
Parallel Computing on the Berkeley NOW

David E. Culler, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, Brent Chun,
Steven Lumetta, Alan Mainwaring, Richard Martin, Chad Yoshikawa, Frederick Wong

Computer Science Division
University of California, Berkeley

Abstract: The UC Berkeley Network of Workstations
(NOW) project demonstrates a new approach to large­
scale system design enabled by technology advances
that provide inexpensive, low latency, high bandwidth,
scalable interconnection networks. This paper provides
an overview of the hardware and software architecture
of NOW and reports on the performance obtained at
each layer of the system: Active Messages, MPI mes­
sage passing, and benchmark parallel applications.

1 Introduction

In the early 1990's it was often said that the "Killer
Micro" had attacked the supercomputer market, much as
it had the minicomputer and mainframe markets earlier.
This attack came in the form of massively parallel pro­
cessors (MPPs) which repackaged the single-chip
microprocessor, cache, DRAM, and system chip-set of
workstations and PCs in a dense configuration to con­
struct very large parallel computing systems. However,
another technological revolution was brewing in these
MPP systems - the single-chip switch - which enabled
building inexpensive, low latency, high bandwidth, scal­
able interconnection networks. As with other important
technologies, this "killer switch" has taken on a role far
beyond its initial conception. Emerging from the eso­
teric confines of MPP backplanes, it has become avail­
able in a form that is readily deployed with commodity
workstations and PCs. This switch is the basis for sys­
tem area networks, which have performance and scal­
ability of the MPP interconnects and the flexibility of a
local area network, but operate on a somewhat restricted
physical scale.

The Berkeley NOW project seeks to demonstrate that it
is viable to build large parallel computing systems that
are fast, inexpensive, and highly available, by simply
snapping these switches together with the latest com­
modity components. Such cost-effective, incrementally
scalable systems provide a basis for traditional parallel
computing, but also for novel applications, such as inter­
net services[Brew96].

This paper provides an overview of the Berkeley NOW
as a parallel computing system. Section 2 gives a
description of the NOW hardware configuration and its
layered software architecture. In the following sections,
the layers are described from the bottom-up. Section 3
describes the Active Message layer and compares its
performance to what has been achieved on MPPs.
Section 4 shows the performance achieved through MPI,
built on top of Active Messages. Section 5 illustrates the
application performance of NOW using the NAS Paral­
lel Benchmarks in MPI. Section 6 provides a more
detailed discussion of the world's leading disk-to-disk
sort, which brings out a very important property of this
class of system: the ability to concurrently perform I/O
to disks on every node.

2 Berkeley NOW System

The hardware configuration of the Berkeley NOW sys­
tem consists of one hundred and five Sun Ultra 170
workstations, connected by a large Myricom net­
work[Bode95], and packaged into 19-inch racks. Each
workstation contains a 167 MHz Ultral microprocessor
with 512 KB level-2 cache, 128 MB of memory, two 2.3
GB disks, ethemet, and a Myricom "Lanai" network
interface card (NIC) on the SBus. The NIC has a 37.5
MHz embedded processor and three DMA engines,
which compete for bandwidth to 256 KB of embedded
SRAM. The node architecture is shown in Figure 1.

The network uses multiple stages of Myricom switches,
each with eight 160 MB/s bidirectional ports, in a vari­
ant of a fat-tree topology.

2.1 Packaging

We encountered a number of interesting engineering
issues in assembling a cluster of this size that are not so
apparent in smaller clusters, such as our earlier 32-node
prototype. This rack-and-stack style of packaging is
extremely scalable, both in the number of nodes and the
ability to upgrade nodes over time. However, structured
cable management is critical. In tightly packaged sys­
tems the interconnect is hidden in the center of the

DEFS-ALAOOO 1829

Myricom Network

160 MB/s ~S-port . . . wormhole
~1direct1onal switches
hnk

0 0 0

UPA

UltraSparc L2 Cache

Figure 1. NOW Node Configuration

machine. When multiple systems are placed in a
machine room, all the interconnect is hidden under the
floor in an indecipherable mess. However, in clusters,
the interconnect is a clearly exposed part of the design.
(a bit like the service conduits in deconstructionist
buildings). Having the interconnect exposed is valuable
for working on the system, but it must stay orderly and
well structured, or it becomes both unsightly and diffi­
cult to manage.

The Berkeley NOW has four distinct interconnection
networks. First, the Myrinet provides high-speed com­
munication within the cluster. We discuss this in detail
below. Second, switched-Ethernet into an ATM back­
bone provides scalable external access to the cluster.
The need for an external network that scales with the
size of the cluster was not apparent when we began the
project, but the traffic between the cluster and other
servers, especially file servers, is an important design
consideration. Third, a terminal concentrator provides

direct console access to all the nodes via the serial port.
This is needed only in situations when the node cannot
be rebooted through the network, or during system
development and debugging. Fourth, conventional AC
lines provide a power distribution network. As clusters
transition to the commercial mainstream, one engineer­
ing element will be to consolidate these layers of inter­
connect into a clean modular design. Figure 2 shows a
picture of the NOW system.

