFR
» oPTIONS [
SEQ
et State —')
»PmiReq
- SramReq
EN
(#&——From Sram
SramParams

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 114

DRAM TO SRAM SEQUENCER (D2s)

The D2s sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued
by the Cpu, the D2s sequencer manages movement of data from dram to Sram by issuing requests to the Xrd

sequencer.

D2s can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, D2s, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the dram address, Sram address and request size. D2s then issues a
request to the Xrd sequencer causing the transfer of data to the Sram. The process repeats until the entire
request has been satisfied at which time D2s writes ending status in to the Sram dma descriptor area and sets

the channel done bit associated with that channel. D2s then monitors the dma channels for additional requests.

Following is an illustration showing the major blocks involved in the movement of data from dram to Sram.

[Wikeq
Req lncdr
P
Addr o Sram
P lAck Ccml
o 6
il Rq AD D Ack
Addr
Xctrl Ack
1
<« » xrd X X X
Ry AD D Ack
Data
il 3 _[Reg
ety
- e D28
Req - A
1

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 115

=y

BT

LT " Ea D

';H]i. i

r

& B

DRAM TO SRAM SEQUENCER (D2s)

N\
CHANNEL
D]
Dram
» prr —F———»TOXd
XFR
COUNT - »TO Xrd
Sram
> pIR 4 »TO Xrd
XFR
» opTIONS]
XrdAck —p
SEQ
State —
XrdStatus]
P-XrdReq
SramAck e
$-SramReq
EN
ﬁ-nﬁfmm&mn
SramRdData —P SramParams

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 116

LZEMTODT" BOB8TSO0S

SRAM TO DRAM SEQUENCER (52d)

The S2d sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued
by the Cpu, the S2d sequencer manages movement of data from Sram to dram by issuing requests to the Xwr

sequencer.

$2d can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, S2d, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the dram address, Sram address, checksum reset and request size.
52d then issues a request to the Xwr sequencer causing the transfer of data to the dram. The process repeats
until the entire request has been satisfied at which time §2d writes ending status in to the Sram dma descriptor
area and sets the channel done bit associated with that channel, S$2d then monitors the dma channels for
additional requests. Following is an illustration showing the major blocks involved in the movement of data

from Sram 1o dram.

Rea Inddr
=l I Sram
i pk
5
[lnaar - Ra AD D Ack
Xctrl Ack 13$’0+29
<+ — ¥
Xwr -4 ALY
Daa
€7 — 3
baddr
ol e 52d
hd Ack
(1
Ll —

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 117

SRAM TO DRAM SEQUENCER (S2d)

N
B CHAIISNEL
Dram
PTR 4 »TO Xwr
e
T
= XFR
= » COUNT 4 »TO Xwr
T
& Sram
e P PTR = »T0O Xwr
%
bi
= XFR
bt OPTIONS [
=
i XwrAck —
d i
bt State —
XwrStatus S
P wrReq
SramAck —P
#-SramReq
EN
&——From Sram
SramRdData — > SramParams

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 118

SBHTOT " S0 TYNDS

PCI SLAVE INPUT SEQUENCER (Psi)

The Psi sequencer acts as both a slave sequencer and a master sequencer. Servicing requests issued by a Pci
master, the Psi sequencer manages movement of data from Pci bus to Sram and Pci bus to dram via Sram by
issuing requests to the SramCtrl and Xwr sequencers.

Psi manages write requests to configuration space, expansion rom, dram, Sram and memory mapped registers.
Psi separates these Pci bus operations in to two categories with different action taken for each. Dram accesses
result in Psi generating write request to an Sram buffer followed with a write request to the Xwr sequencer.
Subsequent write or read dram operations are retry terminated until the buffer has been emptied. An event
notification is set for the processor allowing message passing to occur through dram space.

