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PRESSURE AND PRESSURE GRADIENT

In Fig. 1.1 we saw that a fluid at rest cannot support shear stress and thus Mohr’s
circle reduces to a point. In other words, the normal stress on any plane through a
fluid elément at rest is equal to a unique value called the fluid pressure p, taken
positive for compression by common convention. This is such an important con-
cept that we shall review it with another approach.

Figure 2.1 shows a small wedge of fluid at rest of size Ax by Az by As and depth b
into the paper. There is no shear by definition, but we postulate that the pressures ‘
P, P,» and p, may be different on each face. The weight of the element may also be '
important. Summation of forces must equal zero (no acceleration) in both the x |

and z directior:s

Y F,=0=pbAz—p,bAssin0

2.1)
S F,=0=p,bAx —p,bAscos 0 — 1pgb Ax Az
but the geometry of the wedge is such that
Assin0=Az  Ascos0 = Ax 2.2) |

Substitution into Eq. (2.1) and rearrangement gives

Pe=Dy  P.=P. 39 Az (2.3)

These relations illustrate two important principles of the hydrostatic, or shear-free,
condition: (1) there is no pressure change in the horizontal direction, and (2) there
is a vertical change in pressure proportional to density, gravity, and the depth
change. We shall exploit these results to the fullest, starting in Sec. 2.3.

In the limit as the fluid wedge shrinks to a “point,” Az — 0 and Egs. (2.3) become |

(24)
51

Px=P;=Pu=7P




52 FLUID MECHANICS

z(up)

Element weight:
- dW = pg(jb Ax Az)

Az
Dy =—>] ?

> X
Fig. 2.1 Equilibrium of 0 \ . .
a small wedge of fluid Width b into paper
at rest. P

Since 0 is arbitrary, we conclude that the pressure p at a point in a statlc fluid is
independent of orientatior:,

What about the pressure at a point in a moving fluid? As discussed in Sec. 1.7, if
there are strain rates in a moving fluid, there will be viscous stresses, both shear and
normal in general (Sec. 4.3). In that case (Chap. 4) the pressure is defined as the <
average of the three normal stresses o; on the element '

p= —%(O.xx + ayy + O-zz) (25)

The negative sign occurs because a compression stress is considered to be negative '
whereas p is positive. Equation (2.5) is subtle and rarely needed since the great
majority of viscous flows have negligible viscous normal stresses (Chap. 4).

Pressure Force on a Fluid Element

Pressure (or any other stress, for that matter) causes no net force on a fluid element
unless it varies spatially." To see this, consider the pressure actizg on the two x
faces in Fig. 2.2. Let the pressure vary arbitrarily

p=p(x y,21t) (2.6)

The net force in the x direction on the element in Fig. 2.2 is given by

0
de:dedZ—<p+£dx>dydz= —g—pdxdydz 2.7

In like manner the net force dF, involves —dp/dy and the net force dF, concerns
—0dp/0z. The total net-force vector on the element due to pressure is

: (9P _:op ) 0p
dF. =i _;% 2.8
press < lax ] ay a )d dy dz ( )

We recognize the term in parentheses as the negative vector gradient of p. Denoting
f as the net force per unit element volume, we rewtite Eq. (2.8) as

fpress = —Vp (29)

! An interesting application for a large element is in Fig, 3.7.
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dz I

D dy dz =———pe——p-e | 1 (p+ gi\) dx)dy dz

Thus it is not the pressure but the pressure gradient causing a net force which must
be balanced by gravity or acceleration or some other effect in the fluid.

EQUILIBRIUM OF A FLUID ELEMENT

The pressure gradient is a surface force which acts on the sides of the element. There
may also be a body force, due to electromagnetic or gravitational potentials, acting
on the er:tire mass of the element. Here we consider only the gravity force, or weight
of the element

dF,.,, = pgdx dy dz

grav

(2.10)
or fgrav = pg

In general there may also be a surface force due to the gradient, if any, of the
viscous stresses. For completeness, we write this term here without derivation and
consider it more thoroughly in Chap. 4. For an incompressible fluid with constant
viscosity, the net viscous force is

2 2 2
fys = ,u(f;x‘zl + % + %Z‘:) = uV*V (2.11)
where VS stands for viscous stresses and u is the coefficient of viscosity from Chap.
1. Note that the term g in Eq. (2.10) denotes the acceleration of gravity, a vector
acting toward the center of the earth. On earth the average magnitude of g is
32.174 ft/s®> = 9.807 m/s%.

Tke total vector resultant of these three forces, pressure, gravity, ard viscous
stress, must either keep the element in equilibrium or cause it to move with acceler-
ation a. From Newton’s law, Eq. (1.2), we have

pa = Z f= fpreSs + fgmv + fvisc =—Vp+pg+u Vv (2.12)

This is one form of the differential momentum equation for a fluid element and will
be studied further in Chap. 4. Vector addition is implied by Eq. (2.12): the accelera-
tion reflects the local balance of forces and is not necessarily parallel to the local-
velocity vector, which reflects the direction of motion at that instant.
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54 FLUIE: MECHANICS

The present chapter is concerned with cases where the velocity and acceleration
are known, leaving one to solve for the pressure variation in the fluid. Later
chapters will take up the more general problem wkere pressure, velocity, ard accel-
eration are all unknown. Rewrite Eq. (2.12) as

Vp=p(g—a) + uV?V = B(x, 5, 2, 1) (213)

where B is a short notation for the vector sum on the right-hand side. If V and
a = dV/dt are knowr: functions of space and time and the density ard viscosity are
known, we can solve Eq. (2.13) for p(x, y, z, t) by direct integration. By components,
Eq. (2.13) is equivalent to three simultaneous first-order differential equations

% _

p
Em — = Byx,y,21)

= B,(x,y,z,t)  (2.14)
dy

B(x,7.2,0) -
Since the right-hand sides are known functions, they can be integrated systemati-
cally to obtain the distribution p(x, y, z, t) except for an unknown function of time,
which remains because we have no relation for dp/dt. This extra function is found
from: a condition of known time variation py(t) at some point (x,, Yo, z,). If the flow
is steady (independent of time), the unknown function is a constant and is found .
from knowledge of a single known pressure p, at a point (x,, yo, zo). If this sounds
complicated, it is not: we shall illustrate with many examples. Finding the pressure
distribution from a known velocity distribution is one of the casiest problems in
fluid mechanics, which is why we put it in Chap. 2.’
Examining Eq. (2.13), we can single out at least four special cases:

1. Flow at rest or at constant velocity: the acceleration and viscous terms vanish
identically, and p depends only upon gravity and density. This is the hydrostatic
condition. See Sec. 2.3.

2. Rigid-body translation and rotation: the viscous term vanishes identically, and
p depends only upon the term p(g — a). See Sec. 2.9.

3. Irrotational motion (V x V = 0): the viscous term vanishes identically, and an
exact integral called Bernoulli’s equation can be found for the pressure distribu-
tion. See Sec. 4.9.

4. Arbitrary viscous motion: nothing heipful happens, no general rules apply, but
still the integration is quite straightforward. See Sec. 6.4.

Let us consider cases 1 and 2 here.

Absolute, Gage, and Vacuum Pressure

Before embarking on examples, we should note that engineers are likely to specify a
pressure measurement in two ways, either absolute pressure with respect to a zero
pressure reference, or else with respect to local atmospheric pressure. In the latter
case the measured pressure may be higher or lower than the local atmosphere. If
higher, the difference is called gage pressure; if lower, the difference is called vacuum
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Fig. 2.3 [Illustration of
absolute, gage, and
vacuumi pressure
readings.

2.3

Page 7 of 64

PRESSURE DISTRIBUTION IN A FLUID 55

3000 High pressure:

p = 3000 Ibf/ft? abs = 1050 1bf/ft? gage
1050
Local atmosphere:
1950 ¢ .

T ~ p, = 1950 Ibf/ft? abs = 0 1bf/ft* gage = 0 Ibf/ft? vacuum

750
; Vacuum pressure:

1200 { p = 1200 Ibf/ft* abs= 750 Ibf/ft? vacuum

1200
/ Absolute zero reference:
0 7 7777 = 0 1bffft? abs = 1950 1bf/ft? vacuum

I (Tension)

pressure. This state of affairs is illustrated in Fig. 2.3. The local atmospheric pres-
sure is, say, 1950 1bf/ft?, which might reflect a storm condition in a sea-level city or
normal conditions in a city at an altitude of 2300 ft. We can write this as p, =
1950 Ibf/ft? absolute or O Ibf/ft> gage or 01bf/ft? vacuum. Suppose a laboratory
pressure gage reads an absolute pressure of 3000 1bf/ft?. This is higher thar local
atmospheric pressure, and the value may be reported as 3000 — 1950 = 1050 Ibf/ft?
gage pressure. (It may then be your problem later to determine what p, was on that
day.) Suppose another gage reads 1200 Ibf/ft> absolute. Locally this would be a
vacuum pressure and might be reported as 1950 — 1200 = 750 Ibf/ft* vacuum.
(Again you might later need to know p, to carry on your analysis.) Gage pressure is
the opposite of vacuum pressure: 750 1bf/ft> vacuum = — 750 1bf/ft?> gage, but
negative values are not normally reported. From time to time we shall specify gage
or vacuum pressure in problems to keep you on your toes.

HYDROSTATIC PRESSURE DISTRIBUTIONS

If the fluid is at rest or at constant velocity, a = 0 and V2V = 0. Equation (2.13) for
the pressure distribution reduces to

Vp = pg (2.15)

This is a hydrostatic distribution and is correct for all fluids at rest, regardless of
their viscosity, because the viscous term vanishes identically.

Recall from vector analysis that the vector Vp expresses the magnitude and
direction of the maximum spatial rate of increase of the scalar property p. As a
result, Vp is perpendicular everywhere to surfaces of constant p. Thus Eq. (2.15)
states that a fluid ir: hydrostatic equilibrium will align its constant-pressure sur-
faces everywhere normal to the local-gravity vector. The maximum pressure in-
crease will be in the direction of gravity, i.e., “down.” If the fluid is a liquid, its free
surface, being at atmospheric pressure, will be normal to local gravity, or “horizon-
tal.” You probably krew all this before, but Eq. (2.15) is the proof of it.

ABIOMED Ex. 1032




56 FLUID MECHANICS

Fig. 2.4 Hydrostatic-
pressure distribution.
Points a, b, ¢, and d are
at equal depths in water
and therefore have
identical pressures.
Points A, B, and C are
also at equal depths in
water and have
identical pressures
higher than q, b, ¢, and
d. Point D has a
different pressure from
A, B, and C because it
is not connected to
them by a water path,
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In our customary coordinate system: z is “up.” Thus the local-gravity vector for
small-scale problems is

g=—gk (2.16)

where g is the magnitude of local gravity, for example, 9.807 m/s2. For these coor-

dinates Eq. (2.15) has the components

; 0

=0 =0 P 2.17)
0z

the first two of which tell us that p is indeperdent of x and y. Hence dp/dz can be
replaced by the total derivative dp/dz, and the hydrostatic condition reduces to

dp
it
2
or p2—pP1=— f py dz (2.18)

J1
Equation (2.18) is the solution to the hydrostatic problem. The integration requires
an assumption about the density and gravity distribution. Gases and liquids are
usually treated differently.
We state the following conclusions about a hydrostatic condition:

Pressure in a continuously distributed uniform static fluid varies only with vertical
distance and is independent of the shape of the container. The pressure is the same at
all points on a given horizontal plane in the fluid. The pressure increases with depth in
the fluid.

An illustration of this is shown in Fig. 2.4, The free surface of the container is
atmospheric and forms a horizontal plane. Points a, b, ¢, and d are at equal depth in
a horizontal plane and are interconnected by the same fluid, water; therefore all
points have the same pressure. The same is true of points A, B, and C on the
bottom, which all have the same higher pressure than at g, b, ¢, and d. However,
point D, although at the same depth as 4, B, and C, has a different pressure because
it lies beneath a different fluid, mercury.

Atmospheric pressure:
Free / \ \\

surface =
¢
&
C
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Effect of Variable Gravity

For a spherical planet of uniform density, the acceleration of gravity varies in-
versely as the square of the radius from its center

g= 90(59)2 2.19)

r

where r, is the planet radius and g, is the surface value of g. For earth, r, &~ 3960
statute miles &~ 6400 km. In typical engineering problems the deviation from r,
extends from the deepest ocean, about 11 km, to the atmospheric height of super-
sonic transport operation, about 20 km. This gives a maximum variation in g of
(6400/6420)? or 0.6 percent. We therefore neglect the variation of g in most prob-
lems.

Hydrostatic Pressure in Liquids

Liquids are so nearly incompressible that we can neglect their dersity variation in
hydrostatics. In Example 1.11 we saw that water density increases only 4.6 percent
at the deepest paft of the ocean. Its effect on hydrostatics would be about half of
this, or 2.3 percent. Thus we assume constant density in liquid hydrostatic calcula-
tions, for which Eq. (2.18) integrates to

Liquids: P2 — P1= —pg(z; — zy) (2.20)
or Zy — 2y = p—z‘ - p—l
pg  pg

We use the first form in most problems. The quantity pg is called the specific weight
of the fluid, with dimensions of weight per unit volume; some values are tabulated
in Table 2.1. The quantity p/pg is a length called the pressure head of the fluid.

For lakes and oceans, the coordinate system is usually chosen as in Fig. 2.5, with
z = 0 at the free surface, where p equals the surface atmospheric pressure p,. When

Table 2.1
SPECIFIC WEIGHT OF SOME COMMON FLUIDS

Specific weight pg at 68°F = 20°C

Fluid 1bf/ft3 N/m?
Air (at 1 atm) 0.0752 11.8
Ethyl aicohol 49.2 7,733
SAE 30 oil 573 8,996
Water 62.4 9,790
Seawater 64.0 10,050
Glycerin 78.7 12,360
Carbon tetrachloride 99.1 15,570
Mercury 846 133,100

Page 9 of 64 ABIOMED Ex. 1032
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Fig. 2.5 Hydrostatic-
pressure distribution in
oceans and atmospheres.

EXAMPLE 2.1

Solution

Page 10 of 64

zZ
4
+b |- P =Py~ b(0g) e
Air
\vi 0 Free surface: Z=0,p =p,
l Water
g
“h P (P we

we introduce the reference value (py, z,) = (p,, 0), Eq. (2.20) becomes, for p at any
(negative) depth z,

Lakes and oceans: P =P, — pgz (2.21)

where pg is the average specific weight of the lake or ocean. As we shall see, Eq.
(2.21) holds in the atmosphere also with an accuracy of 2 percent for heights z up to
1000 ft.