Figure 2. NOW System

2.2 Network topology

The Myrinet switches that form the high-speed intercon­
nect use source routing and can be configured in arbi­
trary topologies. The NOW automatic mapping software
can handle arbitrary interconnect[Mai*97]; however, we
wire the machine as a variant of a Fat-tree to create a
system with more uniform bandwidth between nodes
thereby minimizing the impact of process placement'.
The topology is constrained by the use of 8-port (bidi­
rectional) switches and wiring density concerns. Ini­
tially we planned to run cables from all the nodes to a
central rack of switches; however, the cable cross-sec­
tional area near the switches became unmanageable as a
result of bulky, heavily-shielded copper network cables.
Using fiber-optic cables that are now available, the cable
density may be reduced enough to centrally locate the
switches.

DEFS-ALAOOO 1830

In building an indirect network out of fixed-degree
switches, the number of upward links depends on the
number of downward links. We elected to attach five
hosts to each first level switch, which eliminates 40% of
the cable mass. As shown in Figure 3, groups of seven of
these switches are treated as a 35-node subcluster with
the 21 upward links spread over four level-two switches.
Three of these subclusters are wired together to com­
prise the NOW. We have found that as a rule of thumb,
adding 10% extra nodes and extra ports greatly simpli­
fies system administration, allowing for node failures,
software or hardware upgrades, and system expansion.

Figure 3. NOW Myrinet Network Topology

2.3 Software Architecture

The system software for NOW employs a layered archi­
tecture, as illustrated in Figure 4. Each node runs a com­
plete, independent Solaris Unix with the associated
process management, memory management, file system,
thread support, scheduler, and device drivers. We extend
Solaris at each of these interfaces to support global
operations over the NOW.

Process Management: A global OS layer, called
GLUnix, provides NOW-wide process management as a
layer on top of Solaris (via sockets, daemons, and sig­
nals). Using either a global shell, gl ush, or the gl u­
run command, sequential processes can be started
anywhere on the NOW or parallel processes can be
started on multiple nodes. Local pids are elevated to a
global pids, and the familiar process control opera­
tions, such as ctrl-C or ctrl-Z, work on global processes.
The Unix process information and control utilities, such
asps and kill, are globalized as well.

demanding
sequential
applications

parallel applications

global OS layer - GLUnix
global process mgmt, resource mgmt, file system, scheduling

commodity
workstation
with full OS

process mgmt
resource mgmt
scheduler
I/O system
I comm. driver I

mte 1gent
NIC

scalable, low latency network

Figure 4. NOW software architecture

File System: A prototype file system, xFS, extends
Solaris at the vnode interface to provide a global, high
performance file system[And*95b]. Files are striped
over nodes in a RAID-like fashion so that each node can
read file data at the bandwidth of its interface into the
network. The aggregate bandwidth available to nodes is
that of all the disks. xFS uses a log-structured approach,
much like Zebra[Ha0u95], to minimize the cost of par­
ity calculations. A single node accumulates enough of
the log so that it can write a block to each disk in a stripe
group. Before writing the blocks, it calculates a parity
block locally and then writes it along with the data
blocks.

An update-based file cache-coherence strategy is used,
and the caches are managed cooperatively to increase
the population of blocks covered by the collection of
nodal caches. If a block about to be discarded is the last
copy in the system, then it is cast off to a random remote
node. Nodes take mercy on this block until it has aged to
the point where it appears pointless to keep it in mem­
ory. This policy has the attractive property that actively
used nodes behave like traditional clients while idle
nodes behave like servers, so the cooperative file cache
adapts dynamically to system usage.

Virtual Memory: Two prototype global virtual mem­
ory systems have been developed to allow sequential
processes to page to the memory of remote idle nodes,
since communication within the NOW has higher band­
width, and much lower latency than access to local
disks. One of these uses a custom Solaris segment driver
to implement an external user-level pager which

DEFS-ALA0001831

exchanges pages with remote page daemons. The other
provides similar operation on specially mapped regions
using only signals.

3 Active Messages

Active Messages are the basic communication primi­
tives in NOW. This work continues our investigation of
implementation trade-offs for fast communication lay­
ers[vE92*,Gol*96,Kri*96] and on NOW we have
sought to generalize the approach and take full advan­
tage of the complete OS on every node. The segment
driver and device driver interface is used to provide
applications with direct, protected user-level access to
the network. Active Messages map to simple operations
on queues and buffers that are shared between the user
process and the communication firmware, which is exe­
cuted on a dedicated processor embedded in the network
interface card.

We have built two Active Message layers. The first,
Generic Active Messages (gam) is oriented toward the
traditional single-parallel-program-at-a-time style of
parallel machines, and provides exactly the same API
across a wide range ofplatforms[Cul*95].This serves as
a valuable basis for comparison.

The newer AM layer[Main95], AM-II, provides a much
more general purpose communication eINironment,
which allows many simultaneous parallel programs, as
well as client/server and system use. It is closely inte­
grated with POSIX threads. The AM implementation is
extremely versatile. It provides error detection and retry
a the NIC-to-NIC level and allows the network to be
reconfigured in a running system. A privileged mapper
daemon explores the physical interconnection, derives
deadlock-free routes, and distributes routes periodi­
cally[Mai*97]. AM-II provides a clean return-to-sender
error model to support highly available applications.

