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of Gottingen for quantitative evaluation of
stereoradiographs.

The analytical method is very versatile and
accurate and has important advantages over the
analog method, such as increased accuracy of
measurements and superior flexibility of proce-
dure. In cases where the final output is to be

.continuous lines, a computer must be used to

convert the point data into plotter commands.
Thus the analog method might be preferrable in
such cases.

The accuracy of different close-range photo-
grammetric procedures is often determined by
experiments and checks. For standardized
methods, one may use simple rules-of-thumb
gained by experience for judging the accuracy in
a specific case. For other methods, more com-
plex means are applied to determine the accu-
racy of the results. In some methods a rigorous
adjustment of the unknowns also includes the
calculation of standard errors. In these cases,
well-surveyed test fields are used, as in the ex-
periments performed by Hottier (Hottier, 1972,
1974, 1976). For a single stereomodel and ana-
lytical data reduction, he found a considerable
gain in accuracy as a result of measurement re-
dundancy:

when the number of repeated settings per image
point is increased from one to three (gain of about
30% in accuracy);

when the number of targets defining each object
point is increased from one to three (gain of about
40%); and

when the number of frames taken from each station
is increased from one to three (gain of about 40% in
accuracy).

Hottier found no correlation between the gains
in accuracy, the geometry of the photographic
set-up and the type of camera. He reported
(Hottier, 1976) that the maximum gain in accu-
racy is about 50% and that this is obtainable only
through mixing the parameters of measurement
redundancy (setting per image point, number of
targets defining an object point, and the number
of frames per camera station). Hottier’s exten-
sive experiments revealed that there is practi-
cally no gain beyond 7 or 9 total comparator
measurements. The optimum accuracy can be
achieved in a number of combinations, for
example by choosing one setting per image
point, three targets per object point and three
frames per camera station. If one chooses one
setting per image point, one target per object
point, and three frames per camera station, one
would expect some 40% gain in accuracy over
that of the 1-1-1 case (one comparator setting per
image point, one target per object point, and one
frame per camera station), according to Hot-
tier’s extensive experimentations.

In many special applications of photogram-
metry a digital model of the object being mapped
is often a more desirable output than the con-
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ventional contour map, on account of its flexi-
bility, whether one is interested in measuring the
surface geometry or in evaluating the deforma-
tions and movement of objects. A digital model
provides the user with almost unlimited flexibil-
ity in the use of the electronic computer for de-
sign and analysis. Mathematical modeling of a
surface and its behavior can be conveniently
performed using a digital model. Such parame-
ters as surface area and volume as well as de-
formation of surface points can all be computed
directly from the digital model(s). Analytical
methods have been developed to generate con-
tours, cross-sections, profiles and perspective
views directly from digital data.

The analytical approach can obviously be
used in the rather simple case where the inner
and outer orientation parameters of the cameras
are known, but its advantages and versatility be-
come much more pronounced in the most gen-
eral case of photogrammetry where a simulta-
neous solution incorporates the inner and outer
orientation parameters of the cameras (two or
more), and the object-space coordinates of ob-
ject points, all as unknowns. Significant ad-
vances have been made recently in perfecting
the analytical method and in adapting this to
solving problems in close-range photogramme-
try. For example, through the use of advanced
analytical methods, the photogrammetric reduc-
tion of photographs from non-metric cameras
has become possible.

16.2.3.2.1 MATHEMATICAL FORMULATION IN
CLOSE-RANGE PHOTOGRAMMETRY

16.2.3.2.1.1 For Photography from Metric
Cameras. With little or no modifications, many
of the computational methods which were de-
veloped over the years for aerial mapping
(chapter II) and aerotriangulation (chapter IX)
can be applied in close-range photogrammetric
projects. Wong (1976) gave an overview of the
mathematical formulation and digital analysis in
close-range photogrammetry.

16.2.3.2.1.2 For Photography from Non-
Metric Cameras. Because of the lack of fiducial
marks in non-metric cameras, special techniques
had to be devised. Among the approaches par-
ticularly suitable for non-metric photography is
the Direct Linear T ransformation (DLT) ap-
proach developed at the University of Illinois
(Abdel-Aziz & Karara, 1971, 1974, Karara &
Abdel-Aziz, 1974). The solution is based on the
concept of direct transformation from com-
parator coordinates into object-space coordi-
nates, thus by-passing the traditional inter-
mediate step of transforming image coordinates
from a comparator system to a photo-coordinate
system. As such, the solution makes no use of
fiducial marks. The method is based on the fol-
lowing pairs of equations:
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X+ 0 —x) (Kir® + K + KgrS + . ) +
* + Z[X —xo]z)Pt + 20 -y (x —x) Py =
LX+LY+LZ+L,
LoX + LY +L,,Z+1
YH+O —y) K+ Kt + KgS + . ) +
2 —x)) O ~y) Py + (% + 2[)’ ")’o]z)Pzz
LX+LY+LZ+ L,
L X + LY+ L,Z+1