Newfound Lake, a freshwater lake near Bristol, New Hampshire, has a maximum depth of
60 m, and mear: atmospheric pressure is 91 kPa. Estimate the absolute pressure at this maxi-
mum depth in kilopascals.

From Table 2.1, take pg & 9790 N/m3. With p, = 91 kPa and z = —60m, Eq. (2.21) pre-
dicts that the pressure at this depth will be
1 kN
1000 N
= 91 kPa + 587 kN/m? = 678 kPa Ans.

p =91 kN/m? — (9790 N/m>)(— 60 m)

By omitting p, we could state the result as p = 587 kPa (gage).

The Mercury Barometer

The simplest practical application of the hydrostatic formula (2.20) is the
barometer (Fig. 2.6), which measures atmospheric pressure. A tube is filled with
mercury and inverted while submerged in a réservoir. This causes a near vacuum in
the closed upper end because mercury has an extremely small vapor pressure at
room temperatures (0.16 Pa at 20°C). Since atmospheric pressure forces a mercury
column to rise a distance h into the tube, the upper mercury surface is at zero
pressure.

From Fig. 2.6, Eq. (2.20) applies with p; =0 atz, = hand p, = p,at z, = 0:

Pa— 0= —pyg(0~h)

Da
Pud

or h= (2.22)

ABIOMED Ex. 1032
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N py; ~0 (mercury has a
very low vapor
pressure)

Py =p, — 1?3 =h
(the mercury
is in contact
with the

atmosphere)

\

Mercury

Fig. 2.6 The mercury
barometer: the height of
the mercury column

is a measure of

atmospheric pressure. A

At sea-level standard, with p, = 101,350 Pa and p, g = 133,100 N/m? from Table
2.1, the barometric height is h = 101,350/133,100 = 0.761 m or 761 mm. In the
United States the weather service reports this as an atmospheric “pressure” of
29.96 in Hg (inches of mercury). Mercury is used because it is the heaviest common
liquid. A water barometer would be 34 ft high.

Hydrostatic Pressure in Gases

Gases are compressible, with density neatly proportional to pressure. Thus density
must be considered as a variable in Eq. (2.18) if the integration carries over large
pressure changes. It is sufficiently accurate to introduce the perfect-gas law p =
pRT in Eq. (2.18)

dp  m e N
dz B RT .
Separate the variables and integrate between points 1 and 2:
2 d 3 2 d
J i’:ln@=—ﬂj ¢ (2.23)
t P P1 R, T

The integral over z requires an assumption about the temperature variation T(z).
One common approximation is the isothermal atmosphere, where T = Tq:

g(z, — Z1):|

24
o (2.24)

P2=P1‘3Xp|:_

The quantity in brackets is dimensionless. (Think that over; it must be dimension-
less, right?) Equation (2.24) is a fair approximation for the earth, but actually the

Page 11 of 64 ABIOMED Ex. 1032
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Fig. 2.7 Temperature
and pressure
distribution in the
U.S. Standard
Atmosphere.

(From Ref. 1.)

Page 12 of 64

earth’s mean atmospheric temperature drops off nearly linearly with z up to an
altitude of about 36,000 ft (11,000 m):

T~ T,— Bz (2.25)
where Ty, is sea-level temperature (absolute) and B is the lapse rate, both of which

vary somewhat from day to day. By interr:ational agreement [1] the following
star:dard values are assumed to apply from 0 to 36,000 ft:

T, = 518.69°R = 288.16 K = 15°C

B = 0.003566 °R/ft = 0.00650 K/m (2.26)
This lower portion of the atmosphere is called the troposphere. Introducing Eq.
(2.25) into (2.23) and integrating, we obtain the more accurate relation

Bz\9/RB
p= pa<1 = Z) where RiB — 5.26 (air) 2.27)

Ty

in the troposphere, with z = 0 at sea level. The exponent g/RB is dimensionless.
(again it must be) and has the standard value of 526 for air, with R =
1717 ft2/(s? - °R).

The U.S. Standard Atmosphere [1] is sketched in Fig, 2.7. The pressure is seen
to ke nearly zero at z = 30 km. For tabulated properties see Appendix Table A.6.

| Altitude | Altitude
c z, km 60 z, km
50 50
40 401
30+ 30 -<— 1,20 kPa
00 o 20 T Yo,
)
el
T
tor§ - 10| —— Eq.(2.27)
Troposphere
# 15°C 101.33 kPa
1 1 | I L | |
0 -60 -40 -20 0 +20 0 40 80 120

Temperature, °C Pressure, kPa

ABIOMED Ex. 1032
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an EXAMPLE 2.2 Ifstandard atmospheric pressure is 101,300 Pa, compute the standard pressure at an altitude
of 3000 m (a) by the exact formula and compare with (b) an isothermal assumption and (¢) a
constant-density formula.

25) {
Solution II
vich Part (@)  From the exact relation (2.27) |
/ing (0.00650 K /m)(3000 rn) 526 ‘e
A= ”"[ - (288.16 K) ] = £a(0.9323)
= 101,360(0.6917) = 70,070 Pa = 70.07 kPa Ans. (a)
26) Part (b)  For the isothermal assumption, Eq. (2.24) applies with p, = p, and z, = 0:
. (9.807 m/s%)(3000 m)
Eq. P& Pa®P 3 7 1987 m2/(s2 - K)](288.16 K)
= p, exp (—0.3557) = 101,300(0.7006) = 70.98 kPa Ans. (b)
27 This is 1.3 percent higher than the exact result (a).
27) Part (¢) The simple linear approximation (2.21) is surprisingly accurate even over the distance of
3000 m. Taking pg ~ 11.8 N/m?> from Table 2.1, we get
gCSS p = p, — pgz = 101,300 — (11.8 N/m?)(3000 m)
- = 101,300 — 35,400 = 65,900 Pa = 65.90 kFa Ans. (¢)
een This is only 6.0 percent low compared with the exact result (a).
.6.

The error involved in using the linear approximation (2.21) can be evaluated by
expanding the exact formula (2.27) into a series

Bz\* Bz  n(n—1) /Bz\?
1—22) =1 — g2 B2 — 2N 22
< T0> "B o2 <T0> )

where n = g/RB. Introducing these first three terms of the series into Eq. (2.27) and
rearranging, we obtain

n—1Bz
= 1 — — - X
P="D MJZ( 2 T, + ) (2.29)

Thus the error in using the linear formula (2.21) is small if the second term in
parentheses in (2.29) is small compared with unity. This is true if

. = 20,800 230
P oM 2

We thus expect errors of less than 5 percent if z or dz is less than 1000 m. This
explains why the error in part (¢) of Example 2.2 was rather small.

24 APPLICATION TG MANOMETRY '

From the hydrostatic formula (2.20), a change in elevation z, — z, of a liquid is |
equivalent to a change in pressure (p, — p;)/pg. Thus a static column of one or
more liquids or gases can be used to measure pressure differences between two

Page 13 of 64 ABIOMED Ex. 1032 |
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Fig. 28 Evaluating
pressure changes
through a column
of multiple fAuids.

Fig. 2.9 Simple open
manometer for
measuring p , relative

to atmospheric pressure.
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Known pressure p|

Qil, p

23 e — Dy TPy =p,8(zy —2y)
Water, p,,

7 73 — —_— P3 =Py =0,8(23 —2,)

Glycerin, p;

24 — Ps —P3 =—pg8lzs —23)
Mercury, p,,

Zg S Ds ~Pg = —pyu8zs —z4)

Sum =pg —p,

points. Such a device is called a manometer. 1f multiple fluids are used, we must
change the density in the formula as we move from one fluid to another. Figure 2.8
illustrates the use of the formula with a column of multiple fluids. The pressure
change through each fluid is calculated separately. If we wish to know the total
change ps — p;, we add the successive changes p, — Pis P3 — P2, Ds — D3, and
Ps — ps- The intermediate values of p cancel, and we have, for the example of
Fig. 2.8,

Ps —p1= —poglzy, — z,) — Pwd(z3 — 23) — ped(z4 — z3)

— Pmd(zs — z4) (2.31)

No additional simplification is possible on the right-hand side because of the differ-
ent densities. Notice that we have placed the fluids in order from the lightest on top
to the heaviest at bottom. This is the only stable configuration. If we attempt
to layer them in any other manner, the fluids will overturn and seek the stable
arrangement.

Figure 2.9 shows a simple open manometer for measuring p, in a closed
chamber relative to atmospheric pressure Pa» in other words, measuring the gage
pressure. The chamber fluid p, is combined with & second fluid P4, perhaps for two
reasons: (1) to protect the environment from a corrosive chamber fluid or ) a
heavier fluid p, will keep z, small and the open tube can be shorter. The basic

Open, g,
g

22,02 P,

— p=pyatz=zinfluid 2

)

ABIOMED Ex. 1032




PRESSURE DISTRIBUTION IN A FLUID 63
hydrostatic relation (2.20) is applied in two steps, first frem z 4 to z, and then from
zto z,:

Pa—P1=—p19(z4 — 21) Py — P2 = —pa9(zy — 2,) (2.32)

The small amount of air between z, and the open end is neglected and we assume !
that p, ~ p,. When we add the two relations above, p; cancels and we obtain the |
desired result

Pa="Ds— P19(z4 — 21) — p29(z; — 2,) (2.33) {

Notice that the pressure at level z, is equal to p, on both sides of the U-tube in Fig.
2.9. This is because a continuous length of the same fluid connects the two equal '
levels. The hydrostatic relation (2.20) requires this as a form of Pascal’s law:

ust Any two points at the same elevation in a continuous mass of the same static fluid will
2.8 be at the same pressure.
ure
tal This rule can be used to facilitate calculations in multiple-U-tube problems. We
nd can jump across the U-tube if we stay within the same fluid.

of

EXAMPLE 2.3  (a) Find the pressure p, in Fig. 2.9 if p, = 2116 Ibf/ft*, z, = 7in, z; = 4in, z, = 13in, fluid 1 | :
is water, and fluid 2 is mercury. (b) What would the height z, be for the same pressure p , if
the mercury were replaced by glycerin? '

31) i

! Solution
er- Part (@)  The pressure relation has already been derived in Eq. (2.33). From Table 2.1, p,g = 62.4 and '
op P29 = 846 Ibf/ft>. We need z,4, z,, and z, in feet to produce p in pounds force per square foot. f
1pt Substitute into (2.33)

1
20 pa=2116 — 62.4(F5 — &%) — 846(% — 13)
sed = 2116 — 16 + 635 = 2735 1bf/ft? Ans. (a) |
;gs Part (b)  The specific weight of glycerin is 78.7 Ibf/ft®. The balance in Eq. (2.33) would now be
)a 2735 = 2116 — 16 — 78.7(&% — z,)
> _ 88 4—84ft—101' Ans. (b

or Z, = 787 T1p = 84ft= in ns. (b)

This would require a much taller U-tube and is not a good idea in the long run because
glycerin tends to mix with water over a period of time. l

Instead of attempting to remember manometer formulations, it is simpler to
remember Eq. (2.20)! and derive the pressure-change relation for each new situa- L ! |
tion. Figure 2.10 illustrates a multiple-fluid manometer problem for finding the

! The author prefers as a memory device to keep the minus sign with pg so that the subscripts on p and z
will be the same on both sides.
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Fig. 210 A
complicated multiple-
fluid manometer to
relate p, to py. This
system is not especially
practical but makes a
good homework or
examination problem.

EXAMPLE 24

Solution

2.5
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—P3
F————————ikt
Jump across
2y, Py -pp-— ==~ %2: P2

— P

Z4-P4

Jumg across
—z.,D1

Z3,P3~
7

difference in pressure between the two chambers 4 and B. Repeated apblication of
Eq. (2.20) resuits in

Pa—P1= —p19(z4—2zy1) P — P2 = —p29(z — 2,)
P2 — Pz = —p39(z; — z3) P3 — Pp= —pag(z3 — 2p)

Summing these four gives the desired pressure difference p, — py.

2.34)

Find the pressure difference p, — ppin Fig. 2.10ifz, = 1.6 m, z, =0.7m, z, = 2.1 m, z; =
0.9 m, z; = 1.8 m, fluids 1 and 3 are water, and fluids 2 and 4 are mercury.

The specific weights of water and mercury are 9790 and 133,100 N/m?, respectively. The
pressure relations have already been derived in Eq. (2.34). Summing them and substituting
numerical values, we have
pi— Py = —9790(1.6 — 0.7) — 133,100(0.7 — 2.1) — 9790(2.1 — 0.9)
— 133,100(0.9 — 1.8) = —8811 + 186,340 — 11,748 + 119,790

= 285,571 Pa = 286 kPa Ans.

The intermediate six-figure result of 285,571 Pa is utterly fatuous since the measurements
cannot be made that accurately.

In making these manometer calculations we have neglected the capillary-height
changes due to surface tension, which were discussed in Example 1.13. These effects
cancel out if there is a fluid interface, or meniscus, on both sides of the U-tube, as in
Fig. 2.9. Otherwise, as in the right-hard U-tube of Fig. 2.10, a capillary correction
can be made or the effect can be made negligible by using large-bore tubes.

HYDROSTATIC FORCES
PLANE SURFACES

A common problem in the design of structures which interact with fluids is the
computation of the hydrostatic force on a plane surface. If we neglect density

ON
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changes in the fluid, Eq. (2.20) applies and the pressure on any submerged surface
varies linearly with depth. For a plane surface, the linear stress distribution is
exactly analogous to combined bending and compression of a beam in strength-of-
materials theory. The hydrostatic problem thus reduces to simple formulas involv-
ing the centroid and moments of inertia of the plate cross-sectional area.

