a2 United States Patent

US006725228B1

10y Patent No.: US 6,725,228 B1

Clark et al. 5) Date of Patent: Apr. 20, 2004
(54) SYSTEM FOR MANAGING AND 6,167,402 A * 12/2000 Yeagerc.cccouereeerunnee 707/10
ORGANIZING STORED ELECTRONIC 6,182,071 Bl * 1/2001 Fushimi ...c.cccccoeeveremeeencen 707/7
MESSAGES 6,226,630 B1 * 5/2001 Billmersccccccveeeeeen. 707/3
6,324,569 B1 * 11/2001 Ogilvie et al. 707/500
(76) Inventors: David Morley Clark, 920 Innes Street, 6,396,513 Bl : 5/2002 Helfman et al. 709/206
Nelson. British Columbia V1L 5T2 6,424,995 B1 7/2002 Shumanc.cccceee..... 709/206
o . . 6,449,615 B1 * 9/2002 Liuet al. 707/10
(CA); Thomas Wilson Gibson, 230 6.466.941 Bl * 102002 Rowe et al. .. . 707/102
High Street, Nelson, British Columbia 6,507,846 BL * 1/2003 CONSENS wvvrverrveerreeeen. 707/100
V1L 3Z9 (CA); David Mitchell
Bracewell, 708 Third Street, Nelson, FOREIGN PATENT DOCUMENTS
British Columbia V1L 2R2 (CA); Jeff EP W099/04344 1/1999
Toy Tsao Kwan, 12 Arundel Avenue,
Toronto, Ontario M4K 3A4 (CA) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Microsoft Internet Explorer 1995-2001.
patent is extended or adjusted under 35 Dvorak, John C., Scarier Than Spam, Jan. 4, 1999, pp. 1-2.
U.S.C. 154(b) by 212 days. De La Cruz et al., Inside MAPI, ©1996, pp. 528-541 (Table
of Contents also included).
(21) Appl. No.: 09/704,199 MSDN Library—Apr. 1999, Messaging API (MAPI), Legal
Information, Developing a Message Store Provider.
22) Filed: Oct. 31, 2000
22) ’ * cited by examiner
(51) Int. CL7 oo GO6F 7/00)))
(52) US.CL ... T07/102; 707/7 Primary Examiner—Kim Vu .
(58) Field of Searchc.cccoccoceenennce 707/7, 200, 2, Assistant Examiner Monpla.lslr Hamilton .
707/102 (74) Antorney, Agent, or Firm—Oyen, Wiggs, Green &
Mutala
(56) References Cited (57) ABSTRACT
U.S. PATENT DOCUMENTS A computer-based system catalogs and retrieves electronic
4,611,280 A * 9/1986 Linderman 712/300 messages saved in a message store. The system automati-
4,809,158 A * 2/1989 McCauley .. 707/7 cally organizes each saved message into multiple folders
5,274,805 A * 12/1993 Ferguson et al. 707/7 based on the contents and attributes of the message, and
5,377,354 A . 12/1994 Scannell et al. implements improved methods for manually organizing
272_‘32’;23 2 2/ ggg ;Vagalr(""" e 70717 messages. Unlike prior art systems, where a message exists
5548780 A 8;1996 Nz\l)::nuf;a. in only one folder, the system uses lightweight message
5615367 A * 3 /1997 Bemnett et al. oo......... 707/102 shortcuts to display the message in multiple folders simul-
5694616 A * 12/1997 Johnson et al. 709207 tancously. The system preferably permits messages to be
5,813,000 A * 9/1998 Johnson et al. 707/100 ~ organized by: 1) basic message and attachment properties,
5,899,995 A 5/1999 Millier et al. e.g. date, status, attachment type; 2) extended message
5,948,058 A * 9/1999 Kudoh et al. 707/104.1 properties that the user can specify, e.g. keywords; and 3)
6,009,442 A 12/1999 Chen et al. correspondent or bulk mail sender/recipient, with automatic
6,029,164 A 2/2000 Birrell et al. separation of bulk mail from correspondence. Performance
278%7?‘3‘} 2 . Z %888 Eh‘;ﬂ(?” et al. 20777 and usability are improved by performing reads incremen-
(0 0] 1 1 O e s 12 . .
6.073.142 A * 6/2000 Geiger et al. .. Jozsop tally and by providing multiple sorting keys.
6,088,606 A * 7/2000 Moon et al. 707/10
6,154,740 A * 11/2000 Shahcccecoevevivenneenne 707/7 34 Claims, 33 Drawing Sheets
6 &8 & 65 66
B
Email)rganizer [\ \ \ X
File Edt View | Tools Help
Hot Status | To [Name | [subjest 1 [Date
61 N em — v —
Active Mail (14) T T —— -
ToDo {4)
SANL :::3‘1“(21)8)
Yesterday (6)
This Week o \
Eiizabeth Green @) | gopect
Bob Baxter (1)
it
Xd5 Study <keyword> | ——————
82 \Ciiot] status | Gorrespondent Bulk Mail | Keyword | Date | Attachment [Search [User
‘ @ 68 o 67J 62]
Page 1 of 57 Samsung Exhibit 1007

U.S. Patent Apr. 20, 2004 Sheet 1 of 33 US 6,725,228 B1

FIG. 1A

Page 2 of 57

U.S. Patent Apr. 20, 2004 Sheet 2 of 33 US 6,725,228 B1

j13
Al .
I —l—:tl 19 ’j
=
S R I —H__ 1
Al HBI {c]|
S]
|]
]])
] N ShN
or=ok=0%=
]])

(\ ’g
ﬁ*ﬂ @

FIG. 1B

Page 3 of 57

U.S. Patent Apr. 20, 2004

Sheet 3 of 33 US 6,725,228 B1

25 _| User Interface Device
27~ Message Client
i
£ 3
N g
& &
26 j
Transport Events Message Store Incoming Events Catalog Server
Server Server(s)
Requests Outgoing Requests
e o)
14
23

Message
Store(s)

22

Page 4 of 57

FIG.

2

U.S. Patent

22\

Apr. 20, 2004

Sheet 4 of 33

33~

Transport Header

US 6,725,228 B1

38\

Date
| |--- Today

— |- This Week
P |--- This Month

Status
T~ |--- Received

Correspondent
|--- Tom Gibson

Attachment
—— |--- All Attachments

—p |- DOC

Status
— |— Unread

—p |- Active Mail

Keywords
—— |--- Marketing
———» |--- White Paper

Page 5 of 57

I
ReceiveDate: Today 10:10:05 @——=—f—
Direction: Received Loy

\\

32 Envelope \
From: Tom Gibson o [|
To: David Clark
Cc: David Bracewell

36 ~_| contents
Subject: White paper
Body: Here is the white paper

for your review,

36A \JAttachment: White Paper.doc e=d——"—"" |

34 —_ [Status & Organizational
Information
Status: IsUnread

IsActive
Keywords: Marketing - |
White Paper *— L

U.S. Patent Apr. 20, 2004 Sheet 5 of 33 US 6,725,228 B1

18 —| 29
25 \ 27 - Catalog
Server Catalog
User Message database
Interface Client :
Device Message ——
Store
24 1 Server(s) 2 Store(s)
CLIENT COMPUTER
aon — FIG. 4A
12 28
18 L
25 B 27 =\ 14 Catalog
User Message database
Interface X Network
. Client <
Device en Message S
Store Message
Server(s) Store(s)
CLIENT COMPUTER 24 23
SERVER COMPUTER
aoe FIG. 4B
18 -\, 12 Y
25 7 27 24
User 14 Message
Interface M(e:ﬁzer!‘gt;e v | Store
Device Server(s)
3 ———
Catalog Message
database Store(s)
28 29 23
CLIENT COMPUTER SERVER COMPUTER
soc FIG. 4C

Page 6 of 57

U.S. Patent Apr. 20, 2004

28—\

Sheet 6 of 33

US 6,725,228 B1

Catalog

Shortcut [_ 57

Address /[~ °8 Folder /6 Messageld
Attachld
Addressld %——- Folderld Folderld
: 51 MessageSummary 52 AttachSummary 53
StorelLink ["
StoreLinkId Messageld - 528 ;’l&e:iz?gld
StoreLinkld (FKY”
Storeld (FK)\
StoreMessageld (FK StoreAttachld (FK)
~— 51A 0eld (FONL 54 - 53A
23
_\ Message Store
Storeld

Message [_ >4

StoreMessageld

<message data>

Attachment [35
StoreAttachId
<attachment data>

Page 7 of 57

FIG. 5A

U.S. Patent Apr. 20, 2004 Sheet 7 of 33 US 6,725,228 B1

50 —\ Catalog / Message Store

Shortcut />’

Address [~ 8 Folder [Messageld
Addressld — Folderld FolderId
/
53
52’ AttachSummary
MessageSummary Messageld
Messageld Attachld
" e I 54 Attachment [55
essag Messageld
Messageld Attachld
<message data> <attachment data>

FIG. 5B

Page 8 of 57

U.S. Patent Apr. 20, 2004 Sheet 8 of 33 US 6,725,228 B1

Email Orbanizer

60\ /68 64\ GSK 66\
[\ \

File Edit View I Tools Help
Hot I——f-_l Status | To | Name \\ [Subject \ \ [Date

61 N e \\
Active Mail (14) -ttt

To Do (4) T

Unread (18)

— Today (12)

Yesterday (6)

This Week From: \

Elizabeth Green (2) | goect

Bob Baxter (1)

Forrester Research

61A —

PDA <saved search>

WUl <keyword>
X45 Study <keyword>

6C —\—HotJ Status |Corresppndentl Bulk Mail l Keyword I Dqte | Attachmentl | Search | User
15\ msgs of 100

_ o 628 - 62— 67 J

62

FIG. 6

Page 9 of 57

U.S. Patent Apr. 20, 2004 Sheet 9 of 33

76ﬂ\

US 6,725,228 B1

THIRD LAYER - Correspondence and Bulk Mail Organization

Separate Correspondence from Bulk Mail
Automatic organization of Correspondence
Bulk Mail organization by sender or recipient
Manage Correspondent and Bulk Mail folders

741

SECOND LAYER - Applications of Lightweight Message Shortcuts

Automatic organization by Status

Automatic organization by Date

Automatic organization by Attachment

Automatic organization by user assigned Keyword
Improved manual organization in user created folders
Improved filtering mechanisms

Improved handling of search results

72“\

BASE LAYER - Base Services

Catalog database

Unified view of multiple Message Stores
Catalog Server Requests and Events
Lightweight message shortcuts

Timed Shortcuts

User created Shortcuts

User excluded Shortcuts

Incremental read of Folder contents

FIG. 7

Page 10 of 57

U.S. Patent

AlternateKeyl
= ParentFolderld

AlternateKey?2

= ParentFolderld

+ FolderName
(uppercase)

AlternateKey3
= IsHot

Page 11 of 57

Apr. 20, 2004

Sheet 10 of 33

US 6,725,228 B1

Folder [56 57
Shortcut
Folderld [—
Messageld
ParentFolderld Attachld AlternateKey1
FolderName Folderld = Folderld
gﬁﬂvpe SortKey + SortKey
i < SortColumn
Eolgerg::teg'r‘; SortDirection AlternateKey2
oldersortL.olumn TriggerAction = TriggerDateTime
ag
FolderSortDirection . ;
TriggerDateTime
ShortcutCount IsUnread
UnreadCount IsCorres
CorrespShortcutCount IsUserSh%rtcut
UnreadCorrespCount
[52
MessageSummary _l
Messageld AttachSummary/ 33
FolderExcludeList Messageld
IsUnread Attachld
IsCorresp N AttachType
MgssageDateTlme AttachName
Dlsp_layNameS AttachSize
Subject

U.S. Patent

24W

Message Store Server

Apr. 20, 2004

ZQ-W

Catalog Server

Sheet 11 of 33

27-1

Message Client

Incoming Events

e MessageAdded———p
e&———MessageChanged——p
e————MessageDeleted——p»

Outgoing Reguests

4——ReadMessage———¢

Incoming Requests

4———AddFolder—— e
4——ChangeFoldler—————e
44— DeleteFolder—— e
4——ReadFolder———— e
-¢——ReadFolderSubtree———e
4———ReadHotFolders———e
.4——ReadFolderContents——e
L 4——ChangeFolderSortKey——e
4———AddShortcut————e
4——DeleteShortcut——e®
-4—DeleteFolderShortcuts——e
l4—ReadMessageSummary——e
- 4——ReadAttachSummary——e

Qutgoing Events

FolderAdded———»
FolderChanged ———»
FolderHotChanged——p
FolderDeleted———»
ShortcutAdded———»
ShortcutDeleted———»
ShortcutSortkeyChanged—»
SummaryChanged——»

Page 12 of 57

FIG. 9

US 6,725,228 B1

U.S. Patent Apr. 20, 2004 Sheet 12 of 33 US 6,725,228 B1

e ShortcutEntry
100 1 ShortcutAction
Memory structures < ShortcutArray Excluded
- OldShortcut
L r I \ | | Shortcut
100A [AttachSummary]
FIG. 10A

Input Parameters
= MessageSummary Start

102 | Read all Shortcuts for Message. Save each Shortcut as an OldShortcut
object in ShortcutArray with ShortcutAction of saDelete.

V

103 | Execute Second Layer 2 Automatic Organization Rules
(which use "AddChangeShortcut" to create Shortcuts)

!

104 —| Execute Second Layer Filter Rules
(which use "AddChangeShortcut” to create Shortcuts)

!

105 —_| Execute Third Layer Correspondent and Bulk Mail Rules
(which use "AddChangeShortcut" to create Shortcuts)

!

106 —_| For each element in FolderExcludeList, do "ValidateFolderListElement".
If valid element, set Excluded flag in matching ShortcutEntry to True.

!

107 Process each ShortcutEntry as shown in FIG. 11A.

FIG. 10B

Page 13 of 57

U.S. Patent Apr. 20, 2004 Sheet 13 of 33 US 6,725,228 B1

AddChangeShortcut
Input Parameters
z Z'giﬂ?gld Search ShortcutArray for | — 108
+ FolderId matching Shortcut or
+ TriggerAction Start OldShortcut (using
+ TriggerDateTime Messageld + Attachld +
99 FolderId as search key)
+ IsUserShortcut

Add ShortcutEntry to |/ 108A
ShortcutArray. Set («—Yes

ShortcutAction to saAdd.
108C No
Y - 1088
Build Shortcut object in ShortcutEntry, Set ShortcutAction

%

using info from Input Parameters.

to saKeep.

FIG. 10C
ValidateFolderListElemen
t
Read Folder from Catalog
Start database

A
If FolderDateTime in element

doesn't match value in
Folder, delete element from

FolderExcludelList

FIG. 10D

Page 14 of 57

U.S. Patent Apr. 20, 2004 Sheet 14 of 33 US 6,725,228 B1

110 ﬂ
Input Parameters
Start = ShortcutEntry
o 111
Read Folder from Catalog
database
DeleteShortcut — 114
Shortcut - With OldShortcut, do
saAdd Action? "DecrementFolderCounts"
(FIG. 11B)
« Delete Shortcut from
> Catalog database
Excluded? . (ESenerate ShortcutDeleted
vent
» Do "UpdateFolder" (FIG.
Yes 11B)
No
No ~ 113 | UpdateShortcut
« Do "BuildShortcut" (FIG. 11B)
» If Shortcut is same as OldShortcut, then
Exit
« With OldShortcut, do
Ad " 112 "DecrementFolderCounts" (FIG. 11B)
. t" (FIG. [
S + With Shortcut, do "IncrementFolderCounts”
11B) (FIG. 11B)
* With Shortcut, : .
" ith Shortcut, do " + Update Shortcut in Catalog database
IncrementFolderCounts
(FIG. 11B) « If the SortKey has changed, generate a
' ShortcutSortKeyChanged Event
» Add Shortcut to Catal "
atabase 9 . Do "UpdateFolder" (FIG. 11B)
« Generate ShortcutAdded
Event
» Do "UpdateFolder" (FIG. v 115
18] | , ,
> Set ShortcutTimer as shown in FIG. 13 —

FIG. 11A

Page 15 of 57

U.S. Patent Apr. 20, 2004 Sheet 15 of 33 US 6,725,228 B1

BuildShortcut

Finish building the Shortcut object in ShortcutEntry:

-- Build SortKey is shown in FIG. 12

-- Set SortKey and SortColumn (from Folder)

-- Set IsUnread and IsCorresp (from MessageSummary)

IncrementFolderCounts

+ Increment ShortcutCount

» If Shortcut.IsUnread, increment UnreadCount

» If Shortcut.IsCorresp, increment CorrespShortcutCount

» If Shortcut.IsCorresp AND IsUnread, increment UnreadCorrespCount

DecrementFolderCounts

» Decrement ShortcutCount

« If Shortcut.IsUnread, decrement UnreadCount

» If Shortcut.IsCorresp, decrement CorrespShortcutCount

» If Shortcut.IsCorresp AND IsUnread, decrement UnreadCorrespCount

UpdateFolder

» Update Folder in Catalog database
* Generate FolderChanged Event

FIG. 11B

Page 16 of 57

U.S. Patent

Apr. 20, 2004

Sheet 16 of 33

US 6,725,228 B1

Length Field

SortDirection
IsUnread
IsUserShortcut

Notes

Unicode Character Weights of
first 3 characters of string.

Values of first 6 characters of
string.

YY = Year - 1950

YY = Year - 1950

YY = Year - 1950

Bits are numbered with O being
the least significant and 31 the
most significant.

