
111111111111111111111111111JII)1111111121,1111111111111111111111111

(12) United States Patent
Bornstein et al.

(10) Patent No.: US 8,194,538 B2
(45) Date of Patent: Jun. 5, 2012

(54) OPTIMAL ROUTE SELECTION IN A
CONTENT DELIVERY NETWORK

(75) Inventors: Claudson E Bornstein, Cambridge, MA
(US); Timothy K. Canfield, Cambridge,
MA (US); Gary L. Miller, Pittsburgh,
PA (US); Satish B. Rao, Berkeley, CA
(US); Ravi Sundaram, Cambridge, MA
(US)

(73) Assignee: Akamai Technologies, Inc., Cambridge,
MA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 13/088,517

(22) Filed: Apr. 18, 2011

(65) Prior Publication Data

US 2011/0196943 Al Aug. 11, 2011

Related U.S. Application Data

(63) Continuation of application No. 11/858,261, filed on
Sep. 20, 2007, now Pat. No. 7,929,429, and a
continuation of application No. 10/087,033, filed on
Mar. 1, 2002, now Pat. No. 7,274,658.

(60) Provisional application No. 60/273,241, filed on Mar.
1, 2001.

(51) Int. Cl.
HO4J 1/16 (2006.01)

(52) U.S. Cl. 370/227

119

INTERNET

109 AGENT

109 AGENT

MAP
MAKER

107

104

DNS

119,,

119-,

NOCC

112

METADATA
CONTROL

118

CDN

(58) Field of Classification Search 370/227,
370/351, 235, 237, 238, 400, 401; 455/556.2,

455/414.1; 709/217, 122; 705/400, 51
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,369,686 A * 11/1994 Dutra et al. 379/93.24
6,785,704 B1 * 8/2004 McCanne 718/105

* cited by examiner

Primary Examiner — Chi Pham
Assistant Examiner — Alexander Boakye
(74) Attorney, Agent, or Firm — David H. Judson

(57) ABSTRACT

A routing mechanism, service or system operable in a distrib-
uted networking environment. One preferred environment is
a content delivery network (CDN) wherein the present inven-
tion provides improved connectivity back to an origin server,
especially for HTTP traffic. In a CDN, edge servers are typi-
cally organized into regions, with each region comprising a
set of content servers that preferably operate in a peer-to-peer
manner and share data across a common backbone such as a
local area network (LAN). The inventive routing technique
enables an edge server operating within a given CDN region
to retrieve content (cacheable, non-cacheable and the like)
from an origin server more efficiently by selectively routing
through the CDN's own nodes, thereby avoiding network
congestion and hot spots. The invention enables an edge
server to fetch content from an origin server through an inter-
mediate CDN server or, more generally, enables an edge
server within a given first region to fetch content from the
origin server through an intermediate CDN region.

109

AGENT

108

ORIGIN
SERVER

7 115

los."

102

CDN
SERVER

— STAGING

120

STAGING

120b

CDN
SERVER -I

CSERVER 11

 CDN
SERVER 11

H STAGING k .
 120n

8 Claims, 4 Drawing Sheets

CONTENT
MIGRATION

REGION
106

POP

102

102

102

Limelight 10011

U.S. Patent Jun. 5, 2012 Sheet 1 of 4 US 8,194,538 B2

119

FIG. 1

INTERNET

109 - 1 AGENT

109y1 AGENT

MAP 1.
MAKER

107

104

p ,1
119-

/fin i4

119-

0
0
0

 M-4117—
tr= 120,1

DNS

NOCC

112

METADATA
CONTROL

ORIGIN

115y1
CONTENT , 06 SERVER MIGRATION

109

AGENT I

108

STAGING

120a

118

CDN

STAGING

120b c,
0
0

STAGING

102

CDN
SERVER 1 REGION

106

CDN POP I
SERVER 111 102

CDN
SE

ER 11 1

102

0
0
0

CDN
SE

ER 11 1

102

120n

2

U.S. Patent Jun. 5, 2012 Sheet 2 of 4 US 8,194,538 B2

FIG. 2

CDN EDGE SERVER r 206

GLOBAL HOST SOFTWARE DISK STORAGE
210

CONNECTION
MANAGER

1/- 208

204 -/

TCP FILE SYSTEM CACHE

212
yl HOT OBJECT CACHE

OPERATING SYSTEM KERNEL
/

202 215
r i

GUIDE PROCESS

Irn==i2o\

FIG. 3

y-200

MAP
MAKER
220

3

U.S. Patent Jun. 5, 2012 Sheet 3 of 4 US 8,194,538 B2

FIG. 5

EDGE
SERVERS

END USERS

ORIGIN
SERVER

4

U.S. Patent Jun. 5, 2012 Sheet 4 of 4 US 8,194,538 B2

END USERS

EDGE
SERVER

CACHED
CONTENT

FIG. 6

MAPMAKER PROCESS

RECEIVES LIST OF CONTENT PROVIDERS;
PERFORMS PING TESTS BETWEEN CORE REGIONS AND ORIGIN;
COLLECTS AND ANALYZES DATA;
DERIVES AND PUBLISHES CONTENT PROVIDER MAP(S)

ORIGIN SERVER

700

GUIDE 702

PERFORMS RACES
ORDERS MAP ROUTES

FIG. 7

dist

dist1 dist2

FIG. 8

EXECUTES
4.7 ON A GIVEN

CONTENT SERVER

5

US 8,194,538 B2
1

OPTIMAL ROUTE SELECTION IN A
CONTENT DELIVERY NETWORK

This application is a continuation of Ser. No. 11/858,261,
filed Sep. 20, 2007, now U.S. Pat. No. 7,929,429, which
application was a continuation of Ser. No. 10/087,033, filed
Mar. 1, 2002, now U.S. Pat. No. 7,274,658, which application
was based on and claimed priority from Ser. No. 60/273,241,
filed Mar. 1, 2001.

BACKGROUND OF THE INVENTION

1. Technical Field
The present invention relates generally to finding the best

way to route messages between various locations across the
Internet while quickly adjusting to changing network condi-
tions.

2. Description of the Related Art
Optimal online performance has become a paramount

focus for enterprises seeking to deliver a rich, interactive user
experience. As more and more of today's business transac-
tions are conducted via the Internet, companies must make
certain that transactions are executed without interruption.
Whether it is a purchase form, an online reservation, a cus-
tomer survey or an information update, the enterprise must
have some way to ensure that the transaction is complete.