(16.1)

where x and y are the measured comparator co-
ordinates of an image point; x, and ¥, define the
position of the principal point in the comparator
coordinate system; r2 = (x2 + y?); K, K, K, P,
P, are lens distortion coefficients; X , Y, Z are the
object-space coordinates of the point imaged;
and L, to L,, are eleven unknown constants.
When originally presented in 1971 (Abdel-
Aziz and Karara, 1971) the basic equations of
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terms (K, K3, P, P,). Eliminating these terms in
equation (16.1), and substituting x’ for (x ~ xp)
and y' for (y — y,), equation (16.1) can be re-
duced to (assuming that x, = Vo = 0):

LX+LY+LZ+1L,
LX + LY + L, Z + 1

x +x'Krt =

(16.2)
LX + LY + L,Z + L,

LX+L)Y+L,Z+1"

y +y' K+

A complete documeéntation of the computer pro-
gram for the DLT solution was written by Mar-
zan and Karara (1975).

As explained by Wong ( 1976) (see chapter m
two different approaches can be used in solving
equations (16.2). (a) Direct approach. The fol-
lowing equations can be derived directly from
equation (16.2)

LiX + L)Y + L,Z + L, ~ xXL, — XYLy —xZL,, — xKP’A ~x =r,

(16.3)

LX + LgY + L,Z + Ly — yXL, — YYLiy —yZL, — yKs®A —y =1,

DLT did not involve any camera interior orien-
tation constants, and represented a direct linear
transformation between comparator coordinates
and object-space coordinates. When the DLT
mathematical model was later expanded to en-
compass’interior orientation constants the title
‘DLT was retained.

rz + X -Y-Z-1 0 0 0 O0xXxYxZx? X -0
ry 0 0 0 0 -X-Y ~-Z -1 yX yYyZ yr*

The number of constants of interior orienta-
tion taken into consideration in equations (16.1)
depends on the degree of comprehensiveness
desired. On the basis of experimental investiga-
tions, Karara'and Abdel-Aziz ( 1974) concluded
that, for all practical purposes, only the term K,
needs to be taken into account in modeling lens
. distortions and film deformations. In the cases
tested by them, no significant improvement in
accuracy was gained by incorporating additional

; Y zZ 1 xX

V., — X‘L, - XLQ— XL:, - Z‘L4+ TLQ-O-
X Y z 1 yX

Vy — "A—Lﬁ—- XLS—_- XL,-!- XLB+ 'A—L9+

.4Y
LL:O +

Y
2, +

in whichA = L X + LoYLZ+ 1,andr, and r,
are the residual errors on the condition equa-
tions. '

Letting AKX, =K', equation (16.3) can be re-
duced to the following matrix equation:

(16.4)
Y

inwhich L = {L, L, L,. . L K"

Each object-point which has known object-
space coordinates (X, Y,Z) gives rise to two such
equations. A minimum of six control points are
needed for a unique solution of the 12 unknowns
in the L-matrix. It is a direct solution and no

, iteration is needed. (b) Iterative approach, Let

V. and V, represent the small random errors in
the measured (comparator) coordinates. The
following equations can be derived from equa-
tion (16.2) by omitting the effects of V.andV,in
the lens distortion constant X ‘-

24

A

L, +xr’K, + =0

X
A
(16.5)

yZ Y
—A—L,, + yriK, + 1—‘1— =
in whichAd =L, X + LY + LZ + 1.

Since equation (16.5) is non-linear, it must be
linearized and the subsequent least squares
solution must be iterative.
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In the DLT approach object-space control
points should be well distributed. One must
avoid having all object-space control points in

" one plane. As much deviation from the planar

arrangements as can be allowed by the depth-

. of-field is highly recommended.

Having computed the coefficients from all the
photographs, the object-space coordinates of
any object point which is imaged in two or more
photographs are then computed.