SHORTCUT STRUCTURE FLAGS ENCODING
Byte
Offset Length Field Bit
0 4 Messageld 0 1
4 2 Attachld 1 1
6 4 FolderId 2 1
10 6 SortKey
16 1 SortColumn
17 1 TriggerAction
18 4 TriggerDateTime
22 1 Flags
23 1 IsCorresp
FIELD TYPE SORT KEY FORMAT
ucwi ucw2 ucw3
UnicodeString | | |
o C1 Q2 c Cc4 C5 C6
AnsiString
. YY MM DD hh mm| ss
DateTime
Enumeration OR Value YY MM DD hh
Boolean
(sdDescending) |
Egg:“e;am" OR Value 255 | 255| 255 255
ean -YY | -MM| -DD| -hh
(sdAscending) |
Bits
Integer32 OR 31-24 23-16| 15-8| 7-0 | Not Used
Integerl6 | |
FIG. 12

Page 17 of 57

U.S. Patent

Apr. 20, 2004 Sheet 17 of 33 US 6,725,228 B1
130 W
| — 132
Startup Initialize ShortcutTimer
Processing to inactive state
y
Read first Shortcut |~ 133
from Catalog database |
using AlternateKey2
No
135 | — 134 Y

AddChange
Shortcut

137

Shortcut
Timer

If TriggerDateTime is non-zero and is
less than ShortcutTimer, reset
ShortcutTimer to TriggerDateTime

Read Shortcut from Catalog database
If TriggerAction is taDeleteShortcut then

generate an internal DeleteShortcut Request.

| — 138

Page 18 of 57

FIG. 13

U.S. Patent Apr. 20, 2004 Sheet 18 of 33 US 6,725,228 B1

140
N\

sdDescending

Request Parameters

= FolderId No, 143 sdAscending — 143A [1438
+ SortKey

+ SortDirection Ugi;ztie&dsaer;d Position at first Position at last

+ RequestCount position o)|’1 Shortcut Shortcut in Folder Shortcut in Folder

+ CorrespOnly AlternateKeyl using AlternateKeyl using AlternateKey1

w

Read Next/Prev Shortcut in Folder T
(depending on SortDirection)

-

— 145A
145
Set ISEOF to Yes End of
True Folder?

Is (CorrespOnly = True)

AND (IsCorresp = False) ? Is (ContentCount >=

RequestCount) AND
(Current SortKey NOT =
Previous SortKey)?

Yes

Y

Sort ContentArray in | S/~ 149 147
memory, using values]
from MessageSummary BuildReply \ [~ 148
and AttachSummary + Read related MessageSummary from Catalog
database
« If AttachId is non-zero, read related
“ AttachSummary from Catalog database
« Add MessageSummary and AttachSummary (or
Reply Parameters NULL) to ContentArray
= ResultCode + Increment ContentCount
+ SortKey + Set SortKey in Reply from the current Shortcut
+ ISEOF SortKey

+ ContentCount
+ ContentArray
= Array of [MessageSummary + (AttachSummary OR NULL)]

FIG. 14

Page 19 of 57

U.S. Patent

Apr.20,2004 Sheet 19 of 33

US 6,725,228 B1

150 j
Start Read Folder from Catalog | — 152
database
Request Parameters *
= Folderld o
+ FolderSortColumn P05|t_|on at first Shortcut | 154
+ FolderSortDireti in Folder using
oldersortDirection AlternateKey1
L — 155
> Read next Shortcut in Folder <
156
End of
Yes Folder?
The underlying data type
No for the FolderSortColumn No
157
Enumeration ' 5
OR Boolean Data Type:
Need to build SortKey if
FolderSortColumn Need to build
NOT = SortColumn SortKey if
OR FolderSortDirection FolderSortColumn
NOT = SortDirection NOT = SortColumn
158A 158
Yes—r—Yes
» If FolderSortColumn is a column in the MessageSummary, read | — 159
the MessageSummary from the Catalog database
« If FolderSortColumn is a column in the AttachSummary, read the
AttachSummary from the Catalog database
« Build the SortKey
+ Update Shortcut in Catalog database
160
» Set FolderSortColumn -
®——> + Set FolderSortDirection
» Update Folder in Catalog database

Page 20 of 57

FIG. 15

U.S. Patent Apr. 20, 2004 Sheet 20 of 33 US 6,725,228 B1

Contains all tables and fields of Base Layer, plus the following:

Folder [_ 56 Shortcut [_ 57
<

SearchCriteria

MessageSummary [_ 52

Direction
SendState AttachSummary/ 53
IsDeleted
IsActive N
IsKept
IsTagged
IsToDo
KeywordList

FIG. 16

Page 21 of 57

U.S. Patent Apr. 20, 2004 Sheet 21 of 33 US 6,725,228 B1

Root

|--- Status

| |--- Active Mail
|--- Deleted
|--- Drafts
|--- Kept
|--- Received
|--- Sent
|--- Tagged
|--- To Do
|--- Unread
|--- Waiting Send

--- Date
|--- Today
|--- Yesterday
|--- This Week
|--- Last Week
|--- * Automatically created Month folders
-- Attachment
|- All Attachments
|--- * Automatically created AttachmentType folders

--- Keyword

I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
| |--- * Automatically created Keyword folders

- Search Results
|--- * Search Results folders

--- User Folders
|--- * User created folders

FIG. 17

Page 22 of 57

U.S. Patent Apr. 20, 2004 Sheet 22 of 33 US 6,725,228 B1

Contains all tables and fields of Base Layer and Second Layer, plus the following:

Folder [~ 58 Shortcut [~ >/
<&
<

IsPendingCorresp

58 |
Address /[5 63
AddressId / MessageSummary / P AttachSummary/
FolderId : <
AddressString AddressList
AddressType
IsPendingCorresp

AlternateKey1
= AddressString
(uppercase)

AlternateKey2
= Folderld

FIG. 18

Page 23 of 57

U.S. Patent Apr. 20, 2004 Sheet 23 of 33 US 6,725,228 B1

Contains all Folders in Base Layer and Second Layer, plus the following:

<Root>
|--- Correspondents
| |-—Me
| |--- * Automatically created Correspondent folders
| |--- * User created Correspondent folders
|
|--- Bulk Mail
| |--- Unsorted
| |--- * User created Bulk Mail folders

FIG. 19

Page 24 of 57

U.S. Patent Apr. 20, 2004 Sheet 24 of 33 US 6,725,228 B1

Includes all Requests and Events in Base Layer and Second Layer, plus the following:

24 29 27
Message Store Server Catalog Server Message Client

Incoming Requests

4—AddMyAddress——— e
l4——ReadFolderAddresses——e
-4——MoveAddress———— e
-4—ProcessAddressQueue——e

FIG. 20

Page 25 of 57

U.S. Patent Apr. 20, 2004 Sheet 25 of 33 US 6,725,228 B1

AddressEntry
o ddressRol

AddressArray /~ — AddressRole

AddressString
l | | | l AddressName
AddressId
FolderId
AddressType

IsPendingCorresp

IsConfirmedCorresp
CreateShortcut

FIG. 21A

StateCounters

1
OriginCount |- ————— —Jl Increment IF (AddressRole = (arSender OR arFrom)) I
ToCount [_ == momm oo oo —————— e — 1

e —
—_ -

ShortcutCount | = e -

FIG. 21B

Page 26 of 57

U.S. Patent

219

StateFlags /,J

IsFfromMe !

IsToMe

IsBulkMail

IsFromKnownCorresp

IsToKnownCorresp

Page 27 of 57

Apr.20,2004 Sheet 26 of 33 US 6,725,228 B1

Phase 1 Processing

| Set to True !
i IF (Direction = drSend) I
,/1 AND (AddressType = atMyAddress) |
I

// I AND (AddressRole = arFrom)

T |

// _____________________________

/ | Set to True |
, | IF (Direction = drReceive) |
_-~1 AND(AddressType = atMyAddress) f

P : AND (AddressRole = arTo OR arCc OR arBcc) J‘
-~ r— - —_ s s T hl
=~ _ISetto True |

. : IF (AddressType = atBulkAddress) _Jl

~ [
S| Set to True
\ v IF (AddressType = atCorrespAddress)
\ I AND (AddressRole = (arSender OR arFrom))

[

\\ | Set to True |
N IF (AddressType = atCorrespAddress) :

! AND (AddressRole = (arTo or arCc or arBcc)) |

e e e e e e — — ——— . —— — . —— . —— i ——— o ——

FIG. 21C

U.S. Patent

220 W

Apr. 20, 2004

Sheet 27 of 33 US 6,725,228 B1

SendState?

ssUnsent

¥

221

Input Parameters
= MessageSummary

[~ 223

NOT ssUnsent—as1 Initialize memory structures

¥ 224

Get next element in

— 222

<

Set MessageSummary
IsCorresp to True

MessageSummary's AddressList

225

End

Yes To Phase 2

— 226

Initialize AddressEntry and add to
AddressArray

!

Increment StateCounters

!

Read Address from Catalog
database

No

— 227

— 228

229
Address No

Found?

— 230

Add Address information to
AddressEntry

'

Set StateFlags

— 231

Page 28 of 57

FIG. 22

U.S. Patent

Apr. 20, 2004

Sheet 28 of 33

US 6,725,228 B1

From Phase 1

Get next AddressEntry in

= 236

¥

AddressArray

Yes

Apply Corresp/Bulk Mail Rules to
AddressEntry as shown in FIG. 24

(2307 240

238

Do "AddAddressFolder"
as shown in FIG. 25A

IF (Addressid = 0

le—Yes

'S 241A

Do

"UpgradePendingCorresp’

as shown in FIG. 25B.

IF (IsPendingCorresp)
AND (IsConfirmedCorresp)

Non-zero——»

» Do "AddChangeShortcut" as
shown in FIG. 10B.

— 242

* Increment ShortcutCount

— 243A

Add Shortcut to Unsorted Folder
Set IsBulkMail to True

Set MessageSummary IsCorresp
to NOT IsBulkMail

Page 29 of 57

FIG. 23

U.S. Patent Apr. 20, 2004 Sheet 29 of 33 US 6,725,228 B1

[IF (IsBulkMail) I
| AND (AddressType = atBulkAddress) ~~ o

{IF (IsBulkMail) AND (IsToMe) !
I AND (IsFromKnownCorresp) |
:AND (Direction = drReceive) (.
| AND (AddressType = atCorrespAddress) :

I

| AND (AddressRole = (arSender OR arFrom))

] IF (IsBulkMail) AND (IsFromMe) |
: AND (IsToKnownCorresp) :
| AND (Direction = drSend) i~
1 AND (AddressType = atCorrespAddress) |
' AND (AddressRole = (arTo OR arCc OR arBec))_:

,IF (Direction = drSend)

(FIG. 24B)
IAND (AddressType = atMyAddress))

'IF (Direction = drsend) |
| AND (AddressType = atNoAddress) |
1 AND (OriginCount = 1) |

| AND (AddressRole = arFrom) '

(FIG. 24B)

|IF (Direction = drSend) ! _
JAND (ToCount = 1) -7
|AND (AddressRole = arTo) I

(FIG. 24B)

3
(2]

bdd

:’ IF (Direction = drSend) L
: AND (AddressRole = (arTo OR arCc OR arBec)) !

(FIG. 24B)

=<
1]
w

[IF (Direction = drReceive) AND (IsToMe) |
: AND (AddressType = atMyAddress) T~

(FIG. 24B)

=<
4]
7]

IIF (Direction = drReceive) AND (IsToMe) |

: AND (AddressRole = (arSender OR arFrom)) >«
(FIG. 24B)
l IF (Direction = drReceive)} I
'AND (NOT IsToMe) '
! | AND (IsFromKnownCorresp) ~
{ AND (AddressType = atCorrespAddress) | ~~
l AND (AddressRole = (arSender OR arFrom)) _:

(FIG. 24B)

<
4]

bddd

Page 30 of 57

U.S. Patent

Apr. 20, 2004

Sheet 30 of 33

.

[Bulk Mail Shortcut]

™ Set CreateShortcut to True.

US 6,725,228 B1

© ¢

[Confirmed Corresp Shortcut]

Set IsConfirmedCorresp to True.

Set CreateShortcut to True.

©,

[Pending Corresp Shortcut]
Set IsPendingCorresp to True.
Set Create Shortcut to True.

(End

®

Page 31 of 57

["Me" Shortcut]
Set CreateShortcut to True.
Set FolderId to "Me" folder.

FIG. 24B

U.S. Patent Apr. 20, 2004 Sheet 31 of 33 US 6,725,228 B1

« Build Folder as follows:
-- Set FolderName from AddressName, or from
AddressString if AddressName is empty.
-- Set FolderType to ftCorresp
-- Set IsPendingCorresp from AddressEntry
Yes—1¢ Try to add Folder to Catalog database
+ If FolderName already exists, generate a unique
FolderName and then add Folder to Catalog
database
» Save Folderld to AddressEntry
Read Folder from « Generate FolderAdded Event

Catalog database |

Y

Build Address from AddressEntry

Set AddressType based on FolderType
ftMe --> atMyAddress
ftCorresp --> atCorresp
ftBulkMail --> atBulkMail

Add Address to Catalog database

AddAddressFolder

Input Parameters
= AddressEntry

Yy

FIG. 25A

UpgradePendingCorresp

Read Folder from Catalog database
Set IsPendingCorresp to False

Do "UpdateFolder" as shown in FIG.1D.
Read Address from Catalog database

Set isPendingCorresp to False
Update Address in Catalog database

Start

Input Parameters
= AddressEntry

FIG. 25B

Page 32 of 57

U.S. Patent Apr. 20, 2004 Sheet 32 of 33 US 6,725,228 B1

260
B

TargetFolderld =

Input Parameters Folderld of "Unsorted™?

= AddressString
+ TargetFolderld

262

Delete Address
Yes—»| from Catalog End
database ry

267
[~ 263 -

. | Add AddressString
"] to AddressQueue

Unsorted"?

Read Address from
Catalog database using
AlternateKey1

264 (— 265

Address
Found?

Create Address in Catalog
database

No—»]

¢ Set FolderId in Address to TargetFolderld
» Read TargetFolder from Catalog database
» Set AddressType based on TargetFolder's
Yes FolderType
! ftMe --> atMyAddress

ftCorresp > atCorresp

ftBulkMail --> atBulkMail
« Set IsPendingCorresp in Address from

TargetFolder

« Update Address in Catalog database

FIG. 26

Page 33 of 57

U.S. Patent

270 W

Apr. 20, 2004

Sheet 33 of 33 US 6,725,228 B1

Yes

— 271A

Position to first MessageSummary
in Catalog database

Get next MessageSummary in
Catalog database

Does any AddressString in
the AddressQueue match
an AddressString in the

Page 34 of 57

MessageSummary
AddressList?
Empty
AddressQueue
e Process Shortcuts as shown in FIG. 10B
* Update MessageSummary in Catalog ||
A database if IsCorresp has changed
End

US 6,725,228 B1

1

SYSTEM FOR MANAGING AND
ORGANIZING STORED ELECTRONIC
MESSAGES

FIELD OF THE INVENTION

This invention relates to electronic messaging systems
and, in particular relates to systems for managing and
organizing electronic messages. Messages may be e-mail
messages, voice mail messages, digitized faxes or the like.
Specific aspects of the invention provide computer-
implemented methods for managing and organizing elec-
tronic messages, computer systems for managing and orga-
nizing electronic messages, and computer-readable media
containing computer instructions which, when executed by
the computer cause the computer to perform a method
according to the invention.

BACKGROUND OF THE INVENTION

Electronic messaging, which includes electronic mail (or
“e-mail”’) messaging, is now an accepted, and some would
say vital, medium for business and personal communica-
tions. The rapid growth of electronic messaging is expected
to continue. This growth brings an increasingly serious
problem of how to manage the volume of messages. Accord-
ing to a 1998 Pitney Bowes survey, 71% of respondents said
they felt overwhelmed by the number of messages they
receive. This problem is becoming more severe. John
Dvorak, a frequent writer on the topic of computing states in
PC Computing magazine that “ . . . we have poor tools to sort
and organize (or even find) the e-mail we collect”.

Electronic messages, which may include attachments of
diverse kinds, are sent and received through the use of
messaging software. For example, e-mail messages are sent
and received by e-mail software such as Microsoft’s OUT-
LOOK™ or Netscape’s COMMUNICATOR™. Other
widely used types of electronic messaging are voice mail,
fax and instant messaging. The vast majority of current
messaging software is based on design principles that origi-
nated when message volumes were low. Current e-mail
software, for example, provides rudimentary features for
organizing e-mail messages (both incoming and outgoing)
into various folders. The most basic model saves received
messages in an Inbox folder, messages waiting delivery in an
Outbox folder, and sent messages in a Sent Messages folder.
Users can create additional user folders to which they can
move or copy messages. Refinements to this basic model
include providing additional system folders such as Drafts
and Wastebasket folders. In general, the user is responsible
for moving e-mail messages between folders and for man-
aging the messages once they have been placed into a folder.
This can be an onerous responsibility, especially in cases
where the user receives large volumes of e-mail messages as
may easily occur, for example, if the user subscribes to one
or more high volume mailing lists.

A fundamental weakness of this folder/message model is
that a message can only exist in a single folder at a time.
While a user can place copies of e-mail messages into
multiple folders the user must manage the copies separately.
If the user wishes to see a message in multiple folders, then
he or she must make multiple copies of the message, which
results in using additional storage space and in creating more
messages that need to be managed. This model also requires
that the user manually organize each message. This can lead
to cluttered folders and a general lack of organization in the
stored e-mail messages that a user accumulates over time.

Page 35 of 57

10

15

20

25

30

35

40

45

50

55

60

65

2

Further, once an e-mail message has been received it can
be difficult to find the message later, especially if there are
many folders into which the message could have been
placed. This is frustrating and inefficient for the user.

Some current electronic mail software is capable of
filtering incoming e-mail messages by applying a series of
rules. The filtering rules may be automatically executed each
time a message is sent or received. The current version of
Microsoft Outlook has a facility which allows users to create
such rules, for example. U.S. Pat. No. 6,057,841, Thurlow et
al., describes a system for applying a set of electronic
message processing rules for managing incoming and out-
going electronic messages. U.S. Pat. No. 5,377,354, Scan-
nell et al., also describes a rules-based filtering mechanism.

Rules can execute specific tasks when user-defined crite-
ria are met. Rules can be used to process electronic messages
without requiring users to spent a lot of time sorting through
their inboxes deleting, filing, and responding to their mes-
sages. While filter rules are powerful, they are also difficult
to use because they are typically implemented as a series of
instructions against which each message is evaluated. If the
number of rules exceeds a relatively small number the
overall rule set becomes very difficult to understand.
Another disadvantage is that rules must be created manually
and can involve a significant amount of effort if a user wants
to organize their messages in a thorough manner, such as by
correspondent. A further disadvantage is that e-mail systems
which apply filtering rules are typically restricted by the
folder/message model and cannot organize a message into
multiple folders without creating multiple copies of the
message. As a result of the foregoing disadvantages many
users do not bother to set up such rules. Even when the rules
have been set up they act only when a message is sent or
received. Such rules are incapable of managing messages
after they have been received or sent.