One way that enterprises have sought to manage and move
information effectively via the Internet is through the use of
content delivery networks. A content delivery network or
"CDN" is a network of geographically distributed content
delivery nodes that are arranged for efficient delivery of con-
tent on behalf of third party content providers. A request from
a requesting end user for given content is directed to a "best"
replica, where "best" usually means that the item is served to
the client quickly compared to the time it would take to fetch
it from the content provider origin server.

Typically, a CDN is implemented as a combination of a
content delivery infrastructure, a request-routing mechanism,
and a distribution infrastructure. The content delivery infra-
structure usually comprises a set of "surrogate" origin servers
that are located at strategic locations (e.g., Internet network
access points, Internet Points of Presence, and the like) for
delivering copies of content to requesting end users. The
request-routing mechanism allocates servers in the content
delivery infrastructure to requesting clients in a way that, for
web content delivery, minimizes a given client's response
time and, for streaming media delivery, provides for the high-
est quality. The distribution infrastructure consists of on-
demand or push-based mechanisms that move content from
the origin server to the surrogates. An effective CDN serves
frequently-accessed content from a surrogate that is optimal
for a given requesting client. In a typical CDN, a single
service provider operates the request-routers, the surrogates,
and the content distributors. In addition, that service provider
establishes business relationships with content publishers and
acts on behalf of their origin server sites to provide a distrib-
uted delivery system. A well-known commercial CDN ser-
vice that provides web content and media streaming is pro-
vided by Akamai Technologies, Inc. of Cambridge, Mass.

While content delivery networks provide significant
advantages over prior techniques (e.g., proxy caching and
mirroring), their performance is dependent generally on the
performance of the Internet, which is far from an ideal com-
munications medium. When a path in the network is either
congested or faulty, packets sent over that path can get
dropped or delayed. In spite of the existence of less congested
paths, Internet routers might not be aware, willing or allowed

2
to use these paths. Economical issues can also interfere with
the best routing. Some routers might be configured to route
packets using the cheapest route as opposed to the fastest
route. Similarly, contractual issues also affect routing: for

5 instance, first tier network providers must talk directly at their
peering points and are not allowed to route through an inter-
mediary provider. The peering points themselves often
become a bottleneck at certain times of the day.

When a problem occurs on the Internet, it takes a certain
amount of time for the routers to converge on a new view of
the network, and to decide on the appropriate routing. Pos-
sible causes of these problems include router misconfigura-
tion, software and hardware problems, and even fiber cuts.

15 For example, a number of router problems can last about 5
minutes, and then simply go away. An actual misconfigura-
tion can last significantly longer. In December, 2000, a router
misconfiguration on a large network caused a large number of
other routers to route their traffic to that particular router, thus

20 overloading it. This condition lasted for a few hours, and it
caused a significant slowdown on the Internet. A common
problem in certain routers can cause partial network unreach-
ability that can last for a few hours and can be very hard to
detect. In June, 2001, two network providers stopped peering

25 for administrative reasons. This made hosts in one provider's
network simply unreachable by hosts in the other provider's
network. This situation lasted for a few days.

In reality, it is not practical to understand all possible
Internet problems and reasons why the best route between

30 two points is not always followed. Edge servers operating
within a content delivery network often have need to return to
a content provider's origin server, e.g., when requested data is
not available at the server or is otherwise stale, to obtain
non-cacheable content, and the like. While sophisticated

35 CDNs can route around network congestion and other prob-
lems, there remains a need to provide improved techniques to
optimize the edge server-origin server communication path.

The present invention, in particular, addresses the problem
of finding the best way to route data between content delivery

40 network (CDN) regions and content providers, while quickly
adjusting to changing network conditions.

10

BRIEF SUMMARY OF THE INVENTION

45 It is a general object of the present invention to improve the
speed and reliability of data transfers in a distributed network-
ing environment, such as a content delivery network.

It is another general object of this invention to provide
techniques for transferring data packets from one node to

so another node via an intermediate node based on network
performance data collected over time.

It is another more specific object of the invention to provide
a routing service within a distributed network such as a con-
tent delivery network whereby traffic is moved from a first

55 region to a second region by sending it (i.e., "tunneling")
through an intermediate region.

It is still another specific object to provide a novel routing
mechanism, service or system in a content delivery network.
The invention enables an edge server operating within a given

60 CDN region to retrieve content (cacheable, non-cacheable
and the like) more efficiently by selectively routing through
the CDN's own nodes, thereby avoiding network congestion
and hot spots. The invention thus enables an edge server to
fetch content from an origin server through an intermediate

65 CDN server or, more generally, enables an edge server within
a given first region to fetch content from the origin server
through an intermediate CDN region. As used herein, this

6

US 8,194,538 B2
3

routing through an intermediate server, node or region is
sometimes referred to as "tunneling."

It is yet another more specific object of the invention to
provide a routing service that predicts a best path for a data
transfer between a source location (e.g., a content provider
origin server) and a target location (e.g., a CDN edge server)
by analyzing some performance metric common to a set of
possible routes. In an illustrative embodiment, the perfor-
mance metric is download time. In this embodiment, the
performance metric is evaluated by having the edge server
initiate a file download "race" in response to receiving a
request for given content. In particular, a number of simulta-
neous downloads of the given content are initiated from the
source location over a plurality of routes, some of which may
include intermediate nodes. The winning path is then used for
transfers between the source and the target locations for a
given time period (e.g., until the next race).

According to an embodiment of the present invention
implemented within a CDN, the identification of the interme-
diate nodes (and, thus, the alternative routes) to use for the
race is determined in an off-line mapping process by perform-
ing given network traffic tests. In particular, a map making
process operable within the CDN preferably determines the
distances between given CDN "core" regions and the content
provider, preferably based on ping data (age, loss and
latency). The map making process then computes the best one
and two-hop paths to the content provider from every CDN
datacenter and publishes those paths (e.g., via DNS) as a
"map." The usable intermediate CDN servers are typically set
on a per content provider basis according to a given content
provider policy, which is sometimes referred to as a strategy.

Thus, according to one embodiment of the invention, a map
making process (which may be global-based) typically per-
forms given network tests (e.g., pings) and uses the results of
those tests to generate a map comprising a plurality of routes:
the best route to the customer site, the best intermediate or
"middle" region for tunneling, and the next best middle
region. These routes may then be ordered according to some
performance metric (e.g., actual download times) determined
by periodic analysis (e.g., file download races) carried out
locally by or under control of a given edge server.

According to another aspect of the present invention, a
routing service may operate in one of two different modes:
performance and failover. The performance mode continually
polls the potential retrieval routes to rank their performance
and uses the best route to retrieve content. The failover mode
instructs the CDN edge server to go forward to the origin
directly, but, in the event the direct route fails, to try one of the
alternate routes. In the event the direct route fails, the alternate
routes are tried in turn. This strategy need not use races to
choose a route, because the direct route is to be used unless it
completely fails to respond.