In the DLT method, the eleven constants (L,,
L,,....,L,)are considered as independent. In
1977 Bopp and Krauss developed an exact solu-
tion to the DLT basic equations (referred to by
them as the ‘‘11-parameter solution’’), in which
they took into account the dependency between
these eleven constants and the nine independent
constants necessary to represent the ‘‘perfect
camera’’ (Bopp and Krauss, 1977). This was
done by introducing two constraints, which are:

L3+ L+ LY - LR+ L+ LY

+ [(LsLy + Lg Ly + Ly L)
—(LyLy+ Ly Lyg + Ly L)
(L3 + L% + L2y 1 =0
and (16.6)
(L Ly +LyLg+ Ly Ly
~ (I3 + L2+ L2y ' (L Ly+ Ly Ly + Ly L)
(LsLy+ LgLyy + L, L) =0.

The constraints are incorporated in the solution
as additional observation equations with zero
variances.

This method leads to a least squares adjust-
ment with linear fractional observation equa-
tions and non-linear constraints. The constants
are computed iteratively using three-dimension-
al, object-space control. With these constants,
the object space coordinates of all image-points
contained in at least two photographs can be
determined in a second step. In contrast to the
DLT, the ‘““‘11-parameter solution’’ can also be
applied to cases where the known interior orien-
tation should be kept.

Another method particularly applicable for
non-metric cameras is the self-calibration

method developed at the University of New
Brunswick (Faig, 1976).

16.2.3.2.2 ON-LINE ANALYTICAL
PHOTOGRAMMETRY

On-line analytical photogrammetry is analyt-
ical photogrammetry in which the computer is
connected directly to the comparator on which
measurements are being made. (Use only of
stereocomparators will be considered in this
section.) The operator usually has control of the
progress of computation not only through his use
of the stereocomparator but also through a
keyboard from which he can give instructions to
the computer during the compilation. The theory

for this kind of photogrammetry is identical to
that used when measurement is completed be-
fore giving the data to the computer. However,
because of the great variety of problems en-
countered in close-range photogrammetry, the
more immediate control that the operator has
over the computations in on-line analytical
photogrammetry as compared with the ‘‘batch’’
method is sometimes advantageous.

16.2.3.2.2.1 Typical Features of Close-Range
Photogrammetry. One of the main features of
close-range photogrammetry is the absence of
standard conditions for photography. For in-
stance, the range of photographic scales is quite
different in such applications as photography of
human beings and the photography of architec-
tural monuments. The object may be stationary,
as in the photography of ships under construc-
tion, or moving so rapidly as to rapidly as to
require special cameras, as for ballistics. The
object may be very small and close, as in the
photography of teeth, or vast and at the upper
range of distance, as in the photography of open-
pit mines.

This absence of standard conditions means,
for analytical photogrammetry, that either the
theory must be so complex that it can handle all
situations, or it must be broken up into a number
of separate theories each adapted to particular
sitnations. For example, while the equations for
central projection are suitable, with only slight

. modification, in aerial and terrestrial photo-

grammetry, they often require great modifica-
tion to be applicable to problems in close-range
photogrammetry. This is particularly true when
photographs are taken with special lens systems
such as fish-eye or anamorphic lenses.

A properly formulated program for on-line an-
alytical photogrammetry has the capability of
dealing efficiently with a variety of different
problems. This may be an advantage when dif-
ferent problems must be solved rapidly or when
the same kind of problem must be solved with a
variety of different initial conditions.

16.2.3.2.2.2 Analytical Formulations. From
the operational point of view there are three
basic phases of an on-line analytical operation:

definition of the image geometry;
reconstruction of the photogrammetric model; and
detailed photogrammetric compilation of the model.

In defining the image geometry one actually
chooses from existing models by determining the
type of general conditions, and further specifies

the characteristics of the image by its interior .
orientation and distortion parameters. Obvi--

ously, the image geometry essentially affects the
process in the following operational phases. The
reconstruction of a photogrammetric model re-
sults in a good description of relations between
the images and the object by means of the pa-
rameters of exterior orientation. The recon-
struction phase includes a one-step collection of
measured data and usually an iterative solution
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of the parameters. The compilation phase repre-
sents an operation appearing practically con-
tinuous even though it is simulated by a fast re-
petitive cycle of digital computations. These
proceed in a stream of densely spaced discrete
data points defined by the operator’s control of
the floating mark in the observed optical model.
In general, this computation is based on trans-
formations between the model and image spaces

with the use of all previously derived parameters -

of interior and exterior orientation. Included in
the computations are corrections for image dis-
tortions.

In general, two different groups of parameters
characterize the image-object relationship in
on-line analytical systems:

—inner geometry (x’, d),

—outer geometry (X, g).