Other features which software vendors have provided in
an attempt to help users organize their messages are key-
words (also referred to as “categories™), tags (also referred
to as “flags”), searching tools, and links to other objects such
as task lists. While these features improve the manageability
of e-mail they are less powerful than filtering rules and have
proven inadequate for dealing with higher message volumes.

Keywords and tags let a user highlight and identify
messages to distinguish them from other stored messages. A
major drawback to these mechanisms is that the highlighted
messages are visible only in the folder to which the message
belongs. The value of these mechanisms is significantly
reduced because there is no fast and convenient way to
locate all tagged messages or all messages that have been
assigned a given keyword.

Searching is an important tool in dealing with large
message volumes. Traditional sequential search techniques
are usually too time-consuming to make them very useful
for larger message stores. As a result, there have been recent
efforts to provide systems which implement full-text index-
ing and retrieval capabilities for message stores. While
searching is an important technique for finding previously
sent or received messages, it is not particularly useful or
efficient for dealing with messages as they are received and
then handled by the user. A search must be performed each
time a user wishes to access messages which match a
particular set of search criteria. The user is generally forced
to manually enter the search criteria. Once a search has been
run the results of the search may be placed into a separate
“search results” folder (in addition to the folder in which the
original message resides). Search results folders are not

US 6,725,228 B1

3

generally useful for organizing electronic messages because
of their limited capabilities. Such folders cannot form the
basis for a more general purpose solution for organizing
messages into multiple folders. For example the Microsoft
Platform SDK describes some limitations of MAPI search
results folders as follows:

The only way that the contents of a search-results folder
can be modified is through the IMAPIContainer::Set-
SearchCriteria call;

Messages cannot be moved or copied into or out of
search-results folders; and,

Search-results folders cannot contain subfolders.

Some software packages allow objects to be linked to
gone another. For example, Microsoft Outlook 2000 has a
task list. A user can add a shortcut to an electronic message
to a task. Outlook 2000 does not provide any facilities to act
on the message to which the shortcut refers. The Outlook
2000 task list is not flexible enough for use in the effective
organization of electronic messages.

A number of attempts have been made to overcome
problems associated with the current folder/message model.
These include U.S. Pat. No. 5,948,058, Kudoh et al., which
describes a method for cataloging a message into multiple
categories. An array of bitmaps in the message is used to
identify the categories to which a message belongs. This is
a very simple implementation that would have serious
performance problems when searching for all messages that
belong to a category—all messages in the message store
would need to be examined.

U.S. Pat. No. 6,029,164, Birrell et al., describes a method
for adding labels to messages which are then indexed by a
full-text index and retrieval engine. An advantage of the
Birrell et al. system over the system of Kudoh et al. is that
it provides a rapid global search capability for finding
messages with the desired label, and provides the ability for
the user to add, modify or delete labels. Some disadvantages
of the Birrell et al. system are that messages are processed
in batches (for performance reasons) so the index is not
always current. Further, a user must execute a search to find
messages associated with the desired label.

Miller et al, PCT patent publication No. W099/04344
disclose an e-mail system in which messages can be
accessed in a correspondent-centric manner. The Miller et al.
system uses a relational database to organize messages. The
underlaying database structure is conventional in design and
has a Correspondent table, a Message table and a Message-
Correspondent Relationship table. While Miller et al. do
provide a system which addresses some of the problems
addressed above, Miller et al. do not provide a general
solution to the problem of organizing a store of electronic
messages. Some shortcomings of the Miller et al. system are
as follows:

a separate set of tables is required for each field by which
messages are to be organized. The system disclosed by
Miller et al. only permits messages to be organized by
topic and correspondent;

messages are organized by e-mail address—no support is
provided for grouping messages by correspondent
where the correspondent has multiple e-mail addresses;

the list of correspondents can become cluttered with
persons with whom no real correspondence is con-
ducted. For example, a large number of correspondent
entries would be created if the user accidentally per-
forms a “Reply All” operation on a message that has a
large distribution list of unknown correspondents.

bulk mail is processed in an identical manner to person-
ally addressed mail.

Page 36 of 57

10

15

20

25

30

40

45

55

60

65

4

messages can be read from the database only in ascending
Messageld sequence.

There exist computerized systems for organizing data files
of various kinds. However, these systems are, in general, not
well adapted for use in organizing electronic messages.
Some examples of file management systems are described in
U.S. Pat. No. 5,544,360, Lewak et al.; U.S. Pat. No. 5,899,
995, Millier et al.; and, U.S. Pat. No. 6,009,442 Chen et al.

There is a need for systems and methods which can
automatically organize stored electronic messages, such as
e-mail messages, instant messages, voice messages and fax
messages. There is a particular need for such systems and
methods which include tools for automatically managing
stored messages. Any such system must be fast. Users are
generally unwilling to wait for a messaging system to
generate a list of electronic messages in a particular folder.
There is particular need for systems which allow a user to
quickly locate a message or group of messages of interest
especially given the ever increasing load of messages that
many users have to deal with. Ideally such systems should
help users to separate important messages from less impor-
tant messages and to manage the flow of messages.

SUMMARY OF THE INVENTION

This invention provides a computer-based system for
cataloging, retrieving and manipulating electronic messages
saved in a message store. Preferred embodiments of the
system may be used to automatically organize each of a
large number of saved message into multiple folders based
on the contents and attributes of the message as well as to
facilitate the manual organization of messages. Apparatus
according to the invention provides a relational database
which uses lightweight message shortcuts to make indi-
vidual messages available in multiple folders simulta-
neously. The invention can advantageously be integrated
with messaging client software and/or messaging server
software, such as e-mail software, to facilitate the organi-
zation of electronic messages.

One aspect of the invention provides a method for orga-
nizing electronic messages comprising: providing an elec-
tronic message, the electronic message comprising a plural-
ity of properties; and, generating a plurality of shortcuts to
the electronic message, each of the shortcuts comprising a
record in a database, each record comprising a Folderld
value associating the shortcut with a different one of a
plurality of folders and a Messageld value associating the
shortcut with the message.

Further features and advantages of the invention are
described below.

BRIEF DESCRIPTION OF THE DRAWINGS

In drawings which illustrate non-limiting embodiments of
the invention,

FIG. 1A is a schematic view of an example computer
network which includes a user computer on which electronic
messages are received and stored;

FIG. 1B is a schematic overview of a system for orga-
nizing messages according to the invention;

FIG. 2 is a diagram that shows schematically the logical
software, storage and user interface components in appara-
tus according to a currently preferred embodiment of the
invention;

FIG. 3 is an example of how a specific e-mail message
may be organized into multiple folders in a system according
to the invention;

US 6,725,228 B1

5

FIGS. 4A, 4B and 4C are diagrams showing three pos-
sible physical configurations for systems according to the
invention;

FIG. 5A is an entity-relationship diagram which illustrates
a catalog and a message store implemented as separate
databases;

FIG. 5B is an entity-relationship diagram which illustrates
a catalog and a message store implemented in a single
combined database;

FIG. 6 is an example of a screen display for a user
interface that shows folders and messages in multiple views;

FIG. 7 schematically illustrates three functional layers of
a preferred embodiment of the invention;

FIG. 8 is an entity-relationship diagram of a catalog
database, showing elements capable of supporting a base
layer of functionality according to the invention;

FIG. 9 is a diagram illustrating requests and events
generated or handled by a catalog server in providing the
base layer of functionality in a preferred embodiment of the
invention;

FIGS. 10A through 10D show how all shortcuts for a
message can be added, changed or deleted in response to a
MessageAdded or a MessageChanged event from the mes-
sage store server, and show memory structures used in this
processing;

FIGS. 11A and 11B together provide a flowchart that
shows how an individual shortcut can be added, changed or
deleted in a catalog database;

FIG. 12 discloses the structure of a shortcut, including
details of the structure of the SortKey;

FIG. 13 is a flowchart that shows processing in a method
that can be used to handle timed shortcuts;

FIG. 14 is a flowchart that shows a method that can be
used for incrementally reading shortcuts for display to a
user;

FIG. 15 is a flowchart that shows a method that can be
used to change the SortKey for a folder and for all the
shortcuts in the folder;

FIG. 16 is an entity-relationship diagram of the catalog
database of FIG. 8, showing additional elements that can be
used to support a second layer of functionality;

FIG. 17 depicts a possible folder-tree structure, showing
folders which can be used in providing the second layer of
functionality;

FIG. 18 is an entity-relationship diagram of the catalog
database of FIGS. 8 and 16, showing additional elements
that can be used to support a third layer of functionality;

FIG. 19 depicts a possible folder-tree structure, showing
additional folders that may be used in providing the third
layer of functionality;

FIG. 20 is a diagram of catalog server requests and events,
showing incoming requests which can be provided to sup-
port third layer functions;

FIGS. 21A, 21B and 21C show memory structures which
can be used for correspondent and bulk mail organization;

FIG. 22 is a flowchart that shows the first phase of
correspondent and bulk mail organization;

FIG. 23 is a flowchart that shows the second phase of
correspondent and bulk mail organization;

FIGS. 24A and 24B together provide a flowchart that
shows rules that are applied to each AddressEntry by the
second phase of correspondent and bulk mail organization;

FIGS. 25A and 25B are flowcharts that show how
addresses and folders can be added or updated during the
second phase of correspondent and bulk mail organization.

Page 37 of 57

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 26 is a flowchart that shows MoveAddress request
processing; and,

FIG. 27 is a flowchart that shows ProcessAddressQueue
request processing.

LIST OF REFERENCE NUMERALS

1 data store
12 server computer
13 processor
14 network
15 user interface
16 user computer
17 interface device
18 user computer
19 shortcut
20 system
22 electronic message
23 message store
24 message store server
25 user interface device
26 message transport server
27 message client
28 catalog database
29 catalog server
32 envelope
33 transport header
34 status and organizational information
36 message contents
36A attachments
38 folder
40A, 40B, 40C system
50 storage object
51 StoreLink table
S1A Storeld
52A StoreMessageld
52B StoreLinkId foreign key
52,52 MessageSummary table
53,53 AttachSummary table
53A StoreAttachld foreign key
54, 54' Message table
55,55 Attach table
56 Folder table
57 Shortcut table
58 Address table
60 display
61 folder panel
61A representation of folders
62 tabbed dialog
62A date tab
62B correspondents tab
62C hot tab
64 messages panel
65 column header
66 message header display panel
67 message contents display panel
68 tool button
69 status bar
72 base layer
74 second layer
76 third layer
100 ShortcutArray
100A ShortcutEntry
101 method
102 read shortcuts
103 execute automatic organization rules
104 execute filter rules
105 execute correspondent and bulk mail rules
106 process FolderExcludeList
107 process Shortcut Entries
108 search ShortcutArray
108A create new ShortcutEntry
108B set ShortcutAction
108C build ShortcutEntry
110 process shortcut (method)
111 read folder
112 add shortcut
113 update shortcut

US 6,725,228 B1

7

-continued
114 delete shortcut
115 set shortcut timer
130 handle timed shortcuts (method)
132 initialize shortcut timer
133 read earliest TriggerDateTime
134 set shortcut timer
135 AddChangeShortcut event
137 shortcut timer event
138 perform TriggerAction
140 read folder contents (method)
142 determine if request is initial
142A check sort direction
143 set position
143A position at first shortcut in folder
143B position at last shortcut in folder
144 read shortcuts
145 determine if end of folder reached
146 determine if shortcut excluded from view
147 determine whether enough shortcuts read
148 add shortcut to data structure
149 sort
150 update SortKey (method)
152 read folder data
154 position to read shortcut
155 read shortcut
156 check for end of folder
157 determine sort column data type
158, 158A determine if new SortKey needed
159 write new SortKey
160 update folder data
217 AddressArray
218 StateCounters
219 StateFlags
220 build memory structures (method)
221 detect if message unsent
222 classify as correspondence
223 initialize data structure
224 retrieve AddressList elements
225 determine whether all elements retrieved
226 initialize AddressEntry
227 increment state counters
228 read address from catalog database 28
229 determine if address found
230 build AddressEntry
231 set state flags
235 process AddressArray (method)
236 get next element of AddressArray
237 determine if end of array reached
238 apply rules
239 determine if shortcut to be created
240 determine if address exists in catalog database 28
240A add address to catalog database 28
241 determine if status of correspondent should be

upgraded

241A upgrade correspondent status
242 add shortcut
243 determine if shortcuts created
243A add to unsorted folder
243B flag as correspondent message
260 move address (method)
261 determine if address to be moved to Unsorted folder
262 delete address
263 read address
264 determine if read successful
265 create address record
266 update address record
267 build AddressQueue
270 process AddressQueue (method)
271A position at first message summary
271B read next message summary
271C determine if all message summaries read
272 determine if message affected by address changes
273 process shortcuts
274 empty AddressQueue

DETAILED DESCRIPTION

This invention relates to the organization and manage-
ment of electronic messages. FIG. 1A shows a very simple

Page 38 of 57

10

15

20

25

30

35

40

45

50

55

60

65

8

computer network 14 which connects a server computer 12
and two user computers 16 and 18. The simple network of
FIG. 1A is an example of one context in which the invention
could be practised. Server computer 12 runs messaging
server software. In this example, the messaging server is an
e-mail server. However, this invention is not limited to
e-mail messaging. Those skilled in the art will appreciate
that the invention could be applied equally well to other
types of messages or to messaging in a mixed environment
handling different types of messages.

Each of user computers 16 and 18 run messaging client
software. Computers 16 and 18 can exchange electronic
mail messages by way of server 12 and network 14. For
example a user of computer 16 may use e-mail client
software to compose a message addressed to a user of
computer 18. When the message is complete the user
indicates to the e-mail client software that the message
should be sent, for example by activating a “send” icon.
Computer 16 then sends the message to server 12 on
network 14. Server 12 receives the message, parses the
address and forwards the message to computer 18. The
message is received at user computer 18 by e-mail client
software which places the message in an “Inbox” folder. The
user of computer 18 can then read the message, respond to
the message, delete the message, move the message to
another folder, and so on. Over time the user of computer 18
may receive a large number of electronic messages from the
user of computer 16 and others. By way of example, this
invention could be applied to help the user of computer 18
to organize, locate and manage such messages.

In general, this invention provides a system and methods
which may be practised on a computer for cataloging,
retrieving and/or manipulating electronic messages. The
invention can be applied to organizing any sort of electronic
messages which are to be temporarily or permanently stored.
The electronic messages may comprise, for example one or
more types of messages selected from the group consisting
of e-mail messages, voice mail messages, digitized facsimile
messages, and instant messages. The invention could also be
applied to any other present or future types of electronic
messages. Messages may have attachments. The attachment
may be any kind of attached object including things such as
images, sound media, video, executable files, word process-
ing files, web pages, scripts, or the like.

In preferred embodiments of the invention, a system
according to the invention handles incoming messages as
they are received. However, the invention could also be
applied to the organization of messages which already exist
in a message store such as an archive containing previously-
received e-mail messages. The invention does not rely on
any specific message format (such as RFC822 or MAPI) or
any specific messaging protocol (such as SMTP or X.400),
but can be readily adapted to the set of information made
available by any practical message format and protocol.

FIG. 1B shows a schematic overview of the invention. A
data store 11 accessible to a processor 13 contains a plurality
of messages A, B, C. Processor 13 executes instructions
which cause it to create one or more shortcuts 19 to each of
the messages in the data store 11. Data store 11 may
comprise a single physical device, may comprise a distrib-
uted data store spread over two or more physical devices.
Data store 11 may be a single logical device or may
comprise multiple logical devices. Each shortcut 19 is
associated with a folder. In FIG. 1B, horizontally aligned
shortcuts 19 are in the same folder. A user interface 15
equipped with a suitable input device 17 permits a user to
select a folder and to view and manipulate messages which

US 6,725,228 B1

9

have shortcuts in the selected folder. The shortcuts have
properties which permit large numbers of messages to be
effectively handled so that users do not experience unac-
ceptable delays in sorting contents of folders in various ways
or while waiting for the contents of a folder to be displayed
in interface 15.

FIG. 2 shows in more detail a preferred embodiment of a
system 20 according to the invention. System 20 comprises
several software components which operate in a computer
system. The computer system may comprise one or more
intercommunicating computers. For example, the computer
system may be user computer 18 of FIG. 1A. A collection of
electronic messages 22 is stored in one or more message
stores 23. Each message store 23 comprises a memory, file
or database structure that provides temporary or permanent
storage for the contained messages 22. A message store
server 24 manages the messages 22 in message store 23.
Among other tasks, message store server 24 receives
requests for messages 22 from other parts of system 20 and
locates and provides the requested messages 22. Message
store server 24 also notifies other software components of
changes to message store 23 by generating events.

Message transport server 26 is a software component that
sends and receives electronic messages over a communica-
tions network 14 using one or more communications and
messaging protocols. Message transport server 26 responds
to requests from other software components, and generates
events when message transport operations either complete
successfully or fail to complete.

System 20 includes a message client 27. Message client
27 provides a user interface, and receives user input from the
interface. The user interface is made available by a suitable
input device which typically includes a display and an input
device, such as a mouse, trackball, touch screen, keyboard,
voice recognition system, or the like. Message client 27
communicates user actions to server software components
24 and 26 by generating and forwarding suitable requests. In
turn, message client 27 receives events from server software
components that indicate changes that may need to be
reflected in the user interface.

All of the foregoing components of system 20 are well
known to persons skilled in the art of designing and imple-
menting electronic message-handling systems and, for this
reason, do not require further elaboration here. For example,
the book Inside MAPI by Irving De la Cruz and Les Thaler
(1999, Microsoft Press) contains detailed explanations as to
how to implement message stores, message store servers
(referred to as “message store providers”), message trans-
port servers (referred to as “message transport providers”),
message clients (referred to as “MAPI client applications”),
and how the related requests and events can be used to
coordinate the actions of these software components.

The present invention differs from the other systems
described above in various respects. One area of difference
is that this invention uses a catalog database 28 and prefer-
ably a catalog server 29, both as described below, to orga-
nize the contents of one or more message stores 23. Catalog
database 28 is a data store that contains the information
required to organize messages 22 in the associated message
stores 23 into a plurality of different folders. Catalog server
29 is a software component that:

implements the organizational algorithms of the inven-

tion;

makes outgoing requests to and responds to incoming

events from message store server 24;
responds to incoming requests from and generates out-
going events to message client 27.