Figure 2.11 shows a plane panel of arbitrary shape completely submerged in a {
liquid. The panel plane makes an arbitrary angle 6 with the horizontal free surface,

& so that the depth varies over the panel surface. If & is the depth to any element area
dA of the plate, from Eq. (2.20) the pressure there is p = p, + pgh.
To derive formulas involving the plate shape, establish an xy coordinate system
in the plane of the plate with the origin at its centroid, plus a dummy coordinate &
down from the surface in the plane of the plate. Then the total hydrostatic force on
one side of the plate is given by
Il
F=fp dA=f(pa+pgh)dA=paA+pgfh dA (2.35)
n of
The remaining integral is evaluated by noticing from Fig. 2.11 that h = £ sin § !
34) and, by definition, the centroidal slant distance from the surface to the plate is
1
beca=—|¢dA : (2.36)
. A
&)
The Free surface P=p,
ting = — ox/// \\\
s AN
// N
s \
h(x, ) X N |
h : -7 AN
Ans. Resultant GG s N
force: % S
ents F=pec4 \\ 2
ects " sind
1S in
tion
! |
dA4 =dx dy i |
Fig. 211 Hydrostatic -'-l
force and center of
pressure on an arbitrary
e plane surface of area A Plan view
: inclined at an angle 8 of arbitrary
181ty below the free surface. plane surface
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Fig. 2.12 The

hydrostatic-pressure

force on

a plane surface

is equal, regardless of its

shape,

to the resultant

of the three-dimensional

linear pressure

distribution on that
surface, F = pgA.
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Pressure
distribution Pay T PG

_ Arbitrary
* plare surface
of area A’

Centroid of the plane surface

Therefore, since 8 is constant along the plate, Eq. (2.35) becomnes
F=p,A+ pgsin0 Jé dA =p,A + pgsin 0 Eg A 2.37)

Finally, unravel this by noticing that . sin 0 = h, the depth straight down from
the surface to the plate centroid. Thus

F=p,A+ pghccA = (p, + pghcc)A = pec A (2.38)

The force on one side of any plane submerged surface in a uniform fluid equals the
pressure at the plate centroid times the plate area, independent of the shape of the
plate or the angle 0 at which it is slanted.

Equation (2.38) can be visualized physically in Fig. 2.12 as the resultant of a
linear stress distribution over the plate area. This simulates combined compression
and bending of a beam of the same cross section. It follows that the “bending”
portion of the stress causes no force if its “neutral axis” passes through the plate
centroid of area. Thus the remaining “compression” part must equal the cer:troid
stress times the plate area. This is the result of Eq. (2.38).

However, to balance the bending-moment portion of the stress, the resultant
force F does not act through the centroid but below it toward the high-pressure
side. Its line of action passes through the center of pressure CP of the plate, as
sketched in Fig. 2.11. To find the coordinates (x¢p, Yep), We sum momerits of the
elemental force p dA about the centroid and equate to the moment of the resultant
F. To compute y.p, We equate

Fyep = fyp dA = Jy(pu + pgé sin 0) dA = pg sin 0 ‘[yi dA (2.39)
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The term {p,ydA vanishes by definition of centroidal axes. Introducing ¢ =
¢og — ¥, we obtain

Fycp = pg sin ()(éCG jy dA — Jyz dA> = —pgsinO1I,, (2.40)

its centroidal x axis, computed in the plane of the plate. Substituting for F gives the
result

. Ixx
Yep = —pg sin 0 e (2.41)
cG

[}
|
l
where again | yd4 = 0 and I, is the area moment of inertia of the plate area about
The negative sign in. Eq. (2.41) shows that ycp is below the centroid at a deeper
level and, unlike F, depends upon the angle 0. If we move the plate deeper, ycp
approaches the centroid because every term in Eq. (2.41) remains constant except
Pcg»> Which increases.
The determination of xp is exactly similar:

Fxep = JXP dA = JX[Pa + pg(¢eg — ) sin 0] dA

(2.37) = —pgsin 0 ny dA= —pgsin0lI, . (2.42)
L from where I, is the product of inertia of the plate, again computed in the plane of the
plate. Substituting for F gives
2.38 1
239 Xep = —pg sin 0 — (2.43)
s the Pce
of the

For positive I,,, xcp is negative because the dominant pressure force acts in the
t of a third, or lower left, quadrant of the panel. If I, = 0, usually implying symmetry,
xcp = 0 and the center of pressure lics directly below the centroid on the y axis.

2ssion
ding”
plate .
1troid Gage-Pressure Formulas
In most cases the ambient pressure p, is neglected because it acts on both sides of
iltant the plate; e.g., the other side of the plate is inside a $hip or on the dry side of a gate
-Ssure or dam. In this case peg = pghcg, and the center of pressure becomes independent
te, as of specific weight
of the I sind I sin0
iltant F = pghee A —— Sin Xep = — —2 s 2.44 -
pPgice Yep he A CcP heg A ( ) |
(2.39) Figure 2.13 gives the area and moments of inertia of several common cross sections

for use with these formulas.
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[~

Fig. 2.13 Centroidal
moments of inertia for

(@)

[SSThs

various cross sections:
(a) rectangle, (b) circle,
(¢) triangle, and (d)
semicircle.

EXAMPLE 2.5

A=bL
bL3
ho =y )
5,=0
I
(b)
= bL
o | 4R
bL3 ! 4R
Ixx - *35_ J 3
[ = b~ 25)L?
L2

R. ! R ’T

A=7R?

R4

Ly =%
L, =0

7R?

A=—
2

I, =0.10976R*

I,=0

Xy

The gate in Fig. E2.5a is 5 ft wide, is hinged at point B, and rests against a smooth wall at

point A. Compute (a) the force on the gate due to seawater pressure; (b) the horizontal force
P exerted by the wall at point A; and (c) the reactions at the hinge B.

Pq

L

Fig. E2.5a

Page 20 of 64

Seawater:
64 Ibf/ft>

Wall
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Solution
Part (a)
.R2
R*
4
D
Part (b)
R?
2
10976R*
1 wall at
tal force
Fig. E2..5b
Part (¢)

EXAMPLE 2.6
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By geometry the gate is G ft long from A to B, and its centroid is halfway between, or at ‘
elevation 3 ft above point B. The depth hqg is thus 15 — 3 = 12 ft. The gate area is 5(10) =
50 ft2. Neglect p, as acting on both sides of the gate. From Eq. (2.38) the hydrostatic force on
the gate is |

F = pegA = pgheg A = (64 Ib/i)(12 ft)(50 ft2) = 38,400 1bf Ans. (a) I

First we must find the center of pressure of F. A free-body diagram of the gate is shown in :|
Fig. E2.5b. The gate is a rectangle, and hence

BL3 (5 ft)(10 ft)
[..=0 ¢ [o=r = = 4
¥ and T o 417 ft

The distance ! from the CG to the CP is given by Eq. (2.44) since p,, is neglected

I.sin0 (417 ft4)(S)

heod (12050 1t2) 04T ft

l=—yep=

The distance from point B to force F is thus 10 — [ — 5 = 4.583 ft. Summirg moments
counterclockwise about B gives

PLsin 0 — F(5 — I) = P(6 ft) — (38,400 Ibf)(4.583 ft) = 0
or P = 29,300 Ibf A5, () :

With F and P known, the reactions B, and B, are found by summing forces on the gate
Y F,=0=B,+ Fsin0 — P = B, + 38,400(0.6) — 29,300
or B, = 6300 Ibf
S F,=0=E,—Fcos0=B,— 38,400(0.8)
or B, = 30,700 Ibf Ans. (c)

This example should have reviewed your knowledge of statics.

A tank of oil has a right triangular panel near the bottom, as in Fig. E2.6. Omitting p,, find
the (a) hydrostatic force and (b) CP on the panel.
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Fig. E2.6

Solution
Part (a)

Part (b)
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[ Pa v,

Oil: p = 800 kg/m?

1
/ l4
! 6 m

T
|
m |
t
|
|

The triangle has properties given in Fig. 2.13c. The centroid is one-third up (4 m) and one-
third over (2 m) from the lower left corner, as showr.. The area is

46 m)(12 m) = 36 m?
The moments of inertia are

bL*> (6 m)(12 m)?

=36 T 36
_bb—29L> (6 m){6m —2(6 m)](12m)* _
L7 72 =

= 288 m*

and I —~72 m*

The depth to the centroid is heg = 5 + 4 = 9 m; thus the hydrostatic force from Eq. (2.44) is
F = pghcg A = (800 kg/m>)(9.807 m/s2)(9 m)(36 m?)

= 2.54 x 10° (kg - m)/s*® = 2.54 x 10° N = 2.54 MN Ans. (a)
The CP position is given by Egs. (2.44):
I, sin@ (288 m*)(sin 30°)
p= = = — = —0444 m
& heaA (9 m)(36 m?) 0444 m
I,,sinf (—72 m*)(sin 30°)
= — = — = +0.11 ;
Xcp hood © m)(36 m?) +0.111m Ans. (b)

The resultant force F = 2.54 MN acts through this point, which is down and to the right of
the centroid.

HYDROSTATIC FORCES ON CURVED SURFACES

The resultant pressure force on a curved surface is most easily computed by separ-
ating into horizontal and vertical components. Consider the arbitrary curved sur-
face sketched in Fig.. 2.14a. The incremental pressure forces, being normal to the
local area element, vary in direction along the surface and thus cannot be added
numerically. We could sum the separate three components of these elemental
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Curved surface
projection onto
Fy  vertical plane

Fig. 2.14 Computation
of hydrostatic force on
a curved surface: (a)
submerged curved
surface; (b) free-body
diagram of fluid above
the curved surface. (a) oy

and one- pressure forces, but it turns out that we need not perform a laborious three-way
integration.

Figure 2.14b shows a free-body diagram: of the column of fluid contained ir: the
vertical projection above the curved surface. The desired forces F,; and F, are
exerted by the surface on the fluid column. Other forces are shown due to fluid
weight and horizontal pressure on the vertical sides of this column. The column of
fluid must be in static equilibrium. On the upper part of the column, bede, the
horizontal components F, exactly balance and are not relevant to the discussion.
On the lower, irregular portion of fluid abc adjoining the surface, summation of
horizontal forces shows that the desired force Fy due to the curved surface is

(2.44) i exactly equal to the force Fy on the vertical left side of the fluid column. This
left-side force can be computed by the plane-surface formula, Eq. (2.38), based on a
vertical projection of the area of the curved surface. This is a general rule and

Ans. (a) simplifies the analysis:

The horizontal component of force on a curved surface equals the force on the plane
area formed by the projectior: of the curved surface onto a vertical plane normal to the
component.

If there are two horizontal components, both can be computed by this scheme.

Ans. . . h
nsa(b) Summation of vertical forces on the fluid free body then shows th:at
rlght Of FV = W1 + Wz + VVair (245)
We can state this in words as our second ger:eral rule:
'ES The vertical component of pressure force on a curved surface equals in magnitude and
direction the weight of the entire column of fluid, both liquid and atmosphere, above

‘separ- the curved surface.
ed sur-

to the Thus the calculation of F,, involves little more than finding centers of mass of a
added column of fluid—perhaps a little integration if the lower portion abc has a particu-
mental larly vexing shape.
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EXAMPLE 2.7 A dam has a parzbolic shape z/zy, = (x/x,)? as shown in Fig. E2.74, with x4 = 10 ft and
2o = 24ft. The fluid is water, pg = 62.4 Ibf/ft3, and atmospheric pressure may be omitted.
Compute the forces F, and F,, on the dam and the positior: CP where they act. The width of
the dam is 50 ft.

b, =0 1bf/ft? gage

A b ol A P b B bbb T

Zy

VA
— )“xo—;\z=z<i>
Fig. E2.7a X0

Solution  The vertical projection of this curved surface is a rectangle 24 ft high and 50 ft wide, with its
centroid halfway down, or h.; = 12 fi. The force Fy is thus

.i Fy = pgheg Ayeo; = (62.4 Ib{/f3)(12 ft)(24 £1)(50 i)
= 899,000 1bf = 899 x 10° |bf Ans.
The line of action of F, is below the centroid by an amount

I, sin0 12(50 ft)(24 ft)*(sin 90°) ”
Yo ey T (2mafoony  — A
Thus Fy, is 12 + 4 = 16 ft, or two-thirds, down from the free surface or § ft from the bottom,
as might have been evident by inspection of the triangular pressure distribution.
The vertical component F, equals the weight of the parabolic portion of fluid above the
curved surface. The geometric properties of a parabola are shown in Fig. E2.7b. The weight
of this amount of water is

Fy = pg(3xqzob) = (62.4 Ibf/it))(10 f)(24 ft)(50 )

= 499,000 Ibf = 499 x 10° Ibf Ans.
2
r Area = —%ﬁg
Zgb——f—m e o

l
I
I
3z, :
I i
5 F, :
] i
| |
| |
A
| Parabola |

| 1 i

0 3x, xo =10 ft
Fig. E2.7b 8
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ft, and This acts downward on the surface at a distance 3x,/8 = 3.75{t over from tke origin of i
nitted. coordinates. Note that the vertical distance 3z,/5 in Fig. E2.7b is irrelevant. |1
dth of The total resultant force acting on the dam is i
f
F=(F§ + F2)'* = [(499)* + (899)*1"/* = 1028 x 1> Ibf |
As seen in Fig. E2.7c, this force acts down and to the right at an angle of 29° = tan ™! £33, |
The force F passes through the point (x, z) = (3.75 ft, 8 ft). If we move down along the 29° '
line until we strike the dam, we find an equivalent center of pressure on the dam at |
Xcp = 5.43 ft zep =107 ft Ans. 1|
This definition of CP is rather artificial, but this is ar: unavoidable complication of dealing |
with a curved surface. I
Z |
L |
- Resultant = 1028 X 103 1bf acts along z = 10.083 — 0.5555x |
ez i)
] |
1
l 1
ith its 1
899 i
Ans. '
8 ft
I
i |
i |
ttom, Fig. E2.7¢ 0 .: t
ve the 3 . '
Eight 277 HYDROSTATIC FORCES IN LAYERED FLUIDS |

The formulas for plane and curved surfaces in Secs. 2.5 and 2.6 are valid only for a Y
fluid of uniform density. If the fluid is layered with different densities, as in Fig. 2.15,

A, a single formula cannot resolve the problem because the slope of the linear pressure

distribution changes between layers. However, the formulas apply separately to

each layer, and thus the appropriate remedy is to compute and sum the separate

layer forces and moments.