The Active Messages communication model is essen­
tially a simplified remote procedure call that can be
implemented efficiently on a wide range of hardware.
Three classes of messages are supported. Short mes­
sages pass eight 32-bit arguments to a handler on a des­
tination node, which executes with the message data as
arguments. Medium messages treat one of the argu­
ments as a pointer to a 128 byte to 8 KB data buffer and
iINoke the handler with a pointer to a temporary data
buffer at the destination. Bulk messages perform a mem­
ory-to-memory copy before iINoking the handler. A
request handler issues replies to the source node.

We have developed a microbenchmarking tool to char­
acterize empirically the performance of Active Mes­
sages in terms of the LogP model[Cul*93, Cul*95].
Figure 5 compares the gam short message LogP param­
eters on NOW with the best implementations on a range
of parallel machines. The bars on the left show the one­
way message time broken down into three components:
send overhead (oJ, receive overhead (or), and the
remaining latency (L). The bars on the right shows the
time per message (g = l/MessageRate) for a sequence
of messages. NOW obtains competitive or superior
communication performance to the more tightly inte­
grated, albeit older, designs.

The overhead on NOW is dominated by the time to
write and read data across the 1/0 bus. The Paragon has
a dedicated message processor and network interface on
the memory bus; however, there is considerable over­
head in the processor-to-processor transfer due to the
cache coherence protocol and the latency is large
because the message processors must write the data to
the NI and read it from the NI. The actual time on the
wire is quite small. The Meiko has a dedicated message
processor on the memory bus with a direct connection to
the network, but the overhead is dominated by the
exchange instruction that queues a message descriptor
for the message processor and the latency is dominated
by the slow message processor accessing the data from
host memory. Medium and bulk messages achieve 38
MB/s on NOW, limited primarily by the SBus.

14 :·······································~···········

12 t
~ 10 t
c

~ 8 t -
~ 6 t -
:E 41

2 t
0 --L ,__ ~

c
0
0)
ro
ro

CL

~
::::>

s
0
z

c
0
0)
ro
ro

CL

•L

C!I Or

ag

Figure 5. Active Messages LogP Perlormance

Traditional communication APis and programming
models are built upon the Active Message layer. We
have built a version of the MPI message passing stan-

DEFS-ALAOOO 1832

dard for parallel programs in this fashion, as well as a
version of the Berkeley Sockets API, called Fast Sock­
ets[Rod*97]. A shared address space parallel C, called
Split-C[Cul*93], compiles directly to Active Messages,
whereas HPF[PGI] compiles down to the MPI layer.

4MPI

Our implementation of MPI is based on the MPICH ref­
erence implementation, but realizes the abstract device
interface (ADI) through Active Message operations.
This approach achieves good performance and yet is
portable across Active Message platforms. The MPI
communicator and related information occupy a full
short message. Thus, a zero-byte control message is
implemented as a single small-message request­
response, with the handler performing the match opera­
tion against a receive table. The one-way time for an
echo test is 15 µs. MPI messages of less than 8 KB use
an adaptive protocol implemented with medium Active
Messages. Each node maintains a temporary input
buffer for each sender and senders keep track of whether
their buffers are available on the destination nodes. If
the buffer is available, the send issues the data without
handshaking. Buffer availability is conveyed back to the
source through the response, if the match succeeds, or
via a request issued by the later matching receive. Large
messages perform a handshake to do the tag match and
coINey the destination address to the source. A bulk
operation moves the message data directly into the user
buffer.

Figure 6 shows the bandwidth obtained as a function of
message size using Dongarra's echo test on NOW and
on recent MPP platforms[DoDu95]. The NOW version
has lower start-up cost than the other distributed mem­
ory platforms and has intermediate peak bandwidth. The
T3D/pvm version does well for small messages, but has
trouble with cache effects. Newer MPI implementations
on the T3D should perform better than the T3D/pvm in
the figure, but data is not available in the Dongarra
report.

5 NAS Parallel Benchmarks

An application-level comparison of NOW with recent
parallel machines on traditional scientific codes can be
obtained with the NAS MPI-based parallel benchmarks
in the NPB2 suite[NPB]. We report briefly on two appli­
cations. The LU benchmark solves a finite difference
discretization of the 3-D compressible Navier-Stokes
equations. A 2-D partitioning of the 3-D data grid onto a
power-of-two number of processors is obtained by halv-

45~~~~~~~~~~~~

: -X- Meiko CS2 X ~
401----~ ~

:§' 35 t --/r- IBM SP2 • i:,,.
~ 3 o +--<>--Cray T3D

0
XX /l!C ~

: 25 + 0
x J. 0 f

:§ 20 _j_ 0. I f_ ~
~ : 0 :

""15-i- ~•o ~
; : 0 .---w :
m 10 f ~ -~ ~

5 t Q lt ~
o~B~iA < ,0

1 0 100 1000 10000 100000 1000000

Message Size (bytes)

Figure 6. MPI bandwidth

ing the grid repeatedly in the first two dimensions, alter­
nating between x and y, resulting in vertical pencil-like
grid partitions. The ordering of point based operations
constituting the SSOR procedure proceeds on diagonals
which progressively sweep from one comer on a given z
plane to the opposite comer of the same z plane, there­
upon proceeding to the next z plane. This constitutes a
diagonal pipelining method and is called a "wavefront"
method by its authors [Bar*93]. The software pipeline
spends relatively little time filling and emptying and is
perfectly load-balanced. Communication of partition
boundary data occurs after completion of computation
on all diagonals that contact an adjacent partition.