All other Pci write transactions result in Psi posting the write information including Pei address, Pci byte
marks and Pci data to a reserved location in Sram, then setting an event flag which the event processor
monitors. Subsequent writes or reads of configuration, expansion rom, Sram or registers are terminated with
retry until the processor clears the event flag. This allows the INIC to keep pipelining levels to a minimum for
the posted write and give the processor ample time to modify data for subsequent Pei read operations.

The following diagram depicts the sequence of events when Psi is the target of a Pci write operation. Note that
events 4 through 7 occur only when the write operation targets the dram.

S
Req nddr
| Addy]
Sram
a - a4t - Cirl
B e I Rq AD D Ak
Xetrl Ack 5 ;3
4P <
x| EEES
2 4 m —2 EVENT NOTIFY
Cm . “4— EVENT CLEAR
a9 Ack
SramAddr T
Pmstr |41l-p PCIBUS

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 119

2

-

EEhTOT" HOBSTIND

PCI SLAVE OUTPUT SEQUENCER (Pso)

The Pso sequencer acts as both a slave sequencer and a master sequencer. Servicing requests issued by a Pci
master, the Pso scquencer manages movement of data to Pci bus form Sram and to Pci bus from dram via

Sram by issuing requests to the SramCtrl and Xrd sequencers.

Pso manages read requests to configuration space, expansion rom, dram, Sram and memory mapped registers.
Pso separates these Pei bus operations in to two categories with different action taken for each. Dram accesses
result in Pso generating read request to the Xrd sequencer followed with a read request to Sram buffer.
Subseguent write or read dram operations are retry terminated until the buffer has been emptied.

All other Pci read transactions result in Pso posting the read request information including Pci address and Pei
byte marks to a reserved location in Sram, then setting an event flag which the event processor monitors.
Subsequent writes or reads of configuration, expansion rom, Sram or registers are terminated with retry until
the processor clears the event flag. This allows the INIC to use a microcoded response mechanism to return
dara for the request. The processor decodes the request information, formulates or fetches the requested data
and stores it in Sram then clears the event flag allowing Pso to fetch the data and return it on the Pei bus.

The following diagram depicts the sequence of events when Pso is the target of a Pci read operation.

4 Wi
Req |nar
| Addr]
Sram
i _s [cm
Rqg AD D Ack
Xetrl ek R
<4—p %
o Xrd M, S .
3 g2 —f= L__p» EVENT NOTIFY
ot " Pso |¢— EVENT CLEAR
Req 2 .
SramAddr 6
Pmstr |qL% PCIBUS

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 120

FRAME RECEIVE SEQUENCER (RcvX)

The receive sequencer (RcvSeq) analyzes and manages incoming packets, stores the result in dram
buffers, then notifies the processor through the receive queue (RevQ) mechanism. The process begins
when a buffer descriptor is available at the output of the FreeQ. RcvSeq issues a request to the Qmg
which responds by supplying the buffer descriptor to RevSeq. RevSeq then waits for a receive packet.
The Mac, network, transport and session information is analyzed as each byte is received and stored
in the assembly register (AssyReg). When four bytes of information is available, RcvSeq requests a
write of the data to the Sram. When sufficient data has been stored in the Sram based receive fifo, a
dram write request is issued to Xwr. The process continues until the entire packet has been received
at which point RevSeq stores the results of the packet analysis in the beginning of the dram buffer.
Once the buffer and status have both been stored, RevSeq issues a write-queue request to Qmg.
Qmg responds by storing a buffer descriptor provided by RevSeq. The process then repeats. If
RevSeq detects the arrival of a packet before a free buffer is available, it ignores the packet and sets
the FrameL ost status bit for the next received buffer.

