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Abstract: The UC Berkeley Network of Workstations 
(NOW) project demonstrates a new approach to large­
scale system design enabled by technology advances 
that provide inexpensive, low latency, high bandwidth, 
scalable interconnection networks. This paper provides 
an overview of the hardware and software architecture 
of NOW and reports on the performance obtained at 
each layer of the system: Active Messages, MPI mes­
sage passing, and benchmark parallel applications. 

1 Introduction 

In the early 1990's it was often said that the "Killer 
Micro" had attacked the supercomputer market, much as 
it had the minicomputer and mainframe markets earlier. 
This attack came in the form of massively parallel pro­
cessors (MPPs) which repackaged the single-chip 
microprocessor, cache, DRAM, and system chip-set of 
workstations and PCs in a dense configuration to con­
struct very large parallel computing systems. However, 
another technological revolution was brewing in these 
MPP systems - the single-chip switch - which enabled 
building inexpensive, low latency, high bandwidth, scal­
able interconnection networks. As with other important 
technologies, this "killer switch" has taken on a role far 
beyond its initial conception. Emerging from the eso­
teric confines of MPP backplanes, it has become avail­
able in a form that is readily deployed with commodity 
workstations and PCs. This switch is the basis for sys­
tem area networks, which have performance and scal­
ability of the MPP interconnects and the flexibility of a 
local area network, but operate on a somewhat restricted 
physical scale. 

The Berkeley NOW project seeks to demonstrate that it 
is viable to build large parallel computing systems that 
are fast, inexpensive, and highly available, by simply 
snapping these switches together with the latest com­
modity components. Such cost-effective, incrementally 
scalable systems provide a basis for traditional parallel 
computing, but also for novel applications, such as inter­
net services[Brew96]. 

This paper provides an overview of the Berkeley NOW 
as a parallel computing system. Section 2 gives a 
description of the NOW hardware configuration and its 
layered software architecture. In the following sections, 
the layers are described from the bottom-up. Section 3 
describes the Active Message layer and compares its 
performance to what has been achieved on MPPs. 
Section 4 shows the performance achieved through MPI, 
built on top of Active Messages. Section 5 illustrates the 
application performance of NOW using the NAS Paral­
lel Benchmarks in MPI. Section 6 provides a more 
detailed discussion of the world's leading disk-to-disk 
sort, which brings out a very important property of this 
class of system: the ability to concurrently perform I/O 
to disks on every node. 

2 Berkeley NOW System 

The hardware configuration of the Berkeley NOW sys­
tem consists of one hundred and five Sun Ultra 170 
workstations, connected by a large Myricom net­
work[Bode95], and packaged into 19-inch racks. Each 
workstation contains a 167 MHz Ultral microprocessor 
with 512 KB level-2 cache, 128 MB of memory, two 2.3 
GB disks, ethemet, and a Myricom "Lanai" network 
interface card (NIC) on the SBus. The NIC has a 37.5 
MHz embedded processor and three DMA engines, 
which compete for bandwidth to 256 KB of embedded 
SRAM. The node architecture is shown in Figure 1. 

The network uses multiple stages of Myricom switches, 
each with eight 160 MB/s bidirectional ports, in a vari­
ant of a fat-tree topology. 

2.1 Packaging 

We encountered a number of interesting engineering 
issues in assembling a cluster of this size that are not so 
apparent in smaller clusters, such as our earlier 32-node 
prototype. This rack-and-stack style of packaging is 
extremely scalable, both in the number of nodes and the 
ability to upgrade nodes over time. However, structured 
cable management is critical. In tightly packaged sys­
tems the interconnect is hidden in the center of the 
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Figure 1. NOW Node Configuration 

machine. When multiple systems are placed in a 
machine room, all the interconnect is hidden under the 
floor in an indecipherable mess. However, in clusters, 
the interconnect is a clearly exposed part of the design. 
(a bit like the service conduits in deconstructionist 
buildings). Having the interconnect exposed is valuable 
for working on the system, but it must stay orderly and 
well structured, or it becomes both unsightly and diffi­
cult to manage. 