The BT algorithm solves three sets of uncoupled sys­
tems of equations, first in the x, then in they, and finally
in the z direction. These systems are block tridiagonal
with 5x5 blocks and are solved using a multi-partition
scheme[Bm88]. The multi-partition approach provides
good load-balance and uses coarse-grained communica­
tion. Each processor is responsible for several disjoint
sub-blocks of points ("cells") in the grid. The cells are
arranged such that for each direction in the line-solve
phase, the cells belonging to a certain processor are
evenly distributed along the direction of solution. This
allows each processor to perform useful work through­
out a line-solve, instead of being forced to wait for the
partial solution to a line from another processor before
beginning work. Additionally, the information from a
cell is not sent to the next processor until all sections of
linear equation systems handled in this cell have been
solved. Therefore the granularity of communications is
kept large and fewer messages are sent. The BT code
requires a square number of processors.

DEFS-ALAOOO 1833

Figure 7 shows the speedups obtained on sparse LU
with the Class A input (200 iterations on a 64x64x64
grid) for the IBM SP-2 (wide nodes), Cray T3D, and
NOW. The speedup is normalized to the performance on
four processors, shown in Table 1, because this is the
smallest number of nodes for which the problem can be
run on the T3D. NOW achieves the scalability of the
T3D with much high per-node performance. It scales
better than the SP-2, although it has only two-thirds the
node performance. These results are consistent with the
ratio of the processor performance to the performance of
small message transfers.

TABLE 1. NPB baseline MFLOPS

LU@4proc

BT@25 proc

0 25

T3D

74

378

50

SP-2

236

1375

75

Processors

Figure 7. Speedup on NPB Sparse LU

100

NOW

152

714

125

Figure 8 shows the scalability of the IBM SP2, Cray
T3D, and NOW on the Class A problem of the BT
benchmark. Here the speedup is normalized to the per­
formance on 25 processors, the smallest T3D configura­
tion for which performance data is available. The
scalability comparison is similar to that with LU, with
the SP-2 lagging somewhat more, but having higher per
node performance.

6 Disk-to-Disk Sort

The real capability of NOW with a complete operating
system per node and 1/0 capability spread across the
nodes is best illustrated through 1/0-intensive applica­
tions, such as commercial workloads and scientific

100~~~~~~~~~~~~~,

90 t ~
80 ~ ///// ~
70 t / 1

~ 60 + /. b. :

~ 50 t • b. ~
~ 40 + 6. :

30 ~ !ft. 0 T3D !
20 L • b. SP2 :

: I! • NOW:
10 + • :
0 tP! '

0 10 20 30 40 50 60 70 80 90 100

Processors

Figure 8. Speedup on NPB BT

application on very large data sets. To evaluate this
aspect of the system, we have developed a high-perfor­
mance disk-to-disk sort. Sorting is an important applica­
tion to many fields, especially the database community;
it stresses both the 1/0 subsystem and operating system,
and has a set of well-known benchmarks allowing com­
parison with other systems. We describe our experience
with the Datamation benchmark, proposed in 1985 by a
group of database experts[Anon85].

By utilizing the full operating system capability, local
disks, and fast communication, NOW-sort has broken all
previous records on the Datamation benchmark, which
measures the elapsed time to sort one million 100-byte
records with 10-byte keys from disk to disk, and
Minute-sort, which measures the amount of record data
sorted in under a minute[Nyb*94].

We briefly describe our parallel algorithm for NOW.­
Sort, which is given in complete detail in [Arp*97]. One
of the goals of NOW-Sort is to dynamically adapt to a
variety of cluster configurations: namely, differing num­
bers of disks, amounts of memory, and number of work­
stations. A primary variation is the size of the data set as
compared to the size of available memory. A one-pass
version is used when all records fit into main memory;
otherwise a two-pass version is used. Due to space limi­
tations, we only describe the one-pass implementation
here.

6.1 Algorithm Description

In the Datamation sort benchmark the keys are from a
uniform distribution and begin evenly distributed across
all workstations. At the highest level, the single-pass

DEFS-ALAOOO 1834

parallel sort of N records on P processors is a general­
ized bucket sort and contains four steps:

N
1. Read: Each processor reads P 100-byte records

from its local disks into memory.

2. Communicate: Keys are examined and the records
are sent to the appropriate destination processor. The
destination processor copies a portion of the key to a
local bucket, keeping a pointer to the full key and
record; thus the keys are partially sorted according to
their most-significant bits.