The following diagram depicts the sequence of events for successful reception of a packat followed by
a definition of the receive buffer and the buffer descriptor as stored on the RevQ. :

L]
A ”L"n

- Mac Ctrl
*-i OPTIONS OPTIONS
K A
PaonDet —TO Xmt_Mac
v
- 1 IReq
e e}
i) n =sm.m AD
i:.g: [Stamus — IDram AD D
b | me“ 4 LCII DramAdde Py an » Xctrl
a2 Xwr 8
g R _— »
RevX
®q AD D Ack
L1 e] - [Ba
e Qme - » Sram
o 43612pf, Ctl
Acid
IAD
AD »
IAddr
- o ek
T lReq
ek 3,12
211 »
lReo »

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 121

-
e |

SRR

[
-

Al Bt T By

FRAME RECEIVE SEQUENCER (RcvX)

MacDataln
MacCtrlln

MacStatus_IN

MacAddrA

MacAddiB

SramAck

SramRdData

FREEQ_ID
RCV Q ID
Cul_Q ID

PauseDetEn

L

v

¥

¥

Y Vv v ¥

COMMAND

QUEUE

BUFFER | /|

DESCR

Sram WR

Data

Sram

Addr

Dram

N

- TO QmgR

From Sram
TO Sram
From Sram
TO Sram

PTR

FIFO WR
PTR

FIFO RD

»TO Xwr

PTR

Data
ASSY REG

AN NN

RCV SEQ
State

ANALYZER

State

FRAME
POINTER

P
POINTER

b —
TRANSPORT

POINTER

p
CHECKSUM

PAYLOAD
CHECKSUM

v ¥V VY v Vv ¥V ¥ vV vV VvV ¥V ¥V ¥V ¥ V¥

CONTEXT
HASH

. " " . "I

»TO Xwr

p XwiReq

—p-PauseDet

» QmgRReq

- SramReq

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 122

0o

2T =0

LR N ST

e

A s

RECEIVE BUFFER DESCRIPTOR

bit__ pame_______ description

31:30 reserved

29:28 size A copy of the bits in the FreeBufDscr.

27:00 address Represents the last address + 1 to which frame data was transferred. The address
wraps around at the boundary dictated by the S bits. This can be used to determine
the size of the frame received.

RECEIVE BUFFER FORMAT

FRAME Status A OFFSET 0x0000:0x0003
bit_ descripti

31 attention Indicates one or more of the following: CompesiteErr, !IpDn, |MacADet &
!MacBDet, IpMcst, IpBest, lethernet & 1802.3Snap, !Ip4, !Tcp .

30 CompositeErr Set when any of the error bits of ErrStatus are set or if frame processing stops
while receiving a Tep or Udp header.

29 CtrlFrame A control frame was received at our unicast or special MItCst address.

28 IpDn Frame processing Hlted due to exhaustion of the IP4 length counter.

27 802.3Dn Frame processing Hlted due to exhaustion of the 802.3 length counter.

26 MacADet Frame's destination address matched the contents of MacAddrA.

25 MacBDet Frame's destination address matched the contents of MacAddrB.

24 MacMcst The Mac detected a MliCst address.

23 MacBest The Mac detected a BrdCst address.

22 IpMecst The frame processor detected an [P MItCst address.

21 1pBest The frame processor detected an IP BrdCst address.

20 Frag The frame processor detected a Frag IP datagram.

19 IpOffst The frame processor detected a non-zero IP datagram offset.

18 IpFlgs The frame processor detected flags within the IP datagram.

17 IpOpts The frame processor detected a header length greater than 20 for the IP datagram.
16 TepFlgs The frame processor detected an abnormal header flag for the TCP segment.

15 TepOpts The frame processor detected a header length greater than 20 for the TCP segment.
14 TepUrg The frame processor detected a non-zero urgent pointer for the TCP segment.

13 CarrierEvnt Refer to EJ10 Technical Manual.

12 LongEvnt Refer w E110 Technical Manual.

11 FrameLost Set when an incoming frame could not be processed as a result of an outstanding
frame completion event not yet serviced by the utility processor.

10 reserved

10 NoAck The frame processor detected a

09:08 FrameTyp 00 - Reserved. 01- ethernet. 10 - 802.3. 11 - 802.3 Snap.
07:06 NwkTyp 00 - Unknown. 01- Ip4. 10 - Ip6 11 - ip other.
05:04 TrosptTyp 00 - Unknown. O1- reserved. 10 - Tep 11 - Udp

03 NetBios A NetBios frame was detected.

02 reserved

01:00 channel The Mac on which this frame was received.