Here, vector x' = (x', y)T represents the image
coordinates, d is a vector of distortion parame-
ters typical of the imaging system, X = (X, Y,
Z)* is a vector of object coordinates, and g is a
vector of parameters of exterior orientation. In a
symbol form one can write for the imaging pro-

cess /
x &84, (16.7)
and for the reconstruction process
(x'x"d) <85 x. (16.8)

After deriving the unknowns g with the use of
suitable control points and with a previous
knowledge of d, one can start the routine inter-
section of individual model points X from
stereo-observations x’, x”

(x’,x") —i’i X.

Image Geometry. The imaging process performs
.a suitable conversion of data from a three-

dimensional object space into a two-dimensional’

image space. This conversion is always achieved
by the use of physical means which represent a
projecting system.

To unify various possibilities one can base the
photogrammetric reconstruction on scaled pro-
Jjections using straight lines derived from
corrected image coordinates. If applicable the
corrections should also include the effect of the
original curvilinear projection. This approach
yields the basic equation of on-line photogram-
metry representing the computer-controlled
feedback link
PTAX

X' +¢= (16.10)

T =

where c is a vector of corrections for image dis-
tortions, u is a scale factor which is variable in
central projections and constant in parallel pro-
jections, and AX = (AX, AY, AZ) are object

MANUAL OF PHOTOGRAMMETRY

(16.9).

coordinates reduced with respect to a suijtable
reference point. Projection matrix P (3,2) repre-
sents the orientation of the projection bundle or
beam in the object coordinate system, ag
analyzed by Kratky (1975, 1976).

Model Reconstruction. In off-line computations,
the photogrammetric model can be recon-
structed from corresponding sets of photo-
coordinates x’, x” matched with control coordi-
nates X as expressed in equation (16.8), using a
suitable mathematical model for the expected
relationship. In on-line analytical systems the
same relationship is expressed in a slightly dif-
ferent form. The communication between photo-
and object-coordinates is mediated by auxiliary
mode] coordinates x = (x, y, z)T

g
' x"d) «—> X,
X >
g ! g2

X

(16.8a)

The coordinate system (x) of the model becomes
“‘master’’ for the remaining systems, extended
by a graphical output %.

Before the feedback (x = x', x") is estab-
lished, photo-coordinates x’, x" are measured
and the constants for g are computed. The com-
putation could be arranged in several different
ways. Here, we refer to the formulation given by
Kratky (1975) and summarize its essential fea-
tures.

In a single model the individual points are in-
tersected from pairs of conjugated rays. A col-
linearity equation can be applied to eachray, ina
general form F(g, 1) = 0. Here, vector 1 repre-
sents ideal photo-coordinates. The real mea-
surements x’', x” are not consistent with the
equation F and yield residuals u. Vector g is
composed of photograph-related constants 2
representing interior and exterior orientation of
both pictures, and by object-related constants £
giving unknown coordinates for all points which
are not control points. Elimination of g, in the
least-squares formulation leads to modified
normal equations

BIP,B,g, + BIP,u = 0 (16.12)

where B, is the matrix of coefficients related to
the vector g, and P, a weight matrix representing
weights introduced by the elimination of g.. The
normal equations are formed sequentially from
individual point contributions with the use of (4
X 4)-matrices

(Po); = P[I - B.(BIB,)" BI],, (16.13)
Here, (B,.), is a (4,3)-coefficient matrix associated
with the coordinates of an object-point and P; is
a weight derived from the coordinate difference
AZ; between the object point and projection
center according to

P, = 1/AZ2.
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Any constraint F(g,, ¢) = 0 among the param- and receives his feedback from stereo-observa-

eters go 18 linearized to Bcg. — ¢ = 0. Ulii- tions of computer-positioned image details for

mately, the parameters g, are computed from x' and x".
the accumulated normal equations 16.2.3.2.2.3 Computer Program for General
_ Orientation. Recently, the design of a new ana-
go = (BIPsBo) l.BT’P"u' (16.149) lytical plotter has been completed at the Na-
tional Research Council of Canada. As a part of
extensive photogrammetric computer programs
supporting the functions of the ANAPLOT sys-

by calculating the coordinates of individual in- tem, a program for the general orientation of a
single model was developed, with particular em-

tersected points p; from updated residuals u;
B . phasis on its use in close-range photogrammetry.
(&) = ~ (B)i: (16.15) In accordance with the principles outlined
above, the orientation problem solved by the

line mode with the aid of a proper decomposition ~program can be easily modified to fit the condi-
gt = (g7, g}) where g, represents the return in tions of a given photogrammetric situation. This
is achieved by a direct operator-computer in-

the feedback link (x — x').
In general, the model coordinate system can teraction at the time of execution. '

be defined in an arbitrary manner with respect to The program is capable of handling any photo-

the object, but it is advantageous to assume equal scale and a variable number of unknown orien-

photo- and model-scales and introduce an auxil- tation parameters. The basic solution yields

jary coordinate shift C. T hus, the working equa- complete exterior orientation of two photo-

tions of an on-line analytical system which is graphs with a total of 12 unknowns. It could be

physically control-driven via the model, can be extended to provide an on-the-job calibration of
interior orientation with three additional param-