The Berkeley NOW has four distinct interconnection 
networks. First, the Myrinet provides high-speed com­
munication within the cluster. We discuss this in detail 
below. Second, switched-Ethernet into an ATM back­
bone provides scalable external access to the cluster. 
The need for an external network that scales with the 
size of the cluster was not apparent when we began the 
project, but the traffic between the cluster and other 
servers, especially file servers, is an important design 
consideration. Third, a terminal concentrator provides 

direct console access to all the nodes via the serial port. 
This is needed only in situations when the node cannot 
be rebooted through the network, or during system 
development and debugging. Fourth, conventional AC 
lines provide a power distribution network. As clusters 
transition to the commercial mainstream, one engineer­
ing element will be to consolidate these layers of inter­
connect into a clean modular design. Figure 2 shows a 
picture of the NOW system. 

Figure 2. NOW System 

2.2 Network topology 

The Myrinet switches that form the high-speed intercon­
nect use source routing and can be configured in arbi­
trary topologies. The NOW automatic mapping software 
can handle arbitrary interconnect[Mai*97]; however, we 
wire the machine as a variant of a Fat-tree to create a 
system with more uniform bandwidth between nodes 
thereby minimizing the impact of process placement'. 
The topology is constrained by the use of 8-port (bidi­
rectional) switches and wiring density concerns. Ini­
tially we planned to run cables from all the nodes to a 
central rack of switches; however, the cable cross-sec­
tional area near the switches became unmanageable as a 
result of bulky, heavily-shielded copper network cables. 
Using fiber-optic cables that are now available, the cable 
density may be reduced enough to centrally locate the 
switches. 
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In building an indirect network out of fixed-degree 
switches, the number of upward links depends on the 
number of downward links. We elected to attach five 
hosts to each first level switch, which eliminates 40% of 
the cable mass. As shown in Figure 3, groups of seven of 
these switches are treated as a 35-node subcluster with 
the 21 upward links spread over four level-two switches. 
Three of these subclusters are wired together to com­
prise the NOW. We have found that as a rule of thumb, 
adding 10% extra nodes and extra ports greatly simpli­
fies system administration, allowing for node failures, 
software or hardware upgrades, and system expansion. 

Figure 3. NOW Myrinet Network Topology 

2.3 Software Architecture 

The system software for NOW employs a layered archi­
tecture, as illustrated in Figure 4. Each node runs a com­
plete, independent Solaris Unix with the associated 
process management, memory management, file system, 
thread support, scheduler, and device drivers. We extend 
Solaris at each of these interfaces to support global 
operations over the NOW. 

Process Management: A global OS layer, called 
GLUnix, provides NOW-wide process management as a 
layer on top of Solaris (via sockets, daemons, and sig­
nals). Using either a global shell, gl ush, or the gl u­
run command, sequential processes can be started 
anywhere on the NOW or parallel processes can be 
started on multiple nodes. Local pids are elevated to a 
global pids, and the familiar process control opera­
tions, such as ctrl-C or ctrl-Z, work on global processes. 
The Unix process information and control utilities, such 
asps and kill, are globalized as well. 
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Figure 4. NOW software architecture 

File System: A prototype file system, xFS, extends 
Solaris at the vnode interface to provide a global, high 
performance file system[And*95b]. Files are striped 
over nodes in a RAID-like fashion so that each node can 
read file data at the bandwidth of its interface into the 
network. The aggregate bandwidth available to nodes is 
that of all the disks. xFS uses a log-structured approach, 
much like Zebra[Ha0u95], to minimize the cost of par­
ity calculations. A single node accumulates enough of 
the log so that it can write a block to each disk in a stripe 
group. Before writing the blocks, it calculates a parity 
block locally and then writes it along with the data 
blocks. 