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 123

EBERTOT " BUB TS0y

FRAME Status B
bit_

31 802.3Shrt
30 BufOvr

29 BadPkt

28 InvidPrmbl
21 CrcErr

26 DrbINbbl
25 CodeErr
24 IpHdrShrt
23 IpIncmplt
22 IpSumErr

21 TepSumErr
20 TepHdrShrt
19:16 PressCd

15:08 MacHsh
07:00 CtxHsh

TIME STAMP

bit__
31:00 RevTime

CHECKSUM

bit
31:16 IpChksum

15:00 TepChksum

RESERVED

OFFSET 0x0004:0x0007

End of frame was encountered before the 802.3 length count was exhausted.
The frame length exceded the buffer space available.

Refer to EI10 Technical Manual.

Refer to E110 Technical Manual.

Refer to E110 Technical Manual.

Refer to E110 Technical Manual.

Refer to EI110 Technical Manual.

The IP4 header length field contained a value less than 0x35.

The frame terminated before the IP length counter was exhausted.

The IP header checksum was not Oxffff at the completion of the TP header read.
The session checksum was not Oxffff at the termination of session processing.
The TCP header length field contained a value less than 0x5.

The state of the frame processor at the time the frame processing terminated.
0b0000 Processing Mac header.

0b0001 Processing 802.3 LLC header.

0b0010 Processing 802.3 SNAP header.

0b0011 Processing unknown network data.

0b0100 Proceasing IP headex.

0b0101 Processing IP data (unknown transport).

0b0110 Processing transport header (IP data).

0b0lll Processing transport data (IP data).

0b1000 Processing IP processing complete.

0bl001 Reserved.

0bl0l1x Reserved.

0bllxx Reserved.

The Mac destination-address hash. Refer to E110 Technical Manual.

The 8-bit context-hash generated by exclusive-oring all bytes of the [P source
address, IP destination-address, transport source port and the transport destination

port.

OFFSET 0x0008:0x000B

description
The contents of FreeClk at the completion of the frame receive operation.

OFFSET 0x000C:0x000F

description

Reflects the value of the IP header checksum at frame completion or IP header
completion. If an IP datagram was not detected, the checksum provides a total for
the entire data portion of the received frame. The data area is defined as those bytes
received after the type field of an ethernet frame, the LLC header of an 802.3 frame
or the SNAP header of an 802.3-SNAP frame.

Reflects the value of the transport checksum at IP completion or frame completion.
If IP was detected but session was unknown, the checksum will not include the
psuedo-header. If IP was not detected, the checksum will be 0x0000.

QFFSET 0x0010:0x0011

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 124

=R Tulngs

LERTDRT " &

FRAME TRANSMIT SEQUENCER (XmtX)

The transmit sequencer (XmtSeq) analyzes and manages outgoing packets, using buffer descriptors
retrieved from the transmit queue (XmtQ) then storing the descriptor for the freed buffer in the free
buffer queue (FreeQ). The process begins when a buffer descriptor is available at the output of the
XmtQ. XmtSeq issues a request to the Qmg which responds by supplying the buffer dascrjptor to
XmtSeq. XmtSeq then issues a read request to the Xrd sequencer. Next, XmtSeq issues a read
request to SramCtrl then instructs the Magc to begin frame transmission. The Mac accepts data from
XmtSeq which analyzes the packet as it flys-by in order to generate checksums to insert in the data
stream. Once the frame transmission has completed, XmtSeq stores the buffer descriptor on the

FreeQ thereby recycling the buffer.

The following diagram depicts the sequence of events for successful transmission of a packet followed
by a definition of the receive buffer and the buffer descriptor as stored on the XmtQ.