Since the formulation is based on linearized
relations the solution must be iteratively up-
dated. If required, the computation is completed

Derived parameters g, can be used in the on-

given by
. eters common to both photographs or with three
x= AP Ax — ¢, p independent parameters for each of the photo-
§ _ Sx+ mx, (16.16) graphs. The maximum number of unknowns is
then 18. The number of parameters can be re-

duced by choosing a simplified orientation with
certain elements preset to given values. An ex-
treme case is represented by a relative orienta-
tion with five unknown parameters.

The computer is told which unknowns are to’
be included in the solution by a string of nine
zeros or ones assigned in a standard way to indi-
vidual elements of orientation. The string is used
in the computations as a mask to compress or
expand the vectors and matrices of the solution
in an appropriate manner.

The problem can also include additional arbi-
trary conditions on any of the 18 unknowns.
Since the constraints have to be entered in a
simple way at execution time their formulation is
restricted to linear forms. The operator enters
the weight of the constraint, its numerical value

function is prepared and checked, but the com- and the coefficient vector associated with the
putations required are performed off-line or in. constrained parameters. In its present form the
near-real time. Only after the models of both program can accomodate up to seven constraints
image and object geometries are derived, are of two different types. The operator can either
they ready to be used in a process of detailed assign specific values to certain parameters and
photogrammetrfc compilation which represents to their linear combinations or require a specific
a typical real-time operation. The control of this ratio of some computed values.

operation is characterized by equation (16.8a) or The reconstruction of a model is usually sup-
ported by a number of control points. In the on-

where A is a modified scale factor and v an arbi-
trary ratio to generate a graphical plot. The first
formula in equation (16.16) represents trans-
formations for both images. The exterior orien-
tation is fully returned to the (x — x') link except
for the scale factor m which is used in the (x
—»X) computation. In operations, the floating
mark is driven in the directions of the object
coordinate system. Other possibilities of ar-
‘ranging the return are discussed in (Kratky,
1976).
Detailed Compilation. The first two operational
phases in an on-line analytical process are con-
cerned with the derivation of a valid analytical
model for image geometry and, by using it, with
the analytical reconstruction of the model for
object geometry. In both phases, the on-line

in a modified form by
line processing, measurements of points are
d, g, — &x';x) made in an arbitrary sequence. The operator
x—-g, — X identifies each point by entering its code or
: ~ number and specifies the corresponding control
v X support with a suitable numeric code. Code 3"

means that all three coordinates X, Y, and Z are
known, code *‘2”’ denotes that X, and Y only are
known, code ‘‘1°’ indicates that only the eleva-

With the computer performing all three com-
putations in a high frequency, the operator ye-
tains dynamic control of the system through x

Page 7 o 7
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tion Z is known and zero is the code that shows
no control at all, Obviously, the combination of
the control support and of the constraint formu-
lation must provide a minimum information to

avoid singular solutions.

The program is written in FORTRAN 1V for
the PDP 11/45 minicomputer controlling the
ANAPLOT system, and is used in the near-real
time mode after a conversational initialization of
the conditions by the operator. The conversation

terminal. The computer asks the operator to
provide the required information in a series of
steps as shown in figure 16-18 which is a fac-

simile of a computer printout.

MANUAL OF PHOTOGRAMMETRY

points, 11, 13, 31, 33, as supported by ajj three
object coordinates whereas points 21 and 23 gpe
used without any control support,
16.2.3.2.2.4 Practical Examples. Figureg
16-19 through 16-26 give a series of €Xampleg
illustrating different types of solutions obtaineq
with the same general program from fictitions
data. The data were computer-generated gt 1:1
scale for two sets of regularly distributed groups
of nine points at two different elevation levels.