An update-based file cache-coherence strategy is used, 
and the caches are managed cooperatively to increase 
the population of blocks covered by the collection of 
nodal caches. If a block about to be discarded is the last 
copy in the system, then it is cast off to a random remote 
node. Nodes take mercy on this block until it has aged to 
the point where it appears pointless to keep it in mem­
ory. This policy has the attractive property that actively 
used nodes behave like traditional clients while idle 
nodes behave like servers, so the cooperative file cache 
adapts dynamically to system usage. 

Virtual Memory: Two prototype global virtual mem­
ory systems have been developed to allow sequential 
processes to page to the memory of remote idle nodes, 
since communication within the NOW has higher band­
width, and much lower latency than access to local 
disks. One of these uses a custom Solaris segment driver 
to implement an external user-level pager which 
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exchanges pages with remote page daemons. The other 
provides similar operation on specially mapped regions 
using only signals. 

3 Active Messages 

Active Messages are the basic communication primi­
tives in NOW. This work continues our investigation of 
implementation trade-offs for fast communication lay­
ers[vE92*,Gol*96,Kri*96] and on NOW we have 
sought to generalize the approach and take full advan­
tage of the complete OS on every node. The segment 
driver and device driver interface is used to provide 
applications with direct, protected user-level access to 
the network. Active Messages map to simple operations 
on queues and buffers that are shared between the user 
process and the communication firmware, which is exe­
cuted on a dedicated processor embedded in the network 
interface card. 

We have built two Active Message layers. The first, 
Generic Active Messages (gam) is oriented toward the 
traditional single-parallel-program-at-a-time style of 
parallel machines, and provides exactly the same API 
across a wide range ofplatforms[Cul*95].This serves as 
a valuable basis for comparison. 

The newer AM layer[Main95], AM-II, provides a much 
more general purpose communication eINironment, 
which allows many simultaneous parallel programs, as 
well as client/server and system use. It is closely inte­
grated with POSIX threads. The AM implementation is 
extremely versatile. It provides error detection and retry 
a the NIC-to-NIC level and allows the network to be 
reconfigured in a running system. A privileged mapper 
daemon explores the physical interconnection, derives 
deadlock-free routes, and distributes routes periodi­
cally[Mai*97]. AM-II provides a clean return-to-sender 
error model to support highly available applications. 

The Active Messages communication model is essen­
tially a simplified remote procedure call that can be 
implemented efficiently on a wide range of hardware. 
Three classes of messages are supported. Short mes­
sages pass eight 32-bit arguments to a handler on a des­
tination node, which executes with the message data as 
arguments. Medium messages treat one of the argu­
ments as a pointer to a 128 byte to 8 KB data buffer and 
iINoke the handler with a pointer to a temporary data 
buffer at the destination. Bulk messages perform a mem­
ory-to-memory copy before iINoking the handler. A 
request handler issues replies to the source node. 

We have developed a microbenchmarking tool to char­
acterize empirically the performance of Active Mes­
sages in terms of the LogP model[Cul*93, Cul*95]. 
Figure 5 compares the gam short message LogP param­
eters on NOW with the best implementations on a range 
of parallel machines. The bars on the left show the one­
way message time broken down into three components: 
send overhead (oJ, receive overhead (or), and the 
remaining latency (L). The bars on the right shows the 
time per message (g = l/MessageRate) for a sequence 
of messages. NOW obtains competitive or superior 
communication performance to the more tightly inte­
grated, albeit older, designs. 