Page 39 of 57

10

15

20

25

35

40

45

50

55

60

65

10

Catalog server 29 generates a reply corresponding to each
incoming request it receives from another software compo-
nent (a “requester”)

As illustrated in FIG. 3, the invention may be applied to
automatically associate an electronic message with each of
a large number of folders. The association may be made on
the basis of any one or more criteria such as date, message
status, correspondents, attachments and keywords. An
advantage of the invention is that such associations may be
made simultaneously on the basis of a wide range of criteria.

As shown in FIG. 3, an electronic message 22 typically
contains an “envelope” 32 which contains addressing
information, a transport header 33 which records how the
message was transported, status and organizational informa-
tion 34 that may be modified by the user, and message
contents 36 which may include a message subject, body and
zero or more attachments 36 A. The contents of each of these
elements may be made the basis for associating a particular
message with one or more folders 38. Due to the compli-
cations of working with multiple folders and managing
multiple copies of an electronic message it has generally
been the case that only a few folders are provided. In
preferred embodiments of this invention, however, a very
large number of folders may be provided and automatically
managed.

The components of the invention may be arranged in
various ways on one or more computers without departing
from the broad scope of the invention. FIGS. 4A, 4B and 4C
show three different example configurations. In a system
40A having the first configuration, catalog server 29 and
catalog database 28 are implemented on the same computer
18 as message client 27, message store 23 and message store
server 24.

In a system 40B having the second configuration, mes-
sage client 27 is implemented on a client computer 18, while
catalog server 29, catalog database 28, message store server
24 and message store 23 are implemented on a server
computer 12. Client computer 18 and server computer 12 are
connected via communications network 14 which transports
the necessary communications (which may be in the form of
requests and events) between the message client 27 and the
software components running on server computer 12.

In a system 40C having the third configuration, message
client 27, catalog server 29 and catalog database 28, are all
located on a client computer 18 while message store server
24 and message store 23 are implemented on server com-
puter 12. Client computer 18 and server computer 12 are
connected via communications network 14 which transports
the necessary communications (which may be in the form of
requests and events) between the software components
running on server computer 12 and the software components
running on client computer 18.

It will be readily apparent to persons skilled in the art that
other configurations are possible, including hybrids of the
above configurations. It is possible, for example, to provide
systems wherein catalog server 29 and catalog database 28
are used to organize the contents of message stores 23 on
several separate computers, all connected by a communica-
tions network. For clarity message transport server 26 has
not been depicted in FIGS. 4A, 4B or 4C. A suitable message
transport server would be provided to send and/or receive
messages. However, the physical location of the message
transport server is not relevant to the invention. The inven-
tion may be used in cases where there is no message
transport server and no message transport server is required.
For example, the invention may be applied to organizing
archived electronic messages.

US 6,725,228 B1

11

As shown in FIGS. 5A and 5B catalog database 28 and
message store 23 may be separate from one another or may
be integrated in a single integrated message store. Each of
these components is preferably provided in the form of a
database comprising a plurality of related tables. FIG. SA
shows how a catalog database 28 may be linked to a separate
external message store 23. For the purpose of simplicity,
only selected fields in these databases are shown. External
message store 23 is identified by a Storeld 51A, which is a
set of information required by message store server 24 to
locate and provide access to the contents of the external
message store 23. For example, in a MAPI environment,
Storeld 51A may comprise a MAPI Profile, a valid
password, and a MAPI Message Store Entry Identifier. Each
message 22 represented in external message store 23 is
identified by a StoreMessageld S2A—which uniquely iden-
tifies a message within external message store 23. Each
message 22 may have one or more attachments 36A asso-
ciated with it. Each of these attachments is identified by a
StoreAttachld—which uniquely identifies an attachment
within external message store 23. StoreMessageld and
StoreAttachld may comprise numbers, or other identifiers,
assigned to the messages and attachments respectively by
message store server 24.

In FIG. 5A, catalog database 28 is linked to external
message store 23 as follows. Catalog database 28 has a
StoreLink table 51. Each row in StoreLink table 56 contains
the Storeld 51A of a linked message store 23. The catalog
server 29 can use Storeld S1A to create a session with the
message store server 24 for the linked message store 23.
Catalog database 28 also has a MessageSummary table 52
which contains the StoreMessageld 52A of messages in
message store 23. MessageSummary table 52 is related to
StoreLink table 51 by means of a StoreLinkId foreign key
52B. In the illustrated embodiment, messages 22 are stored
in a Message table 54 in message store 23 and attachments
are stored in an Attachment table 55 in message store 23.

Using the StoreMessageld 52A and the related Storeld
51A, catalog server 29 can make requests to the message
store server 24 to read messages from message store 23.
Catalog database 28 also has an AttachSummary table 53
which contains a StoreAttachld foreign key 53A which
identifies attachments to messages in message store 23.
Catalog server 29 can use StoreAttachld foreign key 53A to
make requests to message store server 24 for attachments
stored in message store 23.

Catalog server 29 can also use the Storeld 51A, Store-
Messageld 52A and Store Attachld 53A values to map events
generated by message store server 24 to the matching row
within catalog database 28. For example, when a message is
added to a message store 23, the message store server 24
assigns a unique StoreMessageld to the message and gen-
erates an event which informs catalog server 29 of the newly
added message.

It will be readily apparent to a person skilled in the art that
the message store and catalog database could be separate
from one another, as illustrated in FIG. 2, could be united in
a single database, or distributed between a number of linked
databases. The general scheme described above can be
applied to any particular message store 23 and message store
server 24. For example, FIG. 5B is an entity-relationship
diagram for a storage object 50 which integrates both a
catalog database and a message store which is linked to the
catalog. The message store is part of the same storage object
50 as the catalog. For the purpose of simplicity, only selected
fields in storage object 50 are shown. Storage object 50 has
a MessageSummary table 52' and a Message table 54 which

Page 40 of 57

10

15

20

25

30

35

40

45

50

55

60

65

12

share the same primary key. Similarly, storage object 50 has
an AttachSummary table 53' and an Attachment table 55'
which share the same primary key. As a result, the mapping
of MessageSummary to Message and the mapping of Att-
achSummary to Attachment is a trivial exercise within a
relational database environment.

FIG. 6 illustrates a possible user interface for use with the
invention. The user interface comprises a display 60 which
could be used to allow a user to access messages at a desktop
or laptop computer. Display 60 has a folder panel 61 in
which is displayed a representation 61A of one or more
folders. In the illustrated embodiment, representations 61A
comprise a display of the name of each folder. In the
preferred embodiment, representations 61A indicate the
number of unread messages within each folder. In the
illustrated embodiment the representation 61A includes a
number in parentheses to the right of the name of the folder,
with the number equal to the number of unread messages in
the folder. For special purpose folders, such as “Drafts” or
“To Do” the number preferably is equal to the total number
of messages in the folder instead of the number of unread
messages in the folder.

A tabbed dialog 62 permits a user to select which group
of folders is displayed in panel 61 by selecting one of the
tabs of dialog 62. A tab of dialog 62 may, for example,
identify a subtree of folders defined in catalog database 28.
For example, when the interface detects that a user has
selected the date tab 62A (e.g. by clicking on date tab 62A,
the interface displays a “date” subtree in folder panel 61. The
date subtree contains folders in which messages are arranged
by date. For example, the date subtree might contain folders
named “Today”, “Yesterday”, “This Week”, “Last Week”
each containing appropriately selected messages. When the
interface detects that a user has selected the “correspon-
dents” tab 62B then the interface displays folders in panel 61
in which messages are sorted by correspondent, and so on.

Preferably the interface permits a user to designate and
select “Hot” folders. A “Hot” folder is a folder that the user
has designated as being “hot” or important to them. Any
folder in the system can be made “hot”. In the illustrated
embodiment, dialog 62 includes a “Hot” tab 62C. When the
interface detects that a user has selected hot tab 62C, then the
interface displays in panel 61 all of the folders that the user
has designated as being “Hot”. Panel 61 shown in FIG. 6
displays a list of hot folders.

Interface 60 includes a message list panel 64. When the
interface detects that a user has selected a particular folder,
such as the Today folder, the interface displays the contents
of the selected folder to be displayed in a suitable format in
panel 64. In the illustrated embodiment, panel 64 displays a
list of messages with one row displayed for each message.
The fields within the row are displayed as separate columns
and are controlled using a column header 65 which has one
section for each column. When the interface detects that a
user has selected a particular section in column header 65,
the interface sorts the list being displayed in panel 64 by the
default sort order for the column (usually in ascending
sequence). The interface preferably permits a user to request
that the messages be displayed in a reverse order. For
example, repeatedly selecting a particular section of column
header 65 may cause the interface to toggle between ascend-
ing and descending sort orders.

Display 60 includes a message header display panel 66
and a message contents display panel 67. When the interface
detects that a user has selected a specific message, for
example by clicking on a row in the list in panel 64 then the
interface displays selected information about the associated

US 6,725,228 B1

13

message in message header panel 66 and displays the body
of the associated message in the message contents panel 67.

The interface preferably includes a control which permits
a user to select between a first mode in which all messages
in a folder can be viewed and a second mode in which only
messages from recognized correspondents are available for
viewing. In the illustrated embodiment, display 60 includes
a tool button 68. Depending upon whether or not the
interface detects that a user has activated tool button 68 the
interface either permits all messages in a folder to be
displayed in panel 64 or displays in panel 64 only messages
from recognized correspondents. If all messages are
selected, then a status bar 69 displays a count of the
messages in the folder. If correspondent messages only are
selected then status bar 69 displays both the number of
correspondent messages and the total count of messages in
the folder. Preferably, in the second mode, the representation
61A includes the number of unread correspondent messages
in the folder instead of the number of unread messages in the
folder.

Many other types and designs of interface may be used
with the invention. Creating such interfaces is within the
routine skill and knowledge of those skilled in the art of
designing messaging systems and will not be described
further. The following description is with reference to an
embodiment of the invention in which the message store 23
contains e-mail messages and the computer system 18 has a
user interface device capable of supporting a display 60 as
shown in FIG. 6.

For the purpose of clarity the detailed operation of the
invention will be described with reference to three func-
tional layers, each of which builds upon the functionality of
the lower layer(s). FIG. 7 is a block diagram that shows
these functional layers. A base services layer 72 implements
the base services needed to organize messages into multiple
folders and to communicate with other software compo-
nents. A second layer 74 provides logic for automatically
organizing messages into a number of specific folders. A
third layer 76 associates messages with individual corre-
spondents and applies rules to distinguish between corre-
spondents with whom the user of the system has been
corresponding directly and others.

As shown in FIG. 9, base layer 72 involves requests and
events exchanged between catalog server 29 and other
software components as well as methods for processing
incoming requests and events and for generating outgoing
requests and events. The methods of base layer 72 operate
directly on elements of catalog database 28.

Catalog database 28 may be implemented using any
suitable database manager software. For example, any one
of a number of commercial industry-standard database man-
agers could be used to implement catalog database 28.
Catalog database 28 comprises a number of tables. In the
illustrated embodiment of the invention there is a Folder
table 56, a Shortcut table 57, a MessageSummary table 52,
and an AttachSummary table 53. The relationships between
these tables are as follows:

one-to-many between Folder table 56 and Shortcut table

57,
one-to-many between MessageSummary table 52 and
Shortcut table 57,
one-to-many between AttachSummary table 53 and
Shortcut table 57, and,
one-to-many between MessageSummary table 52 and
AttachSummary table 53.
In addition to the tables and fields shown in FIG. 8, which
are more fully documented below, catalog database 28

Page 41 of 57

10

15

20

25

30

35

40

45

50

55

60

65

14

contains tables and fields of either FIG. 5A or FIG. 5B
depending on whether catalog database 28 is separate from
or integrated with message store 23.

A description of the tables and fields used in base layer 72
follows. Folder table 56 preferably implements a hierarchi-
cal folder-tree structure. A folder is an abstract organiza-
tional entity. Each folder 38 can contain one or more
shortcuts to messages in message store 23. Preferably, each
folder 38 can contain other folders. The primary key for
folder table 56 is Folderld. This key uniquely identifies a
row in Folder table 56. This key may be generated auto-
matically by catalog server 29 when a new folder 38 is
created.

AlternateKeyl is ParentFolderld. This key contains a
value which is the Folderld for a folder which contains the
folder in question. The ParentFolderld can be used to
implement a hierarchical folder-tree structure using tech-
niques that are well known in the art. Duplicates are allowed.

AlternateKey2 is ParentFolderld+Uppercase
(FolderName). This key is used to read a Folder by its
FolderName, and to detect and prevent duplicate Folder-
Name values at any given level of the folder tree. Duplicates
are not allowed.

AlternateKey3 is IsHot. This key is used to mark “hot”
folders for the purpose of displaying them to the user in a
“hot” view. The key is not populated if IsHot is False.
Duplicates are allowed.

The fields of Folder table 56 are:

FolderId A non-zero value that uniquely identifies a row
in the Folder table.
ParentFolderId The FolderId of the current Folder’s
parent in the hierarchical folder tree
structure. The root Folder has a
ParentFolderId of zero.
FolderName The display name of the Folder.
FolderType The type of Folder. Values may include,

for example, ftRoot - which indicates that
the folder is the root folder, ftSubRoot -
which indicates that the folder is a sub-
root folder which depends directly from
the root folder, (it is convenient to

place a category of folders within a sub-
root folder, for example, all folders
which contain messages selected by date
and time could be contained within a
“Date” sub-root folder as shown in FIG.
17), ftStatus - which indicates that the
folder includes messages selected
according to a criterion relating to their
status, ftCorresp - which indicates that
the folder includes messages selected
according to a criterion relating to their
correspondent, ftMe - which indicates that
the folder includes messages originating
from a user of the system (who may have
and use multiple e-mail accounts to
originate those messages), ftBulkMail -
which indicates that the folder includes
messages which have been identified as
originating from a specific bulk mail
sender (such as a mailing list),
ftUnsorted - which indicates that the
folder includes messages for which no
correspondent or bulk mail relationships
have been established, ftKeyword - which
indicates that the folder includes
messages selected according to a criterion
relating to their keywords, ftDate - which
indicates that the folder includes
messages selected according to a criterion
relating to their dates, ftAttach - which
indicates that the folder includes

US 6,725,228 B1

15

-continued

messages selected according to a criterion
relating to their attachments

ftSearchResult - which indicates that the
folder contains search results and ftUser -
which indicates that the folder is user
defined.

Indicates whether the Folder is “hot” and
should be displayed in a preferential
manner to the user.

The date and time the Folder was created.
The column on which the Shortcuts within a
Folder should be sorted. Values depend
upon which columns are displayed to the
user by message client 27 and may include
values such as scIsUnread - which causes
messages in the folder to be sorted so

that all unread messages are displayed
together, scDisplayNames - which causes
messages to be sorted alphabetically by
the display name of the message sender or
message recipient, scSubject - which
causes messages to be sorted
alphabetically by subject,
scMessageDateTime - which causes messages
to be sorted by their date and time,
scAttachName which causes messages to be
sorted according to the names of their
attachments, scAttachSize. - which causes
messages to be sorted according to the
size of their attachments.

The direction in which a column is sorted.
Values are sdAscending, sdDescending.
The number of shortcuts in the folder.

The number of unread shortcuts in the
folder.

The number of correspondent shortcuts

in the folder.

The number of unread correspondent
shortcuts in the folder.

IsHot

FolderDateTime
FolderSortColumn

FolderSortDirection

ShortcutCount
UnreadCount

CorrespShortcutCount

UnreadCorrespCount

Shortcut table 57 is a database structure which is used to
provide lightweight message shortcuts. Each row in shortcut
table 57 associates a MessageSummary or an AttachSum-
mary with a folder 38. A single MessageSummary or Att-
achSummary may be simultaneously associated with many
folders 38.

The PrimaryKey for shortcut table 57 is Messageld+
Attachld+Folderld. This key uniquely identifies a shortcut.
This key also permits the association of multiple shortcuts
with a single MessageSummary row by means of the Mes-
sageSummary table’s PrimaryKey (Messageld). This key
also permits the association of multiple shortcuts with a
single AttachSummary row by means of the AttachSummary
table’s PrimaryKey (Messageld+Attachld).

AlternateKey1 for shortcut table 57 is FolderId+SortKey.
This key permits the association of multiple shortcuts with
a folder by means of the folder table’s PrimaryKey
(FolderId). This key is also used to sort and read the
shortcuts in a folder. Duplicates are allowed.

AlternateKey2 for shortcut table 57 is TriggerDateTime.
This key is used to implement timed shortcuts that cause an
action to be executed when the TriggerDateTime is reached.
The key is not populated if TriggerDate Time is zero. Dupli-
cates are allowed.

In this preferred embodiment of the invention, the struc-
ture of shortcut table 57 does not permit multiple shortcuts
for the same message to be associated with a single folder.
Rather, each shortcut associated with a message must appear
in a separate folder.

Page 42 of 57

10

15

20

25

30

35

40

45

50

55

60

65

16

The fields of shortcut table 57 are as follows:

Messageld A non-zero value that uniquely identifies a row
in the MessageSummary table.

A value that uniquely identifies an AttachSummary
within a MessageSummary. Attachld is set to zero if
the shortcut is not associated with an
AttachSummary.

A non-zero value that uniquely identifies a row in
folder table 56.

A binary-comparable sort key. This field is
described in detail below.

The FolderSortColumn (from folder table 56)
used to construct the SortKey. Values are the
same as FolderSortColumn.

The FolderSortDirection (from folder table 56)
used to construct the SortKey. Values are the
same as FolderSortDirection.

Identifies the action to be taken when the
TriggerDateTime is reached for a shortcut.
Values may include, for example, taNone - to
signify that no action should be taken, and
taDeleteShortcut-to signify that the shortcut
should be deleted when the time specified by
TriggerDateTime has been reached. The design
can easily be extended to support other
actions. For example, as will be readily
apparent to persons skilled in the art, timed
shortcuts are a powerful general purpose
mechanism that could be applied in many
applications within a messaging environment
(e.g., setting one or more reminders for a
message).