The foregoing has outlined some of the more pertinent
features of the present invention. These features should be
construed to be merely illustrative. Many other beneficial
results can be attained by applying the disclosed invention in
a different manner or by modifying the invention as will be
described.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a known content delivery
network in which the present invention may be implemented;

FIG. 2 is a simplified block diagram of a CDN edge server
that is provisioned with a guide process for implementing
certain functions of the present invention;

4
FIG. 3 is a simplified illustration showing how an edge

server in a content delivery network fetches content from a
content provider origin server without use of the present
invention;

5 FIG. 4 illustrates how the present invention may be used to
enable the edge server to fetch content from the content
provider origin server over one or more alternative routes that
may each include an intermediate CDN node;

FIG. 5 is a simplified diagram of how the present invention
10 operates in a performance mode;

FIG. 6 is a simplified diagram of how the present invention
operates in a failover mode;

FIG. 7 is a simplified diagram of the modules that comprise
the routing system of the present invention; and

5 FIG. 8 illustrates how a shortest path may be computed
between a pair of nodes in a network.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

20

As described above, it is known in the art to delivery HTTP,
streaming media and applications over an Internet content
delivery network (CDN or ICDN). The present invention may
leverage Internet CDN architecture and functionality such as

25 now generally described.
As seen in FIG. 1, an Internet content delivery infrastruc-

ture usually comprises a set of "surrogate" origin servers 102
that are located at strategic locations (e.g., Internet network
access points, and the like) for delivering copies of content to

30 requesting end users 119.A surrogate origin server is defined,
for example, in IETF Internet Draft titled "Requirements for
Surrogates in the HTTP" dated Aug. 9, 2000, which is incor-
porated herein by reference. The request-routing mechanism
104 allocates servers 102 in the content delivery infrastruc-

35 tore to requesting clients in a way that, for web content
delivery, minimizes a given client's response time and, for
streaming media delivery, provides for the highest quality.
The distribution infrastructure consists of on-demand or
push-based mechanisms that move content from the origin

40 server to the surrogates. A CDN service provider (CDNSP)
may organize sets of surrogate origin servers as a "region." In
this type of arrangement, a CDN region 106 typically com-
prises a set of one or more content servers that share a com-
mon backend, e.g., a LAN, and that are located at or near an

45 Internet access point. Thus, for example, a typical CDN
region may be co-located within an Internet Service Provider
(ISP) Point of Presence (PoP) 108. A representative CDN
content server is a Pentium-based caching appliance running
an operating system (e.g., Linux, Windows NT, Windows

50 2000) and having suitable RAM and disk storage for CDN
applications and content delivery network content (e.g.,
HTTP content, streaming media and applications). Such con-
tent servers are sometimes referred to as "edge" servers as
they are located at or near the so-called outer reach or "edges"

55 of the Internet. The CDN typically also includes network
agents 109 that monitor the network as well as the server
loads. These network agents are typically co-located at third
party data centers or other locations. Map maker software 107
receives data generated from the network agents and periodi-

60 cally creates maps that dynamically associate IP addresses
(e.g., the IP addresses of client-side local name servers) with
the CDN regions.

In one type of service offering, known as Akamai Free-
Flow, from Akamai Technologies, Inc. of Cambridge, Mass.,

65 content is tagged for delivery from the CDN using a content
migrator or rewrite tool 106 operated, for example, at a par-
ticipating content provider server. Tool 106 rewrites embed-

7

US 8,194,538 B2
5

ded object URLs to point to the CDNSP domain. A request for
tagged content is resolved through a CDNSP-managed DNS
to identify a "best" region, and then to identify an edge server
within the region that is not overloaded and that is likely to
host the requested content.

Instead of using content provider-side migration (e.g.,
using the tool 106), a participating content provider may
simply direct the CDNSP to serve an entire domain (or sub-
domain) by a DNS directive (e.g., a CNAME). In such case,
the CDNSP may provide object-specific metadata to the CDN
content servers to determine how the CDN content servers
will handle a request for an object being served by the CDN.
Metadata, as used herein, thus refers to the set of all control
options and parameters for the object (e.g., coherence infor-
mation, origin server identity information, load balancing
information, customer code, other control codes, etc.), and
such information may be provided to the CDN content servers
via a configuration file, in HTTP headers, or in other ways. A
configuration file is advantageous as it enables a change in the
metadata to apply to an entire domain, to any set of directo-
ries, or to any set of file extensions. In one approach, the
CDNSP operates a metadata transmission system 116 com-
prising a set of one or more servers to enable metadata to be
provided to the CDNSP content servers. The system 116 may
comprise at least one control server 118, and one or more
staging servers 120a-n, each of which is typically an HTTP
server (e.g., Apache). Metadata is provided to the control
server 118 by the CDNSP or the content provider (e.g., using
a secure extranet application) and periodically delivered to
the staging servers 120a-n. The staging servers deliver the
metadata to the CDN content servers as necessary.

FIG. 2 illustrates a typical machine configuration for a
CDN content edge server. Typically, the content server 200 is
a caching appliance running an operating system kernel 202,
a file system cache 204, CDN software 206, TCP connection
manager 208, and disk storage 210. CDN software 206,
among other things, is used to create and manage a "hot"
object cache 212 for popular objects being served by the
CDN. For HTTP content, the content server 200 receives end
user requests for content, determines whether the requested
object is present in the hot object cache or the disk storage,
serves the requested object via HTTP (if it is present), or
establishes a connection to another content server or an origin
server to attempt to retrieve the requested object upon a cache
miss. Generalizing, a cache miss can occur when the
requested object is not in cache, when the requested object is
in cache but is stale, when the requested object is non-cache-
able, or the like. In all such cases, it may be necessary for the
edge server to contact a content provider origin server to fetch
the requested object. The present invention provides a tech-
nique for enabling the edge server to use an optimal path for
that communication. To that end, CDN software 206 includes
a guide process 215 that performs various functions to facili-
tate the optimized routing technique of the present invention.
Generally, guide process 215 fetches a route map from a map
maker process 220 (running elsewhere in the network), ini-
tiates performance metric tests (e.g., download races) on vari-
ous routes identified in the map, collects and analyzes the
results of those tests, and orders the routes accordingly so that
the edge server can communicate with a content provider
origin server via an optimal route whenever necessary. As
used herein, "optimal" is not necessarily the best possible
route in any kind of absolute sense; rather, it is a best route
found given whatever constraints are then imposed on the
network, various systems, connectivity constraints, and the
like. The guide process is a computer program code, i.e., a
series of program instructions, executable by a processor.