Consider the slanted plane surface immersed in a two-layer fluid in Fig. 2.15.
The slope of the pressure distribution becomes steeper as we move down into the
denser second layer. The total force on the plate does not equal the pressure at the
centroid times the plate area, but the plate portion in each layer does satisfy
the formula, so that we can sum forces to find the total

F=YF =Y peoA (2.46)

Similarly, the centroid of the plate portion in each layer can be used to locate the
center of pressure on that portion

pig sin 0;.
Pcc; A

XX plg Sin oi Ix i
Yep, = — = Xep, = — —pCG-‘-_ A, s (2.47)
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Il
| J—g— ~0
l
I!I £ <p2
! Fluid 1
2150
P
Fluid 2
2.2
Fig. 2.15 Hydrostatic
forces on a surface G 3 o _
immersed in a layered . e D =P P8z~ 2))
fluid raust be summed S e
together in separate S
pieces. S Py =P — 082y —2)

These formulas locate the center of pressure of that particular F; with respect to the
centroid of that particular portion of plate in the layer, not with respect to the
centroid of the entire plate. The center of pressure of the total force F = ) F; can
then be found by summing moments about some convenient point such as the
surface. The following example will illustrate.

EXAMPLE 2.8 A tank 20ft deep and 7 ft wide is layered with 8 ft of oil, 6 ft of water, and 4 ft of mercury.
Compute (a) the total hydrostatic force and (b) the resultant center of pressure of the fluid on
the right-hand side of the tank.

Solution
Part (@) Divide the end panel into three parts as sketched in Fig. E2.8 and find the hydrostatic
pressure at the centroid of each part, using the relation (2.38) in steps as in Fig. E2.8:

Peg, = (55.0 IbF/RE)4 ft) = 220 Ibf/ft?
Peg, = (55.0)(8) + 62.4(3) = 627 Ibf/fit?
Peg, = (55.0)(8) + 62.4(6) + 846(2) = 2506 Ibf/ft2

These pressures are then multiplied by the respective panel areas to find the force on each
portion:

F = peg, Ay = (220 IbE/fe)(8 ft)(7 ft) = 12,300 Ibf
Fy = peg, A, = 627(6)(7) = 26,300 Ibf

Fy = peg,As = 2506(4)(7) = 70,200 Ibf
F= Z F,; = 108,800 Ibf Ans. (a)
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[
pea ’ ’i
Fig. 2.8 V ' l

Part (b) Eguations (2.47) can be used tc locate the CP of each force F;, noting that 0 = 90° and
sin 0 = 1 for all parts. The moments of inertia are I, = (7ft)(8 ft)>/12 = 298.7{t*, I, =

xx2

7(6)*/12 = 126.0ft*, and I, = 7(4)*/12 = 37.3 ft*. The centers of pressure are thus at

X

&

N

& A
)

&5

ct to the P9l (55.0 lbf/ft3)(298.7 ft*) '

, Vep, = — - = — 1331t !

ot to the ! F, 12,300 1bf |

Z F; can 62.4(126.0) 846(37.3)

, = ——————— = —0.3 = — = 045 F

h as the Yer, 26,300 0.30 ft Yer, 70,200 045 ft |
This locates zcp, = —4 — 1.33 = —5.33ft, zep, = —11 =030 = —11.30ft, and z¢, =

‘mercury. —16 — 0.45 = —16.45 ft. Summing moments about the surface then gives

e fluid on S Fizep, = Fzep J
or 12,300(—5.33) + 26,300( — 11.30) + 70,200( — 16.45) = 108,800z,

i L 13.95 ft Ans. (b) 1

:/czigr'ostatlc or Zep = — 108,800 , ns. |

The center of pressure of the total resultant force on tke right side of the tank lies 13.95 ft J

below the surface. 0

28 BUOYANCY AND STABILITY

e on each The same principles used to compute hydrostatic forces on surfaces can be applied
to the net pressure force on a completely submerged or floating body. The results J
are the two laws of buoyancy discovered by Archimedes in the third century B.C.:
1. A body immersed in a fluid experiences a vertical buoyant force equal tc the |
weight of the fluid it displaces. :
Ans. (a)

2. A floating body displaces its own weight in the fluid in which it floats.
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Fig. 2.16 Two different
approaches to the
buoyant force on an
arbitrary immersed
body: (a) forces on
upper and lower curved
surfaces; (b) summation
of elemental vertical-
pressure forces.
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Surface Horizontal
N 2 elemental
< areadAy

Surface
2

Fy(2)

(a) (®)

These two laws are easily derived by referring to Fig, 2.16. In F ig. 2.164, the body
lies between an upper curved surface 1 and a lower curved surface 2. From Eq.
(2.45) for vertical force, the body experiences a net upward force

Fp= FV(2) - FV(I)
= (fluid weight above 2) — (fluid weight above 1)
= weight of fluid equivalent to body volume (2.48)

Alterr;atively, from Fig, 2.16b, we can sum the vertical forces on elemental vertical
slices through the immersed body

Fy= f (P2~ py) ddy = —pg ((Zz —z)dAy = (pg)(body volume) (2.49)
body

J

body; ie., its center of mass is computed as if it had uniform density. This point
through which F B acts is called the center of buoyancy, commonly labeled B or CB
on a drawing. Of course the point B may or may not Correspord to the actual
cerzter of mass of the body’s own material, which may have variable density.

Equation (2.49) can be generalized to a layered fluid (LF) by summing the
weights of each layer of density p, displaced by the immersed body

Fg)y = '3 p:g(displaced volume), (2.50)

Each displaced layer would have its own center of volume, and one would have to
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Neglect the displaced air up here

= 7 % B s
X Fa / |
B //

(Displaced volume) x (pg of fluid)

Fig. 2.17 Static
equilibrium of a
floating body. = body weight

weight of a person as 180 Ibf and thus estimate his total volume as 3.0 ft*. However,
in so doing we are neglecting the buoyant force of the air surrounding the person.
At standard conditions, the specific weight of air is 0.0763 Ibf/ft*; hence the buoy-
ant force is approximately 0.23 1bf. If measured in vacuo, the person would weigh
about 0.23 1bf more. For balloons and blimps the buoyant force of air instead of
being negligible is the controlling factor in the design. Also, many flow phenomena,

c])Edy e.g., natural convection of heat and vertical mixing in the ocean, are strongly |
4 dependent upon seemingly small buoyant forces. |
Floating bodies are a special case; only a portion of the body is submerged, the l
remainder poking up out of the free surface. This is illustrated in Fig. 2.17, where
the shaded portion is the displaced volume. Equation (2.49) is modified to apply to
48) this smaller volume ’
'. Fy = (pg)(displaced volume) = floating-body weight (2.51) l
i . . .
- Not only does the buoyant force equal the body weight but they are collinear since
there can be no net moments for static equilibrium. Equation (2.51) is the mathe-
49) matical equivalent of Archimedes’ law 2 previously stated.
EXAMPLE 29 A block of concrete weighs 100 1bf in air and “weighs” only 60 Ibf when immersed in fresh
¢ water (62.4 1bf/ft3). What is the average specific weight of the block?
0
c.ed Solution A free-body diagram of the submerged block shows a balance between the apparent weight,
g};t the buoyant force, and the actual weight
il Y F,=0=060+ F; — 100
or F, = 40 1bf = (62.4)(block volume in ft*)
the
50) 60 Ibf
to (]
of !
ut
an i
he Fig. E2.9 W =100 Ibf
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Fig. 2.18 Calculation
of the metacenter M of
a floating body to
determine its static
stability: (a) initial
floating position; (b) B’
moves far out (point M
above G derotes
stability); (c) B’ moves
slightly (point M below
G denotes instability).
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Solving gives the volume of the block as 40/62.4 = 0.641 ft3. Therefore the specific weight of
the block is

100 1bf

m =156 lbf/ft3 Ans.

(pg)block ==

Occasionally, a body will have exactly the right weight and volume for its
ratio to equal the specific weight of the fluid. If so, the body will be neutrally buoy-
ant and will remain at rest at any point where it is immersed in the fluid. Small
reutrally buoyant particles are sometimes used in flow visualization, and a neutral-
ly buoyant body called a Swallow float [2] is used to track oceanographic currents,
A submarine can achieve positive, neutral, or negative buoyancy by pumping water
in or out of its ballast tanks.

Stability

A floating body as in Fig. 2.17 may not approve of the position in which it is
floating. If so, it will overturn at the first opportunity and is said to be statically
unstable, like a pencil balanced upon its point. The least disturbance will cause it to
seek another equilibrium position which is stable. Engineers must design to avoid
floating instability. The only way to tell for sure whether a floating position is
stable is to “disturb” the body a slight amount mathematically and see whether it
develops a restoring moment which will return it to its original position. If so, it is
stable; if not, unstable. Such calculations for arbitrary floating bodies have been
honed to a fine art by naval architects [3], but we can at least outline the basic
principle of the static-stability calculation. Figure 2.18 illustrates the computation
for the usual case of a symmetric floating body. The steps are as follows:

1. The basic floating position is calculated from Eq. (2.51). The body’s center of
mass G and center of buoyancy B are computed.

Small Small
Line of \A@| disturbance Ab disturbance
symmetry angle angle

. Restoring Overturning
Either moment ol moment
(@) ) (c)
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|
cight of 2. The body is tilted a small angle Af and a new waterline established for the body ‘ |
to float at this angle. The new position B’ of the center of buoyancy is calculated. |
Ans A vertical line drawn upward from B’ intersects the line of symmetry at a point 1l
' M, called the metacenter, which is independent of Af for small angles. I|,|
3. If point M is above G, that is, if the metacentric height MG is positive, a restoring i
for its moment is present and the original positior: is stable. If M is below G (negative ‘|
buoy- MG), the body is unstable and will overturn if disturbed. Stability increases with '
Small : . = : ‘
increasing MG.
utral- |
rrents. . . . . . .
water Thu§ the metacentric helght is a property qf Fhe cross section for the given welght, i
and its value gives an indication of the stability of the body. For a body of varying |
cross section and draft, such as a ship, the computation of the metacenter can be I
very involved. We shall use a two-dimensional, or uniform, cross section as an
example. ‘
h it is
tically EXAMPLE 210 A barge has a uniform rectangular cross section of width 2L and vertical draft of height H. |!
e it to Determine (a) the metacentric height for a small tilt angle and (b) the range of ratio L/H for |
avoid which the barge is statically stable. Assume that the center of mass G of the barge is exactly
ion is at the waterline, as shown in Fig. E2.10a.
ther it M
0, it is | |
: been ' ' |
basic g e = — = — — ] o |
tation H
|
ter of Fig. E2.10a s ! L

Solution  The barge in its tilted position A0 is shown i Fig. E2.10b. Because of symmetry the tilted
body floats, again with G at the waterlire, and triangles aeG and fbG are identical in size.
The new center of buoyancy B’ can be found by summing moments of the submerged areas
about, say, the point G and setting this equal to the total submerged area (2LH) times the

Fig. E2.10b
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Fig. £:2.10¢

29
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Area = 2HL

distance I. The submerged area aGbcde is the sum of rectangle efdc plus triangle aeG minus
triangle fbG, and the centroids of each of these picces can easily be found for small angles of
tilt (Fig. E2.10¢). Summing moments of area counterclockwise about G, we have

2L H
2017 40) 57— 2HL<E A0> =2HLI

We can solve this for the distance | = (L2/3H — H/2) Af. From the tilted position showing

M above, the distance MG ~ I/A0, for small angles. Thus we have the approximate result for
metacentric height, independent of A0,

MG = L—Z & Ans. (a)
3H 2
This can be positive or stable only if L? > 3H2/2 or
L > 1.225H Ans. (b)

The wider the barge relative to its draft, the more stable it is.

PRESSURE DISTRIBUTION IN
RIGID-BODY MOTION

In rigid-body motion, all particles are in combined translation and rotation and
there is no relative motion between particles. With no relative motion, there are no
strains or strain rates, so that the viscous term yu V2V in Eq. (2.13) vanishes, leaving
a balance between pressure, gravity, and particle acceleration

Vp=p(g —a) (2.52)

The pressure gradient acts in the direction g — a, and lines of constant pressure
(including the free surface, if any) are perpendicular to this direction. The general
case of combined translation and rotation of a rigid body is shown in Fig. 2.19. If
the center of rotation is at point O and the translational velocity is ¥, at this point,
the velocity of an arbitrary point P on the body is given by?

V=V, +Qxr, (2.53)
! For a more detailed derivation of rigid-body motion, see Ref. 4, sec. 2.7.
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VA
a
|
Rigid body translating |
and rotating ‘
Y
|
Fig. 2.19 Kinematics |
of rigid-body velocity |
and acceleration. X l
minus where Q is the angular-velocity vector and r is the position of point P. Differen- |
gles of tiating, we obtain the most general form of the acceleration of a rigid body '
av aQ
a=—+Qx(QxXr1y)+— XT1, (2.54)
dt dt
owing Looking at the right-hand side, we see that the first term is the translational accel-

eration, the second term is the centripetal acceleration, whose direction is from
point P perpendicular toward the axis of rotation, and the third term is the linear
acceleration due to changes in the angular velocity. It is rare for all three of these
ns. (a) terms to apply to any one fluid flow. In fact, fluids can rarely move in rigid-body

motion unless restrained by confining walls for a long time. For example, suppose a

tank of water is in a car which starts a constant acceleration. The water in the tank
ns. (b) would begin to slosh about, and that sloshing would damp out very slowly until
finally the particles of water would be in approximately rigid-body acceleration.
This would take so long that the car would have reached hypersonic speeds.
Nevertheless, we can at least discuss the pressure distribution in a tank of rigidly
accelerating water. The following is an example where the water in the tank will
reach uniform acceleration rapidly.

ult for

1 and
I'e No EXAMPLE 2.11 A tank of water 1 m deep is in free fall under gravity with negligible drag. Compute the
aving pressure at the bottom of the tank if p, = 101 kPa.

, Solution  Being unsupported i this condition, the water particles tend to fall downward as a rigid
2.52) hunk of fluid. In free fall with no drag, the downward acceleration is a = g. Thus Eq. (2.52)
for this situation gives Vp = p(g — g) = . The pressure in the water is thus constant every-

S .
nS;raj where and equal to the atmospheric pressure 101 kPa. In other words, the walls are doing no
19, If service in sustaining the pressure distributior: which would normally exist.
oint,
Uniform Linear Acceleration
2.53) In this geheral case of uniform rigid-body acceleration, Eq. (2.52) applies, a having |

the same magnitude and direction for all particles. With reference to Fig. 2.20, the |
parallelogram sum of g and —a gives the direction of the pressure gradient or
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Fig. 2.20 Tilting of
constant-pressure
surfaces in a tank of
liquid in rigid-body
acceleration.