Mac Ctrl J
OPTIONS OPTIONS

1R Pase PROCESSOR
-———From RCV_SEQ
e §———From PROCESSOR
(PauseReq ————»-TO PROCESSOR
4
[PauseD 4 F=a
9 Sram AD
» D
b, Mae [Req » AD Xctrl
' Status 2]
<& : 5 JAck Dwr
Curl DramAddr =
ft XmtX
Rq AD D Ack
ng 110 6 » :4
-l
Ra L
Qmg [fa 37,12
D
g lagar Sram
PTR Crl
lReq
(Req P lack
Addr 211
Serv

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 125

FRAME TRANSMIT SEQUENCER (XmtX)

L ‘
QUEUE | 4 "
PCOMMAND RTOCRKE.
MacData_IN ~P |-D BDESCR o
3 R From Sram
MacCtrlIN - ! e TO Sram
3 From Sram
MacStatus_IN —» > ;ﬁ ¥ TO Sram
From Xwr
L o M4 S
e MacAddrA » m;(:_[:m H]
O
8 MacAddrB - - F[FP?_;W ya »TO Xwr
m
e Dan. | 4
= | HOLD REG
s Xmt SEQ
= SramAck » | State]
;_; SramRdData ~ S ANASL‘;;ZER 1
= FRAME
) |
‘_z I_’ POINTER
- P |
v EERRCLID ® ™| POINTER
N TRANSPORT
Crrl Q ID > - POINTER]
P
er.Q_lD - > CHECKSUM 1
PAYLOAD _J
| cHECKSUM
PauseClr -»
P XmtData
PauseDet - p XwrReq
» PauseD
Cpu_PauseReq - p QmgRReq
- SramRea

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 126

LBhTOT" GORT9009

TRANSMIT BUFFER DESCRIPTOR

Represents the size of the buffer by indicating at what boundary the buffer should

bit . name ____ description
31 ChksumEn When set, XmtSeq will insert a calculated checksum. When reset, XmtSeq will
not alter the outgoing data stream.
30 reserved
20:28 size
start and terminate. This is used in combination with EndAddr to determine the
starting address of the buffer :
S =0 256B boundary. A[7:0] ignored.
S =1 2KB boundary. A[10:0] ignored.
§ =2 4KB boundary. A[11:0) ignored.
S$=3 32KB boundary. A[14:0] ignored.
27:00 EndAddr The address of the last byle to transmit plus one.
TRANSMIT BUFFER FORMAT

CHECKSUM PRIMER OFFSET 0x0000:0x0003

bit . pame ___ description
31:00 Primer A value to be added during checksum accumulation. For IPV4, this should include
the psuedo-header values, protocol and Tep-length.
RESERVED OFFSET 0x0004:0x0005
FRAME Data OFFSET 0x0008:END OF BUFFER
TRANSMIT Status VECTOR
bit_ descripti ‘
31 LnkErr Indicates that a link status error occured before or during transmit,
30:15 reserved
14 ExcessDeferral Refer to E110 Technical Manual.
13 LateAbort Refer to E110 Technical Manual.
12 ExcessColl Refer to E110 Technical Manual.
11 UnderRun Refer to E110 Technical Manual.
10 ExcessLgth Refer to E110 Technical Manual.
09 Okay Refer to E110 Technical Manual.
08 deferred Refer to E110 Technical Manual.
07 BrdCst Refer to E110 Technical Manual.
06 MItCst Refer to E110 Technical Manual.
05 CrcErr Refer to E110 Technical Manual.
o LateColl Refer to E110 Technical Manual.
03:00 CollCnt Refer to E110 Technical Manual.