6
Generalizing, the present invention may be implemented

as a routing mechanism, service or system in a distributed
networking environment. One preferred environment is a
content delivery network wherein the present invention pro-

5 vides improved connectivity back to an origin server for
HTTP traffic. As noted above, a CDN service provider typi-
cally segments its servers into regions, with each region com-
prising a set of content servers (e.g., up to about ten (10)
servers) that preferably operate in a peer-to-peer manner and

10 share data across a common backbone such as a local area
network (LAN). The inventive routing technique enables an
edge server operating within a given CDN region to retrieve
content (cacheable, non-cacheable and the like) more effi-
ciently by selectively routing through the CDN's own nodes,

15 thereby avoiding network congestion and hot spots. The
invention thus enables an edge server to fetch content from an
origin server through an intermediate CDN server or, more
generally, enables an edge server within a given first region to
fetch content from the origin server through an intermediate

20 CDN region. As used herein, this routing through an interme-
diate server, node or region is sometimes referred to as "tun-
neling."

The present invention identifies alternate paths from a
CDN edge server to an origin server and uses these alternates

25 to either improve the performance of content delivery, or to
provide for fail-over in the event that the direct route is con-
gested or otherwise unavailable. When an edge server con-
tacts the origin server, the "direct" route typically is the route
obtained through the Border Gateway Protocol (BGP). When

30 the inventive routing technique is used, in contrast, alternate
routes to the origin server are accessed by sending the request
from the edge server to another intermediate (preferably
CDN-managed) server/region before going to the origin.
While one might assume that adding the intermediate step

35 would reduce performance, it frequently improves perfor-
mance, because CDN servers and regions typically are well-
connected, and the indirect route can often bypass network
congestion.

Preferably, given CDN edge servers are configured with a
40 plurality (e.g., at least two) alternate routes to use in addition

to the direct route to the origin. These intermediate servers
preferably are specific to the given edge server and origin
server to be contacted. FIGS. 3-4 illustrate the basic concept
of routing through intermediate CDN regions according to

45 the present invention. In FIG. 3, an end user request is directed
(e.g., through a DNS request routing mechanism) to an edge
server located at a datacenter 300 in Texas. In this case the
content provider is operating mirrored origin servers at a
datacenter 302 on the East Coast, and at a datacenter 304 on

so the West Coast. In a typical scenario, the edge server connects
to the datacenter 302 over a direct connection 306 if it
becomes necessary to fetch content from the origin server. In
FIG. 4, in contrast, a pair of alternative routes is made avail-
able to the edge server. One alternative route 402 uses region

55 406, which is located intermediate of the datacenter 402 and
the datacenter 400 to which the end user was originally
directed. Another alternative route 408 uses region 410,
which is located intermediate of the datacenter 404 and the
datacenter 400. In the example shown in FIG. 4, there are thus

60 three (3) routes over which the edge server in datacenter 400
can fetch the desired content from the origin server: over the
direct connection, over route 402, or over route 408. Accord-
ing to the invention, one of these routes is selected as optimal,
preferably by having the edge server evaluate some given

65 performance metric, such as file download time. The various
alternative routes are exposed to the edge server in a map that
is published by a (preferably global-based) map making pro-

8

US 8,194,538 B2
7

cess. Preferably, a given map is specific to a given customer
and to the specific region at which the initial request is
received from an end user.

The routing system of the present invention may operate in
one of two basic modes. In a performance mode, illustrated in
FIG. 5, an edge server provisioned with the guide process
carries out periodic races to find the fastest route to the origin
server. This ensures that content required by (but unavailable
from) the edge server is delivered from the origin server in the
quickest fashion. In a failover mode, illustrated in FIG. 6, the
edge server automatically detects when the route to the origin
server is inaccessible and invokes the routing service to find
an alternative route to reach the origin server. The failover
mode enhances reliability of the overall content delivery net-
work, and ensures that even dynamic, uncacheable content
can always be delivered.

Preferably, the intermediate servers that are available for
alternative routes between a given edge server (or region) and
a given origin server are updated frequently (e.g., every 15-30
minutes) based on the current performance of connections
between CDN servers.

In the preferred embodiment of the invention, the choice of
which route an edge server should use to reach a given origin
server preferably is made in three phases, which are described
below: (a) a map of potential alternate routes is created (pref-
erably by a global-based process called a mapmaker); (b)
current ping data is used to identify the two best alternates for
each CDN edge server (again, preferably by the mapmaker);
and (c) each CDN edge server chooses among the direct route
and the alternate routes based on the current actual perfor-
mance with real requests for content. In particular, in a pre-
ferred embodiment, the CDN edge servers use occasional
"races" among identical requests to determine which of the
plurality (e.g., typically three (3)) possible routes is perform-
ing the best and then choose the route to use when going
forward for the current and future requests. As will be
described below, the parameters for these races are highly
configurable to optimize the performance for the type of
content being served and the intended result.

Before the inventive routing service is enabled for a given
site, a large number (e.g., up to 100 CDN server regions) are
identified as potential intermediate servers. These regions
may be chosen on any available network performance met-
rics, e.g., such as analysis of ping data between CDN edge
servers and well-connected CDN core servers and from these
core servers to the origin. Once intermediate servers have
been identified, they are used to define a "map" from CDN
edge servers and the origin server. The invention preferably
uses a custom map for each site because sites are hosted all
over the Internet, on different backbones and in different
geographic locations. As a result, the indirect routes that
result in the best behavior are different for each CDN cus-
tomer that uses the routing service. The indirect routes are
then ordered such that the intermediate servers that provide
the best performance for each given edge server are listed
first. Notice that in the preferred embodiment the indirect
routes are specific to each edge server and each customer
origin server. The mapping is updated frequently (e.g.,
approximately every 15-30 minutes) based on current ping
data to ensure optimal performance. When a CDN edge server
requests its current map (preferably via a DNS lookup on a
given routing service domain), it receives a given number
(e.g., the two) top performing routes as alternates. The edge
server then chooses among these alternate routes and the
direct route by occasionally testing the performance of each
connection, e.g., with a request for content.

8
As noted above, the inventive routing service preferably

determines which route is the best at any given time by per-
forming "races." These races consist of having the edge server
forward a client request through the a given number (e.g.,

5 three (3)) available routes simultaneously and observing
which route performed the best in serving the request. The
information is then used to choose the primary route for future
requests. Moreover, that route preferably remains the primary
route until the next race is conducted. These races allow the

10 routing service to react to changes in the Internet very quickly.
A race preferably is initiated upon arrival of a request from an
end user, and the CDNSP preferably configures how often a
race will occur by setting one or more of the following pre-
ferred parameters: (a) the minimum amount of time that

15 should elapse between races (with a default to, e.g., 30 sec-
onds); (b) the minimum number of client requests that should
arrive before each new race (with a default to, e.g., 40
requests); (c) the maximum amount of time that should elapse
between races (with a defaults to, e.g., five minutes). The last

20 parameter ensures that a race will occur at least this often and
thus ensures that the best route is the one being used.