mm higher level,
Example 1 (Ful] Orientation witp no

In this example, the first instruction to the
computer identifies the photographs as F-1 and
-2 and gives the scale factor 1 for the model
computation, the principal distance as £ = 150
mm, and a nine-digit string specifying the type of
orientation. Here, zeros indicate which un-
knowns are to be retained in the solution while
code one indicates which parameters are to be
omitted from the solution. The string is coded
for a standard Sequence: X, ¥,, Z., «, b, w, dx’,
dy’, df, representing three groups of three values
each, for the position of the projection center,
for the rotation elements and for the elements of
interior orientation, respectively. In the exam-
ple, the full, twelve-parameter orientation is re-
quired, with no need to compute the elements of

Constraints~ﬁgur

e 16-19), is a straight forwarg

solution with 12 unknowns. It was completed jp

four iterations. T

he indicated time figure in-

cludes the time used for printing intermediate

results and should
per line of print in
of solution. In this

be reduced by three seconds
order to assess the rea] speed
instance the time to obtain a

solution is about 15 seconds. The resulting linear

barameters are €Xp

orientation is represented

ressed in mm and the angular
by rotation matrices,

The resulting coordinates (X, Y, Z) and the
parallax ‘of the model (PY) are also in mm
whereas all the photograph-related residuals are
printed out in um. Depending on the availability

of control, the listing also

shows discrepancies in

Interior orientation. Next a single constraint is
defined by determining the photogrammetric
base, b = 100.05 mm, associated with a weight P
= 100. The first ten values of the coefficient
vector are given and the remaining eight zeros
are truncated. The encoded constraint can be
interpreted as *X. — X, = 100.05. The following
information specifies four of the measured

«R MODEL

SFECIFY MONEL - SCALE - F ~ pask
F-1 F=2 1, 150000,000000111

ADLITIONAL CONSTRAINTS?
YES

HOW MaNY?
1

ENTER WEIGHT - VALUE - MATRIX

100y 100.05, =1+050s 050,0, 0s,0,0, 1

ENTER FOINT NUMEBER - SFECIFY CONTROL SUFFORT

11
i3
21
23
31
33

WO oW

FIGURE 16-18. Information required in the computer
program for general orientation,

control points. Since the computation is based

on ideal data the resulting fit is perfect and all

residuals equal zero.

In example 2 (full orientation with base
constraint—figure 16-20), the solution is artifi-
cially constrained by enforcing a wrong length of
the photogrammetric base. Since the weight
used is 100 times larger than that given the mea-
sured photo-coordinates the constraint is very
strong, as is obvious from b = 2 . — X, =
200.026 ~ 99.976 = 100.05 mm. As a result of the
wrong length the orientation of the photographs

' is slightly disturbed and the listing shows residu-
als up to 9 pm.

In example 3 (full orientation with coordinate
constraints—figure 16-21), both projection cen-
ters are falsely offset. by 50 pm which again af-
fects the quality of the reconstruction resulting
in residuals up to 10 pm.

In example 4 (full orientation with relative
constraint—figure 16-22) the constraint is very
unnatural and is used only to demonstrate the
potential and flexibility of on-line constraining.
The absolutely enforced false condition 2¢, + ¢
= 0 can be checked by comparing the rotation
elements m,, in both resulting matrices, i.e.

=2 X 0.023993 + 0.047986 — 0.

Geometric relations are considerably disturbed

and photo-residuals reach a maximum value of
161 pm.

Although artificial in this instance, relative
constraints can be useful when one wants a
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NON-TOPOGRAPHIC PHOTOGRAMMETRY

ITERATION INCREMENTS

0

-0.,00188

~0,00150
0.001864

=0.00001
0.00002

0.00000

XC Yo
~0.02528 0.04058 0.00151
0.11563 0.04472
~0,00183 0.00357
0,00033 -0,00257
0+.00000 ~0,00000
=0+00000 0.,00000
0400000 ~0.00000
=0+.00000 ~0,00000

FARAMETERS
X

F-1

F-2

100,000
200.001

=0:00000 -0,06002

KFFA FHI OME
0,00850 ~0.,01844 0.02790
~04+04656  0,05122 -0.,05952
0.00145 ~0.00140 0.00204
0.00664 ~0.00082 ~0.00015
0.00004 0.00004 0.00003
—=0.00008 ~0,00040 ~0.00034
=0.00000 0.00000 0.,00000
0,00000 0,00000