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 127

AEhTOT" HOET S0

QUEUE MANAGER (Qmg)

The INIC includes special hardware assist for the implementation of message and pointer queues. The
hardware assist is called the queue manager (Qmg) and manages the movement of queue entries between Cpu
and Sram, between dma sequencers and Sram as well as between Sram and dram. Queues comprise three distinct
entities; the queue head (QHd), the queue tail (QTI) and the queue body (QBdy). QHd resides in 64 bytes of
scratch ram and provides the area to which entries will be written (pushed). QTI resides in 64 bytes of scratch
ram and contains queue locations from which entries will be read (popped) . QBdy resides in dram and contains
locations for expansion of the queue in order to minimize the Sram space requirements. The QBdy size depends
upon the queue being accessed and the initialization parameters presented during queue initialization.

Qmg accepts operations from both Cpu and dma sources. Executing these operations at a frequency of
133MHz, Qmg reserves even cycles for dma requests and reserves odd cycles for Cpu requests. Valid Cpu
operations include initialize queue (InitQ), write queue (WrQ) and read queue (RdQ). Valid dma requests
include read body (RdBdy) and write body (WrBdy). Qmg working in unison with Q2d and D2q generate
requests to the Xwr and Xrd sequencers to control the movement of data between the QHd, QT1 and QBdy.

The preceding block diagram shows the major functions of Qmg. The arbiter selects the next operation to be
performed. The dual-ported Sram holds the queuc variables HAWrAddr, HdRdAddr, TIWrAddr,
TIRdAddr, BdyWrAddr, BdyRdAddr and QSz. Qmg accepts an operation request, fetches the queue
variables from the queue ram (Qram), modifies the variables based on the current state and the requested
operation then updates the variables and issues a read or write request to the Sram controller. The Sram
controller services the requests by writing the tail or reading the head and returning an acknowledge.

MHz DmaQmgReq AND QrigDmaAck AND
CLK e —
1 i | Return Qdata
i i Teeturn Qdasa for Cpu] (Vorbme
i E Write : Writa :
Sram I Qafor | Qdmafor | i
Crl E O D= 8 !
SramQmg Grant for Cpu SramQeng Grant for Dma |
SramGung Ack for Cpa SramQmg Ack for Drma :
133MHz
CLK
| GmgFachforCpeOp | QmgSramies for Cpup QengSrarnieq for Denslp
1} Qg Arb for DmaOp ; Qmg Fetch for DraOp -
[IETRRT [T IPTA P | |
Qme | i i I Cp0p | Dmop i
| |
i i i
e i | % é
P T S S e == | o S
CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 128

BT BOVE TS0

QUEUE MANAGER (Qmg)

CPu 5eq Seq SEQ
Red Req Req Req gpp
vyl

D2q Q24 Xm
RCV

Write
Data

PRIORITIZE Mux
A
133MHz—— register
} A Y
.AM_UUT DIN AH.I"IN
133MHz—»] Qram
Y A
M=y register
|
¥
Qmg ALU
i v
¢ v Y
133MHz—— register
Latrirras b
Req Addr Empty Full IN ouT WR RD Write
RDY RDY Req Req Data

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 129

TBOBTSD0S

e

o Bl W ORH

DMA OPERATIONS

DMA operations are accomplished through a combination of thirtytwo dma channels (DmaCh) and seven dma
sequencers (DmaSeq). Each dma channel provides a mechanism whereby a Cpu can issue a command to any
of the seven dma sequencers. Where as the dma channels are multi-purpose, the dma sequencers they
command are single purpose as follows.

dma seq # name description
0 none This is a no operation address.
1 DZdSeq Moves data from ExtMem to ExtMem.
2 D2sSeq Moves data from ExtMem bus to sram.
3 D2pSeq Moves data from ExtMem to Pci bus.
4 S2dSeq Moves data from sram to ExtMem.
5 S2pSeq Moves data from sram to Pei bus.
6 P2dSeq Moves data from Pei bus to ExtMem.
7 P2sSeq Moves data from Pci bus to sram.

The processors manage dma in the following way. The processor writes a dma descriptor to an Sram location
reserved for the dma channel. The format of the dma descriptor is dependent upon the targeted dma sequencer.
The processor then writes the dma sequencer number to the channel command register.