According to the invention, races are configurable to use
either the actual object requested by a client (called a Request
Object) or a predetermined test object on the origin server

25 (called a Test Object), or both. Request Object races are
generally preferable to Test Object races because the end user
client that initiated the Request Object race can take advan-
tage of the results, in particular, because the end user is served
from the route that provided the fastest first-byte turn-around

30 time. However, there are some cases where Request Objects
are not possible and Test Objects are a good alternative. A
Request Object race uses the object requested by the end user
as the object it requests from the origin server. That is, if a
browser requests

35 . . . :HUS.al.yimg.com/us.yimg.com/i/ww/m5v5.gif, the CDN
edge server will request
. . . ://us.yimg.com/i/ww/m5v5.gif from all three forward
servers. When this type of race is used, one may also config-
ure a maximum number of bytes that should be downloaded

40 through the losing routes. For example, the default configu-
ration is to download up to 56K of data on the losing routes
and then terminate the connection(s). The entire file is down-
loaded from the winning route, because this response is
served to the end user client. The race preferably is scored

45 based on the performance retrieving the 56 Kbytes of data,
although this is not a limitation of the invention.

Races that use Request Objects may cause a problem for
some sites because the origin server will receive three iden-
tical requests. If these requests impact billing or initiate some

so backend transaction, several anomalies many occur. A Test
Object race uses an object specified in metadata as the object
requested from the origin server across the three routes. The
benefit of this is that the Test Object can be a special object
that does not impact the origin server's logging or initiate

55 backend transactions.
The edge server scores the races preferably based on three

measurements: Request End Time; Turnaround Time (the
first byte returned); Turnaround Time (the first byte returned).
One can apply weightings to these measurements to influence

60 the final scoring. For example, one could weight the transfer
time more heavily to ensure that a rapid first byte score from
a route would not erroneously determine the choice of the
optimal route for fairly large files. Once the individual races
have been scored, the CDN edge server compares those

65 scores to choose the best route. Just as it is possible to weight
one of the measurements in determining the score for the
routes, it is also possible to favor the direct or indirect routes

9

US 8,194,538 B2
9

depending on the desired result. Normally the direct route is
favored over the indirect routes. One could specify that, to be
chosen, an indirect route must be faster than the direct route:
by a given percent; by a specific number of milliseconds; by
a given percent and an absolute number of milliseconds, or
some combination thereof.

As noted above, the routing service operates in one of two
modes: performance and failover. The performance mode
continually polls the potential retrieval routes to rank their
performance and uses the best route to retrieve content. The
strategy preferably comes in two versions: origin-weighted
and indirect-weighted. The origin-weighted strategy weights
going direct to the origin as slightly more favorable than
taking the indirect route. The indirect-weighted strategy
favors the indirect route over the direct route to the origin
server. This can be useful in providing a buffer for the origin
server, while still allowing for direct contact to the origin in
the event that the parent server is not providing sufficiently
better service. The failover mode instructs the CDN edge
server to go forward to the origin directly, but, in the event the
direct route fails, to try one of the alternate routes. In the event
the direct route fails, the alternate routes are tried in turn. This
strategy need not use races to choose a route, because the
direct route is to be used unless it completely fails to respond.
The alternate routes preferably are determined based on the
ping data and are listed in the order that they should be used.

Normally the CDN edge server will try to reach the origin
server a given number of times with a specified timeout for
each attempt. This timeout may be generally fairly long (sev-
eral seconds), to ensure that a congested route does not cause
the timeout to be triggered unnecessarily. When the inventive
technique is enabled, each attempt to reach the origin server
for a given request may involve trying the three possible
routes in sequence as the connection attempts timeout.
Because there are three routes to try, the timeout for each
attempt can be relatively short (one second) in the hope that
the timeout is a problem with the route, and not with the origin
server. Only after all three routes have failed does the CDN
edge server then attempt to reach the origin directly with the
normal full-timeout. The logic being that if all routes have
timed out, the problem is not likely to be a congested route,
and it may be necessary to give the origin server more time to
respond to the connection attempt. If that final connection
attempt times out, the CDN edge server can initiate the fail-
action to serve an error, serve default content, or retrieve
content from an alternate origin server.

Referring to FIG. 7, the routing system has two basic
modules that are now described: a mapmaker 700, which
resides in a small number of preferably well-located regions
(three to six regions) and that has a global view of the net-
work, and the guide 702, which is integrated into each provi-
sioned edge server and that gives the edge server a more
precise, but local view of the network. The mapmaker 700 is
responsible for collecting information and computing the best
routes to get to content providers from each of the CDN
regions. It makes the best route information available to other
mechanisms in the CDN network. These routes preferably are
computed based on ping data from a subset of the CDN
regions, which may be referred to as "core" regions. These
regions are the candidate intermediate regions for the tunnel-
ing operation. Preferably there are multiple mapmaker
machines, with each machine being a server running com-
modity hardware and operating system software. The map-
maker machines are dynamically configurable. Preferably,
they receive a file that specifies the content providers for
which maps should be built, and the information about the
content provider necessary to build a map. This information

10
includes, for example, a list of datacenters and pingable IPs
for that datacenter, whether by name, IP address or ping
equivalency with existing CDN regions. Further information
about the content provider may include reverse proxies, a

5 serial number, a metric to be used in computing distances, the
number of alternative routes to provide, and other configura-
tion parameters. The information for each content providers
forms what is sometimes called a strategy. One strategy may
be used for more than one actual content provider: an example
might be a generic strategy for a company which delivers
content out one site and another in a mirror site. On the other
hand, one content provider may have one strategy for HTML
and another for images.