The overhead on NOW is dominated by the time to 
write and read data across the 1/0 bus. The Paragon has 
a dedicated message processor and network interface on 
the memory bus; however, there is considerable over­
head in the processor-to-processor transfer due to the 
cache coherence protocol and the latency is large 
because the message processors must write the data to 
the NI and read it from the NI. The actual time on the 
wire is quite small. The Meiko has a dedicated message 
processor on the memory bus with a direct connection to 
the network, but the overhead is dominated by the 
exchange instruction that queues a message descriptor 
for the message processor and the latency is dominated 
by the slow message processor accessing the data from 
host memory. Medium and bulk messages achieve 38 
MB/s on NOW, limited primarily by the SBus. 
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Figure 5. Active Messages LogP Perlormance 

Traditional communication APis and programming 
models are built upon the Active Message layer. We 
have built a version of the MPI message passing stan-
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dard for parallel programs in this fashion, as well as a 
version of the Berkeley Sockets API, called Fast Sock­
ets[Rod*97]. A shared address space parallel C, called 
Split-C[Cul*93], compiles directly to Active Messages, 
whereas HPF[PGI] compiles down to the MPI layer. 

4MPI 

Our implementation of MPI is based on the MPICH ref­
erence implementation, but realizes the abstract device 
interface (ADI) through Active Message operations. 
This approach achieves good performance and yet is 
portable across Active Message platforms. The MPI 
communicator and related information occupy a full 
short message. Thus, a zero-byte control message is 
implemented as a single small-message request­
response, with the handler performing the match opera­
tion against a receive table. The one-way time for an 
echo test is 15 µs. MPI messages of less than 8 KB use 
an adaptive protocol implemented with medium Active 
Messages. Each node maintains a temporary input 
buffer for each sender and senders keep track of whether 
their buffers are available on the destination nodes. If 
the buffer is available, the send issues the data without 
handshaking. Buffer availability is conveyed back to the 
source through the response, if the match succeeds, or 
via a request issued by the later matching receive. Large 
messages perform a handshake to do the tag match and 
coINey the destination address to the source. A bulk 
operation moves the message data directly into the user 
buffer. 

Figure 6 shows the bandwidth obtained as a function of 
message size using Dongarra's echo test on NOW and 
on recent MPP platforms[DoDu95]. The NOW version 
has lower start-up cost than the other distributed mem­
ory platforms and has intermediate peak bandwidth. The 
T3D/pvm version does well for small messages, but has 
trouble with cache effects. Newer MPI implementations 
on the T3D should perform better than the T3D/pvm in 
the figure, but data is not available in the Dongarra 
report. 

5 NAS Parallel Benchmarks 

An application-level comparison of NOW with recent 
parallel machines on traditional scientific codes can be 
obtained with the NAS MPI-based parallel benchmarks 
in the NPB2 suite[NPB]. We report briefly on two appli­
cations. The LU benchmark solves a finite difference 
discretization of the 3-D compressible Navier-Stokes 
equations. A 2-D partitioning of the 3-D data grid onto a 
power-of-two number of processors is obtained by halv-
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Figure 6. MPI bandwidth 

ing the grid repeatedly in the first two dimensions, alter­
nating between x and y, resulting in vertical pencil-like 
grid partitions. The ordering of point based operations 
constituting the SSOR procedure proceeds on diagonals 
which progressively sweep from one comer on a given z 
plane to the opposite comer of the same z plane, there­
upon proceeding to the next z plane. This constitutes a 
diagonal pipelining method and is called a "wavefront" 
method by its authors [Bar*93]. The software pipeline 
spends relatively little time filling and emptying and is 
perfectly load-balanced. Communication of partition 
boundary data occurs after completion of computation 
on all diagonals that contact an adjacent partition. 

The BT algorithm solves three sets of uncoupled sys­
tems of equations, first in the x, then in they, and finally 
in the z direction. These systems are block tridiagonal 
with 5x5 blocks and are solved using a multi-partition 
scheme[Bm88]. The multi-partition approach provides 
good load-balance and uses coarse-grained communica­
tion. Each processor is responsible for several disjoint 
sub-blocks of points ("cells") in the grid. The cells are 
arranged such that for each direction in the line-solve 
phase, the cells belonging to a certain processor are 
evenly distributed along the direction of solution. This 
allows each processor to perform useful work through­
out a line-solve, instead of being forced to wait for the 
partial solution to a line from another processor before 
beginning work. Additionally, the information from a 
cell is not sent to the next processor until all sections of 
linear equation systems handled in this cell have been 
solved. Therefore the granularity of communications is 
kept large and fewer messages are sent. The BT code 
requires a square number of processors. 
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Figure 7 shows the speedups obtained on sparse LU 
with the Class A input (200 iterations on a 64x64x64 
grid) for the IBM SP-2 (wide nodes), Cray T3D, and 
NOW. The speedup is normalized to the performance on 
four processors, shown in Table 1, because this is the 
smallest number of nodes for which the problem can be 
run on the T3D. NOW achieves the scalability of the 
T3D with much high per-node performance. It scales 
better than the SP-2, although it has only two-thirds the 
node performance. These results are consistent with the 
ratio of the processor performance to the performance of 
small message transfers. 