3. Sort: Each processor sorts its keys in memory using
a partial-radix sort on each bucket.

4. Write: Each processor gathers and writes its sorted
records to local disks.

At the end of the algorithm, the data is sorted across the
disks of the workstations, with the lowest-valued keys
on processor 0 and the highest-valued keys on processor
P - 1 . The number of records per node will only be
approximately equal, and depends upon the actual distri­
bution of key values.

6.2 Local disk performance

A key advantage of a NOW is that the performance of
each node can be studied and optimized in isolation
before considering the interactions between nodes. For
NOW-Sort, we needed to understand how best to utilize
the disks, the memory, and the operating system sub­
strate of each node.

To fully utilize the aggregate bandwidth of multiple
disks per machine, we implemented a user-level library
for file striping on top of each local Solaris file system.
We have two disk configurations to consider: two 5400
rpm disks on a fast-narrow SCSI bus and an additional
two 7200 rpm disks on a fast-wide SCSI. Table 2 shows
the performance of the striped file system for several
configurations.

In the first two rows, we see that the two 5400 rpm disks
saturate the fast-narrow SCSI bus, which has a peak
bandwidth of 10 MB/s. We measure 8.3 MB/s from two
disks capable of a total of 11 MB/s. The full NOW clus­
ter has two disks per node, providing a potential file 1/0
bandwidth of 830 MB/s on 100 nodes.

A subset of the nodes have additional external disks.
The second two rows indicate that the (external) fast­
wide SCSI bus adequately handles the two faster disks.
Finally, the last rows shows we achieve 20.5 MB/s, or

96% of the peak aggregate bandwidth from the four
disks. To harness this bandwidth in the sort, we need to
adjust the blocking factor on the two kinds of disks to
balance the transfer times.

TABLE 2. Bandwidths of disk configurations

SCSI Read Write
Seagate Disks Bus (MB/s) (MB/s)

1 5400 rpm Hawk narrow 5.5 5.2

2 5400 rpm Hawk 8.3 8.0

1 7200 rpm Barracuda wide 6.5 6.2

2 7200 rpm Barracuda 13.0 12.1

2 of each both 20.5 19.1

2 of each (peak) 21.3 20.1

6.3 OS Interfaces for Buffer Management

Given a near peak bandwidth local file system, the sort­
ing performance of each node depends critically on how
effectively memory is used. With a general purpose OS,
there is no simple way for the application to determine
how much memory is actually available to it. Depending
upon the system interface used to read data from disk,
the application may or may not be able to effectively
control its memory usage.

We compare two approaches for reading records from
disk: read and mmap with madvise. For demonstra­
tion purposes, we use a simple implementation of the
sorting algorithm using one UltraSparc with one disk
and 64 MB of DRAM. It quicksorts all of the keys in
memory. The upper graph of Figure 9 shows that when
the application uses the read call to read records into
memory from disk, the total execution time increases
severely when more than 20 MB of records are sorted,
even though 64 MB of physical memory are in the
machine. The operating system uses roughly 20 MB and
the file system performs its own buffering, which effec­
tively doubles the application footprint. This perfor­
mance degradation occurs because the system starts
paging out the sorting data.

To avoid double-buffering while leveraging the conve­
nience of the file system, we use memory mapped files
by opening the file, calling mma p to bind the file into a
memory segment of the address space, and accessing the
memory region as desired. The auxiliary system call,
madvise, informs the operation system of the intended
access pattern. For example, one call to madvise noti­
fies the kernel that region will be accessed sequentially,
thus allowing the OS to fetch ahead of the current page

DEFS-ALAOOO 1835

120

100

Vi' 80

~
0

" Q) 60
~
Q)

E
i= 40

20

0

read()

Total Time~
Write Time ---r--­

Sort Time c

Read Time '

e·

'

0 10 20 30 40 50 60
Size (MB)

mmap() and madvise()
120

100

Vi' 80

~
0

" Q) 60
~
Q)

E
i= 40

20

0
0 10 20 30 40

Size (MB)

Figure 9. Sensitivity to OS Interlace

Total Time~
Write Time ---r---­

Sort Time c

Read Time '

50 60

and to throw away pages that have already been
accessed. The lower graph of Figure 9 shows that with
mma p and mad vi s e the sorting pro gram has linear per­
formance up to roughly 40 MB, when it has used all the
memory that the OS makes available. For larger data
sets, the two pass algorithm is used, which places
greater demand on the file system and requires multiple
threads to maintain the disk bandwidth[Arp*97].

6.4 Using Active Message communication

The optimizations for striping data across local disks
and using operating system interfaces for memory man­
agement apply when running on a single-node or multi­
ple nodes. The impact of parallelization is isolated to the
communication phase.

After each node has memory-mapped its local input
files, it calculates the processor which should contain
this key in the final sorted order. Using the assumption
that the keys are from a uniform distribution, we deter­
mine the destination processor with a simple bucket
function (i.e., the top logP bits of each key) and copy

the record from the input file to a 4 KB send-buffer allo­
cated for each destination processor. When a send-buffer
is filled, it is sent to its destination processor.

Upon arrival of a message, an Active Message handler is
executed. The handler moves the full record into main
memory and copies a portion of the key into one of

B = 2b buckets based on the high-order b bits of the
key. The number of buckets is calculated at run-time
such that the average number of keys per bucket fits into
the second-level cache.