15 Preferably, the datacenters that are usable as intermediate
regions are set on a per strategy basis. Candidate regions may
be removed for various reasons, e.g., the region is disabled,
the region is at or near a given load capacity, or the like, and
it may be desirable to allocate given intermediate regions to

20 given customers.
The mapmaker constantly gathers liveness as well as ping

data about the CDN regions. For example, a given agent in the
CDN pings at least one edge server per region, and one IP
address per each datacenter listed in the strategies. The map-

25 maker relies on the ability to predict how good a path is based
on ping data. Ping latency and ping loss between pairs of
regions may be used to compute value that is considered the
effective distance between those two regions, or some other
convenient estimate may be used. It is assumed that pings are

30 symmetric with respect to pinger and pingee as illustrated in
FIG. 8. In particular, FIG. 8 illustrates three (3) regions A, B
and C. In computing paths, a question arises as to whether the
distance "dist" between region A and C should be: L1=dist1+
dist2, L2—(dist12+dist22)1/2, L„„fi,„,,,„—max{dist,, dist2}, or

35 some other metric, where dist, is the distance between regions
A and B and dist2 is the distance between regions A and B. For
the sake of understanding how these distances should be
combined to infer the distance through a middle region, it is
assumed that there is no ping loss. In this case, the latency

40 incurred by tunneling through an intermediate node should be
the sum of the ping times plus a retransmission time for
processing at the intermediate node. However, when moving
an arbitrarily large file, then it has been found that the maxi-
mum of the download times between the two pairs of regions

45 is a good estimator of the time required to transfer the file,
since the actual transfer can be "pipelined." Instead of using
either of the two extremes (the L1 and L 2 metrics), a good
estimator for the transmission latency may be the L 2 norm.
L14 strikes a good balance between the two extremes.

so For each content provider the mapmaker logically gener-
ates a number of maps, which can be identified as follows:
Closest CP Map: the domain name of the closest mirror site
for the content provider; Closest Reverse Proxy Map: the
domain name of the closest reverse proxy if one exists; and

55 Best Two-Hop Map: a list of usually two parent regions that
should used to reach the mirror site. The first two maps are
very similar in nature they map each region to the closest
possible source of data for each content provider. The Closest
Reverse Proxy Map is not needed if there is no reverse proxy.

60 Other factors can affect the choice of paths for the Two-Hop
map. In general terms, the Two-Hop map encodes the two (or
more) shortest paths from each region to mirror site of the
content-provider, that go through at most one (active) middle
region. The regions that can be used as an intermediate hop in

65 the paths are usually the same regions that do the pinging, but
the intermediate hop can also be explicitly specified as a
subset of those regions.

10

US 8,194,538 B2
11

As noted above, preferably the mapmaker relies on ping
data as opposed to information about the actual download
times each region experiences, or even what paths are actually
used by the region to perform downloads. That information
preferably is kept locally at each region. The guide process is 5

the component within the edge server responsible for decid-
ing which of the possible paths should be used. An edge server
that is provisioned for the routing service thus includes the
guide process, which is typically software. More generally,
the guide computes an ordering or list of the possible paths/
parents that could be used to obtain the content. The edge
server tries parents in order: if a parent fails or times-out then
the edge server will request content from the next parent. If
the routing service is enabled for a given site and the edge
server receives requests for data in that site, the edge server 15
will occasionally, while responding to the request, measure
the performance of a given number (e.g., three) simultaneous
downloads from that site: one directly from the content pro-
vider, and a plurality (e.g., two) from the intermediate regions
suggested by the two-hop map published by the mapmaker.
The edge server then uses the results of this test to estimate
which route should be used to access that site, until a new test
occurs. If a long time elapses without a test, the previous
results expire. It may also be desirable to allow for the down-
loads between tests to affect the predicted quality of each of
the routes, thus allowing for an even faster response time to a
network problem, without requiring additional tests.

When a request comes in and is not purely cacheable, it
results in the download of a file from the content provider.
This is what is sometimes called a forward request. On for-
ward requests for sites that are provisioned to use the routing
system and service, the results of the previous test are used to
choose the route for the download. The exceptions to this rule
occur if the content can be and is itself used for a test or if there
are no recent test results available. In the first case, the down-
load preferably occurs through all (e.g., three (3)) routes, and
the one that returns the first byte faster will be used to serve a
client. The other two will have their results recorded and will
be allowed to proceed for up to 56 k bytes, after which they
will be aborted. If however, the content cannot be used for a
test and there are no recent test results available, a default
ranking is used to decide on which route to use. The default
order can either specify that the direct or the indirect route
should be favored.

Preferably, tests are linked to a forward request, meaning
they do not happen if there has been no forward request to that
site. In the case of a forward request, a test is by default
preferably run when: no test occurred in a given number of
minutes, or at least a given number of seconds have passed
since the last test, or if at least a given number of forward
requests from this site did not result in tests. These settings try
to ensure that for a site with a reasonable amount of volume
there will always be fresh statistics for the download paths
while at the same time limiting the amount of testing that is
performed over the network as a whole.

Once a decision is made to use the routing service, one
must also decide on what map to use. Preferably, the CDNSP
creates a new strategy for the customer's site. Once the map-
maker machines receive the new strategy, they update their
list of pingees, start collecting ping data for the updated list,
and start producing maps for the additional strategy. Once a
map is being published for the site, the routing service is
enabled for the site. When an edge server receives a request
that results in a forward request, the edge server has to decide
what route to take.

As noted above, preferably the CDN includes a metadata
transmission system. Metadata can be used to control the

12
routing service, as is now described. Some representative
metadata tags that may be used are listed below, with a brief
explanation of their meanings:

Metadata Tag Meaning

use-hierarchy
cdnroute-test-object-url

10 cdnroute-use-test-object

cdnroute-max-time-before-tobj
cdnroute-direct-scale

cdnroute-non-tail-connect-timeout

cdnroute-direct-at-end

the map that should be used
url to be used in tests
test-objects should be used, i.e.,
tests should use the selected url
desired time between tests
ratio between direct and indirect
test results before indirect is used
time before routing fails-over to
another parent if it cannot connect
specifies if indirect should be
favored in the absence of tests results

Thus, to provide an illustrative embodiment, the use-hier-
20 archy tag is first enabled to enable the routing service to take

effect, e.g., with default settings. In addition to the use-hier-
archy tag, the following metadata tags (among others) could
then be set to configure the routing service for the best per-
formance:

25 <md name="cdnroute-non-tail-connect-timeout">1</md>
<md name="cdnroute-direct-scale">95</md>

As noted above, the inventive routing service can be con-
figured in a failover mode that does not use performance
testing. In such case, the edge server is given three parents:

30 that of the content provider (direct) and two indirect routes. In
failover mode, the edge server contacts direct first. If for some
reason this connection fails, the edge server will try its first
parent, then its second parent, and finally back to direct.
Because the mapmaker is constantly publishing up-to-date

35 indirect routes, these failover servers are likely to serve the
content successfully. When failover mode is used, the con-
figuration may include a metadata tag for disabling test cli-
ents:
<md name="cdnroute-no-test-clienr>on</md>.