TABLE 1. NPB baseline MFLOPS 
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Figure 7. Speedup on NPB Sparse LU 
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Figure 8 shows the scalability of the IBM SP2, Cray 
T3D, and NOW on the Class A problem of the BT 
benchmark. Here the speedup is normalized to the per­
formance on 25 processors, the smallest T3D configura­
tion for which performance data is available. The 
scalability comparison is similar to that with LU, with 
the SP-2 lagging somewhat more, but having higher per 
node performance. 

6 Disk-to-Disk Sort 

The real capability of NOW with a complete operating 
system per node and 1/0 capability spread across the 
nodes is best illustrated through 1/0-intensive applica­
tions, such as commercial workloads and scientific 
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Figure 8. Speedup on NPB BT 

application on very large data sets. To evaluate this 
aspect of the system, we have developed a high-perfor­
mance disk-to-disk sort. Sorting is an important applica­
tion to many fields, especially the database community; 
it stresses both the 1/0 subsystem and operating system, 
and has a set of well-known benchmarks allowing com­
parison with other systems. We describe our experience 
with the Datamation benchmark, proposed in 1985 by a 
group of database experts[Anon85]. 

By utilizing the full operating system capability, local 
disks, and fast communication, NOW-sort has broken all 
previous records on the Datamation benchmark, which 
measures the elapsed time to sort one million 100-byte 
records with 10-byte keys from disk to disk, and 
Minute-sort, which measures the amount of record data 
sorted in under a minute[Nyb*94]. 

We briefly describe our parallel algorithm for NOW.­
Sort, which is given in complete detail in [Arp*97]. One 
of the goals of NOW-Sort is to dynamically adapt to a 
variety of cluster configurations: namely, differing num­
bers of disks, amounts of memory, and number of work­
stations. A primary variation is the size of the data set as 
compared to the size of available memory. A one-pass 
version is used when all records fit into main memory; 
otherwise a two-pass version is used. Due to space limi­
tations, we only describe the one-pass implementation 
here. 

6.1 Algorithm Description 

In the Datamation sort benchmark the keys are from a 
uniform distribution and begin evenly distributed across 
all workstations. At the highest level, the single-pass 
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parallel sort of N records on P processors is a general­
ized bucket sort and contains four steps: 

N 
1. Read: Each processor reads P 100-byte records 

from its local disks into memory. 

2. Communicate: Keys are examined and the records 
are sent to the appropriate destination processor. The 
destination processor copies a portion of the key to a 
local bucket, keeping a pointer to the full key and 
record; thus the keys are partially sorted according to 
their most-significant bits. 

3. Sort: Each processor sorts its keys in memory using 
a partial-radix sort on each bucket. 

4. Write: Each processor gathers and writes its sorted 
records to local disks. 

At the end of the algorithm, the data is sorted across the 
disks of the workstations, with the lowest-valued keys 
on processor 0 and the highest-valued keys on processor 
P - 1 . The number of records per node will only be 
approximately equal, and depends upon the actual distri­
bution of key values. 

6.2 Local disk performance 

A key advantage of a NOW is that the performance of 
each node can be studied and optimized in isolation 
before considering the interactions between nodes. For 
NOW-Sort, we needed to understand how best to utilize 
the disks, the memory, and the operating system sub­
strate of each node. 