EXAMPLE 2.12

Solution
Part (a)
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Fluid
at rest

greatest rate of increase of p. The surfaces of constant pressure must be perpendicu-
lar to this and are thus tilted at an angle  such that '

a
f=tan ! —= (2.55)
g +a,
One of these tilted lines is the free sutface, which is found by the requirement that
the fluid retain its volume unless it spills out. The rate of increase of pressure in the
direction g — a is greater than in ordinary hydrostatics and is given by
dp 2 27172 :
e pG where G = [aZ + (g + a,)*]" (2.56)
N
These results are independent of the size or shape of the container as long as the
fluid is continuously connected throughout the container.

A drag racer rests her coffee mug on a horizontal tray while she accelerates at 7 m/s2. The
mug is 10 cm deep and 6 cm in diameter and contains coffee 7 cm deep at rest. (a) Assuming
rigid-body acceleration of the coffee, determine whether it will spill out of the mug. (b)
Calculate the gage pressure in the corner at point A if the density of coffee is 1010 kg/m3.

The free surface tilts at the angle 0 given by Eq. (2.55) regardless of the shape of the mug.
With a, = 0 ard standard gravity

0 tan“ﬁ—tan‘lﬂ—fiSS"
- g 981

If the mug is symmetric about its central axis, the volume of coffee is conserved if the tilted
surface intersects the original rest surface exactly at the centerline, as shown ir: Fig. E2.12.
Thus the deflection at the left side of the mug is

z = (3 cm)(tan 0) = 2.14 cm Ans. (a)
This is less than the 3-cm clearance available, so the coffee will not spill unless it was sloshed

during the start-up of acceleration.

ABIOMED Ex. 1032




ndicu-

(2.55)
1t that
in the

(2.56)

as the

2, The
uming
ug. (b)

/m3,

e mug.

> tilted
E2.12.

ns. (a)

loshed

Fig. E2.12

Part (b)

Fig. 221 Development
of paraboloid constant-
pressure surfaces in a
Auid in fluid-body
rotation. The dashed
line along the direction
of maximum pressure
increase is an
exponential curve.
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7 cm

Wkhen at rest, the gage pressure at point A is given by Eq. (2.20)
Pa= P9z — 2.4) = (1010 kg/m3)(9.81 m/s?)(0.07 m:) = 694 N/m? = 694 Pa

During acceleration, Eq. (2.56) applies, with G = [(7.0)> + (9.81)*]1"? = 12.05 m/s%. The :
distance As down normal from the tilted surface to point A4 is : i

As = (7.0 + 2.14) cos 0 = 744 cra
Thus the pressure at point 4 becomes
pa = pG As = 1010(12.05)(0.0744) = 906 Pa Ans. (b)
which is an increase of 31 percent over the pressure wher: at rest, |
|
] . 10
Rigid-Body Rotation
As a second special case, consider rotation of the fluid about the z axis without any
translation, as sketched in Fig. 2.21. We assume that the container has been rotat-
ing long enough at constant Q for the fluid to have attained rigid-body rotation.

The fluid acceleration will then be the centripetal term in Eq. (2.54). In the coordi-
nates of Fig. 2.21 the angular-velocity and position vectors are given by

Q=kQ ry=ir (2.57)

_Still-water
level

1
Axis of ‘ \
rotation !
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Then the acceleration is given by

Q x (Q x ry) = —rQ3%, (2.58)
as marked in the figure, and Eq. (2.52) for the force balance becomes
_.0p  Op _ "y
Vo=iz +k 3, = P& — a) = p(rQ%, — gk) (2.59)

Equating like components, we find the pressure field by solving two first-order
partial differential equations

op 0
55 = prQ¥? £ = —pyg (2.60)

This is our first specific example of the generalized three-dimensional problem
described by Egs. (2.14) for more than one independent variable, The right-hand
sides of (2.60) are known functions of r and z. One can proceed as follows: integrate
the first equation “partially,” i.e., holding z constant, with respect to r. The result is

p=3pr’Q* + f(2) (2.61)

where the “constant” of integration is actually a function f(2).! Now differentiate
this with respect to z and compare with the second relation of (2.60):

or
0z
or f(@)=—pgz + C (2.62a)

where C is a constant. Thus Eq. (2.61) now becomes

g =0+ f'(2) = —pg

p = const — pgz + 1pr2Q? (2.62b)

This is the pressure distribution in the fluid. The value of C is found by specifying
the pressure at one point. If p = poat(r,z) =(0,0), ther: C = Po- The final desired
distribution is

P = po — pgz + 5pr’Q? (2.63)

The pressure is linear in z and parabolic in r. If we wish to plot a constant-pressure
surface, say, p = p;, Eq. (2.63) becomes
202
p=Bo B T e (2.64)
pg 29
Thus the surfaces are paraboloids of revolution, concave upward, with their mini-
mum point on the axis of rotation. Some examples are sketched in Fig. 2.21.

As in the previous example of linear acceleration, the position of the free surface
is found by conserving the volume of fluid. For a noncircular container with the
axis of rotation off center, as in F ig. 2.21, a lot of laborious mensuration is required,
and a single problem will take you all weekend. However, the calculation is easy for

! This is because f (2) vanishes when differentiated with respect to r. If you dor’t see this, you should
review your calculus.
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Volume = %th

(2.58)
|
|
(2.59) I
st-order
Fig. 222 Determining
(2.60) the free-surface position
cylinder of fluid about
roblem its central axis. R | R
1t-hand
tegrate . . . . . : : ‘
esult' a cylinder rotating about its central axis, as iz Fig. 2.22. Since the volume of a

paraboloid is one-half the base arca times its height, the still-water level is exactly
(2.61) halfway between the high and low points of the free surface. The center of the fluid
drops an amount h/2 = Q*R?/4g, and the edges rise an equal amount.

|

‘

for rotation of a |
|

\

|

|

entiate
EXAMPLE 2,13  The coffee cup i Example 2.12 is removed from the drag racer, placed or: a turntable, and i
rotated about its central axis until a rigid-body mode occurs. Find (a) the angular velocity '
which will cause the coffee to just reach the lip of the cup and (b) the gage pressure at point A |
for this condition.
(2.624) |
Solution
Part (a)  The cup contains 7 cm of coffee. The remaining distance of 3 cm up to the lip must equal the
(2.62b) distance h/2 in Fig. 2.22. Thus I
cifying ﬁ: O = G2R? _ €:%(0.03 m)?
desired _ 27 4g  4(9.81 m/s?)
Solving, we obtain
(2.63) Q2= 1308 or Q=362 rad/s = 345 r/min Ans. (@)
ressure Part (b) To compute the pressure, it is convenient to put the origin of coordinates r and z at the
bottom of the free-surface depression, as shown in Fig. E2.13. The gage pressure here is
(2.64)
1w 3cm
I mini- —
surface
ith the I
Juired, e -
asy for '
y DOa
1 should —1Le
Fig. E2.13 | 3cm 3cm
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EXAMPLE 2.14

Fig. E2.14

Solution

Page 38 of 64

Po = 0, ard point A is at (r,z) = 3cm, —4 ¢cm). Equation (2.63) can then be evaluated

Pa =0~ (1010 kg/m*)(9.81 m/s2)(—0.04 m)
+ (1010 kg/m?)(0.03 m)*(1308 rad?/s?)
= 396 N/m? + 594 N/m? = 990 Pa Ans. (b)

This is about 43 percent greater than the still-water pressure p, = 694 Pa,

Here, as in the linear-acceleration case, it should be emphasized that the parabo-
loid pressure distribution (2.63) sets up in any fluid under rigid-body rotation,
regardless of the shape or size of the container. The container may even be closed
and filled with fluid. It is only necessary that the fluid be continuously intercon-
nected throughout the container. The following example will illustrate a peculiar
case in which one can visualize an imaginary free surface extending outside the
walls of the container. :

A U-tube witk a radius of 10in and containing mercury to a height of 30 in is rotated about
its center at 180 r/min until a rigid-body mode is achieved. The diameter of the tubing is
negligible. Atmospheric pressure is 2116 Ibf/ft2. Find the pressure at point A4 in the rotating
condition.

I
NN
i
=] |
\+
I
|
.
Y

N
-
NN

)
. \ /
30in \

”—
.
ANNRNNNNRNNANNNN

’ \ Imaginary

free surface

Convert the angular velocity into radians per second
.2
Q = (180 r/min) 50 = 18.85 rad/s

From Table 2.1 we find for mercury that pg = 846 Ibf/ft® and hence p = 846/32.2 =
26.3 slugs/ft3, At this high rotation rate the free surface will slarit upward at a fierce angle
[about 84°; check this from Eq. (2.64)], but the tubing is so thin that the free surface will
remain at approximately the same 30-in height, point B. Placing our origin of coordinates at
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ted this height, we can calculate the constant C in Eq. (2.62b) from the condition pg = |
2116 Ibf/ft2 at (r, z) = (10 in, 0): Tl
pp = 2116 Ibf/ft? = C — 0 + 4(26.3 slugs/ft>)(43 ft)2(18.85 rad/s)’ i
1]
2 = — =] = 2 I
Ans. (b) or C = 2116 — 3245 1129 1bf/ft fli
We then obtain p, by evaluating Eq. (2.63) at (r, z) = (0, —30in) |
p, = —1129 — (846 Ibf/ft*)(— 33 ft) = — 1129 + 2115 = 986 Ibf/ft Ans. il
1
varabo- This is less than atmospheric pressure, and we can see why if we follow the free-surface )
dtation, paraboloid down from point B along the dashed line in the figure. It will cross the horizontal |
 closed portion of the U-tube (where p will be atmospheric) and fall below point 4. From Fig. 2.22 |
{ETCOn- the actual drop from point B will be
yeculiar Q?R*  (18.85)*(33) AT
Thus p,, is about 16 inHg below atmospheric pressure, or about 15(846) = 1128 Ibf/ft? below,
p. = 2116 1bf/ft?, which checks with the answer above. When the tube is at rest,
d about
JBIFTE s pa = 2116 — 846(—39) = 4231 Ibf/ft>
rotating Hence rotation has reduced the pressure at point A by 77 percent. Further rotation can i
reduce p , to near-zero pressure, and cavitation can occur.
I
An interesting by-product of this analysis for rigid-body rotation is that the lines ,
everywhere parallel to the pressure gradient form a family of curved surfaces, as
sketched in Fig. 2.21. They are everywhere orthogonal to the constant-pressure
surfaces, and hence their slope is the negative inverse of the slope computed from
Eq. (2.64)2 u
dz| 1 1 :'
dr GL (dz/dr)p =const rQZ/g .|
|
where GL stands for gradient line !
or M 2.65)
e~ rQ? @
|
Separating the variables and integrating, we find the equation of the pressure- |
gradient surfaces | '
0?7 '
r=C;exp <— —> (2.66)
g
Notice that this result and Eq. (2.64) are independent of the density of the fluid. In
322 = the absence of friction and Coriolis effects, Eq. (2.66) defines the linés along which
> angle the apparent net gravitational field would act on a particle. Depending upor: its
ce will dersity, a small particle or bubble would tend to rise or fall in the fluid along these
ates at exponential lines, as demonstrated experimentally in Ref. 5. Also, buoyant
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Fig. 2.23  Experimental
demonstration with
buoyant streamers of
the fluid force field in
rigid-body rotation:
(top) fluid at-rest
(streamers hang
vertically upward);
(bottom) rigid-body
rotation (streamers are
aligned with the
direction of maximum
pressure gradient).
(From Ref. 5, courtesy
of R. lan Fletcher.)
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streamers would aligr: themselves with these exponential lines, thus avoiding any
stress other than pure tension. Figure 2.23 shows the cenfiguration of such
streamers before and during rotation.

210 PRESSURE MEASUREMENT 1)
n

There are many devices available for measuring pressure, both in a static and in a
moving stream. All take advantage of the fact that pressure applied to a finite area
of material causes a force and stress and displacement in the material. These
mechanical effects can then be quantified in various ways:

1. A force balance

2. The height of a liquid column (manometer)

3. Direct displacement measurement

4. Irdirect (electrical) measurement of displacement

Force balances are commonly used to calibrate pressure instrumernts rather than as
devices for routine measurement. The manometer, analyzed in Sec. 2.4, is a simple
and inexpensive device with ro moving parts except the liquid column itself.
Manometers can be constructed with extreme accuracy by using fluids of small
density differences, tilted liquid columns, ard a micrometer-mounted pointer or
eyepiece to locate the meniscus accurately. Examples are given in Fig. 2.24. “

When measuring pressure in a moving fluid (the so-called static pressure), care
must be taken not to disturb the flow. The best way to do this is to take the mea-
surement through a static hole in the wall of the flow, as illustrated for the two
instruments in Fig. 2.24. The hole should be normal to the wall, and burrs should
be avoided. If the hole is small enough (typically 1 mm diameter), there will be no
flow into the measuring tube once the pressure has adjusted to a steady value. Thus
the flow is almost undisturbed. An oscillating flow pressure, however, can cause a
large error due to possible dynamic response of the tubing. Other devices of smaller

Flow Flow

—_— e —

E— — I
—_— —_— |
—> P —_—

10

Fig. 2.24 Two

types of accurate
manometers for precise
measurements: (a) tilted
tube with eyepiece; (b)
micrometer pointer with
ammeter detector. (@) )
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Fig. 2.25 Schematic of
a bourdon-tube device
for mechanical
measurement of high
pressures.
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dimensions are used for dynamic-pressure measurements (see Fig, 2.26d). Note that
the manometers in Fig. 2.24 are arranged to measurc the absolute pressures p, and
P2 If the pressure difference p, — P2 is desired, a significant error is incurred by
subtracting two independent measurements, and it would be far better to connect
both ends of one instrument to the two static holes p, and p, so that one man-
ometer reads the difference directly.

The third type of pressure gage is a direct displacement measurement. An inex-
pensive and reliable device is the bourdon tube, sketched in Fig. 2.25. A curved tube
with a flattened cross section will deflect outward when pressurized internally. The
deflection can be measured by a linkage attached to a calibrated dial-gage pointer.
Extreme accuracy can be obtained through proper design, and commercial
bourdon gages are available with an accuracy of +0.1 percent of full scale.

The fourth type of pressure gage measures the displacement of the gage sensing
element by electrical means. The common techniques are (1) resistive, (2) capaci-
tive, (3) inductive, (4) reluctive, (5) piezoelectric, and (6) eddy currents. Some
examples are sketched in Fig, 2.26.