40 The following provides additional detail regarding how to
configure races in the performance mode. Preferably, races
for a given route strategy occur when the edge server receives
a request for content configured to use that strategy. When a
request arrives, the server preferably looks at two pieces of

45 data: the amount of time since the last race for this strategy,
and the number of connections since the last race for this
strategy. There are preferably three (3) conditions that can be
applied (e.g., via metadata) to these two pieces of informa-
tion:

so cdnroute-max-time-before-tc: The maximum amount of
time before performing a race (default: 5 m): <md
name="cdnroute-max-time-before-tc">500</md>

cdnroute-max-req-before-tc: The maximum number of
requests after which a race will be performed (default: 40):

55 <md name="cdnroute-max-req-before-tc">1000</md>
cdnroute-min-tc-period: The minimum amount of time

that must have elapsed before performing a race (default: 30
s): <md name="cdnroute-min-tc-period">120</md>.

Request Object races use the client request for the test
60 client and use the settings above to control the frequency of

the races. In addition to these settings, there may be additional
tags for controlling the use of request object races. For
example, a tag such as racer-max-byte takes as its value a
number in bytes from 0 to 2 MB. It defaults to 56K and may

65 be set as follows: <md name="racer-max-byte">32000‹
md>. This metadata limits the amount of data downloaded by
the losing routes when a race is performed. The following

11

US 8,194,538 B2
13

header will cause the inclusion of a header binding the test
client requests together so that the duplicate requests can be
identified as such: -CDNSP-TC-Identifier: t[co]-<IP>-
<edgeserver_curtime>-<incrementing counter>. The initial
string is "tc" for test clients and "to" for test objects. Test
objects are like request objects, except the URL being
requested is replaced with a fixed URL configured through
metadata. The following is an example of how to set this up:
<md name="cdnroute-use-test-objecr>on</md>
<md name="cdnroute-test-object-urr>http ://www-
esl.customer.com/cdnroute/test_object.txt</md>
<md name="cdnroute-use-my-metadata">on</md>

An illustrative technique for scoring the races is now
described. This description is merely representative. The
score for each of the routes is made up of the request_
end_time, the turnaround_time and the transfer_time. These
times are multiplied by their specified weights and then
summed. Each of the items may be weighed using a separate
metadata tag and, preferably, each of these tags has an equiva-
lent value. In this example, the cdnroute weighting tags all
take as their value a number between —20 and +20. The
default setting is one "1".
cdnroute-ret-weight Request End Time Weighting
<md name="cdnroute-ret-weight">0</md>
Default is 0
cdnroute-tt-weight Turnaround Time Weighting (first byte)
<md name="cdnroute-tt-weight">1</md>
Default is 1
cdnroute-xt-weight Transfer Time Weighting
<md name—cdnrout-xt-weight>l</md>
Default is 1

The cdn route-direct-scale tag is used to apply a weighting
to the total score for the direct route. This value of the tag is a
number, and it works like a percent. The scores of the indirect
parents are automatically multiplied by 100, so a number less
than 100 will decrease the score for the direct route relative to
the other routes and make it more likely to be chosen. For
example, setting the value to 50 will favor the direct route
twice as much as the indirect route. A setting of 120 would
favor the indirect routes. The tag may be configured as fol-
lows: and name="cdnroute-direct-scale">100</md>. The
cdnroute-direct-scale takes as its value a number between 0
and 255. The default value is 100, but 95 is a useful value.

The cdnroute-absolute-direct-scale tag takes a number
from —2000 to +2000 that represents a number of millisec-
onds. This is normally set to 10. The number is an offset that
is subtracted from the direct route score to ensure that the
indirect route must be at least this amount better than the
direct route before it is chosen as the best route.

One of ordinary skill in the art will appreciate that the
technique of tunneling through an intermediate CDN node for
the purpose of faster and more reliable region-to-origin server
may be extended to facilitate region-to-region communica-
tion. Each CDN server for a given client request may play one
of three different roles: edge-server, middle-server or root-
server. An edge-server is a server receiving an HTTP request
from a client. A root-server is a CDN server that retrieves the
content directly from the content provider origin server. Thus,
a root-server may be co-located or located near a content
provider origin server, although this is not a requirement. Any
CDN server node that lies between the edge-server and the
root-server is a middle-server. These CDN servers simply
forward packets between the edge and root servers, i.e., a
child CDN server and its parent CDN server.

Consistent with the methodology described above, the fol-
lowing are representative steps that would take place after an
edge-server gets an HTTP request from a client. First, the

14
edge-server determine a list of parent IP addresses as well as
an IP address for the content provider origin server. In an
illustrative embodiment, such information is obtained from a
map generated by a mapmaker machine. To obtain the map,

5 the edge server preferably issues a name query (i.e., a DNS
lookup). Any convenient domain name construct can be used
to direct the requesting server to a given map for a given CDN
customer. Then, the edge server determines if it is to apply a
race and/or Rsync to the request. If a race is used, the client
becomes a VIP-client. Based on how long it has been since the
edge server has picked a VIP-client, the edge server deter-
mines if this client will be a VIP-client or not. As noted above,
certain rules or policies may be used to determine whether the
edge server picks the client to be a VIP-client. Thus, for
example, the request may be considered to be from a VIP-

15 client according to the following constraints: (a) if a VIP-
client has been picked for this content provider in the last 30
seconds, do not pick this client; (b) if no VIP-client has been
picked for this content provider in the last 5 minutes, pick this
client; (c) if no VIP-client has been picked for this content

20 provider in the last 40 downloads, pick this client; (d) for large
downloads ensure that the network is not overloaded by abort-
ing a download after the first 56 Kbytes are received over a
particular route. Of course, the above rules are merely exem-
plary.

25 It is assumed that parent zero is a root-server. The edge-
server preferably keeps a running average of download times
per content provider and parent over the VIP-client down-
loads. If the client is a VIP-client, the edge-server will down-
load a copy of the file from all or some number of the parents.

30 It preferably returns the first file to arrive to the client and
records the time for each of the downloads. This information
is then used in the running averages. If the client is a normal
client, then the edge-server picks the parent with the best
estimator that is computed from the running averages. If the

35 content provider is multi-homed, it has servers in more than
one location. In such case, the edge-server will use a default
method provided by the content provider to determine the
closest home.

As described above, a Closest Reverse Proxy Map may be
40 used where the CDN service provider maintains reverse

proxy regions. This map may be generated as follows. Let R
be the list of RootProxy regions for some content provider.
For each region R, consider all two-hop paths from the region
R to some region in R. Return the shortest two such paths. Not

45 all two-hop paths are considered. Let D be the distance from
R to the closest RootProxy. Discard a path R? R1? R2, if one
of the following is true: (a) 0.8xD<Dist(R1, R2) (b) 1.2x
D<Dist(R, R1)+Dist(R1, R2).