The date/time that the action defined in
TriggerAction should be executed. A value

of zero indicates that no timed action is

to be executed for the shortcut. This

field may, for example, contain an

unsigned 32 bit value that is calculated

by multiplying the number of days since

Jan. 1, 1980 by 131,072 and then

adding the number of seconds since

midnight. This permits an action to be
triggered at a time specified within a one
second resolution.

Matches the IsUnread value from the associated
MessageSummary.

Matches the IsCorresp value from the associated
MessageSummary.

Indicates whether the shortcut was created

by the user. This permits such shortcuts

to be distinguished from automatically

created shortcuts. In the preferred

embodiment of the invention, user created
shortcuts are not deleted when processing
automatic organization rules for a

message.

Attachld

FolderId
SortKey

SortColumn

SortDirection

TriggerAction

TriggerDateTime

IsUnread
IsCorresp

IsUserShortcut

MessageSummary table 52 contains a summary of infor-
mation about messages and may act as a link to the under-
lying message objects in message store 23. The PrimaryKey
for MessageSummary table 52 is Messageld. This key
uniquely identifies a MessageSummary row. A first reason
for implementing a MessageSummary table that is distinct
from Message table 54 is that having a separate Message-
Summary table 52 facilitates linking to messages in an
external message store 23. A second reason is to enhance
processing performance—a MessageSummary record (i.e. a
row in MessageSummary table 52) is typically much smaller
than its related message record (i.e. a row in Message table
54) and it is consequently much faster to read MessageSum-
mary records than it is to read Message records. The actual
contents of the MessageSummary will vary depending upon
the particulars of the implementation, but in a currently
preferred embodiment of the invention MessageSummary
table 52 includes the following fields:

US 6,725,228 B1

17

Messageld A non-zero value that uniquely identifies a row
in MessageSummary table 52.

(Array of [Folderld + FolderDateTime]) -
Identifies the Folders from which

shortcuts, that would normally be created

by automatic rules, should be removed.
Indicates whether the message is in an unread state.
Indicates whether the message is correspondence
from or to a recognized correspondent. The
logic to set this value is described below.

The date and time to be displayed to the

user when listing messages in a folder.

For unsent messages this contains the

creation date/time, for received messages

this contains the receive date/time, and

for sent message this contains the send
date/time.

The sender or recipient names to be displayed
to the user when listing messages in a folder.
For received messages this contains the
sender’s name, and for sent or unsent messages
this contains is the names of the primary
recipients.

The subject of the message.

FolderExcludeList

IsUnread
IsCorresp

MessageDateTime

DisplayNames

Subject

AttachSummary table 53 contains a summary of Attach-
ment information, and may act as a link to the underlying
attachment objects in message store 23. The PrimaryKey for
the AttachSummary table 53 is Messageld+Attachld. This
key uniquely identifies a row in AttachSummary table 53. A
first reason for implementing an AttachSummary table 53
that is distinct from Attachment table 55 is to facilitate
establishing links to attachments 36A in an external message
store 23. A second reason is to enhance processing
performance—an AttachSummary record is typically much
smaller than its related attachment record and it is conse-
quently much faster to read AttachSummary records than

10

15

20

18

attachment records. The actual contents of the AttachSum-
mary will vary depending upon the particulars of the
implementation, but in a currently preferred embodiment,
AttachSummary table 53 has the following fields:

Messageld A non-zero value that uniquely identifies a row
in MessageSummary table 52.

A non-zero value that uniquely identifies an
AttachSummary within a MessageSummary.
The type of the attachment for organizational
purposes. For e-mail attachments this could be
a file extension (e.g. “DOC”, “EXE”, “TIF”,
“HTML”, “VSB”) for a file-based attachment, or
a string such as “Attached Messages” for an
attached message.

The display name of an attachment. For e-mail
attachments this could be the filename of a
file-based attachment, or the subject of an
attached message.

The size of the attachment (may be expressed in
bytes).

Attachld

AttachType

AttachName

AttachSize

FIG. 9 shows the incoming events and incoming requests
processed by catalog server 29, outgoing requests made by
catalog server 29, and outgoing events generated by catalog
server 29. For clarity, interactions between message client
27 and other components are not shown. Message client 27
will typically generate requests in response to user input
such as requests to message store server 24 to add, change
or delete a message.

Catalog server 29 handles the incoming requests listed in
Table I. If any Request cannot be processed as described, the
ResultCode is set to indicate the error that occurred. The
Requests listed in Table I are sufficient to implement a
working catalog server 29. It will be apparent to persons
skilled in the art that additional requests could be imple-
mented to improve ease of use.

TABLE 1

INCOMING REQUESTS TO CATAIOG SERVER

Incoming Request Processing Reply
AddFolder * Read parent folder = ResultCode
= ParentFolderId from catalog database
+ <Folder 28;
properties> * Build a new folder
using <Folder
properties>;
* Add the folder to
catalog database 28;
* Generate FolderAdded
event
* Build reply.
ChangeFolder * Read Folder from = ResultCode
= FolderId catalog database 28;
+ <Folder * Modify folder using
properties> <Folder properties>;
* Update folder in
catalog database 28;
* Generate FolderChanged
event;
« If IsHot has been
modified, generate a
FolderHotChanged
event;
* Build reply.
DeleteFolder * Read folder from = ResultCode
= FolderId catalog database 28;

Page 43 of 57

* Verify that folder has
no child folders;

* Verify that folder
contains no shortcuts;

19

TABLE I-continued

US 6,725,228 B1

INCOMING REQUESTS TO CATALOG SERVER

Incoming Request Processing Reply
* Delete folder from
catalog database 28;
* Generate FolderDeleted
event;
* Build reply.
ReadFolder * Read folder from = ResultCode
= FolderId catalog database 28; + Folder
* Build reply.

ReadFolderSubtree * Read all folders from =ResultCode

= ParentFolderId catalog database 28 + FolderCount
with matching + Array of
ParentFolderld (using Folder
AlternateKey1);

* Build reply.

ReadHotFolders * Read all folders from ResultCode
catalog database 28 + FolderCount
with IsHot = True + Array of
(using AlternateKey3); Folder

* Build reply.

ReadFolderContents * See FIG. 14 and =ResultCode

FolderId description below; + SortKey

+ SortKey * Build reply. + ISEOF

+ SortDirection
+ RequestCount
+ CorrespOnly

ChangeFolderSortKey
= Folderld

+ FolderSortColumn
+
FolderSortDirection
AddShortcut

= Folderld

+ Messageld

+ Attachld

DeleteShortcut
= Folderld

+ Messageld
+ Attachld

Page 44 of 57

See Figure 15 and
description below;
Build reply.

Read shortcut from
catalog database 28.
If shortcut not found
then:

Read MessageSummary
from catalog database
28;

If AttachId is non-
zero read
AttachSummary from
catalog database 28;
Read folder from
catalog database 28;
Set IsUserShortcut to
True;

Empty ShortcutArray
(FIG. 10A);

Do “AddChangeShortcut™

(FIG. 10C)

Do “AddShortcut”
(FIGS. 11A and 11B);
Build Reply

Read shortcut from
catalog database 28.
If shortcut not found
then: Exit.

If IsUserShortcut then
Do

“DecrementFolderCounts”

(FIGS. 11A and

11B);

Delete shortcut from
catalog database 28;
Generate
ShortcutDeleted event;
Do “UpdateFolder”
(FIGS. 11A and 11B);
If NOT IsUserShortcut
then:

Read MessageSummary
from catalog database
28;

+ ContentCount

+ ContentArray

= Array of
[MessageSummary
+
AttachSummary]
= ResultCode

= ResultCode

= ResultCode

20

21

TABLE I-continued

US 6,725,228 B1
22

INCOMING REQUESTS TO CATALOG SERVER

Incoming Request

Processing

Reply

DeleteFolder-
Shortcuts
= Folderld

ReadMessageSummary
= Messageld

ReadAttachSummary
= Messageld
+ Attachld

- Add the Folderld and
FolderDateTime to the
FolderExcludeList;

- Update the
MessageSummary in
catalog database 28;

- Process shortcuts as
shown in FIG. 10B;

* Build reply.

* Read folder from
catalog database 28
and for each shortcut
in the folder do:

- Read shortcut from
catalog database 28;

- Do

“DecrementFolderCounts”

(FIGS. 11A and
11B);

- Delete shortcut from
catalog database 28;
and,

- Generate
ShortcutDeleted event;

* Do “UpdateFolder”
(FIGS. 11A and 11B);

* Build reply.

* Read MessageSummary
from catalog database
28;

* Build reply.

* Read AttachSummary
from catalog database
28;

= ResultCode

= ResultCode
+
MessageSummary

= ResultCode
+
AttachSummary

* Build reply.

Table II lists incoming events handled by catalog server 29.

TABLE II

EVENTS HANDLED BY CATAI.OG SERVER

40

TABLE II-continued

EVENTS HANDLED BY CATAILOG SERVER

Incoming Event Processing

I ing Event P i
feomine ~ven rocessne + StoreMessageld = Read the MessageSummary from catalog
MessageAdded * Read message from message store server database 28 using the Storeld and
= Storeld 24 (using a ReadMessage request); 45 StoreMessageld;
+ StoreMessageld * Build a new MessageSummary; * dDekEe chSMessageSummary from catalog
* Add the MessageSummary to catalo atabase 28;
database 28; & Y & ¢ Delete all AttachSummaries for the
* For each attachment in the message, message from cata.log database 28;
build a new AttachSummary and add the : ?Oﬁ each shortcut in the message do the
ollowing:
AttachSummary to catalog database 28 50 - Read relite d folder from catalo
Process shortcuts (FIG. 10B) database 28: s
MessageChanged * Read message from message store server - Do “Decrer;lentFolderCOunts” (FIGS. 11A
= Storeld 24 (using a ReafMessage request); and 11B); '
+ StoreMessageld = Read the MessageSummary from catalog _ Delete sh,ortcut from catalog database
database 28 using the Storeld and 28; and,
StoreMessageld; 55 - Generate ShortcutDeleted Event;
* Modify the MessageSummary to match the Do “UpdateFolder” (FIGS. 11A and 11B)
message;
* Update MessageSummary in catalog
database 28;
* Delete all AttachSummaries for the The only Outgoing Request that catalog server 29 must
message from catalog database 28; 60

¢ For each attachment in the message,
build a new AttachSummary and add the
AttachSummary to catalog database 28;
* Generate a SummaryChanged event;
* Process shortcuts (FIG. 10B)
MessageDeleted * Read message from message store server
= Storeld 24 (using a ReafMessage request);

Page 45 of 57

65

provide in the preferred embodiment of the invention is a
ReadMessage request directed to message store server 24.
The formatting of the request will vary depending on the
message store server implementation, but for the purposes of
this design it is assumed that the ReadMessage Request
returns all messages and attachments requested by catalog
server 29.

US 6,725,228 B1

23

Catalog server 29 generates the events listed in Table III.

TABLE III

EVENTS GENERATED BY CATAIOG SERVER

Outgoing Event Processing

FolderAdded Generated when a new folder is added to

= Folder catalog database 28 so that message
client 27 can add the folder to the user
interface.

Folderchanged Generated when a folder is updated in

= Folder catalog database 28 so that message
client 27 can update the folder in the
user interface.

FolderHotChanged Generated when the value of IsHot changes

= Folder for a folder so that message client 27
can add or remove the folder from the
“hot” view.

FolderDeleted Generated when a folder is deleted from

= Folder catalog database 28 so that message
client 27 can remove the folder from the
user interface.

ShortcutAdded Generated when a shortcut is added to

= Shortcut catalog database 28 so that message
client 27 can add information about the
related message or attachment to the user
interface.

ShortcutDeleted Generated when a shortcut is deleted from

= Shortcut catalog database 28 so that message

client 27 can remove information about
the related message or attachment from

the user interface.

Generated when the SortKey is changed for
a shortcut (except when processing a
ChangeFolderSortKey request) so that
message client 27 can resequence
information about the related message or
attachment in the user interface.

Generated when a MessageSummary is
changed in catalog database 28 so message
client 27 can update information about

the related message or attachment in the
user interface.

ShortcutSortKeyChanged
= Shortcut

SummaryChanged
= MessageSummary

Those skilled in the art will understand from the foregoing
description that shortcut table 57 plays a key role in asso-
ciating messages with folders. The term “lightweight mes-
sage shortcut” may be used to refer to the information in a
row in shortcut table 57. A lightweight message shortcut
may reside in the shortcut table and may also reside in a data
structure in the catalog server 29 or the message client 27.
A lightweight message shortcut may also be present in
requests or events communicated between catalog server 29
and other software components.

The provision and use of lightweight message shortcuts
(which are called simply shortcuts in this specification) is a
key aspect of this invention. The following design criteria
should be satisfied in order to successfully use lightweight
message shortcuts. Significant deviation from these criteria
can result in unacceptable performance or functionality:

lightweight message shortcuts must be very small in size,

preferably less than 64 Bytes and most preferably less
than 32 Bytes (in the currently preferred embodiment
of the invention, shortcuts are 24 Bytes);
shortcut table 57 should have no more alternate keys than
are necessary (in the preferred embodiment of the
invention the shortcut table has two alternate keys);

shortcut table 57 should support sorting message summa-
ries by any desired SortColumn;

shortcut table 57 should support incremental reading, so

that the entire contents of a folder do not have to be read

before they can be displayed to the user; and,
shortcut table 57 should have full referential integrity with

Folder table 56, MessageSummary table 52 and Att-

Page 46 of 57

10

15

25

35

40

45

55

60

65

24

achSummary table 53, so that an action taken on a
message or an attachment through a shortcut in one
folder 38 will be visible in all folders 38 in which
shortcuts to the same message exist.
Preferably the total number of shortcuts in a folder and the
number of unread shortcuts in a folder is be available at all
times for display in the user interface. This information can
be displayed so that a user can look at a list of folders and
see how many unread messages are in each folder.

FIGS. 10A through 10D, 11A and 11B illustrate a process
by which lightweight message shortcuts corresponding to a
message can be added, updated or deleted. The process
makes use of a memory-based ShortcutArray 100 which
contains ShortcutEntries 100A. Each ShortcutEntry 100A
contains the following:

ShortcutAction—possible values are (saAdd—indicating
that the shortcut should be added to catalog database
28, saDelete—indicating that the shortcut should be
deleted from catalog database 28, saKeep—indicating
that the shortcut should be retained unaltered in catalog
database 28);

Excluded—which indicates whether or not the shortcut is
a user-defined shortcut that should be excluded from
being deleted by automatically executing shortcut han-
dling rules;

OldShortcut;
Shortcut; and,

AttachSummary (needs to be present only if the shortcut
is for an attachment and ShortcutAction is saAdd or
saKeep).

FIG. 10B shows a method 101, which may be performed
periodically, for automatically creating a group of shortcuts
associated with a message. Method 101 begins by reading all
existing shortcuts for a message into a ShortcutArray 100 (as
OldShortcut objects) and setting the ShortcutAction to saDe-
lete for each ShortcutEntry 100A (step 102). Method 101
continues (step 103) by applying organizational rules (as
described below) to generate a set of new shortcuts for the
message. The new shortcuts are saved as Shortcut objects in
ShortcutEntrys 100A in ShortcutArray 100. Base layer 72
provides an “AddChangeShortcut” method (see FIG. 10C).
This method is used to process each shortcut in the set of
new shortcuts.

The “AddChangeShortcut” method searches the Shortcut
Array to determine whether the shortcut being created or
changed already exists (step 108). The method either creates
a new ShortcutEntry and sets ShortcutAction to saAdd(step
108A) or updates an existing ShortcutEntry and sets Short-
cutAction to saKeep (step 108B) depending on whether the
shortcut is new with respect to the prior contents of the
ShortcutArray or already exists in the ShortcutArray. Finally
a ShortcutEntry is built and added to the ShortcutArray (step
108C).

Preferred embodiments of the invention apply filter rules
(step 104) and correspondent and bulk mail rules (step 105)
as described below.

Preferred embodiments of the invention also include a
FolderExcludeList which contains a list of folders in which
shortcuts should not be automatically added. Method 101
processes the FolderExcludeList (step 106). Processing the
FolderExcludeList preferably includes validating each ele-
ment in the FolderExcludeList to make sure that the folder
to which it refers has not been deleted and another folder
with the same Folderld has been subsequently created. This
validation may be done, for example, as shown in figure 10D
by reading the folder from catalog database 28 and com-

US 6,725,228 B1

25

paring the FolderDateTime in the FolderExcludeList ele-
ment with the FolderDateTime for the folder. If a folder
listed in an element of the FolderExcludeList is not found in
catalog database 28 or the FolderDateTime values are
different, then the element contains an invalid reference and
is deleted from the FolderExcludeList. For each valid
element, the Excluded flag is set to True in the matching
ShortcutEntry (if a matching ShortcutEntry exists).

Method 101 concludes by processing each ShortcutEntry
in the ShortcutArray and adding, updating or deleting the
corresponding shortcut in catalog database 28 depending on
the values of ShortcutAction, IsUserShortcut and Excluded.
A method 110 which may be used for processing Short-
cutEntries is shown in FIGS. 11A and 11B (step 107).
During step 107 the folder counts are incremented or dec-
remented as appropriate. For each Shortcut added, changed,
or deleted, the ShortcutCount—which indicates a total num-
ber of shortcuts in a folder, UnreadCount—which indicates
a total number of shortcuts which have the status unread,
CorrespShortcutCount—which indicates a total number of
shortcuts which relate to messages to or from a recognized
correspondent, and CorrespUnreadCount—which indicates
a total number of shortcuts which relate to messages to or
from a recognized correspondent and which have a status of
unread, are correctly updated for the folder with which the
shortcut is associated. ShortcutAdded, ShortcutDeleted,
ShortcutSortKeyChanged and FolderChanged events are
generated as required.

The net result of method 101 is that, with the exception of
shortcuts excluded from consideration because they are
listed on the FolderExcludeList, only shortcuts created by
the organizational rules and shortcuts created by the user
exist in catalog database 28 for the message being processed.

Method 110 reads the folder corresponding to the Short-
cutEntry from catalog 28 and, depending upon the value of
ShortcutAction, whether or not the shortcut is excluded and
whether or not the shortcut is a user shortcut, method 110
either adds a shortcut corresponding to the ShortcutEntry
(step 112), updates a shortcut corresponding to the Short-
cutEntry (step 113) or deletes a shortcut corresponding to the
ShortcutEntry (step 114). If a shortcut is added or updated
then method 110 also sets the shortcut timer to the earliest
TriggerDateTime for any shortcut in catalog 28 (step 115).