Y
199.999 250
199.999 250

04999750  0,009997 ~0,019997

=0.009395

0.999506 0.029994

0,020287 -0.029798  0,999350

MOLEL COORDINATES AND DISCREFANCIES

BT X
11 100.00
0.00
13 200.00
=0.00
21 100.00
-0.,00
23 200,00
31 100,00
0.00
33 200,00
-0,00

REDUNIANCY =

4

Y

Z Fy VRY  UXL VUYL VUXR VYR

300,00 100.00 0.00 o] ¢ 0 0 0
=0.00 0.00

300,00 100,00 .~0.,00 0 0 0 0 0
=0.,00 0.00

200,00 100,00 -0.00 0 0 0 0 0

0.00

200,00 100,00 -0.00 0 0 0 0 0
0400

100,00 100,00 ~0.00 0 0 0 Q 0
0.00 0.00

100.00 100.00 -0.00 0 0 0 0 0
0.00 0.00

STANDARD UNIT ERROR =

0.4 MICRONS

STANDARDT ERRORS OF UNKNOWNS

Xc YC
0.0008 0.0008
0.0009 0.0009

zC
0.0004
0.0004

KEFQ
0.0000
040000

4 ox oy F
+ 000 0,000 0,000 150,000
+Q00 0.000 0,000 150.000

0.997948 ~0,039999  0,050004
0.042978 0.997272 ~0,060004
~0,047448 0.996945

0.062030

LI AR

FHOTO DISCREFANCIES.,,.

FHI OME
0.0000 0.0000
0.0000 0.0000

~

symmetrical distribution of corresponding pa-
rameters in the left and ri
condition p, + p, = 0. .

In example 5 (full orientation and calibration—
figure 16-23), all 18 unknowns are derived in this
solution when the required string in the initial
specification is reduced to a single zero. A mini-
mum of two additional control points located
above the level of remaining points guarantees
an on-the-job calibration of both cameras. Since

ght pictures by setting a

FIGURE 16-19. Example 1. Full orientation with no constraints.

no wrong values were constrained in the solu-
tion, all residuals are equal to zero. A low de-
gree of redundancy in control data causes higher
uncertainty in the derived parameters than in
some previous examples.

In example 6 (full orientation and calibration
with constraint—figure 16-24), the solution from
the previous example is degraded by assigning a
wrong value of 148 mm to the principal distance
of the left camera. Because principal distances




ITERATION INCREMENTS

FARAMETERS
X Y

0.999747 0.010003 ~0.020140
0.0093946 0.999506 0.029993
0.,020430 —0.029796 0.999347

T

REDUNDANCY = 7

STANDARD ERRORS OF UNKNOWNS

XG YC ZC KFFA

—0.02781 0.034614 0,00094 0,00850
0.11381 0.05357 -0,00238 ~0,04802

0.00055 0,00799 -0,00095 0,00151
0.00055 -0.00940 0,00234 0.008172

—0.00001 0.00001 -0,00004 ~0,00001
~0,00001 -0.00003 ~0,00001 ~0,00006

~0,00000 0.00000 ~0,00000 ~0,00000
=0+00000 ~0,00000 ~0.,00000 -0,00003

F-1 99.974 197.998 249,993
F-2 200,026 199.998 249,992

MODEL COORDINATES AND DRISCREFANCIES:¢e.. FHOTO DISCREFANCIES.,,.,

FT X Y Fy VRY  UXL VYL VUXR VYR

i1 100.00 300.00 100,00 -0.01 9 3 3 O -4
0.00 0.01 0.00

13 200,00 300,00 100,00 0.01 -9 -1 ~4 -3 4
~0.00 -0.01 0.00

21 100,00 200.00 100,00 .00 0 0 0 0 0

23 200,00 200.00 100.00 -0.00 0 ¢ O 0 0

31 100,00 100,00 100.00 0.01 -8 3 -5 0 3
0.00 ~0.01 0.00

33 200.00 100.00 100,00 ~0.01 9 0 4 -3 vt
=0.00 0.01 0.00

STANDARD UNIT ERROR = 547 MICRONS

XC YC yAw KFFA
0.00%94 0.0151 0.0053 0.0000
0.0094 0,0151 0.0053 0.0000

MANUAL OF PHOTOGRAMMETRY

FHI oMz

~0.02065 0.,02518
0.03140 -0,05523

0.0004% 0,00477
=0.00100 -0,00437

0.00002  0.,00004
~0,00046 ~0,00042

=0+00000 ~0,00000
0.00000 0.00000

X oy F
0.000 0.000 150.000
0.000 0,000 150,000

0.997941 -0.039984 0,050148
04042975  0.997272 ~0,060010
~0+.047611 0.062041 0,994937

PHI OME
0.0001 0.0001
0.0001 0.0001

‘FIGURE 16-20. Example 2. Full orientation with base constraint.

are treated as negative values in the program,
and their initial approximation is —150 mm the
constraint must be formulated as df, = 2.0.