The following algorithm may also be used to estimate the
so distance between regions. To adjust ping time and ping loss

into a distance, use the following Dist=(100/(101—% Loss)2x
pingTime. This formula has the following effect: for a 10%
loss, increase the ping time by 20%; for a 20% loss, increase
the ping time by 50%; for a 30% loss, increase the ping time

55 by 100%. If desired the ratio above may be cubed instead of
squared.

The tunneling technique provides a significant (e.g., two
times) decrease in average file download time. Although not
required, preferably the tunneling technique is coupled with a

60 data compression and difference algorithm so that the number
of bytes transmitted from a root-server to an edge-server is
also reduced. A representative algorithm for this purpose is
Rsync, although other such algorithms may be used. The use
of Rsync (or a similar approach wherein file differences are

65 transmitted) decreases bandwidth used on expensive long-
haul links and provides addition reduction in download time
due to the smaller file sizes being transmitted.

10

12

US 8,194,538 B2
15

The present invention provides numerous advantages. The
inventive techniques are especially useful for any CDN cus-
tomer seeking to optimize performance in content delivery
and for many customers interested in improved reliability.
The performance benefit is greatest when the connection
from an edge server to the customer's origin is frequent,
because this is the transfer that is optimized by the present
invention. This applies regardless of whether the connection
is used to transfer an entire file or an If-Modified-Since
request to revalidate content or authorize a request before
serving the client. Specifically, any content that uses dynamic
content assembly, no-store, bypass-cache, centralized autho-
rization, zero-TTL or low TTL settings, is a good candidate
for use of the techniques described above. Of course, the
above is merely illustrative and should not be taken to limit
the scope of the present invention in any way.

One of ordinary skill in the art will appreciate that the
inventive technique for tunneling data from the content pro-
vider origin server (or a reverse proxy) to the edge server is
not meant to be limited to data transfers in one direction.
There are many instances where data transfer will go from the
edge server to the origin, e.g., when an application executing
on the edge server provides data to the origin. Thus, the
inventive technique should be considered bi-directional or
uni-directional.

As described above, the present invention is not limited to
use of file download races to prioritize the set of routes that are
exposed in a given content provider map. Other performance
metric tests may be used in addition to or in lieu of the file
downloads. For example, a simple liveness check may tell the
edge server that a given route identified in the map is no
longer active. Moreover, other well-known techniques may
be used to determine which path (either direct or indirect) is
the best or optimal one for edge server to origin/proxy server
(or vice versa) communications. Such additional methodolo-
gies may be used to select the optimal routes include, without
limitation: analysis of BGP data, analysis of historical TCP/
IP statistics, measurements conducted as a result of
exchanges of data between regions, additional network sta-
tistics generated from traceroutes, pings, udp traffic, and
combinations of the above.

One of ordinary skill in the art will appreciate that "tunnel-
ing" as used herein is distinct from the concept of Internet
Protocol (IP) packet encapsulation, such as described in RFC
1048 (1994). In RFC 1048, a "tunnel" is created through a
given node by encapsulating the data to be transferred in
another packet and then sending the packet. As described
herein, "tunneling" does not necessarily move data from
point A (the edge server) to point B (the origin server)
directly, as typically content does not pass through the inter-
mediate node (e.g., on a path from point A to point B); rather
(and because the CDN typically operates as an overlay on top
of other networks), when the intermediate CDN node receives
a request from the edge server, it creates a new request, and
then the intermediate CDN node sends the new request for-
ward to the origin server. Thus, as used herein, a "route" (e.g.,
between a CDN server and an origin server) may also be
described conveniently as a "path."

Having described our invention, what we now claim is set
forth below:

The invention claimed is:
1. A method operative in a content delivery network having

a set of server nodes organized into regions, wherein the
server nodes provide delivery of content on behalf of partici-
pating content providers, wherein a server node comprises a
cluster of content delivery network edge servers, the method
comprising:

16
for each given server node and a content provider origin

server, identifying at least one alternate path to be used
for edge server-to-content provider origin server com-
munications, the at least one alternate path including at

5 least one other content delivery network edge server that
is external to the given server node;

upon receipt at a particular edge server in the given server
node of a request for an object that is not available for
delivery from the particular edge server, issuing a new
request for the object from the particular edge server
over the at least one alternate path, wherein the object
has an associated cacheability setting, wherein the
cacheability setting indicates that the object should not

15 be cached in the particular edge server;
receiving the object over the at least one alternate path; and
serving the object in response to the request.
2. A method operative in a content delivery network having

a set of server nodes organized into regions, wherein the
20 server nodes provide delivery of content on behalf of partici-

pating content providers, wherein a server node comprises a
cluster of content delivery network edge servers, the method
comprising:

for each given server node and a content provider origin
25 server, identifying at least one alternate path to be used

for edge server-to-content provider origin server com-
munications, the at least one alternate path including at
least one other content delivery network edge server that
is external to the given server node;

30 upon receipt at a particular edge server in the given server
node of a request for an object that is not available for
delivery from the particular edge server, issuing a new
request for the object from the particular edge server
over the at least one alternate path;

35 receiving the object over the at least one alternate path;
serving the object in response to the request; and
identifying a new alternate path as a result of changing

Internet conditions.
3. The method as described in claim 2 wherein the alternate

40 path is valid for a given time period.
4. The method as described in claim 2 wherein the at least

one alternate path is other than a default Border Gateway
Routing (BGP) path.

5. A method operative in a content delivery network having
45 a set of server nodes organized into regions, wherein the

server nodes provide delivery of content on behalf of partici-
pating content providers, wherein a server node comprises a
cluster of content delivery network edge servers, the method
comprising:

so for each given server node and a content provider origin
server, identifying at least one alternate path to be used
for edge server-to-content provider origin server com-
munications, the at least one alternate path including at
least one other content delivery network edge server that

55 is external to the given server node, wherein the alternate
path is determined by the particular edge server as a
result of performing a performance test;

upon receipt at a particular edge server in the given server
node of a request for an object that is not available for

60 delivery from the particular edge server, issuing a new
request for the object from the particular edge server
over the at least one alternate path;

receiving the object over the at least one alternate path; and
serving the object in response to the request.

65 6. The method as described in claim 5 wherein the perfor-
mance test comprises a race, wherein the race comprises
downloading a file to the particular edge server over at least

13

US 8,194,538 B2
17 18

the alternate path and a default Border Gateway Routing
(BGP) path.

7. The method as described in claim 6 wherein the race is
executed by the particular edge server upon receipt of the
request for the object.

8. The method as described in claim 7 wherein the file that
is downloaded during the race is also the object.

* *

14