The read and communication phases are easily over­
lapped due to the interfaces provided by mma p and
Active Messages. Copying keys into send-buffers is
completely hidden under the disk transfer time. Obtain­
ing this same performance with the read system call
would require more programming complexity; because
the cost of issuing each read is high, threads must be
used prefetch data in large chunks.

Measurements on a cluster with two disks per worksta­
tion show that the communication time is mostly hidden
by the read time. However, with four disks per worksta­
tion, very little communication is overlapped with read­
ing, and the algorithm is actually slower than with only
two disks. This penalty occurs because the UltraSPARC
1/0 bus, the SBus, saturates long before its theoretical
peak of 80 MB/s. Since almost all records are sent to
another processor, the SBus must transfer three times
the 1/0 rate: once for reading, once for sending, and
once for receiving.

6.5 Sorting and Writing

The sort and write phase on each node are straightfor­
ward. After synchronizing across processors to ensure
that all records have been sent and received, each node
performs a partial-radix sort on the set of keys in each
bucket, very similar to the approach described in
[Agar96]. The partial-radix sort orders keys using the
top 22-bits after the stripping off the logP + b bits used
to determine the destination processor and bucket. At
this point, with high-probability, most keys are correctly
sorted, and a simple bubble-sort cleans-up the misor­
dered keys. A pointer is kept to the full 100-byte record
so that only keys and pointers are swapped. The sorted
records are then gathered and written to local disk using
the write interface.

6.6 Performance Measurements

Our performance on the Datamation benchmark is
shown in Figure 10 for two NOW configurations. For

DEFS-ALAOOO 1836

each configuration, the lower curve is the sort time and
the upper curve gives the additional GLUnix start-up
time. The previous record-holder on this benchmark,
indicated by the horizontal line, was a 12 processor SGI
PowerChallenge with 96 disks and 2.25 GB of main
memory[Swe96]. In NOW-Sort, each processor sorts an
equal portion of the one million records, so as more pro­
cessors are added, each node sorts fewer records. With
the resulting small problem sizes, remote process start­
up is a significant portion of our total sorting time. In
fact, on 32 processors, the total time is almost equally
divided between process start-up and our application.
However, this is probably more a function of the lack of
maturity of our own cluster OS, than the fundamental
costs of a distributed operating system, and is currently
the focus of optimization.

"' 1J
c
8
<J)

!E,

10 ~~~~~~~~~~~~~~~~

8

6

128 MB, 4 Disks (Sort and GLUnix) -
128 MB, 4 Disks (Sort, No GLUnix) +-

64 MB, 2 Disks (Sort and GLUnix) o

64 MB, 2 Disks (Sort, No GLUnix)

\,
4 _SGI R_ecord_@52)__ _ -~,

0 2.41
2

1.29

0 ~~~~~~~~~~~~~~~~
1 2 4 8 16 32

Processors

Figure 10. Datamation Sort Time

Interestingly, process start-up can also be time-consum­
ing on SMPs: both [Nyb*94] and [Swe*96] indicate that
clearing the address-space is a significant, if not domi­
nant, cost for one-pass external sorts, most likely
because the SMP OS does not parallelize the process.
On NOWs, this aspect of process creation is not a prob­
lem, since each local address space is initialized in par­
allel.

NOW-Sort is almost perfectly scalable as the number of
processors is increased and the number of records per
processors is held constant. Figure 11 shows the time for
the parallel one-pass sort, for the two-disk, 64 MB clus­
ters and the four-disk 128 MB cluster. The slight
increase in time with more processors is mostly due to
the increase in overhead of GL Unix and initializing the
Active Message layer.

Recognizing that the Datamation benchmark has
become more a test of startup and shutdown than I/O
performance, the authors of AlphaSort introduced
MinuteSort in 1994[Nyb*94]. The key and record spec­
ifications are identical to that of Datamation, but the per­
formance metric is now the amount of data that can be
sorted in one minute of elapsed time.

NOW-Sort currently holds the record for this benchmark
as well, sorting 8.41 GB in one-pass on 95 machines,
190 disks, and 12.16 GB of memory. For details on how
we solved this problem when there was insufficient
memory to hold all keys in main memory, see [Aip*97].

"' 1J
c
0

" <J)

!E,
<J)

E
i=

20~~~~~~~~~~~~~~~~

18

16

14

12

10

8

6

4

2

0
1 2

4 disks, 128 MB (Sort and GLUnix) -
4 disks, 128 MB (Sort, No GLUnix) -~---

2 disks, 64 MB (Sort and GLUnix) o

2 disks, 64 MB (Sort, No GLUnix) '

624 MB, 13.2 secs

1.15 GB, 10.9 secs

4 8 16 32
Processors

Figure 11. Scalability of NOW-Sort

7 Conclusions and Future Directions

Leveraging the advent of the "killer network switch",
the Berkeley NOW project has shown that large-scale
clustered systems can be built and utilized for a range of
parallel applications. Assembling the more than 100 Sun
UltraSparc workstations in our current configuration
raised a number of unique engineering issues, such as
cable management, boot and diagnostic support, and
system administration, but reasonable solutions exist for
each.