The reluctive device in Fig. 2.26a is called a linear variable differential trans-
Jormer (LVDT). Note that it uses a bourdon tube for convenience as a source of _
mechanical displacement from the applied pressure. The strain gages in Fig. 2.26b
are attached to a membrane which deflects under pressure, while the potentiometer
gage (Fig. 2.26¢) has a smali bellows which deflects the pickup on the variable
resistor. The piezoelectric transducer (Fig. 2.26d) uses the discovery of Pierre and
Jacques Curie in 1880 that certain quartz crystals generate an electric charge when
stressed. The piezoelectric gage has no internal fluid volume; i.c., the diaphragm is
installed flush with the wall and reacts almost instantaneously to a change in local
pressure. Thus the dynamic response is excellent, and piezoelectric sensors are
in wide use for rapid transient-pressure measurements such as blast waves or
turbulent-pressure fluctuations.

@« )

Section A4

Bourdon
tube

Pointer for
dial gage

\ Flattened tube deflects
\ \ outward under pressure
/

Linkage

T High pressure
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when change in transformer s lead |
gim is reluctance); (b) strain- '
gage transducer
local (membrane deflection Low |
S are N cad ainde (o \a
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change); (d) f High s+
piezpelectl‘ic transducer Case pressure Di\aphragm
(diaphragm deflection Capsule
causes induced charge
in crystals). (¢) ()

All the pressure devices with electric sensors have the great advantage that their
output can be recorded on a paper ckart or magnetic tape or other such permanent
storage. This advantage serves to offset the relatively high cost ($100 to $2000) of
electromechanical transducers.

Further discussion of pressure-measuring devices can be found in Refs. 7 to 9.

SUMMARY

This chapter has been devoted entirely to the computation of pressure distributions
and the resulting forces and moments in a static fluid or a fluid with a known
velocity field. All hydrostatic (Secs. 2.3 to 2.8) and rigid-body (Sec. 2.9) problems
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i are solved in this manner and are classic cases which every student should under-
N stand. In many irrotational and almost all viscous flows, both pressure and velocity
are unknowns and are solved together as a system of equations in the chapters
which follow.
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RECOMMENDED FILMS
Films numbered 5, 17, and 24 in Appendix C.

Problems
PROBLEM DISTRIBUTIGN 2.8 Stability of floating
i i bodies 2.127-2.136
Section Topic Problems 2.9 Uniform acceleration 2.137-2.151
2.9 Rigid-body rotation 2.152-2.160
21 Pressure and pressure 2.10 Pressure measurements None
gradient 2.1-2.5
22 Static equilibrium, gage
pressure , A2 21 Figure 2.1 and Egs. (2.3) and (2.4) show that the
2.3 Hydrostatic pressure; ; ok g S e .
) pressure is the same in all directions at a point ir: a fluid
barometers 29-2.24 . = o b . ’
at rest. How does this analysis differ from the discussion
2.3 The atmosphere 2.25-2.33 ; . '
L in Sec. 1.2 and Fig. 1.1¢ and d, which showed that
28 e 2342 4l Mohr’s circle shrinks to a point in a hydrostatic fluid?
2.5 Force on plane surfaces 2.48-2.81 P i AU
2.6 Force on curved surfaces 2.82-2.101 2.2 For small changes Az the hydrostatic relation Eq.
2.7 Forces in layered fluids 2.102--2.103 (2.20) becomes Ap = pg Az, yet in Eq. (2.3) we would
2.8 Buoyarcy, Archimedes’ appear to get the relatior Ap = pg Az. Explain the fac-
principle 2.104-2.126 tor of £ in this second relation.
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2.3 For the two-dimensional stress field skowrn in Fig,.
p2.3 it is found that

= 2000 Ibf/ft> a,, = 1800 Ibf/ft*
0., = 6,, = 100 Ibf/t*

Ox

Find the shear and normal stress in pounds per square
foot on the plane AA cutting through at a 30° angle as

shown.
Oyy
‘ ny B
Oyy
7
N
g \\
xx ~
\\\
o N7 Oxx
s T
O'x),
= e e e
(7),’\‘
L
O.V)’
Fig. P2.3

24 For the stress field of Fig. P2.3 we are given
0. = 2000 1bf/ft2 a,, = 1800 Ibf/ft?
a,(AA) = 2100 Ibf/ft?

Compute the shear stress on plane A4 and the shear
stress o,.

2.5 Equation (2.13) is a vector equation which has
three components. Write out its y component in full.

2.6 Atlanta, Georgia has an average altitude of
1100 ft. Or: a day when atmospheric pressure equals the
U.S. standard value, gage 4 ina laboratory experiment
reads 99 kPa and gage B reads 97 kPa. Express these
readings in gage pressure or vacuum pressure as the
case may be.

2.7 Any pressure reading can be expressed as a head
or length h = p/pg. What is standard sea-level pressure
expressed in (a) meters of water, (b) feet of water, (c)
inches of mercury, and (4) millimeters of mercury?

28 On a day when the barometer reads 29.5inHg a
pressure gage reads 1.3 1bf/in? vacuum. Express the ab-
solute pressure in the gage in (a) inches of mercury and
(b) pascals.
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2.5 Express the absolute pressure at point C in Fig.
2.4 in pascals if it lies 85 cm below the surface and the
barometer reads 29.7 inHg.

2.10  Express a pressure of 2 kPa ir: terms of a column
height of 20°C fluid for (a) benzene, (b) methanol, and
(c) seawater.

2.11 What depth change in feet in (a) water, (b) sea-
water, and (¢) mercury will cause a pressure increase of
| atm?

2.12 The deepest known point ir the ocean is
11,034 m in the Mariana Trench in the Pacific. Assum-
ing seawater to have a constant specific weight of
10,050 N/m?, what is the pressure at this point in
atmospheres?

2.13 Repeat Prob. 2.12 by integrating the more exact
nonlinear pressure-density relation for water, Eq.
(1.38), from the surface to the sea bottom. What is the
percent change in the computed bottom pressure?

2.14 The closed tank in Fig. P2.14 is at 20°C. If the
pressure at point A is 90 kPa absolute, what is the abso-
lute pressure at point B in kilopascals? What percent
error do you make by neglecting the specific weight of
the air?

A I v

‘ i
2m Water

1

Fig. P2.14

=
1
>
e e

2.15 The answer to Prob. 1.44 is that mercury best fits
B = 41,350 and » = 6. Consider this a reward if you
read ahead this far. Now use this formula to determine
the pressure in the Mariana Trench (Prob. 2.12) if the
ocean were filled with mercury instead of seawater.

2.16 The air-oil-water system in Fig. P2.16 is at 20°C.
Knowing that gage A4 reads 15 Ibf/in? absolute and gage
B reads 1.251bffin? less than gage C, compute (a) the
specific weight of the oil in pounds force per cubic foot
and (b) the actual reading of gage C in pounds force per
square inch absolute.
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15 1bf/in? abs

/ZA
Air 2 ft
-
Ut
o —=
11t B
k7
Water 2 ft
C
Fig. P2.16

217 The system in Fig. P2.17 is at 20°C. If the pres-
sure at point A is 2000 1bf/ft?, determine the pressures at
points B, C, and D in pounds force per square foot.

- . - o
iy Air r 2 £t
t
&8
- z é_ i Air
= 4 ft
51t g o
Water D 2ft
. —
Fig. P2.17

2.18 The system in Fig. P2.18 is at 20°C. If atmos-
pheric pressure is 101.33kPa and the pressure at the
bottom of the tank is 237kPa, what is the specific
gravity of fluid X?

2.19 When open tubes called piezometers are con-
nected to a tank of liquid under pressure, the liquid rises
to the piezometer head, or pressure head, of the liquid. If
p4 is the pressure at point A, show that all three
piezometers rise to the same level h = p ,/pg.

220 The hydraulic jack in Fig. P2.20 is filled with oil
at 56 1bf/ft3. Neglecting the weight of the two pistons,
what force F on the handle is required to support the
2000-Ibf weight for this design?

Page 46 of 64

72 -
SAE300il | 1M
Water 2m
Fluid X 3m
Mercury §.5 m
Fig. P2.18
?_ O — M ™
h
Liquid
of
density p
e A
Fig. P2.19

-
_

Fig. P2.20
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221 The Red Sea, being in a region of high evapora-
tion, is very salty. The average pressure at a depth of
70 m in the Red Sea is 202 kPa above atmospheric pres-
sure. What is the density of Red Sea water in kilograms
per cubic meter? What is its percentage salt content by
weight?

222 The fuel gage for a gasoline tank in a car reads
proportional to the bottom gage pressure as in Fig.
P2.22. If the tank is 30 cm deep and accidentally con-
tains 2cm of water plus gasoline, how many centi-
meters of air remain at the top when the gage
erroneously reads “full”?

\Vi Air ﬁ?
30 cm T Gasoline
SG=0.68
% = Water Ecm
Pgage

Fig. P2.22

2.23 At 20°C gage A4 reads 300 kPa absolute. What is
the height h of the water in centimeters? What should
gage B read in kilopascals absolute?

Air: 180 kPa abs
AvA

h?

J_ Water

80 cm | Mercury

& ﬁg

Fig, P2.23

224 The U-tube in Fig. P2.24 has a 1-cm ID and con-
tains mercury as shown, If 10 cm?® of water is poured
into the right-hand leg, what will the free-surface height
in each leg be after the sloshing has died down?
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Mercury

/A
Z 7z
Z

10 cm: 4 ?‘ 10 cm
/ A
%
Z
r/////A////// o,

10 cm
Fig. P2.24

2.25 1If air were incompressible at its nominal specific
weight of 11.8 N/m?, how high in meters would the
atmosphere have to be to cause sea-level pressure to be
its nominal value of 2116 Ibf/ft>? '

226 The atmosphere of Venus is 90 percent CO,, but
assume it to be 100 percent. Its surface pressure is about
2 MPa, and its average surface temperature is 190°C.
For an isothermal atmosphere, estimate the pressure at
an altitude of 20 km. Take g = 28.5 ft/s2.

2.27 From the standard atmosphere in Fig. 2.7, esti-
mate the mass of the entire atmosphere in kilograms,
assuming the radius of the earth to be 6400 km.

2.28 Investigate the effect of a doubling of the lapse
rate on atmospheric pressure. If T, is 20°C and p, =
99 kPa, compute the pressure at 3500 m for a lapse rate
of (@) 0.0005 K/m and (b) 0.001 K/m. What do you con-
clude?

229 Sea-level temperature and pressure and the
atmospheric lapse rate vary from day to day. At a cer-
tain time sea-level temperature is SO°F and sea-level
pressure is 29 inHg. An airplane overhead registers a
temperature of 20°F and a pressure of 11 ibf/in? abso-
lute. Estimate the altitude of the plane in feet.

2.30 What percentage error do you make in Prob.
2.29 if you simply assume a standard lapse rate of
0.003566 °R/ft?

2.31 From Fig. 2.7 standard pressure at z = 30 km is
1.20kPa. From 30 to 40km the temperature rises
approximately linearly from —45 to —20°C. Estimate
the pressure at z = 40 km ir: pascals.

232 On a cold day at the North Pole sea-level tem-
perature is —50°C and remains approximately iso-
thermal up to 3000m. Estimate the atmospheric
pressure there at z = 3000 m if sea-level pressure is
100kPa.
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233 On a summer day in Narragansett, Rhode
Island, sea-level temperature is 80°F, sea-level pressure
is 29.5 inHg, and the lapse rate is 0.0036 °R/ft. Estimate
the specific weight of the local atmosphere in pounds
force per cubic foot at an altitude of 5060 ft.

234 1In Fig. P2.34 fluid 2 is carbon tetrachloride and
fluid 1 1s glycerin. If p, = 101 kPa, determine the abso-
lute pressure at point A.

Py
Py
32cm

RS

10 ¢cm

N Y
)

Fig. P2.34

235 In Fig. P2.35 all fluids are at 20°C. Determine the
pressure difference between points 4 and B.

Kerosine

9 cm

236 In Fig. P2.36 all fluids are at 20°C. If pp — p,4 =
99 kPa, what must the height H be in centimeters?
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Meriam
red oil,
SG = 0.827 18 cm
—
Water
H
T Mercury
35cm
|
Fig. P2.36

2.37 For Fig. 2.9 if fluid 1 is water and fluid 2 is met-
cury, and z, = 0, z, = — 10 cm, what is the level z, for
which p, = pam?

2.38 For Fig. 2.9 fluid 1 is air and fluid 2 is mercury.
The right leg is fitted with a scale graduated to read p,
in kilopascals gage. What should the difference between
scale graduations in millimeters be?

2.39 Tke inclined manometer in Fig. P2.39 contains
Meriam red manometer oil, SG = 0.827. Assume that
the reservoir is very large. If the inclined arm is fitted
with graduations 1 in apart, wkat should the angle 0 be
if each graduation corresponds to 1 Ibf/ft* gage pressure
for p,?

Reservoir

Fig. P2.39

2.40 Repeat Prob. 2.39 for a finite reservoir approxi-
mating a half-full hemisphere with a diameter of 6 in.
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241 Thesystem in Fig. P2.41 is at 20°C. Compute the
pressure at point A in pounds force per square foot
absolute.

Water

Qil, SG=0.85

Mercury

Fig. P2.41

2.42 Very small pressure differences p, — pp can be
measured accurately by the two-fluid differential
manometer ir Fig. P2.42. Density p, is only slightly
larger than the upper fluid p,. Derive an expression for
the proportionality between h and p, — py if the reser-
voirs are very large.

127} AV Dp

= L
Py P
hy . T n,

.||q
|
|
|

NN

NONNNNNN
—

P2

§

Fig. P2.42

243 To illustrate the effectiveness of the system in Fig.
P2.42, consider that a height difference of 1 cm in a fluid
with SG = 0.82 corresponds to a pressure difference of
80.3 Pa. In Fig. P2.42, what difference p, — pp corre-
sponds to h = 1 cm when SG; = 0.81 and SG, = 0.83?
What is the increase in accuracy?

244 Water flows downward in a pipe at 45°, as shown
in Fig. P2.44. The pressure drop p; — p, is partly due to
gravity and partly due to friction. The mercury manom-
eter reads a 6-in height difference. What is the total
pressure drop p; — p, in pounds force per square inch?
What is the pressure drop due to friction only between
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1 and 2 in pounds force per square inch? Does the
manometer reading correspond only to friction drop?
Why?