In example 7 (relative orientation—figure
16-25), only six angular parameters are allowed
in the computation by choosing a mask
“‘111000111."” However, the relative orientation
is defined by five elements and thus, one of the
parameters must be eliminated by an additional
single constraint. In this example, w; was con-
strained to zero. Consequently, the errorfree
model is appreciably titled, as is obvious from the
resulting model coordinates. Because no control

support was available, the origin of the model
coordinates is at the left projection center by
default.

In example 8 (relative orientation—figure
16-26), the solution uses 12 unknowns and, ob-
viously, seven of them must be controlled by
suitable constraints. This is done by assigning
coordinates to both projection centers and by
specifying the correct value for w,. In contrast to
the previous example, the resulting model is not
tilted and is in addition error free. The printout
(figure 16-26) contains additional information on
the redundancy, on the standard error of unit
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ITERATION INCREMENTS

FARAMETERS

X Y r4
100,050 199,996 230,
200,050 199,994 249,

F—
Fe

S o

0.9997546  0.009985 -0,019711
-0.009391 0.999506 0,029984
0.020001 ~-0,029792 0,999354

REOGUNDANCY = 8

STANDARL ERRORS OF UNKNOWNSG

Xc YC c KFPFa
0.0011 0.0279 0.0082 00,0001

the model
center by

yn—figure -

s and, ob-
trolled by
assigning
rs and by
:ontrast to
vdel is not
2 printout
nation on
yr of unit

0.0011 0.0280 0.0082 0:.0001

Xc YC 0 KFPFA FHI OME

~0.02678 0.03411 0,00124 0.00849 ~0.01975 0,02516
0+11650 ©.05351 -0,00254 —~0.04801 0.05222 -0,05524

=0.00000 0,008B01 -0,00110 0.00150 0.00001 0,00479
0.00000 -0.00935 0.00247 0.008i5 ~0.00149 -0,00433

0.00000~ 0.,00000 =0.00004 0.00000 0,00003 0.,00003
=0.00000 ~0,00003 ~-0,00002 ~0+0000% —~0,00045 ~0,00042

~0.00000 0,00000 ~0,00000 =0.00000° 0,00000 0.,00000
=0:00000 ~0.,00000 -0.00000 —0.00003 0.,00001 0,00000

MODEL COORDINATES AN DISCREFANCIES..+ss FHOTO LISCREFANCIES, ..,

FT X Y 4 Fy VEY  UXL UYL VUXR VYR

11 100.00 300,00 100,00 0.00 -2 -4 =10 1 -8
~0,01 =0.00 _0001

13 200.00 300.00 100.00 0.00 0 2 8 -7 ?
-0.01 ~0.00 0,01

21 100.01 200,00 100,01 -0.00 0 0 0 0 0

23 200.01 200.00 P9.99 0.00 0 Q 0 0 o

31 100.00 100,00 100,00 -0,00 1 -7 ? 2 8
—0001 0000 "0001

33 200.00 100.00 100,00 -0,00 2 1 -8 -4 -10
~-0.01 0000 0001.

STANDARD UNIT ERROR = 10,4 MICRONS

NON-TOPOGRAPHIC PHOTOGRAMMETRY v 809

S alat ol

oX oy - F
014 0.000 0,000 150.000
284 0.000 0.000 150.000

0.997935 -0,039974 0,050287
0.042972  0.997272 -0,060017
=0+047751  0.,062054 0.9946930

FHI OME
0.0000 0.0001
0.0000 0.0001

weight and standard errors of the derived pa-
rameters, -
16.2.3,2.2.5 Conclusions. The versatility of
on-line systems is greater than that of any other
photogrammetric system and the expansion of
functions is mostly a matter of software devel-
opment. This fact combined with the versatility
. of on-line analytical systems make them ex-
tremely attractive for close-range applications,
especially in biomedicine and engineering.

16.2.3.3 SEMI-ANALYTICAL APPROACH

In this approach, a stereoplotter is used to
form the stereomodel of the object. The scaling

FIGURE 16-21. Example 3. Full orientation with coordinate constraints.

and absolute orientation of the model are  then
done analytically. The use of a stereoplotter
rather than a comparator and the added flexibil-
ity resulting from the analytical phases makes
this approach highly attractive.

16.2.4 AREAS OF APPLICATION OF
CLOSE-RANGE PHOTOGRAMMETRY

The ever-expanding areas of application of
close-range photogrammetry can be grouped
into three major areas: architectural photo-
grammetry, biomedical and bioengineering
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