The infrastructure necessary for running parallel appli­
cations has been thoroughly exercised in our system. We
have shown that not only can we obtain the low-latency,
high-bandwidth communication traditionally seen in
only tightly-integrated MPP systems, but also that this
communication performance directly corresponds to
speedups for scientific parallel applications. Through
disk-to-disk sorting, we have demonstrated many of the
strengths of the NOW approach: the presence of a com-

DEFS-ALAOOO 1837

plete OS and file-system on each node for memory­
management and high-performance 1/0, and the ability
to isolate performance issues.

The experiments that we have described in this paper
have focused on single applications running in isolation.
A number of most interesting current challenges involve
using the Berkeley NOW as a truly time-shared
resource: particularly, integrating communication and
scheduling. The second-generation of Active Messages,
AM-II, was specifically designed for such an eINiron­
ment: by virtualizing communication endpoints, multi­
ple processes on a single node fairly and efficiently
share network resources. Preliminary measurements
indicate that while the round-trip times of our prototype
with a single communicating process are somewhat
higher than the more restricted gam implementation (45
µs versus 20 µs), performance degrades gracefully
under heavy load and the system is resilient of network
failures.

Some of the future work with AM-II involves determin­
ing which communication endpoints should be resident
when the physical resources on the network interface are
over-committed. A step in this direction is to understand
the communication working sets of various applications.
IINestigating how information from the process sched­
uler can be incorporated into AM-II is also of interest.

Coordinating the scheduling of communicating pro­
cesses across the nodes in the cluster is currently an
unsolved problem. Traditional time-shared MPPs used
explicit coscheduling, or gang scheduling, to achieve
this coordination; however, explicit coscheduling has a
number of disadvantages that are accentuated in the
NOW eINironment: it behaves poorly with mixed work­
loads of interactive and parallel jobs and significantly
increases the cost of context-switches. Our simulation
results indicate a non-intrusive, implicit approach works
better: communication and synchronization events
occurring naturally within the parallel application trans­
mit sufficient information to implicitly coschedule
applications[Dus*96]. By dynamically adapting the
amount of time a parallel process waits for communica­
tion events to complete, bulk-synchronous applications
achieve performance within 10% of an ideal implemen­
tation of coscheduling.

Integrating Active Messages with implicit coscheduling
in the cluster is likely to raise many more issues. One
question that remains is how well implicitly-scheduled
parallel and interactive jobs can share the same worksta­
tion. We are also beginning to iINestigate how to fairly

allocate the pool of resources among competing users
[ArCu97].

8 Acknowledgments

We would like to thank the rest of the members of the
NOW project for their critical contributions to this work,
including Tom Anderson, Dave Patterson, Eric Ander­
son, Satoshi Asami, Douglas Ghormley, Kim Keeton,
Cedric Krumbein, Jeanna Neefe Matthews, Steve Rod­
rigues, Nisha Talagala, Amin Vahdat, Randy Wang, Eric
Fraser, and Ken Lutz. We also thank Bill Saphir and
Horst Simon of NERSC for their help with the NPB.

This work was supported in part by the Defense
Advanced Research Projects Agency (N00600-93-C-
2481, F30602-95-C-0014), the National Science Foun­
dation (CDA 9401156), Sun Microsystems, California
MICRO, Hewlett Packard, Intel, Microsoft, and Mitsub­
ishi.

9 References

[Agar96] R Agarwal, "A Super Scalar Sort Algo-
rithm for RISC Processors", Proceedings of the
1996ACM SJGMOD Conference, June 1996, p.
240-246.

[And*95a] T. Anderson, D. Culler, D. Patterson, and
the NOW team, "A Case for NOW (Networks of
Workstations)," IEEE Micro, Feb. 1995.

[And*95b] T. Anderson, M. Dahlin, J. Neefe, D.
Patterson, D. Roselli, R. Wang, "Serverless Net­
work File Systems", 15th Symposium on Operating
Systems Principles, 1995.

[Anon85] Anonymous et. al, "A Measure of Transac­
tion Processing Power", Datamation, 31(7): 112-
118, 1985, AlsoinReadings in Database Systems,
M.H. Stonebraker ed., Morgan Kaufmann, San
Mateo, 1989.

[Arp*97] A. Arpaci-Dusseau, R. Arpaci-Dusseau, D.
Culler, J. Hellerstein, and D. Patterson, "High-Per­
formance Sorting on Networks of Workstations,"
Proceedings of the 1997 ACM SJGMOD Confer­
ence, (to appear).

[ArCu97] A. Arpaci-Dusseau, D. Culler, "Extending
Proportional-Share Scheduling to a Network of
Workstations", International Conference on Paral­
lel and Distributed Processing Techniques and
Applications, 1997 (to appear).

[Bar*93] E. Barszcz, R. Fatoohi, V Venkatakrish-
nan, and S. Weeratunga, "Solution of Regular,

DEFS-ALAOOO 1838

Sparse Triangular Linear Systems on Vector and
Distributed-Memory Multiprocessors", Teclmical
Report NAS RNR-93-007, NASA Ames Research
Center, Moffett Field, CA, 94035-1000, April 1993.