Water

Mercury

Fig. P2.44

2.45 Determine the gage pressure at poirt A in pascals.
Is it higher or lower than atmospheric?

D,
Ai[' atm
_ o Oil,
T SG=0.85
|
30
e 40 cm
45 cm
1 1
15 cm
z
_L® ‘s 1
Water Mercury
Fig, P2.45

246 InFig P2.46, what will the level k of the oil in the
right-hand tube be in centimeters? Both tubes are open
to the atmosphere.
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oil,
SG=0.82 |[20cm

25 cm
Water

Fig. P2.46

2.47 The cylindrical tank in Fig, P2.47 is being filled
with water at 20°C by a pump which produces an abso-
lute pressure of 150kPa at the inlet. At the instant
shown the air pressure is 100 kPa and H = 25 cm. If the

_ air compresses isothermally, what will H be when the

flow ceases because the tank becomes hydrostatic?

|| 50 cm |
Air
75 cm 20°C
\Vi
o Water
e PUumMp
Fig. P2.47

248 The tank in Prob. 2.46 is 30 cm wide into the
paper. Compute the force in newtons on the left-hand
side panel of the tank and its center-of-pressure posi-
tion.

249 Repeat Prob. 2.48 but instead compute the force
and center of pressure on the right-hand side panel.
2.50 Repeat Example 2.5 but instead let the hinge be
at point 4 and let point B rest against a smooth bottom.
251 Gate AB in Fig. P2.51 is 1.2m long and 0.8 m
into the paper. Neglecting atmospheric pressure, com-
pute the force F on the gate and its center-of-pressure
position X.
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. 6 m— -

Oil.
SG=0.82

L%

Fig. P2.51

2.52 A vertical submerged gate 8 ft wide and 10 ft high
is hinged at the top and held closed by water whose
level is 5ft above the gate top. What horizontal force
applied at the bottom of the gate is required to open it?

2.53 A vat filled with oil (SG = 0.82) is 7 m long and
3 m deep and has a trapezoidal cross section 4 m wide
at the bottom and 6 m wide at the top. Compute (a) the
weight of oil in the vat, (b) the force on the vat bottom,
and (c) the force on the trapezoidal end panel.

254 The gate AB in Fig. P2.54 is 6 ft wide into the
paper, hinged at point A, and restrained by a stop at
point B. Compute the force on the stop and the reac-
tions at A if the water depth k is 10 ft.

I A
Fig. P2.54

2.55 1In Fig. P2.54 the stop B will break if the force on
it equals 10,000 Ibf. For what water depth h is this con-
dition reached?

256 In Fig. P2.54 the hinge A will break if its horizon-
tal reaction equals 9000 Ibf. For what water depth h is
this condition reached?
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257 Neglecting p,, find the hydrostatic force on the
triangular gate ABC in Fig. P2.57 and the position of its
center of pressure.

K74

prem——

Benzene
O
20°C

Fig. P2.57

2.58 In Fig. P2.58 the cover gate AB closes a circular
opening 80 cm in diameter. The gate is held closed by a
200-kg mass as shown. Assume standard gravity at
20°C. At what water level h will the gate be dislodged?
Neglect the weight of the gate.

7 -L 200 kg
h
R

A 30cm

3m
Water

Fig. P2.58

259 When freshly poured between wooden forms,
concrete approximates a fluid with SG = 2.40. Figure
P2.5% shows an &- by 10-ft by 6-in slab poured between
wooden forms which are connected by four corner bolts
A, B, C, D as shown. Neglecting end effects, compute
the forces in all four bolts.

2.60 Find the net hydrostatic force per unit width on
the rectangular gate AB in Fig. P2.60 and its line of
action.

2.61 A cylindrical wooden-stave barrel is 4 ft in dia-
meter and 6ft high. It is held together by steel hoops at
the top and bottom, each with a cross section of
0.351n2, If the barrel is filled with apple juice (SG =
1.02), compute the tension stress in each hoop in
pounds feree per square inch absolute.
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o (O 10 ft

A
b
: X
Al ¢
s N I ft
—{ 6in }<—
Fig. P2.5¢
= 1.8m
4*_ (S JE
1.2m S
oA
Water 2m
Glycerin
» B
2 in
V44
Fig. P2.60

262 The gate AB in Fig. P2.62 is 151t long and 10t
wide into the paper and hinged at B with a stop at A.
Neglecting the weight of the gate, compute the water
level h for which the gate will start to fall.

10,000 Ib

LA 2
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2.63 Repeat Prob. 2.62 by including the weight of the
gate, which is 1-in-thick steel, SG = 7.85.

2,64 The turbine inlet duct coming from a large water
dam is 3 m in diameter. It is closed by a vertical circular
gate, whose center point is 50 m below the dam water
level. Compute the force on the gate and its center of
pressure.

2.65 Gate AE in Fig. P2.65 is semicircular, hinged at
B, and held by a horizontal force P at A. What force P is
required for equiltbrium:?

5E
= {
Sm
Water
A
P
3m Gate:
Side view
B ———————
T4

Fig. P2.65

2,66 Dam ABC in Fig. P2.66 is 40 m: wide into the
paper and made of cor:crete weighing 22 kN/m?. Find
the hydrostatic force on surface AB and its moment
about point C. Could this force tip the dam over?

7

Water 20°C

80 m

¥ B 4 ;
y/.-///////"/‘//}L 60 m |

Fig. P2.66
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2,67 Isosceles triangle gate AB in Fig. P2.67 is hinged
at A and weightless. What horizontal force P is required
at point B for equilibrium?

N
0il 3m \\‘\)\///
SG = 0.83 \(
A//
2m ///
| 50° B;// 'P
A
Fig. P2.67

2.68 Tke tank in Fig. P2.68 is 50 cm wide into the
paper. Compute the hydrostatic force on (@) the lower
panel BC and (b) the upper panel AD. Neglect atmos-
pheric pressure.

+——45cm- - 30cm
p| |E l F
A
~»{  fe=10em
40 cm
Oil, $G = 0.82 J>
Water 20 cm
B ci
} 100 cm {
Fig, P2.68

2.69 The water tank in Fig. P2.69 is pressurized, as
shown by the mercury-manometer reading. Determine
the hydrostatic force per unit depth on gate AB.
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ocean level h will the gate first open? Neglect the gate
s required weight.
) Ry
I'm 80 cm
4 |——R Concrete
sphere
5 SG=24
Water, p T &
20°C Sm \ 6 m
Hg, 20°C Z
-~ =
- Y ¢4
2m
. Water
- - Fig. P2.69 B ip T
e
—P 2770 Calculate the force and center of pressure on one &
side of the vertical triangular panel ABC in Fig. F2.70. Fig. P2.71
Neglect poym-
> into the L =
the lower 2 ft
ct atmos- A Water
6 ft Fig. P2.72
A% -
B c ]
em Bl X Tide
Fig. P2.70 —VT— hﬁnge
cm 271 1In Fig. P2.71 gate AB is 3 m wide into the paper 10 ft |
> and is connected by a rod and pulley to a concrete
sphere (SG = 2.40). What diameter of the sphere is just
sufficient to keep the gate closed?
272 The V-shaped container in Fig. P2.72 is hinged at
A and held together by cable BC at the top. If cable
spacing is 1 m into the paper, what is the cable tension?
urized, as 273 Gate AB is 5 ft wide into the paper and opens to
determine let fresh water out when the ocean tide is dropping. The
B. hinge at A is 2 ft above the freshwater level. At what
Page 53 of 64

Seawater

2.74

SG =1.025
/

the paper.

In Prob. 2.73 investigate analytically whether the:
required height h is independent of the gate width b into
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275 Compute the force on one side cf the parabolic
panel ABC ir: Fig. P2.75, neglecting atmospheric pres-
sure. Compute the vertical distance down to the center
of pressure knowing that I, = 2bh®/7 for a parabola
about a horizontal axis through A.

= T Water
2m

ft

Parabola
5m
B C
3m
Fig. P2.75

276 The huge conical beaker in Fig. P2.76 is filled
with kerosine (SG = 0.62). An evacuated hemisphere
ABC of diameter 2m rests at the bottom as shown.
Compute the total force on the circular base AB of the
hemisphere. Don’t ask what this problem: really means.

Vacuum

15m

B
——tom—>

Fig. P2.76

2.77 The circular gate ABC in Fig. P2.77 has a 1-m
radius and is hinged at B. Compute the force P just
sufficient to keep the gate from opening wher: h = 10 m.
Neglect atmospheric pressure.
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S
1l 9
|

Water
ba

I m

Im

|

@ oy
——c—X I
15

Fig. P2.77

2.78 Repeat Prob. 2.77 to derive an analytic expres-
sion for P as a function of 4. Is there anything unusual
about your solution?

279 Gate ABC in Fig. P2.79 is 1 m square and is
hinged at B. It will open automatically when the water
level h becomes high enough. Determine the lowest
height for which the gate will open. Neglect
atmospheric pressure,

Fig. P2.79

2.80 Repeat Prob. 2.79 to determine h analytically for
fluid of arbitrary density p. Is your solution unusual?
2.81 Gate ABis 7 ft into the paper and weighs 3000 1bf
when submerged. It is hinged at B and rests against a
smooth wall at 4. Determine the water level h at the left
which will just cause the gate to open.
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Fig. P2.81

2.82 The dam in Fig. P2.82 is a quarter-circle 50 m
wide irto the paper. Determire the horizontal and ver-
tical components of the hydrostatic force against the
dam and the point CP where the resultant strikes the
dam.

7 | 20m | p=0
i— |
l
20m!
! CP
Water i
Fig. P2.82

2.83 Gate AB is a quarter circle 10t wide into the
paper and hinged at B. Find the force F just sufficient to
keep the gate from opening. Neglect the weight of the
gate.

1]

Water
T

Fig. P2.83

2.84 Repeat Prob. 2.83 by including the 4000-1bf
weight of the gate, which is a steel plate of uniform
thickness.
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2.85 Compute the horizontal and vertical compo-
nents of the hydrostatic force on the quarter-circle
panel at the bottom of the water tank in Fig. P2.85.

1K

Fig. P2.85

2.86 Compute the horizontal and vertical compo-
nents of the hydrostatic force on the hemispherical
bulge at the bottom of the tark in Fig. P2.86.

AV
T S Water
10 ft
2 ft
Fig. P2.86

2.87 The bottle of champagne (SG = 0.96) in Fig.
P2.87 is under pressure as shown by the mercury-
manometer reading. Compute the net force on the 2-in-
radius hemispherical end cap at the bottom of the
bottle.

Mercury
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2.88 The half-cylinder ABC in Fig. P2.88 is 10 ft wide shown in Fig. PF2.92. If the support of the end caps is
. into the paper. Calculate the net moment of the hydro- neglected, determine the force induced in each bolt.
Ll static oil forces on the cylinder about point C.

p = 3 1bf/in? gage

I ,___. ——— A e B _‘_
¢ \V4 Air: 1 ft
= AVAR 2
1 Sft B
A Water 3 .ﬁ
Oil:
I SG=10.88
5 8ft — A A1t |
l C / c%sne \
9 2 1
”l Fig. P2.88 F
Fig. P2.90
||T 289 Compute the hydrostatic force and its line of

i action on the sericylindrical bulge ABC in Fig. P2.89.

| A

I m

|
(_ Benzene 3m
| at 20°C

Fig. P2.91

i Fig. P2.89

290 A 1-ft-diameter hole in the bottom of the tank in 1‘30“‘,
spacing

Fig. P2.90 is closed by a conical 45° plug. Neglecting S5kem
I the weight of the plug, compute the force F required to
keep the plug in the hole.

291 The hemispherical dome in Fig. P2.91 weighs Fig. P2.62
30 kN and is filled with water and attached to the floor
by six equally spaced bolts. What is the force in each

bolt required to hold the dome down? 293 The 2-ft-radius cylinder in Fig, P2.93 is 8 ft wide
292 A 4-m-diameter water tank consists of two half- into the paper. Compute the horizontal and vertical
cylinders, cach weighing 4.5 kN/m, bolted together as components of the water against the cylinder.
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1 caps is
bolt.

8 ft wide
vertical

|||q

Water

NS NN
Fig. F2.93

2.94 The 4-ft-diameter log (SG = 0.80) in Fig. P2.94 is
10ft long into the paper and dams water as shown.
Compute the net vertical and horizontal reactions at
point C.

Fig. P2.94

295 The 2-m-diameter cylinder in Fig. P2.95 is 5m
long into the paper and rests in static equilibrium
against the snzooth wall at point B. Compute (a) the
weight and (b) the specific gravity of the cylinder.
Assume zero wall friction at point B.

Fig. P2.95

296 The tank in Fig. P2.96 is 2 m wide into the paper.
Neglecting atmospheric pressure, compute the hydro-
static (a) horizontal force, (b) vertical force, and (c) re-
sultant force on quarter-circle panel BC.
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-~ L

Water

4 m———

Fpm—, v

4 m |

Fig. P2.96

297 Gate ABis a quarter-circle 8 ft wide, hinged at B .
and resting against a smooth wall at 4. Compute the
reaction forces at point A ard at point B.

Pa

1K

Seawater
64 1bf/ft?

Fig. P2.97

298 Gate ABC in Fig. P2.98 is a quarter-circle 10 ft
wide into the paper. Compute the horizontal ard verti-
cal hydrostatic forces on the gate and the line of action
of the resultart force.

A AV
r=4ft Water | |
45°
P 4\50 |
1
C V7777777 2 |
Fig. P2.98
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299 A 2-ft-diameter sphere weighing 500 Ibf closes a
I-ft-diameter hole in the bottom of the tank in Fig,
P2.99. Compute the force F required to dislodge the
sphere from the Lole.

¥

Water

—

}*—«lft-

Fig. P2.99

2.100 Pressurized water fills the tank in Fig. P2.100.
Compute the net hydrostatic force on the conical sur-

face AEC.
2m
e

4 m

7m | 150 kPa
gage

B
Water N

Fig. P2.100

2.101 Gate AB in Fig. P2.101 is 10 m wide into the
paper, parabolic in shape, and hinged at B. Compute
the force F required to hold the gate in equilibriurm.
Neglect atmospheric pressure.

Il §

Water

Parabola

Fig. P2.101
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2.102 A horizontal cylindrical tank 10 ft leng and 6 ft
in diameter is half-filled with water, and the remainder
is filled with oil (SG = 0.85). Compute the force and
center of pressure on the end circular panel of the tank,
2.103 The cylindrical tank in Fig. P2.89 has a hemi-
spherical end cap ABC and contains oil and water ag
shown. Compute the resultant force and line of action
of the fluids on the end cap ABC.