FIG. 12 illustrates the structure of shortcuts in a currently
preferred embodiment of the invention. The size of the
Shortcut is minimized by using a 6 byte SortKey and by
encoding TriggerDateTime as a 32 bit unsigned integer. The
number of alternate keys is minimized. In the preferred
embodiment this is done by:

Ordering the fields in the PrimaryKey so that it can be
used both as a primary key, as well as a foreign key to
associate shortcuts with a message or an attachment;

Using AlternateKeyl to incrementally read shortcuts
within a folder, as well as a ForeignKey to associate
shortcuts with a folder; and,

Populating AlternateKey2 only if TriggerDateTime is
non-zero.

A feature of preferred embodiments of the invention is
that the shortcuts include a sort key (SortKey) which is
variable and is dynamically rewritten to accommodate sort-
ing on a particular criterion. In the preferred embodiment
each folder has FolderSortColumn and FolderSortDirection
properties which specify a criterion for use in sorting. The
SortKey is written to match the SortColumn and SortDirec-
tion of the folder. A sort key is constructed by a software
component which takes as input parameters a folder object,
a MessageSummary object, and an AttachSummary object

Page 47 of 57

10

15

20

25

30

35

40

45

50

55

60

65

26

(the AttachSummary object is needed only if creating a
Attachment Shortcut, otherwise it can be NULL). The
SortKey is constructed by determining which MessageSum-
mary or AttachSummary field to use for sorting (based on a
value in the FolderSortColumn). The software component
identifies a format for the field and selects a corresponding
format for the SortKey. If the field type is Enumeration or
Boolean, then the SortKey format is also dependent upon
whether FolderSortDirection has a value of sdAscending or
sdDescending.

The SortKey is initialized, for example by setting all of its
characters to binary zeros. The shortcut SortColumn is set to
FolderSortColumn and the Shortcut SortDirection is set to
FolderSortDirection. Then the format of the SortKey is set
as follows:

For a field which contains a string of characters in
Unicode format, UCW1, UCW2 and UCW3 are set to
the Unicode character weights of the first three char-
acters in the string;

For a field which contains a string of characters in ANSI
format, C1, C2, C3, C4, CS, C6 are set to the values of
the first 6 characters in the string. Alternatively, the
ANSI string could be converted to a Unicode string and
the SortKey generated as above.

For a DateTime field, YY is set to the year minus 1950,
MM to the month number, DD to the day of the month,
hh to the hour based on a 24 hour clock, mm to the
minute, and ss to the second.

For an Enumeration or Boolean field where SortDirection
is sdDescending, Value is set to the numeric equivalent
of the Enumeration or Boolean value, and YY, MM,
DD and hh are set as described for a Date/Time field.

For an Enumeration or Boolean field where SortDirection
is sdAscending, Value is set to the numeric equivalent
of the Enumeration or Boolean value, YY is set to 255
minus the year plus 1950, MM is set to 255 minus the
month number, DD is set to 255 minus the day of the
month, and hh is set to 255 minus the hour based on a
24 hour clock.

For a field which contains a 32-bit integer value (an
Integer32 value), the first character is set to bits 31-24
of the field, the second character is set to bits 23—16 of
the field, the third character is set to bits 15-8 of the
field, and the fourth character is set to bits 7-0 of the
field, where 0 is the least-significant bit and 31 is the
most-significant bit. A SortKey for a field containing a
16-bit integer value (an Integerl6 value) may be cre-
ated by converting the Integerl6 value to an Integer32
and following the steps above.

SortKey values for other field types can be constructed in a
manner analogous to the examples above.

The end result of this SortKey encoding is a binary-
comparable sort key that provides an approximate ordering
of shortcuts within a folder. The ordering is only approxi-
mate because it only compares the SortKeys which contain
only the most significant parts of the fields under consider-
ation (for example, the first three letters of a unicode string).
There will be cases where several shortcuts might have the
same value for the SortKey even though the shortcuts have
non-identical values in the column being sorted on. Encod-
ing a partial DateTime value in the Enumeration or Boolean
SortKey provides for more control breaks for incremental
read processing than can be provided by the value of the
field itself. In message client software it is also common
practice, when sorting messages on a column other than
MessageDateTime, to use MessageDateTime as a secondary

US 6,725,228 B1

27

sort key with most recent messages shown first—this is the
rationale for using inverted YY, MM, DD and hh values in
the ascending SortKey, and normal YY, MM, DD and hh
values in the descending SortKey.

Preferred embodiments of the invention support timed
shortcuts which cause the execution of an action
(TriggerAction) when the system clock advances past a time
specified in the TriggerDateTime field of the shortcut. The
creator of the Shortcut is responsible for supplying the
desired TriggerAction and TriggerDateTime. The action
may be, for example, deleting the shortcut.

As shown in FIG. 13, a method 130 for handling timed
shortcuts maintains a shortcut timer. The shortcut timer may
be a memory location containing a value equal to the earliest
TriggerDate Time for the shortcuts under management which
is compared periodically (preferably at least once per
second) to the system clock of the computer 18 on which the
system is operating. In preferred embodiments of the inven-
tion the shortcut timer is a software object which can contain
a time value and includes software code which compares the
time value to the system clock. A shortcut timer event is
generated when the shortcut timer contains a value which
indicates a time equal to or earlier than the current time as
indicated by the system clock.

When the system is initialized, the shortcut timer is
initialized to an inactive state (step 132). Then the first
shortcut is read from catalog database 28 using Alter-
nateKey2 of the shortcut table (step 133). This yields the
shortcut from catalog database 28 which has the earliest
TriggerDateTime value (since AlternateKey2=
TriggerDateTime). If there is such a shortcut then the
shortcut timer is set to the TriggerDateTime (step 134). If
there is no such shortcut then method 130 stops.

Each time a new shortcut is added to catalog database 28
or a shortcut in catalog database 28 is changed an
AddChangeShortcut event 135 occurs. In response to an
AddChangeShortcut event 135 step 134 is repeated for the
new shortcut. The result is that the shortcut timer always
contains the earliest TriggerDateTime for any shortcut in
catalog database 28. On the occurrence of a shortcut timer
event 137 the system reads the shortcut from catalog data-
base 28 and performs the specified TriggerAction (step 138).
The system then executes method 130 starting at step 133 to
set the shortcut timer for the next TriggerDateTime.

Preferred embodiments of this invention permit message
client 27 to read the contents of a folder incrementally. This
enhances performance because it permits the first few mes-
sages in the folder to be displayed to a user very quickly
without requiring the user to wait until all of the messages
in the folder have been read before seeing the first messages.
Providing users with very quick access to messages associ-
ated with a folder is important for usability of the system.

When a user selects a folder by way of interface device
25, message client 27 receives the selection and generates a
ReadFolderContents request directed to catalog server 29.
As shown in FIG. 14, the ReadFolderContents identifies a
folder and preferably includes a request count. The request
count is a number which is preferably at least as large as a
number of rows visible in panel 64. The initial ReadFolder-
Contents request preferably specifies a NULL SortKey. In
response to the ReadFolderContents request catalog server
29 performs method 140 of FIG. 14. The end result of
method 140 is a reply which includes a sorted array which
message client 27 can use to populate the list displayed in
panel 64. The reply also contains a SortKey value which is
used by message client 27 to build subsequent ReadFolder-
Contents requests to retrieve the remaining shortcuts in a
folder.

Page 48 of 57

10

15

20

25

30

35

40

45

50

55

60

65

28

As a user uses interface 25 to scroll through the shortcuts
to messages which are displayed in panel 64, message client
27 generates additional ReadFolderContents requests for
catalog server 29. Message client 27 uses the SortKey
provided by catalog server 29 with each reply to construct
the subsequent ReadFolderContents request. This continues
until the user stops scrolling or an ISEOF flag of True (which
indicates that the last shortcut has been reached) is returned
in a reply.
If the user has requested that the display of messages
which are not associated with recognized correspondents be
suppressed (for example, by clicking on tool button 68) then
message client 27 sets a value CorrespOnly in the Read-
FolderContent request to True.
Those skilled in the art will understand that message
client 27 may have a conventional architecture (although it
is not so limited) with some minor modifications to facilitate
incremental reading. For incremental reading as described
herein a message client 27 should be adapted to behave as
follows:
for each folder, message client 27 should save the SortKey
and the ISEOF flag from the most recent ReadFolder-
Contents reply for that folder. These values can be used
to read the next group of shortcuts for that folder.

when message client 27 receives a ShortcutAdded Event
for a folder, it should discard the event if the saved
IsEOF flag is False and the event SortKey is greater
than the saved SortKey (i.e. the event relates to a
shortcut that would not yet have been requested by
message client 27 for display even if it had been
received earlier).

when message client 27 receives a SummarySortKey-

Changed event it should reposition the corresponding
entry in the list being displayed in panel 64 to match the
new sort sequence. If the saved ISEOF flag is False and
the event’s SortKey is greater than the saved SortKey,
then message client 27 should refresh its display by
issuing ReadFolderContents requests until it receives a
reply having a ISEOF value of True, or the a reply
having a SortKey value greater than the saved SortKey.

Method 140 begins by testing to determine whether the
ReadFolderContents request is an initial request or is a
request to read more shortcuts (step 142). In the preferred
embodiment of the invention this is done by testing to see if
the SortKey supplied with the ReadFolderContent request is
NULL. If the request is an initial request then the sort
direction is checked (step 142A). After these initial steps the
position in the Shortcut table 82 is established using the
Folderld, SortKey and SortDirection from the request. If
step 142 determines that the request is not an initial request
then the SortKey from the request is used to set a position
on AlternateKeyl for shortcut table 57 (step 143).
Otherwise, depending upon the sort direction determined in
step 142A AlternateKeyl for shortcut table 57 is used to
position for retrieval beginning at either the first shortcut
(step 143A) or the last shortcut (step 143B) in the folder.

Method 140 continues by reading shortcuts (step 144) in
either ascending or descending sequence until the end of
folder is reached or a sufficient number of shortcuts has been
read. In the illustrated embodiment, this is performed by,
after attempting to read the next shortcut in step 144
determining if the end of the folder has been reached (step
145). If so then the end of folder flag (ISEOF) is set to true
and the method concludes. If not then the retrieved shortcut
is tested to see if it is excluded from view by any current
filter (step 146). For example, if the shortcut is not associ-
ated with a recognized correspondent (in the currently

US 6,725,228 B1

29

preferred embodiment this is indicated by setting the IsCor-
respondent field in the shorteut to contain a value of False)
and CorrespOnly is True, then the shortcut is discarded. If
this happens then the method repeats step 144 to retrieve the
next shortcut. Each time another shortcut which matches any
applicable filter criteria has been read then method 140 tests
to see whether enough shortcuts have been read (step 147).

Step 147 causes method 140 to keep reading shortcuts
until either—all of the shortcuts in the folder have been
read—or—at least the number of shortcuts specified by the
request count have been retrieved and the most recently
retrieved shortcut has a SortKey different from the SortKey
of the previous shortcut. Each time another shortcut is read,
if enough shortcuts have not been read, method 140 adds the
most recently read shortcut to a reply data structure (step
148). The reply data structure is preferably located in
memory so that it can be rapidly sorted. When enough
shortcuts have been retrieved then method 140 sorts the
shortcuts in the reply data structure and sends the sorted
results to message client 27 in a reply (step 149). Sorting the
reply data structure in memory corrects for the approximate
ordering of shortcuts in AlternateKeyl of shortcut table 57
that can result from truncated values in the SortKey field.

One skilled in the art will readily understand that method
140 may be optimized to take advantage of efficiencies
which may be obtained by reading multiple shortcuts in
single database query. When this is done, the Folderld,
SortKey and SortDirection are still provided in the request
and used to establish a starting position in shortcut table 82.
This permits method 140 to support reading in either ascend-
ing or descending sequence. Even if catalog server 29 reads
multiple shortcuts from catalog database 28 in one
operation, method 140 still does a partial read of the
shortcuts in a folder, and generates a reply only when
“enough” shortcuts have been read, as described above.

As described above, the SortKey in shortcut table 57 is
used to retrieve shortcuts, in approximate order, from cata-
log database 28. To retrieve shortcuts based upon a different
sort criterion (e.g. to sort the current folder based upon
values in a different column) it is usually necessary to
change the value for the SortKey. A typical message client
27 permits a user to select a column and direction in which
messages will be sequenced when they are displayed in
panel 64. If the user is simply sorting the current column in
reverse order and the column is of a type which uses the
same SortKey for sorting in both ascending and descending
order (e.g.—of the examples given above the current column
does not hold an enumeration or binary value) message
client 27 can send a ReadFolderContents Request to catalog
server 29 with the appropriate value for FolderSortDirection
and with SortKey initialized (e.g. set to NULL). Catalog
server 29 will then read the folder contents from the begin-
ning or the end of the folder identified in the ReadFolder-
Contents request as requested.

However, if the user changes the sort direction of a
column which uses different SortKey values for sorting in
ascending and descending orders (for example, a column
which contains enumeration or binary values) or if the user
selects a different column to sort on (for example by clicking
on a header 65 or otherwise selecting a column using user
interface device 25) then the SortKey value for each shortcut
in the folder will need to be rewritten before the shortcuts in
the folder can be read and sorted as described above with
reference to FIG. 14. As an alternative to writing new
SortKey values first and then reading the shortcuts according
to a method like that of FIG. 14, the system could read all
of the shortcuts in the folder into memory and sort them in

Page 49 of 57

10

15

20

25

30

35

40

45

50

55

60

65

30

memory on the basis of the values in the sort column for the
folder (thereby avoiding the need to use the SortKey for
sorting). Message client 27 may include logic to decide
whether or not to defer updating the SortKey when a user
signals a desire to sort on the basis of a new column. If
message client 27 decides to defer processing the SortKeys,
then it will typically generate and send to the catalog server
a ChangeFolderSortKey request in response to the user
selecting a new folder to view. Deferred processing typically
has better performance characteristics when message client
27 and catalog server 29 are on the same computer, but its
ability to process a large folder is limited by the amount of
available memory in the computer. Immediate processing to
change SortKey values typically has better performance
characteristics when the message client 27 and catalog
server 29 are on separate computers.

FIG. 15 illustrates a method 150 performed by catalog
server 29 for updating the SortKey values for shortcuts
associated with a folder. In the currently preferred embodi-
ment of the invention method 150 is invoked by a Change-
FolderSortKey request from message client 27. Method 150
iterates through all shortcuts in the folder identified in the
ChangeFolderSortKey request and updates the SortKey for
each of the shortcuts. While implementing method 150,
catalog server 29 first reads data about the folder from
catalog database 28 (step 152) and positions itself so that the
next shortcut for reading is the first shortcut in the folder (for
example by using AlternateKey1) (step 154). Then catalog
server 29 reads the next shortcut in the folder (step 155) and
tests to see whether the end of the folder has been reached
(step 156). If there is no next shortcut (i.e. the end of the
folder has been reached) then method 150 proceeds to step
160 which updates the folder data in catalog database 28.

Where the end of the folder has not been reached then
catalog server 29 tests to determine the data type of the
current FolderSortColumn (step 157). Depending upon
whether or not the data type requires a new SortKey when
the sort direction is changed, method 150 proceeds to steps
158 or 158A in which catalog server 29 tests to determine
whether a new SortKey is needed. Steps 158 and 158A deal
with the situation where a SortKey for a shortcut is updated
to a value which is greater than the original SortKey. Such
shortcuts will be read a second time during the iteration. The
shortcut is only updated once, however because the short-
cut’s SortColumn and SortDirection are now the same as the
folder’s FolderSortColumn and FolderSortDirection. If step
158 or 158A determines that a shortcut’s SortKey should be
updated then method 150 proceeds to step 159 in which new
SortKey, SortColumn and SortDirection values are written
to the shortcut in catalog database 28.

As mentioned earlier, the design and construction tech-
niques for making a message client suitable for use in this
invention are well known in the art. This knowledge
includes the generation of requests to message store server
24 and catalog server 29 in response to user interactions, and
the handling of the replies that are returned for each request.
The knowledge also includes the processing of events gen-
erated by message store server 24 and catalog server 29 in
order to update the user interface to communicate the
underlying changes in message store 23 and catalog data-
base 28 to the user.

The foregoing description provides a basic framework for
the construction of systems and methods which permit
shortcuts corresponding to messages to be created and
associated together in folders. A single message may have
associated with it a great many shortcuts. The shortcuts can
be associated into folders in such a manner that a user has

US 6,725,228 B1

31

many different ways to view a set of messages. In preferred
embodiments of the invention shortcuts for messages are
generated automatically. This can be viewed conceptually as
a higher level function provided by second layer 74 (FIG. 7).

Second layer 74 provides services which automatically
organize shortcuts to messages into multiple folders based
upon the attributes of the messages. Second layer 74 can also
be used to provide enhanced filtering of messages and to
provide enhanced manual organization of messages.

Implementing second layer 74 may involve adding certain
fields to tables within catalog database 28. FIG. 16 shows
one possible set of added fields for implementing second
layer 74. A SearchCriteria field in folder table 56 contains
search criteria that are encoded as a stream, and which can
be decoded as required.

Several fields are added to MessageSummary table 52 as
follows:

Direction identifies the direction of the message. Values
are (drSend, drReceive).

SendState indicates the state of an outgoing message.
Values are (ssUnsent, ssWaitingSend, ssSent).

IsDeleted indicates whether a message has been logically
deleted.

IsActive indicates whether a message is in an active state.
When a message is added to catalog database 28
IsActive is initially set to True.

IsKept indicates whether message deletion is to be pre-
vented.

IsTagged indicates whether the message is marked with a
tag (or a flag).

IsToDo indicates whether a follow-up action is required
for the message.

KeywordList is an array of keywords, encoded so that

each keyword can be extracted separately.