To fully utilize the aggregate bandwidth of multiple 
disks per machine, we implemented a user-level library 
for file striping on top of each local Solaris file system. 
We have two disk configurations to consider: two 5400 
rpm disks on a fast-narrow SCSI bus and an additional 
two 7200 rpm disks on a fast-wide SCSI. Table 2 shows 
the performance of the striped file system for several 
configurations. 

In the first two rows, we see that the two 5400 rpm disks 
saturate the fast-narrow SCSI bus, which has a peak 
bandwidth of 10 MB/s. We measure 8.3 MB/s from two 
disks capable of a total of 11 MB/s. The full NOW clus­
ter has two disks per node, providing a potential file 1/0 
bandwidth of 830 MB/s on 100 nodes. 

A subset of the nodes have additional external disks. 
The second two rows indicate that the (external) fast­
wide SCSI bus adequately handles the two faster disks. 
Finally, the last rows shows we achieve 20.5 MB/s, or 

96% of the peak aggregate bandwidth from the four 
disks. To harness this bandwidth in the sort, we need to 
adjust the blocking factor on the two kinds of disks to 
balance the transfer times. 

TABLE 2. Bandwidths of disk configurations 

SCSI Read Write 
Seagate Disks Bus (MB/s) (MB/s) 

1 5400 rpm Hawk narrow 5.5 5.2 

2 5400 rpm Hawk 8.3 8.0 

1 7200 rpm Barracuda wide 6.5 6.2 

2 7200 rpm Barracuda 13.0 12.1 

2 of each both 20.5 19.1 

2 of each (peak) 21.3 20.1 

6.3 OS Interfaces for Buffer Management 

Given a near peak bandwidth local file system, the sort­
ing performance of each node depends critically on how 
effectively memory is used. With a general purpose OS, 
there is no simple way for the application to determine 
how much memory is actually available to it. Depending 
upon the system interface used to read data from disk, 
the application may or may not be able to effectively 
control its memory usage. 

We compare two approaches for reading records from 
disk: read and mmap with madvise. For demonstra­
tion purposes, we use a simple implementation of the 
sorting algorithm using one UltraSparc with one disk 
and 64 MB of DRAM. It quicksorts all of the keys in 
memory. The upper graph of Figure 9 shows that when 
the application uses the read call to read records into 
memory from disk, the total execution time increases 
severely when more than 20 MB of records are sorted, 
even though 64 MB of physical memory are in the 
machine. The operating system uses roughly 20 MB and 
the file system performs its own buffering, which effec­
tively doubles the application footprint. This perfor­
mance degradation occurs because the system starts 
paging out the sorting data. 

To avoid double-buffering while leveraging the conve­
nience of the file system, we use memory mapped files 
by opening the file, calling mma p to bind the file into a 
memory segment of the address space, and accessing the 
memory region as desired. The auxiliary system call, 
madvise, informs the operation system of the intended 
access pattern. For example, one call to madvise noti­
fies the kernel that region will be accessed sequentially, 
thus allowing the OS to fetch ahead of the current page 
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and to throw away pages that have already been 
accessed. The lower graph of Figure 9 shows that with 
mma p and mad vi s e the sorting pro gram has linear per­
formance up to roughly 40 MB, when it has used all the 
memory that the OS makes available. For larger data 
sets, the two pass algorithm is used, which places 
greater demand on the file system and requires multiple 
threads to maintain the disk bandwidth[ Arp*97]. 

6.4 Using Active Message communication 

The optimizations for striping data across local disks 
and using operating system interfaces for memory man­
agement apply when running on a single-node or multi­
ple nodes. The impact of parallelization is isolated to the 
communication phase. 

After each node has memory-mapped its local input 
files, it calculates the processor which should contain 
this key in the final sorted order. Using the assumption 
that the keys are from a uniform distribution, we deter­
mine the destination processor with a simple bucket 
function (i.e., the top logP bits of each key) and copy 

the record from the input file to a 4 KB send-buffer allo­
cated for each destination processor. When a send-buffer 
is filled, it is sent to its destination processor. 