Each of the dma sequencers polls all thirtytwo dma channels in search of commands to execute. Once a
command request has been detected, the dma sequencer fetches a dma descriptor from a fixed location in
Sram. The Sram location is fixed and is determined by the dma channel number. The dma sequencer loads the
dma descriptor in to it's own registers, executes the command, then overwrites the dma descriptor with ending
status. Once the command has halted, due to completion or error, and the ending status has been written, the
dma sequencer sets the done bit for the current dma channel.

The done bit appears in a dma event register which the Cpu can examine. The Cpu fetches ending status from
Sram, then clears the done bit by writing zeroes to the channel command (ChCmd) register. The channel is
now ready to accept another command.

The format of all channel command registers is as follows.

bit . pame ____ description
3111 reserved Data written to these bits is ignored.
10:8 ChCmd 0 - Stops execution of the current operation and clears the corresponding event flag.
1 - Transfer data from ExtMem to ExtMem.
2 - Transfer data from ExtMem bus to sram.
3 - Transfer data from ExtMem 1o Pci bus.
4 - Transfer data from sram to ExtMem.
5 - Transfer data from sram to Pci bus.
6 - Transfer data from Pci bus to ExtMem.
7 - Transfer data from Pei bus to Sram,
07:05 reserved Data written to these bits is ignored.
04:00 Chld Provides the channel number for the channel command.

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 130

-

-

-

ale Bl AT

i LT S ey

i

The format of the P2d or P2s descriptor is as follows.

127:96 PciAddrH Bits [63:32] of the Pci address.

95:64 PciAddrL Bits [31:00] of the Pci address.

59:32 MemAddr Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address,
31 PeiEndian ‘When set, selects big endian mode for Pci transfers.

30 WideDbl When set, disables Pci 64-bit mode.

2 DstFlash Selects Flash for the external memory destination of P2d.

15:00 XfrSz Bits [15:00] of the requested dma size expressed in bytes.

The format of the S2p or D2p descriptor is as follows.

bit . name______ description,

123:96 MemAddr Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address,
95:64 PeiAddrH Bits [63:32] of the Pci address.

63:32 PciAddrL Bits [31:00] of the Pci address.

30 SrcFlash Selects Flash for the external memory source of D2p.

23 PciEndian When set, selects big endian mode for Pci transfers.

2 WideDbl When set, disables Pci 64-bit mode.

15:00 XfrSz Bits [15:00] of the requested dma size expressed in bytes.

The format of the S2d, D2d or D2s descriptor is as follows.

bit . mame _ description

127:124 reserved Reserved for future use.

123:96 SrcAddr Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.
95:60 reserved Reserved for future use,

59:32 DstAddr Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.
30 FlashSel Selects Flash for the external memory source of D2d or D2s.

22 FlashSel Selects Flash for the external memory destination of 82p or D2d.

15:00 XfrSz Bits [15:00] of the requested dma size expressed in bytes.

The format of the ending status or all channels is as follows.

bt mame______ description

127:64 reserved Mot used.

63:32 ChkS Rep the 1's compliment sum of all halfwords transferred during 2 P2d or D2d
operation only.

31:24 reserved Reserved for future use.

23:20 SrcStatus TBD.

19:16 DstStatus TBD.

15:00 XfrSz Bits [15:00] of the residual dma size expressed in bytes. This value will be zero if the dma
operation was successful

The format of the ChEvnt register is as follows.

31:00 ChDn Each bit represents the done flag for the respective dma channel. These bits are set by a
dma sequencer upon completion of the channel command. Cleared when the processor

writes 0 to the corresponding ChCmd register ChCmdOp field.