When catalog 28 is created it may be populated with an
initial set of folders. An example of a possible initial set of
folders is the set of folders shown in FIG. 17 which are not
marked with asterisks. Folders in FIG. 17 which are marked
with asterisks are typically created subsequently as they are
required. Alternate embodiments of the invention could have
different initial sets of and arrangements of folders without
departing from the invention. The Folders that are added
when catalog database 28 is initialized may be termed
“system folders”. Table IV describes a set of rules according
to which shortcuts are added to the second layer folders
including the folders shown in FIG. 17. Each system folder
preferably has a pre-assigned Folderld so that catalog server
29 can read any desired system folder simply by specifying
its FolderId.

TABLE IV

RULES FOR SECOND I AYER FOLDERS

Folder

Description Rules/Notes

A. Status

Folders

Deleted Create shortcut in “Deleted” folder if

IsDeleted is True. Create no other
shortcuts for the message.

Create shortcut in “Active Mail” folder if
IsActive is True.

Note: The “Active Mail” folder is intended
as a repository for messages which the

Active Mail

Page 50 of 57

w

10

15

20

25

30

35

40

45

50

55

60

32

TABLE IV-continued

RULES FOR SECOND IAYER FOLDERS

Folder
Description

Rules/Notes

Drafts

Kept

Received

Sent

Tagged

To Do

Unread

Waiting Send

B. Date Folders

Today

Yesterday

This Week

Last Week

<Month Folder>

user is actively dealing with. The
processing for the MessageAdded event sets
IsActive to True for each new message. If
supported by message client 27, the user
can manually set IsActive to False to
remove the shortcut from this folder when
he/she is finished dealing with an active
message.

Create shortcut in “Drafts” folder if
Direction is drSend and SendState is
ssUnsent.

Create shortcut in “Kept” folder if IsKept
is True.

Note: The IsKeep flag is designed to
prevent the accidental deletion of
messages, and requires the appropriate
support from message client 27 and message
store server 24.

Create shortcut in “Received” folder if
Direction is drReceive.

Create shortcut in “Sent” folder if
Direction is drSend and SendState is
ssSent.

Create shortcut in “Tagged” folder if
IsTagged is True.

Note: The IsTagged flag is designed for
the user to tag messages to which he/she
wishes to pay special attention, and
requires the appropriate support from
message client 27 and message store server
24.

Create shortcut in “To Do” folder if
IsToDo is True.

Note: The IsToDo flag is designed for the
user to identify messages on which he/she
needs to take follow up action, and
requires the appropriate support from
message client 27 and message store server
24.

Create shortcut in “unread” folder if
IsUnread is True.

Create shortcut in “Waiting Send” folder
if Direction is drSend and SendState is
ssWaitingSend

Create Timed Shortcut in “Today” folder if
MessageDateTime is within the current day.
The shortcut expires at midnight of the
current day.

Create timed shortcut in “yesterday”
Folder if MessageDateTime is within the
previous day. The shortcut expires at
midnight of the current day.

Create timed shortcut in “This Week”
folder if MessageDateTime is within the
current week. The shortcut expires at the
end of the current week.

Create timed shortcut in “Last Week”
folder if MessageDateTime is within the
previous week. The shortcut expires at the
end of the current week.

Convert MessageDateTime to a display date
that contains just year and month (e.g.
“1999 Nov”). Use the display date to read
within the “Date” subtree of the folder
table using AlternateKey2. If a folder is
not found, then create a folder within the
“Date” subtree with a FolderName of the
display date. Create a shortcut in the
folder.

US 6,725,228 B1

33

TABLE IV-continued

RULES FOR SECOND LAYER FOLDERS

Folder

Description Rules/Notes

C. Attachment
Folders

Create a shortcut in the “All Attachments”
folder for each AttachSummary in the
message. Note that the AttachSummary needs
to be saved in the ShortcutEntry for use
when building the Shortcut SortKey.

For each AttachSummary in the message, use
the AttachType to read within the
“Attachment” subtree of the Folder table
using AlternateKey2. If a folder is not

found, then create a folder within the
“Attachment” subtree with a FolderName of
the AttachType. Create a shortcut in the
folder. Note that the AttachSummary needs
to be saved in the ShortcutEntry for use
when building the Shortcut SortKey.

All Attachments

<Attachment Type
Folder>

D. Keyword
Folders

<Keyword Folder> For each Keyword in the KeywordList, use
the Keyword to read within the “Keyword”
subtree of the folder table using
AlternateKey2. If a folder is not found,
then create a folder within the “Keyword”
subtree with a FolderName of the Keyword.
Create a shortcut in the Folder.

Preferred embodiments of this invention automatically
organize messages into multiple folders without any user
intervention. The organization may be based either on native
properties of the message (e.g. MessageDateTime) or on
properties over which the user has control (e.g. Keywords
which the user assigns to a message), or both. Catalog server
29 may apply automatic organization rules when processing
shortcuts for a message as shown in step 103 of FIG. 10B.
When the rules state that new shortcuts should be created,
catalog server 29 uses the “AddChangeShortcut” method
(FIG. 10C) to create the new shortcuts. An example set of
rules for creating shortcuts in the folders of FIG. 17 is
provided in Table I'V.

The invention can also provide message filtering using
message filtering rules to determine folders into which a
shortcut to a particular message should be, or should not be,
put. Various systems for applying filtering rules to messages
are known to those skilled in the art. Such systems may be
used for applying filtering rules in this invention as well if
modified to create shortcuts according to this invention
instead of creating multiple separate copies of each message.
The filter engine is invoked when processing shortcuts for a
message as shown in step 104 of FIG. 10B. The filter engine
may use the “AddChangeShortcut” method of FIG. 10C to
create a shortcut in each desired folder.

Preferably user interface 25 permits a user to manually
select a message and add shortcuts to the selected message
to a folder of the user’s choice. Such shortcuts can be created
by generating an AddShortcut request in response to the
user’s input. Those skilled in the art will be able, in light of
the foregoing disclosure, to create a message client which
provides a suitable user interface for permitting users to
manually create and manage folders, and to add or delete
shortcuts from these folders. Message client 27 can generate
and use AddFolder, ChangeFolder, DeleteFolder, AddShort-
cut and DeleteShortcut requests to cause shortcuts to be
placed in user defined folders according to a user’s input. In

Page 51 of 57

10

15

20

25

30

35

40

45

50

55

60

65

34

the currently preferred embodiment of the invention, user
created folders created under a “User Folders” folder. All
user created folders are thus placed in the “User Folders”
subtree. Advantageously a user can manually organize the
same message into multiple folders without making multiple
copies of the message.

Preferred embodiments of the invention include a search
engine, which may be, but is not necessarily, incorporated in
catalog server 29 for searching catalog database 28 for
messages which meet a user’s search criteria. The search
engine preferably creates shortcuts to messages which sat-
isfy the search criteria and places the resulting shortcuts into
a “saved search results” folder. The SearchCriteria field in
the Folder table of catalog database 28 provides a place for
the search engine to store the search criteria associated with
the folder. The search engine can manipulate search results
folders through the use of AddFolder, ChangeFolder,
DeleteFolder, AddShortcut and DeleteFolderShortcuts
requests. In the current embodiment these search results
folders are automatically placed in a “Search Results”
subtree beneath a system folder named “Search Results”.
The net result is the ability to create multiple search results
folders each of which contains the results of a user initiated
search as well as the information (SearchCriteria) needed to
re-run the search upon demand (or periodically).

Preferred embodiments of the invention automatically
recognize correspondents and make possible sophisticated
organization of messages into folders defined for recognized
correspondents. These functions are performed in third
logical layer 76. Third layer 76 functions can also automati-
cally separate “Bulk Mail” from other mail. Third layer 76
operates by associating addresses with folders, and then
using this relationship to automatically create shortcuts,
addresses and folders.

The preferred embodiment of the invention automatically
creates a folder for each recognized correspondent. All
messages received from the correspondent and all messages
sent to the correspondent are visible in that correspondent
folder. Preferably catalog server 29 does not immediately
create a visible folder for every new correspondent that it
identifies. In some cases a user will receive a message which
has been sent to a large number of others in addition to the
user. Catalog server 29 preferably creates a folder for every
new correspondent that it identifies but permits a user to
keep these folders hidden until an event or pattern of
behaviour emerges which identifies the correspondent asso-
ciated with the folder as being a recognized correspondent.
Correspondents who have not yet become recognized cor-
respondents may be termed “pending correspondents”. Bulk
mail is automatically made visible in the “Unsorted” folder.

The user is then able to impose their will upon this
automatic organization by creating new bulk mail folders, by
merging or separating correspondent folders, by merging or
separating bulk mail folders, or by changing selected cor-
respondent folders into bulk mail folders and vice versa. The
final result is a highly organized set of correspondent and
bulk mail folders that involved very little effort on the part
of the user to create. New messages continue to be auto-
matically organized into all the appropriate correspondent
and bulk mail folders, and new correspondent folders con-
tinue to be created automatically as required.

Third layer 76 uses of the services of second layer 74, as
well as the Direction, SendState and IsDeleted Message-
Summary fields described above. To support third layer 76,
catalog database 28 has some additional fields and tables as
shown in FIG. 18. An address table 58 contains address
information. This table associates an address with a corre-

US 6,725,228 B1

35

spondent or a bulk mail folder. A folder may be associated
with zero or more addresses. Address table 58 is preferably
sparsely populated, and contains entries only for meaningful
addresses. It is not necessary to maintain full referential
integrity between address table 58 and MessageSummary
table 57. While the invention could be practised with a fully
populated address table 58 in which referential integrity is
maintained with MessageSummary table 57 by means of a
Address-MessageSummary Relationship table it is believed
that this would provide significantly degraded performance.

The keys defined for address table 58 in a preferred

embodiment of the invention are as follows:

The PrimaryKey is Addressld. This key uniquely identi-
fies a row in Address table 58.

AlternateKey1 is Uppercase(AddressString). This key is
used to read address table 58 by the AddressString field.
Duplicates are not allowed.

AlternateKey2 is Folderld. This key is used as a foreign
key to associate an Address with a Folder. Duplicates

are allowed.
The fields of Address table 58 are:

AddressId A non-zero value that uniquely identifies a row
within the Address table.

A non-zero value that uniquely identifies a row
within the Folder table.

The address used by the underlying message
transport protocol (e.g., an SMTP address or an
X.400 address)

Identifies the type of address. Values are
(atNoAddress - which indicates that there is no
matching address in catalog database 28,
atMyAddress - which indicates an address of the
user of the messaging system, atCorrespAddress
- which indicates an address of a recognized
correspondent, atBulkAddress - which indicates
an address of a recognized source of bulk
mail).

Indicates whether the related folder has

been identified as a pending correspondent
folder.

Folderld

AddressString

AddressType

IsPendingCorresp

The following additional field may be added to Folder
table 56 in catalog database 28 to implement the functions
of third layer 76:

Indicates whether the Folder has been
identified as a pending Correspondent
Folder

IsPendingCorresp

The following additional fields may be added to Mes-
sageSummary table 52 to implement the functions of third
layer 76:

AddressList (Array of [AddressRole+AddressString+
AddressName])—encoded so that each element can be
extracted separately.

The components of the AddressList are:

AddressRole Identifies the role of the Address. Values are
(arFrom, arSender, arTo, arCe, arBec) . For
example, an address in the RFC 822 “From:”
header would be assigned an AddressRole of
arFrom. Similarly addresses in the “Sender:”,
“To:”, “Cc:” and “Bece:” headers would be

assigned AddressRoles of arSender, arTo, arCc,

Page 52 of 57

10

15

20

25

30

40

45

50

55

60

65

36

-continued

and arBec respectively. Similar mappings can be
made for other messaging protocols.

AddressString The address used by the underlying message
transport protocol (e.g., an SMTP address or an
X.400 address).

AddressName The display name associated with an address, if

available.

When a catalog database 28 according to the preferred
embodiment of the invention is initialized, it contains sys-
tem folders for “Correspondents”, “Me”, “Bulk Mail” and
“Unsorted” messages as shown in FIG. 19. Details of these
folders are provided in Folder table 56. Third layer 76
functions use knowledge of addresses that are associated
with the messaging system user to classify messages accord-
ing to their relationship to the messaging system user. A
messaging system user may have multiple addresses. These
addresses may be obtained by examining the messaging
system’s configuration information. In the alternative mes-
sage client 27 may provide an interface which requests that
the user enter his/her address(es) through the user interface.
Each of these addresses is added as a row in Address table
58 using an AddMyAddress request.

FIG. 20 shows incoming requests that may be processed
by catalog server 29 for implementing the functions of third
layer 76. The processing for these incoming requests is
shown in Table V. If any request cannot be processed as
described, the ResultCode is set to indicate the error that
occurred.

TABLE V

THIRD LAYER REQUESTS

Incoming
Request Processing Reply
AddMyAddress Build a new Address using: =
= - Folderld of the “Me” system ResultCode
AddressString folder
- AddressString from request
- AddressType of atMyAddress
Add the address to catalog
database 28;
Build reply.
ReadFolderAddr Read all Addresses for the =
esses Folder using AlternateKey2 ResultCode
= FolderId Build Reply +
AddressCount
+ Array of
Address
MoveAddress Process as shown in FIG. 26 =
= Build Reply ResultCode
AddressString
+
TargetFolderld
ProcessAddress Process as shown in FIG. 27 =
Queue Build Reply ResultCode

Third layer 76 applies a set of rules to automatically create
shortcuts to messages and to associate those shortcuts with
correspondents. This set of rules is preferably executed by
catalog server 29 when processing shortcuts for a message
as shown in step 105 of FIG. 10B. Catalog server 29 can use
the “AddChangeShortcut” method (FIG. 10C) to create new
shortcuts. It is advantageous to apply the rules of third layer
76 in two phases. In a first phase information about the
addresses in a message is gathered and placed in memory
structures. Suitable memory structures are illustrated in
FIGS. 21A, 21B and 21C. The memory structures include an
AddressArray 217 (FIG. 21A), StateCounters 218(FIG.

US 6,725,228 B1

37

21B) and StateFlags 219 (FIG. 21C). FIG. 22 shows a
possible method 220 for building the memory structures.

The way in which third layer 76 generates shortcuts to a
message in bulk mail or correspondence folders depends
upon the status of the message. If a message is logically
deleted, then second layer 74 (step 103 of FIG. 10B) creates
a shortcut in the “Deleted” folder and no other shortcuts.
Third layer 76 performs no processing for logically deleted
messages. If a message is unsent (as detected at step 221)
then third layer 76 creates no shortcuts, and classifies the
message as correspondence (as opposed to bulk mail) by
setting IsCorresp to True (step 222).

For all other messages, AddressArray 217 is initialized to
an empty state, StateCounters 218 are set to zero, and
StateFlags 219 are set to False (step 223). Then, each
element in the MessageSummary’s AddressList is retrieved
(step 224), and an AddressEntry is created and added to
AddressArray 217 as shown in FIG. 22. AddressEntry 217
is processed as follows:

AddressRole, AddressString and AddressName are set

from values in the AddressList element (step 226);

Addressld and Folderld are set to zero and AddressType
is set to atNoAddress (step 226);

IsPendingCorresp, IsConfirmedCorresp and CreateShort-
cut are set to False (step 226);

StateCounters 218 are incremented as shown in FIG. 21B
(step 227);

The address is read from catalog database 28 (step 228)
using AlternateKey1. If the Address is found (step 229),
then Addressld, Folderld, AddressType and IsPending-
Corresp are set from values in the Address (step 230);
and,

StateFlags 219 are set as shown in FIG. 21C (step 231).

When all of the elements in the AddressList of the
MessageSummary for a message have been retrieved, as
determined by step 225, then AddressArray 217 created by
method 220 is processed. This may be done by a method 235
as shown in FIG. 23. For each entry in AddressArray 217,
the following processing is performed:

Each entry in AddressArray 217 is retrieved (step 236);

The correspondent and bulk mail rules shown in FIGS.
24A and 24B are applied (step 238);

If, after applying the rules, the CreateShortcut flag is True,
as determined at step 239,then:

If Addressld is zero, as determined at step 240, the
required address and folder are added to catalog
database 28 as shown in FIG. 25A “AddAddress-
Folder” (step 240A).

Otherwise, if IsPendingCorresp is True and IsCon-
firmedCorresp is True, as determined at step 241
then the correspondent is upgraded from a pending
state, as shown in FIG. 25B “UpgradePendingCor-
resp” (step 241A).

The requested Shortcut is generated by using the
AddChangeShortcut method of FIG. 10B (step 242).

ShortcutCount (FIG. 21B) is incremented (step 242).

When all entries in AddressArray 217 have been processed
as determined at step 237, ShortcutCount is examined to
determine if any Shortcuts were generated (step 243). If no
Shortcuts were generated, then a shortcut to the message is
added to the “Unsorted” Folder using the “AddChange-
Shortcut” method of FIG. 10B, and IsBulkMail is set to True
(step 243A). Finally, the IsCorresp field in the Message-
Summary is set to NOT(IsBulkMail) (step 243B).

The Correspondent and bulk mail rules applied in step
238 are shown in FIGS. 24A and 24B. These rules are

Page 53 of 57

10

15

20

25

30

35

40

45

50

55

60

65

38
applied to each AddressEntry in AddressArray 217. The
functions of the rules can be briefly explained as follows:

Rule Bl - This rule creates a shortcut for an existing

bulk mail address.

This rule creates a shortcut for an existing
correspondent address if a received bulk mail
message was also addressed directly to the user
by the existing correspondent.

This rule creates a shortcut for an existing
correspondent address if a sent bulk mail
message was also addressed by the user directly
to the existing correspondent.

This rule results in no additional shortcuts
being created for a bulk mail message, (other
than any shortcuts created by preceding rules)
This rule creates a Shortcut in the “Me” folder
for a sent message if the message contains an
address belonging to the “Me” folder.

Where a sent message does not contain an
address belonging to the “Me” folder, and the
message contains a “From” address but no
“Sender” address, this rule adds the “From”
address to the “Me” folder and creates a
shortcut in the “Me” folder. This rule is not
required for the successful operation of the
invention, but is a convenience if the user
changes his/her address. The rule assumes that
if the “From” and “Sender” addresses are
identical then only the “From” address is
present in the message, as is the case with RFC
822 e-mail messages. For messaging systems that
populate both the “From” and “Sender” addresses
regardless of whether they are identical, it
would be necessary to modify the implementation
to handle this situation. The preferred

solution would be to not add a “Sender” address
to the AddressList if the “Sender” address is
identical to the “From” address.