Upon arrival of a message, an Active Message handler is 
executed. The handler moves the full record into main 
memory and copies a portion of the key into one of 

B = 2b buckets based on the high-order b bits of the 
key. The number of buckets is calculated at run-time 
such that the average number of keys per bucket fits into 
the second-level cache. 

The read and communication phases are easily over­
lapped due to the interfaces provided by mma p and 
Active Messages. Copying keys into send-buffers is 
completely hidden under the disk transfer time. Obtain­
ing this same performance with the read system call 
would require more programming complexity; because 
the cost of issuing each read is high, threads must be 
used prefetch data in large chunks. 

Measurements on a cluster with two disks per worksta­
tion show that the communication time is mostly hidden 
by the read time. However, with four disks per worksta­
tion, very little communication is overlapped with read­
ing, and the algorithm is actually slower than with only 
two disks. This penalty occurs because the UltraSPARC 
1/0 bus, the SBus, saturates long before its theoretical 
peak of 80 MB/s. Since almost all records are sent to 
another processor, the SBus must transfer three times 
the 1/0 rate: once for reading, once for sending, and 
once for receiving. 

6.5 Sorting and Writing 

The sort and write phase on each node are straightfor­
ward. After synchronizing across processors to ensure 
that all records have been sent and received, each node 
performs a partial-radix sort on the set of keys in each 
bucket, very similar to the approach described in 
[Agar96]. The partial-radix sort orders keys using the 
top 22-bits after the stripping off the logP + b bits used 
to determine the destination processor and bucket. At 
this point, with high-probability, most keys are correctly 
sorted, and a simple bubble-sort cleans-up the misor­
dered keys. A pointer is kept to the full 100-byte record 
so that only keys and pointers are swapped. The sorted 
records are then gathered and written to local disk using 
the write interface. 

6.6 Performance Measurements 

Our performance on the Datamation benchmark is 
shown in Figure 10 for two NOW configurations. For 
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each configuration, the lower curve is the sort time and 
the upper curve gives the additional GLUnix start-up 
time. The previous record-holder on this benchmark, 
indicated by the horizontal line, was a 12 processor SGI 
PowerChallenge with 96 disks and 2.25 GB of main 
memory[Swe96]. In NOW-Sort, each processor sorts an 
equal portion of the one million records, so as more pro­
cessors are added, each node sorts fewer records. With 
the resulting small problem sizes, remote process start­
up is a significant portion of our total sorting time. In 
fact, on 32 processors, the total time is almost equally 
divided between process start-up and our application. 
However, this is probably more a function of the lack of 
maturity of our own cluster OS, than the fundamental 
costs of a distributed operating system, and is currently 
the focus of optimization. 
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Figure 10. Datamation Sort Time 

Interestingly, process start-up can also be time-consum­
ing on SMPs: both [Nyb*94] and [Swe*96] indicate that 
clearing the address-space is a significant, if not domi­
nant, cost for one-pass external sorts, most likely 
because the SMP OS does not parallelize the process. 
On NOWs, this aspect of process creation is not a prob­
lem, since each local address space is initialized in par­
allel. 

NOW-Sort is almost perfectly scalable as the number of 
processors is increased and the number of records per 
processors is held constant. Figure 11 shows the time for 
the parallel one-pass sort, for the two-disk, 64 MB clus­
ters and the four-disk 128 MB cluster. The slight 
increase in time with more processors is mostly due to 
the increase in overhead of GL Unix and initializing the 
Active Message layer. 

Recognizing that the Datamation benchmark has 
become more a test of startup and shutdown than I/O 
performance, the authors of AlphaSort introduced 
MinuteSort in 1994[Nyb*94]. The key and record spec­
ifications are identical to that of Datamation, but the per­
formance metric is now the amount of data that can be 
sorted in one minute of elapsed time. 