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 131

T BDETRNDS

"
0

FR e N

MAC CONTROL (Macctrl)

Cpu CLK
——————®{ PHY | PHY P RNG P CFG Ly Mac
WR | RD WR WR TO OTHER
Req0 | Reqh —p| Reqd ~p Reqd Macs Data
L TO OTHER Macs
Y
A b
ARECLY. REG | REG
_— v | v
> P>
REG REG
¢ /1
" cra
REG
A A 4 A I Y_
ICTLD RStatus LENG CcPe
WL, CTLD
MacA
5
L OR
v
Mac BUSY TO Cpu

CAVIUM-1031
Cavium, Inc. v. Alacritech, Inc.
Paage 132

LEhTDT" 6OBTO00S

Appendix A
The following load calculations are based on the following basic formulae:

N=X*R (Little’s Law) where
N = number of jobs in the system (either in progress or in a queue),
X = system throughput,
R =response time (which includes time waiting in queues).

U=X* S (from Little’s Law) where
S = service time,
U = utilization,

R =8/ (1-U) for exponential service times (which is the worst-case assumption).

A 256 byte frame at 100Mb/sec takes 20 psec per frame.
4 * 100 Mbit ethernets receiving at full frame rate is:
51200 (4 * 12800) frames/sec @ 1024 bytes/frame
102000 frames/sec @ 512 bytes/frame
204000 frames/scc @ 256 bytes/frame.

The following calculations assume 250 instructions/frame, 45nsec clock. Thus
S =250 * 45 nsecs = 11.2 psecs.

Av. Frame Size Thruput Utilization Response Nbr. in system
x) (U) ®R) ™)

1024 51200 57 26 usecs 1.3

512 102000 =1 - -

256 204000 >1 - -

Lets look at it for varying instructions per frame assuming 512 bytes per frame average.

Instns Service Thruput Utilization Response Nbr. in system
Per Frame Time(S) (X) U) (R))

250 112 usec 102000 >1 - -

250 11.2 85000 (*) .95 224 usecs 19

250 11.2 80000 (**) .89 101 8

225 10 102000 1.0 - -

225 10 95000 (%) .95 200 19

225 10 89000 (**) .89 90 8

200 9 102000 6! 90 9

150 6.7 102000 .68 20 2

¥\ chnure what frame rate ran he ennnnrted tn aet a ntilizatinn af lecc than 1

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 133

LEhTOT" GOBTH009

If 100 instructions / frame is used, S = 100 * 45 nsecs = 4.5 usecs, and we can support
256 byte frames:
100 4.5 204000 91 50 10

Firstly note that these calculations assume that response times increase exponentially as
utilization increases. This is the worst-case assumption, and probably may not be true for
our system.
The figures show that to support a theoretical full 4 * 100 Mbit receive load with an
average frame size of 512 bytes, there will need to be 19 active “jobs™ in the system,
assuming 250 instructions per frame. Due to SRAM limitations, the current design
specifies 8 SRAM buffers for active TCBs, and not to swap a TCB out of SRAM once it
is active. So under these limitations, the INIC will not be able to keep up with the full
frame rate. Note that the initial implementation is trying to use only 8KB of SRAM,
although 16KB may be available, in which case 19 TCB SRAM buffers could be used.
This is a cost trade-off.
The real point here is the effect of instructions/frame on the throughput that can be
maintained. If the instructions/frame drops to 200, then the INIC is capable of handling
the full theoretical load (102000 frames/second) with only 9 active TCBs. If it drops to
100 instructions per frame, then the INIC can handle full bandwidth at 256 byte frames
(204000 frames/second) with 10 active TCBs. The bottom line is that ALL hardware-
assist that reduces the instructions/frame is really worthwhile. If header-assist hardware
can save us 50 instructions per frame then it goes straight to the throughput bottom line.

CERTIFICATE OF MAILING UNDER 37 CFR 1.10

I hereby certify that this Provisional Patent Application is being deposited with the
United States Postal Service as “Express Mail Post Office to Addressee”, label number
EH756230105US, in an envelope addressed to: Assistant Commissioner for Patents,
Washington, D.C. 20231, on October 14, 1997.

Date: e ber s /9597 %

Mark Lauer
(person mailing Application)

CAVIUM-1031

Cavium, Inc. v. Alacritech, Inc.

Paage 134