This rule creates a Shortcut for the “To”
address in a sent message if the message has
only a single “To” address and no “Cc” or “Bee”
addresses. If the address does not exist in
catalog database 28 then the address and an
associated folder are created as a confirmed
correspondent (i.e. IsPendingCorresp is False)
If the address and folder exist as a pending
correspondent, they are upgraded to a confirmed
correspondent.

This rule creates a shortcut for the “To”, “Cc”
or “Bee” addresses in a sent message if a
shortcut hasn’t already been created for the
address. If the address does not exist in

catalog database 28 then the address and an
associated folder are created as a pending
correspondent (i.e. IsPendingCorresp is True)
This rule creates a shortcut in the “Me” folder
for a received message if the message is
addressed to me and contains an address
belonging to the “Me” folder.

This rule creates a shortcut for the “From” and
“Sender” addresses in a received message if the
message is addressed to the user. If the

address does not exist in catalog database 28
then the address and an associated folder are
created as a confirmed correspondent (i.e.
IsPendingCorresp is False). If the address and
folder exist as a pending correspondent, they
are upgraded to a confirmed correspondent.
This rule creates a shortcut for a existing
correspondent where the message is sent by the
existing correspondent but is not addressed to
the user. The message could either be bulk mail
or could be a blind carbon copy to the user -
there is no way of determining this for
messages where all “Bec” information is
completely suppressed.

Rule B2 -

Rule B3 -

Rule B4 -

Rule S1 -

Rule S2 -

Rule S3 -

Rule S4 -

Rule R1 -

Rule R2 -

Rule X1 -

US 6,725,228 B1

39

IsToMe, IsFromKnownCorresp, IsFromMe,
IsToKnownCorresp, are StateFlags 219 as shown in FIG.
21C. These flags contain the results of Boolean expressions
which respectively indicate: whether the message is
addressed to the message system user; whether the message
is from a recognized correspondent; whether the message is
from the message system user; and whether the message is
addressed to a recognized correspondent. The terms Orig-
inCount and ToCount respectively are StateCounters 218 as
shown in FIG. 21B. These StateCounters contain respec-
tively: the number of senders of a message (a message can
have multiple senders if it is sent by one messaging user on
behalf of another user) and the number of direct recipients
of a message (for e-mail messages this is the same as the
number of To: addresses).

Third layer 76 preferably permits a user to manually
change the Address/Folder relationships, and then to update
catalog database 28 based on these changes. FIG. 26 shows
a method 260 for associating an address with a folder.
Method 260 is initiated by a MoveAddress request. The
address identified in a MoveAddress request may either
already exist in catalog database 28 or be a new address.
Method 260 checks to determine if the address is being
associated with the “Unsorted” folder (step 261). A feature
of the sparsely populated Address table is that a message
with a shortcut in the “Unsorted” folder has no other
Correspondent or Bulk Mail shortcuts, and the “Unsorted”
Folder has no addresses associated with it. Consequently,
MoveAddress processing is preferably performed to delete
an address from catalog database 28 (step 262) if a message
is moved to the “Unsorted” Folder.

If the address is being moved so that it will be associated
with a folder other than the Unsorted folder an attempt is
made to read the address from catalog database 28 (step
263). If the address is not found, as determined at step 264,
then a record for the address is created in catalog database
28 (step 265). The address record is then updated in catalog
database 28 (step 266).

The MoveAddress request also adds the AddressString to
an AddressQueue (step 267). The AddressQueue can be
processed using the ProcessAddressQueue request as illus-
trated in FIG. 27. The AddressQueue can be a list of
AddressStrings that is written to a text file or some other
storage medium. Multiple AddressStrings may be added to
the AddressQueue so that the processing of the Address-
Queue can be deferred if desired.

After a user has associated addresses with particular
folders the message system processes the message summa-
ries in catalog database 28 to determine whether the changes
to the addresses requires any shortcuts to be added or
deleted. This may be done by the method 270 of FIG. 27.
Method 270 reads all MessageSummaries in catalog data-
base 28, and for each MessageSummary determines if the
AddressList in the MessageSummary contains at least one of
the AddressStrings in the AddressQueue (step 272). If so,
shortcuts for the message are processed (step 273) as shown
in FIG. 10B, which adds, updates, or deletes Shortcuts based
on the current Address/Folder relationships. If the IsCorresp
value in the MessageSummary changes as a result of this
processing, then the MessageSummary is also updated in
catalog database 28 (step 273).

In method 270 all message summaries are read by posi-
tioning at a first message summary (step 271A) and then
reading message summaries sequentially (step 271B) until it
is determined that all message summaries have been read
(step 2710).

Even though the ProcessAddressQueue method reads all
MessageSummaries in catalog database 28 its performance

Page 54 of 57

10

15

20

25

30

35

40

45

50

55

60

65

40

can be quite good where, as is strongly preferred, the
MessageSummary records are quite small. Small Message-
Summary records reduce the time required for physical I/O
operations in reading MessageSummary table 52. Also, no
shortcut processing is performed on message summaries that
are not affected by the updated Address/Folder relationships
(step 272 bypasses such message summaries).

The automatic organization that is performed by third
layer 76 is useful and appropriate, but typically requires
some additional manipulation by the user. This user manipu-
lation can be performed through industry-standard user
interface elements implemented by message client 27, and
then communicated to catalog server 29 using the appropri-
ate requests. An implementation of this invention may
permit a user to perform any of many actions such as the
following (it is assumed in the following discussion that
ProcessAddressQueue Requests are deferred and then sent
to catalog server 29 as desired by the user):

Moving an address from one folder to another can be done
with a MoveAddress request to move the address to the
target folder;

Combining two correspondent folders or two bulk mail
folders into one can be done by:

Using the ReadFolderAddresses request to obtain a list
of addresses in the first folder; and,

Moving each of the addresses from the first folder to the
second folder using the MoveAddress request.
Deleting shortcuts from a source folder can be done using
the DeleteFolderShortcuts request.
Deleting a folder can be done using the DeleteFolder
request.
Changing a correspondent folder into a bulk mail folder
can be done by:
creating a new bulk mail folder with the CreateFolder
request;

using the ReadFolderAddresses request to obtain list of
addresses in the correspondent folder;

moving each address to the bulk mail folder using the
MoveAddress request;

deleting the shortcuts from the correspondent folder
with the DeleteFolderShortcuts request; and,

deleting the correspondent folder with the DeleteFolder
request.
Changing a bulk mail folder into a correspondent folder
can be done by:
creating a new correspondent folder with the Create-
Folder request;

using the ReadFolderAddresses request to obtain a list
of addresses in the bulk mail folder;

moving each address to the correspondent folder with
the MoveAddress request;

deleting shortcuts from the bulk mail folder with the
DeleteFolderShortcuts request; and,

deleting the bulk mail folder with the DeleteFolder
request.

Creating a new bulk mail folder can be done with the
CreateFolder request.

Associating an address with a bulk mail folder can be
done with the MoveAddress request.

Removing an address from a bulk mail folder (this would
be done, for example, when the message system user no
longer wants bulk mail organized based on the address)
can be done by moving the address to the “Unsorted”
folder with the MoveAddress request.

The methods of third layer 76 can automatically distin-

guish a possible (or pending) correspondent from a con-

US 6,725,228 B1

41

firmed correspondent, and automatically upgrade a pending
correspondent to a confirmed correspondent when appropri-
ate.

Preferred implementations of the invention include a
computer system programmed to execute a method of the
invention. The invention may also be provided in the form
of a program product. The program product may comprise
any medium which carries a set of computer-readable sig-
nals corresponding to instructions which, when run on a
computer, cause the computer to execute a method of the
invention. The program product may be distributed in any of
a wide variety of forms. The program product may comprise,
for example, physical media such as floppy diskettes, CD
ROMs, DVDs, hard disk drives, flash RAM or the like or
transmission-type media such as digital or analog commu-
nication links.

It can be appreciated that the preferred embodiment of the
invention described above permits messages to be organized
in new ways including:

automatic organization of messages into multiple folders

based on message status, e.g. Active Mail, Deleted,
Drafts, Received, Sent, Waiting Send and Unread;

automatic organization of messages into multiple folders
based on the message date, e.g. Today, Yesterday, This
Week, Last Week, and Month;

automatic organization of messages into multiple folders
based on attachment type;

automatic organization of messages into multiple folders
based on user assigned values, e.g. Kept, Tagged, To
Do, and Keywords;

support for user overrides of automatic organization by
letting the user include a message in or exclude a
message from any folder;

automatic organization of messages into multiple folders
based on correspondent;

automatic separation of bulk mail from correspondence;

techniques to manage correspondent and bulk mail fold-
ers;

support for multiple saved search results folders; and

support for improved filtering mechanisms.

The invention may be applied to organizing e-mail mes-
sages. An e-mail client which embodies the invention may
provide a unified view of multiple message stores through
the use of shortcuts. One useful application is creating a
catalog database 28 for both a mailbox containing recent
e-mail messages and one or more archived message stores.
Use of the preferred embodiment of the invention permits a
user to identify potentially important messages among less
important messages by separating bulk mail from correspon-
dence and by letting users identify hot folders. Users can
manage the flow of messages through use of the ActiveMail
folder and the ToDo status folder.

As will be apparent to those skilled in the art in the light
of the foregoing disclosure, many alterations and modifica-
tions are possible in the practice of this invention without
departing from the spirit or scope thereof. For example, it
will be understood from the foregoing that in systems or
methods according to various embodiments of the invention:

the preferred embodiment described above uses an event-

driven architecture wherein software components
inform other software components of certain of
changes by generating events. This is currently consid-
ered to be a good way to implement this invention. An
event-driven architecture is not fundamental to this
invention however. Other software techniques could

Page 55 of 57

10

15

20

25

30

35

40

45

50

55

60

65

42

also be used to coordinate the operation of the various
components of this invention.

The description above has broken the software compo-
nents used to practise the preferred embodiment of the
invention into discrete logical components. In any
particular implementation it would be possible to com-
bine multiple logical components into a single compo-
nent. For example, the functions of message store
server 27 and catalog server 29 could be integrated into
a single component. Software components which are
described herein as being a single component could
also be split into multiple sub-components without
departing from this invention.

While much of the functionality of the preferred embodi-
ments described above has been expressed as being
provided by the same software that operates as a server
for catalog database 28 this is convenient but not
necessary to the practice of the invention;

While the term database has been used in this specifica-
tion primarily to refer to relational databases this is not
required in all cases.

any number of mechanisms can be implemented in the
user interface to let a user manipulate folders and
messages, including pop-up menus, accelerator keys,
dialog boxes, and drag-and-drop operations.

While it is not preferred, the same filter engine could be
used to apply both automatic organization rules and
filtering rules.

The invention may be applied to many different message
types.

The invention may be used in conjunction with many
different user interfaces on many different display
devices.

The names of methods, requests, and events can be
changed.

Accordingly, the scope of the invention is to be construed in
accordance with the substance defined by the following
claims.

What is claimed is:

1. A method for organizing electronic messages compris-

ing:
providing an electronic message, the electronic message
comprising a plurality of properties;
generating a plurality of shortcuts to the electronic
message, each of the shortcuts comprising a record in
a database, each record comprising a Folderld value
associating the shortcut with a different one of a plu-
rality of folders and a Messageld value associating the
shortcut with the message
wherein each of the records comprises a SortKey value,
and the method comprises:
identifying a sort field for at least one of the folders;
and,

for each of a plurality of shortcuts associated with the
at least one of the folders setting the SortKey value
based upon a value corresponding to the shortcut in
the sort field

wherein setting the SortKey value for each of the
shortcuts comprises retrieving a most significant
portion of a value for the sort field corresponding to
the shortcut and basing the SortKey value on the
most significant portion of the value for the sort field.

2. The method of claim 1 wherein each of the shortcuts

has a size of 64 Bytes or less.

3. The method of claim 1 wherein each of the shortcuts

has a size of 32 Bytes or less.

US 6,725,228 B1

43

4. The method of claim 1 wherein each of the shortcuts
has a size of 24 Bytes or less.

5. The method of claim 1 wherein the message has an
attachment and the shortcut additionally comprises an
Attachld value identifying the attachment.

6. The method of claim 5§ wherein the attachment is stored
in a data store and the Attachld value identifies the attach-
ment in the data store.

7. The method of claim 5 wherein the attachment is stored
in a data store and the Attachld identifies an Attachment-
Summary record in the database, wherein the Attachment-
Summary record contains information identifying the
attachment in the data store.

8. The method of claim § comprising identifying a type of
the attachment and automatically creating a shortcut to the
message in a folder corresponding to the type of attachment.

9. The method of claim 8 comprising automatically cre-
ating the folder corresponding to the type of attachment.

10. The method of claim 1 wherein one or more of the
folders is designated as belonging to a first set of folders and
the method comprises displaying on a display a representa-
tion of folders available for selection by a user and, in
response to a user input, suppressing the display in the
representation of folders not belonging to the first set.

11. The method of claim 1 comprising generating a
plurality of shortcuts in the database for each of a plurality
of messages, wherein a first group of the messages is stored
in a first data store and a second group of the messages is
stored in a second data store distinct from the first data store.

12. The method of claim 1 comprising, for a plurality of
messages, identifying one or more e-mail addresses associ-
ated with the message and creating a shortcut to the message
in a folder associated with each of the e-mail addresses.

13. The method of claim 12 comprising applying the rules
of FIG. 24A to each of the e-mail addresses.

14. The method of claim 1 comprising creating the
shortcuts at least in folders associated with each of: a time
associated with the message; a sender of the message; and a
type of attachment associated with the message.

15. Amethod according to claim 1 comprising identifying
a sort direction for the at least one of the folders wherein
setting the SortKey value is also based upon the sort
direction.

16. A method according to claim 1 comprising setting the
SortKey value to the same value for at least two of the
plurality of shortcuts associated with the at least one of the
folders.

17. A method according to claim 1 comprising sorting the
plurality of shortcuts associated with the at least one of the
folders by SortKey value.

18. A method according to claim 1 comprising determin-
ing a format of the sort field and selecting a corresponding
format for the SortKey value wherein setting the SortKey
value comprises writing the SortKey value in the corre-
sponding format.

19. A method according to claim 1 wherein setting the
SortKey value comprises writing the most significant por-
tion of the value for the sort field as the SortKey value.

20. A method according to claim 1 wherein the most
significant portion of the value for the sort field excludes at
least some of the value for the sort field.

21. A method according to claim 1 wherein the shortcuts
comprise records in a shortcut table and the shortcut table
has a key of Folderld+SortKey.

22. A method according to claim 1 wherein retrieving the
most significant part of the value for the sort field comprises
retrieving the value for the sort field and identifying a most
significant part of the retrieved value.

Page 56 of 57

10

15

20

25

30

35

40

45

50

55

65

44
23. A method according to claim 1 comprising:

identifying a set of shortcuts having a Folderld value,
identifying one or more consecutive SortKey values of
shortcuts in the set of shortcuts and identifying as a
subset of the set of shortcuts, all shortcuts in the set of
shortcuts having any one of the one or more consecu-
tive SortKey values,

sorting the shortcuts in the subset according to values in
the sort field corresponding to each of the shortcuts, and

displaying at least some of the shortcuts of the subset in
sorted order.
24. A method according to claim 23 wherein identifying
a subset of the set of shortcuts comprises including in the
subset:

a predetermined number of the shortcuts taken in order of
the SortKey values of the shortcuts; and

all shortcuts having a SortKey value equal to the SortKey
value of a last one of the shortcuts in the predetermined
number of the shortcuts.

25. A computer readable medium containing instructions
which, when executed on a computer system, cause the
computer system to implement the method of claim 1.

26. A method according to claim 1 wherein the method
comprises:

identifying a new sort field for at least one of the folders;
and,

for each shortcut associated with the at least one of the
folders setting the SortKey value based upon a value
corresponding to the shortcut in the new sort field.

27. A method according to claim 26 comprising identi-
fying a sort direction for the at least one of the folders
wherein setting the SortKey value is also based upon the sort
direction.

28. A method according to claim 26 comprising deter-
mining a format of the new sort field and selecting a
corresponding format for the SortKey value wherein setting
the SortKey value comprises writing the SortKey value in
the corresponding format.

29. A method for locating a stored electronic message, the
method comprising:

selecting a folder, the folder associated with a plurality of
shortcuts, each shortcut associated with a message and
comprising a SortKey value the SortKey value based
upon a value of a sort field corresponding to the
message associated with the shortcut;

requesting a first set of the shortcuts in the folder, the
shortcuts of the first set having one or more consecutive
SortKey values;

receiving the first set of shortcuts;

sorting the first set of shortcuts according to values of the
sort field; and,

displaying a sorted representation of shortcuts in the first
set of shortcuts to a user

wherein the method comprises:

identifying a new sort field for at least one of the
folders; and,

for each shortcut associated with the at least one of the
folders setting the SortKey value based upon a value
corresponding to the shortcut in the new sort field

wherein setting the SortKey value comprises retrieving
a most significant portion of a value for the new sort
field corresponding to the shortcut and basing the
SortKey value on the most significant portion of the
value for the new sort field.

US 6,725,228 B1

45

30. A computer readable medium containing instructions
which, when executed on a computer system, cause the
computer system to implement the method of claim 29.

31. A method according to claim 29 wherein setting the
SortKey value comprises writing the most significant por-
tion of the value for the new sort field as the SortKey value.

32. A method according to claim 29 wherein the most
significant portion of the value for the new sort field
excludes at least some of the value for the new sort field.

33. A method according to claim 29 comprising:

identifying a set of shortcuts associated with a folder,

identifying one or more consecutive SortKey values of
shortcuts in the set of shortcuts and identifying as a
subset of the set of shortcuts, all shortcuts in the set of
shortcuts having any one of the one or more consecu-
tive SortKey values,

Page 57 of 57

46

sorting the shortcuts in the subset according to values in
the new sort field corresponding to each of the
shortcuts, and

displaying at least some of the shortcuts of the subset in
sorted order.
34. A method according to claim 33 wherein identifying
a subset of the set of shortcuts comprises including in the
subset:
a predetermined number of the shortcuts taken in order of
the SortKey values of the shortcuts; and
all shortcuts having a SortKey value equal to the SortKey
value of a last one of the shortcuts in the predetermined
number of the shortcuts.