NOW-Sort currently holds the record for this benchmark 
as well, sorting 8.41 GB in one-pass on 95 machines, 
190 disks, and 12.16 GB of memory. For details on how 
we solved this problem when there was insufficient 
memory to hold all keys in main memory, see [Aip*97]. 

"' 1J 
c 
0 

" <J) 

!E, 
<J) 

E 
i= 

20~~~~~~~~~~~~~~~~ 

18 

16 

14 

12 

10 

8 

6 

4 

2 

0 
1 2 

4 disks, 128 MB (Sort and GLUnix) -
4 disks, 128 MB (Sort, No GLUnix) -~---

2 disks, 64 MB (Sort and GLUnix) o 

2 disks, 64 MB (Sort, No GLUnix) ' 

624 MB, 13.2 secs 

1.15 GB, 10.9 secs 

4 8 16 32 
Processors 

Figure 11. Scalability of NOW-Sort 

7 Conclusions and Future Directions 

Leveraging the advent of the "killer network switch", 
the Berkeley NOW project has shown that large-scale 
clustered systems can be built and utilized for a range of 
parallel applications. Assembling the more than 100 Sun 
UltraSparc workstations in our current configuration 
raised a number of unique engineering issues, such as 
cable management, boot and diagnostic support, and 
system administration, but reasonable solutions exist for 
each. 

The infrastructure necessary for running parallel appli­
cations has been thoroughly exercised in our system. We 
have shown that not only can we obtain the low-latency, 
high-bandwidth communication traditionally seen in 
only tightly-integrated MPP systems, but also that this 
communication performance directly corresponds to 
speedups for scientific parallel applications. Through 
disk-to-disk sorting, we have demonstrated many of the 
strengths of the NOW approach: the presence of a com-
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plete OS and file-system on each node for memory­
management and high-performance 1/0, and the ability 
to isolate performance issues. 

The experiments that we have described in this paper 
have focused on single applications running in isolation. 
A number of most interesting current challenges involve 
using the Berkeley NOW as a truly time-shared 
resource: particularly, integrating communication and 
scheduling. The second-generation of Active Messages, 
AM-II, was specifically designed for such an eINiron­
ment: by virtualizing communication endpoints, multi­
ple processes on a single node fairly and efficiently 
share network resources. Preliminary measurements 
indicate that while the round-trip times of our prototype 
with a single communicating process are somewhat 
higher than the more restricted gam implementation ( 45 
µs versus 20 µs), performance degrades gracefully 
under heavy load and the system is resilient of network 
failures. 

Some of the future work with AM-II involves determin­
ing which communication endpoints should be resident 
when the physical resources on the network interface are 
over-committed. A step in this direction is to understand 
the communication working sets of various applications. 
IINestigating how information from the process sched­
uler can be incorporated into AM-II is also of interest. 

Coordinating the scheduling of communicating pro­
cesses across the nodes in the cluster is currently an 
unsolved problem. Traditional time-shared MPPs used 
explicit coscheduling, or gang scheduling, to achieve 
this coordination; however, explicit coscheduling has a 
number of disadvantages that are accentuated in the 
NOW eINironment: it behaves poorly with mixed work­
loads of interactive and parallel jobs and significantly 
increases the cost of context-switches. Our simulation 
results indicate a non-intrusive, implicit approach works 
better: communication and synchronization events 
occurring naturally within the parallel application trans­
mit sufficient information to implicitly coschedule 
applications[Dus*96]. By dynamically adapting the 
amount of time a parallel process waits for communica­
tion events to complete, bulk-synchronous applications 
achieve performance within 10% of an ideal implemen­
tation of coscheduling. 

Integrating Active Messages with implicit coscheduling 
in the cluster is likely to raise many more issues. One 
question that remains is how well implicitly-scheduled 
parallel and interactive jobs can share the same worksta­
tion. We are also beginning to iINestigate how to fairly 

allocate the pool of resources among competing users 
[ArCu97]. 
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