[Bod*95] N. Boden, D. Cohen, R. Felderman, A.
Kulawik, C. Sietz, J. Seizovic, and W. Su. "Myrinet
-- A Gigabit-per-Second Local-Area Network,"
IEEE Micro, Feb. 1995, p. 29-36.

[Brew96] E. Brewer, "The Inktomi Experience,"
IINited Talk at the Second Workshop on Networks of
Workstations, Cambridge, MA, Oct. 1996.

[Bru88] Bruno, J; Cappello, P.R.: Implementing
the Beam and Warming Method on the Hypercube.
Proceedings of 3rd Conference on Hypercube Con­
current Computers and Applications, Pasadena, CA,
Jan 19-20, 1988.

[Cul*93a] D. Culler, R. Karp, D. Patterson, A. Sahay,
K.E. Schauser, E. Santos, R. Subramonian, T. von
Eicken, "Lo gP: Towards a Realistic Model of Paral­
lel Computation," Proc. 4th ACM SIGPLAN Sym­
posium on Principles and Practice of Parallel
Programming, San Diego, CA Mayl993.

[Cul*93b] D. Culler, A. Dusseau, S. Goldstein, A.
Krishnamurthy, S. Lumetta, T. von Eicken and K.
Yelick, "Parallel Programming in Split-C," Pro­
ceedings of Supercomputing 93, November 1993.

[Cul*96] D. Culler, L.T. Liu, R. P. Martin, C. 0.
Yoshikawa, "Assessing Fast Network Interfaces",
IEEE Micro (Special Issues on Hot Interconnects)
vol 16, no. 1, Feb 1996.

[DoDu95] J. Dongarra, and T. Dunnigan, "Message
Passing Performance of Various Computers", Univ.
Tenn Tech Report CS-95-299, May 1995.

[Dus*96] A. Dusseau, R. Arpaci, D. Culler, "Effec-
tive Distributed Scheduling of Parallel Workloads",
SIGMETRJCS '96 Conference on Measurement and
Modeling, 1996.

[Gol*96] S. Goldstein, K. Schauser, and D. Culler,
"Lazy Threads: Implementing a Fast Parallel Call",
Journal of Parallel and Distributed Computing,
1996.

[Ha0u95] J. Hartman and J. Ousterhout, "The Zebra
Striped Network File System", ACM Transactions
on Computer Systems, 13(3) Aug. 1995, 279-310.

[Kri*96] A. Krishnamurthy, R. Wang, C. Scheiman,
K. Schauser, D. Culler and K. Yelick, "Evaluation
of Architectural Support for Global Address-based
Communication in Large-scale Parallel Machines",

Seventh International Symposium on Architectural
Support for Programming Languages and Operat­
ing Systems, Oct, 1996.

[Liu*96] L. Liu, D. Culler, and C. Yoshikawa,
"Benchmarking Message Passing Performance
using MPI", 1996 International Conference on Par­
allel Processing, Aug. 1996.

[Mai95] A. Mainwaring, et al, "Active Messages
Specification", Available at http://now.cs.berke­
ley.edu/.

[Mai*97] A. Mainwaring, B. Chun, S. Schleimer, D.
Wilkerson, "System Area Network Mapping",
Ninth Annual ACM Symposium on Parallel Algo­
rithms and Architectures, June, 1997.

[Mar*97] R. Martin, A. Vahdat, D. Culler, and T.
Anderson, "Effect of Communication Latency,
Overhead, and Bandwidth on a Cluster Architec­
ture," Int'/ Symp. on Computer Architecture, June
1997 (to appear)

[MPI93] MPI Forum, "MPI: A Message Passing
Interface", Supercomputing 93, 1993.

[NPB] NAS Parallel Benchmarks, http : I I
science.nas.nasa.gov/Software/NPB/.

[Nyb*94] C. Nyberg, T. Barclay, Z. Cvetanovic, J.
Gray, and D. Lomet, "AlphaSort: A RISC Machine
Sort}", Proceedings of 1994ACM SIGMOD Con­
ference, Mayl994.

[PGI] The Portland Group, Inc., http: I I
www.pgroup.com/lit.papers.html

[Rod*97] S. Rodrigues, T. Anderson, and D. Culler.
"High-Performance Local-Area Communication
Using Fast Sockets", Proceedings of the USENIX
1997 Annual Technical Conference, Jan. 1997.

[Swe*96] A. Sweeny, D. Doucette, W. Hu, C. Ander-
son, M. Nishimoto, and G. Peck, "Scalability in the
XFS File System, Proceedings of the USENIX 1996
Annual Technical Conference, Jan. 1996.

[vEi*92] T. vonEicken, D. E. Culler, S. Goldstein
and K. Schauser, "Active Messages: a Mechanism
for Integrated Communication and Computa­
tion," Proc. 19th Annual International Symposium
on Computer Architecture, May 1992, pp. 256-67.

[Wood96] P. R. Woodward, "Perspectives on Super­
computing: Three Decades of Change", IEEE Com­
puter, Oct. 1996, pp. 99-111.

DEFS-ALAOOO 1839