7.
A " |2m
7 ,
} 3Im Oil:
SG=0.9
B + -
l 3n Water 0

Fig. P2.103

2.104 The can in Fig. P2.104 floats in the position
shown. What is its weight in newtons?

-
3cm |
] 7
| Wz;ter
8I1 ’
— f«<—D=9cm

Fig. P2.164

2105 Tt is said that Archimedes disccvered the
buoyancy laws when asked by King Hiero of Syracuse
to determine whether or not his new crown was gold
(SG = 19.3). Archimedes found the weight of the crown
in air to be 13.0 N and its weight in water to be 11.8 N.
Was it gold or not?

2.106 Repeat Prob. 2.105 by assuming that the crewn
is an alloy of gold (SG = 19.3) and silver (SG = 10.5).
For the same measured weights, compute the percent-
age silver in the crown.
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2.107 A sphere of buoyant solid molded foam is im-
mersed in seawater (64 1bf/11®) and moored at the
pottom. The sphere radius is 14 in. The mooring line
has a tension of 150 [bf. What is the specific weight of
the sphere?

2168 Repeat Prob. 2.62 assuming that the 10,000-Ibf
weight is concrete (SG = 2.40) and is hanging sub-
merged in the water.

2109 A hydrometer floats at a level which is a measure
of the specific gravity of the liquid. The stem is of con-
stant diameter D, and a weight in the bottom bulb sta-
bilizes the body, as shown in Fig. P2.109. If the total
hydrometer weiglhit is 0.03 Ibf and the stem diameter is
0.3 in, compute the height h where it will float when the
liquid has SG = 1.3.

D)

SG=1.0

NN

Fig. P2.109

2.110 A hydrometer has a weight of 0.16 N and a stem
diameter of 1 cm. What is the distance between scale
markings for SG =10 and SG =117 Between
SG = 1.1 and SG = 1.27

2.111 For the hydrometer of Fig, P2.109 derive an
analytic formula for the float positicn A as a function of
3G, W, D, and the specific weight p, g of pure water. Are
the scale markings linear or nonlinear as a function of
SG?

2112 A wooden pole (SG = 0.65), $cm by 9cm by
5m long, hangs vertically from a string in such a way
that 3m is submerged i water and 2m is above the
surface. What is the tension in the string?

2113 A spar buoy is a buoyant rod weighted at the
bottom so that it floats upright and can be used for
measurements or markers. The spar in Fig. P2.113 is
wood (SG = 0.6), 2 by 2 in by 12ft ard floats in sea-
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water (SG = 1.025). How many pounds of steel (SG =
7.85) should be added to the bottom so that exactly h =

2 ft of the spar is exposed?
I

Q ws!ccl

2.114 A right circular cone is 8 cm in diameter and
15cm high and weighs 1 N ir: air. How much force is
required to push this cone vertex-downward into
benzene so that its base is exactly at the surface? How
much additional force will push the base 10 cm below
the surface?

2.115 The 2- by 2-in by 12-ft spar buoy of Fig. P2.113
Las 6 1b of steel weight attached and has gone aground
on a rock 8 ft deep (Fig. P2.115). Compute the angle 0
at whick the buoy will lean, assuming that the rock
exerts no moment on the buoy.

ik

Fig. P2.113

“Wood
(SG = 0.6)

Seawater

Fig. F2.115

2.116 The solid cube 12 ¢m on a side in Fig. P2.116 is
balanced by a 2-kg mass on the beam scale when the
cube is immersed in water (SG = 1.0). What is the
specific weight of the cube material?
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oy oy

1 E

i Fig. P2.116

I

\ 2.117 The balloon in Fig. P2.117 is filled with helium
(molecular weight = 4.00) and pressurized to 110 kPa.
The atmosphere conditions are shown. Compute the
tension in the mooring line.

Air:
100 kPa at
20°C

I

Fig. F2.117

2.118 A 1-ft-diameter hollow sphere is made of steel
(SG = 7.85) with 0.16-in wall thickness. How high will
this sphere float in water (SG = 1.0)? How much
weight must be added inside to make the sphere
neutrally buoyant?

2.119 When a 5-1b weight is placed on the end of a
floating 4- by 4-in by 9-ft wooden beam, the beam tilts
at 1.5° with its right upper corner at the surface, as in
Fig. P2.119. What is the specific weight of the wood?

4inx4in

Fig. P2.119
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2126 A wooden beam (SG = 0.6) is 15 by 15¢cm by
4 m and is hinged at 4. At what angle 0 will the bear,
float in the water?

K
xw
g™

0 .
Water
74

2.121 A barge weighs 50 tons empty and is 20 ft wide;

50ft long, and 8 ft high. What will be its draft, i.c., its

depth below the waterline, when loaded with 130 tons
of gravel and floating in seawater (SG = 1.025)? One

ton = 2000 Ibf.

2122 A block of steel (SG = 7.85) will “float” at a
mercury-water interface as in Fig. P2.122. What will be
the ratio of the distances a and & for this condition?

Fig. P2.120

||||E

Wat, 7
i Steel /:
= block 7/

|o| = |

Mercury: SG = 15.50

Fig. P2.122

2.123 In an estuary where fresh water meets and
mixes with seawater there often occurs a stratified salin-
ity condition witt: fresh water on top and salt water on
the bottom, as in Fig. P2.123. The interface is called a
halocline. An idealization of this would be constant den-
sity on each side of the halocline as shown. A 35-cm-
diameter sphere weighing 501bf would “float” near
such a halocline. Compute the spkere position for the
idealization in Fig. P2.123.
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Fig. P2.123

2.124 A balloon weighing 3 1bfis 5 ft in diameter. It is
filled with hydrogen (molecular weight 2.02) at
15 Ibf/in* absolute and 60°F and released. At what alti-
tude in the U.S. Standard Atmosphere will this balloon
be neutrally buoyant?

2.125 A rectangular barge 20 ft wide by 50 ft long by
8 ft deep floats em:pty with a draft of 3 ft in a canal lock
30 ft wide by 60 ft long and water depth 6 ft when the
empty barge is present. If 200,000 Ibf of steel is loaded
onto the barge, what are the new draft of the barge and
the new water depth in the lock?

2.126 An open can 15 cm in diameter and 30 cm long
(Fig. P2.126) is cased downward so that the air within is
trapped and compressed by the water. The can weighs
4 N and is made of sheet steel (SG = 7.85). Assuming
isothermal compression of the air in the can, compute
the height of water intrusion h and the Leight L of the
can above the water when the can is floating. Assume
that the position is stable.

p, = 100 kPa
R2 T=20°C
b VAN
7T Air avs
Water —Z _L
h
Fig. P2.126

2.127 A spar buoy 2 by 2in by 10{t is made of wood
{40 Ibf/ft*) and weighted with 4 Ibf of steel at its bottom
end. Fer this assumed vertical floating position com-

pute the metacentric height MG. Is the buoy stable?
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2.128 A cube of side length L and specific gravity S =
0.8 floats in water (SG = 1.0) as shown in Fig. P2.128.
Compute the metacentric height MG. Is the cube
stable?

Specific gravity
=8

G

h

L e B S= lb.rO |
]

Fig. P2.128

2.129 Make a complete analytic study of Prob. 2.128

and determine the range of values of S between 0 and |
1.0 for which the cube is stable.

2.136 Investigate the stability of the wooden pole in

Prob. 2.112. Is it stable when hanging vertically?

2.131 A rectangular barge is 6 by 15 by 30 ft long and

is piled so high with gravel that its certer of gravity is

2 ft above the waterline, as in Fig. P2.131. Is the barge

stable for this configuration?

g |

Water

|<—~'—~—-15, ft—»‘

Fig. P2.131

2.132 A solid right circular cone has SG = 0.99 and
floats vertically as ir: Fig. P2.132. Is this a stable posi-
tior: for the cone?

Fig. P2.132
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2,133 Suppose that the barge in Fig. P2.131 has no
gravel but instead is filled with oil (SG = 0.83) to a
depth of 5ft. Is the barge stable? What complicates the
analysis?

2,134 When floating in water (SG = 1.0), an equila-
teral triangular body (SG = 0.9) might take one of the
two positions shown in Fig. P2.134. Which is the more
stable position? Assume large width into the paper.

VA v, —
(a) (b)

Fig. P2.134

2135 Asolid cylinder is | m in diameter and 5 m long,
_with SG = 0.5. When floating in water (SG = 1.0),
what is its stable position? What is its metacentric
height?
2136 Investigate the stability of the floating can in
Prob. 2.126. Make simplifying assumptions if necessary.
2.137 An open tank of water 3 m deep is being acceler-
ated upward at 4 m/s?. Compute the gage pressure at
the bottom of the tank in pascals.
2.138 The liquid fuel (SG = 0.72) in a rocket is 8 ft
deep and vented to the atmosphere. The rocket is accel-
erating upward at 3 ¢g’s. Compute the pressure at the
bottom of the fuel tank in pounrds force per square inch
gage.
2.139 The tank of water in Fig. P2.139 accelerates to
the right with the fluid in rigid-body motion. Compute
a, in meters per second squared. Does the solution
change if the fluid is mercury?

s a,

J:IS cm

Fig. P2.139

2.140 Compute the gage pressure at point 4 in Fig.

P2.139 if the fluid is mercury (SG = 13.56).
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2.141 The same water tank from Prob. 2.139 is noy,
moving in rigid-body motion up a 30° inclined plage
with constant acceleration. Compute a in meters per
second squared. Is the acceleration up or dowp?
Compute gage p,.

Fig. P2.141

2.142 The tank of water in Fig. P2.142 is 10 cm wide
into the paper. If it is accelerated uniformly to the right
at 5.0 m/s?, what will the water depth be on side 4AB?
What will the pressure force be on panel AB?

5 \Vi

i il

9 cm

Water at 20°C

A

. A

I 24 c¢cm

Fig. P2.142
2.143 The tank of water in Fig. P2.143 is full and open
to the atmosphere at point 4. For what acceleration a,
in feet per second squared will the pressure at point B
be atmospheric?

T =" p, = 15 Ibf/in® abs

2t =4,

Water
— B

1ft
L—l ft—>l<—2 ft—J

i
Fig. P2.143
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2144 For the water tank of Fig. P2.143, what acceler-
a:cioﬂ a, in feet per second squared will cause the pres-
sure at point B to be zero absolute? Neglect cavitation.

2145 A full can of water is 30 cm in diameter and
60 cm high. What gradually applied rigid-body acceler-
ation will cause one-quarter of the water to spill out?

2146 A bucket 1 ft deep contains 6 in of water and is
being twirled in a vertical circle or: a 3 ft rope at 11/s.
Estimate the gage pressure at the bottom of the bucket
when it is at (a) its highest and (b) its lowest position.

2147 The tank of water in Fig. P2.147 accelerates
uniformly by freely rolling down a 30° incline. If the
wheels are frictionless, what is the angle 0?7 Can you
explain this interesting result?

N\

Fig. 12,147

2.148 A fish tank 12ir: deep by 15 by 30ir: is to be
carried in a station wagon which may experience accel-
erations of 4g. What is the maximum water depth which
will avoid spilling in rigid-body motion? What is the
best alignment of the tank with respect to car motion?
What is a proper engineering safety factor on water
depth to avoid sloshing spills?

2149 The 6-ft-radius waterwheel in Fig. P2.149 is
being used to lift water with its 1-fi-diameter half-

=] 1 ft |

Fig. P2.149
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cylinder blades. If the wheel rotates at 10 r/min and
rigid-body motion is assumed, what is the water surface
angle 6 at position A7

2.156 A cheap accelerometer, probably worth the
price, can be made from a U-tube as in Fig. P2.150. The
water-level change h is a measure of a,. If L = 20cm
and D = 1 cm, what will h be if a, = 5m/s?? Can the
scale markings on the tube be linear multiples of a.?
What are the disadvantages of this design?

, Rest level

Fig. P2.150

2.151 The U-tube in Fig. P2.15] is open at 4 and
closed at D. If accelerated to the right at uniform a,,
what acceleration will cause the pressure at point C to
be atmospheric? The fluid is water (SG = 1.0).

Fig. P2.151

2.152 A 6-in-diameter cylinder 1ft high is full of
water. If it is rotated about its central axis in rigid-body
motion, compute the rate in revolutions per minute for
which one-third of the water will spill out.

2.153 For the cylinder of Prob. 2.152 compute the
rotation rate in revolutions per minute for which the
bottom will be barely exposed.
2.154 If the U-tube in Fig. P2.150 is rotated about the
right leg at 80 r/min, what will the level & in the left leg
beif L=20cmand D =1cm?
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2.155 For what uniform rotation rate in revolutions
per minute about axis C will the U-tube in Fig. P2.155
take the configuratior shown? The fluid is mercury at

20°C.,

20 c¢m!

. 12 ¢m

‘. 2
I‘*lO cm—P}*-S cnn*{

Fig. P2.155

2.156 Suppose that the U-tube of Fig. P2.151 is
rotated about axis DC. If the fluid is water at 122°F and
atmospheric pressure is 2116 bf/ft> absolute at what
rotation rate will the fluid within the tube begin to
vaporize? At what point will this occur?

2,157 The 45° V-tube in Fig. P2.157 contains water
and is open at A and closed at C. What uniform rota-
tion rate in revolutions per minute about axis AB will
cause the pressure to be equal at points B and C? For
this condition, at what point in leg BC will the pressure
be a minimum?
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30 ¢ml

X_

B
Fig. P2.157

2.158 A 9-in-high, 6-in-diameter can is filled with SAE
30 oil at 20°C and the lid is sealed at standard sea-level-
pressure. The can is then rotated about its central axis
at 3000 r/min. Assuming rigid-body motion, what will
the maximum oil pressure in the can be in pounds per
square inch absolute?

2.159 For Prob. 2.158, compute the total hydrostatic
force on the bottom of the can in pounds force.

2.160 A very deep 8-in-diameter can contains 6 in of
water overlaid with 6 in of oil (SG = 0.86). If the can is
rotated about its central axis at 300 r/min and rigid-
body motion ensues, what will the shape of the air-oil
and oil-water interfaces be? What will the maximum
fluid pressure in the car: be in pounds force per square
inch gage?
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